
 

  

 

 

 

STRONG MUTATION-BASED TEST GENERATION OF XACML POLICIES 

 

 

 

 

 

by 

                                    Roshan Shrestha 

 

 

 

 

 

A thesis 

submitted in partial fulfillment 

of the requirements for the degree of 

Master of Science in Computer Science 

Boise State University 

 

December 2018 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2018 

Roshan Shrestha  

ALL RIGHTS RESERVED 



 

  

BOISE STATE UNIVERSITY GRADUATE COLLEGE 

 

 

DEFENSE COMMITTEE AND FINAL READING APPROVALS 
 

 

of the thesis submitted by 

 

 

Roshan Shresthat 

 

Thesis Title: Strong Mutation-Based Test Generation of XACML Policies 

Date of Final Oral Examination: 24 October 2018 

 

The following individuals read and discussed the thesis submitted by student Roshan 

Shrestha, and they evaluated the student’s presentation and response to questions during 

the final oral examination. They found that the student passed the final oral examination.  

 

Dianxiang Xu, Ph.D.    Chair, Supervisory Committee 

 

Edoardo Serra, Ph.D.    Member, Supervisory Committee 

 

Yantian Hou, Ph.D.    Member, Supervisory Committee 

 

The final reading approval of the thesis was granted by Dianxiang Xu, Ph.D., Chair of the 

Supervisory Committee. The thesis was approved by the Graduate College. 

 



 

iv 

 

ACKNOWLEDGMENTS 

 

I would like to thank Boise State University for giving me the opportunity to pursue 

graduate study without which I would not have come this far. I would like to express the 

highest gratitude to the Computer Science Department of Boise State University for always 

supporting me to achieve academic excellence. 

 

I am grateful and have great appreciation to Dr. Dianxiang Xu for including me in his 

research group. I highly admire the learning opportunity and environment he provided to 

me. His ideas and suggestions were crucial for me to achieve my goals. His achievements, 

his dedication and his passion for the research in Computer Security will always be a 

continuous source of inspiration for the rest of my life. 

 

I am also very grateful to Dr. Edoardo Serra and Dr. Yantian Hou for being on my 

thesis committee and providing valuable feedback on my work. 

 

Finally, I am grateful to my parents and my sister for always supporting me and 

encouraging me to achieve my goals. 

  



 

v 

 

ABSTRACT 

 

There exist various testing methods for XACML policies which vary in their overall 

fault detection ability and none of them can detect all the (killable) injected faults except 

for the simple policies. Further, it is unclear that what is essential for the fault detection of 

XACML policies. To address these issues, we formalized the fault detection conditions in 

the well-studied fault model of XACML policies so that it becomes clear what is essential 

for the fault detection. We formalized fault detection conditions in the form of reachability, 

necessity and propagation constraint. We, then, exploit these constraints to generate a 

mutation-based test suite with the goal to achieve perfect mutation score. Additionally, we 

have empirically evaluated the cost-effectiveness of various coverage-based testing 

methods against the near-optimal test suite from strong mutation-based test generation 

(SMT). Rule coverage has good cost-effectiveness such that it achieved better MKPT 

scores than SMT in many of the policies; however, it has poor fault detection capability. 

Decision coverage is nearly as cost-effective as SMT in most of the policies and it achieves 

better mutation score than rule coverage but could not achieve good mutation score in many 

of the policies. MC/DC have slightly less MKPT scores than SMT; nonetheless, among 

coverage-based testing methods, MC/DC tests have the highest mutation score and hence 

could reveal most of the faults. MC/DC even achieved a perfect mutation score for some 

policies; however, it still could not maintain good mutation score in all the policies.
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CHAPTER 1 

 

Introduction 

1.1 Background 

Access Control (AC) mechanism is a fundamental security mechanism that serves 

to limit the access to a system with virtual or physical resources (objects) based on subject 

requesting the access. In AC models like IBAC (Identity Based Access Control) or RBAC 

(Role-Based Access Control), the solution is based primarily on the identity of a subject 

where access to an object will be individually granted to a locally identified subject or 

locally defined roles that the subject is a member of. The subject qualifiers, such as identity 

and roles, are often insufficient in the expression of real-world AC needs because real-

world AC requirements often need to deal with environmental conditions. However, 

traditional AC models like RBAC cannot incorporate factors pertaining to environmental 

conditions effectively. Environmental conditions include operational or situational context 

which are detectable environmental characteristics in which an access request is made. 

Environmental characteristics may include the current time, day of the week, a location of a 

user, or the current threat level which are independent of subject or object [1]. 

Attribute-Based Access Control (ABAC) has emerged as a new generation of access 

control methods for tackling the afore-mentioned issues. ABAC avoids the need for 

capabilities (operation/object pairs) to be directly assigned to a subject (requesters) or to 

their roles or groups before the request is made. The ABAC engine can make an authorization 
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decision when a subject requests access based on the assigned attributes of the requester, the 

assigned attributes of the object, environmental conditions, and a set of policies that are 

specified in terms of those attributes and conditions. This arrangement enables policies to 

be created and managed without direct reference to potentially numerous users and objects. 

Further, users and objects can be provisioned without reference to a policy [1]. 

ABAC allows us to specify fine-grained access control by combining various 

attributes of authorization elements into access control decisions. The attributes are 

predefined characteristics of subjects (e.g., job title and age), resources (e.g., data, 

programs, and networks), actions, and environments (e.g., current time and IP address). In 

ABAC, the subject presents a request to access the resource (object) [1]. The ABAC 

mechanism, then, evaluates policies, subject attributes, object attributes and 

environmental conditions to make the access control decision for the request. If authorized, 

the subject is given access to the resource. This is the core concept of ABAC which is 

illustrated in Figure 1.1. 
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Figure 1.1: ABAC Concept [1] 

XACML is an OASIS standard for ABAC policy specification.  It provides both a policy 

language and an access control decision request/response language (both written in XML). 

The policy language is used to describe general access control requirements, and has 

standard extension points for defining new functions, data types, combining logic, etc. The 

request/response language is for defining a query to ask whether a given action should be 

allowed or not and interpreting the result. The response consists of a decision about whether 

the request should be permitted or not. The possible values in response are Permit, Deny, 

Indeterminate (an error occurred, or some required value was missing, so a decision cannot 

be made) or Non-applicable (the request can’t be answered by this service) [2].  

The typical setup in an ABAC system is that someone (subject) wants to take some action 

on a resource (object). A subject will make a request to the system which is intercepted by a 
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Policy Enforcement Point (PEP) which is responsible for protecting the resources (like a 

filesystem or a web server). Once PEP receives a request, it will send the request to a 

Policy Decision Point (PDP) which will determine policies that are applicable to the 

request and determines whether access should be granted or not. To make an access 

decision, PDP needs to evaluate certain attributes for which it makes a query to the Policy 

Information Point (PIP) which is responsible for resolving the attribute values required to 

make access decisions. Once the PDP gets the required attributes, it makes access decisions 

from the applicable policies. The response (decision) is then returned to the PEP which 

will enforce the access decision [2]. Figure 1.2 depicts the data flow in an ABAC system. 

It also consists of a Policy Administration Point (PAP) which is responsible for management 

and administration of policies themselves. 
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Figure 1.2: Data-flow in ABAC [2] 

XACML policies may have various faults due to the misunderstanding of access control 

requirements, the complexity of access control language, and coding errors. While ABAC 

is more expressive than traditional AC methods such as RBAC, however, it is complex, 

and its complexity increases the likelihood of the existence of faults resulting in 

vulnerabilities as well as the level of difficulty in revealing these vulnerabilities. Research 

has shown that XACML policies are subject to a variety of faults, such as incorrect rule 

targets, incorrect rule conditions, incorrect rule effects, incorrect targets of policies and 

policy sets, and incorrect uses of the rules or policy combining algorithms [3, 4]. 
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A major means for finding faults in XACML policy is to execute an access control 

system with a test suite (a set of test cases). A test case includes test input (access request) 

and corresponding test Oracle (expected response). A test fails when the system’s actual 

response to the request is different from its expected response. Such failure often indicates 

the existence of a fault that may lead to unauthorized access or denial of service. 

Current researches on testing XACML policies have commonly used policy mutation 

analysis to evaluate the fault detection ability of testing methods. It involves creating 

mutants of the policy under test using various mutation operators for a fault model (a set 

of the fault types). Each mutant is a variation of the given policy with an injected fault, 

which represents an error that a policy writer might make. A mutant is said to be killed if 

it fails one or more tests. The fault detection ability of the testing method is indicated by a 

mutation score which is the ratio between the number of mutants killed by the test suite 

and the total number of non-equivalent mutants. 

Existing testing methods [5–12] vary in their overall fault detection ability, however, 

none of them can kill all the injected faults except for simple policies. The high-end ratios 

were usually obtained for simple policies and does not achieve such high-end ratios in 

complex policies. As a result, if these testing methods are applied in testing real-world access 

control systems with complex policy, it may not reveal many faults. As a result, it may leave 

significant vulnerabilities in the deployed system. In short, the existing approaches are 

inadequate for the high assurance of XACML-based access control. Moreover, it remains 

unclear what is essential to the fault detection given the fault and cost-effectiveness of 

testing various XACML testing methods. 



7 

 

 

 

To overcome afore-mentioned issues, we present a formalization of the fault detection 

conditions for illustrating what is essential for the fault detection of XACML policies in 

well-studied fault models [4,14,15] of XACML policies. The formalized fault detection 

condition is then used for formulating strong mutation-based test generation with the goal 

of achieving perfect mutation score. Finally, we have done the empirical study evaluating 

test suites from various coverage-based testing methods along with the test suites from strong 

mutation-based testing methods. The empirical study involves mutation analysis of various 

policies with different levels of complexity to identify fault detection capability and cost-

effectiveness of each testing method. 

1.2 Thesis Statement 

The objective of this thesis is threefold. First, we formalize the fault detection 

conditions for faults in well-studied fault models of XACML policies. The goal is to make 

clear (formal) that what is essential for the fault detection given the fault. The fault 

detection condition of a given fault specifies the reachability, necessity, and propagation 

constraints that a test must satisfy in the order to reveal the fault. Although the notions of 

reachability, necessity, and propagation (a.k.a. sufficiency) constraints originate from 

mutation testing or constraint-based software testing [28,30], there is a lack of formal 

treatment of these constraints. In particular, the problem with propagation constraints of 

software is known to be intractable [29,30] because of the explosion of program execution 

paths. In this paper, the unique features of XACML make it feasible to formally represent 

the reachability, necessity, and propagation constraints of access control policies in three-

valued logic.  
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Second, we formulate strong mutation-based test generation by exploiting the 

formalized fault detection condition to produce near-optimal test suites for XACML 

policies. A test suite for a given policy is said to be optimal if it contains the smallest 

number of tests which can achieve 100% mutation score. This paper considers near-

optimality rather than strict optimality because constraints in XACML involve various data 

types, functions, and first-order predicates and solving the fault detection condition boils 

down to the constraint satisfaction problem, which is known to be undecidable. 

Nevertheless, due to the integration of all reachability, necessity, and propagation 

constraints for strong mutation testing, our approach is actually able to automatically 

generate the near-optimal test suites for all the XACML3.0 policies in the most recent 

literature [27]. This distinguishes our work from the existing mutation-based test 

generators that only deal with reachability and necessity constraints, a.k.a. weak mutation 

testing [20]. Generally, tests generated from weak mutation cannot achieve 100% mutation 

score [28, 31]. Further, SMT (strong mutation-based test generation) requires larger test 

generation time than all the testing methods discussed in this work. The objective of the 

SMT is to evaluate the cost-effectiveness and is not feasible for a policy with the larger 

number of the rules. Hence, we also presented NO-SMT (non-optimized strong mutation-

based test generation) whose test generation time is greater than MC/DC but still 

comparable to it and is feasible to apply for larger policies.  

Third, we present the quantitative evaluations of several test generation methods 

comparing against a near-optimal test suite (from SMT) of subject policies to establish 

cost-effectiveness and fault detection capability. The main testing methods for XACML 
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3.0 policies include rule coverage-based test generation, two forms of test generation with 

decision coverage, and two forms of MC/DC test generation [27].  

1.3 Method 

A fault in a policy is an error or flaw that causes it to produce an incorrect result. A 

fault may result in a different output than it is supposed to produce. We can exploit this 

difference in result between faulty policy and correct policy to reveal a fault. The idea is to 

record the output of the policy for some input when we know that policy is correct. Later, 

when we need to determine there exists fault or not, we supply those inputs to the suspect 

policy and if the result is different than the previously recorded result, we could conclude 

that there exists a fault. A fault policy, however, does not necessarily produce a different 

result than the correct policy for all possible inputs. The test inputs must satisfy certain 

constraint to produce a different result than from the correct policy and hence reveal the 

fault. Such constraints are referred to as fault detection conditions. 

1.3.1 Fault Detection Condition (FDC) 

The fault detection condition of a given fault specifies the constraints (or condition) 

that a test must satisfy to reveal the fault. A test input must satisfy the reachability, necessity 

and propagation condition to reveal the fault [18]. This is because to reveal the fault in a 

policy, the test must reach the faulty policy element which is termed as reachability 

condition. Once it is reached, the test must evaluate the faulty element to produce an 

incorrect intermediate result which is different than that from its correct counterpart which 

is referred to as necessity condition. If a test does not meet the reachability condition and/or 

necessity condition, the correct policy and faulty policy will behave the same and we do 

not have a means for detecting the fault. Once the incorrect intermediate result is produced, 
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it should play a role to produce a different result in the faulty policy than to the correct 

policy which is referred to as propagation condition. Hence, propagation condition is also 

essential for fault detection because reachability and necessity condition may only produce 

the incorrect intermediate result which may not be visible to the final access control 

decision if propagation condition is not met in which case we could not reveal the fault. 

Hence, we define fault detection condition with the following three constraints:  

a) Reachability(R) constraint: the test must reach the faulty policy element (e.g., rule 

target, rule condition, rule effect, policy target, and combining algorithm).  

b) Necessity(N) constraint: the test must make the faulty element evaluate to an incorrect 

intermediate result which is different from the evaluation result that should be produced by 

its correct counterpart.  

c) Propagation(P) constraint: the test must make the faulty policy produce an incorrect 

response which is different from the expected response that should be produced by the 

correct policy. 

We then exploit FDC to formulate strong mutation-based test generation. 

1.3.2 Strong Mutation-based Test Generation with Fault Detection Conditions 

Strong mutation-based test generation involves generating test input that satisfies the 

three constraints of the fault detection conditions - reachability, necessity and 

sufficiency/propagation for each fault type. If we use only reachability and necessity 

constraint to generate test suites, then it is called weak mutation-based test generation and 

if we use all three constraints, then it is referred to as a strong mutation. Strong mutation 

assures fault detection while weak mutation could not. However, incorporating propagation 

constraint is costly and requires a lot of effort that becomes infeasible to apply strong 
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mutation [20]. As a result, weak mutation is used in many cases, however, the features of 

XACML (being the domain specific language) made it feasible to apply strong mutation. 

In fault detection conditions, we specify all possible mutually exclusive constraints for 

reachability, necessity and propagation but for mutation-based test generation, we need not 

require generating test cases to satisfy all possible cases. For example, if reachability 

constraint is “policy target evaluates to true” or “policy target evaluates to an error”, we 

may just use “policy target evaluates to true” for fault detection and avoid “policy target 

evaluates to an error” to avoid redundant tests and for simplicity. Hence, we identify just 

sufficient mutually exclusive conditions from each of the reachability, necessity and 

propagation constraints for the fault to be detected. The process of identifying sufficient 

constraints to detect a fault involves picking one of the mutually exclusive constraints from 

the reachability constraint and concatenating the reachability constraint with corresponding 

mutually exclusive necessity constraints and propagation constraints. For example, if the 

reachability constraint has two mutually exclusive conditions which are “policy target 

evaluate to true” or “policy target evaluate to an error”, we can pick “policy target evaluates 

to true” as the reachability constraint. Further, the chosen reachability constraint may have 

two mutually exclusive necessity constraints as “rule target evaluates to true” or “rule 

target evaluates to an error”. Hence, we concatenate one of the mutually exclusive necessity 

constraints, say “rule evaluates to true”. Finally, we concatenate one of the mutually 

exclusive propagation constraints corresponding to the chosen necessity constraint, say it 

is “all rules with deny effect except the first rule should not evaluate to true”. Hence, the 

sufficient constraint to identify the fault is “policy target evaluates to true  rule target 

should evaluate to true  all deny rules except the first rule should not evaluate to true”. 
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The test suite generated in this way is called a mutation-based test suite. The resulting 

test suite may have many redundant test cases which will only kill those mutants which 

will be killed by other test cases. In other words, redundant test cases do not kill unique 

mutants that are not killed by any other test cases. Hence, such redundant test cases do not 

contribute to fault detection capability and result in poor cost-effectiveness of a test suite. 

Since our goal is to generate a near-optimal test suite, we need to optimize the test suite. 

Let, Mi represents the set of mutants killed by an arbitrary test case ti. By near-optimal, we 

mean, if T = {t1, t2, ..., tn} be a near-optimal test suite, then for any arbitrary i and j, such 

that i != j, Mi – Mj != empty as well as Mj – Mi != empty i.e each test in a test suite kills at 

least one mutant not killed by any other test cases. The reason for generating a near-optimal 

test suite is that it can be used for evaluating the cost-effectiveness of a test suite from other 

testing methods. Hence, we have applied the optimization to find the near-optimal test 

suite.  

Once we have the near-optimal test cases, we need Oracle value (expected response). 

Since we have the original policy which we assume to be correct, we run generated test 

inputs on original policy and record its value as Oracle values for a test suite. The optimized 

version of strong mutation-based test generation is named as SMT. The optimization 

involved in SMT is a costly operation making it infeasible to apply for large policies. We 

also formulate strong mutation-based test suite without optimization referred to as NO-

SMT which has less cost-effectiveness as that of SMT but achieves perfect mutation score. 
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1.3.3 Quantitative Analysis 

Finally, we do quantitative analysis using metrics like mutation score and mutants 

killed per test (MKPT) to determine the cost-effectiveness of major testing methods of 

XACML (such as rule coverage, decision coverage, non-error decision coverage, MC/DC 

coverage and non-error MC/DC coverage). Mutation score is the percentage of mutants 

killed against the number of non-equivalent mutants. It indicates the fault detection 

capability of a test method. MKPT is the average number of mutants killed by a test in a 

test suite. An optimal test suite will have the highest MKPT score. As a result, we can 

evaluate the cost-effectiveness of a testing method by comparing the MKPT score of the 

test suite from the method under consideration with an optimal test suite. However, finding 

an optimal test suite is an undecidable problem and hence, we used the SMT with the 

approximation method to optimize the test suite to find near-optimal test suite. The goal is 

to compare the MKPT score of a near-optimal test suite with the test suite from the current 

method and establish the cost-effectiveness of the testing method. 

The rule coverage is the coverage criteria which aims to evaluate the effect of each 

rule in the policy. The decision coverage is the coverage criteria which aims to evaluate 

each decision point (policy set target, policy target, rule target and rule condition) to three 

possible evaluations true, Non-applicable (N/A) and error. Non-error decision coverage is 

the same as decision coverage except that it does not consider the error in evaluation of 

decision points i.e it aims to evaluate each decision point to only true and N/A [27]. 

Consider, an expression “resource-id=Liquor ˅ resource-id= Medicine” which is 

composed of a disjunction of two constraints “resource-id=Liquor” and “resource-id= 

Medicine”. A coverage criterion which satisfies decision coverage and in addition requires 
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that every condition in a decision point has taken on all possible outcomes at least once 

and each condition has been shown to independently affect the decision’s outcome is 

referred to as MC/DC coverage criteria. For example, MC/DC of a conjunctive expression 

with n conditions (e.g., c1  …  cn) requires n+1 tests: one test that evaluates all conditions 

to true and n tests that evaluate one condition to false and other conditions evaluate to true. 

MC/DC of a disjunctive expression with n conditions (e.g., c1 ˅  … ˅  cn) requires n+1 tests: 

one test that evaluates all conditions to false and n tests that evaluate one condition to true 

and other conditions evaluate to false [27]. 

1.4 Outline 

The remainder of this document is organized as follows. Chapter 2 presents the 

background and summarizes related work on the research topic. Chapter 3 specifies the 

Fault Detection Condition (FDC) for the fault model. Chapter 4 presents the mutation-

based test generation, Chapter 5 specifies the quantitative evaluation, and Chapter 6 

concludes this work. 
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CHAPTER 2 

 

Background and Related Work 

2.1 Mutation analysis and mutation-based test generation  

Mutation analysis is a fault-based testing technique which provides a testing criterion 

that can be used to measure the effectiveness of a test set. The general principle of Mutation 

analysis is to produce mutants of the original source/specification by injecting the mistakes 

that programmers/users might make. Such faulty programs/specification resulted after 

deliberately seeding faults into the original source are called mutants. The statement in 

which mutation takes place is called a mutation point and the transformation rules used to 

produce such fault and hence mutants are called mutation operators. The resulting faulty 

policies (mutants) which exhibit the same behavior as the original ones are known as 

equivalent mutants and those which exhibit different behavior than that of the original ones 

are called nonequivalent mutants [19].  

Mutation operators are defined with respect to a fault model, which is a collection of 

the fault types in the programming language. The main hypotheses of mutation testing [19, 

32] include: (a) the mutants are based on actual fault models and are representative of real 

faults, (b) developers produce programs (policies) that are close to being correct, (c) tests 

sufficient to detect simple faults (i.e., in mutants) are also capable of detecting complex 

faults. Experiments have shown that mutants are indeed similar to real faults for the 

purpose of evaluating testing techniques [16, 33]. To assess the quality of a test set, the 
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generated mutants are run against the test set. If the result from a mutant is different from 

the original one for any test cases in the input test set, we say that the mutant failed the 

test. A mutant is said to be killed if it fails one or more tests. One outcome of the mutation 

testing process is the mutation score – mutant killing ratio. Mutant-killing ratio is the ratio 

between the number of mutants killed by the test suite against the total number of non-

equivalent mutants [3]. 

Mutation-based test generation derives a test from one or more mutants of a given 

program so that the mutant and its original program produce a different execution result. 

Such a test needs to meet the following constraints: (a) Reachability constraint: the test 

must reach the mutation point, i.e., trigger the execution of the mutated code, (b) Necessity 

constraint: the test must make the mutated code evaluate to an intermediate result that is 

different from that of the original program, and (c) Propagation (a.k.a. sufficiency) 

constraint: the test must make the intermediate result of the mutated code propagate to a 

final state that is different from the final state of the original program. We refer to the 

collection of reachability, necessity, and propagation constraints as the fault detection 

condition. The existing techniques primarily follow the concept of weak mutation testing 

[20] that uses the reachability and necessity constraints to generate test inputs [31]. The 

main reason is that it has been shown to be intractable to solve the propagation constraint 

[28]. This paper aims at strong mutation testing of XACML policies that deal with all 

reachability, necessity, and propagation constraints. As a domain-specific language, 

XACML has a unique structure that makes it feasible to tackle propagation constraints. 

The existing work on mutation testing of XACML policies focuses on mutation tools and 
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evaluation of testing methods with policy mutants. In comparison, this paper focuses on 

the formalization of the fault detection conditions and mutation-based test generation. 

2.2 Introduction to XACML  

XACML is a general-purpose access control policy language. The root of an XACML 

policy document ℙ is a policy element or a policy set element. A policy set element contains 

other child policy elements or policy set elements such that each of which may evaluate 

to different access control decisions. A policy element contains a list of the rule elements 

each of which may evaluate to different access control decisions. And, there is a mechanism 

to resolve decisions from multiple units of the rules within a policy or multiple units of 

policies or policy sets within a policy set known as combining algorithms. The combining 

algorithm which reconciles decisions from a list of the rules is referred to as rule combining 

algorithm. Similarly, the combining algorithm which reconciles decisions from policies or 

policy sets is referred to as policy combining algorithm. A policy set, policy or rule element 

contains a target element that specifies the set of requests to which it applies. Further, a rule 

may consist of another Boolean function known as condition element which needs to be 

satisfied for a rule to be applied. Figure 2.1 depicts the XACML policy language model. 
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Figure 2.1: XACML policy language model [2] 

As shown in Figure 2.1, the target of a rule, policy, or policy set is a conjunctive 

sequence of AnyOf clauses. Each AnyOf clause is a disjunctive sequence of AllOf clauses, 

and each AllOf clause is a conjunctive sequence of match predicates. A match element 

matches and compares attributes in a request context with the embedded attribute values. 

