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ABSTRACT

At 30% of all new diagnoses, the most prevalent malignancy for women is breast
cancer, which in the United States will result in an estimated 266,000 new cases this year
alone. Of the patients diagnosed with breast cancer, approximately 10-15% will develop
distant metastases within three years of the initial detection of a primary tumor. For
comparison, the five-year survival rate for localized breast cancer is 99%, whereas, the
survival rate for metastatic breast cancer drops drastically to only 27%. The significant
difference in survival rates is indicative of a need for a novel treatment strategy for
metastatic breast cancer.

Oncostatin M (OSM), a member of the interleukin-6 family of cytokines, has been
shown in the context of breast cancer to promote epithelial to mesenchymal transition
(EMT), promote tumor cell detachment and invasiveness, increase circulating tumor cell
(CTC) numbers, induce the expression of proangiogenic factors, and promote lung and
bone metastases. For these reasons, the work presented describes the structure-based drug
design, synthesis, and preliminary testing of small molecule inhibitors (SMIs) of OSM to
be used as a therapeutic treatment method for metastatic breast carcinomas. Based on
synthetic accessibility and computational screening, SMIs were synthesized and
subsequently evaluated for inhibition of OSM-induced signaling using an enzyme-linked
immunosorbent assay (ELISA). The SMIs were further assessed for binding affinity toward
OSM using isothermal titration calorimetry (ITC). The results suggested that SMIs capable

of inhibiting OSM-induced signaling also exhibited binding to OSM. Furthermore, SMIs

Vi



not able to bind to OSM correlated with poor inhibition of OSM-induced signaling.
Therefore, the preliminary results suggest: specific SMI-OSM binding occurs, SMls are
capable of inhibiting OSM-induced signaling, and that additionally optimized SMIs have

the potential to be used as novel therapeutic treatment options for metastatic breast cancer.
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CHAPTER ONE: Introduction

1.1 Overview of Breast Cancer
1.1.1 Cancer

Cancer is characterized as a collection of related diseases linked with accelerated

cell cycles, genomic alterations, and the potential for invasive growth that when left
untreated, ultimately leads to death. As such, cancer has become a major public health
concern worldwide and is the second leading cause of death in the United States, after heart
disease. In the United States, an estimated 1.7 million new cases of cancer will be
diagnosed in 2018, resulting in approximately 600,000 deaths (Siegel, 2018). Fortunately,
progress has been made against cancer, primarily due to advances in medical treatment and
earlier diagnosis, which has been indicated by a decline in mortality by about 1.5% per
year since the early 1990s (Siegel, 2018; DeSantis, 2014).

1.1.2 Breast Cancer

For women, breast cancer is the most prevalent malignancy and accounts for 30%
of all new diagnoses, producing an estimated 266,000 cases for 2018 alone (Siegel, 2018).
The five-year survival rate for localized breast cancer is 99%, however, the survival rate
for distant metastatic breast cancer drops to an abysmal 27% (Howlader, 2017). The drastic
difference in post-metastatic survival rates is suggestive of a need for a novel treatment
method.

Several factors affect the likelihood of developing breast cancer. In general, as

many as 10% of breast cancer patients in developed countries result from genetic



predisposition, inherited as an autosomal dominant trait. (McPherson, 2000). Mutations in
the BRCAL and BRCA2 genes are known to increase the risk of developing breast cancer.
Specifically, a study in Ashkenazi Jews found that carriers of these mutations developed
breast cancer in 56% of participants by the age of 70 (Key, 2001). In addition to genetic
predispositions, the chance of developing breast cancer increases with age, such that it
doubles every 10 years until menopause, when the rate then slows dramatically. However,
certain factors can reduce the risk for breast cancer. Notably, a full-term pregnancy
provides a 25% reduction in risk for women as well as increasing protection with an
increasing number of pregnancies (Key, 2001).

