

STRONG MUTATION-BASED TEST GENERATION OF XACML POLICIES

by

 Roshan Shrestha

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

December 2018

© 2018

Roshan Shrestha

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Roshan Shresthat

Thesis Title: Strong Mutation-Based Test Generation of XACML Policies

Date of Final Oral Examination: 24 October 2018

The following individuals read and discussed the thesis submitted by student Roshan

Shrestha, and they evaluated the student’s presentation and response to questions during

the final oral examination. They found that the student passed the final oral examination.

Dianxiang Xu, Ph.D. Chair, Supervisory Committee

Edoardo Serra, Ph.D. Member, Supervisory Committee

Yantian Hou, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Dianxiang Xu, Ph.D., Chair of the

Supervisory Committee. The thesis was approved by the Graduate College.

iv

ACKNOWLEDGMENTS

I would like to thank Boise State University for giving me the opportunity to pursue

graduate study without which I would not have come this far. I would like to express the

highest gratitude to the Computer Science Department of Boise State University for always

supporting me to achieve academic excellence.

I am grateful and have great appreciation to Dr. Dianxiang Xu for including me in his

research group. I highly admire the learning opportunity and environment he provided to

me. His ideas and suggestions were crucial for me to achieve my goals. His achievements,

his dedication and his passion for the research in Computer Security will always be a

continuous source of inspiration for the rest of my life.

I am also very grateful to Dr. Edoardo Serra and Dr. Yantian Hou for being on my

thesis committee and providing valuable feedback on my work.

Finally, I am grateful to my parents and my sister for always supporting me and

encouraging me to achieve my goals.

v

ABSTRACT

There exist various testing methods for XACML policies which vary in their overall

fault detection ability and none of them can detect all the (killable) injected faults except

for the simple policies. Further, it is unclear that what is essential for the fault detection of

XACML policies. To address these issues, we formalized the fault detection conditions in

the well-studied fault model of XACML policies so that it becomes clear what is essential

for the fault detection. We formalized fault detection conditions in the form of reachability,

necessity and propagation constraint. We, then, exploit these constraints to generate a

mutation-based test suite with the goal to achieve perfect mutation score. Additionally, we

have empirically evaluated the cost-effectiveness of various coverage-based testing

methods against the near-optimal test suite from strong mutation-based test generation

(SMT). Rule coverage has good cost-effectiveness such that it achieved better MKPT

scores than SMT in many of the policies; however, it has poor fault detection capability.

Decision coverage is nearly as cost-effective as SMT in most of the policies and it achieves

better mutation score than rule coverage but could not achieve good mutation score in many

of the policies. MC/DC have slightly less MKPT scores than SMT; nonetheless, among

coverage-based testing methods, MC/DC tests have the highest mutation score and hence

could reveal most of the faults. MC/DC even achieved a perfect mutation score for some

policies; however, it still could not maintain good mutation score in all the policies.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iv

ABSTRACT ...v

TABLE OF CONTENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES ...x

LIST OF ABBREVIATIONS .. xi

CHAPTER 1 ..1

Introduction ..1

1.1 Background ...1

1.2 Thesis Statement ...7

1.3 Method ..9

1.4 Outline ...14

CHAPTER 2 ..15

Background and Related Work ..15

2.1 Mutation analysis and mutation-based test generation15

2.2 Introduction to XACML..17

CHAPTER 3 ..31

Fault Detection Condition ..31

3.1 FDC for Change Rule Effect (CRE) ...35

vii

3.2 FDC for Rule Target True (RTT) ..48

3.3 FDC for Rule Target False (RTF) ...59

3.4 FDC for Rule Condition True (RCT) ..65

3.5 FDC for Rule Condition False (RCF) ...72

3.6 FDC for Add Not Function (ANF) ..78

3.7 FDC for Remove Not Function (RNF) ...82

3.8 FDC for Remove a Rule (RER) ..83

3.9 FDC for Policy Target True (PTT) ...89

3.10 FDC for Policy Target False (PTF) ...91

3.11 FDC for First Permit Rule (FPR) ..93

3.12 FDC for First Deny Rule (FDR) ..94

3.13 FDC for Remove Parallel Target Element (RPTE)94

3.14 FDC for Change Rule Combining Algorithm (CRC)100

CHAPTER 4 ..109

Mutation-Based Test Generation ...109

4.1 Strong Mutation-Based Test Generation ...110

4.2 Return Constraint ..117

4.3 FDC Constraint for Propagation ..117

4.4 FDC Constraint and Tests Generation for RTT121

4.5 FDC constraint and tests generation for RTF..................................122

4.6 FDC Constraint and Test Generation for RCT................................123

4.7 FDC Constraint and Test Generation for RCF124

4.8 FDC Constraint and Test Generation for ANF124

viii

4.9 FDC Constraint and Test Generation for RNF................................124

4.10 FDC Constraint and Test Generation for RER..............................124

4.11 FDC Constraint and Test Generation for PTT125

4.12 FDC Constraint and Test Generation for PTF125

4.13 FDC Constraint and Test Generation for FPR125

4.14 FDC constraint and test generation for FDR126

4.15 FDC Constraint and Test Generation for RPTE............................127

4.16 FDC constraint and test generation for CRC129

CHAPTER 5 ..130

Quantitative Analysis ...130

5.1 Experiment Setup ..130

5.2 Results ...133

5.3 Threats to Validity ...150

CHAPTER 6 ..152

Conclusions ..152

6.1 Summary ..152

6.2 Future work ...153

REFERENCES ..155

ix

LIST OF TABLES

Table 3.1: Fault Model ... 31

Table 3.2: A Faulty Policy with an Incorrect Rule Effect.. 36

Table 3.3: Possible Evaluations Of Other Rules when Rbi Evaluates to True 39

Table 3.4: Possible Evaluations of Other Rules when Rbi Evaluates to Error 41

Table 3.5: Possible Evaluations of Other Rules When Rti Evaluates to N/A and Ri Is

Deny Rule in P .. 53

Table 3.6. Possible Evaluations of Other Rules When Rti Evaluates to N/A And Ri is

Permit Rule in P .. 54

Table 3.7: Possible Evaluations of Other Rules When Rti Evaluates to Error And Ri

is Deny Rule in P .. 55

Table 3.8. Possible Evaluations of Other Rules when Rti Evaluates to Error and Ri is

Permit Rule in P .. 56

Table 5.1: Policies used for the experiment ... 132

Table 5.2: Number of tests generated .. 135

Table 5.3: Test generation time (in milliseconds) .. 138

Table 5.4: Mutation Scores .. 141

Table 5.5: Live Mutants ... 144

Table 5.6: MKPT Scores .. 148

x

LIST OF FIGURES

Figure 1.1: ABAC Concept [1] .. 3

Figure 1.2: Data-flow in ABAC [2] ... 5

Figure 2.1: XACML policy language model [2] .. 18

Figure 2.2. A sample XACML policy [13].. 22

xi

LIST OF ABBREVIATIONS

XACML - eXtensible Access Control Markup Language

AC - Access Control

ABAC - Attribute-based access control

RBAC - Role-based access control

RCA - Rule Combining Algorithm

PCA - Policy Combining Algorithm

MKPT - Mutants killed per unit test

PT - Policy Target

PST - Policy set Target

PO - Permit-overrides

DO - Deny-overrides

PUD - permit-unless-deny

DUP - deny-unless-permit

FA - first-applicable

OPO - Ordered permit-overrides

ODO - Ordered deny-overrides

RC - Rule Coverage

NE-DC - Non-error Decision Coverage

DC - Decision Coverage

MC/DC - Modified Condition/Decision Coverage

NE-MC/DC - Nor-error Modified Condition/Decision Coverage

xii

FDC - Fault detection condition

PEP - Policy Enforcement Point

PDP - Policy Decision Point

PAP - Policy Administratio Point

PIP - Policy Information Point

I(D) - Indeterminate Deny

I(P) - Indeterminate Permit

I(DP) - Indeterminate Deny/Permit

SMT - Strong mutation test generation

NO-SMT - Non-optimized Strong mutation test generation

CRE - Change Rule Effect

RTT - Rule Target True

RTF - Rule Target False

RCT - Rule Condition True

RCF - Rule Condition False

ANF - Add Not Function

RNF - Remove Not Function

RER - Remove a rule

PTT - Policy Target True

PTF - Policy Target False

FPR - First Permit Rule

FDR - First Deny Rule

RPTE - Remove Parallel Target Element

xiii

CRC - Change Rule Combining Algorithm

1

CHAPTER 1

Introduction

1.1 Background

Access Control (AC) mechanism is a fundamental security mechanism that serves

to limit the access to a system with virtual or physical resources (objects) based on subject

requesting the access. In AC models like IBAC (Identity Based Access Control) or RBAC

(Role-Based Access Control), the solution is based primarily on the identity of a subject

where access to an object will be individually granted to a locally identified subject or

locally defined roles that the subject is a member of. The subject qualifiers, such as identity

and roles, are often insufficient in the expression of real-world AC needs because real-

world AC requirements often need to deal with environmental conditions. However,

traditional AC models like RBAC cannot incorporate factors pertaining to environmental

conditions effectively. Environmental conditions include operational or situational context

which are detectable environmental characteristics in which an access request is made.

Environmental characteristics may include the current time, day of the week, a location of a

user, or the current threat level which are independent of subject or object [1].

Attribute-Based Access Control (ABAC) has emerged as a new generation of access

control methods for tackling the afore-mentioned issues. ABAC avoids the need for

capabilities (operation/object pairs) to be directly assigned to a subject (requesters) or to

their roles or groups before the request is made. The ABAC engine can make an authorization

2

decision when a subject requests access based on the assigned attributes of the requester, the

assigned attributes of the object, environmental conditions, and a set of policies that are

specified in terms of those attributes and conditions. This arrangement enables policies to

be created and managed without direct reference to potentially numerous users and objects.

Further, users and objects can be provisioned without reference to a policy [1].

ABAC allows us to specify fine-grained access control by combining various

attributes of authorization elements into access control decisions. The attributes are

predefined characteristics of subjects (e.g., job title and age), resources (e.g., data,

programs, and networks), actions, and environments (e.g., current time and IP address). In

ABAC, the subject presents a request to access the resource (object) [1]. The ABAC

mechanism, then, evaluates policies, subject attributes, object attributes and

environmental conditions to make the access control decision for the request. If authorized,

the subject is given access to the resource. This is the core concept of ABAC which is

illustrated in Figure 1.1.

3

Figure 1.1: ABAC Concept [1]

XACML is an OASIS standard for ABAC policy specification. It provides both a policy

language and an access control decision request/response language (both written in XML).

The policy language is used to describe general access control requirements, and has

standard extension points for defining new functions, data types, combining logic, etc. The

request/response language is for defining a query to ask whether a given action should be

allowed or not and interpreting the result. The response consists of a decision about whether

the request should be permitted or not. The possible values in response are Permit, Deny,

Indeterminate (an error occurred, or some required value was missing, so a decision cannot

be made) or Non-applicable (the request can’t be answered by this service) [2].

The typical setup in an ABAC system is that someone (subject) wants to take some action

on a resource (object). A subject will make a request to the system which is intercepted by a

4

Policy Enforcement Point (PEP) which is responsible for protecting the resources (like a

filesystem or a web server). Once PEP receives a request, it will send the request to a

Policy Decision Point (PDP) which will determine policies that are applicable to the

request and determines whether access should be granted or not. To make an access

decision, PDP needs to evaluate certain attributes for which it makes a query to the Policy

Information Point (PIP) which is responsible for resolving the attribute values required to

make access decisions. Once the PDP gets the required attributes, it makes access decisions

from the applicable policies. The response (decision) is then returned to the PEP which

will enforce the access decision [2]. Figure 1.2 depicts the data flow in an ABAC system.

It also consists of a Policy Administration Point (PAP) which is responsible for management

and administration of policies themselves.

5

Figure 1.2: Data-flow in ABAC [2]

XACML policies may have various faults due to the misunderstanding of access control

requirements, the complexity of access control language, and coding errors. While ABAC

is more expressive than traditional AC methods such as RBAC, however, it is complex,

and its complexity increases the likelihood of the existence of faults resulting in

vulnerabilities as well as the level of difficulty in revealing these vulnerabilities. Research

has shown that XACML policies are subject to a variety of faults, such as incorrect rule

targets, incorrect rule conditions, incorrect rule effects, incorrect targets of policies and

policy sets, and incorrect uses of the rules or policy combining algorithms [3, 4].

6

A major means for finding faults in XACML policy is to execute an access control

system with a test suite (a set of test cases). A test case includes test input (access request)

and corresponding test Oracle (expected response). A test fails when the system’s actual

response to the request is different from its expected response. Such failure often indicates

the existence of a fault that may lead to unauthorized access or denial of service.

Current researches on testing XACML policies have commonly used policy mutation

analysis to evaluate the fault detection ability of testing methods. It involves creating

mutants of the policy under test using various mutation operators for a fault model (a set

of the fault types). Each mutant is a variation of the given policy with an injected fault,

which represents an error that a policy writer might make. A mutant is said to be killed if

it fails one or more tests. The fault detection ability of the testing method is indicated by a

mutation score which is the ratio between the number of mutants killed by the test suite

and the total number of non-equivalent mutants.

Existing testing methods [5–12] vary in their overall fault detection ability, however,

none of them can kill all the injected faults except for simple policies. The high-end ratios

were usually obtained for simple policies and does not achieve such high-end ratios in

complex policies. As a result, if these testing methods are applied in testing real-world access

control systems with complex policy, it may not reveal many faults. As a result, it may leave

significant vulnerabilities in the deployed system. In short, the existing approaches are

inadequate for the high assurance of XACML-based access control. Moreover, it remains

unclear what is essential to the fault detection given the fault and cost-effectiveness of

testing various XACML testing methods.

7

To overcome afore-mentioned issues, we present a formalization of the fault detection

conditions for illustrating what is essential for the fault detection of XACML policies in

well-studied fault models [4,14,15] of XACML policies. The formalized fault detection

condition is then used for formulating strong mutation-based test generation with the goal

of achieving perfect mutation score. Finally, we have done the empirical study evaluating

test suites from various coverage-based testing methods along with the test suites from strong

mutation-based testing methods. The empirical study involves mutation analysis of various

policies with different levels of complexity to identify fault detection capability and cost-

effectiveness of each testing method.

1.2 Thesis Statement

The objective of this thesis is threefold. First, we formalize the fault detection

conditions for faults in well-studied fault models of XACML policies. The goal is to make

clear (formal) that what is essential for the fault detection given the fault. The fault

detection condition of a given fault specifies the reachability, necessity, and propagation

constraints that a test must satisfy in the order to reveal the fault. Although the notions of

reachability, necessity, and propagation (a.k.a. sufficiency) constraints originate from

mutation testing or constraint-based software testing [28,30], there is a lack of formal

treatment of these constraints. In particular, the problem with propagation constraints of

software is known to be intractable [29,30] because of the explosion of program execution

paths. In this paper, the unique features of XACML make it feasible to formally represent

the reachability, necessity, and propagation constraints of access control policies in three-

valued logic.

8

Second, we formulate strong mutation-based test generation by exploiting the

formalized fault detection condition to produce near-optimal test suites for XACML

policies. A test suite for a given policy is said to be optimal if it contains the smallest

number of tests which can achieve 100% mutation score. This paper considers near-

optimality rather than strict optimality because constraints in XACML involve various data

types, functions, and first-order predicates and solving the fault detection condition boils

down to the constraint satisfaction problem, which is known to be undecidable.

Nevertheless, due to the integration of all reachability, necessity, and propagation

constraints for strong mutation testing, our approach is actually able to automatically

generate the near-optimal test suites for all the XACML3.0 policies in the most recent

literature [27]. This distinguishes our work from the existing mutation-based test

generators that only deal with reachability and necessity constraints, a.k.a. weak mutation

testing [20]. Generally, tests generated from weak mutation cannot achieve 100% mutation

score [28, 31]. Further, SMT (strong mutation-based test generation) requires larger test

generation time than all the testing methods discussed in this work. The objective of the

SMT is to evaluate the cost-effectiveness and is not feasible for a policy with the larger

number of the rules. Hence, we also presented NO-SMT (non-optimized strong mutation-

based test generation) whose test generation time is greater than MC/DC but still

comparable to it and is feasible to apply for larger policies.

Third, we present the quantitative evaluations of several test generation methods

comparing against a near-optimal test suite (from SMT) of subject policies to establish

cost-effectiveness and fault detection capability. The main testing methods for XACML

9

3.0 policies include rule coverage-based test generation, two forms of test generation with

decision coverage, and two forms of MC/DC test generation [27].

1.3 Method

A fault in a policy is an error or flaw that causes it to produce an incorrect result. A

fault may result in a different output than it is supposed to produce. We can exploit this

difference in result between faulty policy and correct policy to reveal a fault. The idea is to

record the output of the policy for some input when we know that policy is correct. Later,

when we need to determine there exists fault or not, we supply those inputs to the suspect

policy and if the result is different than the previously recorded result, we could conclude

that there exists a fault. A fault policy, however, does not necessarily produce a different

result than the correct policy for all possible inputs. The test inputs must satisfy certain

constraint to produce a different result than from the correct policy and hence reveal the

fault. Such constraints are referred to as fault detection conditions.

1.3.1 Fault Detection Condition (FDC)

The fault detection condition of a given fault specifies the constraints (or condition)

that a test must satisfy to reveal the fault. A test input must satisfy the reachability, necessity

and propagation condition to reveal the fault [18]. This is because to reveal the fault in a

policy, the test must reach the faulty policy element which is termed as reachability

condition. Once it is reached, the test must evaluate the faulty element to produce an

incorrect intermediate result which is different than that from its correct counterpart which

is referred to as necessity condition. If a test does not meet the reachability condition and/or

necessity condition, the correct policy and faulty policy will behave the same and we do

not have a means for detecting the fault. Once the incorrect intermediate result is produced,

10

it should play a role to produce a different result in the faulty policy than to the correct

policy which is referred to as propagation condition. Hence, propagation condition is also

essential for fault detection because reachability and necessity condition may only produce

the incorrect intermediate result which may not be visible to the final access control

decision if propagation condition is not met in which case we could not reveal the fault.

Hence, we define fault detection condition with the following three constraints:

a) Reachability(R) constraint: the test must reach the faulty policy element (e.g., rule

target, rule condition, rule effect, policy target, and combining algorithm).

b) Necessity(N) constraint: the test must make the faulty element evaluate to an incorrect

intermediate result which is different from the evaluation result that should be produced by

its correct counterpart.

c) Propagation(P) constraint: the test must make the faulty policy produce an incorrect

response which is different from the expected response that should be produced by the

correct policy.

We then exploit FDC to formulate strong mutation-based test generation.

1.3.2 Strong Mutation-based Test Generation with Fault Detection Conditions

Strong mutation-based test generation involves generating test input that satisfies the

three constraints of the fault detection conditions - reachability, necessity and

sufficiency/propagation for each fault type. If we use only reachability and necessity

constraint to generate test suites, then it is called weak mutation-based test generation and

if we use all three constraints, then it is referred to as a strong mutation. Strong mutation

assures fault detection while weak mutation could not. However, incorporating propagation

constraint is costly and requires a lot of effort that becomes infeasible to apply strong

11

mutation [20]. As a result, weak mutation is used in many cases, however, the features of

XACML (being the domain specific language) made it feasible to apply strong mutation.

In fault detection conditions, we specify all possible mutually exclusive constraints for

reachability, necessity and propagation but for mutation-based test generation, we need not

require generating test cases to satisfy all possible cases. For example, if reachability

constraint is “policy target evaluates to true” or “policy target evaluates to an error”, we

may just use “policy target evaluates to true” for fault detection and avoid “policy target

evaluates to an error” to avoid redundant tests and for simplicity. Hence, we identify just

sufficient mutually exclusive conditions from each of the reachability, necessity and

propagation constraints for the fault to be detected. The process of identifying sufficient

constraints to detect a fault involves picking one of the mutually exclusive constraints from

the reachability constraint and concatenating the reachability constraint with corresponding

mutually exclusive necessity constraints and propagation constraints. For example, if the

reachability constraint has two mutually exclusive conditions which are “policy target

evaluate to true” or “policy target evaluate to an error”, we can pick “policy target evaluates

to true” as the reachability constraint. Further, the chosen reachability constraint may have

two mutually exclusive necessity constraints as “rule target evaluates to true” or “rule

target evaluates to an error”. Hence, we concatenate one of the mutually exclusive necessity

constraints, say “rule evaluates to true”. Finally, we concatenate one of the mutually

exclusive propagation constraints corresponding to the chosen necessity constraint, say it

is “all rules with deny effect except the first rule should not evaluate to true”. Hence, the

sufficient constraint to identify the fault is “policy target evaluates to true rule target

should evaluate to true all deny rules except the first rule should not evaluate to true”.

12

The test suite generated in this way is called a mutation-based test suite. The resulting

test suite may have many redundant test cases which will only kill those mutants which

will be killed by other test cases. In other words, redundant test cases do not kill unique

mutants that are not killed by any other test cases. Hence, such redundant test cases do not

contribute to fault detection capability and result in poor cost-effectiveness of a test suite.

Since our goal is to generate a near-optimal test suite, we need to optimize the test suite.

Let, Mi represents the set of mutants killed by an arbitrary test case ti. By near-optimal, we

mean, if T = {t1, t2, ..., tn} be a near-optimal test suite, then for any arbitrary i and j, such

that i != j, Mi – Mj != empty as well as Mj – Mi != empty i.e each test in a test suite kills at

least one mutant not killed by any other test cases. The reason for generating a near-optimal

test suite is that it can be used for evaluating the cost-effectiveness of a test suite from other

testing methods. Hence, we have applied the optimization to find the near-optimal test

suite.

Once we have the near-optimal test cases, we need Oracle value (expected response).

Since we have the original policy which we assume to be correct, we run generated test

inputs on original policy and record its value as Oracle values for a test suite. The optimized

version of strong mutation-based test generation is named as SMT. The optimization

involved in SMT is a costly operation making it infeasible to apply for large policies. We

also formulate strong mutation-based test suite without optimization referred to as NO-

SMT which has less cost-effectiveness as that of SMT but achieves perfect mutation score.

13

1.3.3 Quantitative Analysis

Finally, we do quantitative analysis using metrics like mutation score and mutants

killed per test (MKPT) to determine the cost-effectiveness of major testing methods of

XACML (such as rule coverage, decision coverage, non-error decision coverage, MC/DC

coverage and non-error MC/DC coverage). Mutation score is the percentage of mutants

killed against the number of non-equivalent mutants. It indicates the fault detection

capability of a test method. MKPT is the average number of mutants killed by a test in a

test suite. An optimal test suite will have the highest MKPT score. As a result, we can

evaluate the cost-effectiveness of a testing method by comparing the MKPT score of the

test suite from the method under consideration with an optimal test suite. However, finding

an optimal test suite is an undecidable problem and hence, we used the SMT with the

approximation method to optimize the test suite to find near-optimal test suite. The goal is

to compare the MKPT score of a near-optimal test suite with the test suite from the current

method and establish the cost-effectiveness of the testing method.

The rule coverage is the coverage criteria which aims to evaluate the effect of each

rule in the policy. The decision coverage is the coverage criteria which aims to evaluate

each decision point (policy set target, policy target, rule target and rule condition) to three

possible evaluations true, Non-applicable (N/A) and error. Non-error decision coverage is

the same as decision coverage except that it does not consider the error in evaluation of

decision points i.e it aims to evaluate each decision point to only true and N/A [27].

Consider, an expression “resource-id=Liquor ˅ resource-id= Medicine” which is

composed of a disjunction of two constraints “resource-id=Liquor” and “resource-id=

Medicine”. A coverage criterion which satisfies decision coverage and in addition requires

14

that every condition in a decision point has taken on all possible outcomes at least once

and each condition has been shown to independently affect the decision’s outcome is

referred to as MC/DC coverage criteria. For example, MC/DC of a conjunctive expression

with n conditions (e.g., c1 … cn) requires n+1 tests: one test that evaluates all conditions

to true and n tests that evaluate one condition to false and other conditions evaluate to true.