Logical expressions for match predicates and rule conditions are usually defined on four 

categories of attributes: subject, resource, action, and environment. They can use a great 

variety of predefined functions and data types.  A rule also has an effect element which will 

be either permit or deny corresponding to the access decision of the rule.  

Formally, a policy set element PS is a quintuple < PST, PCA, [P1, P2 , …, Pm], A, O>, 

where PST is the policy set target, PCA is the policy combining algorithm, and [P1, P2,…, 

Pm] is the list of policies or policy sets in the policy set, A is a set of advice, and O is a set 

of Obligation. Each policy Pi is a quintuple <PTi, RCAi, [ri1, ri2 , …, rin], Ai, Oi> , where 

PTi is the policy target, RCAi is the rule combining algorithm, and [ri1, ri2 ,…, rin] is the list 
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of the rules in the policy, Ai is a set of advice, and Oi is a set of obligation. Each rule Rj is 

a triple < rtj, rcj, rej >, where rtj is the rule target, rcj is the rule condition, and rej ∈ {permit, 

deny} is the rule effect. < rtj, rcj, permit> is called a permit rule, whereas < rtj, rcj, deny> 

is a deny rule. If both rtj and rcj are omitted (always true), then the rule < _, _, rej > is a 

default rule. More specifically, < _, _, deny> is a default deny rule, whereas < _, _, permit> 

is a default permit rule.  

To access the resource, a subject presents an access request to the system. An access 

request for an ABAC authorization system consists of a set of attributes. For an access 

request q, a policy or policy set responds with an access decision, such as permit or deny. 

Given an access request q, PS is evaluated to produce a response (i.e., access decision) 

denoted as d(PS, q). A policy set target PST is first evaluated according to the attribute 

values in q. If the result of the evaluation is false, then d(PS, q) = N/A otherwise policies 

P1, P2,…, and Pm will be evaluated if PST is true or evaluates to an error. d(PS, q) depends 

on policy combining algorithm PCA and the decisions of individual policies with respect 

to q (denoted as d(Pi, q)). Similarly, for an individual policy Pi = <PTi, RCAi, [r1, r2, …, 

rn] >, policy target PTi is evaluated according to the attribute values in q. If the evaluation 

result is false, then d(Pi, q)= N/A, otherwise, rules r1, r2,…, and rn will be evaluated. d(Pi, 

q) depends on rule combining algorithm RCAi and the decisions of individual rules. 

Decision of the rule rj = < rtj, rcj, rej > with respect to q, denoted as d(rj, q), is defined as 

follows: 

i) Permit: access is granted when rej = permit and rtj and rcj is true with respect to q.  

ii) Deny: access is denied when rej = deny, and rtj and rcj is true with respect to q.  
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iii) Non-applicable, or simply N/A: q is not applicable, i.e., rtj and/or rcj is false with 

respect to q.    

iv) IndeterminateD or simply I(D): An error occurred when rtj or rcj was evaluated 

and rej = Deny. The decision could have evaluated to Deny if no error had occurred.  A 

syntactically valid access request may cause the occurrence of a runtime error for different 

reasons, such as missing an attribute value, mismatch of an attribute type, and an exception 

of expression and function evaluation.  

v) IndeterminateP or simply I(P): An error occurred when rtj or rcj was evaluated and 

rej = Permit. The decision could have evaluated to Permit if no error had occurred.  

A rule may have an empty target as well as empty conditions referred to as a default 

rule. For a default rule rj= < _, _, rej >, any access request q is d(rj, q) = rej.  

The root element of a general XACML policy document ℙ could be either a policy 

element or a policy sets element. If the root element is a policy set element, then policy 

combining algorithms for the root policy set has nested rule combining algorithms and/or 

policy combining algorithms inside it. Since we need to deal with five rule combining 

algorithms in our work and if we consider policy sets we need to consider six policy 

combining algorithms, such nesting would create lots of combinations of nested combining 

algorithms. As a result, for simplicity, further, in this work, we would only consider 

XACML policy document ℙ which has a policy element as a root of the XACML document 

so that we don’t need to deal with nested rule and policy combining algorithms. With 

similar reasoning, we can also deal with policy sets and hence policy combining algorithms 

but for simplicity, we only consider policy in this work. Further, Advice and Obligation 

plays no role in our work, so we omit them while representing policy elements further in 
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this work. Hence, for simplicity, we represent XACML policy document ℙ as P = <PT, 

RCA, [r1, r2, …, rn]> where PT is policy target, RCA is rule combining algorithm and [r1, 

r2, …, rn] is the list of child rules of P. 

2.2.1 Sample Policy 

Figure 2.2 presents an example of an XACML policy document which has Policy Id 

KmarketBluePolicy. It is a demonstration policy from Balana – Open source 

implementation of XACML [13]. The rule combining algorithm of the policy is deny-

overrides (line 2). The policy’s target (lines 3-14) implies the constraint “role=blue” where 

a role is an attribute in the subject category and blue is the value for the attribute of type 

string. For this policy to be applied to a request, the request context must contain the subject 

attribute role with the value of blue. 

There are three rules with rule ids:  deny-liquor-medicine (line 16-37), max-drink-

amount (lines 38-61), and permit-rule (line 62). The target of the rule deny-liquor-medicine 

(lines 18-36) implies the constraint “resource-id=Liquor” (line 19-26) ˅ “resource-

id=Medicine” (lines 27-34), where resource-id is an attribute in the resource category. 

Since the rule does not have a condition element, it is true by default, hence, the rule will 

result in a “Deny” decision if “resource-id=Liquor ˅ resource-id=Medicine”. The target of 

the rule max-drink-amount implies the constraint “resource-id=Drink”, and the condition 

the implies constraint “amount > 10”. Thus, the rule results in a deny decision if “resource-

id=Drink ˄ amount > 10”. Rule permit-rule has neither target nor condition. It results in a 

Permit decision whenever it is reached. 
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Figure 2.2. A sample XACML policy [13] 
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Hence, in the notation we described earlier, P = <role =“blue”,deny-overrides , 

[r1,r2,r3]> where r1 = <rt1, rc1, re1>, r2 = <rt2, rc2, re2>, r3 = <rt3, rc3, re3> such that   rt1 

= “resource-id = Liquor  ˅ resource-id = Medicine”, rc1 = true (since its empty), re1 = 

deny, rt2 = “resource-id = Drink”, rc2 = “amount > 10”, re2 = Deny, rt3 = true (since its 

empty), rc3 = true (since its empty), and re3 = Permit. 

To illustrate how an XACML authorization scheme works, we first need to discuss 

how each element of XACML evaluation occurs. 

2.2.2 Policy Evaluation 

When a request is presented to the AC system, it first needs to determine whether the 

available set of XACML policies can be applied to a given request or not. For this purpose, 

the target element PT of root policy element P of XACML policy document ℙ is used. If it 

is empty, the policy is applicable to any request q. If it is not empty and request q meets 

the constraints specified by the target PT or if there is an error while evaluating the target 

PT, the policy is applicable to request q otherwise policy is not applicable and will not be 

evaluated further. The evaluation of policy involves evaluation of its child rules. Once its 

child elements are evaluated and it obtains the authorization decision from each child 

element, it uses a rule combining algorithm to reconcile the decision obtained from various 

child rules and makes a final authorization decision from the result of the rule combining 

algorithm [2]. The details on combining algorithms is presented in Section 2.2.5.  If policy 

target PT evaluates to true, the policy-level decision will be the decision from the rule 

combining algorithm itself. However, if PT evaluates to an error, the decision will be made 

as described in Section 2.2.3 
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2.2.3 Policy Evaluation and Indeterminate Target 

If the target of a policy evaluates to an error, the result of policy evaluation will 

be N/A whenever the result of the rule combining algorithm is N/A; the result will 

be I(P) whenever the result of the rule combining algorithm is permit; the result 

will be I(D) if the result of the rule combining algorithm is deny, and the result 

will be I(DP) if result of combining algorithm is Indeterminate. For any other 

indeterminate result {I(DP), I(D), I(P)} from the rule combining algorithm, the 

result for policy evaluation is the same as that for the rule combining algorithm. It 

uses a rule combining algorithm to reconcile decisions obtained from various 

child rules and makes a final authorization decision from the result of the rule 

combining algorithm [2]. 

2.2.4 Rule Evaluation 

The evaluation of ith rule ri occurs if the evaluation of the rules above it does not halt 

the evaluation of policy P producing the result d(P,q). The rule ri is applicable to request q 

if “rule target rti, as well as rule condition rci, is true” or “rule target rti evaluates to an error” 

or “rule target rti is true and rule condition evaluates to an error” [2].  We say rule evaluates 

to true, if rule target, as well as rule condition, evaluates to true. Similarly, if rule target or 

rule condition evaluates to false, we say rule evaluates to false or N/A. If rule target or rule 

condition evaluates to an error, we say rule evaluates to an error.  

If a rule evaluates to true, the rule-level decision (d(P,ri)) will be the effect of the rule 

i.e if the effect of the rule is permit, then the decision of the rule will be permit. If a rule 

evaluates to an error, the rule-level decision will be the Indeterminate of corresponding 

effect i.e if the effect is permit, the decision of the rule will be I(P) or simply I(P). 
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For a request q, there may be multiple rules which are applicable such that each 

produces their effect and it is the job of the rule combining algorithm (RCA) to reconcile 

decision of multiple rules and produce the final decision for the policy evaluation. Section 

2.2.5 discusses various rule combining algorithms we considered in this work. 

Let rca(P, q) denote the result of applying RCA to the rules in P for the request q. 

Assuming that the list of the rules in P is non-empty, rca(P, q) ∈ {Permit, Deny, N/A, I(D), 

I(P), I(DP)} and per the standard specification [2], d(P, q) is defined as follows: 

 

2.2.5 Combining algorithms 

There are eleven RCAs in XACML 3.0. Four of them are for compatibility support for 

older versions - legacy ordered-deny-overrides, legacy deny-overrides, legacy ordered-

permit-overrides, and Legacy ordered-permit-overrides [2]. As they are for the backward 

compatibility for the previous version of XACML, we do not consider them in our work. 

Among the remaining seven, the five are listed below and the other two are ordered deny-

overrides and ordered permit-overrides. In Balana [13] (an open source implementation of 

XACML3.0), the implementations of ordered-deny-overrides and ordered-permit-

overrides are the same as deny-overrides and Permit-overrides. As a result, we do not 

consider these two as well and this work only focuses on the five RCAs which are as 

follows:-  

a) deny-overrides: deny-overrides is intended for those cases where a deny decision 

should have priority over a Permit decision. If any rule evaluates to deny, the result is deny. 

If there is no deny decision from any rules and if any decision is I(DP), the result is I(DP). 
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If there is no deny and I(DP) decision, and if any decision is I(D) and another decision is 

I(P) or deny, the result is I(DP). If it is also not true, then if any decision is I(D), the result 

is I(D). If there is no deny, I(DP) and I(D) decision, and if any decision is permit, the result 

is permit. If it is also not true and if any decision is I(P), the result is "I(P)" otherwise, the 

result is N/A [2]. 

b)  permit-overrides: permit-overrides RCA is intended for those cases where a permit 

decision should have priority over a deny decision. If any decision is permit, the result is 

permit. If there is no permit decision and if any decision is I(DP), the result is I(DP). If 

there is no permit and I(DP) decision, and if any decision is I(P) and another decision is 

I(D) or deny, the result is I(DP). If it is also not true, then if any decision is I(P), the result 

is I(P). If there is no permit, I(DP) and I(P) decision, and if any decision is deny, the result 

is deny. If it is also not true and if any decision is I(D), the result is I(D) otherwise, the 

result is N/A. 

c) deny-unless-permit: This is intended for those cases where a permit decision should 

have priority over a deny decision, and an Indeterminate or N/A must never be the result if 

the policy is applicable to the request. If any decision is permit, the result is permit 

otherwise, the result is deny. 

d)  permit-unless-deny: This RCA is intended for those cases where a deny decision 

should have priority over a permit decision, and an Indeterminate or N/A must never be the 

result. If any decision is deny, the result is deny else the result is permit. 

e)  first-applicable: This RCA is intended for those cases where the evaluation of 

policy should halt as soon as any rule is applicable to request q. Rules are evaluated in the 

order in which they are listed. If a rule’s target matches and condition evaluates to true, 
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then the result is rule’s effect (permit or deny). If a rule’s target evaluates to an error or rule 

condition evaluates to an error, then the result is I(P) if rule’s effect is permit or I(D) if 

rule’s effect is deny. If the target or condition evaluates to false, the next rule is evaluated. 

If no further rule exists, then the result is N/A.  

To illustrate how XACML policy evaluation occurs, the following section presents 

sample requests and discusses how the policy evaluation takes place for the given sample 

policy. 

2.3 Sample Requests and Policy Evaluation 

This section presents some sample requests and how the evaluation occurs in sample 

policy. The XACML request contains a list of attributes and their value. Let us consider q1 

be the first sample request as q1 = {resource-id =”Liquor”}. This request consists of one 

attribute-value pair where resource-id is attribute and Liquor is a value of the attribute. 

Since the policy target of sample policy is “role = blue” and q1 does not contain role 

attribute, the given sample policy will not be applicable to q1 because the policy target did 

not match, and no rules will be evaluated, and the final decision will be N/A. 

Let us consider second request q2 as {resource-id =”Liquor” and role = “gold”}. 

Since q2 does contain role attribute but it is not blue, the policy will not be applicable 

because the policy target did not match, and the final decision of the policy evaluation will 

be N/A. 

Let us consider a third request q3 as {resource-id =”Liquor” and role = “blue”}. 

Since q3 does contain role attribute and is blue the policy will be applicable. Further, it also 

consists of another attribute-value pair resource-id = ”Liquor”. As a result, rule 1 is 

applicable whose effect is deny and since the RCA is deny-overrides, the rule evaluation 
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stops after rule1 and decision of RCA will be deny. Since the PT evaluates to true, the final 

decision for the policy evaluation will be deny. However, if PT evaluated to an error, the 

final decision for policy would be I(D). 

Let us consider a fourth request q4 as {resource-id = ”aFFFF” and role = “blue”}. 

Since role attribute is blue, the policy will be applicable. The value of another attribute 

resource-id is aFFFF. As a result, rule 1 is not applicable as well as rule 2 because their 

target didn’t match. However, rule 3 is a default rule with no target and condition, so it will 

be applicable to any request and produces permit effect. Since the rule level decision of the 

first two rules are N/A and that of the third rule is permit, the RCA level decision will be 

permit. Since PT evaluates to true, the final policy-level decision will be permit. 

2.4 Related Work 

A test for an XACML policy consists of a test input and the corresponding Oracle 

value (i.e., expected response to the access request). Oracle values depend on the access 

control requirements of the system under test. A test fails when the system’s actual 

response to the request is different from the expected response. Such a failure often 

indicates the existence of a fault that may lead to unauthorized access, elevated privilege, 

or denial of service. The existing approaches to test generation for XACML policies fall 

into two categories: model-based testing that derives tests from models, and policy-based 

testing that produces test inputs directly from the policy under test. As access control 

policies are extra-constraints on system functions, the model-based testing approach 

usually integrates functional models with access control specifications and can generate 

both test inputs and Oracle values. This paper is mostly related to the work that generates 

test inputs from the XACML policy under test. 
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The existing testing methods for XACML policies generate access requests directly 

from the policy under test. A user needs to define the expected response for each request 

to determine whether each test passes or fails. Martin et. al. generates access requests in 

Cirg from counterexamples produced by model checker Margrave [21] through the change-

impact analysis [10]. Mutation score of the testing methods in Cirg ranged from 30% to 

60% in different case studies and 100% for a simple policy. Targen [22] obtained mutation 

score that ranged from 75% to 79% for different case studies which derive access requests 

to satisfy all the possible combinations of truth-values of the attribute id-value pairs found 

in a given policy [5]. The X-CREATE framework deals with the structures of the Context 

Schema Considering that requests must conform to the XML Context Schema. Bertolino 

et al. have developed the Mutant-killing ratios of the X-CREATE framework ranging from 

75% to 96% for several small policies [7]. They have also developed other test selection 

strategies, such as Simple Combinatorial and Incremental XPT [6].  

Mutant-killing ratios of the Simple Combinatorial strategy ranged from 3% to 100%, 

whereas mutant killing ratios of the Incremental XPT strategy ranged from 55% to 100%. 

Bertolino et al. [8] proposed an approach to selecting tests based on the rule coverage 

criterion. It chooses existing tests to match each rule target set, which is the union of the 

target of the rule and all enclosing policy and policy set targets. Mutant-killing ratios of 

this approach ranged from 62% to 98%. In addition, Bertolino et al. [9] proposed similarity-

based metrics for prioritizing existing tests of policies. This work is not concerned with 

how the tests are generated, though. Li et al. [12] have developed XPTester, which used 

symbolic execution technique to generate requests from XACML policies. They convert 

the policy under test into semantically equivalent C Code Representation (CCR) and 
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symbolically execute CCR to create test inputs and translate the test inputs to access 

requests. Mutant-killing ratios of XPTester ranged from 37% to 93%. Although all the 

above work uses mutation to evaluate fault detection ability, there are subtle differences 

between the subject policies and the fault models used by different research groups. It is 

obvious that the above methods are far from satisfactory for the high assurance of XACML 

policies. Most of them produce many tests by combining attribute values. None of them 

have considered advanced coverage criteria, e.g., decision coverage and MC/DC, for 

access control constraints (i.e., rule target, rule condition, policy target, and policy set 

target).  

Verification techniques have also been proposed for quality assurance of XACML 

policies. The verification system in Margrave checks whether an XACML policy satisfies 

given properties that describe the constraints on attributes. Margrave transforms the 

XACML policy into multi-terminal binary decision diagrams. Hwang et. al. [23] applied 

Margrave to the detection of multiple-duty-related security leakage. Hughes and Bultan 

[25] developed an approach for defining properties as partial orderings between XACML 

policies, translating them to Boolean formulas, and using the Zchaff SAT solver to check 

satisfiability of the Boolean formulas. Hughes and Bultan have also proposed an approach 

for translating XACML policies into the Alloy language and analyzing properties as partial 

ordering relations [24]. The above verification techniques are premature because they only 

deal with a very restricted subset of XACML (e.g., no or limited attribute data types and 

no complex conditionals). In addition, they require formal representation of application-

specific properties, which can be a non-trivial task for XACML users. 
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CHAPTER 3 

 

Fault Detection Condition 

A fault in a policy is an error or flaw that can make it produce an incorrect result. 

Consider, the ith rule of a policy P should have permit effect, but if it is somehow changed 

to deny, then there is a fault in the effect of a rule. Since the effect of a rule in a policy is 

incorrect, we refer to such a fault as an Incorrect Rule Effect fault. Similarly, if there is a 

fault in the target element of a rule, then it is referred to as an Incorrect Rule Target fault. 

Incorrect Rule Condition fault represents the fault in the condition element. If a rule is 

missing, we refer to such a fault as a missing rule fault. If there is a different combining 

algorithm than it is supposed to have, then it is an called Incorrect Rule (Policy) Combining 

Algorithm fault.  

Table 3.1: Fault Model 

Mutation Operator  

Fault Type 

No Name Meaning  

1 CRE Change Rule Effect Incorrect Rule Effect 

2 RTT set Rule Target True Incorrect Rule Target 

3 RTF set Rule Target False 

4 RCT set Rule Condition True  

Incorrect Rule Condition 5 RCF set Rule Condition False 
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6 ANF Add Not Function in 

condition 

7 RNF Remove Not Function in 

condition 

8 RER REmove a Rule Missing Rule 

9 FPR First Permit Rule Incorrect Rule Ordering 

10 FDR First Deny Rule 

11 PTT set Policy Target True Incorrect Policy Target 

12 PTF set Policy Target False 

13 RPTE Remove Parallel Target 

Element 

Missing target element 

14 CRC Change Rule Combining 

Algorithm 

Incorrect Combining 

Algorithm 

 

Similarly, if there is a fault in the ordering of the rules, then it is referred to as an 

Incorrect Rule Ordering fault. If either Match element, AnyOf element or AllOf element 

of Target element is missing, we refer to such a fault as a Missing Parallel Target Element 

fault. If there is a fault in policy target, then we refer to such a fault as an Incorrect Policy 

Target fault. 

While defining policy, there could exist various faults. The policy with the fault is 

referred to as a faulty policy. If P’ is a fault policy of original policy P, then P’ is nothing 

but the result of an application of some form of transformation rule that introduces the 

fault. For example, the transformation rule could be “change rule effect” which alters the 
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effect of the rule from permit to deny and vice versa. In mutation analysis literature, the 

transformation rule which results in the faulty policy from the correct one is referred to as 

a mutation operator and the faulty policy itself is referred to as a mutant.  Table 3.1 consists 

of fourteen mutation operators which are categorized into eight faults types. Mutation 

operators are defined with respect to a fault model, which is a collection of the fault types 

in the given domain of programing language or specification. The details on each mutation 

operator in Table 3.1 are discussed in Sections 3.1 through 3.14. 

The fault in a policy may result in it to produce an incorrect result i.e. it results in a 

different output than it is supposed to produce. We can exploit this difference in result to 

reveal a fault by supplying the same input to both original policy and mutant, and if there 

is a difference in response, then we could conclude that there exists a fault. A fault policy, 

however, does not necessarily produce a different result than the correct policy for all 

inputs. The test inputs must satisfy certain conditions to produce a different result than 

from the correct policy and hence reveal the fault. Such conditions are referred to as fault 

detection conditions. 

Hence, the fault detection condition (FDC) of a given fault should specify the 

constraints that a test case must satisfy to reveal the fault. As discussed in Section 1.3.1, 

the fault detection condition can be formulated with three constraints which are reachability 

constraint, necessity constraint and propagation constraint. 

a)  Reachability(R) constraint: Reachability constraint specifies that the test must 

reach the faulty policy element (e.g., rule target, rule condition, rule effect, policy target, 

and combining algorithm). If the faulty element is not evaluated, then the faulty policy will 

behave the same as that of the original policy and we cannot distinguish the fault. The first 
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rule of a sample policy in Figure 2.2 of Chapter 2 has deny effect with id “deny-liquor-

medicine”. Consider there is a faulty policy which is same as the original policy except for 

the effect of the first rule with id “deny-liquor-medicine” has permit effect instead. To 

identify this fault, this rule must be evaluated. To evaluate the rule, the rule should be 

reached during policy evaluation. To reach the first rule, the policy target must evaluate to 

true or error. Hence, the reachability constraint here is to evaluate policy target to true or 

error. 

b)  Necessity(N) constraint: The test must make the faulty element evaluate to an 

incorrect intermediate result, which is different from the evaluation result that should be 

produced by its correct counterpart. For example, for the fault considered in reachability 

constraint above, the rule target and/or condition of the faulty rule should evaluate to an 

error or true so that it produces an incorrect intermediate result. Hence, the necessity 

constraint is “rule target and rule condition of the faulty rule does not evaluate to N/A” 

(i.e. either rule target and condition evaluates to true or rule target evaluates to an error or 

rule target evaluates to true and rule condition evaluates to an error). 

c)  Propagation(P) constraint: The test must make the faulty policy produce an 

incorrect response, which is different from the expected response that should be produced 

by the correct policy. For example, to propagate incorrect intermediate results for revealing 

the fault specified in reachability constraint, all the other rules with deny effect except the 

first rule should not evaluate to true i.e. either they should evaluate to an error or false 

because the rule combining algorithm is deny-overrides and if any another deny rule 

evaluates to true, it will produce the deny result in both faulty and correct policy. 
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We use the notation PT, PT and Error (PT) to denote that policy target evaluates to 

true, N/A and error respectively. We mention rule evaluates to true if both target and 

condition of the rule evaluates to true. We use the expression rbi = (rti  rci) to denote that 

the target, as well as condition of ith rule, evaluates to true. Similarly, Error(rbi) denotes 

an error in the evaluation of the target or condition of the rule ri. Further,  rbi denotes 

either rti or rci evaluates to false such that rule is N/A. Additionally, if none of the attributes 

in the request context matches the attributes in the rule target or rule condition, then the 

rule is not applicable for the request. We use the notation I(P), I(D) and I(DP) to denote 

Indt, I(P) and Indeterminate respectively. We use the notation ri = <rbi, rei> whenever 

possible to represent ith rule <rti, rci, rei> for simplicity. Further, we interchangeably use 

notation ri or current rule under consideration to denote an arbitrary ith rule. 