Breast carcinomas are generally classified as either ductal or lobular, depending on
where the cancer originates. The most common histological classification is ductal
carcinoma in situ (DCIS), which originates from cancer growth in the milk ducts (Malhotra,
2010). Within the United States, DCIS accounts for nearly 20% of all breast cancers
detected via screening mammography (Burstein, 2004; Cowell, 2013). The progression
toward DCIS begins with the formation of ductal hyperplasia, which occurs when there are
too many cells present within the duct. Subsequently, when the cells begin to take on an
abnormal appearance, it is termed atypical ductal hyperplasia. Finally, DCIS occurs when
the cells exhibit cancerous features, but remain confined inside the duct. Upon breaking
through the basement membrane, the DCIS is considered to progress to an invasive ductal

carcinoma (Cowell, 2013) (Figure 1.1).



Normal duct Ductal hyperplasia Atypical hyperplasia

Ductal carcinoma in situ Invasive ductal carcinoma

Figure 1.1  Progression of ductal carcinoma. When a normal duct generates too many
cells, it becomes a ductal hyperplasia. Subsequently, atypical hyperplasia occurs when the
cells become abnormal in appearance. As soon as the cells exhibit cancerous features, but
remain confined inside the duct they become a DCIS. Finally, upon breaking through the
basement membrane the cells are termed as an invasive ductal carcinoma.

Breast cancer is further categorized into four major subtypes: luminal A, luminal
B, HER2-enriched, and triple negative breast cancer (TNBC). The subtypes are determined
based on estrogen receptor (ER) status, progesterone receptor (PR) status, and the
expression of human epidermal growth factor receptor 2 (HER2). At 40% of all diagnoses,
the most prevalent is luminal A (ER+ and/or PR+, HER2-). It is the least aggressive in
terms of growth rate and recurrence and also has the best prognosis of all the subtypes.
Luminal B (ER+ and/or PR+, HER2+) and HER2-enriched (ER-, PR-, HER2+), which
combined account for another 30-35% of diagnoses, are more aggressive than luminal A

in terms of proliferation rates, but respond well to targeted therapies. The final subtype,



TNBC (ER-, PR-, HER2-), typically has a poor short-term prognosis and lacks targeted

therapies (Anderson, 2014; Sharp, 2014) (Table 1.1).

Table 1.1 Breast cancer subtypes.?

Luminal A Luminal B HER2-enriched TNBC

Percentage 40% 20% 10-15% 15-20%
of diagnosis

ER/PR Positive Positive Negative Negative
status

HER2 Negative Positive Positive Negative
status

20f the four subtypes, luminal A is the most commonly diagnosed and least aggressive. At
one third of diagnoses combined, luminal B and HER2-enriched typically respond well to
treatment with targeted therapies. TNBC is the least treatable subtype and generally has a
poor short-term prognosis.

Prognosis and treatment options for breast cancer patients are typically based upon
tumor-node-metastasis staging. Stage O lobular carcinoma in situ originates from the
glandular lobules of the breast and is unable to become invasive itself, but rather increases
the risk for developing an invasive form of breast cancer by 7% (Maughan, 2010).
Therefore, diagnosis with stage 0 lobular carcinoma in situ requires no treatment other than
rigorous surveillance for the development of additional breast malignancies. Conversely,
stage 0 DCIS is able to progress to invasive breast cancer and is typically treated by surgery
followed by radiation therapy. Treatment for early-stage invasive breast cancer (stages |
and I1) generally involves breast-conserving surgery prior to radiation therapy.
Additionally, adjuvant systemic therapies such as chemotherapy, endocrine therapy, and
tissue-targeted therapies are used in patients with early-stage breast cancer to help decrease
recurrence. The standard of care for patients diagnosed with stage 11l locally advanced

breast cancer includes induction chemotherapy and subsequent local therapy, such as



surgery and/or radiation. Finally, stage IV metastatic breast cancer has the lowest five-year
survival rate and is typically treated through a combination of adjuvant systemic therapies,
mastectomy, and radiation therapies (Maughan, 2010).