MC/DC of a disjunctive expression with n conditions (e.g., c1 ˅ … ˅ cn) requires n+1 tests:

one test that evaluates all conditions to false and n tests that evaluate one condition to true

and other conditions evaluate to false [27].

1.4 Outline

The remainder of this document is organized as follows. Chapter 2 presents the

background and summarizes related work on the research topic. Chapter 3 specifies the

Fault Detection Condition (FDC) for the fault model. Chapter 4 presents the mutation-

based test generation, Chapter 5 specifies the quantitative evaluation, and Chapter 6

concludes this work.

15

CHAPTER 2

Background and Related Work

2.1 Mutation analysis and mutation-based test generation

Mutation analysis is a fault-based testing technique which provides a testing criterion

that can be used to measure the effectiveness of a test set. The general principle of Mutation

analysis is to produce mutants of the original source/specification by injecting the mistakes

that programmers/users might make. Such faulty programs/specification resulted after

deliberately seeding faults into the original source are called mutants. The statement in

which mutation takes place is called a mutation point and the transformation rules used to

produce such fault and hence mutants are called mutation operators. The resulting faulty

policies (mutants) which exhibit the same behavior as the original ones are known as

equivalent mutants and those which exhibit different behavior than that of the original ones

are called nonequivalent mutants [19].

Mutation operators are defined with respect to a fault model, which is a collection of

the fault types in the programming language. The main hypotheses of mutation testing [19,

32] include: (a) the mutants are based on actual fault models and are representative of real

faults, (b) developers produce programs (policies) that are close to being correct, (c) tests

sufficient to detect simple faults (i.e., in mutants) are also capable of detecting complex

faults. Experiments have shown that mutants are indeed similar to real faults for the

purpose of evaluating testing techniques [16, 33]. To assess the quality of a test set, the

16

generated mutants are run against the test set. If the result from a mutant is different from

the original one for any test cases in the input test set, we say that the mutant failed the

test. A mutant is said to be killed if it fails one or more tests. One outcome of the mutation

testing process is the mutation score – mutant killing ratio. Mutant-killing ratio is the ratio

between the number of mutants killed by the test suite against the total number of non-

equivalent mutants [3].

Mutation-based test generation derives a test from one or more mutants of a given

program so that the mutant and its original program produce a different execution result.

Such a test needs to meet the following constraints: (a) Reachability constraint: the test

must reach the mutation point, i.e., trigger the execution of the mutated code, (b) Necessity

constraint: the test must make the mutated code evaluate to an intermediate result that is

different from that of the original program, and (c) Propagation (a.k.a. sufficiency)

constraint: the test must make the intermediate result of the mutated code propagate to a

final state that is different from the final state of the original program. We refer to the

collection of reachability, necessity, and propagation constraints as the fault detection

condition. The existing techniques primarily follow the concept of weak mutation testing

[20] that uses the reachability and necessity constraints to generate test inputs [31]. The

main reason is that it has been shown to be intractable to solve the propagation constraint

[28]. This paper aims at strong mutation testing of XACML policies that deal with all

reachability, necessity, and propagation constraints. As a domain-specific language,

XACML has a unique structure that makes it feasible to tackle propagation constraints.

The existing work on mutation testing of XACML policies focuses on mutation tools and

17

evaluation of testing methods with policy mutants. In comparison, this paper focuses on

the formalization of the fault detection conditions and mutation-based test generation.

2.2 Introduction to XACML

XACML is a general-purpose access control policy language. The root of an XACML

policy document ℙ is a policy element or a policy set element. A policy set element contains

other child policy elements or policy set elements such that each of which may evaluate

to different access control decisions. A policy element contains a list of the rule elements

each of which may evaluate to different access control decisions. And, there is a mechanism

to resolve decisions from multiple units of the rules within a policy or multiple units of

policies or policy sets within a policy set known as combining algorithms. The combining

algorithm which reconciles decisions from a list of the rules is referred to as rule combining

algorithm. Similarly, the combining algorithm which reconciles decisions from policies or

policy sets is referred to as policy combining algorithm. A policy set, policy or rule element

contains a target element that specifies the set of requests to which it applies. Further, a rule

may consist of another Boolean function known as condition element which needs to be

satisfied for a rule to be applied. Figure 2.1 depicts the XACML policy language model.

18

Figure 2.1: XACML policy language model [2]

As shown in Figure 2.1, the target of a rule, policy, or policy set is a conjunctive

sequence of AnyOf clauses. Each AnyOf clause is a disjunctive sequence of AllOf clauses,

and each AllOf clause is a conjunctive sequence of match predicates. A match element

matches and compares attributes in a request context with the embedded attribute values.

Logical expressions for match predicates and rule conditions are usually defined on four

categories of attributes: subject, resource, action, and environment. They can use a great

variety of predefined functions and data types. A rule also has an effect element which will

be either permit or deny corresponding to the access decision of the rule.

Formally, a policy set element PS is a quintuple < PST, PCA, [P1, P2 , …, Pm], A, O>,

where PST is the policy set target, PCA is the policy combining algorithm, and [P1, P2,…,

Pm] is the list of policies or policy sets in the policy set, A is a set of advice, and O is a set

of Obligation. Each policy Pi is a quintuple <PTi, RCAi, [ri1, ri2 , …, rin], Ai, Oi> , where

PTi is the policy target, RCAi is the rule combining algorithm, and [ri1, ri2 ,…, rin] is the list

19

of the rules in the policy, Ai is a set of advice, and Oi is a set of obligation. Each rule Rj is

a triple < rtj, rcj, rej >, where rtj is the rule target, rcj is the rule condition, and rej ∈ {permit,

deny} is the rule effect. < rtj, rcj, permit> is called a permit rule, whereas < rtj, rcj, deny>

is a deny rule. If both rtj and rcj are omitted (always true), then the rule < _, _, rej > is a

default rule. More specifically, < _, _, deny> is a default deny rule, whereas < _, _, permit>

is a default permit rule.

To access the resource, a subject presents an access request to the system. An access

request for an ABAC authorization system consists of a set of attributes. For an access

request q, a policy or policy set responds with an access decision, such as permit or deny.

Given an access request q, PS is evaluated to produce a response (i.e., access decision)

denoted as d(PS, q). A policy set target PST is first evaluated according to the attribute

values in q. If the result of the evaluation is false, then d(PS, q) = N/A otherwise policies

P1, P2,…, and Pm will be evaluated if PST is true or evaluates to an error. d(PS, q) depends

on policy combining algorithm PCA and the decisions of individual policies with respect

to q (denoted as d(Pi, q)). Similarly, for an individual policy Pi = <PTi, RCAi, [r1, r2, …,

rn] >, policy target PTi is evaluated according to the attribute values in q. If the evaluation

result is false, then d(Pi, q)= N/A, otherwise, rules r1, r2,…, and rn will be evaluated. d(Pi,

q) depends on rule combining algorithm RCAi and the decisions of individual rules.

Decision of the rule rj = < rtj, rcj, rej > with respect to q, denoted as d(rj, q), is defined as

follows:

i) Permit: access is granted when rej = permit and rtj and rcj is true with respect to q.

ii) Deny: access is denied when rej = deny, and rtj and rcj is true with respect to q.

20

iii) Non-applicable, or simply N/A: q is not applicable, i.e., rtj and/or rcj is false with

respect to q.

iv) IndeterminateD or simply I(D): An error occurred when rtj or rcj was evaluated

and rej = Deny. The decision could have evaluated to Deny if no error had occurred. A

syntactically valid access request may cause the occurrence of a runtime error for different

reasons, such as missing an attribute value, mismatch of an attribute type, and an exception

of expression and function evaluation.

v) IndeterminateP or simply I(P): An error occurred when rtj or rcj was evaluated and

rej = Permit. The decision could have evaluated to Permit if no error had occurred.

A rule may have an empty target as well as empty conditions referred to as a default

rule. For a default rule rj= < _, _, rej >, any access request q is d(rj, q) = rej.

The root element of a general XACML policy document ℙ could be either a policy

element or a policy sets element. If the root element is a policy set element, then policy

combining algorithms for the root policy set has nested rule combining algorithms and/or

policy combining algorithms inside it. Since we need to deal with five rule combining

algorithms in our work and if we consider policy sets we need to consider six policy

combining algorithms, such nesting would create lots of combinations of nested combining

algorithms. As a result, for simplicity, further, in this work, we would only consider

XACML policy document ℙ which has a policy element as a root of the XACML document

so that we don’t need to deal with nested rule and policy combining algorithms. With

similar reasoning, we can also deal with policy sets and hence policy combining algorithms

but for simplicity, we only consider policy in this work. Further, Advice and Obligation

plays no role in our work, so we omit them while representing policy elements further in

21

this work. Hence, for simplicity, we represent XACML policy document ℙ as P = <PT,

RCA, [r1, r2, …, rn]> where PT is policy target, RCA is rule combining algorithm and [r1,

r2, …, rn] is the list of child rules of P.

2.2.1 Sample Policy

Figure 2.2 presents an example of an XACML policy document which has Policy Id

KmarketBluePolicy. It is a demonstration policy from Balana – Open source

implementation of XACML [13]. The rule combining algorithm of the policy is deny-

overrides (line 2). The policy’s target (lines 3-14) implies the constraint “role=blue” where

a role is an attribute in the subject category and blue is the value for the attribute of type

string. For this policy to be applied to a request, the request context must contain the subject

attribute role with the value of blue.

There are three rules with rule ids: deny-liquor-medicine (line 16-37), max-drink-

amount (lines 38-61), and permit-rule (line 62). The target of the rule deny-liquor-medicine

(lines 18-36) implies the constraint “resource-id=Liquor” (line 19-26) ˅ “resource-

id=Medicine” (lines 27-34), where resource-id is an attribute in the resource category.

Since the rule does not have a condition element, it is true by default, hence, the rule will

result in a “Deny” decision if “resource-id=Liquor ˅ resource-id=Medicine”. The target of

the rule max-drink-amount implies the constraint “resource-id=Drink”, and the condition

the implies constraint “amount > 10”. Thus, the rule results in a deny decision if “resource-

id=Drink ˄ amount > 10”. Rule permit-rule has neither target nor condition. It results in a

Permit decision whenever it is reached.

22

Figure 2.2. A sample XACML policy [13]

23

Hence, in the notation we described earlier, P = <role =“blue”,deny-overrides ,

[r1,r2,r3]> where r1 = <rt1, rc1, re1>, r2 = <rt2, rc2, re2>, r3 = <rt3, rc3, re3> such that rt1

= “resource-id = Liquor ˅ resource-id = Medicine”, rc1 = true (since its empty), re1 =

deny, rt2 = “resource-id = Drink”, rc2 = “amount > 10”, re2 = Deny, rt3 = true (since its

empty), rc3 = true (since its empty), and re3 = Permit.

To illustrate how an XACML authorization scheme works, we first need to discuss

how each element of XACML evaluation occurs.

2.2.2 Policy Evaluation

When a request is presented to the AC system, it first needs to determine whether the

available set of XACML policies can be applied to a given request or not. For this purpose,

the target element PT of root policy element P of XACML policy document ℙ is used. If it

is empty, the policy is applicable to any request q. If it is not empty and request q meets

the constraints specified by the target PT or if there is an error while evaluating the target

PT, the policy is applicable to request q otherwise policy is not applicable and will not be

evaluated further. The evaluation of policy involves evaluation of its child rules. Once its

child elements are evaluated and it obtains the authorization decision from each child

element, it uses a rule combining algorithm to reconcile the decision obtained from various

child rules and makes a final authorization decision from the result of the rule combining

algorithm [2]. The details on combining algorithms is presented in Section 2.2.5. If policy

target PT evaluates to true, the policy-level decision will be the decision from the rule

combining algorithm itself. However, if PT evaluates to an error, the decision will be made

as described in Section 2.2.3

24

2.2.3 Policy Evaluation and Indeterminate Target

If the target of a policy evaluates to an error, the result of policy evaluation will

be N/A whenever the result of the rule combining algorithm is N/A; the result will

be I(P) whenever the result of the rule combining algorithm is permit; the result

will be I(D) if the result of the rule combining algorithm is deny, and the result

will be I(DP) if result of combining algorithm is Indeterminate. For any other

indeterminate result {I(DP), I(D), I(P)} from the rule combining algorithm, the

result for policy evaluation is the same as that for the rule combining algorithm. It

uses a rule combining algorithm to reconcile decisions obtained from various

child rules and makes a final authorization decision from the result of the rule

combining algorithm [2].

2.2.4 Rule Evaluation

The evaluation of ith rule ri occurs if the evaluation of the rules above it does not halt

the evaluation of policy P producing the result d(P,q). The rule ri is applicable to request q

if “rule target rti, as well as rule condition rci, is true” or “rule target rti evaluates to an error”

or “rule target rti is true and rule condition evaluates to an error” [2]. We say rule evaluates

to true, if rule target, as well as rule condition, evaluates to true. Similarly, if rule target or

rule condition evaluates to false, we say rule evaluates to false or N/A. If rule target or rule

condition evaluates to an error, we say rule evaluates to an error.

If a rule evaluates to true, the rule-level decision (d(P,ri)) will be the effect of the rule

i.e if the effect of the rule is permit, then the decision of the rule will be permit. If a rule

evaluates to an error, the rule-level decision will be the Indeterminate of corresponding

effect i.e if the effect is permit, the decision of the rule will be I(P) or simply I(P).

25

For a request q, there may be multiple rules which are applicable such that each

produces their effect and it is the job of the rule combining algorithm (RCA) to reconcile

decision of multiple rules and produce the final decision for the policy evaluation. Section

2.2.5 discusses various rule combining algorithms we considered in this work.

Let rca(P, q) denote the result of applying RCA to the rules in P for the request q.

Assuming that the list of the rules in P is non-empty, rca(P, q) ∈ {Permit, Deny, N/A, I(D),

I(P), I(DP)} and per the standard specification [2], d(P, q) is defined as follows:

2.2.5 Combining algorithms

There are eleven RCAs in XACML 3.0. Four of them are for compatibility support for

older versions - legacy ordered-deny-overrides, legacy deny-overrides, legacy ordered-

permit-overrides, and Legacy ordered-permit-overrides [2]. As they are for the backward

compatibility for the previous version of XACML, we do not consider them in our work.

Among the remaining seven, the five are listed below and the other two are ordered deny-

overrides and ordered permit-overrides. In Balana [13] (an open source implementation of

XACML3.0), the implementations of ordered-deny-overrides and ordered-permit-

overrides are the same as deny-overrides and Permit-overrides. As a result, we do not

consider these two as well and this work only focuses on the five RCAs which are as

follows:-

a) deny-overrides: deny-overrides is intended for those cases where a deny decision

should have priority over a Permit decision. If any rule evaluates to deny, the result is deny.

If there is no deny decision from any rules and if any decision is I(DP), the result is I(DP).

26

If there is no deny and I(DP) decision, and if any decision is I(D) and another decision is

I(P) or deny, the result is I(DP). If it is also not true, then if any decision is I(D), the result

is I(D). If there is no deny, I(DP) and I(D) decision, and if any decision is permit, the result

is permit. If it is also not true and if any decision is I(P), the result is "I(P)" otherwise, the

result is N/A [2].

b) permit-overrides: permit-overrides RCA is intended for those cases where a permit

decision should have priority over a deny decision. If any decision is permit, the result is

permit. If there is no permit decision and if any decision is I(DP), the result is I(DP). If

there is no permit and I(DP) decision, and if any decision is I(P) and another decision is

I(D) or deny, the result is I(DP). If it is also not true, then if any decision is I(P), the result

is I(P). If there is no permit, I(DP) and I(P) decision, and if any decision is deny, the result

is deny. If it is also not true and if any decision is I(D), the result is I(D) otherwise, the

result is N/A.

c) deny-unless-permit: This is intended for those cases where a permit decision should

have priority over a deny decision, and an Indeterminate or N/A must never be the result if

the policy is applicable to the request. If any decision is permit, the result is permit

otherwise, the result is deny.

d) permit-unless-deny: This RCA is intended for those cases where a deny decision

should have priority over a permit decision, and an Indeterminate or N/A must never be the

result. If any decision is deny, the result is deny else the result is permit.

e) first-applicable: This RCA is intended for those cases where the evaluation of

policy should halt as soon as any rule is applicable to request q. Rules are evaluated in the

order in which they are listed. If a rule’s target matches and condition evaluates to true,

27

then the result is rule’s effect (permit or deny). If a rule’s target evaluates to an error or rule

condition evaluates to an error, then the result is I(P) if rule’s effect is permit or I(D) if

rule’s effect is deny. If the target or condition evaluates to false, the next rule is evaluated.

If no further rule exists, then the result is N/A.

To illustrate how XACML policy evaluation occurs, the following section presents

sample requests and discusses how the policy evaluation takes place for the given sample

policy.

2.3 Sample Requests and Policy Evaluation

This section presents some sample requests and how the evaluation occurs in sample

policy. The XACML request contains a list of attributes and their value. Let us consider q1

be the first sample request as q1 = {resource-id =”Liquor”}. This request consists of one

attribute-value pair where resource-id is attribute and Liquor is a value of the attribute.

Since the policy target of sample policy is “role = blue” and q1 does not contain role

attribute, the given sample policy will not be applicable to q1 because the policy target did

not match, and no rules will be evaluated, and the final decision will be N/A.

Let us consider second request q2 as {resource-id =”Liquor” and role = “gold”}.

Since q2 does contain role attribute but it is not blue, the policy will not be applicable

because the policy target did not match, and the final decision of the policy evaluation will

be N/A.

Let us consider a third request q3 as {resource-id =”Liquor” and role = “blue”}.

Since q3 does contain role attribute and is blue the policy will be applicable. Further, it also

consists of another attribute-value pair resource-id = ”Liquor”. As a result, rule 1 is

applicable whose effect is deny and since the RCA is deny-overrides, the rule evaluation

28

stops after rule1 and decision of RCA will be deny. Since the PT evaluates to true, the final

decision for the policy evaluation will be deny. However, if PT evaluated to an error, the

final decision for policy would be I(D).

Let us consider a fourth request q4 as {resource-id = ”aFFFF” and role = “blue”}.

Since role attribute is blue, the policy will be applicable. The value of another attribute

resource-id is aFFFF. As a result, rule 1 is not applicable as well as rule 2 because their

target didn’t match. However, rule 3 is a default rule with no target and condition, so it will

be applicable to any request and produces permit effect. Since the rule level decision of the

first two rules are N/A and that of the third rule is permit, the RCA level decision will be

permit. Since PT evaluates to true, the final policy-level decision will be permit.

2.4 Related Work

A test for an XACML policy consists of a test input and the corresponding Oracle

value (i.e., expected response to the access request). Oracle values depend on the access

control requirements of the system under test. A test fails when the system’s actual

response to the request is different from the expected response. Such a failure often

indicates the existence of a fault that may lead to unauthorized access, elevated privilege,

or denial of service. The existing approaches to test generation for XACML policies fall

into two categories: model-based testing that derives tests from models, and policy-based

testing that produces test inputs directly from the policy under test. As access control

policies are extra-constraints on system functions, the model-based testing approach

usually integrates functional models with access control specifications and can generate

both test inputs and Oracle values. This paper is mostly related to the work that generates

test inputs from the XACML policy under test.

29

The existing testing methods for XACML policies generate access requests directly

from the policy under test. A user needs to define the expected response for each request

to determine whether each test passes or fails. Martin et. al. generates access requests in

Cirg from counterexamples produced by model checker Margrave [21] through the change-

impact analysis [10]. Mutation score of the testing methods in Cirg ranged from 30% to

60% in different case studies and 100% for a simple policy. Targen [22] obtained mutation

score that ranged from 75% to 79% for different case studies which derive access requests

to satisfy all the possible combinations of truth-values of the attribute id-value pairs found

in a given policy [5]. The X-CREATE framework deals with the structures of the Context

Schema Considering that requests must conform to the XML Context Schema. Bertolino

et al. have developed the Mutant-killing ratios of the X-CREATE framework ranging from

75% to 96% for several small policies [7]. They have also developed other test selection

strategies, such as Simple Combinatorial and Incremental XPT [6].

Mutant-killing ratios of the Simple Combinatorial strategy ranged from 3% to 100%,

whereas mutant killing ratios of the Incremental XPT strategy ranged from 55% to 100%.

Bertolino et al. [8] proposed an approach to selecting tests based on the rule coverage

criterion. It chooses existing tests to match each rule target set, which is the union of the

target of the rule and all enclosing policy and policy set targets. Mutant-killing ratios of

this approach ranged from 62% to 98%. In addition, Bertolino et al. [9] proposed similarity-

based metrics for prioritizing existing tests of policies. This work is not concerned with

how the tests are generated, though. Li et al. [12] have developed XPTester, which used

symbolic execution technique to generate requests from XACML policies. They convert

the policy under test into semantically equivalent C Code Representation (CCR) and

30

symbolically execute CCR to create test inputs and translate the test inputs to access

requests. Mutant-killing ratios of XPTester ranged from 37% to 93%. Although all the

above work uses mutation to evaluate fault detection ability, there are subtle differences

between the subject policies and the fault models used by different research groups. It is

obvious that the above methods are far from satisfactory for the high assurance of XACML

policies. Most of them produce many tests by combining attribute values. None of them

have considered advanced coverage criteria, e.g., decision coverage and MC/DC, for

access control constraints (i.e., rule target, rule condition, policy target, and policy set

target).

Verification techniques have also been proposed for quality assurance of XACML

policies. The verification system in Margrave checks whether an XACML policy satisfies

given properties that describe the constraints on attributes. Margrave transforms the

XACML policy into multi-terminal binary decision diagrams. Hwang et. al. [23] applied

Margrave to the detection of multiple-duty-related security leakage. Hughes and Bultan

[25] developed an approach for defining properties as partial orderings between XACML

policies, translating them to Boolean formulas, and using the Zchaff SAT solver to check

satisfiability of the Boolean formulas. Hughes and Bultan have also proposed an approach

for translating XACML policies into the Alloy language and analyzing properties as partial

ordering relations [24]. The above verification techniques are premature because they only

deal with a very restricted subset of XACML (e.g., no or limited attribute data types and

no complex conditionals). In addition, they require formal representation of application-

specific properties, which can be a non-trivial task for XACML users.

31

CHAPTER 3

Fault Detection Condition

A fault in a policy is an error or flaw that can make it produce an incorrect result.

Consider, the ith rule of a policy P should have permit effect, but if it is somehow changed

to deny, then there is a fault in the effect of a rule. Since the effect of a rule in a policy is

incorrect, we refer to such a fault as an Incorrect Rule Effect fault. Similarly, if there is a

fault in the target element of a rule, then it is referred to as an Incorrect Rule Target fault.

Incorrect Rule Condition fault represents the fault in the condition element. If a rule is

missing, we refer to such a fault as a missing rule fault. If there is a different combining

algorithm than it is supposed to have, then it is an called Incorrect Rule (Policy) Combining

Algorithm fault.

Table 3.1: Fault Model

Mutation Operator

Fault Type

No Name Meaning

1 CRE Change Rule Effect Incorrect Rule Effect

2 RTT set Rule Target True Incorrect Rule Target

3 RTF set Rule Target False

4 RCT set Rule Condition True

Incorrect Rule Condition 5 RCF set Rule Condition False

32

6 ANF Add Not Function in

condition

7 RNF Remove Not Function in

condition

8 RER REmove a Rule Missing Rule

9 FPR First Permit Rule Incorrect Rule Ordering

10 FDR First Deny Rule

11 PTT set Policy Target True Incorrect Policy Target

12 PTF set Policy Target False

13 RPTE Remove Parallel Target

Element

Missing target element

14 CRC Change Rule Combining

Algorithm

Incorrect Combining

Algorithm

Similarly, if there is a fault in the ordering of the rules, then it is referred to as an

Incorrect Rule Ordering fault. If either Match element, AnyOf element or AllOf element

of Target element is missing, we refer to such a fault as a Missing Parallel Target Element

fault. If there is a fault in policy target, then we refer to such a fault as an Incorrect Policy

Target fault.