3.1 FDC for Change Rule Effect (CRE)  

Change Rule Effect (CRE) is a mutation operator for the incorrect rule effect fault type 

in which there is a fault in effect of a rule element. Since there are only two possible rule 

effects - permit or deny, there will be a fault in effect of a rule if the effect of a rule gets 

altered from permit to deny and vice-versa. The flipping of the rule effect is the only 

mutation operator for incorrect rule effect fault. 

Consider an XACML policy P = <PT, RCA, RL> where PT is Policy Target, RCA is 

Rule Combining Algorithm and RL = [r1, r2, …, rn] is a list of the rules.  If the effect of ith 

rule ri is flipped to deny by some incident, then the resulting policy will be P’ as shown in 

Table 3.2. Since ith rule is supposed to have permit effect but in P’ it is deny, so P’ is the 

faulty policy. Here, P’ is called the Change Rule Effect (CRE) mutant of P. 

 



36 

 

 

 

Table 3.2: A Faulty Policy with an Incorrect Rule Effect 

 Correct Policy P Faulty Policy P' 

Policy target PT PT 

Rule combining algorithm Permit-Overrides Permit-Overrides 

Rules R r1 

… 

ri 

… 

rn 

<rb1, re1> 

… 

<rbi, Permit> 

… 

<rbn, ren> 

r1 

… 

ri’ 

… 

rn 

<rb1, re1> 

… 

<rbi, Deny> 

… 

<rbn, ren> 

 

Since the fault detection condition depends on the rule combining algorithm (RCA) of 

a policy, we present fault detection condition for each of the RCA. 

a) Permit-overrides:  

i) Reachability constraint  

The reachability constraint must trigger the evaluation of the rule with faulty effect i.e. 

it should result in the evaluation of ith rule in both P and P'. The rules in a policy will only 

be evaluated if the policy target is true or evaluates to an error. Further, when the rule-

combining algorithm is Permit-overrides, rule ri will not be triggered if there is a permit 

rule before rule ri that evaluates to a permit decision. Thus, the reachability constraint is - 

for any permit rule rj (j<i) before rule ri, rbj should not evaluate to true (i.e. it should be 

N/A or evaluates to an error). 

Hence, the reachability constraint is - policy target evaluates to true or error and all 

the previous rules with permit effect before the current rule under consideration should 

evaluate to N/A or error (i.e should not evaluate to true).  
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In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i} 

ii) Necessity constraint  

The necessity constraint should make ith rule ri in P and rule ri’ in P' produce a different 

rule-level decision. This requires that rbi should evaluate to either true so that the ith rule 

decision will be permit in P and deny in P’ respectively or should evaluate to an error so 

that rule decision will be I(P) in P and I(D) in P’. If rbi evaluates to N/A, the rule level 

decisions will be N/A in both P and P’ in which case we cannot distinguish the faulty 

policy. Hence, formally, necessity constraint is rbi ˅ Error(rbi). 

iii) Propagation constraint  

Given a faulty element produces different intermediate results, the propagation 

constraint must make P and P' produce a different policy-level decision. In other words, 

the different intermediate result from necessity constraint should contribute to producing a 

different policy-level decision. For this, any permit rule rj (j>i) after ri, rj should not 

evaluate to a permit decision, otherwise, d(P, q)= d(P', q) = Permit. The test must make 

rbj evaluate to N/A or error for each permit rule rj (j>i). Therefore, the propagation 

constraint can be formalized as  rbj ˅ Error(rbj) for any rule rj = <rbj, Permit> (j>i). 

Let, Ϸ = “ rbj ˅ Error(rbj) for any rule rj = <rbj, Permit> (j>i)”. Ϸ is sufficient for 

propagation if necessity constraint is - rbi evaluates to true. However, when rbi evaluates 

to an error, Ϸ is not sufficient for propagation. 

We can verify that when rbi evaluates to true, Ϸ is sufficient for propagation by 

showing that it holds for all possible evaluation of other rules (all the rules in the policy 

except the current rule under consideration) as shown in Table 3.3. Let, the ith rule in the 
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correct policy P has permit effect, then that of the faulty policy P’ will be deny effect.  The 

result of the RCA depends on the result of evaluation of other rules including that of ith rule. 

Table 3.3 presents the possible cases for the evaluation of other rules (in the second 

column), along with the evaluation of ith rule in P and P’ (in third and fourth column 

respectively) and result of RCA for both P and P’ (in fifth and sixth column respectively). 

As shown in Table 3.3, there is the possibility of four possible evaluation of other rules.  

The first possible evaluation is that - all other rules evaluate to N/A and produces no 

effect. In this case, the effect of ith rule in P - which is permit - will be the RCA level 

decision for P and that of P’ will be deny since its ith rule has deny decision. When only 

one rule evaluates to permit, the result of permit-overrides RCA is permit. Similarly, when 

only one rule evaluates to deny, the result of permit-overrides RCA is deny. As a result, 

the RCA level decision is permit and deny in P and P’ respectively as shown in the fifth 

and the sixth column of the first row respectively. The policy level decision depends on the 

result of RCA and how policy target evaluates as discussed in Section 2.2.2 and Section 

2.2.3. When PT evaluates to true the policy-level result of P and P’ will be the result of 

corresponding RCA i.e permit in P and deny in P’. Similarly, when PT evaluates to an 

error, the result of P and P’ will be the Indeterminate of the result of RCA i.e the policy-

level result of P is I(P) and that of P’ is I(D). 
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Table 3.3: Possible Evaluations Of Other Rules when Rbi  Evaluates to True 

 other rules than ith rule  ith rule 

in P  

ith rule 

in P’ 

RCA 

in P 

RCA 

in P’ 

Produces 

effect 

all other rules evaluate to N/A 

and produces no effect. 

Permit Deny Permit Deny 

One or more rule produces deny 

or I(D) effect and rest are N/A  

Permit Deny Permit Deny 

One or more rule produces I(P) 

effect and rest are N/A 

Permit Deny Permit I(DP) 

One or more rule produces I(P), 

one or more rule produces deny 

or I(D) effect and rest are N/A 

Permit Deny Permit I(DP) 

 

Note: There is the possibility of another permit rule to be true but when it happens we could 

not detect the fault and the mutant will be equivalent to policy for such set of requests which makes 

another permit rule evaluates to true. Hence, for simplicity, we do not consider such cases in this 

table as well as in another table like this. 

The second possible evaluation is when one or more deny rule produces a deny or I(D) 

effect and the rest are N/A. In this case, since the RCA is permit-overrides, the result of 

RCA in P is permit because ith rule has permit effect and if any rule evaluates to permit, the 

result of permit-overrides is permit. In P’, ith rule evaluated to deny, one or more rules 

evaluated to deny or I(D) and other rules evaluated to N/A i.e none of the rules evaluated 

to permit or I(P). When RCA is permit-overrides, if none of the rules evaluate to permit or 

I(P) and any one of the rules evaluate to deny, the RCA level decision will be deny. As a 
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result, the RCA level decision of P’ is deny. When PT evaluates to true the result of P’ will 

be deny and that of P is permit. Similarly, when PT evaluates to an error the result of P’ is 

I(D) and that of P is I(P) which are different. 

The third possible evaluation is when one or more permit rules produces I(P) effect 

and the rest are N/A. In this case, the result of RCA in P is permit since ith rule has permit 

effect. For P’, ith rule evaluates to deny and since one or more rules evaluated to I(P), the 

result of RCA will be I(DP). As a result, when PT evaluates to true the result of P’ will be 

I(DP) and that of P is permit which is different. Similarly, when PT evaluates to an error 

the result of P’ is I(DP) and that of P is I(P) which are different. 

The fourth possible evaluation is one or more rules produces I(P) effect, one or more 

rules produces deny or I(D) effect and the rest are N/A. In this case, the result of RCA in P 

is still permit since ith rule has permit effect and that of P’ will be I(DP). As a result, when 

PT evaluates to true the result of P’ will be I(DP) and that of P is permit which is different. 

Similarly, when PT evaluates to an error the result of P’ is I(DP) and that of P is I(P) which 

are different.  

Hence, when rbi evaluates to true, Ϸ is sufficient for propagation as it holds for all 

possible evaluation of other rules. 

When rbi evaluates to an error, Ϸ is not sufficient for propagation. Table 3.4 presents 

the rationale why Ϸ is not sufficient for propagation when rbi evaluates to an error. 

With similar reasoning as for Table 3.3, we can evaluate the result for RCA in P and 

P’ as shown in Table 3.4. As listed in Table 3.4, the result of RCA in P and P’ for the first 

three possible cases are different. Hence for them, Ϸ is sufficient for propagation i.e fault 
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detection. However, for the fourth case, the result of RCA in both P and P’ is I(DP). Since 

the result of RCA is not different and hence the policy level decision will not differ.   

Table 3.4: Possible Evaluations of Other Rules when Rbi  Evaluates to Error 

 other rules than ith rule  ith rule 

in P 

ith rule 

in P’ 

RCA 

in P 

RCA 

in P’ 

Produces 

effect 

No effect from other rules as all 

of them evaluates to N/A 

I(P) I(D) I(P) I(D) 

One or more rule produces deny 

or I(D) effect and rest are N/A  

I(P) I(D) Permit

/I(P) 

I(DP) 

One or more rule produces I(P) 

effect and rest are N/A 

I(P) I(D) I(DP) I(D) 

One or more rule produces I(P), 

one or more rule produces deny 

or I(D) effect and rest are N/A 

I(P) I(D) I(DP) I(DP) 

 

Hence, Ϸ is insufficient for propagation for the fourth case when rbi evaluates to an 

error. As a result, when rbi evaluates to an error, in addition to Ϸ, we need additional 

constraint in propagation constraint. The required additional constraint is - there should not 

exist a pair of the rules (excluding ith rule) such that one of them has permit effect which 

evaluates to an error and other has deny effect which evaluates to true or error. If this 

constraint is satisfied, then the fourth case in Table 3.4 will never occur and we can 

distinguish the fault and if this constraint is violated the fourth case will occur in which 

case we cannot distinguish the faulty policy. 
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Hence, the propagation constraint when rbi evaluates to an error is that - any permit 

rule rj (j>i) after ri should not evaluate to a permit decision and there should not exist a 

pair of the rules (excluding ith rule) such that one of them has permit effect which evaluates 

to an error and other has deny effect which evaluates to true or error. Formally, additional 

constraint to Ϸ can be specified as ( ∃(p,d) such that (i ≠ p ≠ d) ˄ (rp = < rbp, permit>) 

˄ (rd = < rbd, deny>) ˄ Error(rbp) ˄ (Error(rbd) ˅ rbd)).  

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of CRE when RCA is permit-overrides. 

({PT ˅ Error(PT)} ˄ { rbi} ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbj, permit> for 

j != i}) 

˅ 

({PT ˅ Error(PT)} ˄ {Error(rbi)} ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbj, 

permit> for j != i} ˄ {( ∃(p,d) such that (i ≠ p ≠ d) ˄ (rp = < rbp, permit>) ˄ (rd = < rbd, 

deny>) ˄ Error(rbp) ˄ (Error(rbd) ˅ rbd))}) 

b) Deny-overrides:  

i) Reachability constraint  

The policy target should be true or should evaluate to an error. Further, when the rule-

combining algorithm is deny-overrides, rule ri will not be triggered if there is a deny rule 

before rule ri that evaluates to a deny decision. Thus, the reachability constraint is that for 

any deny rule rj (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or 

evaluates to an error). 
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Hence, the reachability constraint is - policy target evaluates to true or error and all 

the previous rules with deny effect before the current rule under consideration should 

evaluate to N/A or error (i.e should not evaluate to true).  

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any deny rule 

rj = <rbj, deny> for    j < i} 

ii)  Necessity constraint  

rbi should evaluate to either true so that the ith rule decision will be permit in P and deny 

in P’ respectively or should evaluate to an error so that rule decision will be I(P) in P and 

I(D) in P’. If rbi evaluates to N/A, the rule level decisions will be N/A in both P and P’ in 

which case we can not distinguish the faulty policy. Hence, formally, necessity constraint 

is rbi ˅ Error(rbi). 

iii)  Propagation constraint   

Any deny rule rj (j>i) after ri, rj should not evaluate to a permit decision, otherwise, d(P, 

q)= d(P', q) = Deny. The test must make rbj evaluate to N/A or error for each deny rule rj 

(j>i). Therefore, the propagation constraint can be formalized as  rbj ˅ Error(rbj) for 

any rule rj = <rbj, Deny> (j>i).  

The afore-mentioned propagation constraint is sufficient for propagation if necessity 

constraint is rbi evaluates to true but is not sufficient when rbi evaluates to an error. With 

similar reasoning as for permit-overrides, we can state that when rbi evaluates to an error, 

we need additional constraint for propagation. The required additional constraint is “any 

deny rule rj (j>i) after ri should not evaluate to a deny decision and there should not exist 

a pair of the rules (excluding ith rule) such that one of them has deny effect which evaluates 

to an error and other has permit effect which evaluates to true or error”. Formally, 
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additional constraint is ( ∃(p,d) such that (i ≠ p ≠ d) ˄ (rp = < rbp, permit>) ˄ (rd = < 

rbd, deny>) ˄ Error(rbd) ˄ (Error(rbp) ˅ rbp)). 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of CRE when RCA is deny-overrides. 

({PT ˅ Error(PT)} ˄ {rbi}˄ {rbj ˅ Error(rbj) for any deny rule rj = <rbj, deny> for j != 

i}) 

˅ 

({PT ˅ Error(PT)} ˄ {Error(rbi)}˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbj, deny> 

for j != i} ˄ {( ∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) 

˄ Error(rbd) ˄ (Error(rbp) ˅ rbp))}) 

Note: The fault detection condition for permit-overrides is symmetrical with fault detection 

condition for deny-overrides such that the role of the permit and deny effect are interchanged. 

Hence, for simplicity, we would only consider permit-overrides onwards for other faults. 

c)  deny-unless-permit:  

i)  Reachability constraint  

The policy target should be true or should evaluate to an error. When the RCA is deny-

unless-permit, rule ri will not be triggered if there is a permit rule before rule ri that 

evaluates to a permit decision. Thus, the reachability constraint is that for any permit rule 

rj = <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A 

or evaluates to an error). 

Hence, the reachability constraint is - policy target evaluates to true or error and all 

the previous rules with permit effect before the current rule under consideration should 

evaluate to N/A or error (i.e should not evaluate to true).  
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In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i}. 

ii) Necessity constraint  

deny-unless-permit results permit decision only if at least one of the rules with permit effect 

evaluates to true, otherwise, it is deny in all other cases. As a result, we could not consider 

the error condition in the ith rule because if there is error in the ith rule target and/or 

condition, it will contribute to deny decision for the RCA in both P and P’ irrespective of 

its effect. Hence, both P and P’ will behave similarly if the current rule under consideration 

evaluates to an error. As a result, the necessity constraint should be the only rbi evaluates 

to true. Formally, necessity constraint is rbi. 

iii)  Propagation constraint  

Any permit rule rj (j>i) after ri, rj should not evaluate to a permit decision, otherwise, d(P, 

q)= d(P', q) = Permit. The test must make rbj evaluate to N/A or error for each permit rule 

rj (j>i). Therefore, the propagation constraint can be formalized as  rbj ˅ Error(rbj) for 

any rule rj = <rbj, Permit> (j>i).  

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of CRE when RCA is deny-unless-permit. 

({PT ˅ Error(PT)} ˄ { rbi} ˄ {rbj ˅ Error(rbj) for any permit rule rj = < rbj, Permit >for 

j != i}) 

d)  permit-unless-deny:  

i)  Reachability constraint  

      When the RCA is permit-unless-deny, rule ri will not be triggered if there is a deny 

rule before rule ri that evaluates to a permit decision. Thus, the reachability constraint is 
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that for any deny rule rj (j<i) before rule ri, rbj should not evaluate to true (i.e it should be 

N/A or evaluates to an error). 

Hence, the reachability constraint is - policy target evaluates to true or error and all 

the previous rules with deny effect before the current rule under consideration should 

evaluate to N/A or error (i.e should not evaluate to true).  

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any deny rule 

rj = <rbj, deny> for    j < i} 

ii)  Necessity constraint  

permit-unless-deny results deny only if at least one of the rules with deny effect evaluates 

to true, otherwise, it is permit in all other cases. As a result, we could not consider the error 

condition in the ith rule because if there is error in the ith rule target and/or condition, it will 

contribute to permit decision for the RCA in both P and P’ irrespective of its effect. As a 

result, the necessity constraint should be the only rbi evaluates to true. Hence, formally, 

necessity constraint is rbi. 

iii)  Propagation constraint  

Any deny rule rj (j>i) after ri, rj should not evaluate to a deny decision, otherwise, d(P, 

q)= d(P', q) = Deny. The test must make rbj evaluate to N/A or error for each deny rule rj 

(j>i). Therefore, the propagation constraint can be formalized as  rbj ˅ Error(rbj) for 

any rule rj = <rbj, Deny> (j>i).  

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of CRE when RCA is permit-unless-deny. 

({PT ˅ Error(PT)} ˄ { rbi} ˄ {rbj ˅ Error(rbj) for any permit rule rj = < rbj, Deny >for j 

!= i}) 
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Note: The fault detection condition for deny-unless-permit is symmetrical with fault 

detection condition for permit-unless-deny such that the role of the permit and deny effect are 

interchanged. Hence, for simplicity, we would only consider deny-unless-permit for other faults. 

e)  first-applicable:  

i) Reachability constraint  

      When the rule-combining algorithm is first-applicable, rule ri will not be triggered if 

there is any rule before rule ri that evaluates to true or error. Thus, the reachability 

constraint is that - the policy target is true or evaluates to an error and for any rule rj (j<i) 

before rule ri, rbj should evaluate to N/A. 

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj) for any rule rj for    j < i} 

ii)  Necessity constraint  

rbi should evaluate to either true so that the ith rule decision will be permit in P and 

deny in P’ respectively or should evaluate to an error so that rule decision will be I(P) in 

P and I(D) in P’. If rbi evaluates to N/A, the rule level decisions will be N/A in both P and 

P’ in which case we cannot distinguish the faulty policy. Hence, formally, necessity 

constraint is rbi ˅ Error(rbi). 

iii)  Propagation constraint  

First-applicable RCA for CRE does not require explicit propagation constraint because 

reachability and necessity constraint is enough for fault detection.  

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of CRE when RCA is first-applicable. 

{PT ˅ Error(PT)} ˄ {rbi ˅ Error(rbi)} ˄ {rbj) for any rule rj for j < i}  
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3.2 FDC for Rule Target True (RTT) 

Rule target true is a mutation operator which alters the rule target such that it will 

always evaluate to true. One of the transformation rules to make target always evaluate to 

true is to make it empty so that it will always evaluate to true. Since it has a fault in the 

target of the rule, it is under the category incorrect rule target. 

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA, RL’> where 

RL = <r1, …. ,ri, ..., rn>, RL’ = <r1, ..., ri’, ..., rn>, ri = <rti, rci, rei> and ri‘ = <rti’, rci, 

rei> such that P’ is similar to P except the target rti’ of ith rule ri’ in P’ always evaluates to 

true. Here, P’ is called the Rule Target True (RTT) Mutant of P. The fault detection 

condition for Rule Target True based on RCA are given below.  

a) Permit-overrides: 

i) Reachability constraint  

Policy target should evaluate to true or error and all the previous rules with permit 

effect before the current rule under consideration should evaluate to N/A or error (i.e should 

not evaluate to true).  

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i} 

ii) Necessity constraint  

      The necessity constraint is that – rule target evaluates to N/A or error and rule 

condition evaluates to true. Formally, (rti ˅ Error(rti)) ˄ rci 

iii) Propagation constraint  

If policy target evaluates to true, ith rule target evaluates to N/A and ith rule effect is 

deny, then all other rules should evaluate to N/A or error. Further, there should not exist a 
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pair of the rules (excluding the current rule under consideration) such that one of them is 

permit rule which evaluates to an error and other is deny rule which evaluates to true or 

error. 

({PT)} ˄   rti ˄  ri = <rbi, deny> ˄  {rbj ˅  Error(rbj) for any rule rj for j != i} ˄  {( ∃(p,d) 

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ 

(Error(rbd) ˅ rbd))}) 

If policy target evaluates to an error, ith rule target evaluates to N/A and ith rule effect 

is deny, then all other rules with deny effect should evaluate to N/A and all other rules with 

permit effect should not evaluate to true. Further, there should not exist a pair of the rules 

(excluding the current rule under consideration) such that one of them is permit rule which 

evaluates to an error and other is deny rule which evaluates to true or error. 

({Error(PT)} ˄  rti  ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi, 

permit> for j != i} ˄ {rbj  for any deny rule rj = <rbi, deny> for j != i} ˄ {( ∃(p,d) such 

that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd) 

˅ rbd))}) 

If policy target evaluates to true, ith rule target evaluates to N/A and ith rule effect is 

permit, then all other permit rules should evaluate to N/A or error.  

({PT} ˄  rti  ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj  = <rbi, 

permit> for j != i}) 

If policy target evaluates to an error, ith rule target evaluates to N/A and ith rule effect 

is permit, then all other rules with permit effect should evaluate to N/A if all deny rules 

evaluate to N/A. However, if any deny rule evaluates to true or error, then another permit 

effect can evaluate to N/A or error. 
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({Error(PT)} ˄  rti  ˄ ri = <rbi, permit> ˄  [{rbj  for any rule rj for j != i} ˅  { ∃d ( rbd 

˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj  ˅ Error(rbj )) for any permit rule rj = <rbi, 

permit> for j != i }]) 

If policy target evaluates to true, ith rule target evaluates to an error and ith rule effect 

is deny, then all other rules with permit effect should evaluate to N/A and all other rules 

should with deny effect should evaluate to N/A or error. 

({PT)} ˄ Error(rti) ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any deny rule rj = <rbj, 

deny> for j != i} ˄ {rbj for any permit rule rj = <rbj, permit> for j != i} 

If policy target evaluates to an error, ith rule target evaluates to an error and ith rule 

effect is deny, then we cannot detect the fault and mutant will behave the same as original 

policy for these set of requests. 

If policy target evaluates to true, ith rule target evaluates to an error and ith rule effect 

is permit, then all other rules with permit effect should evaluate to N/A. 

({PT)} ˄ Error(rti)  ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj = <rbj, permit> for 

j != i}) 

If policy target evaluates to an error, ith rule target evaluates to an error and ith rule 

effect is permit, then all other rules with permit effect should evaluate to N/A if all other 

deny rules evaluatesto an error. However, if any one deny rule evaluates to true or error, 

another permit rule can evaluate to an error or N/A. 