1.1.3 Metastasis

Invasive breast cancer cells have the potential to become metastatic, which results
in the formation of tumors at secondary sites in distant organs. Approximately 10-15% of
patients diagnosed with breast cancer develop distant metastases within three years of the
initial detection of the primary tumor (Weigelt, 2005). The multi-step process through
which metastasis occurs is known as the metastatic cascade, involving the detachment of a
tumor cell from the primary site and the ensuing formation of tumors at secondary sites.
The first step toward detachment of tumor cells encompasses a phenotypic change known
as an epithelial to mesenchymal transition (EMT), which allows the cells to change from
an adherent, non-motile cell into an invasive, non-adherent, and vastly mobile cell (van
Zijl, 2011). Following EMT, the tumor cells enter either the lymphatic or the blood
circulatory system through a process called intravasation. Upon entering the circulatory
system, the cells become designated as circulating tumor cells (CTCs) capable of migrating
to target organs. When the CTCs reach the target organs, a process called extravasation can
occur in which the cells exit the circulatory system through adjacent tissue. Interestingly,
the majority of CTCs either undergo apoptosis or are destroyed by the immune system
prior to extravasation. In fact, only 0.1% of CTCs are able to survive long enough to
extravasate at target organs. Upon extravasation, a mesenchymal to epithelial transition
(MET) occurs in which the cells undergo the reverse process from that of EMT (Fidler,

1970). Following MET, the tumor cells may either lay dormant or proliferate into a



secondary metastatic tumor (Price, 2016; Chaffer, 2006) (Figure 1.2). For breast cancer
specifically, metastasis preferentially occurs in the bones, brain, lungs, and liver (Bolin,

2012; Bos, 2009; Weigelt, 2005).
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Figure 1.2  Metastatic cascade of cancer. Upon formation of the primary tumor, cells
detach following EMT and intravasate into the circulatory system, where they become
known as CTCs. The CTCs migrate to target organs, extravasate from the circulatory
system, go through MET, and proliferate into a secondary metastatic tumor. The process
is then able to repeat itself from the secondary tumor to develop additional tumors.



1.2 Oncostatin M

1.2.1 Interleukin-6 Family

In general, cytokines such as the interleukin-6 (IL-6) family, bind to receptors on
target cells and exhibit both tumor-promoting and inhibitory effects on breast cancer
growth. IL-6 cytokines are important in regard to inducing the acute-phase response caused
by inflammation that is associated with either infection or injury as well as controlling the
immune system, which tends to be significantly impaired in breast cancer patients
(Heinrich, 1990; Knupfer, 2007). The pleiotropic IL-6 cytokines have been shown to
inhibit apoptosis as well as promote metastasis through an increase in EMT, cell motility,
and decrease of cell adhesion (Sullivan, 2009; Knipfer, 2007). One particular member of
the IL-6 family, oncostatin M (OSM), promotes breast cancer progression through the
enhancement of angiogenesis and metastasis as well as the promotion of cell detachment
and invasive capacity (Queen, 2005; Bolin, 2012).

1.2.2 Function of OSM

As a member of the IL-6 family of cytokines, the primary roles for OSM consist of
cellular growth, differentiation, development, hematopoiesis, neurogenesis, bone
homeostasis, liver function, immunomodulatory effects, and inflammatory response
(Modur, 1997; Heinrich, 2003). OSM functions via binding to two types of transmembrane
receptors: the leukemia inhibitory factor receptor (LIFR), composed of a glycoprotein
gp130 and LIFRp subunit, and the OSM-specific receptor (OSMR), which is made up of a
gp130 and OSMRJ} subunit (Liu, 1998; Heinrich, 2003).

Breast cancer is associated with several signaling pathways that are generally

activated by inflammatory cytokines, such as OSM (Kim, 2015; Demyanets, 2011).



Specifically, the signal transducer and activator of transcription 3 (STAT3),
phosphatidylinositol-3-kinase (P13K), and the mitogen-activated protein kinase (MAPK)
pathways are all involved in promoting the progression of breast cancer (Figure 1.3). The
STATS3 signaling pathway increases the invasive potential of cancer cells as well as
promotes EMT and migration (Tester, 2000). Additionally, the PI3K pathway is associated
with increased cancer cell survival against chemotherapeutics (Chen, 2013). Furthermore,
MAPK signaling induces migration and invasiveness of cancer cells and increases cellular
proliferation and survival (Meng, 2013; Menendez, 2005). Ultimately, activation of the
aforementioned pathways by OSM results in an increase in metastasis for breast cancer

patients and thus a decrease in overall survival rates.
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Figure 1.3  OSM induces the STATS3, PI3K, and MAPK pathways. OSM induces
activation of several signaling pathways that include STAT3, PI3K, and MAPK. Upon
activation via phosphorylation of signaling proteins, the translocation of transcription
factors into the nucleus allows for transcription of target genes responsible for the
promotion of cancer metastasis.