While defining policy, there could exist various faults. The policy with the fault is

referred to as a faulty policy. If P’ is a fault policy of original policy P, then P’ is nothing

but the result of an application of some form of transformation rule that introduces the

fault. For example, the transformation rule could be “change rule effect” which alters the

33

effect of the rule from permit to deny and vice versa. In mutation analysis literature, the

transformation rule which results in the faulty policy from the correct one is referred to as

a mutation operator and the faulty policy itself is referred to as a mutant. Table 3.1 consists

of fourteen mutation operators which are categorized into eight faults types. Mutation

operators are defined with respect to a fault model, which is a collection of the fault types

in the given domain of programing language or specification. The details on each mutation

operator in Table 3.1 are discussed in Sections 3.1 through 3.14.

The fault in a policy may result in it to produce an incorrect result i.e. it results in a

different output than it is supposed to produce. We can exploit this difference in result to

reveal a fault by supplying the same input to both original policy and mutant, and if there

is a difference in response, then we could conclude that there exists a fault. A fault policy,

however, does not necessarily produce a different result than the correct policy for all

inputs. The test inputs must satisfy certain conditions to produce a different result than

from the correct policy and hence reveal the fault. Such conditions are referred to as fault

detection conditions.

Hence, the fault detection condition (FDC) of a given fault should specify the

constraints that a test case must satisfy to reveal the fault. As discussed in Section 1.3.1,

the fault detection condition can be formulated with three constraints which are reachability

constraint, necessity constraint and propagation constraint.

a) Reachability(R) constraint: Reachability constraint specifies that the test must

reach the faulty policy element (e.g., rule target, rule condition, rule effect, policy target,

and combining algorithm). If the faulty element is not evaluated, then the faulty policy will

behave the same as that of the original policy and we cannot distinguish the fault. The first

34

rule of a sample policy in Figure 2.2 of Chapter 2 has deny effect with id “deny-liquor-

medicine”. Consider there is a faulty policy which is same as the original policy except for

the effect of the first rule with id “deny-liquor-medicine” has permit effect instead. To

identify this fault, this rule must be evaluated. To evaluate the rule, the rule should be

reached during policy evaluation. To reach the first rule, the policy target must evaluate to

true or error. Hence, the reachability constraint here is to evaluate policy target to true or

error.

b) Necessity(N) constraint: The test must make the faulty element evaluate to an

incorrect intermediate result, which is different from the evaluation result that should be

produced by its correct counterpart. For example, for the fault considered in reachability

constraint above, the rule target and/or condition of the faulty rule should evaluate to an

error or true so that it produces an incorrect intermediate result. Hence, the necessity

constraint is “rule target and rule condition of the faulty rule does not evaluate to N/A”

(i.e. either rule target and condition evaluates to true or rule target evaluates to an error or

rule target evaluates to true and rule condition evaluates to an error).

c) Propagation(P) constraint: The test must make the faulty policy produce an

incorrect response, which is different from the expected response that should be produced

by the correct policy. For example, to propagate incorrect intermediate results for revealing

the fault specified in reachability constraint, all the other rules with deny effect except the

first rule should not evaluate to true i.e. either they should evaluate to an error or false

because the rule combining algorithm is deny-overrides and if any another deny rule

evaluates to true, it will produce the deny result in both faulty and correct policy.

35

We use the notation PT, PT and Error (PT) to denote that policy target evaluates to

true, N/A and error respectively. We mention rule evaluates to true if both target and

condition of the rule evaluates to true. We use the expression rbi = (rti rci) to denote that

the target, as well as condition of ith rule, evaluates to true. Similarly, Error(rbi) denotes

an error in the evaluation of the target or condition of the rule ri. Further, rbi denotes

either rti or rci evaluates to false such that rule is N/A. Additionally, if none of the attributes

in the request context matches the attributes in the rule target or rule condition, then the

rule is not applicable for the request. We use the notation I(P), I(D) and I(DP) to denote

Indt, I(P) and Indeterminate respectively. We use the notation ri = <rbi, rei> whenever

possible to represent ith rule <rti, rci, rei> for simplicity. Further, we interchangeably use

notation ri or current rule under consideration to denote an arbitrary ith rule.

3.1 FDC for Change Rule Effect (CRE)

Change Rule Effect (CRE) is a mutation operator for the incorrect rule effect fault type

in which there is a fault in effect of a rule element. Since there are only two possible rule

effects - permit or deny, there will be a fault in effect of a rule if the effect of a rule gets

altered from permit to deny and vice-versa. The flipping of the rule effect is the only

mutation operator for incorrect rule effect fault.

Consider an XACML policy P = <PT, RCA, RL> where PT is Policy Target, RCA is

Rule Combining Algorithm and RL = [r1, r2, …, rn] is a list of the rules. If the effect of ith

rule ri is flipped to deny by some incident, then the resulting policy will be P’ as shown in

Table 3.2. Since ith rule is supposed to have permit effect but in P’ it is deny, so P’ is the

faulty policy. Here, P’ is called the Change Rule Effect (CRE) mutant of P.

36

Table 3.2: A Faulty Policy with an Incorrect Rule Effect

 Correct Policy P Faulty Policy P'

Policy target PT PT

Rule combining algorithm Permit-Overrides Permit-Overrides

Rules R r1

…

ri

…

rn

<rb1, re1>

…

<rbi, Permit>

…

<rbn, ren>

r1

…

ri’

…

rn

<rb1, re1>

…

<rbi, Deny>

…

<rbn, ren>

Since the fault detection condition depends on the rule combining algorithm (RCA) of

a policy, we present fault detection condition for each of the RCA.

a) Permit-overrides:

i) Reachability constraint

The reachability constraint must trigger the evaluation of the rule with faulty effect i.e.

it should result in the evaluation of ith rule in both P and P'. The rules in a policy will only

be evaluated if the policy target is true or evaluates to an error. Further, when the rule-

combining algorithm is Permit-overrides, rule ri will not be triggered if there is a permit

rule before rule ri that evaluates to a permit decision. Thus, the reachability constraint is -

for any permit rule rj (j<i) before rule ri, rbj should not evaluate to true (i.e. it should be

N/A or evaluates to an error).

Hence, the reachability constraint is - policy target evaluates to true or error and all

the previous rules with permit effect before the current rule under consideration should

evaluate to N/A or error (i.e should not evaluate to true).

37

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i}

ii) Necessity constraint

The necessity constraint should make ith rule ri in P and rule ri’ in P' produce a different

rule-level decision. This requires that rbi should evaluate to either true so that the ith rule

decision will be permit in P and deny in P’ respectively or should evaluate to an error so

that rule decision will be I(P) in P and I(D) in P’. If rbi evaluates to N/A, the rule level

decisions will be N/A in both P and P’ in which case we cannot distinguish the faulty

policy. Hence, formally, necessity constraint is rbi ˅ Error(rbi).

iii) Propagation constraint

Given a faulty element produces different intermediate results, the propagation

constraint must make P and P' produce a different policy-level decision. In other words,

the different intermediate result from necessity constraint should contribute to producing a

different policy-level decision. For this, any permit rule rj (j>i) after ri, rj should not

evaluate to a permit decision, otherwise, d(P, q)= d(P', q) = Permit. The test must make

rbj evaluate to N/A or error for each permit rule rj (j>i). Therefore, the propagation

constraint can be formalized as rbj ˅ Error(rbj) for any rule rj = <rbj, Permit> (j>i).

Let, Ϸ = “ rbj ˅ Error(rbj) for any rule rj = <rbj, Permit> (j>i)”. Ϸ is sufficient for

propagation if necessity constraint is - rbi evaluates to true. However, when rbi evaluates

to an error, Ϸ is not sufficient for propagation.

We can verify that when rbi evaluates to true, Ϸ is sufficient for propagation by

showing that it holds for all possible evaluation of other rules (all the rules in the policy

except the current rule under consideration) as shown in Table 3.3. Let, the ith rule in the

38

correct policy P has permit effect, then that of the faulty policy P’ will be deny effect. The

result of the RCA depends on the result of evaluation of other rules including that of ith rule.

Table 3.3 presents the possible cases for the evaluation of other rules (in the second

column), along with the evaluation of ith rule in P and P’ (in third and fourth column

respectively) and result of RCA for both P and P’ (in fifth and sixth column respectively).

As shown in Table 3.3, there is the possibility of four possible evaluation of other rules.

The first possible evaluation is that - all other rules evaluate to N/A and produces no

effect. In this case, the effect of ith rule in P - which is permit - will be the RCA level

decision for P and that of P’ will be deny since its ith rule has deny decision. When only

one rule evaluates to permit, the result of permit-overrides RCA is permit. Similarly, when

only one rule evaluates to deny, the result of permit-overrides RCA is deny. As a result,

the RCA level decision is permit and deny in P and P’ respectively as shown in the fifth

and the sixth column of the first row respectively. The policy level decision depends on the

result of RCA and how policy target evaluates as discussed in Section 2.2.2 and Section

2.2.3. When PT evaluates to true the policy-level result of P and P’ will be the result of

corresponding RCA i.e permit in P and deny in P’. Similarly, when PT evaluates to an

error, the result of P and P’ will be the Indeterminate of the result of RCA i.e the policy-

level result of P is I(P) and that of P’ is I(D).

39

Table 3.3: Possible Evaluations Of Other Rules when Rbi Evaluates to True

 other rules than ith rule ith rule

in P

ith rule

in P’

RCA

in P

RCA

in P’

Produces

effect

all other rules evaluate to N/A

and produces no effect.

Permit Deny Permit Deny

One or more rule produces deny

or I(D) effect and rest are N/A

Permit Deny Permit Deny

One or more rule produces I(P)

effect and rest are N/A

Permit Deny Permit I(DP)

One or more rule produces I(P),

one or more rule produces deny

or I(D) effect and rest are N/A

Permit Deny Permit I(DP)

Note: There is the possibility of another permit rule to be true but when it happens we could

not detect the fault and the mutant will be equivalent to policy for such set of requests which makes

another permit rule evaluates to true. Hence, for simplicity, we do not consider such cases in this

table as well as in another table like this.

The second possible evaluation is when one or more deny rule produces a deny or I(D)

effect and the rest are N/A. In this case, since the RCA is permit-overrides, the result of

RCA in P is permit because ith rule has permit effect and if any rule evaluates to permit, the

result of permit-overrides is permit. In P’, ith rule evaluated to deny, one or more rules

evaluated to deny or I(D) and other rules evaluated to N/A i.e none of the rules evaluated

to permit or I(P). When RCA is permit-overrides, if none of the rules evaluate to permit or

I(P) and any one of the rules evaluate to deny, the RCA level decision will be deny. As a

40

result, the RCA level decision of P’ is deny. When PT evaluates to true the result of P’ will

be deny and that of P is permit. Similarly, when PT evaluates to an error the result of P’ is

I(D) and that of P is I(P) which are different.

The third possible evaluation is when one or more permit rules produces I(P) effect

and the rest are N/A. In this case, the result of RCA in P is permit since ith rule has permit

effect. For P’, ith rule evaluates to deny and since one or more rules evaluated to I(P), the

result of RCA will be I(DP). As a result, when PT evaluates to true the result of P’ will be

I(DP) and that of P is permit which is different. Similarly, when PT evaluates to an error

the result of P’ is I(DP) and that of P is I(P) which are different.

The fourth possible evaluation is one or more rules produces I(P) effect, one or more

rules produces deny or I(D) effect and the rest are N/A. In this case, the result of RCA in P

is still permit since ith rule has permit effect and that of P’ will be I(DP). As a result, when

PT evaluates to true the result of P’ will be I(DP) and that of P is permit which is different.

Similarly, when PT evaluates to an error the result of P’ is I(DP) and that of P is I(P) which

are different.

Hence, when rbi evaluates to true, Ϸ is sufficient for propagation as it holds for all

possible evaluation of other rules.

When rbi evaluates to an error, Ϸ is not sufficient for propagation. Table 3.4 presents

the rationale why Ϸ is not sufficient for propagation when rbi evaluates to an error.

With similar reasoning as for Table 3.3, we can evaluate the result for RCA in P and

P’ as shown in Table 3.4. As listed in Table 3.4, the result of RCA in P and P’ for the first

three possible cases are different. Hence for them, Ϸ is sufficient for propagation i.e fault

41

detection. However, for the fourth case, the result of RCA in both P and P’ is I(DP). Since

the result of RCA is not different and hence the policy level decision will not differ.

Table 3.4: Possible Evaluations of Other Rules when Rbi Evaluates to Error

 other rules than ith rule ith rule

in P

ith rule

in P’

RCA

in P

RCA

in P’

Produces

effect

No effect from other rules as all

of them evaluates to N/A

I(P) I(D) I(P) I(D)

One or more rule produces deny

or I(D) effect and rest are N/A

I(P) I(D) Permit

/I(P)

I(DP)

One or more rule produces I(P)

effect and rest are N/A

I(P) I(D) I(DP) I(D)

One or more rule produces I(P),

one or more rule produces deny

or I(D) effect and rest are N/A

I(P) I(D) I(DP) I(DP)

Hence, Ϸ is insufficient for propagation for the fourth case when rbi evaluates to an

error. As a result, when rbi evaluates to an error, in addition to Ϸ, we need additional

constraint in propagation constraint. The required additional constraint is - there should not

exist a pair of the rules (excluding ith rule) such that one of them has permit effect which

evaluates to an error and other has deny effect which evaluates to true or error. If this

constraint is satisfied, then the fourth case in Table 3.4 will never occur and we can

distinguish the fault and if this constraint is violated the fourth case will occur in which

case we cannot distinguish the faulty policy.

42

Hence, the propagation constraint when rbi evaluates to an error is that - any permit

rule rj (j>i) after ri should not evaluate to a permit decision and there should not exist a

pair of the rules (excluding ith rule) such that one of them has permit effect which evaluates

to an error and other has deny effect which evaluates to true or error. Formally, additional

constraint to Ϸ can be specified as (∃(p,d) such that (i ≠ p ≠ d) ˄ (rp = < rbp, permit>)

˄ (rd = < rbd, deny>) ˄ Error(rbp) ˄ (Error(rbd) ˅ rbd)).

Combining all constraints as a single constraint, we get the following constraint for

fault detection of CRE when RCA is permit-overrides.

({PT ˅ Error(PT)} ˄ { rbi} ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbj, permit> for

j != i})

˅

({PT ˅ Error(PT)} ˄ {Error(rbi)} ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbj,

permit> for j != i} ˄ {(∃(p,d) such that (i ≠ p ≠ d) ˄ (rp = < rbp, permit>) ˄ (rd = < rbd,

deny>) ˄ Error(rbp) ˄ (Error(rbd) ˅ rbd))})

b) Deny-overrides:

i) Reachability constraint

The policy target should be true or should evaluate to an error. Further, when the rule-

combining algorithm is deny-overrides, rule ri will not be triggered if there is a deny rule

before rule ri that evaluates to a deny decision. Thus, the reachability constraint is that for

any deny rule rj (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or

evaluates to an error).

43

Hence, the reachability constraint is - policy target evaluates to true or error and all

the previous rules with deny effect before the current rule under consideration should

evaluate to N/A or error (i.e should not evaluate to true).

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any deny rule

rj = <rbj, deny> for j < i}

ii) Necessity constraint

rbi should evaluate to either true so that the ith rule decision will be permit in P and deny

in P’ respectively or should evaluate to an error so that rule decision will be I(P) in P and

I(D) in P’. If rbi evaluates to N/A, the rule level decisions will be N/A in both P and P’ in

which case we can not distinguish the faulty policy. Hence, formally, necessity constraint

is rbi ˅ Error(rbi).

iii) Propagation constraint

Any deny rule rj (j>i) after ri, rj should not evaluate to a permit decision, otherwise, d(P,

q)= d(P', q) = Deny. The test must make rbj evaluate to N/A or error for each deny rule rj

(j>i). Therefore, the propagation constraint can be formalized as rbj ˅ Error(rbj) for

any rule rj = <rbj, Deny> (j>i).

The afore-mentioned propagation constraint is sufficient for propagation if necessity

constraint is rbi evaluates to true but is not sufficient when rbi evaluates to an error. With

similar reasoning as for permit-overrides, we can state that when rbi evaluates to an error,

we need additional constraint for propagation. The required additional constraint is “any

deny rule rj (j>i) after ri should not evaluate to a deny decision and there should not exist

a pair of the rules (excluding ith rule) such that one of them has deny effect which evaluates

to an error and other has permit effect which evaluates to true or error”. Formally,

44

additional constraint is (∃(p,d) such that (i ≠ p ≠ d) ˄ (rp = < rbp, permit>) ˄ (rd = <

rbd, deny>) ˄ Error(rbd) ˄ (Error(rbp) ˅ rbp)).

Combining all constraints as a single constraint, we get the following constraint for

fault detection of CRE when RCA is deny-overrides.

({PT ˅ Error(PT)} ˄ {rbi}˄ {rbj ˅ Error(rbj) for any deny rule rj = <rbj, deny> for j !=

i})

˅

({PT ˅ Error(PT)} ˄ {Error(rbi)}˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbj, deny>

for j != i} ˄ {(∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>)

˄ Error(rbd) ˄ (Error(rbp) ˅ rbp))})

Note: The fault detection condition for permit-overrides is symmetrical with fault detection

condition for deny-overrides such that the role of the permit and deny effect are interchanged.

Hence, for simplicity, we would only consider permit-overrides onwards for other faults.

c) deny-unless-permit:

i) Reachability constraint

The policy target should be true or should evaluate to an error. When the RCA is deny-

unless-permit, rule ri will not be triggered if there is a permit rule before rule ri that

evaluates to a permit decision. Thus, the reachability constraint is that for any permit rule

rj = <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A

or evaluates to an error).

Hence, the reachability constraint is - policy target evaluates to true or error and all

the previous rules with permit effect before the current rule under consideration should

evaluate to N/A or error (i.e should not evaluate to true).

45

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i}.

ii) Necessity constraint

deny-unless-permit results permit decision only if at least one of the rules with permit effect

evaluates to true, otherwise, it is deny in all other cases. As a result, we could not consider

the error condition in the ith rule because if there is error in the ith rule target and/or

condition, it will contribute to deny decision for the RCA in both P and P’ irrespective of

its effect. Hence, both P and P’ will behave similarly if the current rule under consideration

evaluates to an error. As a result, the necessity constraint should be the only rbi evaluates

to true. Formally, necessity constraint is rbi.

iii) Propagation constraint

Any permit rule rj (j>i) after ri, rj should not evaluate to a permit decision, otherwise, d(P,

q)= d(P', q) = Permit. The test must make rbj evaluate to N/A or error for each permit rule

rj (j>i). Therefore, the propagation constraint can be formalized as rbj ˅ Error(rbj) for

any rule rj = <rbj, Permit> (j>i).

Combining all constraints as a single constraint, we get the following constraint for

fault detection of CRE when RCA is deny-unless-permit.

({PT ˅ Error(PT)} ˄ { rbi} ˄ {rbj ˅ Error(rbj) for any permit rule rj = < rbj, Permit >for

j != i})

d) permit-unless-deny:

i) Reachability constraint

 When the RCA is permit-unless-deny, rule ri will not be triggered if there is a deny

rule before rule ri that evaluates to a permit decision. Thus, the reachability constraint is

46

that for any deny rule rj (j<i) before rule ri, rbj should not evaluate to true (i.e it should be

N/A or evaluates to an error).

Hence, the reachability constraint is - policy target evaluates to true or error and all

the previous rules with deny effect before the current rule under consideration should

evaluate to N/A or error (i.e should not evaluate to true).

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any deny rule

rj = <rbj, deny> for j < i}

ii) Necessity constraint

permit-unless-deny results deny only if at least one of the rules with deny effect evaluates

to true, otherwise, it is permit in all other cases. As a result, we could not consider the error

condition in the ith rule because if there is error in the ith rule target and/or condition, it will

contribute to permit decision for the RCA in both P and P’ irrespective of its effect. As a

result, the necessity constraint should be the only rbi evaluates to true. Hence, formally,

necessity constraint is rbi.

iii) Propagation constraint

Any deny rule rj (j>i) after ri, rj should not evaluate to a deny decision, otherwise, d(P,

q)= d(P', q) = Deny. The test must make rbj evaluate to N/A or error for each deny rule rj

(j>i). Therefore, the propagation constraint can be formalized as rbj ˅ Error(rbj) for

any rule rj = <rbj, Deny> (j>i).

Combining all constraints as a single constraint, we get the following constraint for

fault detection of CRE when RCA is permit-unless-deny.

({PT ˅ Error(PT)} ˄ { rbi} ˄ {rbj ˅ Error(rbj) for any permit rule rj = < rbj, Deny >for j

!= i})

47

Note: The fault detection condition for deny-unless-permit is symmetrical with fault

detection condition for permit-unless-deny such that the role of the permit and deny effect are

interchanged. Hence, for simplicity, we would only consider deny-unless-permit for other faults.

e) first-applicable:

i) Reachability constraint

 When the rule-combining algorithm is first-applicable, rule ri will not be triggered if

there is any rule before rule ri that evaluates to true or error. Thus, the reachability

constraint is that - the policy target is true or evaluates to an error and for any rule rj (j<i)

before rule ri, rbj should evaluate to N/A.

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj) for any rule rj for j < i}

ii) Necessity constraint

rbi should evaluate to either true so that the ith rule decision will be permit in P and

deny in P’ respectively or should evaluate to an error so that rule decision will be I(P) in

P and I(D) in P’. If rbi evaluates to N/A, the rule level decisions will be N/A in both P and

P’ in which case we cannot distinguish the faulty policy. Hence, formally, necessity

constraint is rbi ˅ Error(rbi).

iii) Propagation constraint

First-applicable RCA for CRE does not require explicit propagation constraint because

reachability and necessity constraint is enough for fault detection.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of CRE when RCA is first-applicable.

{PT ˅ Error(PT)} ˄ {rbi ˅ Error(rbi)} ˄ {rbj) for any rule rj for j < i}

48

3.2 FDC for Rule Target True (RTT)

Rule target true is a mutation operator which alters the rule target such that it will

always evaluate to true. One of the transformation rules to make target always evaluate to

true is to make it empty so that it will always evaluate to true. Since it has a fault in the

target of the rule, it is under the category incorrect rule target.

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA, RL’> where

RL = <r1, …. ,ri, ..., rn>, RL’ = <r1, ..., ri’, ..., rn>, ri = <rti, rci, rei> and ri‘ = <rti’, rci,

rei> such that P’ is similar to P except the target rti’ of ith rule ri’ in P’ always evaluates to

true. Here, P’ is called the Rule Target True (RTT) Mutant of P. The fault detection

condition for Rule Target True based on RCA are given below.

a) Permit-overrides:

i) Reachability constraint

Policy target should evaluate to true or error and all the previous rules with permit

effect before the current rule under consideration should evaluate to N/A or error (i.e should

not evaluate to true).

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i}

ii) Necessity constraint

 The necessity constraint is that – rule target evaluates to N/A or error and rule

condition evaluates to true. Formally, (rti ˅ Error(rti)) ˄ rci

iii) Propagation constraint

If policy target evaluates to true, ith rule target evaluates to N/A and ith rule effect is

deny, then all other rules should evaluate to N/A or error. Further, there should not exist a

49

pair of the rules (excluding the current rule under consideration) such that one of them is

permit rule which evaluates to an error and other is deny rule which evaluates to true or

error.

({PT)} ˄ rti ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄ {(∃(p,d)

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄

(Error(rbd) ˅ rbd))})

If policy target evaluates to an error, ith rule target evaluates to N/A and ith rule effect

is deny, then all other rules with deny effect should evaluate to N/A and all other rules with

permit effect should not evaluate to true. Further, there should not exist a pair of the rules

(excluding the current rule under consideration) such that one of them is permit rule which

evaluates to an error and other is deny rule which evaluates to true or error.