({Error(PT)} ˄ Error(rti)  ˄ ri = <rbi, permit> ˄  [{rbj for any rule rj for j != i} ˅ {∃d ( 

rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = <rbj, 

permit> for j != i}]) 
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Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RTT when RCA is permit-overrides: 

({PT} ˄  rti  ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj  for j != i} ˄ 

{( ∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) 

˄ (Error(rbd) ˅ rbd))}) 

˅ 

({Error(PT)} ˄  rti  ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj 

= <rbi, permit> for j != i} ˄  {rbj for any deny rule rj = <rbi, deny> for j != i}˄ {( ∃(p,d) 

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ 

(Error(rbd) ˅ rbd))}) 

˅ 

({PT} ˄  rti ˄ rci ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj  = <rbi, 

permit> for j != i}) 

˅ 

({Error(PT)} ˄  rti ˄ rci ˄ ri = <rbi, permit> ˄  [{rbj  for any rule rj for j != i} ˅  { ∃d 

( rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj  ˅ Error(rbj )) for any permit rule rj = 

<rbi, permit> for j != i }]) 

˅ 

({PT)} ˄ Error(rti) ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any deny rule rj = 

<rbj, deny> for j != i} ˄ {rbj for any permit rule rj = <rbj, permit> for j != i} 

˅ 

({PT)} ˄  Error(rti)  ˄  rci ˄  ri = <rbi, permit> ˄  {rbj for any permit rule rj = <rbj, permit> 

for j != i}) 
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˅ 

({Error(PT)} ˄ Error(rti) ˄ rci ˄ ri = <rbi, permit> ˄  [{rbj for any rule rj for j != i} ˅ 

{∃d ( rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = 

<rbj, permit> for j != i}]) 

We can verify the validity of this fault detection condition by adopting similar 

reasoning that we applied for CRE. Let ith rule have deny effect.  The result of the RCA 

depends on the result of evaluation of other rules as well as that of ith rule. Table 3.5 

presents the possible cases for evaluation of other rules and result of RCA for both P and 

P’.  

With similar reasoning as for Table 3.3, we can list the records in Table 3.5. The final 

case in Table 3.5, when one or more rules (excluding ith rule) produces I(P) effect and one 

or more other rules produces deny effect and rest of the rules are N/A, the result of RCA is 

similar in both P’ and P (which implies that we cannot detect fault under those conditions).  

Additionally, in the second case - when one or more of the other rules evaluate to deny and 

rest as N/A, the result of RCA in P and P’ are same. Hence from Table 3.5, we can conclude 

that if the effect of ith rule is deny then for fault detection, all the rules except the ith rule 

should not be true and there should not exists a pair of the rules (excluding ith rule) such 

that one of them has deny effect, another has permit effect, permit rule evaluates to an error, 

and deny rule evaluates to true or error.  
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Table 3.5: Possible Evaluations of Other Rules When Rti  Evaluates to N/A and Ri 

Is Deny Rule in P 

 other rules than ith rule  ith rule 

in P 

ith rule 

in P’ 

RCA 

in P 

RCA 

in P’ 

Produces 

effect 

No effect from other rules as all 

of them evaluates to N/A 

N/A deny N/A   deny 

One or more rule produces deny 

effect and rest are N/A  

N/A deny deny deny 

One or more rule produces I(D) 

effect and rest are N/A  

N/A deny I(D) deny 

One or more rule produces I(P) 

effect and rest are N/A 

N/A deny I(P) I(DP) 

One or more rule produces I(P), 

one or more rule produces deny 

or I(D) effect and rest are N/A 

N/A deny I(DP) I(DP) 

 

Further, if PT evaluates to an error then the result of both P and P’ will be I(D) for the 

third case when one or more other rules with deny effect evaluate to I(D). Hence, when PT 

evaluates to an error, the fault detection condition is such that other rules with permit effect 

can evaluate to an error while that with deny effect should evaluate to N/A. 

Now consider the effect of ith rule is permit instead of deny. In such case, Table 3.6 

presents the possible cases for evaluation of other rules and result of RCA for both P and 

P’. 
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Table 3.6. Possible Evaluations of Other Rules When Rti  Evaluates to N/A And 

Ri is Permit Rule in P 

 other rules than ith rule  ith rule 

in P 

ith rule 

in P’ 

RCA 

in P 

RCA 

in P’ 

Produces 

effect 

No effect from other rules as all 

of them evaluates to N/A 

N/A permit N/A permit 

One or more rule produces deny 

effect and rest are N/A  

N/A permit deny permit 

One or more rule produces I(D) 

effect and rest are N/A  

N/A permit I(D) permit 

One or more rule produces I(P) 

effect and rest are N/A 

N/A permit I(P) permit 

One or more rule produces I(P), 

one or more rule produces deny 

or I(D) effect  and rest are N/A 

N/A permit I(DP) permit 

 

It is evident from the cases in Table 3.6 that when the effect of the ith rule is permit, it 

can identify the fault if none of the other permit rule evaluates to true. 

Further, if PT evaluates to an error then result of both P and P’ will be I(P) for the 

fourth case when the rule with the permit effect evaluates to an error. Hence, when PT 

evaluates to an error, the fault detection condition is such that rules with the permit effect 

can only evaluate to N/A. However, if there is an another deny rule which does not evaluate 

to N/A then there could be a permit rule which evaluates to an error which is nothing but 

the final case in which case we can distinguish the fault. 
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Now, let’s consider the situation when ith rule target evaluates to an error. Table 3.7 

presents the possible cases for evaluation of other rules and result of RCA for both P and 

P’. From Table 3.7, it is evident that fault can be detected only when other rules with permit 

effect evaluate to N/A and rules with deny effect do not evaluate to true. 

Table 3.7: Possible Evaluations of Other Rules When Rti  Evaluates to Error And 

Ri is Deny Rule in P 

 other rules than ith rule  ith rule 

in P 

ith rule 

in P’ 

RCA 

in P 

RCA 

in P’ 

Produces 

effect 

No effect from other rules as all of 

them evaluates to N/A 

I(D) deny I(D) deny 

One or more rule produces deny 

effect and rest are N/A  

I(D) deny deny deny 

One or more rule produces I(D) 

effect and rest are N/A  

I(D) deny I(D) deny 

One or more rule produces I(P) 

effect and rest are N/A 

I(D) deny I(DP) I(DP) 

One or more rule produces I(P), 

one or more rule produces deny or 

I(P) effect and rest are N/A 

I(D) deny I(DP) I(DP) 

 

Further, if PT evaluates to an error then result of both P and P’ will be the same in all 

cases and hence mutant behaves similarly as original policy. 
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Now consider the effect of ith rule is permit instead of deny. In such case, Table 3.8 

presents the possible cases for evaluation of other rules and result of RCA for both P and 

P’.  

Table 3.8. Possible Evaluations of Other Rules when Rti  Evaluates to Error and 

Ri is Permit Rule in P 

 other rules than ith rule  ith rule 

in P 

ith rule 

in P’ 

RCA in 

P 

RCA in 

P’ 

Produces 

effect 

No effect from other rules as 

all of them evaluates to N/A 

I(P) permit I(P) permit 

One or more rule produces 

deny effect and rest are N/A  

I(P) permit I(DP) permit 

One or more rule produces 

I(D) effect and rest are N/A  

I(P) permit I(DP) permit 

One or more rule produces 

I(P) effect and rest are N/A 

I(P) permit I(P) permit 

One or more rule produces 

I(P), one or more rule 

produces deny or I(D) effect 

and rest are N/A 

I(P) permit I(DP) permit 

 

It is evident from the above cases in Table 3.8 that when the effect of the ith rule is 

permit, it can identify the fault if all other permit rules does not evaluate to true. 

Further, if PT evaluates to an error then the fault detection condition is such that other 

rules with permit effect cannot evaluate to true or error if all of the deny rules evaluate to 
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N/A. However, if at least one other deny rule evaluates to true or error, then another permit 

rule can evaluate to an error or N/A. 

Note: We can establish the validity of the fault detection condition for all faults with similar 

reasoning as we did above for CRE and RTT. Hence, further in this work for simplicity, we only 

specify the fault detection condition precisely.  

b)  deny-unless-permit: 

i)  Reachability constraint  

The policy target should be true or should evaluate to an error. For any permit rule rj 

= <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or 

evaluates to an error). 

Hence, the reachability constraint is - policy target evaluates to true or error and all 

the previous rules with permit effect before the current rule under consideration should 

evaluate to N/A or error (i.e should not evaluate to true).  

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i} 

ii)  Necessity constraint  

The target of the rule under consideration should evaluate to N/A or error and condition 

should evaluate to true. Formally, (rti ˅ Error(rti)) ˄ rci 

iii)  Propagation constraint 

If rule under consideration is deny rule, then the mutant is equivalent because the rule 

level decision in mutant will be deny, and, in original policy, it will be N/A or error. 

However, for deny-unless-permit RCA, anything other than permit effect results in deny 

decision. And, it is only the current rule under consideration where mutant differs from 

original policy and hence both of them will behave the same. 
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Hence, the rule under consideration should be permit rule such that all the rules with 

permit effect after the ith rule should evaluate to N/A or error. 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RTT when RCA is deny-unless-permit. 

({PT ˅ Error(PT)} ˄ {(rti ˅ Error(rti)) ˄ rci } ˄ {rbj ˅ Error(rbi) for any permit rule 

rj = < rbj, permit >for j != i}) 

c)  first-applicable:  

i)  Reachability constraint  

Policy target should evaluate to true or error and all the previous rules with permit 

effect before the current rule under consideration should evaluate to N/A.  

ii)  Necessity constraint  

If policy target evaluates to true, the necessity constraint is that – rule target evaluates to 

N/A or error and rule condition evaluates to true. 

If policy target evaluates to an error, the necessity constraint is that – rule target 

evaluates to N/A and rule condition evaluates to true. 

iii)  Propagation constraint 

If policy target evaluates to true and ith rule target evaluates to false, then for all other 

rules which have the same effect as that of ith rule should evaluate to N/A or error.  

If policy target evaluates to an error and ith rule target evaluates to false, then for all 

other rules which have the same effect as that of ith rule should evaluate to N/A.  

If policy target evaluates to true and ith rule target evaluates to an error, then explicit 

propagation constraint is not required such that reachability and necessity constraint are 

enough for fault detection. 
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Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RTT when RCA is first-applicable. 

({PT} ˄  rti ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any rule rj such 

that rei = rej for j > i}) 

˅ 

(Error(PT)} ˄  rti ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj for any rule rj such that 

rei = rej for j > i}) 

˅ 

(PT ˄ Error(rti) ˄ rci ˄ {rbj for any rule rj for j < i}) 

 

3.3 FDC for Rule Target False (RTF) 

Rule target false is a mutation operator which alters the rule target such that it will 

always evaluate to false. One of the transformation rules to make target always evaluate to 

false is to introduce new constraint in the target with a random attribute which will always 

be false. Since it has a fault in the target of the rule, it is under the category incorrect rule 

target. 

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA, RL’> where 

RL = <r1, ,…. , ri, ..., rn>, RL’ = <r1, ..., ri’, ..., rn>, ri = <rti, rci, rei> and ri‘ = <rti’, rci, 

rei> such that P’ is similar to P except the target rti’ of ith rule ri’ in P’ always evaluates to 

false. Here, P’ is called the Rule Target False (RTF) Mutant of P. The fault detection 

condition for Rule Target False based on RCA are given below.  

a)  Permit-overrides:  

i) Reachability constraint  
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Policy target should evaluate to true or error and all the previous rule with permit 

effect before the current rule under consideration should evaluate to N/A or error (i.e should 

not evaluate to true).  

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i} 

ii) Necessity constraint  

The necessity constraint is that – rule target evaluates to true or error and rule 

condition evaluates to true. Formally, (rti ˅ Error(rti)) ˄ rci 

iii)  Propagation constraint  

If policy target evaluates to true, ith rule target evaluates to true and ith rule effect is 

deny, then all other rules should evaluate to N/A or error. Further, there should not exist a 

pair of the rules (excluding the current rule under consideration) such that one of them is 

permit rule which evaluates to an error and other is deny rule which evaluates to true or 

error. 

({PT)} ˄ rti  ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄ {( ∃(p,d) 

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ 

(Error(rbd) ˅ rbd))}) 

If policy target evaluates to an error, ith rule target evaluates to true and ith rule effect 

is deny, then all other rules with deny effect should evaluate to N/A and all other rules with 

permit effect should not evaluate to true. Further, there should not exist a pair of the rules 

(excluding the current rule under consideration) such that one of them is permit rule which 

evaluates to an error and other is deny rule which evaluates to true or error. 
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({Error(PT)} ˄ rti  ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi, 

permit> for j != i} ˄ {rbj  for any deny rule rj = <rbi, deny> for j != i} ˄ {( ∃(p,d) such 

that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd) 

˅ rbd))}) 

If policy target evaluates to true, ith rule target evaluates to true and ith rule effect is 

permit, then all other permit rule should evaluate to N/A or error.  

({PT } ˄ rti  ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj  = <rbi, 

permit> for j != i}) 

If policy target evaluates to an error, ith rule target evaluates to true and ith rule effect 

is permit, then all other rules with permit effect should evaluate to N/A if all deny rules 

evaluate to N/A. However, if any deny rule evaluates to true or error, then another permit 

effect can evaluate to N/A or error. 

({Error(PT)} ˄ rti  ˄ ri = <rbi, permit> ˄  [{rbj  for any rule rj for j != i} ˅  { ∃d ( rbd ˅ 

Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj  ˅ Error(rbj )) for any permit rule rj = <rbi, 

permit> for j != i }]) 

If policy target evaluates to true or error, ith rule target evaluates to an error and ith rule 

effect is deny, then all other rules with deny effect should evaluate to N/A and all other 

rules with permit effect should evaluate to N/A or error. 

({PT ˅ Error(PT)} ˄  Error(rti) ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule 

rj = <rbj, permit> for j != i} ˄ {rbj for any deny rule rj = <rbj, deny> for j != i} 

If policy target evaluates to true or error, ith rule target evaluates to an error and ith rule 

effect is permit, then all other rules with permit effect should evaluate to N/A. 
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({PT ˅ Error(PT)} ˄ Error(rti) ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj = <rbj, 

permit> for j != i}) 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RTF when RCA is permit-overrides: 

({PT } ˄ rti  ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj  for j != i} ˄ 

{( ∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) 

˄ (Error(rbd) ˅ rbd))}) 

˅ 

({Error(PT)} ˄ rti  ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = 

<rbi, permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i}˄ {( ∃(p,d) 

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ 

(Error(rbd) ˅ rbd))}) 

˅ 

({PT } ˄ rti ˄ rci ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj  = <rbi, 

permit> for j != i}) 

˅ 

({Error(PT)} ˄ rti ˄ rci ˄ ri = <rbi, permit> ˄  [{rbj  for any rule rj for j != i} ˅  { ∃d ( 

rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj  ˅ Error(rbj )) for any permit rule rj = <rbi, 

permit> for j != i }]) 

˅ 

({PT ˅ Error(PT)} ˄  Error(rti)˄ rci ˄  ri = <rbi, deny> ˄  {rbj ˅  Error(rbj) for any permit 

rule rj = <rbj, permit> for j != i} ˄ {rbj for any deny rule rj = <rbj, deny> for j != i} 

˅ 
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({PT ˅ Error(PT))} ˄ Error(rti) ˄ rci ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj 

= <rbj, permit> for j != i}) 

b)  deny-unless-permit:  

i)  Reachability constraint  

The policy target should be true or should evaluate to an error. For any permit rule rj 

= <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or 

evaluates to an error). 

Hence, the reachability constraint is - policy target evaluates to true or error and all 

the previous rules with permit effect before the current rule under consideration should 

evaluate to N/A or error (i.e should not evaluate to true).  

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i} 

ii)  Necessity constraint  

The target of the rule under consideration should evaluate to true and condition should 

evaluate to true. Formally, rti ˄ rci. 

iii)  Propagation constraint  

If rule under consideration is deny rule, then the mutant is equivalent because the rule 

level decision in mutant will be N/A, and, in original policy, it will be true or error. 

However, for deny-unless-permit RCA, anything other than permit effect results in deny 

decision. And, it is only the current rule under consideration where mutant differs from 

original policy and hence both will behave the same. 

Hence, the rule under consideration should be permit rule such that all the rules with 

permit effect evaluate to N/A or error. 
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Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RTF when RCA is deny-unless-permit. 

({PT ˅ Error(PT)} ˄ {(rti) ˄ rci } ˄ {rbj ˅ Error(rbi) for any permit rule rj = < rbj, permit 

> for j != i}) 

c)  first-applicable:  

i)  Reachability constraint  

Policy target should evaluate to true or error and all the previous rules with permit 

effect before the current rule under consideration should evaluate to N/A.  

ii)  Necessity constraint  

If policy target evaluates to true, the necessity constraint is that – rule target evaluates 

to N/A or error and rule condition evaluates to true. 

If policy target evaluates to an error, the necessity constraint is that – rule target 

evaluates to N/A and rule condition evaluates to true. 

iii)  Propagation constraint 

If policy target evaluates to true and ith rule target evaluates to true, then for all other 

rules which have the same effect as that of ith rule should evaluate to N/A or error.  

If policy target evaluates to true and ith rule target evaluates to an error, then for all 

other rules after the ith rule which has the same effect as that of ith rule should evaluate to 

N/A or true  

If policy target evaluates to an error and ith rule target evaluates to an error or true, 

then for all other rules after the ith rule which has the same effect as that of ith rule should 

evaluate to N/A. 
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Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RTF when RCA is first-applicable. 

({PT } ˄ rti ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any rule rj such 

that rei = rej for j > i}) 

˅ 

({PT } ˄  Error(rti)˄ rci ˄ {rbj  ˅rbj for any rule rj for j < i} ˄ {rbj  for any rule rj 

such that rei = rej for j > i}) 

˅ 

({Error(PT) } ˄  (rti ˅Error(rti)) ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj for any 

rule rj such that rei = rej for j > i}) 

3.4 FDC for Rule Condition True (RCT) 

Rule condition true is a mutation operator which alters the rule condition such that it 

will always evaluate to true. One of the transformation rules to make condition always 

evaluate to true is to make it empty so that it will always evaluate to true. Since it has a 

fault in the condition of the rule, it is under the category incorrect rule condition. 

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA, RL’> where 

RL = <r1, …., ri, ..., rn>, RL’ = <r1, ..., ri’, ..., rn>, ri = <rti, rci, rei> and ri‘ = <rti’, rci, 

rei> such that P’ is similar to P except the condition rci’ of ith rule ri’ in P’ always evaluates 

to true. Here, P’ is called the Rule Condition True (RCT) Mutant of P. The fault detection 

condition for Rule Condition True based on RCA are given below.  

a)  Permit-overrides:  

i)  Reachability constraint  
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Policy target should evaluate to true or error and all the previous rules with permit 

effect before the current rule under consideration should evaluate to N/A or error (i.e should 

not evaluate to true).  

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i} 

ii)  Necessity constraint  

The necessity constraint is that – rule condition evaluates to N/A or error and rule 

target evaluates to true. 

Formally, (rci ˅ Error(rci)) ˄ rti 

iii)  Propagation constraint 

If policy target evaluates to true, ith rule condition evaluates to N/A and ith rule effect 

is deny, then all other rules should evaluate to N/A or error. Further, there should not exist 

a pair of the rules (excluding the current rule under consideration) such that one of them is 

permit rule which evaluates to an error and other is deny rule which evaluates to true or 

error. 

({PT)} ˄  rci  ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄ 

{( ∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) 

˄ (Error(rbd) ˅ rbd))}) 

If policy target evaluates to an error, ith rule condition evaluates to N/A and ith rule 

effect is deny, then all other rules with deny effect should evaluate to N/A and all other 

rules with permit effect should not evaluate to true. Further, there should not exist a pair 

of the rules (excluding the current rule under consideration) such that one of them is permit 

rule which evaluates to an error and other is deny rule which evaluates to true or error. 



67 

 

 

 

({Error(PT)} ˄   rci  ˄  ri = <rbi, deny> ˄  {rbj ˅ Error(rbj) for any permit rule rj = <rbi, 

permit> for j != i} ˄ {rbj  for any deny rule rj = <rbi, deny> for j != i} ˄ {( ∃(p,d) such 

that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd) 

˅ rbd))}) 

If policy target evaluates to true, ith rule condition evaluates to N/A and ith rule effect 

is permit, then all other permit rules should evaluate to N/A or error.  

({PT } ˄  rci  ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj  = <rbi, 

permit> for j != i}) 

If policy target evaluates to an error, ith rule condition evaluates to N/A and ith rule 

effect is permit, then all other rules with permit effect should evaluate to N/A if all deny 

rules evaluate to N/A. However, if any deny rule evaluates to true or error, then another 

permit effect can evaluate to N/A or error. 

({Error(PT)} ˄  rci  ˄ ri = <rbi, permit> ˄  [{rbj  for any rule rj for j != i} ˅  { ∃d ( rbd 

˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj  ˅ Error(rbj )) for any permit rule rj = <rbi, 

permit> for j != i }]) 

If policy target evaluates to true, ith rule condition evaluates to an error and ith rule 

effect is deny, then all other rules with permit effect should evaluate to N/A and all other 

rules should with deny effect should evaluate to N/A or error. 

({PT)} ˄ Error(rci) ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any deny rule rj = <rbj, 

deny> for j != i} ˄ {rbj for any permit rule rj = <rbj, permit> for j != i} 

If policy target evaluates to an error, ith rule target evaluates to an error and ith rule 

effect is deny, then we cannot detect the fault and mutant will behave the same as original 

policy for these set of requests. 
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If policy target evaluates to true, ith rule condition evaluates to an error and ith rule 

effect is permit, then all other rules with permit effect should evaluate to N/A. 

({PT)} ˄ Error(rci)  ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj = <rbj, permit> 

for j != i}) 

If policy target evaluates to an error, ith rule condition evaluates to an error and ith rule 

effect is permit, then all other rules with permit effect should evaluate to N/A if all other 

deny rules evaluate to an error. However, if any one deny rule evaluates to true or error, 

another permit rule can evaluate to an error or N/A. 

({Error(PT)} ˄ Error(rci)  ˄ ri = <rbi, permit> ˄  [{rbj for any rule rj for j != i} ˅ {∃d ( 

rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = <rbj, 

permit> for j != i}]) 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RCT when RCA is permit-overrides: 

({PT } ˄  rci  ˄ rti ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj  for j != i} ˄ 

{( ∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) 

˄ (Error(rbd) ˅ rbd))}) 

˅ 

({Error(PT)} ˄  rci  ˄ rti ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj 

= <rbi, permit> for j != i} ˄  {rbj for any deny rule rj = <rbi, deny> for j != i}˄ {( ∃(p,d) 

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ 

(Error(rbd) ˅ rbd))}) 

˅ 
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({PT } ˄  rci ˄ rti ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj  = 

<rbi, permit> for j != i}) 

˅ 

({Error(PT)} ˄  rci ˄ rti ˄ ri = <rbi, permit> ˄  [{rbj  for any rule rj for j != i} ˅  { ∃d 

( rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj  ˅ Error(rbj )) for any permit rule rj = 

<rbi, permit> for j != i }]) 

˅ 

({PT)} ˄ Error(rci) ˄ rti ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any deny rule rj = 

<rbj, deny> for j != i} ˄ {rbj for any permit rule rj = <rbj, permit> for j != i} 

˅ 

({PT)} ˄  Error(rci)  ˄  rti ˄  ri = <rbi, permit> ˄  {rbj for any permit rule rj = <rbj, permit> 

for j != i}) 

˅ 

({Error(PT)} ˄ Error(rci) ˄ rti ˄ ri = <rbi, permit> ˄  [{rbj for any rule rj for j != i} ˅ 

{∃d ( rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = 

<rbj, permit> for j != i}]) 

b)  deny-unless-permit:  

i)  Reachability constraint  

The policy target should be true or should evaluate to an error. For any permit rule rj 

= <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or 

evaluates to an error). 
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Hence, the reachability constraint is - policy target evaluates to true or error and all 

the previous rule with permit effect before the current rule under consideration should 

evaluate to N/A or error (i.e should not evaluate to true).  

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i 

ii)  Necessity constraint  

The condition of the rule under consideration should evaluate to N/A or error and 

target should evaluate to true. Formally, (rci ˅ Error(rci)) ˄ rti 

iii)  Propagation constraint  

If rule under consideration is deny rule, then the mutant is equivalent because the rule 

level decision in mutant will be deny, and, in original policy, it will be N/A or error. 

However, for deny-unless-permit RCA, anything other than permit effect results in deny 

decision. And, it is only the current rule under consideration where mutant differs from 

original policy and hence both of them will behave the same. 

Hence, the rule under consideration should be permit rule such that all the rules with 

permit effect after the ith rule should evaluate to N/A or error. 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RCT when RCA is deny-unless-permit. 

({PT ˅ Error(PT)} ˄ {(rci ˅ Error(rci)) ˄ rti } ˄ {rbj ˅ Error(rbi) for any permit rule 

rj = < rbj, permit >for j != i}) 

c)  first-applicable:  

i)  Reachability constraint  
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Policy target should evaluate to true or error and all the previous rules with permit 

effect before the current rule under consideration should evaluate to N/A. 

ii)  Necessity constraint  

If policy target evaluates to true, the necessity constraint is that – rule condition 

evaluates to N/A or error and rule target evaluates to true. 

If policy target evaluates to an error, the necessity constraint is that – rule condition 

evaluates to N/A and rule target evaluates to true. 

iii)  Propagation constraint  

If policy target evaluates to true and ith rule condition evaluates to false, then for all 

other rules which have the same effect as that of ith rule should evaluate to N/A or error.  

If policy target evaluates to an error and ith rule condition evaluates to false, then for 

all other rules which have the same effect as that of ith rule should evaluate to N/A.  

If policy target evaluates to true and ith rule condition evaluates to an error, then 

explicit propagation constraint is not required such that reachability and necessity 

constraint are enough for fault detection. 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RCT when RCA is first-applicable. 

({PT} ˄  rci ˄ rti ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any rule rj 

such that rei = rej for j > i}) 

˅ 

(Error(PT)} ˄  rci ˄ rti ˄ {rbj for any rule rj for j < i} ˄ {rbj for any rule rj such that 

rei = rej for j > i}) 

˅ 
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(PT ˄ Error(rci) ˄ rti ˄ {rbj for any rule rj for j < i}) 

3.5 FDC for Rule Condition False (RCF) 

Rule condition false is a mutation operator which alters the rule condition such that it 

will always evaluate to false. One of the transformation rules to make condition always 

evaluate to false is to introduce new constraint in condition with a random attribute which 

will always be false. Since it has a fault in the condition of the rule, it is under the category 

incorrect rule condition. 

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA, RL’> where 

RL = <r1, …. ,ri, ..., rn>, RL’ = <r1, ..., ri’, ..., rn>, ri = <rti, rci, rei> and ri‘ = <rti’, rci, 

rei> such that P’ is similar to P except the condition rci’ of ith rule ri’ in P’ always evaluates 

to false. Here, P’ is called the Rule Condition False (RCF) Mutant of P. The fault detection 

condition for Rule Condition False based on RCA are given below.  

a)  Permit-overrides: 

i)  Reachability constraint  

Policy target should evaluate to true or error and all the previous rules with permit 

effect before the current rule under consideration should evaluate to N/A or error (i.e should 

not evaluate to true).  

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i} 

ii)  Necessity constraint  

The necessity constraint is that – rule condition evaluates to true or error and rule 

target evaluates to true. Formally, (rci ˅ Error(rci)) ˄ rti 

iii)  Propagation constraint 
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If policy target evaluates to true, ith rule condition evaluates to true and ith rule effect 

is deny, then all other rules should evaluate to N/A or error. Further, there should not exist 

a pair of the rules (excluding the current rule under consideration) such that one of them is 

permit rule which evaluates to an error and other is deny rule which evaluates to true or 

error. 

({PT)} ˄ rci  ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄ {( ∃(p,d) 

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ 

(Error(rbd) ˅ rbd))}) 

If policy target evaluates to an error, ith rule condition evaluates to true and ith rule 

effect is deny, then all other rules with deny effect should evaluate to N/A and all other 

rules with permit effect should not evaluate to true. Further, there should not exist a pair 

of the rules (excluding the current rule under consideration) such that one of them is permit 

rule which evaluates to an error and other is deny rule which evaluates to true or error. 

({Error(PT)} ˄ rci  ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi, 

permit> for j != i} ˄ {rbj  for any deny rule rj = <rbi, deny> for j != i} ˄ {( ∃(p,d) such 

that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd) 

˅ rbd))}) 

If policy target evaluates to true, ith rule condition evaluates to true and ith rule effect 

is permit, then all other permit rule should evaluate to N/A or error.  

({PT } ˄ rci  ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj  = <rbi, 

permit> for j != i}) 

If policy target evaluates to an error, ith rule condition evaluates to true and ith rule 

effect is permit, then all other rules with permit effect should evaluate to N/A if all deny 
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rules evaluate to N/A. However, if any deny rule evaluates to true or error, then another 

permit effect can evaluate to N/A or error. 

({Error(PT)} ˄ rci  ˄ ri = <rbi, permit> ˄  [{rbj  for any rule rj for j != i} ˅  { ∃d ( rbd 

˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj  ˅ Error(rbj )) for any permit rule rj = <rbi, 

permit> for j != i }]) 

If policy target evaluates to true or error, ith rule condition evaluates to an error and ith 

rule effect is deny, then all other rules with deny effect should evaluate to N/A and all other 

rules with permit effect should evaluate to N/A or error. 

({PT ˅ Error(PT)} ˄ Error(rci) ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for j != i} ˄ {rbj for any deny rule rj = <rbj, deny> for j != i} 

If policy target evaluates to true or error, ith rule condition evaluates to an error and ith 

rule effect is permit, then all other rules with permit effect should evaluate to N/A. 

({PT ˅ Error(PT)} ˄ Error(rci) ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj = <rbj, 

permit> for j != i}) 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RCF when RCA is permit-overrides: 

({PT } ˄ rti  ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj  for j != i} ˄ 

{( ∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) 

˄ (Error(rbd) ˅ rbd))}) 

˅ 

({Error(PT)} ˄ rti  ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = 

<rbi, permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i}˄ {( ∃(p,d) 
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such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ 

(Error(rbd) ˅ rbd))}) 

˅ 

({PT } ˄ rti ˄ rci ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj  = <rbi, 

permit> for j != i}) 

˅ 

({Error(PT)} ˄ rti ˄ rci ˄ ri = <rbi, permit> ˄  [{rbj  for any rule rj for j != i} ˅  { ∃d ( 

rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj  ˅ Error(rbj )) for any permit rule rj = <rbi, 

permit> for j != i }]) 

˅ 

({PT ˅ Error(PT)} ˄  Error(rci)˄ rti ˄  ri = <rbi, deny> ˄  {rbj ˅  Error(rbj) for any permit 

rule rj = <rbj, permit> for j != i} ˄ {rbj for any deny rule rj = <rbj, deny> for j != i} 

˅ 

({PT ˅ Error(PT))} ˄ Error(rci) ˄ rti ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj 

= <rbj, permit> for j != i}) 

b)  deny-unless-permit: 

i)  Reachability constraint  

The policy target should be true or should evaluate to an error. For any permit rule rj 

= <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or 

evaluates to an error). 

Hence, the reachability constraint is - policy target evaluates to true or error and all 

the previous rules with permit effect before the current rule under consideration should 

evaluate to N/A or error (i.e should not evaluate to true).  
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In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i} 

ii)  Necessity constraint  

The target of the rule under consideration should evaluate to true and condition should 

evaluate to true. Formally, rti ˄ rci 

iii)  Propagation constraint 

If rule under consideration is deny rule, then the mutant is equivalent because the rule 

level decision in mutant will be N/A and, in original policy, it will be true or error. 

However, for deny-unless-permit RCA, anything other than permit effect results in deny 

decision. And, it is only the current rule under consideration where mutant differs from 

original policy and hence both will behave the same. 

Hence, the rule under consideration should be permit rule such that all the rules with 

permit effect evaluate to N/A or error. 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RCF when RCA is deny-unless-permit. 

({PT ˅ Error(PT)} ˄ {rti ˄ rci } ˄ {rbj ˅ Error(rbi) for any permit rule rj = < rbj, permit 

>for j != i}) 

c)  first-applicable: 

i)  Reachability constraint  

Policy target should evaluate to true or error and all the previous rules with permit 

effect before the current rule under consideration should evaluate to N/A.  

ii)  Necessity constraint  
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If policy target evaluates to true, the necessity constraint is that – rule condition 

evaluates to N/A or error and rule target evaluates to true. 

If policy target evaluates to an error, the necessity constraint is that – rule condition 

evaluates to N/A and rule target evaluates to true. 

iii)  Propagation constraint  

If policy target evaluates to true and ith rule condition evaluates to true, then for all 

other rules which have the same effect as that of ith rule should evaluate to N/A or error.  

If policy target evaluates to true and ith rule condition evaluates to an error, then for all 

other rules after the ith rule which has the same effect as that of ith rule should evaluate to 

N/A or true  

If policy target evaluates to an error and ith rule condition evaluates to an error or true, 

then for all other rules after the ith rule which has the same effect as that of ith rule should 

evaluate to N/A. 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RCF when RCA is first-applicable. 

({PT} ˄ rti ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any rule rj such 

that rei = rej for j > i}) 

˅ 

({PT} ˄  Error(rci)˄ rti ˄ {rbj  ˅rbj for any rule rj for j < i} ˄ {rbj  for any rule rj such 

that rei = rej for j > i}) 

˅ 

({Error(PT) } ˄  (rci ˅Error(rci)) ˄ rti ˄ {rbj for any rule rj for j < i} ˄ {rbj for any rule 

rj such that rei = rej for j > i}) 
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3.6 FDC for Add Not Function (ANF) 

Add not function is a mutation operator which adds a not function to the rule condition 

such that rule condition will always evaluate to false on faulty policy if it evaluates to true 

in original policy, and vice versa. Since it has a fault in the condition of the rule, it is under 

the category incorrect rule condition. 

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA, RL’> where 

RL = <r1, …. ,ri, ..., rn>, RL’ = <r1, ..., ri’, ..., rn>, ri = <rti, rci, rei> and ri‘ = <rti’, rci, 

rei> such that P’ is similar to P except the condition rci’ of ith rule ri’ in P’ is rci. Here, 

P’ is called the Add Not Function (ANF) Mutant of P. The fault detection condition for 

ANF based on RCA are given below.  

a)  Permit-overrides: 

i)  Reachability constraint  

Policy target should evaluate to true or error and all the previous rules with permit 

effect before the current rule under consideration should evaluate to N/A or error (i.e. 

should not evaluate to true).  

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i} 

 

ii)  Necessity constraint  

The necessity constraint is that – rule condition evaluates to true and rule target 

evaluates to true. Formally, rci ˄ rti 

Note: we do not consider the error case on condition because error case will produce no 

different intermediate results between faulty and original policy  

iii)  Propagation constraint 
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If policy target evaluates to true, ith rule condition evaluates to true and ith rule effect 

is deny, then all other rules should evaluate to N/A or error. Further, there should not exist 

a pair of the rules (excluding the current rule under consideration) such that one of them is 

permit rule which evaluates to an error and other is deny rule which evaluates to true or 

error. 

({PT)} ˄ rci  ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄ {( ∃(p,d) 

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ 

(Error(rbd) ˅ rbd))}) 

If policy target evaluates to an error, ith rule condition evaluates to true and ith rule 

effect is deny, then all other rules with deny effect should evaluate to N/A and all other 

rules with permit effect should not evaluate to true. Further, there should not exist a pair 

of the rules (excluding the current rule under consideration) such that one of them is permit 

rule which evaluates to an error and other is deny rule which evaluates to true or error. 

({Error(PT)} ˄ rci  ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi, 

permit> for j != i} ˄ {rbj  for any deny rule rj = <rbi, deny> for j != i} ˄ {( ∃(p,d) such 

that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd) 

˅ rbd))}) 

If policy target evaluates to true, ith rule condition evaluates to true and ith rule effect 

is permit, then all other permit rule should evaluate to N/A or error.  

({PT } ˄ rci  ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj  = <rbi, 

permit> for j != i}) 

If policy target evaluates to an error, ith rule condition evaluates to true and ith rule 

effect is permit, then all other rules with permit effect should evaluate to N/A if all deny 
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rules evaluate to N/A. However, if any deny rule evaluates to true or error, then another 

permit effect can evaluate to N/A or error. 

({Error(PT)} ˄ rci  ˄ ri = <rbi, permit> ˄  [{rbj  for any rule rj for j != i} ˅  { ∃d ( rbd 

˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj  ˅ Error(rbj )) for any permit rule rj = <rbi, 

permit> for j != i }]) 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of ANF when RCA is permit-overrides: 

({PT } ˄ rti  ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj  for j != i} ˄ 

{( ∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) 

˄ (Error(rbd) ˅ rbd))}) 

˅ 

({Error(PT)} ˄ rti  ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = 

<rbi, permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i}˄ {( ∃(p,d) 

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ 

(Error(rbd) ˅ rbd))}) 

˅ 

({PT } ˄ rti ˄ rci ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj  = <rbi, 

permit> for j != i}) 

˅ 

({Error(PT)} ˄ rti ˄ rci ˄ ri = <rbi, permit> ˄  [{rbj  for any rule rj for j != i} ˅  { ∃d ( 

rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj  ˅ Error(rbj )) for any permit rule rj = <rbi, 

permit> for j != i }]) 
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b)  deny-unless-permit:  

i)  Reachability constraint  

The policy target should be true or should evaluate to an error. For any permit rule rj 

= <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or 

evaluates to an error). 

Hence, the reachability constraint is - policy target evaluates to true or error and all 

the previous rules with permit effect before the current rule under consideration should 

evaluate to N/A or error (i.e should not evaluate to true).  

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i} 

ii)  Necessity constraint  

The target of the rule under consideration should evaluate to true and condition should 

evaluate to true. Formally, rti ˄ rci 

iii)  Propagation constraint 

If rule under consideration is deny rule, then the mutant is equivalent because the rule 

level decision in mutant will be N/A, and, in original policy, it will be true or error. 

However, for deny-unless-permit RCA, anything other than permit effect results in deny 

decision. And, it is only the current rule under consideration where mutant differs from 

original policy and hence both will behave the same. 

Hence, the rule under consideration should be permit rule such that all the rules with 

permit effect evaluate to N/A or error. 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of ANF when RCA is deny-unless-permit. 
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({PT ˅ Error(PT)} ˄ {rti ˄ rci } ˄ {rbj ˅ Error(rbi) for any permit rule rj = < rbj, permit 

>for j != i}) 

c)  first-applicable: 

i)  Reachability constraint  

Policy target should evaluate to true or error and all the previous rules with permit 

effect before the current rule under consideration should evaluate to N/A. 

ii)  Necessity constraint  

The necessity constraint is that – rule condition evaluates to N/A and rule target 

evaluates to true. 

iii)  Propagation constraint 

If policy target evaluates to true and ith rule condition evaluates to true, then for all 

other rules which have the same effect as that of ith rule should evaluate to N/A or error.  

If policy target evaluates to an error and ith rule condition evaluates true, then for all 

other rules after the ith rule which has the same effect as that of ith rule should evaluate to 

N/A. 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of ANF when RCA is first-applicable. 

({PT } ˄ rti ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any rule rj such 

that rei = rej for j > i}) 

˅ 

({Error(PT) } ˄ rci ˄ rti ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any rule 

rj such that rei = rej for j > i}) 

3.7 FDC for Remove Not Function (RNF) 
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Remove not function is a mutation operator which removes a not function from the 

rule condition such that rule condition will always evaluate to false on faulty policy if it 

evaluates to true in original policy, and vice versa. Since it has a fault in the condition of 

the rule, it is under the category incorrect rule condition. 

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA, RL’> where 

RL = <r1, …. ,ri, ..., rn>, RL’ = <r1, ..., ri’, ..., rn>, ri = <rti, rci, rei> and ri‘ = <rti’, rci, 

rei> such that P’ is similar to P except the condition rci’ of ith rule ri’ in P’ is rci. Here, 

P’ is called the Remove Not Function (RNF) Mutant of P. The fault detection condition 

for RNF is same as that for ANF because the effect of mutation operator on both cases is 

rci’  = rci.  

3.8 FDC for Remove a Rule (RER) 

Remove a rule is a mutation operator which removes a rule from the policy such that 

rule condition will always evaluate to false on faulty policy if it evaluates to true in original 

policy, and vice versa. Since it has a fault in the condition of the rule, it is under the category 

incorrect rule condition. 

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA, RL’> where 

RL = <r1, …. ,ri, ..., rn>, RL’ = <r1, ..., ri-1, ri+1, , ..., rn>, ri = <rti, rci, rei> and ri‘ = <rti’, 

rci, rei> such that P’ is similar to P except for that P’ does not contain ri in in rule list. 

Here, P’ is called the Remove a Rule (RER) Mutant of P. The fault detection condition for 

RER based on RCA are given below. 

a)  Permit-overrides:  

i)  Reachability constraint  
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Policy target should evaluate to true or error and all the previous rules with permit 

effect before the current rule under consideration should evaluate to N/A or error (i.e should 

not evaluate to true).  

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i} 

ii)  Necessity constraint  

The necessity constraint is that – rule body evaluates to true or error. Formally, rbi ˅ 

Error(rbi) 

iii)  Propagation constraint 

If policy target evaluates to true, ith rule body evaluates to true and ith rule effect is 

deny, then all other rules should evaluate to N/A or error. Further, there should not exist a 

pair of rules (excluding the current rule under consideration) such that one of them is permit 

rule which evaluates to an error and other is deny rule which evaluates to true or error. 

({PT)} ˄ rbi  ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄ {( ∃(p,d) 

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ 

(Error(rbd) ˅ rbd))}) 

If policy target evaluates to an error, ith rule body evaluates to true and ith rule effect is 

deny, then all other rules with deny effect should evaluate to N/A and all other rules with 

permit effect should not evaluate to true. Further, there should not exist a pair of rules 

(excluding the current rule under consideration) such that one of them is permit rule which 

evaluates to an error and other is deny rule which evaluates to true or error. 

({Error(PT)} ˄ rbi  ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi, 

permit> for j != i} ˄ {rbj  for any deny rule rj = <rbi, deny> for j != i} ˄ {( ∃(p,d) such 
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that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd) 

˅ rbd))}) 

If policy target evaluates to true, ith rule body evaluates to true and ith rule effect is 

permit, then all other permit rule should evaluate to N/A or error.  

 ({PT } ˄ rbi  ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj  = <rbi, 

permit> for j != i}) 

If policy target evaluates to an error, ith rule body evaluates to true and ith rule effect is 

permit, then all other rules with permit effect should evaluate to N/A if all deny rules 

evaluate to N/A. However, if any deny rule evaluates to true or error, then another permit 

effect can evaluate to N/A or error. 

({Error(PT)} ˄ rbi  ˄ ri = <rbi, permit> ˄  [{rbj  for any rule rj for j != i} ˅  { ∃d ( rbd 

˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj  ˅ Error(rbj )) for any permit rule rj = <rbi, 

permit> for j != i }]) 

If policy target evaluates to true or error, ith rule body evaluates to an error and ith rule 

effect is deny, then all other rules with deny effect should evaluate to N/A and all other 

rules with permit effect should evaluate to N/A or error. 

({PT ˅ Error(PT)} ˄ Error(rbi) ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for j != i} ˄ {rbj for any deny rule rj = <rbj, deny> for j != i} 

If policy target evaluates to true or error, ith rule body evaluates to an error and ith rule 

effect is permit, then all other rules with permit effect should evaluate to N/A. 

({PT ˅ Error(PT)} ˄ Error(rbi) ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj = <rbj, 

permit> for j != i}) 
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Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RER when RCA is permit-overrides: 

({PT } ˄ rbi ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj  for j != i} ˄ {( ∃(p,d) 

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ 

(Error(rbd) ˅ rbd))}) 

˅ 

({Error(PT)} ˄ rbi ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi, 

permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i}˄ {( ∃(p,d) such 

that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd) 

˅ rbd))}) 

˅ 

({PT } ˄ rbi ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj  = <rbi, 

permit> for j != i}) 

˅ 

({Error(PT)} ˄ rbi ˄ ri = <rbi, permit> ˄  [{rbj  for any rule rj for j != i} ˅  { ∃d ( rbd ˅ 

Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj  ˅ Error(rbj )) for any permit rule rj = <rbi, 

permit> for j != i }]) 

˅ 

({PT ˅ Error(PT)} ˄ Error(rbi) ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for j != i} ˄ {rbj for any deny rule rj = <rbj, deny> for j != i} 

˅ 

({PT ˅ Error(PT))} ˄ Error(rbi) ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj = <rbj, 

permit> for j != i}) 
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b)  deny-unless-permit: 

i)  Reachability constraint  

The policy target should be true or should evaluate to an error. For any permit rule rj 

= <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or 

evaluates to an error). 

Hence, the reachability constraint is - policy target evaluates to true or error and all 

the previous rule with permit effect before the current rule under consideration should 

evaluate to N/A or error (i.e should not evaluate to true).  

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i} 

ii)  Necessity constraint  

The rule should evaluate to true. Formally, rbi 

iii)  Propagation constraint 

If rule under consideration is deny rule, then the mutant is equivalent because the rule 

level decision in mutant will be N/A and, in original policy, it will be true or error. 

However, for deny-unless-permit RCA, anything other than permit effect results in deny 

decision. And, it is only the current rule under consideration where mutant differs from 

original policy and hence both will behave the same. 

Hence, the rule under consideration should be permit rule such that all the rules with 

permit effect evaluate to N/A or error. 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RER when RCA is deny-unless-permit. 
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({PT ˅ Error(PT)} ˄ {rbi} ˄ {rbj ˅ Error(rbi) for any permit rule rj = < rbj, permit >for 

j != i}) 

c)  first-applicable: 

i)  Reachability constraint 

Policy target should evaluate to true or error and all the previous rules with permit 

effect before the current rule under consideration should evaluate to N/A.  

ii)  Necessity constraint  

If policy target evaluates to true, the necessity constraint is that – rule body evaluates 

to N/A or error. 

If policy target evaluates to an error, the necessity constraint is that – rule body 

evaluates to N/A. 

iii)  Propagation constraint 

If policy target evaluates to true and ith rule body evaluates to true, then for all other 

rules which have the same effect as that of ith rule should evaluate to N/A or error.  

If policy target evaluates to true and ith rule body evaluates to an error, then for all 

other rules after the ith rule which has the same effect as that of ith rule should evaluate to 

N/A or true  

If policy target evaluates to an error and ith rule body evaluates to an error or true, then 

for all other rules after the ith rule which has the same effect as that of ith rule should evaluate 

to N/A. 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RER when RCA is first-applicable. 
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({PT} ˄ rbi ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any rule rj such that 

rei = rej for j > i}) 

˅ 

({PT} ˄  Error(rbi) ˄ {rbj  ˅rbj for any rule rj for j < i} ˄ {rbj  for any rule rj such that 

rei = rej for j > i}) 

˅ 

({Error(PT) } ˄  (rbi ˅Error(rbi)) ˄ {rbj for any rule rj for j < i} ˄ {rbj for any rule rj 

such that rei = rej for j > i}) 

3.9 FDC for Policy Target True (PTT) 

Policy target true is a mutation operator which alters the policy target such that it will 

always evaluate to true. One of the transformation rules to make target always evaluate to 

true is to make it empty so that it will always evaluate to true. Since it has a fault in the 

target of a policy, it is under the category incorrect policy target. 

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT’, RCA, RL’> where 

PT and PT’ are such that P’ is similar to P except the target PT’ of P’ always evaluates to 

true. Here, P’ is called the Policy Target True (PTT) Mutant of P. The fault detection 

condition for Policy Target True based on RCA are given below.  

a) permit-overrides:  

i)  Reachability constraint  

The policy target is the first element to be evaluated in a policy element. Hence, it is 

empty. 

ii)  Necessity constraint  

The policy target evaluates to N/A or error. 
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iii)  Propagation constraint 

If policy target evaluates to N/A, at least one rule should evaluate to true or error. 