({Error(PT)} ˄ rti ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i} ˄ {(∃(p,d) such

that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd)

˅ rbd))})

If policy target evaluates to true, ith rule target evaluates to N/A and ith rule effect is

permit, then all other permit rules should evaluate to N/A or error.

({PT} ˄ rti ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i})

If policy target evaluates to an error, ith rule target evaluates to N/A and ith rule effect

is permit, then all other rules with permit effect should evaluate to N/A if all deny rules

evaluate to N/A. However, if any deny rule evaluates to true or error, then another permit

effect can evaluate to N/A or error.

50

({Error(PT)} ˄ rti ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅ { ∃d (rbd

˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = <rbi,

permit> for j != i }])

If policy target evaluates to true, ith rule target evaluates to an error and ith rule effect

is deny, then all other rules with permit effect should evaluate to N/A and all other rules

should with deny effect should evaluate to N/A or error.

({PT)} ˄ Error(rti) ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any deny rule rj = <rbj,

deny> for j != i} ˄ {rbj for any permit rule rj = <rbj, permit> for j != i}

If policy target evaluates to an error, ith rule target evaluates to an error and ith rule

effect is deny, then we cannot detect the fault and mutant will behave the same as original

policy for these set of requests.

If policy target evaluates to true, ith rule target evaluates to an error and ith rule effect

is permit, then all other rules with permit effect should evaluate to N/A.

({PT)} ˄ Error(rti) ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj = <rbj, permit> for

j != i})

If policy target evaluates to an error, ith rule target evaluates to an error and ith rule

effect is permit, then all other rules with permit effect should evaluate to N/A if all other

deny rules evaluatesto an error. However, if any one deny rule evaluates to true or error,

another permit rule can evaluate to an error or N/A.

({Error(PT)} ˄ Error(rti) ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅ {∃d (

rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = <rbj,

permit> for j != i}])

51

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RTT when RCA is permit-overrides:

({PT} ˄ rti ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄

{(∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp)

˄ (Error(rbd) ˅ rbd))})

˅

({Error(PT)} ˄ rti ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj

= <rbi, permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i}˄ {(∃(p,d)

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄

(Error(rbd) ˅ rbd))})

˅

({PT} ˄ rti ˄ rci ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i})

˅

({Error(PT)} ˄ rti ˄ rci ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅ { ∃d

(rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj =

<rbi, permit> for j != i }])

˅

({PT)} ˄ Error(rti) ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any deny rule rj =

<rbj, deny> for j != i} ˄ {rbj for any permit rule rj = <rbj, permit> for j != i}

˅

({PT)} ˄ Error(rti) ˄ rci ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj = <rbj, permit>

for j != i})

52

˅

({Error(PT)} ˄ Error(rti) ˄ rci ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅

{∃d (rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj =

<rbj, permit> for j != i}])

We can verify the validity of this fault detection condition by adopting similar

reasoning that we applied for CRE. Let ith rule have deny effect. The result of the RCA

depends on the result of evaluation of other rules as well as that of ith rule. Table 3.5

presents the possible cases for evaluation of other rules and result of RCA for both P and

P’.

With similar reasoning as for Table 3.3, we can list the records in Table 3.5. The final

case in Table 3.5, when one or more rules (excluding ith rule) produces I(P) effect and one

or more other rules produces deny effect and rest of the rules are N/A, the result of RCA is

similar in both P’ and P (which implies that we cannot detect fault under those conditions).

Additionally, in the second case - when one or more of the other rules evaluate to deny and

rest as N/A, the result of RCA in P and P’ are same. Hence from Table 3.5, we can conclude

that if the effect of ith rule is deny then for fault detection, all the rules except the ith rule

should not be true and there should not exists a pair of the rules (excluding ith rule) such

that one of them has deny effect, another has permit effect, permit rule evaluates to an error,

and deny rule evaluates to true or error.

53

Table 3.5: Possible Evaluations of Other Rules When Rti Evaluates to N/A and Ri

Is Deny Rule in P

 other rules than ith rule ith rule

in P

ith rule

in P’

RCA

in P

RCA

in P’

Produces

effect

No effect from other rules as all

of them evaluates to N/A

N/A deny N/A deny

One or more rule produces deny

effect and rest are N/A

N/A deny deny deny

One or more rule produces I(D)

effect and rest are N/A

N/A deny I(D) deny

One or more rule produces I(P)

effect and rest are N/A

N/A deny I(P) I(DP)

One or more rule produces I(P),

one or more rule produces deny

or I(D) effect and rest are N/A

N/A deny I(DP) I(DP)

Further, if PT evaluates to an error then the result of both P and P’ will be I(D) for the

third case when one or more other rules with deny effect evaluate to I(D). Hence, when PT

evaluates to an error, the fault detection condition is such that other rules with permit effect

can evaluate to an error while that with deny effect should evaluate to N/A.

Now consider the effect of ith rule is permit instead of deny. In such case, Table 3.6

presents the possible cases for evaluation of other rules and result of RCA for both P and

P’.

54

Table 3.6. Possible Evaluations of Other Rules When Rti Evaluates to N/A And

Ri is Permit Rule in P

 other rules than ith rule ith rule

in P

ith rule

in P’

RCA

in P

RCA

in P’

Produces

effect

No effect from other rules as all

of them evaluates to N/A

N/A permit N/A permit

One or more rule produces deny

effect and rest are N/A

N/A permit deny permit

One or more rule produces I(D)

effect and rest are N/A

N/A permit I(D) permit

One or more rule produces I(P)

effect and rest are N/A

N/A permit I(P) permit

One or more rule produces I(P),

one or more rule produces deny

or I(D) effect and rest are N/A

N/A permit I(DP) permit

It is evident from the cases in Table 3.6 that when the effect of the ith rule is permit, it

can identify the fault if none of the other permit rule evaluates to true.

Further, if PT evaluates to an error then result of both P and P’ will be I(P) for the

fourth case when the rule with the permit effect evaluates to an error. Hence, when PT

evaluates to an error, the fault detection condition is such that rules with the permit effect

can only evaluate to N/A. However, if there is an another deny rule which does not evaluate

to N/A then there could be a permit rule which evaluates to an error which is nothing but

the final case in which case we can distinguish the fault.

55

Now, let’s consider the situation when ith rule target evaluates to an error. Table 3.7

presents the possible cases for evaluation of other rules and result of RCA for both P and

P’. From Table 3.7, it is evident that fault can be detected only when other rules with permit

effect evaluate to N/A and rules with deny effect do not evaluate to true.

Table 3.7: Possible Evaluations of Other Rules When Rti Evaluates to Error And

Ri is Deny Rule in P

 other rules than ith rule ith rule

in P

ith rule

in P’

RCA

in P

RCA

in P’

Produces

effect

No effect from other rules as all of

them evaluates to N/A

I(D) deny I(D) deny

One or more rule produces deny

effect and rest are N/A

I(D) deny deny deny

One or more rule produces I(D)

effect and rest are N/A

I(D) deny I(D) deny

One or more rule produces I(P)

effect and rest are N/A

I(D) deny I(DP) I(DP)

One or more rule produces I(P),

one or more rule produces deny or

I(P) effect and rest are N/A

I(D) deny I(DP) I(DP)

Further, if PT evaluates to an error then result of both P and P’ will be the same in all

cases and hence mutant behaves similarly as original policy.

56

Now consider the effect of ith rule is permit instead of deny. In such case, Table 3.8

presents the possible cases for evaluation of other rules and result of RCA for both P and

P’.

Table 3.8. Possible Evaluations of Other Rules when Rti Evaluates to Error and

Ri is Permit Rule in P

 other rules than ith rule ith rule

in P

ith rule

in P’

RCA in

P

RCA in

P’

Produces

effect

No effect from other rules as

all of them evaluates to N/A

I(P) permit I(P) permit

One or more rule produces

deny effect and rest are N/A

I(P) permit I(DP) permit

One or more rule produces

I(D) effect and rest are N/A

I(P) permit I(DP) permit

One or more rule produces

I(P) effect and rest are N/A

I(P) permit I(P) permit

One or more rule produces

I(P), one or more rule

produces deny or I(D) effect

and rest are N/A

I(P) permit I(DP) permit

It is evident from the above cases in Table 3.8 that when the effect of the ith rule is

permit, it can identify the fault if all other permit rules does not evaluate to true.

Further, if PT evaluates to an error then the fault detection condition is such that other

rules with permit effect cannot evaluate to true or error if all of the deny rules evaluate to

57

N/A. However, if at least one other deny rule evaluates to true or error, then another permit

rule can evaluate to an error or N/A.

Note: We can establish the validity of the fault detection condition for all faults with similar

reasoning as we did above for CRE and RTT. Hence, further in this work for simplicity, we only

specify the fault detection condition precisely.

b) deny-unless-permit:

i) Reachability constraint

The policy target should be true or should evaluate to an error. For any permit rule rj

= <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or

evaluates to an error).

Hence, the reachability constraint is - policy target evaluates to true or error and all

the previous rules with permit effect before the current rule under consideration should

evaluate to N/A or error (i.e should not evaluate to true).

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i}

ii) Necessity constraint

The target of the rule under consideration should evaluate to N/A or error and condition

should evaluate to true. Formally, (rti ˅ Error(rti)) ˄ rci

iii) Propagation constraint

If rule under consideration is deny rule, then the mutant is equivalent because the rule

level decision in mutant will be deny, and, in original policy, it will be N/A or error.

However, for deny-unless-permit RCA, anything other than permit effect results in deny

decision. And, it is only the current rule under consideration where mutant differs from

original policy and hence both of them will behave the same.

58

Hence, the rule under consideration should be permit rule such that all the rules with

permit effect after the ith rule should evaluate to N/A or error.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RTT when RCA is deny-unless-permit.

({PT ˅ Error(PT)} ˄ {(rti ˅ Error(rti)) ˄ rci } ˄ {rbj ˅ Error(rbi) for any permit rule

rj = < rbj, permit >for j != i})

c) first-applicable:

i) Reachability constraint

Policy target should evaluate to true or error and all the previous rules with permit

effect before the current rule under consideration should evaluate to N/A.

ii) Necessity constraint

If policy target evaluates to true, the necessity constraint is that – rule target evaluates to

N/A or error and rule condition evaluates to true.

If policy target evaluates to an error, the necessity constraint is that – rule target

evaluates to N/A and rule condition evaluates to true.

iii) Propagation constraint

If policy target evaluates to true and ith rule target evaluates to false, then for all other

rules which have the same effect as that of ith rule should evaluate to N/A or error.

If policy target evaluates to an error and ith rule target evaluates to false, then for all

other rules which have the same effect as that of ith rule should evaluate to N/A.

If policy target evaluates to true and ith rule target evaluates to an error, then explicit

propagation constraint is not required such that reachability and necessity constraint are

enough for fault detection.

59

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RTT when RCA is first-applicable.

({PT} ˄ rti ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any rule rj such

that rei = rej for j > i})

˅

(Error(PT)} ˄ rti ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj for any rule rj such that

rei = rej for j > i})

˅

(PT ˄ Error(rti) ˄ rci ˄ {rbj for any rule rj for j < i})

3.3 FDC for Rule Target False (RTF)

Rule target false is a mutation operator which alters the rule target such that it will

always evaluate to false. One of the transformation rules to make target always evaluate to

false is to introduce new constraint in the target with a random attribute which will always

be false. Since it has a fault in the target of the rule, it is under the category incorrect rule

target.

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA, RL’> where

RL = <r1, ,…. , ri, ..., rn>, RL’ = <r1, ..., ri’, ..., rn>, ri = <rti, rci, rei> and ri‘ = <rti’, rci,

rei> such that P’ is similar to P except the target rti’ of ith rule ri’ in P’ always evaluates to

false. Here, P’ is called the Rule Target False (RTF) Mutant of P. The fault detection

condition for Rule Target False based on RCA are given below.

a) Permit-overrides:

i) Reachability constraint

60

Policy target should evaluate to true or error and all the previous rule with permit

effect before the current rule under consideration should evaluate to N/A or error (i.e should

not evaluate to true).

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i}

ii) Necessity constraint

The necessity constraint is that – rule target evaluates to true or error and rule

condition evaluates to true. Formally, (rti ˅ Error(rti)) ˄ rci

iii) Propagation constraint

If policy target evaluates to true, ith rule target evaluates to true and ith rule effect is

deny, then all other rules should evaluate to N/A or error. Further, there should not exist a

pair of the rules (excluding the current rule under consideration) such that one of them is

permit rule which evaluates to an error and other is deny rule which evaluates to true or

error.

({PT)} ˄ rti ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄ {(∃(p,d)

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄

(Error(rbd) ˅ rbd))})

If policy target evaluates to an error, ith rule target evaluates to true and ith rule effect

is deny, then all other rules with deny effect should evaluate to N/A and all other rules with

permit effect should not evaluate to true. Further, there should not exist a pair of the rules

(excluding the current rule under consideration) such that one of them is permit rule which

evaluates to an error and other is deny rule which evaluates to true or error.

61

({Error(PT)} ˄ rti ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i} ˄ {(∃(p,d) such

that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd)

˅ rbd))})

If policy target evaluates to true, ith rule target evaluates to true and ith rule effect is

permit, then all other permit rule should evaluate to N/A or error.

({PT } ˄ rti ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i})

If policy target evaluates to an error, ith rule target evaluates to true and ith rule effect

is permit, then all other rules with permit effect should evaluate to N/A if all deny rules

evaluate to N/A. However, if any deny rule evaluates to true or error, then another permit

effect can evaluate to N/A or error.

({Error(PT)} ˄ rti ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅ { ∃d (rbd ˅

Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = <rbi,

permit> for j != i }])

If policy target evaluates to true or error, ith rule target evaluates to an error and ith rule

effect is deny, then all other rules with deny effect should evaluate to N/A and all other

rules with permit effect should evaluate to N/A or error.

({PT ˅ Error(PT)} ˄ Error(rti) ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule

rj = <rbj, permit> for j != i} ˄ {rbj for any deny rule rj = <rbj, deny> for j != i}

If policy target evaluates to true or error, ith rule target evaluates to an error and ith rule

effect is permit, then all other rules with permit effect should evaluate to N/A.

62

({PT ˅ Error(PT)} ˄ Error(rti) ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj = <rbj,

permit> for j != i})

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RTF when RCA is permit-overrides:

({PT } ˄ rti ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄

{(∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp)

˄ (Error(rbd) ˅ rbd))})

˅

({Error(PT)} ˄ rti ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj =

<rbi, permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i}˄ {(∃(p,d)

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄

(Error(rbd) ˅ rbd))})

˅

({PT } ˄ rti ˄ rci ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i})

˅

({Error(PT)} ˄ rti ˄ rci ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅ { ∃d (

rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = <rbi,

permit> for j != i }])

˅

({PT ˅ Error(PT)} ˄ Error(rti)˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j != i} ˄ {rbj for any deny rule rj = <rbj, deny> for j != i}

˅

63

({PT ˅ Error(PT))} ˄ Error(rti) ˄ rci ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj

= <rbj, permit> for j != i})

b) deny-unless-permit:

i) Reachability constraint

The policy target should be true or should evaluate to an error. For any permit rule rj

= <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or

evaluates to an error).

Hence, the reachability constraint is - policy target evaluates to true or error and all

the previous rules with permit effect before the current rule under consideration should

evaluate to N/A or error (i.e should not evaluate to true).

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i}

ii) Necessity constraint

The target of the rule under consideration should evaluate to true and condition should

evaluate to true. Formally, rti ˄ rci.

iii) Propagation constraint

If rule under consideration is deny rule, then the mutant is equivalent because the rule

level decision in mutant will be N/A, and, in original policy, it will be true or error.

However, for deny-unless-permit RCA, anything other than permit effect results in deny

decision. And, it is only the current rule under consideration where mutant differs from

original policy and hence both will behave the same.

Hence, the rule under consideration should be permit rule such that all the rules with

permit effect evaluate to N/A or error.

64

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RTF when RCA is deny-unless-permit.

({PT ˅ Error(PT)} ˄ {(rti) ˄ rci } ˄ {rbj ˅ Error(rbi) for any permit rule rj = < rbj, permit

> for j != i})

c) first-applicable:

i) Reachability constraint

Policy target should evaluate to true or error and all the previous rules with permit

effect before the current rule under consideration should evaluate to N/A.

ii) Necessity constraint

If policy target evaluates to true, the necessity constraint is that – rule target evaluates

to N/A or error and rule condition evaluates to true.

If policy target evaluates to an error, the necessity constraint is that – rule target

evaluates to N/A and rule condition evaluates to true.

iii) Propagation constraint

If policy target evaluates to true and ith rule target evaluates to true, then for all other

rules which have the same effect as that of ith rule should evaluate to N/A or error.

If policy target evaluates to true and ith rule target evaluates to an error, then for all

other rules after the ith rule which has the same effect as that of ith rule should evaluate to

N/A or true

If policy target evaluates to an error and ith rule target evaluates to an error or true,

then for all other rules after the ith rule which has the same effect as that of ith rule should

evaluate to N/A.

65

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RTF when RCA is first-applicable.

({PT } ˄ rti ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any rule rj such

that rei = rej for j > i})

˅

({PT } ˄ Error(rti)˄ rci ˄ {rbj ˅rbj for any rule rj for j < i} ˄ {rbj for any rule rj

such that rei = rej for j > i})

˅

({Error(PT) } ˄ (rti ˅Error(rti)) ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj for any

rule rj such that rei = rej for j > i})

3.4 FDC for Rule Condition True (RCT)

Rule condition true is a mutation operator which alters the rule condition such that it

will always evaluate to true. One of the transformation rules to make condition always

evaluate to true is to make it empty so that it will always evaluate to true. Since it has a

fault in the condition of the rule, it is under the category incorrect rule condition.

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA, RL’> where

RL = <r1, …., ri, ..., rn>, RL’ = <r1, ..., ri’, ..., rn>, ri = <rti, rci, rei> and ri‘ = <rti’, rci,

rei> such that P’ is similar to P except the condition rci’ of ith rule ri’ in P’ always evaluates

to true. Here, P’ is called the Rule Condition True (RCT) Mutant of P. The fault detection

condition for Rule Condition True based on RCA are given below.

a) Permit-overrides:

i) Reachability constraint

66

Policy target should evaluate to true or error and all the previous rules with permit

effect before the current rule under consideration should evaluate to N/A or error (i.e should

not evaluate to true).

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i}

ii) Necessity constraint

The necessity constraint is that – rule condition evaluates to N/A or error and rule

target evaluates to true.

Formally, (rci ˅ Error(rci)) ˄ rti

iii) Propagation constraint

If policy target evaluates to true, ith rule condition evaluates to N/A and ith rule effect

is deny, then all other rules should evaluate to N/A or error. Further, there should not exist

a pair of the rules (excluding the current rule under consideration) such that one of them is

permit rule which evaluates to an error and other is deny rule which evaluates to true or

error.

({PT)} ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄

{(∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp)

˄ (Error(rbd) ˅ rbd))})

If policy target evaluates to an error, ith rule condition evaluates to N/A and ith rule

effect is deny, then all other rules with deny effect should evaluate to N/A and all other

rules with permit effect should not evaluate to true. Further, there should not exist a pair

of the rules (excluding the current rule under consideration) such that one of them is permit

rule which evaluates to an error and other is deny rule which evaluates to true or error.

67

({Error(PT)} ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i} ˄ {(∃(p,d) such

that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd)

˅ rbd))})

If policy target evaluates to true, ith rule condition evaluates to N/A and ith rule effect

is permit, then all other permit rules should evaluate to N/A or error.

({PT } ˄ rci ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i})

If policy target evaluates to an error, ith rule condition evaluates to N/A and ith rule

effect is permit, then all other rules with permit effect should evaluate to N/A if all deny

rules evaluate to N/A. However, if any deny rule evaluates to true or error, then another

permit effect can evaluate to N/A or error.

({Error(PT)} ˄ rci ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅ { ∃d (rbd

˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = <rbi,

permit> for j != i }])

If policy target evaluates to true, ith rule condition evaluates to an error and ith rule

effect is deny, then all other rules with permit effect should evaluate to N/A and all other

rules should with deny effect should evaluate to N/A or error.

({PT)} ˄ Error(rci) ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any deny rule rj = <rbj,

deny> for j != i} ˄ {rbj for any permit rule rj = <rbj, permit> for j != i}

If policy target evaluates to an error, ith rule target evaluates to an error and ith rule

effect is deny, then we cannot detect the fault and mutant will behave the same as original

policy for these set of requests.

68

If policy target evaluates to true, ith rule condition evaluates to an error and ith rule

effect is permit, then all other rules with permit effect should evaluate to N/A.

({PT)} ˄ Error(rci) ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj = <rbj, permit>

for j != i})

If policy target evaluates to an error, ith rule condition evaluates to an error and ith rule

effect is permit, then all other rules with permit effect should evaluate to N/A if all other

deny rules evaluate to an error. However, if any one deny rule evaluates to true or error,

another permit rule can evaluate to an error or N/A.

({Error(PT)} ˄ Error(rci) ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅ {∃d (

rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = <rbj,

permit> for j != i}])

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RCT when RCA is permit-overrides:

({PT } ˄ rci ˄ rti ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄

{(∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp)

˄ (Error(rbd) ˅ rbd))})

˅

({Error(PT)} ˄ rci ˄ rti ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj

= <rbi, permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i}˄ {(∃(p,d)

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄

(Error(rbd) ˅ rbd))})

˅

69

({PT } ˄ rci ˄ rti ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj =

<rbi, permit> for j != i})

˅

({Error(PT)} ˄ rci ˄ rti ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅ { ∃d

(rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj =

<rbi, permit> for j != i }])

˅

({PT)} ˄ Error(rci) ˄ rti ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any deny rule rj =

<rbj, deny> for j != i} ˄ {rbj for any permit rule rj = <rbj, permit> for j != i}

˅

({PT)} ˄ Error(rci) ˄ rti ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj = <rbj, permit>

for j != i})

˅

({Error(PT)} ˄ Error(rci) ˄ rti ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅

{∃d (rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj =

<rbj, permit> for j != i}])

b) deny-unless-permit:

i) Reachability constraint

The policy target should be true or should evaluate to an error. For any permit rule rj

= <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or

evaluates to an error).

70

Hence, the reachability constraint is - policy target evaluates to true or error and all

the previous rule with permit effect before the current rule under consideration should

evaluate to N/A or error (i.e should not evaluate to true).

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i

ii) Necessity constraint

The condition of the rule under consideration should evaluate to N/A or error and

target should evaluate to true. Formally, (rci ˅ Error(rci)) ˄ rti

iii) Propagation constraint

If rule under consideration is deny rule, then the mutant is equivalent because the rule

level decision in mutant will be deny, and, in original policy, it will be N/A or error.

However, for deny-unless-permit RCA, anything other than permit effect results in deny

decision. And, it is only the current rule under consideration where mutant differs from

original policy and hence both of them will behave the same.

Hence, the rule under consideration should be permit rule such that all the rules with

permit effect after the ith rule should evaluate to N/A or error.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RCT when RCA is deny-unless-permit.

({PT ˅ Error(PT)} ˄ {(rci ˅ Error(rci)) ˄ rti } ˄ {rbj ˅ Error(rbi) for any permit rule

rj = < rbj, permit >for j != i})

c) first-applicable:

i) Reachability constraint

71

Policy target should evaluate to true or error and all the previous rules with permit

effect before the current rule under consideration should evaluate to N/A.

ii) Necessity constraint

If policy target evaluates to true, the necessity constraint is that – rule condition

evaluates to N/A or error and rule target evaluates to true.

If policy target evaluates to an error, the necessity constraint is that – rule condition

evaluates to N/A and rule target evaluates to true.

iii) Propagation constraint

If policy target evaluates to true and ith rule condition evaluates to false, then for all

other rules which have the same effect as that of ith rule should evaluate to N/A or error.