If policy target evaluates to an error, there should be one permit rule that evaluates to 

true or all permit rules evaluate to N/A and at least one deny rule evaluates to true. 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of PTT when RCA is permit-overrides: 

(PT ˄ {rbj ˅ Error(rbj) for any rule rj }) ˅ (Error(PT) ˄ ( {rbj for any rule rj  such that rj 

= <rbj, permit>} ˅{rbj for all rule rj  such that rj = <rbj, permit> ˄ rbj for any rule rj  

such that rj = <rbj, deny> )) 

b) deny-unless-permit: 

i)  Reachability constraint  

The policy target is the first element to be evaluated in a policy element. Hence, it is 

empty. 

ii)  Necessity constraint  

The policy target evaluates to N/A or error. 

iii)  Propagation constraint  

Necessity constraint is sufficient for fault detection. Combining all constraints as a 

single constraint, we get the following constraint for fault detection of PTT when RCA is 

deny-unless-permit:  PT ˅ Error(PT)  

c) first-applicable: 

i)  Reachability constraint  

The policy target is the first element to be evaluated in a policy element. Hence, it is 

empty. 



91 

 

 

 

ii)  Necessity constraint  

The policy target evaluates to N/A or error. 

iii)  Propagation constraint  

If policy target evaluates to true, at least one rule should evaluate to true or error.  

If policy target evaluates to an error, there should be one rule that evaluates to true and 

all other rules before that rule should evaluate to N/A. 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of PTT when RCA is first-applicable: 

(PT ˄ {rbj ˅Error(rbj) for any rule rj }) ˅ (Error(PT) ˄ ( {rbj for any rule rj ˄  rbi  for 

any rule ri such that i < j  })) 

3.10 FDC for Policy Target False (PTF) 

Policy target false is a mutation operator which alters the policy target such that it will 

always evaluate to false. Since it has a fault in the target of a policy, it is under the category 

incorrect policy target. 

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT’, RCA, RL’> where 

PT and PT’ are such that P’ is similar to P except the target PT’ of P’ always evaluates to 

false. Here, P’ is called the Policy Target False (PTF) Mutant of P. The fault detection 

condition for Policy Target False based on RCA are given below.  

a) permit-overrides:  

i)  Reachability constraint  

The policy target is the first element to be evaluated in a policy element. Hence, it is 

empty. 

ii)  Necessity constraint  
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The policy target evaluates to true or error. 

iii)  Propagation constraint 

At least one rule should evaluate to true or error. 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of PTF when RCA is permit-overrides: 

((PT ˅Error(PT)) ˄ {rbj ˅Error(rbj) for any rule rj } 

b) deny-unless-permit:  

i)  Reachability constraint 

The policy target is the first element to be evaluated in a policy element. Hence, it is 

empty. 

ii)  Necessity constraint  

The policy target evaluates to true or error. 

iii)  Propagation constraint  

Necessity constraint is sufficient for fault detection. Combining all constraints as a 

single constraint, we get the following constraint for fault detection of PTT when RCA is 

permit-overrides: PT ˅ Error(PT)  

c) first-applicable: 

i)  Reachability constraint 

The policy target is the first element to be evaluated in a policy element. Hence, it is 

empty. 

ii)  Necessity constraint  

The policy target evaluates to true or error. 

iii)  Propagation constraint  
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At least one rule should evaluate to true or error. 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of PTT when RCA is permit-overrides: 

((PT ˅Error(PT)) ˄ {rbj ˅Error(rbj) for any rule rj } 

3.11 FDC for First Permit Rule (FPR) 

First Permit Rule is a mutation operator which changes the position of the first Deny 

rule with the first Permit rule that follows the first Deny rule. Since it has a fault with the 

ordering of the rules, it is under the category incorrect rule ordering. 

Consider an XACML policy P = <PT, RCA, RL> where RL = <r1, …. ,rd… rp..rn>, 

RL’ = <r1, ..., rp, … rd, ..., rn> such that P’ is similar to P except the order of first permit 

rule following the first deny rule in P is swapped in P’.  

 Note: The order of permit rules and deny rules does not alter the decision of the policy 

element if the RCA are Permit-Override, Deny Override, Permit-unless-Deny or Deny-unless-

Permit  

The order of permit rules and deny rules matters only when both or at least one pair of permit 

rule and deny rule can be applied (true or error) at the same time. If they cannot be applied at the 

same time, then such a mutant will be equivalent to the original policy.  

The fault detection condition of FPR when RCA is first-applicable is as follows: 

i)  Reachability constraint  

The policy target evaluates to true or error. 

ii)  Necessity constraint  

The rule with first permit effect should evaluate to true or error and the rule with first 

deny effect following the first permit rule should evaluate to true or error. 

iii)  Propagation constraint 
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Necessity constraint is sufficient for fault detection. 

(rbp ˅ Error(rbp)) ˄ (rbd ˅ Error(rbd)) for the first permit rule rp = <rbp, permit> and 

for the first deny rule rd = <rbd, deny> after rp. 

3.12  FDC for First Deny Rule (FDR) 

First Deny Rule is a mutation operator which changes the position of the first Permit 

rule with the first Deny rule that follows the first Permit rule. Since it has a fault with the 

ordering of the rules, it is under the category incorrect rule ordering. 

Consider an XACML policy P = <PT, RCA, RL> where RL = <r1, …. ,rd… rp..rn>, 

RL’ = <r1, ..., rp, … rd, ..., rn> such that P’ is similar to P except the order of first deny rule 

following the first permit rule in P is swapped in P’.  

The fault detection condition of FDR when RCA is first-applicable is as follows: 

i)  Reachability constraint  

The policy target evaluates to true or error. 

ii)  Necessity constraint  

The rule with first deny effect should evaluate to true or error and the rule with first 

permit effect following the first deny rule should evaluate to true or error. 

iii)  Propagation constraint 

Necessity constraint is sufficient for fault detection. 

(rbd ˅ Error(rbd)) ˄ (rbp ˅ Error(rbp)) for the first deny rule rd = <rbd, deny> and for 

the first permit rule rp = <rbp, permit> after rd. 

3.13 FDC for Remove Parallel Target Element (RPTE) 
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Remove Parallel Target Element is a mutation operator in which an AnyOf element of 

the target or AllOf element of an AnyOf element is removed from the target. Since it has a 

fault of missing a target element, it is under the category missing target element. 

Let PT be the target element of Policy P of the rule ri. The target element is composed 

of the conjunction of AnyOf element and each AnyOf element is composed of the 

disjunction of AllOf elements. Hence PT = AnyOf1   AnyOf2  … AnyOfi  … AnyOfn and 

arbitrary ith
  AnyOfi = AllOfi1 ˅  AllOfi2 ˅  AllOfij ˅  AllOfim. If either ith AnyOf is removed 

or jth AllOf from ith AnyOf is removed, the resulted faulty policy is called Remove parallel 

target element mutant. The fault detection condition for RPTE is presented as follows: - 

a) Permit-overrides:  

i)  Reachability constraint  

Policy target should evaluate to true or error and all the previous rules with permit 

effect before the current rule under consideration should evaluate to N/A or error (i.e should 

not evaluate to true).  

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i} 

ii)  Necessity constraint  

The necessity constraint for RPTE with ith AnyOf element missing is that – rule target 

expression should have negation term for ith AnyOf element and rule condition evaluates to 

true. 

Formally, (AnyOf1 ˄  AnyOfi  ˄ .. AnyOfn)  ˄ rci 

The necessity constraint for RPTE with jth AllOf element of ith AnyOf element missing 

is that – rule target expression should have a positive term for jth AllOf element of ith AnyOf 
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element and all other AllOf element should have a negative term and rule condition 

evaluates to true. 

Formally, (AnyOf1 ˄ AnyOfi =(AllOf1 ˅ AllOfj ˅ AllOfm)  ˄ .. AnyOfn) ˄ rci 

iii)  Propagation constraint 

If policy target evaluates to true and ith rule effect is deny, then all other rules should 

evaluate to N/A or error. Further, there should not exist a pair of rules (excluding the current 

rule under consideration) such that one of them is permit rule which evaluates to an error 

and other is deny rule which evaluates to true or error. 

({PT)} ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄ {( ∃(p,d) such 

that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd) 

˅ rbd))}) 

If policy target evaluates to an error, and ith rule effect is deny, then all other rules with 

deny effect should evaluate to N/A and all other rules with permit effect should not evaluate 

to true. Further, there should not exist a pair of rules (excluding the current rule under 

consideration) such that one of them is permit rule which evaluates to an error and other is 

deny rule which evaluates to true or error. 

({Error(PT)} ˄  ri = <rbi, deny> ˄  {rbj ˅  Error(rbj) for any permit rule rj = <rbi, permit> 

for j != i} ˄ {rbj  for any deny rule rj = <rbi, deny> for j != i} ˄ {( ∃(p,d) such that (i 

≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd) ˅ rbd))}) 

If policy target evaluates to true, and ith rule effect is permit, then all other permit rules 

should evaluate to N/A or error.  

({PT } ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj  = <rbi, permit> 

for j != i}) 
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If policy target evaluates to an error, and ith rule effect is permit, then all other rules 

with permit effect should evaluate to N/A if all deny rules evaluate to N/A. However, if any 

deny rule evaluates to true or error, then another permit effect can evaluate to N/A or error. 

({Error(PT)} ˄ ri = <rbi, permit> ˄  [{rbj  for any rule rj for j != i} ˅  { ∃d ( rbd ˅ 

Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj  ˅ Error(rbj )) for any permit rule rj = <rbi, 

permit> for j != i }]) 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RTT when RCA is permit-overrides: 

({PT } ˄ {(AnyOf1 ˄ AnyOfi  ˄ .. AnyOfn) ˅ (AnyOf1 ˄ AnyOfi = (AllOf1 ˅ AllOfj ˅ 

AllOfm)  ˄ .. AnyOfn)} ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj  for j 

!= i} ˄ {( ∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ 

Error(rbp) ˄ (Error(rbd) ˅ rbd))}) 

˅ 

({Error(PT)} ˄ {(AnyOf1 ˄ AnyOfi  ˄ .. AnyOfn) ˅ (AnyOf1 ˄ AnyOfi  = (AllOf1 ˅ 

AllOfj ˅ AllOfm)  ˄ .. AnyOfn)} ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any 

permit rule rj = <rbi, permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j 

!= i}˄ {( ∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ 

Error(rbp) ˄ (Error(rbd) ˅ rbd))}) 

˅ 

({PT } ˄ {(AnyOf1 ˄ AnyOfi  ˄ .. AnyOfn) ˅ (AnyOf1 ˄ AnyOfi  = (AllOf1 ˅ AllOfj ˅ 

AllOfm)  ˄ .. AnyOfn)} ˄ rci ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule 

rj  = <rbi, permit> for j != i}) 

˅ 
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({Error(PT)} ˄ {(AnyOf1 ˄ AnyOfi  ˄ .. AnyOfn) ˅ (AnyOf1 ˄ AnyOfi  = (AllOf1 ˅ 

AllOfj ˅ AllOfm)  ˄ .. AnyOfn)} ˄ rci ˄ ri = <rbi, permit> ˄  [{rbj  for any rule rj for j 

!= i} ˅  { ∃d ( rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj  ˅ Error(rbj )) for any permit 

rule rj = <rbi, permit> for j != i }]) 

b)  deny-unless-permit:  

i)  Reachability constraint  

The policy target should be true or should evaluate to an error. For any permit rule rj 

= <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or 

evaluates to an error). 

Hence, the reachability constraint is - policy target evaluates to true or error and all 

the previous rules with permit effect before the current rule under consideration should 

evaluate to N/A or error (i.e should not evaluate to true).  

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit 

rule rj = <rbj, permit> for    j < i} 

ii)  Necessity constraint  

The necessity constraint for RPTE with ith AnyOf element missing is that – rule target 

expression should have negation term for ith AnyOf element and rule condition evaluates to 

true. 

Formally, (AnyOf1 ˄ AnyOfi  ˄ .. AnyOfn)  ˄ rci 

The necessity constraint for RPTE with jth AllOf element of ith AnyOf element missing 

is that – rule target expression should have a positive term for jth AllOf element of ith AnyOf 

element and all other AllOf element should have a negative term and rule condition 

evaluates to true. 
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Formally, (AnyOf1 ˄ AnyOfi =(AllOf1 ˅ AllOfj ˅ AllOfm)  ˄ .. AnyOfn) ˄ rci 

iii) Propagation constraint 

If rule under consideration is deny rule, then the mutant is equivalent because the rule 

level decision in mutant will be deny, and, in original policy, it will be N/A or error. 

However, for deny-unless-permit RCA, anything other than permit effect results in deny 

decision. And, it is only the current rule under consideration where mutant differs from 

original policy and hence both of them will behave the same. 

Hence, the rule under consideration should be permit rule such that all the rules with 

permit effect after the ith rule should evaluate to N/A or error. 

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RTT when RCA is deny-unless-permit. 

({PT ˅ Error(PT)} ˄ {({(AnyOf1 ˄ AnyOfi  ˄ .. AnyOfn) ˅ (AnyOf1 ˄ AnyOfi  = (AllOf1 

˅ AllOfj ˅ AllOfm)  ˄ .. AnyOfn)}) ˄ rci } ˄ {rbj ˅ Error(rbi) for any permit rule rj = < 

rbj, permit >for j != i}) 

c) first-applicable:  

i)  Reachability constraint  

Policy target should evaluate to true or error and all the previous rules with permit 

effect before the current rule under consideration should evaluate to N/A.  

ii)  Necessity constraint 

The necessity constraint for RPTE with ith AnyOf element missing is that – rule target 

expression should have negation term for ith AnyOf element and rule condition evaluates to 

true. 

Formally, (AnyOf1 ˄ AnyOfi  ˄ .. AnyOfn) ˄ rci 
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The necessity constraint for RPTE with jth AllOf element of ith AnyOf element missing 

is that – rule target expression should have a positive term for jth AllOf element of ith AnyOf 

element and all other AllOf element should have a negative term and rule condition 

evaluates to true. 

Formally, (AnyOf1 ˄ AnyOfi =(AllOf1 ˅ AllOfj ˅ AllOfm)  ˄ .. AnyOfn) ˄ rci 

iii)  Propagation constraint 

If policy target evaluates to true, then for all other rules which have the same effect as 

that of ith rule should evaluate to N/A or error.  

If policy target evaluates to an error, then for all other rules which have the same effect 

as that of ith rule should evaluate to N/A.  

Combining all constraints as a single constraint, we get the following constraint for 

fault detection of RTT when RCA is first-applicable. 

({PT} ˄ ({(AnyOf1 ˄ AnyOfi  ˄ .. AnyOfn) ˅ (AnyOf1 ˄ AnyOfi  = (AllOf1 ˅ AllOfj ˅ 

AllOfm)  ˄ .. AnyOfn)}) ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any 

rule rj such that rei = rej for j > i}) 

˅ 

(Error(PT)} ˄ ({(AnyOf1 ˄ AnyOfi  ˄ .. AnyOfn) ˅ (AnyOf1 ˄ AnyOfi  = (AllOf1 ˅ 

AllOfj ˅ AllOfm)  ˄ .. AnyOfn)}) ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj for any 

rule rj such that rei = rej for j > i}) 

3.14 FDC for Change Rule Combining Algorithm (CRC) 

Change Rule Combining Algorithm is a mutation operator in which the combining 

algorithm of the policy is changed to another combining algorithm. Since it has a fault of 

in combining algorithm, it is under the category incorrect combining algorithm. 
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Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA’, RL> such that 

P’ is similar to P except the RCA’ in P’ is different from one in P. Here, P’ is called the 

Change Combining Algorithm (CCA) Mutant of P. The fault detection condition for CRC 

presented as follows.  

a) FDC for change from permit-overrides to Deny-overrides: 

Policy target should evaluate to true or error. 

There should exist at least one pair of rules such that one of them is permit rule and 

another is deny such that both evaluate to true or one evaluates to true and other evaluates 

to an error. 

Formally, 

(PT ˅Error(PT))  ˄ (p,d) such that rp = <rbp, permit> ˄ rd = <rbd, deny> ˄ ({rbp ˄ 

rbd} ˅ {Error(rbp) ˄ rbd} ˅ {Error(rbd) ˄ rbp}) 

Note: if all of the permit rules are N/A while one or more deny rules evaluate to true or 

error and if all of the deny rules are N/A while one or more permit rules evaluate to true or error, 

permit-overrides and deny-overrides behaves the same. 

b) FDC for change from permit-overrides to deny-unless-permit: 

Policy target should evaluate to true or error. 

˄ 

(All of the rules evaluate to N/A 

˅ 

one or more permit rules evaluates to an error  

˅ 

one or more deny rules evaluates to an error and the rest are N/A and PT evaluates to true) 

Formally, 
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(PT ˅Error(PT))  ˄ ({rbj for all rules in P} ˅ {Error(rbj ) for any permit rule rj = <rbj, 

permit> in P} ˅{PT ˄ Error(rbk ) for some deny rule rk = <rbk, deny> in P ˄  rbj  for 

other rules rj  in P such that k j}) 

c) FDC for change from permit-overrides to permit-unless-deny: 

Policy target should evaluate to true or error. 

˄ 

(All of the rules evaluate to N/A 

˅ 

one or more permit rule evaluates to true only if one or more deny rules evaluate to true. 

˅ 

one or more deny rule evaluates to true only if one or more permit rule evaluates to true or 

error 

˅ 

one or more permit rule evaluates to an error and the rest evaluates to N/A and PT evaluates 

to true.) 

Formally, 

(PT ˅Error(PT)) ˄ ({rbj for all rules in P} ˅ { rbd  ˄ (rbp ˅ Error(rbp )) for any permit 

rule rp = <rbp, permit> and for any deny rule rd = <rbd, deny> in P} ˅{PT ˄ Error(rbk ) 

for some permit rule rk = <rbk, permit> in P ˄  rbj  for other rules rj  in P such that k 

j}) 

d) FDC for change from permit-overrides to first-applicable: 

Policy target should evaluate to true or error. 

˄ 
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if rf is the first rule that evaluates to true, then rf is deny rule and there exists one or more 

permit rule that evaluates to true or error 

˅ 

if rf is the first rule that evaluates to an error and rf is deny rule, then there exists one or 

more permit or deny rule that evaluates to true or one or more permit rule that evaluates to 

an error 

˅ 

if rf is the first rule that evaluates to an error and rf is permit rule, then there exists one or 

more permit or deny rule that evaluates to true or one or more deny rule that evaluates to 

an error) 

Formally, 

(PT ˅Error(PT))  

˄ 

 ({(rbj ˄ rbf  for some f such that j <f) ˄ (rf  = <rbf, deny> ˄ rbp for some permit rule rp  

= <rbp, permit>)} 

˅  

{(rbj ˄ Error(rbf)  for some f such that j <f) ˄ (rf = <rbf, deny>) ˄  (rbi for some permit 

or deny rule ˅ Error(rbp) for some permit rule rbp) ))} 

˅  

{(rbj ˄ Error(rbf)  for some f such that j <f) ˄ (rf = <rbf, permit>) ˄  (rbi for some permit 

or deny rule ˅ Error(rbd) for some deny rule rbd))}) 

e) FDC for change from deny-overrides to permit-unless-deny: 

Policy target should evaluate to true or error. 
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˄ 

(All of the rules evaluate to N/A 

˅ 

one or more deny rule evaluates to an error  

˅ 

one or more permit rule evaluates to an error and rest are N/A and PT evaluates to true) 

Formally, 

(PT ˅Error(PT))  ˄ ({rbj for all rules in P} ˅ {Error(rbj ) for any deny rule rj = <rbj, 

deny> in P} ˅{PT ˄ Error(rbk ) for some permit rule rk = <rbk, permit> in P ˄  rbj  for 

other rules rj  in P such that k j}) 

f) FDC for change from deny-overrides to deny-unless-permit: 

Policy target should evaluate to true or error. 

˄ 

(All of the rules evaluate to N/A 

˅ 

one or more deny rule evaluates to true only if one or more permit rules evaluate to true.  

˅ 

one or more permit rule evaluates to true only if one or more deny rule evaluates to true or 

error 

˅ 

one or more deny rule evaluates to an error and rest evaluates to N/A and PT evaluates to 

true.) 

Formally, 
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(PT ˅Error(PT)) ˄ ({rbj for all rules in P} ˅ { rbp  ˄ (rbd ˅ Error(rbd )) for any permit 

rule rp = <rbp, permit> and for any deny rule rd = <rbd, deny> in P} ˅{PT ˄ Error(rbk ) 

for some deny rule rk = <rbk, deny> in P ˄  rbj  for other rules rj  in P such that k j}) 

g) FDC for change from deny-overrides to first-applicable: 

Policy target should evaluate to true or error. 

˄ 

if rf is the first rule that evaluates to true, then rf is permit rule and there exists one or more 

deny rule that evaluates to true or error 

˅ 

if rf is the first rule that evaluates to an error and rf is permit rule, then there exists one or 

more permit or deny rule that evaluates to true or one or more deny rule that evaluates to 

an error 

˅ 

if rf is the first rule that evaluates to an error and rf is deny rule, then there exists one or 

more permit or deny rule that evaluates to true or one or more permit rule that evaluates to 

an error 

Formally, 

(PT ˅Error(PT))  

˄ 

 ({(rbj ˄ rbf  for some f such that j <f) ˄ (rf  = <rbf, permit> ˄ rbd for some deny rule rd  

= <rbd, deny>)} 

 ˅  
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{(rbj ˄ Error(rbf)  for some f such that j <f) ˄ (rf = <rbf, permit>) ˄  (rbi for some permit 

or deny rule ˅ Error(rbd) for some deny rule rbd) ))} 

˅  

{(rbj ˄ Error(rbf)  for some f such that j <f) ˄ (rf = <rbf, deny>) ˄  (rbi for some deny or 

permit rule ˅ Error(rbp) for some permit rule rbp))}) 

h) FDC for change from permit-unless-deny to deny-unless-permit: 

Policy target should evaluate to true or error. 

˄ 

(All of the rules evaluate to N/A or error 

˅ 

if one rule evaluates to true, then other rules with opposite effect must evaluate to true.) 

Formally, 

(PT ˅Error(PT)) ˄ ({rbj ˅Error(rbj) for all rules in P} ˅ { rbp  ˄ rbd for any permit rule 

rp = <rbp, permit> and for any deny rule rd = <rbd, deny> in P}) 

i) FDC for change from permit-unless-deny to first-applicable: 

Policy target should evaluate to true or error 

˄  

if rf is the first rule that evaluates to true, then rf is permit rule and there exists one or more 

deny rule that evaluates to true. 

˅ 

if rf is the first rule that evaluates to an error and rf  is permit rule, then policy target should 

evaluate to true or one or more deny rule should evaluate to true. 

˅ 
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if rf is the first rule that evaluates to an error and rf  is deny rule, then policy target should 

evaluate to true if one or more deny rule evaluates to true.) 

Formally, 

(PT ˅Error(PT))  

˄ 

 ({(rbj ˄ rbf  for some f such that j <f) ˄ (rf  = <rbf, permit> ˄ rbd for some deny rule rd  

= <rbd, deny>)} 

˅ 

{(rbj ˄ Error(rbf ) for some f such that j <f) ˄ (rf  = <rbf, permit> ˄ (rbd for some deny 

rule rd  = <rbd, deny>) ˅ PT)} 

˅ 

{(rbj ˄ Error(rbf ) for some f such that j <f) ˄ (rf  = <rbf, deny> ˄ ( (rbd for some deny 

rule rd  = <rbd, deny>)) ˅ PT)}) 

j) FDC for change from deny-unless-permit to first-applicable: 

Policy target should evaluate to true or error 

˄  

if rf is the first rule that evaluates to true, then rf is deny rule and there exists one or more 

permit rule that evaluates to true. 