If policy target evaluates to an error and ith rule condition evaluates to false, then for

all other rules which have the same effect as that of ith rule should evaluate to N/A.

If policy target evaluates to true and ith rule condition evaluates to an error, then

explicit propagation constraint is not required such that reachability and necessity

constraint are enough for fault detection.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RCT when RCA is first-applicable.

({PT} ˄ rci ˄ rti ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any rule rj

such that rei = rej for j > i})

˅

(Error(PT)} ˄ rci ˄ rti ˄ {rbj for any rule rj for j < i} ˄ {rbj for any rule rj such that

rei = rej for j > i})

˅

72

(PT ˄ Error(rci) ˄ rti ˄ {rbj for any rule rj for j < i})

3.5 FDC for Rule Condition False (RCF)

Rule condition false is a mutation operator which alters the rule condition such that it

will always evaluate to false. One of the transformation rules to make condition always

evaluate to false is to introduce new constraint in condition with a random attribute which

will always be false. Since it has a fault in the condition of the rule, it is under the category

incorrect rule condition.

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA, RL’> where

RL = <r1, …. ,ri, ..., rn>, RL’ = <r1, ..., ri’, ..., rn>, ri = <rti, rci, rei> and ri‘ = <rti’, rci,

rei> such that P’ is similar to P except the condition rci’ of ith rule ri’ in P’ always evaluates

to false. Here, P’ is called the Rule Condition False (RCF) Mutant of P. The fault detection

condition for Rule Condition False based on RCA are given below.

a) Permit-overrides:

i) Reachability constraint

Policy target should evaluate to true or error and all the previous rules with permit

effect before the current rule under consideration should evaluate to N/A or error (i.e should

not evaluate to true).

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i}

ii) Necessity constraint

The necessity constraint is that – rule condition evaluates to true or error and rule

target evaluates to true. Formally, (rci ˅ Error(rci)) ˄ rti

iii) Propagation constraint

73

If policy target evaluates to true, ith rule condition evaluates to true and ith rule effect

is deny, then all other rules should evaluate to N/A or error. Further, there should not exist

a pair of the rules (excluding the current rule under consideration) such that one of them is

permit rule which evaluates to an error and other is deny rule which evaluates to true or

error.

({PT)} ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄ {(∃(p,d)

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄

(Error(rbd) ˅ rbd))})

If policy target evaluates to an error, ith rule condition evaluates to true and ith rule

effect is deny, then all other rules with deny effect should evaluate to N/A and all other

rules with permit effect should not evaluate to true. Further, there should not exist a pair

of the rules (excluding the current rule under consideration) such that one of them is permit

rule which evaluates to an error and other is deny rule which evaluates to true or error.

({Error(PT)} ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i} ˄ {(∃(p,d) such

that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd)

˅ rbd))})

If policy target evaluates to true, ith rule condition evaluates to true and ith rule effect

is permit, then all other permit rule should evaluate to N/A or error.

({PT } ˄ rci ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i})

If policy target evaluates to an error, ith rule condition evaluates to true and ith rule

effect is permit, then all other rules with permit effect should evaluate to N/A if all deny

74

rules evaluate to N/A. However, if any deny rule evaluates to true or error, then another

permit effect can evaluate to N/A or error.

({Error(PT)} ˄ rci ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅ { ∃d (rbd

˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = <rbi,

permit> for j != i }])

If policy target evaluates to true or error, ith rule condition evaluates to an error and ith

rule effect is deny, then all other rules with deny effect should evaluate to N/A and all other

rules with permit effect should evaluate to N/A or error.

({PT ˅ Error(PT)} ˄ Error(rci) ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j != i} ˄ {rbj for any deny rule rj = <rbj, deny> for j != i}

If policy target evaluates to true or error, ith rule condition evaluates to an error and ith

rule effect is permit, then all other rules with permit effect should evaluate to N/A.

({PT ˅ Error(PT)} ˄ Error(rci) ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj = <rbj,

permit> for j != i})

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RCF when RCA is permit-overrides:

({PT } ˄ rti ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄

{(∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp)

˄ (Error(rbd) ˅ rbd))})

˅

({Error(PT)} ˄ rti ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj =

<rbi, permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i}˄ {(∃(p,d)

75

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄

(Error(rbd) ˅ rbd))})

˅

({PT } ˄ rti ˄ rci ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i})

˅

({Error(PT)} ˄ rti ˄ rci ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅ { ∃d (

rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = <rbi,

permit> for j != i }])

˅

({PT ˅ Error(PT)} ˄ Error(rci)˄ rti ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j != i} ˄ {rbj for any deny rule rj = <rbj, deny> for j != i}

˅

({PT ˅ Error(PT))} ˄ Error(rci) ˄ rti ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj

= <rbj, permit> for j != i})

b) deny-unless-permit:

i) Reachability constraint

The policy target should be true or should evaluate to an error. For any permit rule rj

= <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or

evaluates to an error).

Hence, the reachability constraint is - policy target evaluates to true or error and all

the previous rules with permit effect before the current rule under consideration should

evaluate to N/A or error (i.e should not evaluate to true).

76

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i}

ii) Necessity constraint

The target of the rule under consideration should evaluate to true and condition should

evaluate to true. Formally, rti ˄ rci

iii) Propagation constraint

If rule under consideration is deny rule, then the mutant is equivalent because the rule

level decision in mutant will be N/A and, in original policy, it will be true or error.

However, for deny-unless-permit RCA, anything other than permit effect results in deny

decision. And, it is only the current rule under consideration where mutant differs from

original policy and hence both will behave the same.

Hence, the rule under consideration should be permit rule such that all the rules with

permit effect evaluate to N/A or error.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RCF when RCA is deny-unless-permit.

({PT ˅ Error(PT)} ˄ {rti ˄ rci } ˄ {rbj ˅ Error(rbi) for any permit rule rj = < rbj, permit

>for j != i})

c) first-applicable:

i) Reachability constraint

Policy target should evaluate to true or error and all the previous rules with permit

effect before the current rule under consideration should evaluate to N/A.

ii) Necessity constraint

77

If policy target evaluates to true, the necessity constraint is that – rule condition

evaluates to N/A or error and rule target evaluates to true.

If policy target evaluates to an error, the necessity constraint is that – rule condition

evaluates to N/A and rule target evaluates to true.

iii) Propagation constraint

If policy target evaluates to true and ith rule condition evaluates to true, then for all

other rules which have the same effect as that of ith rule should evaluate to N/A or error.

If policy target evaluates to true and ith rule condition evaluates to an error, then for all

other rules after the ith rule which has the same effect as that of ith rule should evaluate to

N/A or true

If policy target evaluates to an error and ith rule condition evaluates to an error or true,

then for all other rules after the ith rule which has the same effect as that of ith rule should

evaluate to N/A.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RCF when RCA is first-applicable.

({PT} ˄ rti ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any rule rj such

that rei = rej for j > i})

˅

({PT} ˄ Error(rci)˄ rti ˄ {rbj ˅rbj for any rule rj for j < i} ˄ {rbj for any rule rj such

that rei = rej for j > i})

˅

({Error(PT) } ˄ (rci ˅Error(rci)) ˄ rti ˄ {rbj for any rule rj for j < i} ˄ {rbj for any rule

rj such that rei = rej for j > i})

78

3.6 FDC for Add Not Function (ANF)

Add not function is a mutation operator which adds a not function to the rule condition

such that rule condition will always evaluate to false on faulty policy if it evaluates to true

in original policy, and vice versa. Since it has a fault in the condition of the rule, it is under

the category incorrect rule condition.

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA, RL’> where

RL = <r1, …. ,ri, ..., rn>, RL’ = <r1, ..., ri’, ..., rn>, ri = <rti, rci, rei> and ri‘ = <rti’, rci,

rei> such that P’ is similar to P except the condition rci’ of ith rule ri’ in P’ is rci. Here,

P’ is called the Add Not Function (ANF) Mutant of P. The fault detection condition for

ANF based on RCA are given below.

a) Permit-overrides:

i) Reachability constraint

Policy target should evaluate to true or error and all the previous rules with permit

effect before the current rule under consideration should evaluate to N/A or error (i.e.

should not evaluate to true).

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i}

ii) Necessity constraint

The necessity constraint is that – rule condition evaluates to true and rule target

evaluates to true. Formally, rci ˄ rti

Note: we do not consider the error case on condition because error case will produce no

different intermediate results between faulty and original policy

iii) Propagation constraint

79

If policy target evaluates to true, ith rule condition evaluates to true and ith rule effect

is deny, then all other rules should evaluate to N/A or error. Further, there should not exist

a pair of the rules (excluding the current rule under consideration) such that one of them is

permit rule which evaluates to an error and other is deny rule which evaluates to true or

error.

({PT)} ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄ {(∃(p,d)

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄

(Error(rbd) ˅ rbd))})

If policy target evaluates to an error, ith rule condition evaluates to true and ith rule

effect is deny, then all other rules with deny effect should evaluate to N/A and all other

rules with permit effect should not evaluate to true. Further, there should not exist a pair

of the rules (excluding the current rule under consideration) such that one of them is permit

rule which evaluates to an error and other is deny rule which evaluates to true or error.

({Error(PT)} ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i} ˄ {(∃(p,d) such

that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd)

˅ rbd))})

If policy target evaluates to true, ith rule condition evaluates to true and ith rule effect

is permit, then all other permit rule should evaluate to N/A or error.

({PT } ˄ rci ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i})

If policy target evaluates to an error, ith rule condition evaluates to true and ith rule

effect is permit, then all other rules with permit effect should evaluate to N/A if all deny

80

rules evaluate to N/A. However, if any deny rule evaluates to true or error, then another

permit effect can evaluate to N/A or error.

({Error(PT)} ˄ rci ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅ { ∃d (rbd

˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = <rbi,

permit> for j != i }])

Combining all constraints as a single constraint, we get the following constraint for

fault detection of ANF when RCA is permit-overrides:

({PT } ˄ rti ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄

{(∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp)

˄ (Error(rbd) ˅ rbd))})

˅

({Error(PT)} ˄ rti ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj =

<rbi, permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i}˄ {(∃(p,d)

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄

(Error(rbd) ˅ rbd))})

˅

({PT } ˄ rti ˄ rci ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i})

˅

({Error(PT)} ˄ rti ˄ rci ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅ { ∃d (

rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = <rbi,

permit> for j != i }])

81

b) deny-unless-permit:

i) Reachability constraint

The policy target should be true or should evaluate to an error. For any permit rule rj

= <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or

evaluates to an error).

Hence, the reachability constraint is - policy target evaluates to true or error and all

the previous rules with permit effect before the current rule under consideration should

evaluate to N/A or error (i.e should not evaluate to true).

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i}

ii) Necessity constraint

The target of the rule under consideration should evaluate to true and condition should

evaluate to true. Formally, rti ˄ rci

iii) Propagation constraint

If rule under consideration is deny rule, then the mutant is equivalent because the rule

level decision in mutant will be N/A, and, in original policy, it will be true or error.

However, for deny-unless-permit RCA, anything other than permit effect results in deny

decision. And, it is only the current rule under consideration where mutant differs from

original policy and hence both will behave the same.

Hence, the rule under consideration should be permit rule such that all the rules with

permit effect evaluate to N/A or error.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of ANF when RCA is deny-unless-permit.

82

({PT ˅ Error(PT)} ˄ {rti ˄ rci } ˄ {rbj ˅ Error(rbi) for any permit rule rj = < rbj, permit

>for j != i})

c) first-applicable:

i) Reachability constraint

Policy target should evaluate to true or error and all the previous rules with permit

effect before the current rule under consideration should evaluate to N/A.

ii) Necessity constraint

The necessity constraint is that – rule condition evaluates to N/A and rule target

evaluates to true.

iii) Propagation constraint

If policy target evaluates to true and ith rule condition evaluates to true, then for all

other rules which have the same effect as that of ith rule should evaluate to N/A or error.

If policy target evaluates to an error and ith rule condition evaluates true, then for all

other rules after the ith rule which has the same effect as that of ith rule should evaluate to

N/A.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of ANF when RCA is first-applicable.

({PT } ˄ rti ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any rule rj such

that rei = rej for j > i})

˅

({Error(PT) } ˄ rci ˄ rti ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any rule

rj such that rei = rej for j > i})

3.7 FDC for Remove Not Function (RNF)

83

Remove not function is a mutation operator which removes a not function from the

rule condition such that rule condition will always evaluate to false on faulty policy if it

evaluates to true in original policy, and vice versa. Since it has a fault in the condition of

the rule, it is under the category incorrect rule condition.

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA, RL’> where

RL = <r1, …. ,ri, ..., rn>, RL’ = <r1, ..., ri’, ..., rn>, ri = <rti, rci, rei> and ri‘ = <rti’, rci,

rei> such that P’ is similar to P except the condition rci’ of ith rule ri’ in P’ is rci. Here,

P’ is called the Remove Not Function (RNF) Mutant of P. The fault detection condition

for RNF is same as that for ANF because the effect of mutation operator on both cases is

rci’ = rci.

3.8 FDC for Remove a Rule (RER)

Remove a rule is a mutation operator which removes a rule from the policy such that

rule condition will always evaluate to false on faulty policy if it evaluates to true in original

policy, and vice versa. Since it has a fault in the condition of the rule, it is under the category

incorrect rule condition.

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA, RL’> where

RL = <r1, …. ,ri, ..., rn>, RL’ = <r1, ..., ri-1, ri+1, , ..., rn>, ri = <rti, rci, rei> and ri‘ = <rti’,

rci, rei> such that P’ is similar to P except for that P’ does not contain ri in in rule list.

Here, P’ is called the Remove a Rule (RER) Mutant of P. The fault detection condition for

RER based on RCA are given below.

a) Permit-overrides:

i) Reachability constraint

84

Policy target should evaluate to true or error and all the previous rules with permit

effect before the current rule under consideration should evaluate to N/A or error (i.e should

not evaluate to true).

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i}

ii) Necessity constraint

The necessity constraint is that – rule body evaluates to true or error. Formally, rbi ˅

Error(rbi)

iii) Propagation constraint

If policy target evaluates to true, ith rule body evaluates to true and ith rule effect is

deny, then all other rules should evaluate to N/A or error. Further, there should not exist a

pair of rules (excluding the current rule under consideration) such that one of them is permit

rule which evaluates to an error and other is deny rule which evaluates to true or error.

({PT)} ˄ rbi ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄ {(∃(p,d)

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄

(Error(rbd) ˅ rbd))})

If policy target evaluates to an error, ith rule body evaluates to true and ith rule effect is

deny, then all other rules with deny effect should evaluate to N/A and all other rules with

permit effect should not evaluate to true. Further, there should not exist a pair of rules

(excluding the current rule under consideration) such that one of them is permit rule which

evaluates to an error and other is deny rule which evaluates to true or error.

({Error(PT)} ˄ rbi ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i} ˄ {(∃(p,d) such

85

that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd)

˅ rbd))})

If policy target evaluates to true, ith rule body evaluates to true and ith rule effect is

permit, then all other permit rule should evaluate to N/A or error.

 ({PT } ˄ rbi ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i})

If policy target evaluates to an error, ith rule body evaluates to true and ith rule effect is

permit, then all other rules with permit effect should evaluate to N/A if all deny rules

evaluate to N/A. However, if any deny rule evaluates to true or error, then another permit

effect can evaluate to N/A or error.

({Error(PT)} ˄ rbi ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅ { ∃d (rbd

˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = <rbi,

permit> for j != i }])

If policy target evaluates to true or error, ith rule body evaluates to an error and ith rule

effect is deny, then all other rules with deny effect should evaluate to N/A and all other

rules with permit effect should evaluate to N/A or error.

({PT ˅ Error(PT)} ˄ Error(rbi) ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j != i} ˄ {rbj for any deny rule rj = <rbj, deny> for j != i}

If policy target evaluates to true or error, ith rule body evaluates to an error and ith rule

effect is permit, then all other rules with permit effect should evaluate to N/A.

({PT ˅ Error(PT)} ˄ Error(rbi) ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj = <rbj,

permit> for j != i})

86

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RER when RCA is permit-overrides:

({PT } ˄ rbi ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄ {(∃(p,d)

such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄

(Error(rbd) ˅ rbd))})

˅

({Error(PT)} ˄ rbi ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i}˄ {(∃(p,d) such

that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd)

˅ rbd))})

˅

({PT } ˄ rbi ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi,

permit> for j != i})

˅

({Error(PT)} ˄ rbi ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅ { ∃d (rbd ˅

Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = <rbi,

permit> for j != i }])

˅

({PT ˅ Error(PT)} ˄ Error(rbi) ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j != i} ˄ {rbj for any deny rule rj = <rbj, deny> for j != i}

˅

({PT ˅ Error(PT))} ˄ Error(rbi) ˄ ri = <rbi, permit> ˄ {rbj for any permit rule rj = <rbj,

permit> for j != i})

87

b) deny-unless-permit:

i) Reachability constraint

The policy target should be true or should evaluate to an error. For any permit rule rj

= <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or

evaluates to an error).

Hence, the reachability constraint is - policy target evaluates to true or error and all

the previous rule with permit effect before the current rule under consideration should

evaluate to N/A or error (i.e should not evaluate to true).

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i}

ii) Necessity constraint

The rule should evaluate to true. Formally, rbi

iii) Propagation constraint

If rule under consideration is deny rule, then the mutant is equivalent because the rule

level decision in mutant will be N/A and, in original policy, it will be true or error.

However, for deny-unless-permit RCA, anything other than permit effect results in deny

decision. And, it is only the current rule under consideration where mutant differs from

original policy and hence both will behave the same.

Hence, the rule under consideration should be permit rule such that all the rules with

permit effect evaluate to N/A or error.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RER when RCA is deny-unless-permit.

88

({PT ˅ Error(PT)} ˄ {rbi} ˄ {rbj ˅ Error(rbi) for any permit rule rj = < rbj, permit >for

j != i})

c) first-applicable:

i) Reachability constraint

Policy target should evaluate to true or error and all the previous rules with permit

effect before the current rule under consideration should evaluate to N/A.

ii) Necessity constraint

If policy target evaluates to true, the necessity constraint is that – rule body evaluates

to N/A or error.

If policy target evaluates to an error, the necessity constraint is that – rule body

evaluates to N/A.

iii) Propagation constraint

If policy target evaluates to true and ith rule body evaluates to true, then for all other

rules which have the same effect as that of ith rule should evaluate to N/A or error.

If policy target evaluates to true and ith rule body evaluates to an error, then for all

other rules after the ith rule which has the same effect as that of ith rule should evaluate to

N/A or true

If policy target evaluates to an error and ith rule body evaluates to an error or true, then

for all other rules after the ith rule which has the same effect as that of ith rule should evaluate

to N/A.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RER when RCA is first-applicable.

89

({PT} ˄ rbi ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any rule rj such that

rei = rej for j > i})

˅

({PT} ˄ Error(rbi) ˄ {rbj ˅rbj for any rule rj for j < i} ˄ {rbj for any rule rj such that

rei = rej for j > i})

˅

({Error(PT) } ˄ (rbi ˅Error(rbi)) ˄ {rbj for any rule rj for j < i} ˄ {rbj for any rule rj

such that rei = rej for j > i})

3.9 FDC for Policy Target True (PTT)

Policy target true is a mutation operator which alters the policy target such that it will

always evaluate to true. One of the transformation rules to make target always evaluate to

true is to make it empty so that it will always evaluate to true. Since it has a fault in the

target of a policy, it is under the category incorrect policy target.

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT’, RCA, RL’> where

PT and PT’ are such that P’ is similar to P except the target PT’ of P’ always evaluates to

true. Here, P’ is called the Policy Target True (PTT) Mutant of P. The fault detection

condition for Policy Target True based on RCA are given below.

a) permit-overrides:

i) Reachability constraint

The policy target is the first element to be evaluated in a policy element. Hence, it is

empty.

ii) Necessity constraint

The policy target evaluates to N/A or error.

90

iii) Propagation constraint

If policy target evaluates to N/A, at least one rule should evaluate to true or error.

If policy target evaluates to an error, there should be one permit rule that evaluates to

true or all permit rules evaluate to N/A and at least one deny rule evaluates to true.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of PTT when RCA is permit-overrides:

(PT ˄ {rbj ˅ Error(rbj) for any rule rj }) ˅ (Error(PT) ˄ ({rbj for any rule rj such that rj

= <rbj, permit>} ˅{rbj for all rule rj such that rj = <rbj, permit> ˄ rbj for any rule rj

such that rj = <rbj, deny>))

b) deny-unless-permit:

i) Reachability constraint

The policy target is the first element to be evaluated in a policy element. Hence, it is

empty.

ii) Necessity constraint

The policy target evaluates to N/A or error.

iii) Propagation constraint

Necessity constraint is sufficient for fault detection. Combining all constraints as a

single constraint, we get the following constraint for fault detection of PTT when RCA is

deny-unless-permit: PT ˅ Error(PT)

c) first-applicable:

i) Reachability constraint

The policy target is the first element to be evaluated in a policy element. Hence, it is

empty.

91

ii) Necessity constraint

The policy target evaluates to N/A or error.

iii) Propagation constraint

If policy target evaluates to true, at least one rule should evaluate to true or error.

If policy target evaluates to an error, there should be one rule that evaluates to true and

all other rules before that rule should evaluate to N/A.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of PTT when RCA is first-applicable:

(PT ˄ {rbj ˅Error(rbj) for any rule rj }) ˅ (Error(PT) ˄ ({rbj for any rule rj ˄ rbi for

any rule ri such that i < j }))

3.10 FDC for Policy Target False (PTF)

Policy target false is a mutation operator which alters the policy target such that it will

always evaluate to false. Since it has a fault in the target of a policy, it is under the category

incorrect policy target.

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT’, RCA, RL’> where

PT and PT’ are such that P’ is similar to P except the target PT’ of P’ always evaluates to

false. Here, P’ is called the Policy Target False (PTF) Mutant of P. The fault detection

condition for Policy Target False based on RCA are given below.

a) permit-overrides:

i) Reachability constraint

The policy target is the first element to be evaluated in a policy element. Hence, it is

empty.

ii) Necessity constraint

92

The policy target evaluates to true or error.

iii) Propagation constraint

At least one rule should evaluate to true or error.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of PTF when RCA is permit-overrides:

((PT ˅Error(PT)) ˄ {rbj ˅Error(rbj) for any rule rj }

b) deny-unless-permit:

i) Reachability constraint

The policy target is the first element to be evaluated in a policy element. Hence, it is

empty.

ii) Necessity constraint

The policy target evaluates to true or error.

iii) Propagation constraint

Necessity constraint is sufficient for fault detection. Combining all constraints as a

single constraint, we get the following constraint for fault detection of PTT when RCA is

permit-overrides: PT ˅ Error(PT)

c) first-applicable:

i) Reachability constraint

The policy target is the first element to be evaluated in a policy element. Hence, it is

empty.

ii) Necessity constraint

The policy target evaluates to true or error.

iii) Propagation constraint

93

At least one rule should evaluate to true or error.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of PTT when RCA is permit-overrides:

((PT ˅Error(PT)) ˄ {rbj ˅Error(rbj) for any rule rj }

3.11 FDC for First Permit Rule (FPR)

First Permit Rule is a mutation operator which changes the position of the first Deny

rule with the first Permit rule that follows the first Deny rule. Since it has a fault with the

ordering of the rules, it is under the category incorrect rule ordering.

Consider an XACML policy P = <PT, RCA, RL> where RL = <r1, …. ,rd… rp..rn>,

RL’ = <r1, ..., rp, … rd, ..., rn> such that P’ is similar to P except the order of first permit

rule following the first deny rule in P is swapped in P’.

 Note: The order of permit rules and deny rules does not alter the decision of the policy

element if the RCA are Permit-Override, Deny Override, Permit-unless-Deny or Deny-unless-

Permit

The order of permit rules and deny rules matters only when both or at least one pair of permit

rule and deny rule can be applied (true or error) at the same time. If they cannot be applied at the

same time, then such a mutant will be equivalent to the original policy.