˅ 

if rf is the first rule that evaluates to an error and rf  is deny rule, then policy target should 

evaluate to true or one or more permit rule should evaluate to true. 

˅ 
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if rf is the first rule that evaluates to an error and rf  is permit rule, then policy target should 

evaluate to true if one or more permit rule evaluates to true.) 

Formally, 

(PT ˅Error(PT))  

˄ 

 ({(rbj ˄ rbf  for some f such that j <f) ˄ (rf  = <rbf, deny> ˄ rbp for some permit rule rp 

= <rbp, permit>)} 

˅ 

{(rbj ˄ Error(rbf ) for some f such that j <f) ˄ (rf  = <rbf, deny> ˄ (rbp for some permit 

rule rp  = <rbp, permit>) ˅ PT)} 

˅ 

{(rbj ˄ Error(rbf ) for some f such that j <f) ˄ (rf  = <rbf, permit> ˄ ( (rbp for some 

permit rule rp  = <rbp, permit>)) ˅ PT)}) 

Note: FDC for CRC from permit-overrides to deny-overrides is applicable from deny-

overrides to permit-overrides as well. Hence, we have all possible combinations between five 

RCAs.  
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CHAPTER 4 

 

Mutation-Based Test Generation 

Mutation-based test generation involves generating test suites exploiting the fault 

detection condition with the goal to kill all the non-equivalent mutants.  The formalization 

of complete fault detection conditions makes it feasible to automatically perform strong 

mutation-based test generation. From fault detection condition, we know that if any request 

satisfies reachability, necessity and propagation for a fault, it will produce a different result 

in original policy, and faulty policy. This difference in response can be exploited to 

distinguish faulty policy from the correct policy. Hence, the goal is to generate test input 

that satisfies the three constraints of the fault detection condition - reachability, necessity 

and sufficiency/propagation for each possible fault policy.  

FDC may include multiple mutually exclusive conditions. If one of them is satisfied, 

it will be sufficient for the fault detection. As a result, we just use one of the mutually 

exclusive conditions for each fault. In other words, we do not need to generate multiple 

requests for each of the mutually exclusive conditions because it will just generate 

redundant test cases. The process of identifying such sufficient mutually exclusive 

conditions (if any exist) to detect a fault is discussed in Section 1.3.2. The overall process 

for strong mutation-based (SMT) test generation is depicted in Algorithm 1. 
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4.1 Strong Mutation-Based Test Generation 

Algorithm 1: Mutation-based generation of the near-optimal test suite (SMT) 

Import functions: kill(M, Q) returns the list of mutants in M that are killed by test suite Q 

                              Z3-request(FDC) returns a solution to the constraint FDC 

Input: Policy P= < PT, RCA, [r1, r2,…, rn]>, Ω is a list of mutation operators 

Output: A set of access requests Q 

Variables: M is a mutant pool, OPS is a list of mutation operators, FDC is a fault 

detection condition, q is a test input 

1 Q   є 

2 While  Ω   

3        OPS  select one or more mutation operators from Ω 

4        M  list of mutants created by mutation operators OPS 

5        M  M – kill(M, Q) 

6        While  M    

7                 FDC  compose the fault detection conditions of one or more mutants 

8                 q  Z3-request(FDC) 

9                 If (q is not null) // otherwise equivalent mutant 

10                          Q  Q  {q} 

11                          M  M – kill(M, {q}) 

12                EndIf 

13         EndWhile 

14 EndWhile 

15 Return Q 
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From formalization of the fault detection condition, we have identified RTF, RCF, 

ANF, RNF, and RER have common fault detection conditions among various possible 

mutually exclusive fault detection conditions for each of them. Algorithm 6 in Section 4.3 

presents such common fault detection conditions among them. As a result, we do not need 

to deal with each of those mutation operators individually. In other words, if we generate 

a request that satisfies that common fault detection condition among them, it can kill the 

mutants from RTF, RCF, ANF, RNF and RER. So, we select one (or more mutation 

operators if they have common FDC ) at a time and generate mutants for them (line 3-4), 

and run the mutants against the existing tests. The mutants that are already killed by the 

existing tests are removed from the mutant pool (line 5). Then we compose the constraint 

for one or more compatible mutants (line 7) and then solve the constraint by using the Z3 

constraint solver [17] (line 8) If the constraint is solved, we convert the solution into an 

access request and add it to the test suite (lines 9-10), otherwise, the mutant is considered 

an equivalent mutant. We also run the new test against the current mutant pool. Mutants 

killed by the new test will be removed from the pool (line 11). When all mutation operators 

are handled, we return Q as the generated test suite.  

Algorithm 1 is computationally expensive for the policy with a large number of the 

rules because of the involved optimization (step 4, 5 and 11) which needs to generate 

mutants and determine whether they are killed or not. These optimization steps are costly 

because kill(M,Q) is in the order of O(n3) where n is the number of the rule in a policy. 

Executing a test with each mutant has a complexity of O(n). The number of mutants is in 

linear order and test suite size is linear as well. Hence, kill(M,Q) is in the order of O(n3) 
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because in the worst case we need to run an operation with the complexity of O(n) for 

mutants of the size O(n) for each request in test suite of the size O(n). 

As a result, if n grows very large in big policies, the optimization steps grows in the 

cubic order which makes it unfeasible to use for large policies. So, we also formulated the 

mutation-based test generation without optimization which we referred to as Non-

Optimized Strong Mutation-based Testing (NO-SMT) which generates a test suite that 

achieves a 100% mutant score like SMT. NO-SMT is nothing but the Algorithm 1 itself 

excluding the steps 4,5 and 11. However, it will have many redundant test cases than that 

from SMT. Hence, it is the trade-off between test generation time against test suite size. 

We have implemented these algorithms as an extension to the open source XPA tool.  

The complexity of step 7 (for a single iteration) i.e generation of FDC constraint will 

be in the order of O(n). The details on FDC constraint generation for each mutation operator 

is presented in Section 4.1 through Section 4.14. The time complexity of step 8 (for single 

iteration) is the time complexity of Z3 for solving FDC constraint expression. Let, O(Z3) 

represents the time complexity of Z3 at step 8. kill(M, {q}) in step 11 will be in the order 

of O(n2) since it is similar to kill(M,Q) but for a single test q. Since the size of M will be in 

linear order, the time complexity of step 6 through step 13 will be in the order of O(n.( 

O(Z3)+ n2)). Similarly, the time complexity of NO-SMT will be in the order of O(n.(O(Z3) 

+ n) ).  

As demonstrated in the empirical study, the test generation time of SMT grows much 

faster than RC, DC, and MC/DC. It is worth pointing out that, in this paper, the mutation-

based generation of the near-optimal test suite is not meant to be a practical test generation 

method for large-scale XACML policies. Instead, our goal is to use the test suite as a 
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benchmark for measuring relative cost-effectiveness of other testing methods. In addition, 

the mutation-based test suite can be used to help improve other testing methods by 

determining equivalent mutants and investigating fault detection conditions of live 

mutants. However, coverage-based test generation does not guarantee 100% mutation 

score and if 100% mutation score is desired irrespective of the size of a test suite, then we 

can use NO-SMT for the larger policies as well. 

The following are algorithms used to construct fault detection condition for each 

possible mutant for each mutation operator in the fault model. 

4.1.1 FDC Constraint and Tests Generation for CRE 

Algorithm 2: generateTestsForCRE(P) 

Input: Policy P= < PT, RCA, [r1, r2,…, rn]>  

Output: A set of access requests Q  

1  Q   є 

2  constraint  PT 

3  For each Rule ri in [r1, r2,…, rn] in P, do 

4  ruleConstraint   constraint 

5  ruleConstraint  ruleConstraint  ruleReachability(P, ri) 

6  ruleConstraint  ruleConstraint  rti   rci 

7  ruleConstraint  ruleConstraint  rulePropagation(P,ri,CRE) 

8  Q  Q U Z3-request(ruleConstraint) 

9  EndFor 

10  return Q 
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The input to the algorithm is policy P = < PT, RCA, [r1, r2,…, rn]> and output is 

set of generated access request Q. Initially we set Q to be empty (line 1). We then set the 

constraint expression from policy target if it is present, otherwise, the constraint is empty 

(line 4). The next step is to iterate over each rule in the policy (line 3) and construct fault 

detection condition constraint to kill the mutant. For each rule, the rule constraint is set to 

constraint expression (line 4) from policy target constraint in line 2. Then, for each rule in 

the policy, the rule constraint expression is concatenated with reachability constraint (line 

5). Once the reachability constraint is met, the next task is to concatenate the rule constraint 

with necessity constraint for the fault type (line 6) and then concatenate the propagation 

constraint (line 7). The constructed rule constraint is the constraint with sufficient 

constraint to kill the CRE mutant and is supplied to the constraint solver (line 8) to obtain 

the value for the test inputs. When all the rules are processed, the generated set of test input 

- Q is returned. The algorithm for rule reachability is presented in Algorithm 3 in Section 

4.1.1 and that for rule propagation is presented in Algorithm 4 in Section 4.1.2. It should 

be noted that reachability and propagation constraint is constructed taking common 

mutually exclusive conditions for reachability and propagation constraint for RTT, RTF, 

RCT, RCF, ANF, RNF and RER such that it works for all of them. CRE has slightly 

different propagation constraint than others but still shares the common constraints among 

them. Hence, rather than defining redundant propagation constraint for CRE only, we used 

the same method for propagation constraint passing the mutation method itself as an 

argument to tweak the propagation constraint based on the mutation operator. 
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4.1.2  FDC Constraint for Rule Reachability 

Algorithm 3: ruleReachability(P, ri) 

Import functions: hasCommonAttribute(rbi, rbj)  returns true if rule body of ith rule and 

rule body of jth rule has a common attribute   

Input: Policy P= < PT, RCA, [r1, r2,…, rn]> , Rule ri= <rti, rci, rei> 

Output: constraint 

1 constraint  є 

2 If RCA = First-Applicable, then 

3  For each rule rk in [r1, r2,…, ri-1] in P, do 

4   constraint  constraint   (rtk  rck) 

5  endFor 

6 else 

7  if RCA = Permit-unless-Deny, then 

8   for each rule rk in [r1, r2,…, ri-1] in P, do 

9    if rek = Deny, then 

10     constraint  constraint   (rtk  rck) 

11    endIF 

12   endFor 

13   else if RCA = Deny-unless-Permit, then 

14   for each rule rk in [r1, r2,…, ri-1] in P, do 

15    if rek = Permit, then 

16     constraint  constraint   (rtk  rck) 

17    endIf 
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18   endFor 

19  else if RCA = Deny-overrides, then 

20   for each rule rk in [r1, r2,…, ri-1] in P, do 

21    if rek = Deny, then  

22     if hasCommonAttributes(rbi,rbk), then 

24      constraint  constraint   (rtk  rck) 

25                 else 

26      dominantRuleCollection.add(rk) 

27     endIf 

28    endIf 

29   endFor 

30   else if RCA = Permit-overrides, then 

31   for each rule rk in [r1, r2,…, ri-1] in P, do 

32    if rek = Permit, then 

33     if hasCommonAttributes(rbi,rbk), then 

34      constraint  constraint   (rtk  rck) 

35     else 

36      dominantRuleCollection.add(rk) 

37     endIf 

38    endIf 

39   endFor 

40  endIf 

41 endIf 
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4.2 Return Constraint 

If rule combining algorithm is first-applicable, then all the previous rules before the 

current rule under consideration i.e. ith rule should evaluate to N/A (line 2-5) otherwise if 

RCA is permit-unless-deny, then all the previous rules with deny effect should be N/A (line 

7-12). If RCA is deny-unless-permit, all the previous rules with permit effect should be 

N/A (line 13-18). If RCA is deny-overrides (or permit-overrides), then we only falsify deny 

(or permit) rules with common attributes in rule body of current rule under consideration 

and mark the deny (or permit) rules with no common attribute for later to be used for 

propagation constraint (line 19-29 and line 30-41).  

4.3  FDC Constraint for Propagation 

Algorithm 4: rulePropagation(P,ri,mutationMethod) 

Input: Policy P= < PT, RCA, [r1, r2,…, rn]> , Rule ri= <rti, rci, rei> 

Output: constraint 

1 constraint  є 

2 If RCA = First-Applicable, then 

3  for each rule rk in [ri+1, ri+2,…, rn] in P, do 

4   if rek = rei, then  

5    constraint  constraint   (rtk  rck) 

6   endIf 

7  endFor  

8 else 

9  if RCA = Permit-unless-Deny, then 

10   for each rule rk in [ri+1, ri+2,…, rn] in P, do 
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11    if rek = Deny, then 

12     constraint  constraint   (rtk  rck) 

13    endIf 

14   endFor 

15   else if RCA = Deny-unless-Permit, then 

16   for each rule rk in [ri+1, ri+2,…, rn] in P, do 

17    if rek = Permit, then 

18     constraint  constraint   (rtk  rck) 

19    endIf 

20   endIf 

21  else if RCA = Deny-overrides, then 

22    for each rule rk in [ri+1, ri+2,…, rn] in P, do 

23    if rek = Deny, then  

24     if hasCommonAttributes(rbi,rbk), then 

25      constraint  constraint   (rtk  rck) 

26                 else 

27      dominantRuleCollection.add(rk) 

28     endIf 

29    endIf 

30   endFor 

31   if rei = permit and mutationMethod  CRE then 

32    for each rule rl in dominantRuleCollection, do 

33          if  (rtl  rcl)  (rtp  rcp) for rp = <rbp, permit>, then 
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34      dominantIndeterminateFlag  true 

35          else 

36     constraint  constraint   (rtl  rcl) 

37          endIf 

38    endFor 

39 

40    if dominantIndeterminateFlag = true, then 

41     permit-rules  get permit rules of P 

42     for each rp in permit-rules, do 

43      constraint  constraint  (rtp  rcp) 

44     endFor 

45    endIf 

46   endIf 

47   else if RCA = permit-overrides , then 

48    for each rule rk in [ri+1, ri+2,…, rn] in P, do 

49    if rek = permit, then  

50     if hasCommonAttributes(rbi,rbk), then 

51      constraint  constraint   (rtk  rck) 

52                 else 

53      dominantRuleCollection.add(rk) 

54     endIf 

55    endIf 

56   endFor 
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57   if rei = deny and mutationMethod  CRE then 

58    for each rule rl in dominantRuleCollection, do 

59          if  (rtl  rcl)  (rtp  rcp) for rp = <rbp, permit>, then 

60      dominantIndeterminateFlag  true 

61          else 

62     constraint  constraint   (rtl  rcl) 

63          endIf 

64    endFor 

65    if dominantIndeterminateFlag = true, then 

66     deny-rules  get deny rules of P 

67     for each rd in deny-rules, do 

68      constraint  constraint  (rtd  rcd) 

69     endFor 

70    endIf 

71   endIf 

72  endIf 

73 endIf 

74 return constraint 

If RCA is first-applicable, then all the rules after current rule under consideration with 

the same effect as that of the current rule under consideration should evaluate to N/A. If 

RCA is permit-unless-deny, then all the rules after ith rule with deny effect should be N/A. 

If RCA is deny-unless-permit, all the rules after ith rule with permit effect should be N/A. 

If RCA is deny-overrides (or permit-overrides), then we only falsify deny (or permit) rules 
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with common attributes in rule body of current rule under consideration and mark the deny 

(or permit) rules with no common attribute for later to be used for propagation constraint. 

If ith rule is deny (or permit), then propagation constraint is satisfied, and we can return the 

constraint otherwise if it is permit (or deny) and mutation operator is not CRE (for CRE 

the later propagation constraint i.e step 31- 46 is not required) and dominantRuleCollection 

is not empty, we need to check for each rule in dominantRuleCollection whether falsifying 

this deny (or permit) rule will fire another permit (or deny) rule. If this is the case, we 

cannot falsify the current rule in dominantRuleCollection. Hence, we make it evaluate 

indeterminate and set dominantIndeterminateFlag to true. If any deny (or permit) rule 

evaluate to indeterminate, then for fault detection, all the permit(deny) rules should 

evaluate to N/A.  

4.4 FDC Constraint and Tests Generation for RTT  

Algorithm 5: generateTestsForRTT(P) 

Input: Policy P= < PT, RCA, [r1, r2,…, rn]>  

Output: A set of access requests Q  

1    Q   є 

2    dominantIndeterminateFlag  false 

3    dominantRuleCollection  null 

4    constraint  PT 

5    For each Rule ri in [r1, r2,…, rn] in P, do 

6           ruleConstraint   constraint 

7      ruleConstraint  ruleConstraint  ruleReachability(P, ri) 

8    ruleConstraint  ruleConstraint    rti   (rci ˅ Error(rci)) 
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9    ruleConstraint  ruleConstraint  rulePropagation(P,ri,RTT) 

10    Q  Q U Z3-request(ruleConstraint) 

11      EndFor 

12     return Q 

Like CRE, we construct the FDC to kill the RTT by combining reachability, necessity 

and propagation constraint. The necessity constraint for RTT is that target of the rule under 

consideration should be N/A and rule condition should be true. 

4.5 FDC constraint and tests generation for RTF  

Algorithm 6: generateTestsForRTF(P) 

Input: Policy P= < PT, RCA, [r1, r2,…, rn]>  

Output: A set of access requests Q  

1   Q   є 

2   dominantIndeterminateFlag  false 

3   dominantRuleCollection  null 

4   constraint  PT 

5   For each Rule ri in [r1, r2,…, rn] in P, do 

6     ruleConstraint   constraint 

7     ruleConstraint  ruleConstraint  ruleReachability(P, ri) 

8    ruleConstraint  ruleConstraint   (rti   rci) ˅ Error(rbi) 

9    ruleConstraint  ruleConstraint  rulePropagation(P,ri,RTF) 

10    Q  Q U Z3-request(ruleConstraint) 

11      EndFor 

12      return Q 
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The input to the algorithm is policy P = < PT, RCA, [r1, r2,…, rn]> and output is set of 

generated access request Q. Initially we set Q to be empty (line 1). We set the 

dominantIndeterminateFlag to false and dominantRuleCollection to null to keep track of 

whether any dominant rule evaluated to indeterminate or not. If RCA is first-applicable, 

then any rule is dominant. If RCA is permit-overrides or deny-unless-permit, then the rules 

with permit effect will be the dominant rule. Similarly, rules with deny effect will be 

dominant in policy with deny-overrides or permit-unless-deny RCA. We then set the 

constraint expression from policy target if it is present, otherwise, the constraint is empty 

(line 4). The next step is to iterate over each rule in the policy (line 5) and construct 

sufficient condition constraint to kill the mutant. For each rule, the rule constraint is set to 

constraint expression (line 6) from policy target constraint in line 2. Then, for each rule in 

the policy, the rule constraint expression is concatenated with reachability constraint (line 

7). Once the reachability constraint is met, the next task is to concatenate the rule constraint 

with necessity constraint for the fault type (line 8) and then concatenate the propagation 

constraint (line 9). The constructed rule constraint is the constraint with sufficient condition 

to kill the RTF mutant which is supplied to constraint solver (line 10) to obtain the value 

for the test inputs. When all the rules are processed, the generated set of test input - Q is 

returned.  

4.6 FDC Constraint and Test Generation for RCT 

Algorithm 7: generateTestsForRCT(P) 

Input: Policy P= < PT, RCA, [r1, r2,…, rn]>  

Output: A set of access requests Q  

1 Q   є 
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2 constraint  PT 

3 For each Rule ri in [r1, r2,…, rn] in P, do 

4              ruleConstraint   є 

5   ruleConstraint  constraint  ruleReachability(P,ri) 

5  ruleConstraint  ruleConstraint  (rti  ˅ Error(rti))   rci 

6  ruleConstraint  ruleConstraint  rulePropagation(P, ri, RCT) 

7  Q  Q U Z3-request(ruleConstraint) 

8 endFor 

9 return Q 

  

The sufficient condition to kill the RCT mutants is same as that for CRE except for 

that condition of the rule under consideration should be N/A. 

4.7 FDC Constraint and Test Generation for RCF 

RCF and RTF have common sufficient condition for fault detection. Hence, Algorithm 

6 for RTF is enough, and we don’t need to consider RCF if RTF is in the fault model. 

4.8 FDC Constraint and Test Generation for ANF 

RCF and RTF have common sufficient condition for fault detection. Hence, Algorithm 

6 for CRE is enough and we don’t need to consider ANF if CRE is in the fault model. 

4.9 FDC Constraint and Test Generation for RNF  

RNF and RTF have similar sufficient condition to kill them. Hence, the constraint for 

RTF is enough and we don’t need to consider RNF if RTF is in the fault model. 

4.10 FDC Constraint and Test Generation for RER  

RER and RTF have similar sufficient condition to kill them. Hence, the constraint for 

RTF is enough and we don’t need to consider RER if RTF is in the fault model. 
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4.11 FDC Constraint and Test Generation for PTT  

Algorithm 10: generateTestsForPTT(P) 

Input: Policy P= < PT, RCA, [r1, r2, …, rn]>  

Output: A set of access requests Q  

1 Q   є 

2 constraint   PT  (rt1   rc1) 

3 Q  Q U Z3-request(constraint) 

4 Return Q 

The sufficient condition to kill PTT mutant is to make policy target evaluate to N/A 

and make any rule’s (say the first rule) target and condition evaluate to true. 

4.12 FDC Constraint and Test Generation for PTF  

Algorithm 11: generateTestsForPTF(P) 

Input: Policy P= < PT, RCA, [r1, r2, …, rn]>  

Output: A set of access requests Q  

1 Q   є 

2 constraint  PT  (rt1   rc1) 

3 Q  Q U Z3-request(constraint) 

4 Return Q 

 

The sufficient condition to kill PTF mutant is to make policy target evaluate to true 

and make any rule’s (say the first rule) target and condition evaluate to true.  

4.13 FDC Constraint and Test Generation for FPR 

Algorithm 8: generateTestsForFPR(P) 
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Input: Policy P= < PT, RCA, [r1, r2 ,…, rn]>  

Output: A set of access requests Q  

1 Q   є 

2 constraint  PT 

3 d  find the position of first Deny Rule 

4 p  find first Permit Rule after d 

5 if such p and d does not exist 

6   return 

7 constraint  rtd  rcd 

8 constraint  rtp  rcp 

9 if RCA = first-applicable 

10   For each rule ri in [r1, r2,…, rd-1] in P, do 

11     constraint  constraint   (rti   rci) 

12  Q  Q U Z3-request(constraint) 

13  return Q 

The FPR mutants behave similarly to the original policy if RCA is other than first-

applicable. Even for the first applicable, if there does not exist a pair of rules such that one 

is deny and other is permit, then the FPR mutant behaves the same as original policy. 

Hence, the sufficient condition to kill non-equivalent FPR mutant is to make target and 

condition of a pair of rules evaluate to true such that one of them is permit rule and the 

other is deny rule. 

4.14 FDC constraint and test generation for FDR 

Algorithm 9: generateTestsForFDR(P) 
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Input: Policy P= < PT, RCA, [r1, r2,…, rn]>  

Output: A set of access requests Q  

1 Q   є 

2 constraint  PT 

3 p  find the position of first permit Rule 

4 d  find first deny Rule after p 

5 if such p and d does not exist 

6   return 

7 constraint  rtd  rcd 

8 constraint  rtp  rcp 

9 if RCA = first-applicable 

10   For each rule ri in [r1, r2,…, rd-1] in P, do 

11     constraint  constraint   (rti   rci) 

12  Q  Q U Z3-request(constraint) 

13 return Q 

The FDR mutants behave similarly to the original policy if RCA is other than first-

applicable. Even for the first applicable, if there does not exist a pair of rules such that one 

is deny and other is permit, then the FDR mutant behaves the same as original policy. 

Hence, the sufficient condition to kill non-equivalent FDR mutant is to make target and 

condition of a pair of the rules evaluate to true such that one of them is permit rule and the 

other is deny rule. 