The fault detection condition of FPR when RCA is first-applicable is as follows:

i) Reachability constraint

The policy target evaluates to true or error.

ii) Necessity constraint

The rule with first permit effect should evaluate to true or error and the rule with first

deny effect following the first permit rule should evaluate to true or error.

iii) Propagation constraint

94

Necessity constraint is sufficient for fault detection.

(rbp ˅ Error(rbp)) ˄ (rbd ˅ Error(rbd)) for the first permit rule rp = <rbp, permit> and

for the first deny rule rd = <rbd, deny> after rp.

3.12 FDC for First Deny Rule (FDR)

First Deny Rule is a mutation operator which changes the position of the first Permit

rule with the first Deny rule that follows the first Permit rule. Since it has a fault with the

ordering of the rules, it is under the category incorrect rule ordering.

Consider an XACML policy P = <PT, RCA, RL> where RL = <r1, …. ,rd… rp..rn>,

RL’ = <r1, ..., rp, … rd, ..., rn> such that P’ is similar to P except the order of first deny rule

following the first permit rule in P is swapped in P’.

The fault detection condition of FDR when RCA is first-applicable is as follows:

i) Reachability constraint

The policy target evaluates to true or error.

ii) Necessity constraint

The rule with first deny effect should evaluate to true or error and the rule with first

permit effect following the first deny rule should evaluate to true or error.

iii) Propagation constraint

Necessity constraint is sufficient for fault detection.

(rbd ˅ Error(rbd)) ˄ (rbp ˅ Error(rbp)) for the first deny rule rd = <rbd, deny> and for

the first permit rule rp = <rbp, permit> after rd.

3.13 FDC for Remove Parallel Target Element (RPTE)

95

Remove Parallel Target Element is a mutation operator in which an AnyOf element of

the target or AllOf element of an AnyOf element is removed from the target. Since it has a

fault of missing a target element, it is under the category missing target element.

Let PT be the target element of Policy P of the rule ri. The target element is composed

of the conjunction of AnyOf element and each AnyOf element is composed of the

disjunction of AllOf elements. Hence PT = AnyOf1 AnyOf2 … AnyOfi … AnyOfn and

arbitrary ith
 AnyOfi = AllOfi1 ˅ AllOfi2 ˅ AllOfij ˅ AllOfim. If either ith AnyOf is removed

or jth AllOf from ith AnyOf is removed, the resulted faulty policy is called Remove parallel

target element mutant. The fault detection condition for RPTE is presented as follows: -

a) Permit-overrides:

i) Reachability constraint

Policy target should evaluate to true or error and all the previous rules with permit

effect before the current rule under consideration should evaluate to N/A or error (i.e should

not evaluate to true).

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i}

ii) Necessity constraint

The necessity constraint for RPTE with ith AnyOf element missing is that – rule target

expression should have negation term for ith AnyOf element and rule condition evaluates to

true.

Formally, (AnyOf1 ˄ AnyOfi ˄ .. AnyOfn) ˄ rci

The necessity constraint for RPTE with jth AllOf element of ith AnyOf element missing

is that – rule target expression should have a positive term for jth AllOf element of ith AnyOf

96

element and all other AllOf element should have a negative term and rule condition

evaluates to true.

Formally, (AnyOf1 ˄ AnyOfi =(AllOf1 ˅ AllOfj ˅ AllOfm) ˄ .. AnyOfn) ˄ rci

iii) Propagation constraint

If policy target evaluates to true and ith rule effect is deny, then all other rules should

evaluate to N/A or error. Further, there should not exist a pair of rules (excluding the current

rule under consideration) such that one of them is permit rule which evaluates to an error

and other is deny rule which evaluates to true or error.

({PT)} ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j != i} ˄ {(∃(p,d) such

that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd)

˅ rbd))})

If policy target evaluates to an error, and ith rule effect is deny, then all other rules with

deny effect should evaluate to N/A and all other rules with permit effect should not evaluate

to true. Further, there should not exist a pair of rules (excluding the current rule under

consideration) such that one of them is permit rule which evaluates to an error and other is

deny rule which evaluates to true or error.

({Error(PT)} ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi, permit>

for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j != i} ˄ {(∃(p,d) such that (i

≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄ Error(rbp) ˄ (Error(rbd) ˅ rbd))})

If policy target evaluates to true, and ith rule effect is permit, then all other permit rules

should evaluate to N/A or error.

({PT } ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule rj = <rbi, permit>

for j != i})

97

If policy target evaluates to an error, and ith rule effect is permit, then all other rules

with permit effect should evaluate to N/A if all deny rules evaluate to N/A. However, if any

deny rule evaluates to true or error, then another permit effect can evaluate to N/A or error.

({Error(PT)} ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j != i} ˅ { ∃d (rbd ˅

Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit rule rj = <rbi,

permit> for j != i }])

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RTT when RCA is permit-overrides:

({PT } ˄ {(AnyOf1 ˄ AnyOfi ˄ .. AnyOfn) ˅ (AnyOf1 ˄ AnyOfi = (AllOf1 ˅ AllOfj ˅

AllOfm) ˄ .. AnyOfn)} ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any rule rj for j

!= i} ˄ {(∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄

Error(rbp) ˄ (Error(rbd) ˅ rbd))})

˅

({Error(PT)} ˄ {(AnyOf1 ˄ AnyOfi ˄ .. AnyOfn) ˅ (AnyOf1 ˄ AnyOfi = (AllOf1 ˅

AllOfj ˅ AllOfm) ˄ .. AnyOfn)} ˄ rci ˄ ri = <rbi, deny> ˄ {rbj ˅ Error(rbj) for any

permit rule rj = <rbi, permit> for j != i} ˄ {rbj for any deny rule rj = <rbi, deny> for j

!= i}˄ {(∃(p,d) such that (i ≠ p ≠ d) ˄ (rd = < rbd, deny>) ˄ (rp = < rbp, permit>) ˄

Error(rbp) ˄ (Error(rbd) ˅ rbd))})

˅

({PT } ˄ {(AnyOf1 ˄ AnyOfi ˄ .. AnyOfn) ˅ (AnyOf1 ˄ AnyOfi = (AllOf1 ˅ AllOfj ˅

AllOfm) ˄ .. AnyOfn)} ˄ rci ˄ ri = <rbi, permit> ˄ {rbj ˅ Error(rbj) for any permit rule

rj = <rbi, permit> for j != i})

˅

98

({Error(PT)} ˄ {(AnyOf1 ˄ AnyOfi ˄ .. AnyOfn) ˅ (AnyOf1 ˄ AnyOfi = (AllOf1 ˅

AllOfj ˅ AllOfm) ˄ .. AnyOfn)} ˄ rci ˄ ri = <rbi, permit> ˄ [{rbj for any rule rj for j

!= i} ˅ { ∃d (rbd ˅ Error(rbd)) ˄ (rd = <rbd, deny>) ˄ (rbj ˅ Error(rbj)) for any permit

rule rj = <rbi, permit> for j != i }])

b) deny-unless-permit:

i) Reachability constraint

The policy target should be true or should evaluate to an error. For any permit rule rj

= <rbj, permit> (j<i) before rule ri, rbj should not evaluate to true (i.e it should be N/A or

evaluates to an error).

Hence, the reachability constraint is - policy target evaluates to true or error and all

the previous rules with permit effect before the current rule under consideration should

evaluate to N/A or error (i.e should not evaluate to true).

In formal notation, it will be {PT ˅ Error(PT)} ˄ {rbj ˅ Error(rbj) for any permit

rule rj = <rbj, permit> for j < i}

ii) Necessity constraint

The necessity constraint for RPTE with ith AnyOf element missing is that – rule target

expression should have negation term for ith AnyOf element and rule condition evaluates to

true.

Formally, (AnyOf1 ˄ AnyOfi ˄ .. AnyOfn) ˄ rci

The necessity constraint for RPTE with jth AllOf element of ith AnyOf element missing

is that – rule target expression should have a positive term for jth AllOf element of ith AnyOf

element and all other AllOf element should have a negative term and rule condition

evaluates to true.

99

Formally, (AnyOf1 ˄ AnyOfi =(AllOf1 ˅ AllOfj ˅ AllOfm) ˄ .. AnyOfn) ˄ rci

iii) Propagation constraint

If rule under consideration is deny rule, then the mutant is equivalent because the rule

level decision in mutant will be deny, and, in original policy, it will be N/A or error.

However, for deny-unless-permit RCA, anything other than permit effect results in deny

decision. And, it is only the current rule under consideration where mutant differs from

original policy and hence both of them will behave the same.

Hence, the rule under consideration should be permit rule such that all the rules with

permit effect after the ith rule should evaluate to N/A or error.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RTT when RCA is deny-unless-permit.

({PT ˅ Error(PT)} ˄ {({(AnyOf1 ˄ AnyOfi ˄ .. AnyOfn) ˅ (AnyOf1 ˄ AnyOfi = (AllOf1

˅ AllOfj ˅ AllOfm) ˄ .. AnyOfn)}) ˄ rci } ˄ {rbj ˅ Error(rbi) for any permit rule rj = <

rbj, permit >for j != i})

c) first-applicable:

i) Reachability constraint

Policy target should evaluate to true or error and all the previous rules with permit

effect before the current rule under consideration should evaluate to N/A.

ii) Necessity constraint

The necessity constraint for RPTE with ith AnyOf element missing is that – rule target

expression should have negation term for ith AnyOf element and rule condition evaluates to

true.

Formally, (AnyOf1 ˄ AnyOfi ˄ .. AnyOfn) ˄ rci

100

The necessity constraint for RPTE with jth AllOf element of ith AnyOf element missing

is that – rule target expression should have a positive term for jth AllOf element of ith AnyOf

element and all other AllOf element should have a negative term and rule condition

evaluates to true.

Formally, (AnyOf1 ˄ AnyOfi =(AllOf1 ˅ AllOfj ˅ AllOfm) ˄ .. AnyOfn) ˄ rci

iii) Propagation constraint

If policy target evaluates to true, then for all other rules which have the same effect as

that of ith rule should evaluate to N/A or error.

If policy target evaluates to an error, then for all other rules which have the same effect

as that of ith rule should evaluate to N/A.

Combining all constraints as a single constraint, we get the following constraint for

fault detection of RTT when RCA is first-applicable.

({PT} ˄ ({(AnyOf1 ˄ AnyOfi ˄ .. AnyOfn) ˅ (AnyOf1 ˄ AnyOfi = (AllOf1 ˅ AllOfj ˅

AllOfm) ˄ .. AnyOfn)}) ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj ˅ Error(rbj) for any

rule rj such that rei = rej for j > i})

˅

(Error(PT)} ˄ ({(AnyOf1 ˄ AnyOfi ˄ .. AnyOfn) ˅ (AnyOf1 ˄ AnyOfi = (AllOf1 ˅

AllOfj ˅ AllOfm) ˄ .. AnyOfn)}) ˄ rci ˄ {rbj for any rule rj for j < i} ˄ {rbj for any

rule rj such that rei = rej for j > i})

3.14 FDC for Change Rule Combining Algorithm (CRC)

Change Rule Combining Algorithm is a mutation operator in which the combining

algorithm of the policy is changed to another combining algorithm. Since it has a fault of

in combining algorithm, it is under the category incorrect combining algorithm.

101

Consider an XACML policy P = <PT, RCA, RL> and P’ = <PT, RCA’, RL> such that

P’ is similar to P except the RCA’ in P’ is different from one in P. Here, P’ is called the

Change Combining Algorithm (CCA) Mutant of P. The fault detection condition for CRC

presented as follows.

a) FDC for change from permit-overrides to Deny-overrides:

Policy target should evaluate to true or error.

There should exist at least one pair of rules such that one of them is permit rule and

another is deny such that both evaluate to true or one evaluates to true and other evaluates

to an error.

Formally,

(PT ˅Error(PT)) ˄ (p,d) such that rp = <rbp, permit> ˄ rd = <rbd, deny> ˄ ({rbp ˄

rbd} ˅ {Error(rbp) ˄ rbd} ˅ {Error(rbd) ˄ rbp})

Note: if all of the permit rules are N/A while one or more deny rules evaluate to true or

error and if all of the deny rules are N/A while one or more permit rules evaluate to true or error,

permit-overrides and deny-overrides behaves the same.

b) FDC for change from permit-overrides to deny-unless-permit:

Policy target should evaluate to true or error.

˄

(All of the rules evaluate to N/A

˅

one or more permit rules evaluates to an error

˅

one or more deny rules evaluates to an error and the rest are N/A and PT evaluates to true)

Formally,

102

(PT ˅Error(PT)) ˄ ({rbj for all rules in P} ˅ {Error(rbj) for any permit rule rj = <rbj,

permit> in P} ˅{PT ˄ Error(rbk) for some deny rule rk = <rbk, deny> in P ˄ rbj for

other rules rj in P such that k j})

c) FDC for change from permit-overrides to permit-unless-deny:

Policy target should evaluate to true or error.

˄

(All of the rules evaluate to N/A

˅

one or more permit rule evaluates to true only if one or more deny rules evaluate to true.

˅

one or more deny rule evaluates to true only if one or more permit rule evaluates to true or

error

˅

one or more permit rule evaluates to an error and the rest evaluates to N/A and PT evaluates

to true.)

Formally,

(PT ˅Error(PT)) ˄ ({rbj for all rules in P} ˅ { rbd ˄ (rbp ˅ Error(rbp)) for any permit

rule rp = <rbp, permit> and for any deny rule rd = <rbd, deny> in P} ˅{PT ˄ Error(rbk)

for some permit rule rk = <rbk, permit> in P ˄ rbj for other rules rj in P such that k

j})

d) FDC for change from permit-overrides to first-applicable:

Policy target should evaluate to true or error.

˄

103

if rf is the first rule that evaluates to true, then rf is deny rule and there exists one or more

permit rule that evaluates to true or error

˅

if rf is the first rule that evaluates to an error and rf is deny rule, then there exists one or

more permit or deny rule that evaluates to true or one or more permit rule that evaluates to

an error

˅

if rf is the first rule that evaluates to an error and rf is permit rule, then there exists one or

more permit or deny rule that evaluates to true or one or more deny rule that evaluates to

an error)

Formally,

(PT ˅Error(PT))

˄

 ({(rbj ˄ rbf for some f such that j <f) ˄ (rf = <rbf, deny> ˄ rbp for some permit rule rp

= <rbp, permit>)}

˅

{(rbj ˄ Error(rbf) for some f such that j <f) ˄ (rf = <rbf, deny>) ˄ (rbi for some permit

or deny rule ˅ Error(rbp) for some permit rule rbp)))}

˅

{(rbj ˄ Error(rbf) for some f such that j <f) ˄ (rf = <rbf, permit>) ˄ (rbi for some permit

or deny rule ˅ Error(rbd) for some deny rule rbd))})

e) FDC for change from deny-overrides to permit-unless-deny:

Policy target should evaluate to true or error.

104

˄

(All of the rules evaluate to N/A

˅

one or more deny rule evaluates to an error

˅

one or more permit rule evaluates to an error and rest are N/A and PT evaluates to true)

Formally,

(PT ˅Error(PT)) ˄ ({rbj for all rules in P} ˅ {Error(rbj) for any deny rule rj = <rbj,

deny> in P} ˅{PT ˄ Error(rbk) for some permit rule rk = <rbk, permit> in P ˄ rbj for

other rules rj in P such that k j})

f) FDC for change from deny-overrides to deny-unless-permit:

Policy target should evaluate to true or error.

˄

(All of the rules evaluate to N/A

˅

one or more deny rule evaluates to true only if one or more permit rules evaluate to true.

˅

one or more permit rule evaluates to true only if one or more deny rule evaluates to true or

error

˅

one or more deny rule evaluates to an error and rest evaluates to N/A and PT evaluates to

true.)

Formally,

105

(PT ˅Error(PT)) ˄ ({rbj for all rules in P} ˅ { rbp ˄ (rbd ˅ Error(rbd)) for any permit

rule rp = <rbp, permit> and for any deny rule rd = <rbd, deny> in P} ˅{PT ˄ Error(rbk)

for some deny rule rk = <rbk, deny> in P ˄ rbj for other rules rj in P such that k j})

g) FDC for change from deny-overrides to first-applicable:

Policy target should evaluate to true or error.

˄

if rf is the first rule that evaluates to true, then rf is permit rule and there exists one or more

deny rule that evaluates to true or error

˅

if rf is the first rule that evaluates to an error and rf is permit rule, then there exists one or

more permit or deny rule that evaluates to true or one or more deny rule that evaluates to

an error

˅

if rf is the first rule that evaluates to an error and rf is deny rule, then there exists one or

more permit or deny rule that evaluates to true or one or more permit rule that evaluates to

an error

Formally,

(PT ˅Error(PT))

˄

 ({(rbj ˄ rbf for some f such that j <f) ˄ (rf = <rbf, permit> ˄ rbd for some deny rule rd

= <rbd, deny>)}

 ˅

106

{(rbj ˄ Error(rbf) for some f such that j <f) ˄ (rf = <rbf, permit>) ˄ (rbi for some permit

or deny rule ˅ Error(rbd) for some deny rule rbd)))}

˅

{(rbj ˄ Error(rbf) for some f such that j <f) ˄ (rf = <rbf, deny>) ˄ (rbi for some deny or

permit rule ˅ Error(rbp) for some permit rule rbp))})

h) FDC for change from permit-unless-deny to deny-unless-permit:

Policy target should evaluate to true or error.

˄

(All of the rules evaluate to N/A or error

˅

if one rule evaluates to true, then other rules with opposite effect must evaluate to true.)

Formally,

(PT ˅Error(PT)) ˄ ({rbj ˅Error(rbj) for all rules in P} ˅ { rbp ˄ rbd for any permit rule

rp = <rbp, permit> and for any deny rule rd = <rbd, deny> in P})

i) FDC for change from permit-unless-deny to first-applicable:

Policy target should evaluate to true or error

˄

if rf is the first rule that evaluates to true, then rf is permit rule and there exists one or more

deny rule that evaluates to true.

˅

if rf is the first rule that evaluates to an error and rf is permit rule, then policy target should

evaluate to true or one or more deny rule should evaluate to true.

˅

107

if rf is the first rule that evaluates to an error and rf is deny rule, then policy target should

evaluate to true if one or more deny rule evaluates to true.)

Formally,

(PT ˅Error(PT))

˄

 ({(rbj ˄ rbf for some f such that j <f) ˄ (rf = <rbf, permit> ˄ rbd for some deny rule rd

= <rbd, deny>)}

˅

{(rbj ˄ Error(rbf) for some f such that j <f) ˄ (rf = <rbf, permit> ˄ (rbd for some deny

rule rd = <rbd, deny>) ˅ PT)}

˅

{(rbj ˄ Error(rbf) for some f such that j <f) ˄ (rf = <rbf, deny> ˄ ((rbd for some deny

rule rd = <rbd, deny>)) ˅ PT)})

j) FDC for change from deny-unless-permit to first-applicable:

Policy target should evaluate to true or error

˄

if rf is the first rule that evaluates to true, then rf is deny rule and there exists one or more

permit rule that evaluates to true.

˅

if rf is the first rule that evaluates to an error and rf is deny rule, then policy target should

evaluate to true or one or more permit rule should evaluate to true.

˅

108

if rf is the first rule that evaluates to an error and rf is permit rule, then policy target should

evaluate to true if one or more permit rule evaluates to true.)

Formally,

(PT ˅Error(PT))

˄

 ({(rbj ˄ rbf for some f such that j <f) ˄ (rf = <rbf, deny> ˄ rbp for some permit rule rp

= <rbp, permit>)}

˅

{(rbj ˄ Error(rbf) for some f such that j <f) ˄ (rf = <rbf, deny> ˄ (rbp for some permit

rule rp = <rbp, permit>) ˅ PT)}

˅

{(rbj ˄ Error(rbf) for some f such that j <f) ˄ (rf = <rbf, permit> ˄ ((rbp for some

permit rule rp = <rbp, permit>)) ˅ PT)})

Note: FDC for CRC from permit-overrides to deny-overrides is applicable from deny-

overrides to permit-overrides as well. Hence, we have all possible combinations between five

RCAs.

109

CHAPTER 4

Mutation-Based Test Generation

Mutation-based test generation involves generating test suites exploiting the fault

detection condition with the goal to kill all the non-equivalent mutants. The formalization

of complete fault detection conditions makes it feasible to automatically perform strong

mutation-based test generation. From fault detection condition, we know that if any request

satisfies reachability, necessity and propagation for a fault, it will produce a different result

in original policy, and faulty policy. This difference in response can be exploited to

distinguish faulty policy from the correct policy. Hence, the goal is to generate test input

that satisfies the three constraints of the fault detection condition - reachability, necessity

and sufficiency/propagation for each possible fault policy.

FDC may include multiple mutually exclusive conditions. If one of them is satisfied,

it will be sufficient for the fault detection. As a result, we just use one of the mutually

exclusive conditions for each fault. In other words, we do not need to generate multiple

requests for each of the mutually exclusive conditions because it will just generate

redundant test cases. The process of identifying such sufficient mutually exclusive

conditions (if any exist) to detect a fault is discussed in Section 1.3.2. The overall process

for strong mutation-based (SMT) test generation is depicted in Algorithm 1.

110

4.1 Strong Mutation-Based Test Generation

Algorithm 1: Mutation-based generation of the near-optimal test suite (SMT)

Import functions: kill(M, Q) returns the list of mutants in M that are killed by test suite Q

 Z3-request(FDC) returns a solution to the constraint FDC

Input: Policy P= < PT, RCA, [r1, r2,…, rn]>, Ω is a list of mutation operators

Output: A set of access requests Q

Variables: M is a mutant pool, OPS is a list of mutation operators, FDC is a fault

detection condition, q is a test input

1 Q є

2 While Ω

3 OPS select one or more mutation operators from Ω

4 M list of mutants created by mutation operators OPS

5 M M – kill(M, Q)

6 While M

7 FDC compose the fault detection conditions of one or more mutants

8 q Z3-request(FDC)

9 If (q is not null) // otherwise equivalent mutant

10 Q Q {q}

11 M M – kill(M, {q})

12 EndIf

13 EndWhile

14 EndWhile

15 Return Q

111

From formalization of the fault detection condition, we have identified RTF, RCF,

ANF, RNF, and RER have common fault detection conditions among various possible

mutually exclusive fault detection conditions for each of them. Algorithm 6 in Section 4.3

presents such common fault detection conditions among them. As a result, we do not need

to deal with each of those mutation operators individually. In other words, if we generate

a request that satisfies that common fault detection condition among them, it can kill the

mutants from RTF, RCF, ANF, RNF and RER. So, we select one (or more mutation

operators if they have common FDC) at a time and generate mutants for them (line 3-4),

and run the mutants against the existing tests. The mutants that are already killed by the

existing tests are removed from the mutant pool (line 5). Then we compose the constraint

for one or more compatible mutants (line 7) and then solve the constraint by using the Z3

constraint solver [17] (line 8) If the constraint is solved, we convert the solution into an

access request and add it to the test suite (lines 9-10), otherwise, the mutant is considered

an equivalent mutant. We also run the new test against the current mutant pool. Mutants

killed by the new test will be removed from the pool (line 11). When all mutation operators

are handled, we return Q as the generated test suite.

Algorithm 1 is computationally expensive for the policy with a large number of the

rules because of the involved optimization (step 4, 5 and 11) which needs to generate

mutants and determine whether they are killed or not. These optimization steps are costly

because kill(M,Q) is in the order of O(n3) where n is the number of the rule in a policy.

Executing a test with each mutant has a complexity of O(n). The number of mutants is in

linear order and test suite size is linear as well. Hence, kill(M,Q) is in the order of O(n3)

112

because in the worst case we need to run an operation with the complexity of O(n) for

mutants of the size O(n) for each request in test suite of the size O(n).

As a result, if n grows very large in big policies, the optimization steps grows in the

cubic order which makes it unfeasible to use for large policies. So, we also formulated the

mutation-based test generation without optimization which we referred to as Non-

Optimized Strong Mutation-based Testing (NO-SMT) which generates a test suite that

achieves a 100% mutant score like SMT. NO-SMT is nothing but the Algorithm 1 itself

excluding the steps 4,5 and 11. However, it will have many redundant test cases than that

from SMT. Hence, it is the trade-off between test generation time against test suite size.

We have implemented these algorithms as an extension to the open source XPA tool.

The complexity of step 7 (for a single iteration) i.e generation of FDC constraint will

be in the order of O(n). The details on FDC constraint generation for each mutation operator

is presented in Section 4.1 through Section 4.14. The time complexity of step 8 (for single

iteration) is the time complexity of Z3 for solving FDC constraint expression. Let, O(Z3)

represents the time complexity of Z3 at step 8. kill(M, {q}) in step 11 will be in the order

of O(n2) since it is similar to kill(M,Q) but for a single test q. Since the size of M will be in

linear order, the time complexity of step 6 through step 13 will be in the order of O(n.(

O(Z3)+ n2)). Similarly, the time complexity of NO-SMT will be in the order of O(n.(O(Z3)

+ n)).

As demonstrated in the empirical study, the test generation time of SMT grows much

faster than RC, DC, and MC/DC. It is worth pointing out that, in this paper, the mutation-

based generation of the near-optimal test suite is not meant to be a practical test generation

method for large-scale XACML policies. Instead, our goal is to use the test suite as a

113

benchmark for measuring relative cost-effectiveness of other testing methods. In addition,

the mutation-based test suite can be used to help improve other testing methods by

determining equivalent mutants and investigating fault detection conditions of live

mutants. However, coverage-based test generation does not guarantee 100% mutation

score and if 100% mutation score is desired irrespective of the size of a test suite, then we

can use NO-SMT for the larger policies as well.

The following are algorithms used to construct fault detection condition for each

possible mutant for each mutation operator in the fault model.

4.1.1 FDC Constraint and Tests Generation for CRE

Algorithm 2: generateTestsForCRE(P)

Input: Policy P= < PT, RCA, [r1, r2,…, rn]>

Output: A set of access requests Q

1 Q є

2 constraint PT

3 For each Rule ri in [r1, r2,…, rn] in P, do

4 ruleConstraint constraint

5 ruleConstraint ruleConstraint ruleReachability(P, ri)

6 ruleConstraint ruleConstraint rti rci

7 ruleConstraint ruleConstraint rulePropagation(P,ri,CRE)

8 Q Q U Z3-request(ruleConstraint)

9 EndFor

10 return Q

114

The input to the algorithm is policy P = < PT, RCA, [r1, r2,…, rn]> and output is

set of generated access request Q. Initially we set Q to be empty (line 1). We then set the

constraint expression from policy target if it is present, otherwise, the constraint is empty

(line 4). The next step is to iterate over each rule in the policy (line 3) and construct fault

detection condition constraint to kill the mutant. For each rule, the rule constraint is set to

constraint expression (line 4) from policy target constraint in line 2. Then, for each rule in

the policy, the rule constraint expression is concatenated with reachability constraint (line

5). Once the reachability constraint is met, the next task is to concatenate the rule constraint

with necessity constraint for the fault type (line 6) and then concatenate the propagation

constraint (line 7). The constructed rule constraint is the constraint with sufficient

constraint to kill the CRE mutant and is supplied to the constraint solver (line 8) to obtain

the value for the test inputs. When all the rules are processed, the generated set of test input

- Q is returned. The algorithm for rule reachability is presented in Algorithm 3 in Section

4.1.1 and that for rule propagation is presented in Algorithm 4 in Section 4.1.2. It should

be noted that reachability and propagation constraint is constructed taking common

mutually exclusive conditions for reachability and propagation constraint for RTT, RTF,

RCT, RCF, ANF, RNF and RER such that it works for all of them. CRE has slightly

different propagation constraint than others but still shares the common constraints among

them. Hence, rather than defining redundant propagation constraint for CRE only, we used

the same method for propagation constraint passing the mutation method itself as an

argument to tweak the propagation constraint based on the mutation operator.

115

4.1.2 FDC Constraint for Rule Reachability

Algorithm 3: ruleReachability(P, ri)

Import functions: hasCommonAttribute(rbi, rbj) returns true if rule body of ith rule and

rule body of jth rule has a common attribute

Input: Policy P= < PT, RCA, [r1, r2,…, rn]> , Rule ri= <rti, rci, rei>

Output: constraint

1 constraint є

2 If RCA = First-Applicable, then

3 For each rule rk in [r1, r2,…, ri-1] in P, do

4 constraint constraint (rtk rck)

5 endFor

6 else

7 if RCA = Permit-unless-Deny, then

8 for each rule rk in [r1, r2,…, ri-1] in P, do

9 if rek = Deny, then

10 constraint constraint (rtk rck)

11 endIF

12 endFor

13 else if RCA = Deny-unless-Permit, then

14 for each rule rk in [r1, r2,…, ri-1] in P, do

15 if rek = Permit, then

16 constraint constraint (rtk rck)

17 endIf

116

18 endFor

19 else if RCA = Deny-overrides, then

20 for each rule rk in [r1, r2,…, ri-1] in P, do

21 if rek = Deny, then

22 if hasCommonAttributes(rbi,rbk), then

24 constraint constraint (rtk rck)

25 else

26 dominantRuleCollection.add(rk)

27 endIf

28 endIf

29 endFor

30 else if RCA = Permit-overrides, then

31 for each rule rk in [r1, r2,…, ri-1] in P, do

32 if rek = Permit, then

33 if hasCommonAttributes(rbi,rbk), then

34 constraint constraint (rtk rck)

35 else

36 dominantRuleCollection.add(rk)

37 endIf

38 endIf

39 endFor

40 endIf

41 endIf

117

4.2 Return Constraint

If rule combining algorithm is first-applicable, then all the previous rules before the

current rule under consideration i.e. ith rule should evaluate to N/A (line 2-5) otherwise if

RCA is permit-unless-deny, then all the previous rules with deny effect should be N/A (line

7-12). If RCA is deny-unless-permit, all the previous rules with permit effect should be

N/A (line 13-18). If RCA is deny-overrides (or permit-overrides), then we only falsify deny

(or permit) rules with common attributes in rule body of current rule under consideration

and mark the deny (or permit) rules with no common attribute for later to be used for

propagation constraint (line 19-29 and line 30-41).

4.3 FDC Constraint for Propagation

Algorithm 4: rulePropagation(P,ri,mutationMethod)

Input: Policy P= < PT, RCA, [r1, r2,…, rn]> , Rule ri= <rti, rci, rei>

Output: constraint

1 constraint є

2 If RCA = First-Applicable, then

3 for each rule rk in [ri+1, ri+2,…, rn] in P, do

4 if rek = rei, then

5 constraint constraint (rtk rck)

6 endIf

7 endFor

8 else

9 if RCA = Permit-unless-Deny, then

10 for each rule rk in [ri+1, ri+2,…, rn] in P, do

118

11 if rek = Deny, then

12 constraint constraint (rtk rck)

13 endIf

14 endFor

15 else if RCA = Deny-unless-Permit, then

16 for each rule rk in [ri+1, ri+2,…, rn] in P, do

17 if rek = Permit, then

18 constraint constraint (rtk rck)

19 endIf

20 endIf

21 else if RCA = Deny-overrides, then

22 for each rule rk in [ri+1, ri+2,…, rn] in P, do

23 if rek = Deny, then

24 if hasCommonAttributes(rbi,rbk), then

25 constraint constraint (rtk rck)

26 else

27 dominantRuleCollection.add(rk)

28 endIf

29 endIf

30 endFor

31 if rei = permit and mutationMethod CRE then

32 for each rule rl in dominantRuleCollection, do

33 if (rtl rcl) (rtp rcp) for rp = <rbp, permit>, then

119

34 dominantIndeterminateFlag true

35 else

36 constraint constraint (rtl rcl)

37 endIf

38 endFor

39

40 if dominantIndeterminateFlag = true, then

41 permit-rules get permit rules of P

42 for each rp in permit-rules, do

43 constraint constraint (rtp rcp)

44 endFor

45 endIf

46 endIf

47 else if RCA = permit-overrides , then

48 for each rule rk in [ri+1, ri+2,…, rn] in P, do

49 if rek = permit, then

50 if hasCommonAttributes(rbi,rbk), then

51 constraint constraint (rtk rck)

52 else

53 dominantRuleCollection.add(rk)

54 endIf

55 endIf

56 endFor

120

57 if rei = deny and mutationMethod CRE then

58 for each rule rl in dominantRuleCollection, do

59 if (rtl rcl) (rtp rcp) for rp = <rbp, permit>, then

60 dominantIndeterminateFlag true

61 else

62 constraint constraint (rtl rcl)

63 endIf

64 endFor

65 if dominantIndeterminateFlag = true, then

66 deny-rules get deny rules of P

67 for each rd in deny-rules, do

68 constraint constraint (rtd rcd)

69 endFor

70 endIf

71 endIf

72 endIf

73 endIf

74 return constraint

If RCA is first-applicable, then all the rules after current rule under consideration with

the same effect as that of the current rule under consideration should evaluate to N/A. If

RCA is permit-unless-deny, then all the rules after ith rule with deny effect should be N/A.

If RCA is deny-unless-permit, all the rules after ith rule with permit effect should be N/A.

If RCA is deny-overrides (or permit-overrides), then we only falsify deny (or permit) rules

121

with common attributes in rule body of current rule under consideration and mark the deny

(or permit) rules with no common attribute for later to be used for propagation constraint.

If ith rule is deny (or permit), then propagation constraint is satisfied, and we can return the

constraint otherwise if it is permit (or deny) and mutation operator is not CRE (for CRE

the later propagation constraint i.e step 31- 46 is not required) and dominantRuleCollection

is not empty, we need to check for each rule in dominantRuleCollection whether falsifying

this deny (or permit) rule will fire another permit (or deny) rule. If this is the case, we

cannot falsify the current rule in dominantRuleCollection. Hence, we make it evaluate

indeterminate and set dominantIndeterminateFlag to true. If any deny (or permit) rule

evaluate to indeterminate, then for fault detection, all the permit(deny) rules should

evaluate to N/A.

4.4 FDC Constraint and Tests Generation for RTT

Algorithm 5: generateTestsForRTT(P)

Input: Policy P= < PT, RCA, [r1, r2,…, rn]>

Output: A set of access requests Q

1 Q є

2 dominantIndeterminateFlag false

3 dominantRuleCollection null

4 constraint PT

5 For each Rule ri in [r1, r2,…, rn] in P, do

6 ruleConstraint constraint

7 ruleConstraint ruleConstraint ruleReachability(P, ri)

8 ruleConstraint ruleConstraint rti (rci ˅ Error(rci))

122

9 ruleConstraint ruleConstraint rulePropagation(P,ri,RTT)

10 Q Q U Z3-request(ruleConstraint)

11 EndFor

12 return Q

Like CRE, we construct the FDC to kill the RTT by combining reachability, necessity

and propagation constraint. The necessity constraint for RTT is that target of the rule under

consideration should be N/A and rule condition should be true.

4.5 FDC constraint and tests generation for RTF

Algorithm 6: generateTestsForRTF(P)

Input: Policy P= < PT, RCA, [r1, r2,…, rn]>

Output: A set of access requests Q

1 Q є

2 dominantIndeterminateFlag false

3 dominantRuleCollection null

4 constraint PT

5 For each Rule ri in [r1, r2,…, rn] in P, do

6 ruleConstraint constraint

7 ruleConstraint ruleConstraint ruleReachability(P, ri)

8 ruleConstraint ruleConstraint (rti rci) ˅ Error(rbi)

9 ruleConstraint ruleConstraint rulePropagation(P,ri,RTF)

10 Q Q U Z3-request(ruleConstraint)

11 EndFor

12 return Q

123

The input to the algorithm is policy P = < PT, RCA, [r1, r2,…, rn]> and output is set of

generated access request Q. Initially we set Q to be empty (line 1). We set the

dominantIndeterminateFlag to false and dominantRuleCollection to null to keep track of

whether any dominant rule evaluated to indeterminate or not. If RCA is first-applicable,

then any rule is dominant. If RCA is permit-overrides or deny-unless-permit, then the rules

with permit effect will be the dominant rule. Similarly, rules with deny effect will be

dominant in policy with deny-overrides or permit-unless-deny RCA. We then set the

constraint expression from policy target if it is present, otherwise, the constraint is empty

(line 4). The next step is to iterate over each rule in the policy (line 5) and construct

sufficient condition constraint to kill the mutant. For each rule, the rule constraint is set to

constraint expression (line 6) from policy target constraint in line 2. Then, for each rule in

the policy, the rule constraint expression is concatenated with reachability constraint (line

7). Once the reachability constraint is met, the next task is to concatenate the rule constraint

with necessity constraint for the fault type (line 8) and then concatenate the propagation

constraint (line 9). The constructed rule constraint is the constraint with sufficient condition

to kill the RTF mutant which is supplied to constraint solver (line 10) to obtain the value

for the test inputs. When all the rules are processed, the generated set of test input - Q is

returned.

4.6 FDC Constraint and Test Generation for RCT

Algorithm 7: generateTestsForRCT(P)

Input: Policy P= < PT, RCA, [r1, r2,…, rn]>

Output: A set of access requests Q

1 Q є

124

2 constraint PT

3 For each Rule ri in [r1, r2,…, rn] in P, do

4 ruleConstraint є

5 ruleConstraint constraint ruleReachability(P,ri)

5 ruleConstraint ruleConstraint (rti ˅ Error(rti)) rci

6 ruleConstraint ruleConstraint rulePropagation(P, ri, RCT)

7 Q Q U Z3-request(ruleConstraint)

8 endFor

9 return Q

The sufficient condition to kill the RCT mutants is same as that for CRE except for

that condition of the rule under consideration should be N/A.

4.7 FDC Constraint and Test Generation for RCF

RCF and RTF have common sufficient condition for fault detection. Hence, Algorithm

6 for RTF is enough, and we don’t need to consider RCF if RTF is in the fault model.

4.8 FDC Constraint and Test Generation for ANF

RCF and RTF have common sufficient condition for fault detection. Hence, Algorithm

6 for CRE is enough and we don’t need to consider ANF if CRE is in the fault model.

4.9 FDC Constraint and Test Generation for RNF

RNF and RTF have similar sufficient condition to kill them. Hence, the constraint for

RTF is enough and we don’t need to consider RNF if RTF is in the fault model.

4.10 FDC Constraint and Test Generation for RER

RER and RTF have similar sufficient condition to kill them. Hence, the constraint for

RTF is enough and we don’t need to consider RER if RTF is in the fault model.

125

4.11 FDC Constraint and Test Generation for PTT

Algorithm 10: generateTestsForPTT(P)

Input: Policy P= < PT, RCA, [r1, r2, …, rn]>

Output: A set of access requests Q

1 Q є

2 constraint PT (rt1 rc1)

3 Q Q U Z3-request(constraint)

4 Return Q

The sufficient condition to kill PTT mutant is to make policy target evaluate to N/A

and make any rule’s (say the first rule) target and condition evaluate to true.

4.12 FDC Constraint and Test Generation for PTF

Algorithm 11: generateTestsForPTF(P)

Input: Policy P= < PT, RCA, [r1, r2, …, rn]>

Output: A set of access requests Q

1 Q є

2 constraint PT (rt1 rc1)

3 Q Q U Z3-request(constraint)

4 Return Q

The sufficient condition to kill PTF mutant is to make policy target evaluate to true

and make any rule’s (say the first rule) target and condition evaluate to true.

4.13 FDC Constraint and Test Generation for FPR

Algorithm 8: generateTestsForFPR(P)

126

Input: Policy P= < PT, RCA, [r1, r2 ,…, rn]>

Output: A set of access requests Q

1 Q є

2 constraint PT

3 d find the position of first Deny Rule

4 p find first Permit Rule after d

5 if such p and d does not exist

6 return

7 constraint rtd rcd

8 constraint rtp rcp

9 if RCA = first-applicable

10 For each rule ri in [r1, r2,…, rd-1] in P, do

11 constraint constraint (rti rci)

12 Q Q U Z3-request(constraint)

13 return Q

The FPR mutants behave similarly to the original policy if RCA is other than first-

applicable. Even for the first applicable, if there does not exist a pair of rules such that one

is deny and other is permit, then the FPR mutant behaves the same as original policy.

Hence, the sufficient condition to kill non-equivalent FPR mutant is to make target and

condition of a pair of rules evaluate to true such that one of them is permit rule and the

other is deny rule.

4.14 FDC constraint and test generation for FDR

Algorithm 9: generateTestsForFDR(P)

127

Input: Policy P= < PT, RCA, [r1, r2,…, rn]>

Output: A set of access requests Q

1 Q є

2 constraint PT

3 p find the position of first permit Rule

4 d find first deny Rule after p

5 if such p and d does not exist

6 return

7 constraint rtd rcd

8 constraint rtp rcp

9 if RCA = first-applicable

10 For each rule ri in [r1, r2,…, rd-1] in P, do

11 constraint constraint (rti rci)

12 Q Q U Z3-request(constraint)

13 return Q

The FDR mutants behave similarly to the original policy if RCA is other than first-

applicable. Even for the first applicable, if there does not exist a pair of rules such that one

is deny and other is permit, then the FDR mutant behaves the same as original policy.

Hence, the sufficient condition to kill non-equivalent FDR mutant is to make target and

condition of a pair of the rules evaluate to true such that one of them is permit rule and the

other is deny rule.

4.15 FDC Constraint and Test Generation for RPTE

Algorithm 12: generateTestsForRPTE(P)

128

Input: Policy P= < PT, RCA, [r1, r2,…, rn]>

Output: A set of access requests Q

1 Q є

2 constraint PT

3 For each Rule ri in [r1, r2,…, rn] in P, do

4 ruleConstraint є

5 ruleConstraint constraint ruleReachability(P,ri)

6 ruleConstraint ruleConstraint (rci ˅Error(rci))

7 ruleConstraint ruleConstraint rulePropagation(P,ri)

8 For each AnyOfj in [AnyOfi1, AnyOfij ,…, AnyOfim] in rti, do

9 anyConstraint ruleConstraint AnyOfi1 AnyOfij AnyOfin

10 Q Q U Z3-request(anyConstraint)

11 For each AllOfk in [AllOfij1, AllOfijk ,…, AllOfijl] in rti, do

12 allConstraint ruleConstraint AnyOfi1 (AllOfij1V AllOfijk

 ,…˅ AllOfijl) AnyOfin

13 Q Q U Z3-request(anyConstraint)

14 return Q

If there are m AnyOf clauses, then there should be m+1 expression such that one makes

all of them true and the rest makes each of them evaluate to false while the other evaluates

to true. In addition, for each AnyOf clause, if there are n AllOf clauses, then there should

be n+1 expression such that one makes all of them evaluate to false and the rest makes each

of them evaluate to true while others evaluate to false.

129

4.16 FDC constraint and test generation for CRC

Algorithm 13: generateTestsForCCA(P)

Input: Policy P= < PT, RCA, [r1, r2,…, rn]>

Output: A set of access requests Q

1 Q є

2 Constraint1 PT

3 Constraint2 PT

4 p find the position of permit Rule and deny Rule such that at least one of them

evaluates to true and other evaluates to true or error

5 d find first deny Rule after p

6 if such p and d does not exist

7 go to step 11

8 Constraint1 Constraint1 rtd rcd

9 Constraint1 Constraint1 Error(rtp rcp)

10 Q Q U Z3-request(Constraint1)

11 Constraint2 Constraint2 Error for all the rules [r1 … rn]

12 Q Q U Z3-request(Constraint2)

13 Return Q

The sufficient condition to kill CCA mutants is to make target and condition of a pair

of the rules evaluate to true such that one of them is permit rule and other is deny rule. In

addition, all the rules that can be made evaluated to an error should be evaluated to an error.

130

CHAPTER 5

Quantitative Analysis

This section presents our experiment that aims to evaluate the cost-effectiveness of the

afore-mentioned testing methods by comparing them to SMT. As mutation score is

commonly used as the main indicator of effectiveness for a testing method, we measure

cost-effectiveness by comparing mutation score with test suite size i.e how many mutants

are killed given the test suite size. Further, the test suite size reflects the average time of

test execution. We will also discuss test generation time to reflect the run-time efficiency

of testing methods.

5.1 Experiment Setup

The mutation-based test generation and all coverage-based test generation methods

discussed in this work are implemented in open source tool - XPA (XACML Policy

Analyzer) [15] which is based on Balana [13] - an open source implementation of XACML

3.0. Our experiment was performed on a 64bit Ubuntu laptop with 8th Generation Intel®

Core™ i7-8550U Processor (1.80GHz 8MB) and 16.0GB DDR4 2400MHz. The

experiments use various XACML 3.0 policies with different levels of complexity as shown

in Table 5.1. K-Market is the sample policy from the Balana [13]. Sample, Sample-fa, and

Sample-dup policies are created by us for this research to cover the language feature of

XACML policies not covered by other policies in the literature. All other policies are from

the literature. iTrust-X and fedora-rule3-X are synthesized from iTrust and fedora policies

131

respectively to study behavior in larger sized policies. The number of the rules ranges from

3 to 1,280 as depicted in Table 5.1 where ‘#’ represents ‘number of’ i.e. ‘#Rules’ means

‘number of the rules’ and LOC represents the line of code (markup) in the corresponding

policies.

The experiment involves generating mutants of each policy by using the mutation

operators in Table 3.1. Each mutation operator may generate several mutants for a given

policy. For example, given a policy with n rules, CRE (Change Rule Effect) creates n

mutants because it creates a mutant by changing the effect of each rule. The mutation

operators in Table 3.1 is based on the operators in the mutant generator, XACMUT [4].

The next activity is to identify the number of equivalent mutants and non-equivalent

mutants. As we applied strong mutation to generate SMT test suite, the number of mutants

killed from the strong mutation-based test suite (SMT) are non-equivalent mutants while

live mutants are equivalent mutants. Hence, we generate SMT test suite and run against the

mutants to identify the equivalent and non-equivalent mutants. As a result, the analysis

excludes mutants that are equivalent to their original policy. For example, the rule

combining algorithms permit-overrides and deny-overrides make no difference with

respect to a policy with permit-only (or deny-only) rules. Hence, a policy which only has

permit rules and its RCA changed from permit-overrides to deny-overrides are equivalent.

Our prior work on the formalization of semantic differences between combining algorithms

[26] provides descriptions about the conditions under which two combining algorithms are

equivalent. Table 5.1 lists the number of mutants for each subject policy.

As a next step, we generate test suites for each of the coverage-based test generation

methods for each of the subject policies and run that test suite against each policy and

132

record the actual response of each test. We know each recorded response for each request

(test case) is the correct response from the policy for this test case. Hence, it can be used

as the Oracle value of this test case when the mutants are tested later. Finally, we run the

test suite of each test generation method against mutants. Since mutants represent the faults

that are likely to occur in XACML policies, mutation score is considered the indicator of

the fault-detection capability, as commonly used by the software testing community [16].

Table 5.1: Policies used for the experiment

No Subject Policy LOC #Rules #Equivalent

Mutants

#Non-

equivalent

Mutants

1 Conference [21] 228 15 1 91

2 fedora-rule31 226 12 1 87

3 K-Market-blue

[13]

84 4 1 27

4 K-Market-sliver

[13]

58 3 1 21

5 K-Market-gold

[13]

106 5 1 32

6 Sample 152 6 1 55

7 Sample-fa 114 4 0 42

8 Sample-dup 80 4 1 33

1 http://www.fedora.info

133

9 fedora-rule3-2 588 32 1 207

10 fedora-rule3-3 2748 212 1 927

11 iTrust2 1282 64 4 450

12 iTrust-5 [15] 6402 320 4 2242

13 iTrust-10 [15] 12806 640 4 4482

14 iTrust-20 [15] 25602 1280 4 8962

The following section presents the results of the conducted experiment.