4.15 FDC Constraint and Test Generation for RPTE 

Algorithm 12: generateTestsForRPTE(P) 
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Input: Policy P= < PT, RCA, [r1, r2,…, rn]>  

Output: A set of access requests Q  

1 Q   є 

2 constraint  PT 

3 For each Rule ri in [r1, r2,…, rn] in P, do 

4             ruleConstraint   є 

5   ruleConstraint  constraint  ruleReachability(P,ri) 

6  ruleConstraint  ruleConstraint  ( rci ˅Error(rci)) 

7  ruleConstraint  ruleConstraint  rulePropagation(P,ri) 

8             For each AnyOfj in [AnyOfi1, AnyOfij ,…, AnyOfim] in rti, do 

9                             anyConstraint   ruleConstraint   AnyOfi1     AnyOfij   AnyOfin 

10                Q  Q U Z3-request(anyConstraint) 

11                     For each AllOfk in [AllOfij1, AllOfijk ,…, AllOfijl] in rti, do 

12                          allConstraint   ruleConstraint   AnyOfi1    (AllOfij1V AllOfijk   

                                                                                            ,…˅    AllOfijl)   AnyOfin 

13      Q  Q U Z3-request(anyConstraint) 

14 return Q 

 

If there are m AnyOf clauses, then there should be m+1 expression such that one makes 

all of them true and the rest makes each of them evaluate to false while the other evaluates 

to true. In addition, for each AnyOf clause, if there are n AllOf clauses, then there should 

be n+1 expression such that one makes all of them evaluate to false and the rest makes each 

of them evaluate to true while others evaluate to false.  
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4.16  FDC constraint and test generation for CRC 

Algorithm 13: generateTestsForCCA(P) 

Input: Policy P= < PT, RCA, [r1, r2,…, rn]>  

Output: A set of access requests Q  

1 Q   є 

2 Constraint1  PT 

3 Constraint2  PT 

4 p  find the position of permit Rule and deny Rule such that at least one of them  

evaluates to true and other evaluates to true or error 

5 d  find first deny Rule after p 

6 if such p and d does not exist 

7   go to step 11 

8 Constraint1  Constraint1  rtd  rcd 

9 Constraint1  Constraint1  Error(rtp  rcp) 

10 Q  Q U Z3-request(Constraint1) 

11 Constraint2  Constraint2  Error for all the rules [r1 … rn] 

12 Q  Q U Z3-request(Constraint2) 

13 Return Q 

The sufficient condition to kill CCA mutants is to make target and condition of a pair 

of the rules evaluate to true such that one of them is permit rule and other is deny rule. In 

addition, all the rules that can be made evaluated to an error should be evaluated to an error. 
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CHAPTER 5 

 

Quantitative Analysis 

This section presents our experiment that aims to evaluate the cost-effectiveness of the 

afore-mentioned testing methods by comparing them to SMT. As mutation score is 

commonly used as the main indicator of effectiveness for a testing method, we measure 

cost-effectiveness by comparing mutation score with test suite size i.e how many mutants 

are killed given the test suite size. Further, the test suite size reflects the average time of 

test execution. We will also discuss test generation time to reflect the run-time efficiency 

of testing methods.  

5.1 Experiment Setup 

The mutation-based test generation and all coverage-based test generation methods 

discussed in this work are implemented in open source tool - XPA (XACML Policy 

Analyzer) [15] which is based on Balana [13] - an open source implementation of XACML 

3.0. Our experiment was performed on a 64bit Ubuntu laptop with 8th Generation Intel® 

Core™ i7-8550U Processor (1.80GHz 8MB) and 16.0GB DDR4 2400MHz. The 

experiments use various XACML 3.0 policies with different levels of complexity as shown 

in Table 5.1. K-Market is the sample policy from the Balana [13]. Sample, Sample-fa, and 

Sample-dup policies are created by us for this research to cover the language feature of 

XACML policies not covered by other policies in the literature. All other policies are from 

the literature. iTrust-X and fedora-rule3-X are synthesized from iTrust and fedora policies 
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respectively to study behavior in larger sized policies. The number of the rules ranges from 

3 to 1,280 as depicted in Table 5.1 where ‘#’ represents ‘number of’ i.e. ‘#Rules’ means 

‘number of the rules’ and LOC represents the line of code (markup) in the corresponding 

policies. 

The experiment involves generating mutants of each policy by using the mutation 

operators in Table 3.1. Each mutation operator may generate several mutants for a given 

policy. For example, given a policy with n rules, CRE (Change Rule Effect) creates n 

mutants because it creates a mutant by changing the effect of each rule. The mutation 

operators in Table 3.1 is based on the operators in the mutant generator, XACMUT [4]. 

The next activity is to identify the number of equivalent mutants and non-equivalent 

mutants. As we applied strong mutation to generate SMT test suite, the number of mutants 

killed from the strong mutation-based test suite (SMT) are non-equivalent mutants while 

live mutants are equivalent mutants. Hence, we generate SMT test suite and run against the 

mutants to identify the equivalent and non-equivalent mutants. As a result, the analysis 

excludes mutants that are equivalent to their original policy. For example, the rule 

combining algorithms permit-overrides and deny-overrides make no difference with 

respect to a policy with permit-only (or deny-only) rules. Hence, a policy which only has 

permit rules and its RCA changed from permit-overrides to deny-overrides are equivalent. 

Our prior work on the formalization of semantic differences between combining algorithms 

[26] provides descriptions about the conditions under which two combining algorithms are 

equivalent. Table 5.1 lists the number of mutants for each subject policy. 

As a next step, we generate test suites for each of the coverage-based test generation 

methods for each of the subject policies and run that test suite against each policy and 
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record the actual response of each test. We know each recorded response for each request 

(test case) is the correct response from the policy for this test case. Hence, it can be used 

as the Oracle value of this test case when the mutants are tested later. Finally, we run the 

test suite of each test generation method against mutants. Since mutants represent the faults 

that are likely to occur in XACML policies, mutation score is considered the indicator of 

the fault-detection capability, as commonly used by the software testing community [16].  

Table 5.1: Policies used for the experiment 

No Subject Policy LOC #Rules #Equivalent 

Mutants 

#Non-

equivalent 

Mutants 

1 Conference [21] 228 15 1 91 

2 fedora-rule31  226 12 1 87 

3 K-Market-blue 

[13] 

84 4 1 27 

4 K-Market-sliver 

[13] 

58 3 1 21 

5 K-Market-gold 

[13] 

106 5 1 32 

6 Sample 152  6 1 55 

7 Sample-fa 114 4 0 42 

8 Sample-dup 80 4 1 33 

                                                 

1  http://www.fedora.info 
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9 fedora-rule3-2 588 32 1 207 

10 fedora-rule3-3 2748 212 1 927 

11 iTrust2 1282 64 4 450 

12 iTrust-5 [15] 6402 320 4 2242 

13 iTrust-10 [15] 12806 640 4 4482 

14 iTrust-20 [15] 25602 1280 4 8962 

 

The following section presents the results of the conducted experiment. 

5.2 Results 

5.2.1   Test Suite Size and Test Generation Time 

Table 5.2 presents the number of tests generated for each subject policy for each testing 

method. Typically, the test suite for NO-SMT has more tests. The test suite size of MC/DC 

and SMT are nearly the same however SMT test suite is not larger than MC/DC test suite 

for all the subject policies. The size of each RC test suite is the number of the rule in the 

policy and it is always the smallest. The difference in test suite size between NE-DC and 

DC as well as NE-MC/DC and MC/DC represents the error tests. Hence, there are only a 

few error tests. For fedora with 12 rules has six error tests, while that of iTrust3-5 has only 

one error tests for the policy with 320 rules. The reason is that most of the rules in the 

iTrustX policy are defined over the same set of attributes - when a test makes one rule 

evaluate to indeterminate, it will do the same for all other similar rules. As mentioned 

before, SMT is computationally costly because of the involved optimization. It took SMT 

                                                 

2  http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=start 
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36.02 hours (129655675 ms in Table 5.3) to complete the test generation for iTrust3-10. 

The estimated SMT test generation time for iTrust3-20 is nearly 10 days. As a result, we 

decided not to run SMT for iTrust-20. However, from NO-SMT, we know that for each 

mutant, there is at least one test that kills it. 



 

 

 

 

1
3
5
 

 

Table 5.2: Number of tests generated 

Subject Policy RC NE-DC DC NE-

MC/DC 

MC/DC SMT NO-

SMT 

coference3 15 15 16 24 25 25 78 

fedora-rule3 12 19 25 24 30 23 62 

kMarket-blue-policy 4 7 10 8 11 7 21 

kMarket-gold-policy 3 6 9 6 9 5 16 

kMarket-sliver-policy 5 9 13 9 13 8 23 

sample 6 13 19 15 21 16 51 

sample-fa 4 9 15 10 16 11 30 

sample-dup 4 7 10 9 12 8 23 

fedora-rule3-2 32 39 45 64 70 62 162 

fedora-rule3-3 212 219 225 244 250 242 702 

iTrust3 64 65 66 196 197 196 387 



 

 

 

 

1
3
6
 

iTrust3-5 320 321 322 982 983 982 1923 

iTrust3-10 640 641 642 1964 1965 1964 3843 

iTrust3-20 1280 1281 1282 3928 3929 - 7683 
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Table 5.3 shows the test generation time for each of the method for each of the subject 

policies. The RC takes minimal test generation time as it has lesser number of tests. The 

test generation time is roughly proportional to test suite size except for the SMT because of 

the involved optimization of a test suite. All the testing methods are scalable except for the 

SMT. As test generation time for iTrust3-10 is nearly one and half days, we decided not to 

run SMT for iTrust3-20 because approximated time is nearly 10 days and this shows that 

SMT is not scalable because of the involved mutation analysis for optimization of a test 

suite size. However, for a policy with roughly hundred or lesser rules, SMT test generation 

time is comparable to that of other testing methods.
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Table 5.3: Test generation time (in milliseconds) 

Subject Policy RC NE-DC DC NE-

MC/DC 

MC/DC SMT NO-SMT 

conference3 488 438 408 689 716 2847 2019 

fedora-rule3 328 548 686 652 536 2222 1628 

kMarket-blue-policy 96 176 252 210 307 467 519 

kMarket-gold-policy 71 154 221 150 221 343 385 

kMarket-sliver-policy 130 252 328 231 335 704 626 

sample 174 358 506 435 557 1835 1309 

sample-fa 101 241 569 276 488 862 763 

sample-dup 117 201 270 237 323 669 593 

fedora-rule3-2 847 1062 1290 1790 1935 14853 4534 

fedora-rule3-3 5368 7779 8120 9467 10304 930226 22625 

iTrust3 1644 1555 3511 5923 8349 171716 10363 

iTrust3-5 8711 8884 24415 49093 64749 15875846 48091 
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iTrust3-10 13890 19089 84304 146987 211230 129655675 176758 

iTrust3-20 45908 422653 562857 499790 696428 * 709927 
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The next section presents the mutation score and summarizes whether the mutants type 

(based on mutation operators) are killed or not by each testing methods. 

5.2.2 Fault Detection Capability 

Table 5.4 presents the mutation score for each testing method for each subject policy. 

The mutation score for SMT and NO-SMT are 100% for all the policies, so we did not 

include them in Table 5.4. It should be noted that we did not generate and run SMT test 

suite for iTrust3-20. However, from NO-SMT, we know that for each mutant, there is at 

least one test that kills it. So, it will be 100% as well. 



 

 

 

 

1
4
1
 

 

Table 5.4: Mutation Scores 

Subject Policy RC NE-DC DC NE-MC/DC MC/DC 

conference3 75.82 75.82 78.02 97.8 100 

fedora-rule3 64.37 85.06 85.06 88.51 88.51 

kMarket-blue-policy 81.48 96.3 96.3 100 100 

kMarket-gold-policy 80.95 95.24 95.24 95.24 95.24 

kMarket-sliver-policy 81.25 100 100 100 100 

sample 69.09 87.27 90.91 92.73 96.36 

sample-fa 66.67 85.71 90.48 92.86 97.62 

sample-dup 48.48 78.79 84.85 90.91 96.97 

fedora-rule3-2 36.71 55.07 55.07 56.52 56.52 

fedora-rule3-3 27.62 51.13 51.13 51.46 51.46 

iTrust3 42.67 58.22 58.22 100 100 

iTrust3-5 42.82 57.36 57.36 100 100 
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iTrust3-10 42.83 57.25 57.25 100 100 

iTrust3-20 42.84 57.19 57.19 100 100 
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Table 5.5 presents the type of mutants that could not be killed by each testing method. 

In Table 5.5, the results for three kMarket policies are combined into one. Further, iTrust3 

and fedora-rule3-2 can represent other policies in the group of iTrust-X and fedora-rule3-

X from Table 5.1, hence only iTrust3 and fedora-rule3-2 are included. The absence of 

mutation operator in Table 5.5 represents that all the mutants of the corresponding type are 

killed by that method for that policy or the mutation operator is not applicable to the policy. 

The mutation operator without asterisk implies all the mutants of the type are live. For 

example, RTT specifies, all the mutants of type RTT are not killed. The mutation operator 

with an asterisk means some are not killed while some are not. Single asterisk implies less 

than 50% of the type of mutant are not killed and double asterisk implies half or more 

percentage of mutants of the type are not killed. 
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Table 5.5: Live Mutants 

Subject 

Policy 

Testing Method 

RC NE-DC DC NE-

MC/DC 

MC-DC 

Sample  RTT ** 

RCT 

PTF 

RPTE ** 

CRC ** {FA, 

DUP, PUD} 

 

RTT ** 

 

 

RPTE ** 

RTT * 

 

 

RPTE ** 

RTT ** 

 

 

 

 

RTT * 

 

 

 

 

Sample-dup CRE* 

RTT 

RTF* 

RCT 

RER* 

RPTE** 

CRC 

CRE* 

  

RTF* 

RCT 

RER* 

RPTE** 

  

CRE* 

  

RTF* 

 

RER* 

RPTE** 

 

 

  

 

RCT 

 

RPTE* 

 

 

 

 

 

RPTE* 

Sample-fa RTT** 

RCT** 

PTT 

FDR 

RPTE** 

  

 

 

FDR 

RPTE** 

 

 

 

FDR 

RPTE** 

  

 

 

FDR 

 

 

 

 

FDR 
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CRC**{DO, 

ODO, PUD} 

CRC*{DO, 

ODO } 

 CRC*{D
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The mutation score increases for methods from left to right in Table 5.4 and live 

mutants type decreases as we go from left to right in Table 5.5.  The mutation scores ranged 

from 27% to 81% for the RC tests and Table 5.5 shows that it could not kill a majority of 

the mutants. The mutation scores for NE-DC, DC, MC/DC and NE-MC/DC ranged from 

51% to 100%. However, this does not mean that they have similar fault detection 

capability. It is clear from Table 5.4 that all the policies have greater (if not the same) 

MC/DC (or NE-MC/DC) mutation score than that from DC (or NE-DC). It is also supported 

from the result in Table 5.5 which implies that the difference between fault detection 

capability among MC/DC and DC is the ability of MC/DC to detect the RPTE mutant type.  

It is also noteworthy that error tests (from NE-DC and NE-MC/DC) do not always 

necessarily contribute to fault detection. However, they are crucial for detecting faults 

resulted from CRC mutation operator as well as RCT mutation operators. Hence, the error 

version of the testing method is recommended for higher fault detection capability. Further, 

if we do not consider fedora-rule3-2 policy, Table 5.4 shows that the mutation score of 

MC/DC is above 90% in most of the policies. Further, Table 5.2 shows that MC/DC and 

SMT have comparable tests size and Table 5.3 shows that test generation time of MC/DC 

is much less than SMT. These data not necessarily but may lead to infer that MC/DC is 

runtime efficient and cost-effective test suite for achieving above 90% mutation score and 

provide high-quality assurance of XACML policies. However, we know from the fault 

detection condition that MC/DC does not explicitly satisfy the propagation constraint for 

fault detection. As a result, if we increase the size of the policy where reachability and 

necessity constraint does not necessarily make the propagation constraint to be true like in 

fedora-rule3, the mutation score of MC/DC dropped from 88% to 51%.  
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Hence, though MC/DC is likely to achieve good mutation score in many policies, it 

cannot assure that it will always lead to the high assurance of the XACML policies because 

it explicitly satisfies only the reachability and necessity constraint. However, it should also 

be mentioned that MC/DC satisfies the reachability and necessity constraint of the majority 

of the faults that could be introduced by mutation operators in Table 3.1. Hence, we could 

qualify MC/DC as near to weak mutation-based test generation method but that is not the 

case with DC and RC. In fact, RC is far from satisfying necessity constraint for many of 

the faults in Table 3.1. 

5.2.3 Cost Effectiveness 

While mutation score is a good indicator of the fault detection capability of a testing 

method, it does not account for cost-effectiveness of the test suite i.e the number of mutants 

killing capability of each test in a test suite. We consider the average number of Mutants 

Killed Per Test (MKPT) as the indicator for cost-effectiveness.
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Table 5.6: MKPT Scores 

Subject RC NE-DC DC NE-

MC/DC 

MC/DC SMT NO-SMT 

conference3 4.6 4.6 4.44 3.71 3.64 3.64 1.17 

fedora-rule3 4.67 3.89 2.96 3.21 2.57 3.78 1.4 

kMarket-blue-

policy 

5.5 3.71 2.6 3.38 2.45 3.86 1.29 

kMarket-gold-

policy 

5.67 3.33 2.22 3.33 2.22 4.2 1.31 

kMarket-sliver-

policy 

5.2 3.56 2.46 3.56 2.46 4 1.39 

sample 6.33 3.69 2.63 3.4 2.52 3.44 1.08 

sample-fa 7 4 2.53 3.9 2.56 3.82 1.4 

sample-dup 4 3.71 2.8 3.33 2.67 4.12 1.43 

fedora-rule3-2 2.38 2.92 2.53 1.83 1.67 3.34 1.28 
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fedora-rule3-3 1.21 2.16 2.11 1.95 1.91 3.83 1.32 

iTrust3 3 4.03 3.97 2.3 2.28 2.3 1.16 

iTrust3-5 3 4.01 3.99 2.28 2.28 2.28 1.17 

iTrust3-10 3 4.03 3.996 2.282 2.28 2.28 1.16 

iTrust3-20 3 4.001 3.998 2.281 2.28 - 1.16 
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Table 5.6 shows MKPT scores for various testing methods discussed in this work. 

Further, it suggests that RC has good MKPT scores and in many policies, it even achieved 

the highest scores among other testing methods. However, it does not mean RC will have 

the best cost-effectiveness in all policies as it has lower MKPT scores in iTrust-X and 

fedora-rule3-X. NO-SMT, on the other hand, could achieve perfect mutation score but has 

lowest MKPT score in all the subject policies. DC (or NE-DC) has better MKPT than that 

of MC/DC (or NE-MC/DC). SMT and MC/DC have similar MKPT scores in many policies, 

however, SMT has either similar or better MKPT scores in all the subject policies than 

MC/DC. Hence, this shows that MC/DC is nearly as cost-effective as near-optimal test 

suite from SMT and so is the decision coverage. In fact, in some policies decision coverage 

(specifically NE-DC) has better MKPT score than SMT in many policies. However, they 

do not assure perfect mutation score in many policies and could not always provide high-

quality assurance of the XACML policies. 

5.3 Threats to Validity 

There are many threats to validity. First, XPA is based on the Balana [13] – OASIS 

implementation of XACML and hence our results depend on the proper implementation of 

Balana. While analyzing some of the results when executing policy against tests, we have 

found some inconsistencies between XACML specification and results from the Balana. 

Hence, the error in Balana implementation could propagate into the experimental results 

that we presented in this chapter. Second, the subject policies do not necessarily represent 

all possible real-world XACML policies. Some of them originate from real XACML 

systems, others are demonstrating examples (e.g., kMarket) or synthesized (e.g., iTrustX, 

fedora-rule3-X). We have developed some sample policies (e.g., sample, sample-fa) to 
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capture the features not covered by policies in the literature of XACML. However, the 

subject policies used in this research might still have not covered all language features of 

XACML. Third, there is the possibility of different implementations for the coverage 

criteria. Our result is based on the implementation of coverage-based test generation 

methods in XPA. While we believe the proposed test generation algorithms reflect the 

essential fault detection capabilities of the corresponding coverage criteria, different test 

generation algorithms may lead to slightly different mutation scores and MKPT scores. 

Fourth, all testing methods use Z3 as the constraint solver. Z3 is currently one of the most 

efficient constraint solvers available. As different constraint solvers may result in different 

attribute values for the same constraint, using another constraint solver in the 

implementation may produce slightly different test suites and, thus, lead to slightly 

different mutation scores. Fifth, although the 14 mutation operators have represented a 

great variety of possible faults in XACML3.0 policies, they do not necessarily cover all 

possible faults in real-world XACML3.0 policies. In addition, several mutation operators 

in the literature [7] are not yet implemented in this work, including RUF (RemoveUnique-

nessFunction), AUF (AddUniquenessFunction), CNOF (Change-NOF-Function), and CLF 

(ChangeLogicalFunction). Nevertheless, the formalization of the fault detection conditions 

of incorrect rule targets and conditions has provided a foundation for dealing with these 

types of mutants.  
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CHAPTER 6 

 

Conclusions 

6.1  Summary 

We have presented the approach to strong mutation testing of XACML3.0 policies and 

have formalized the strong fault detection conditions based on a comprehensive fault model 

of XACML 3.0 policies. On the one hand, these strong fault detection conditions have been 

exploited to generate near-optimal test suites of specific policies. On the other hand, the 

strong fault detection condition gave us insight into the fault detection capabilities of 

existing testing methods. It is clear from the fault detection condition that MC/DC is near 

to weak mutation-based test generation method because it satisfies the reachability and 

necessity constraint for most of the faults in the fault model. However, that is not the case 

with DC and RC. In fact, RC is far from satisfying necessity constraint for many of the 

faults. This suggests that though MC/DC is likely to achieve good mutation score in most 

of the policies, it still could not always assure high-quality of XACML policies as it does 

not explicitly satisfy the propagation constraint. 

Further, the generation of the near-optimal test suite has enabled us to perform 

quantitative evaluations on the cost-effectiveness of the testing methods of XACML 

policies. The results from the quantitative section suggest that MC/DC is nearly as cost-

effective as near-optimal test suite from SMT. SMT has perfect fault detection capability 

and good cost-effectiveness, however, it may be practically infeasible to apply for larger 
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policies with a larger number of the rules. The MC/DC including DC and RC is scalable 

and cost-effective as close to the optimal test suite, however, they could not always assure 

the high fault detection. Although MC/DC achieved good mutation score in most of the 

policies, it performed badly in some of the policies.  As a result, if perfect fault detection 

capability is required and test suite size is not of prime concern, then we can use the NO-

SMT test suite. Hence, it is the trade-off between fault detection capability, cost-

effectiveness and test generation time. 

The formulated fault detection conditions for fault model considered in this work is 

not limited to the existing mutation operators. They provide theoretical guidelines for 

developing new testing methods and dealing with faults created by new mutation operators. 

6.2 Future work 

In this work, we have determined the overall fault detection capability of RC, DC and 

MC/DC based on whether they satisfy the reachability and necessity constraints of all the 

mutation operators or not. However, this approach can be formally extended to 

qualitatively evaluate the fault detection capability of each of the testing method relating 

to fault type. The implication is that it neither needs to have a test suite nor the Oracle 

values. 

One of the other future works is to look at opportunities for further optimizing the 

mutation-based test suite. Another research direction is to look for the opportunity to 

optimize NO-SMT test suite without involving costly mutation analysis for the 

optimization.  

Finally, except the policies considered in this work, XPA would only be able to support 

the analysis of policies which have syntax like one in the policies used in this work. 
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However, XACML is a broad XML based specification which allows us to define various 

policies using various functions, syntax not involved in any of the policies in this work.  

As a result, extending the XPA to support various other functions and syntax in the policy 

specification to make it more robust XACML analyzer tool could be another work for the 

future.  
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