5.2 Results

5.2.1 Test Suite Size and Test Generation Time

Table 5.2 presents the number of tests generated for each subject policy for each testing

method. Typically, the test suite for NO-SMT has more tests. The test suite size of MC/DC

and SMT are nearly the same however SMT test suite is not larger than MC/DC test suite

for all the subject policies. The size of each RC test suite is the number of the rule in the

policy and it is always the smallest. The difference in test suite size between NE-DC and

DC as well as NE-MC/DC and MC/DC represents the error tests. Hence, there are only a

few error tests. For fedora with 12 rules has six error tests, while that of iTrust3-5 has only

one error tests for the policy with 320 rules. The reason is that most of the rules in the

iTrustX policy are defined over the same set of attributes - when a test makes one rule

evaluate to indeterminate, it will do the same for all other similar rules. As mentioned

before, SMT is computationally costly because of the involved optimization. It took SMT

2 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=start

134

36.02 hours (129655675 ms in Table 5.3) to complete the test generation for iTrust3-10.

The estimated SMT test generation time for iTrust3-20 is nearly 10 days. As a result, we

decided not to run SMT for iTrust-20. However, from NO-SMT, we know that for each

mutant, there is at least one test that kills it.

1
3
5

Table 5.2: Number of tests generated

Subject Policy RC NE-DC DC NE-

MC/DC

MC/DC SMT NO-

SMT

coference3 15 15 16 24 25 25 78

fedora-rule3 12 19 25 24 30 23 62

kMarket-blue-policy 4 7 10 8 11 7 21

kMarket-gold-policy 3 6 9 6 9 5 16

kMarket-sliver-policy 5 9 13 9 13 8 23

sample 6 13 19 15 21 16 51

sample-fa 4 9 15 10 16 11 30

sample-dup 4 7 10 9 12 8 23

fedora-rule3-2 32 39 45 64 70 62 162

fedora-rule3-3 212 219 225 244 250 242 702

iTrust3 64 65 66 196 197 196 387

1
3
6

iTrust3-5 320 321 322 982 983 982 1923

iTrust3-10 640 641 642 1964 1965 1964 3843

iTrust3-20 1280 1281 1282 3928 3929 - 7683

137

Table 5.3 shows the test generation time for each of the method for each of the subject

policies. The RC takes minimal test generation time as it has lesser number of tests. The

test generation time is roughly proportional to test suite size except for the SMT because of

the involved optimization of a test suite. All the testing methods are scalable except for the

SMT. As test generation time for iTrust3-10 is nearly one and half days, we decided not to

run SMT for iTrust3-20 because approximated time is nearly 10 days and this shows that

SMT is not scalable because of the involved mutation analysis for optimization of a test

suite size. However, for a policy with roughly hundred or lesser rules, SMT test generation

time is comparable to that of other testing methods.

1
3
8

Table 5.3: Test generation time (in milliseconds)

Subject Policy RC NE-DC DC NE-

MC/DC

MC/DC SMT NO-SMT

conference3 488 438 408 689 716 2847 2019

fedora-rule3 328 548 686 652 536 2222 1628

kMarket-blue-policy 96 176 252 210 307 467 519

kMarket-gold-policy 71 154 221 150 221 343 385

kMarket-sliver-policy 130 252 328 231 335 704 626

sample 174 358 506 435 557 1835 1309

sample-fa 101 241 569 276 488 862 763

sample-dup 117 201 270 237 323 669 593

fedora-rule3-2 847 1062 1290 1790 1935 14853 4534

fedora-rule3-3 5368 7779 8120 9467 10304 930226 22625

iTrust3 1644 1555 3511 5923 8349 171716 10363

iTrust3-5 8711 8884 24415 49093 64749 15875846 48091

1
3
9

iTrust3-10 13890 19089 84304 146987 211230 129655675 176758

iTrust3-20 45908 422653 562857 499790 696428 * 709927

140

The next section presents the mutation score and summarizes whether the mutants type

(based on mutation operators) are killed or not by each testing methods.

5.2.2 Fault Detection Capability

Table 5.4 presents the mutation score for each testing method for each subject policy.

The mutation score for SMT and NO-SMT are 100% for all the policies, so we did not

include them in Table 5.4. It should be noted that we did not generate and run SMT test

suite for iTrust3-20. However, from NO-SMT, we know that for each mutant, there is at

least one test that kills it. So, it will be 100% as well.

1
4
1

Table 5.4: Mutation Scores

Subject Policy RC NE-DC DC NE-MC/DC MC/DC

conference3 75.82 75.82 78.02 97.8 100

fedora-rule3 64.37 85.06 85.06 88.51 88.51

kMarket-blue-policy 81.48 96.3 96.3 100 100

kMarket-gold-policy 80.95 95.24 95.24 95.24 95.24

kMarket-sliver-policy 81.25 100 100 100 100

sample 69.09 87.27 90.91 92.73 96.36

sample-fa 66.67 85.71 90.48 92.86 97.62

sample-dup 48.48 78.79 84.85 90.91 96.97

fedora-rule3-2 36.71 55.07 55.07 56.52 56.52

fedora-rule3-3 27.62 51.13 51.13 51.46 51.46

iTrust3 42.67 58.22 58.22 100 100

iTrust3-5 42.82 57.36 57.36 100 100

1
4
2

iTrust3-10 42.83 57.25 57.25 100 100

iTrust3-20 42.84 57.19 57.19 100 100

143

Table 5.5 presents the type of mutants that could not be killed by each testing method.

In Table 5.5, the results for three kMarket policies are combined into one. Further, iTrust3

and fedora-rule3-2 can represent other policies in the group of iTrust-X and fedora-rule3-

X from Table 5.1, hence only iTrust3 and fedora-rule3-2 are included. The absence of

mutation operator in Table 5.5 represents that all the mutants of the corresponding type are

killed by that method for that policy or the mutation operator is not applicable to the policy.

The mutation operator without asterisk implies all the mutants of the type are live. For

example, RTT specifies, all the mutants of type RTT are not killed. The mutation operator

with an asterisk means some are not killed while some are not. Single asterisk implies less

than 50% of the type of mutant are not killed and double asterisk implies half or more

percentage of mutants of the type are not killed.

144

Table 5.5: Live Mutants

Subject

Policy

Testing Method

RC NE-DC DC NE-

MC/DC

MC-DC

Sample RTT **

RCT

PTF

RPTE **

CRC ** {FA,

DUP, PUD}

RTT **

RPTE **

RTT *

RPTE **

RTT **

RTT *

Sample-dup CRE*

RTT

RTF*

RCT

RER*

RPTE**

CRC

CRE*

RTF*

RCT

RER*

RPTE**

CRE*

RTF*

RER*

RPTE**

RCT

RPTE*

RPTE*

Sample-fa RTT**

RCT**

PTT

FDR

RPTE**

FDR

RPTE**

FDR

RPTE**

FDR

FDR

145

CRC**{DO,

ODO, PUD}

CRC*{DO,

ODO }

 CRC*{D

O, ODO }

Conference3 RPTE**

CRC* {FA,

DUP}

RPTE**

CRC*{FA,

DUP}

RPTE**

CRC*{FA

, DUP}

fedora-rule3-2 RTT**

RTF**

RCT**

RER**

RPTE**

CRC {FA,

PUD}

RTF**

RER**

RPTE**

RTF**

RER**

RPTE**

RTF**

RER**

RPTE**

RTF**

RER**

RPTE**

Kmarket RTT**

RCT*

PTT

RPTE**

CRC** {FA,

PUD}

RTT*

RPTE**

RTT*

RPTE**

RTT* RTT*

iTrust RTT

CRC

RPTE

RPTE**

RPTE**

146

The mutation score increases for methods from left to right in Table 5.4 and live

mutants type decreases as we go from left to right in Table 5.5. The mutation scores ranged

from 27% to 81% for the RC tests and Table 5.5 shows that it could not kill a majority of

the mutants. The mutation scores for NE-DC, DC, MC/DC and NE-MC/DC ranged from

51% to 100%. However, this does not mean that they have similar fault detection

capability. It is clear from Table 5.4 that all the policies have greater (if not the same)

MC/DC (or NE-MC/DC) mutation score than that from DC (or NE-DC). It is also supported

from the result in Table 5.5 which implies that the difference between fault detection

capability among MC/DC and DC is the ability of MC/DC to detect the RPTE mutant type.

It is also noteworthy that error tests (from NE-DC and NE-MC/DC) do not always

necessarily contribute to fault detection. However, they are crucial for detecting faults

resulted from CRC mutation operator as well as RCT mutation operators. Hence, the error

version of the testing method is recommended for higher fault detection capability. Further,

if we do not consider fedora-rule3-2 policy, Table 5.4 shows that the mutation score of

MC/DC is above 90% in most of the policies. Further, Table 5.2 shows that MC/DC and

SMT have comparable tests size and Table 5.3 shows that test generation time of MC/DC

is much less than SMT. These data not necessarily but may lead to infer that MC/DC is

runtime efficient and cost-effective test suite for achieving above 90% mutation score and

provide high-quality assurance of XACML policies. However, we know from the fault

detection condition that MC/DC does not explicitly satisfy the propagation constraint for

fault detection. As a result, if we increase the size of the policy where reachability and

necessity constraint does not necessarily make the propagation constraint to be true like in

fedora-rule3, the mutation score of MC/DC dropped from 88% to 51%.

147

Hence, though MC/DC is likely to achieve good mutation score in many policies, it

cannot assure that it will always lead to the high assurance of the XACML policies because

it explicitly satisfies only the reachability and necessity constraint. However, it should also

be mentioned that MC/DC satisfies the reachability and necessity constraint of the majority

of the faults that could be introduced by mutation operators in Table 3.1. Hence, we could

qualify MC/DC as near to weak mutation-based test generation method but that is not the

case with DC and RC. In fact, RC is far from satisfying necessity constraint for many of

the faults in Table 3.1.

5.2.3 Cost Effectiveness

While mutation score is a good indicator of the fault detection capability of a testing

method, it does not account for cost-effectiveness of the test suite i.e the number of mutants

killing capability of each test in a test suite. We consider the average number of Mutants

Killed Per Test (MKPT) as the indicator for cost-effectiveness.

1
4
8

Table 5.6: MKPT Scores

Subject RC NE-DC DC NE-

MC/DC

MC/DC SMT NO-SMT

conference3 4.6 4.6 4.44 3.71 3.64 3.64 1.17

fedora-rule3 4.67 3.89 2.96 3.21 2.57 3.78 1.4

kMarket-blue-

policy

5.5 3.71 2.6 3.38 2.45 3.86 1.29

kMarket-gold-

policy

5.67 3.33 2.22 3.33 2.22 4.2 1.31

kMarket-sliver-

policy

5.2 3.56 2.46 3.56 2.46 4 1.39

sample 6.33 3.69 2.63 3.4 2.52 3.44 1.08

sample-fa 7 4 2.53 3.9 2.56 3.82 1.4

sample-dup 4 3.71 2.8 3.33 2.67 4.12 1.43

fedora-rule3-2 2.38 2.92 2.53 1.83 1.67 3.34 1.28

1
4
9

fedora-rule3-3 1.21 2.16 2.11 1.95 1.91 3.83 1.32

iTrust3 3 4.03 3.97 2.3 2.28 2.3 1.16

iTrust3-5 3 4.01 3.99 2.28 2.28 2.28 1.17

iTrust3-10 3 4.03 3.996 2.282 2.28 2.28 1.16

iTrust3-20 3 4.001 3.998 2.281 2.28 - 1.16

150

Table 5.6 shows MKPT scores for various testing methods discussed in this work.

Further, it suggests that RC has good MKPT scores and in many policies, it even achieved

the highest scores among other testing methods. However, it does not mean RC will have

the best cost-effectiveness in all policies as it has lower MKPT scores in iTrust-X and

fedora-rule3-X. NO-SMT, on the other hand, could achieve perfect mutation score but has

lowest MKPT score in all the subject policies. DC (or NE-DC) has better MKPT than that

of MC/DC (or NE-MC/DC). SMT and MC/DC have similar MKPT scores in many policies,

however, SMT has either similar or better MKPT scores in all the subject policies than

MC/DC. Hence, this shows that MC/DC is nearly as cost-effective as near-optimal test

suite from SMT and so is the decision coverage. In fact, in some policies decision coverage

(specifically NE-DC) has better MKPT score than SMT in many policies. However, they

do not assure perfect mutation score in many policies and could not always provide high-

quality assurance of the XACML policies.

5.3 Threats to Validity

There are many threats to validity. First, XPA is based on the Balana [13] – OASIS

implementation of XACML and hence our results depend on the proper implementation of

Balana. While analyzing some of the results when executing policy against tests, we have

found some inconsistencies between XACML specification and results from the Balana.

Hence, the error in Balana implementation could propagate into the experimental results

that we presented in this chapter. Second, the subject policies do not necessarily represent

all possible real-world XACML policies. Some of them originate from real XACML

systems, others are demonstrating examples (e.g., kMarket) or synthesized (e.g., iTrustX,

fedora-rule3-X). We have developed some sample policies (e.g., sample, sample-fa) to

151

capture the features not covered by policies in the literature of XACML. However, the

subject policies used in this research might still have not covered all language features of

XACML. Third, there is the possibility of different implementations for the coverage

criteria. Our result is based on the implementation of coverage-based test generation

methods in XPA. While we believe the proposed test generation algorithms reflect the

essential fault detection capabilities of the corresponding coverage criteria, different test

generation algorithms may lead to slightly different mutation scores and MKPT scores.

Fourth, all testing methods use Z3 as the constraint solver. Z3 is currently one of the most

efficient constraint solvers available. As different constraint solvers may result in different

attribute values for the same constraint, using another constraint solver in the

implementation may produce slightly different test suites and, thus, lead to slightly

different mutation scores. Fifth, although the 14 mutation operators have represented a

great variety of possible faults in XACML3.0 policies, they do not necessarily cover all

possible faults in real-world XACML3.0 policies. In addition, several mutation operators

in the literature [7] are not yet implemented in this work, including RUF (RemoveUnique-

nessFunction), AUF (AddUniquenessFunction), CNOF (Change-NOF-Function), and CLF

(ChangeLogicalFunction). Nevertheless, the formalization of the fault detection conditions

of incorrect rule targets and conditions has provided a foundation for dealing with these

types of mutants.

152

CHAPTER 6

Conclusions

6.1 Summary

We have presented the approach to strong mutation testing of XACML3.0 policies and

have formalized the strong fault detection conditions based on a comprehensive fault model

of XACML 3.0 policies. On the one hand, these strong fault detection conditions have been

exploited to generate near-optimal test suites of specific policies. On the other hand, the

strong fault detection condition gave us insight into the fault detection capabilities of

existing testing methods. It is clear from the fault detection condition that MC/DC is near

to weak mutation-based test generation method because it satisfies the reachability and

necessity constraint for most of the faults in the fault model. However, that is not the case

with DC and RC. In fact, RC is far from satisfying necessity constraint for many of the

faults. This suggests that though MC/DC is likely to achieve good mutation score in most

of the policies, it still could not always assure high-quality of XACML policies as it does

not explicitly satisfy the propagation constraint.

Further, the generation of the near-optimal test suite has enabled us to perform

quantitative evaluations on the cost-effectiveness of the testing methods of XACML

policies. The results from the quantitative section suggest that MC/DC is nearly as cost-

effective as near-optimal test suite from SMT. SMT has perfect fault detection capability

and good cost-effectiveness, however, it may be practically infeasible to apply for larger

153

policies with a larger number of the rules. The MC/DC including DC and RC is scalable

and cost-effective as close to the optimal test suite, however, they could not always assure

the high fault detection. Although MC/DC achieved good mutation score in most of the

policies, it performed badly in some of the policies. As a result, if perfect fault detection

capability is required and test suite size is not of prime concern, then we can use the NO-

SMT test suite. Hence, it is the trade-off between fault detection capability, cost-

effectiveness and test generation time.

The formulated fault detection conditions for fault model considered in this work is

not limited to the existing mutation operators. They provide theoretical guidelines for

developing new testing methods and dealing with faults created by new mutation operators.

6.2 Future work

In this work, we have determined the overall fault detection capability of RC, DC and

MC/DC based on whether they satisfy the reachability and necessity constraints of all the

mutation operators or not. However, this approach can be formally extended to

qualitatively evaluate the fault detection capability of each of the testing method relating

to fault type. The implication is that it neither needs to have a test suite nor the Oracle

values.

One of the other future works is to look at opportunities for further optimizing the

mutation-based test suite. Another research direction is to look for the opportunity to

optimize NO-SMT test suite without involving costly mutation analysis for the

optimization.

Finally, except the policies considered in this work, XPA would only be able to support

the analysis of policies which have syntax like one in the policies used in this work.

154

However, XACML is a broad XML based specification which allows us to define various

policies using various functions, syntax not involved in any of the policies in this work.

As a result, extending the XPA to support various other functions and syntax in the policy

specification to make it more robust XACML analyzer tool could be another work for the

future.

155

REFERENCES

[1] Hu VC, Ferraiolo D, Kuhn R, Friedman AR, Lang AJ, Cogdell MM, Schnitzer A,

Sandlin K, Miller R, Scarfone K. Guide to attribute-based access control (ABAC)

definition and considerations (draft). NIST special publication. 2013

Apr;800(162).

[2] eXtensible Access Control Markup Language (XACML) Version 3.0. 22 January

2013. OASIS Standard., 2013. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-

core-spec-os-en.html.

[3] Martin E, Xie T. A fault model and mutation testing of access control policies.

InProceedings of the 16th international conference on World Wide Web 2007

May 8 (pp. 667-676). ACM.

[4] Bertolino A, Daoudagh S, Lonetti F, Marchetti E. Xacmut: Xacml 2.0 mutants

generator. InSoftware Testing, Verification and Validation Workshops (ICSTW),

2013 IEEE Sixth International Conference on 2013 Mar 18 (pp. 28-33). IEEE.

[5] Bertolino A, Lonetti F, Marchetti E. Systematic XACML request generation for

testing purposes. InSoftware Engineering and Advanced Applications (SEAA),

2010 36th EUROMICRO Conference on 2010 Sep 1 (pp. 3-11). IEEE.

[6] Bertolino A, Daoudagh S, Lonetti F, Marchetti E. Automatic XACML requests

generation for policy testing. InSoftware Testing, Verification and Validation

(ICST), 2012 IEEE Fifth International Conference on 2012 Apr 17 (pp. 842-849).

IEEE.

[7] Bertolino A, Daoudagh S, Lonetti F, Marchetti E. The X-CREATE Framework-A

Comparison of XACML Policy Testing Strategies. InWEBIST 2012 Apr 18 (pp.

155-160).

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

156

[8] Bertolino A, Daoudagh S, Lonetti F, Marchetti E, Schilders L. Automated testing of

extensible access control markup language-based access control systems. IET

software. 2013 Aug 1;7(4):203-12.

[9] Bertolino A, Le Traon Y, Lonetti F, Marchetti E, Mouelhi T. Coverage-based test

cases selection for XACML policies. InSoftware Testing, Verification and

Validation Workshops (ICSTW), 2014 IEEE Seventh International Conference on

2014 Mar 31 (pp. 12-21). Ieee.

[10] Martin E, Xie T. Automated test generation for access control policies via change-

impact analysis. InProceedings of the Third International Workshop on Software

Engineering for Secure Systems 2007 May 20 (p. 5). IEEE Computer Society.

[11] Martin E, Hwang J, Xie T, Hu V. Assessing quality of policy properties in

verification of access control policies. InComputer Security Applications

Conference, 2008. ACSAC 2008. Annual 2008 Dec 8 (pp. 163-172). IEEE.

[12] Li Y, Li Y, Wang L, Chen G. Automatic XACML requests generation for testing

access control policies. In SEKE 2014 Jul (pp. 217-222).

[13] Balana. (2012). Open source XACML 3.0 implementation.

http://xacmlinfo.org/2012/08/16/balana-the-open-source-xacml-3-0-

implementation/

[14] Martin E, Xie T. A fault model and mutation testing of access control policies.

InProceedings of the 16th international conference on World Wide Web 2007

May 8 (pp. 667-676). ACM.

[15] XPA: XACML Policy Analyzer, Open source project at

https://github.com/dianxiangxu/XPA

[16] Just R, Jalali D, Inozemtseva L, Ernst MD, Holmes R, Fraser G. Are mutants a valid

substitute for real faults in software testing? InProceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering

2014 Nov 11 (pp. 654-665). ACM.

http://xacmlinfo.org/2012/08/16/balana-the-open-source-xacml-3-0-implementation/
http://xacmlinfo.org/2012/08/16/balana-the-open-source-xacml-3-0-implementation/
https://github.com/dianxiangxu/XPA

157

 [17] de Moura, L. and Bjørner, N. Z3: An efficient SMT solver. Proc. of the 14th

International Conference Tools and Algorithms for the Construction and Analysis

of Systems (TACAS'08), LNCS volume 4963. Springer

[18] DeMillo, R.A. and Offut, A. J. (1991). Constraint-based automatic test data

generation, IEEE Trans. on Software Engineering, 17(9): 900-910, Sept. 1991.

[19] Jia Y, Harman M. An analysis and survey of the development of mutation testing.

IEEE transactions on software engineering. 2011 Sep;37(5):649-78.

[20] Howden WE. Weak mutation testing and completeness of test sets. IEEE

Transactions on Software Engineering. 1982 Jul(4):371-9.

[21] Fisler K, Krishnamurthi S, Meyerovich LA, Tschantz MC. Verification and change-

impact analysis of access-control policies. InProceedings of the 27th international

conference on Software engineering 2005 May 15 (pp. 196-205). ACM.

[22] Martin, E. and Xie, T. Automated test generation for access control policies, In

Supplemental Proc. of ISSRE, November 2006.

[23] Hwang J, Xie T, Hu V, Altunay M. ACPT: A tool for modeling and verifying access

control policies. InPolicies for Distributed Systems and Networks (POLICY),

2010 IEEE International Symposium on 2010 Jul 21 (pp. 40-43). IEEE.

[24] Hughes G, Bultan T. Automated verification of access control policies.

[25] Hughes G, Bultan T. Automated verification of access control policies using a sat

solver. International journal on software tools for technology transfer. 2008 Dec

1;10(6):503-20.

[26] Xu D, Zhang Y, Shen N. Formalizing semantic differences between combining

algorithms in XACML 3.0 policies. InSoftware Quality, Reliability and Security

(QRS), 2015 IEEE International Conference on 2015 Aug 3 (pp. 163-172). IEEE.

[27] Xu D, Shrestha R, Shen N. Automated Coverage-Based Testing of XACML

Policies. InProceedings of the 23nd ACM on Symposium on Access Control

Models and Technologies 2018 Jun 7 (pp. 3-14). ACM.

158

[28] DeMilli RA, Offutt AJ. Constraint-based automatic test data generation. IEEE

Transactions on Software Engineering. 1991 Sep;17(9):900-10.

[29] DeMillo RA, Offutt AJ. Experimental results from an automatic test case generator.

ACM Transactions on Software Engineering and Methodology (TOSEM). 1993

Apr 1;2(2):109-27.

[30] DeMillo RA, Lipton RJ, Sayward FG. Hints on test data selection: Help for the

practicing programmer. Computer. 1978 Apr;11(4):34-41.

[31] Zheng Y, Zhang X, Ganesh V. Z3-str: a z3-based string solver for web application

analysis. InProceedings of the 2013 9th Joint Meeting on Foundations of Software

Engineering 2013 Aug 18 (pp. 114-124). ACM.

[32] Offutt J. A mutation carol: Past, present and future. Information and Software

Technology. 2011 Oct 1;53(10):1098-107.

[33] Andrews JH, Briand LC, Labiche Y. Is mutation an appropriate tool for testing

experiments? InProceedings of the 27th international conference on Software

engineering 2005 May 15 (pp. 402-411). ACM.