1.2.3 Role in Breast Cancer

Although OSM was originally identified as an inhibitor of breast cancer cell
proliferation in vitro, it has since been shown to play a role in cell detachment and
angiogenesis and as such exhibits enhancement of tumor progression and metastasis in vivo
(Queen, 2005; Bolin, 2012). Specifically, OSM has been implicated in inducing EMT, cell-
substrate detachment, and increased invasiveness in breast carcinoma cells in vitro, which
ultimately leads to enhanced metastatic potential (Bolin, 2012; Guo, 2013; Jorcyk, 2006).

One of the hallmarks of cancer progression is angiogenesis, a process by which new

blood vessels form to provide oxygen and nutrients for the developing tumor (Figure 1.4).



10

This process transpires when the tumor reaches a size greater than one millimeter, which
is the maximum distance that nutrients can efficiently diffuse from the adjacent capillaries.
OSM is able to facilitate angiogenesis and thus promote tumor growth via activation of the
STATS3 signaling pathway and the production of the proangiogenic vascular endothelial

growth factor (VEGF) (Fossey, 2011; Weiss, 2011).

A B C

Blood vessel

Figure 1.4  Angiogenesis stimulated by secretion of VEGF from tumor cells. A.
Upon reaching a size greater than one millimeter, the hypoxic tumor begins secreting
proangiogenic VEGF. B. Release of VEGF is able to stimulate the growth of adjacent blood
vessels into the tumor through a process known as angiogenesis. C. The formation of blood
vessels to the tumor allows for oxygen and nutrient uptake, thus resulting in overall tumor
growth.

Another important characteristic of cancer progression is the level of CTCs present
within the circulatory system. CTCs are thought to be the principal method by which tumor
metastasis to secondary sites occurs. Therefore, an elevated expression of CTCs has been
associated with an unfavorable prognosis typically correlated to metastatic progression
(Bednarz-Knoll, 2011; Cristofanilli, 2004). Furthermore, OSM has been shown to increase

the number of CTCs (Tawara, 2018). Interestingly, evidence also suggests that through a
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process called tumor self-seeding, CTCs are able to reenter an established primary tumor
and enrich it with cells that are more aggressive. This self-seeding process, facilitated
through IL-6 cytokines, allows for accelerated tumor growth and increased angiogenesis
(Kim, 2009).

1.2.4 OSM as a Therapeutic Target

In normal breast tissue, the expression of OSM is generally absent; however, OSM
expression was present within 74% of cases of inflammatory breast carcinoma tissue (Guo,
2013). Furthermore, OSM expression induces tumor progression, cell detachment, and
promotes metastasis, all of which are suggestive toward OSM as a potential therapeutic
target (Queen, 2005; Bolin, 2012). Therefore, the work described in this thesis outlines the
approach toward the structure-based drug design, synthesis, and preliminary testing of
small molecule inhibitors (SMIs) of OSM as novel therapeutic treatment options for
metastatic breast carcinomas.

1.3 Structure-Based Drug Design

In 2016, it was estimated that the cost for the research and development of a new
pharmaceutical drug was $2.87 billion (2013 dollars). Furthermore, it was predicted that
the cost would continue to increase yearly (DiMasi, 2016). In an effort to decrease
experimental cost as well as time spent on discovery, computational techniques such as
structure-based drug design (SBDD) have become increasingly popular. According to an
analysis of published clinical candidates from the Journal of Medicinal Chemistry between
2016-2017, SBDD was employed as the lead generation strategy toward the identification

of drug candidates in 14% of case studies (Brown, 2018).
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The goal of SBDD is to design a small molecule that is capable of either modulating
or inhibiting the function of a protein by a process that typically proceeds through multiple
cycles of optimization prior to yielding a lead ready for clinical trials. The primary step in
the process begins with target identification, the ideal target typically being a protein that
is linked to disease and whose function can be modulated through the binding of a small
molecule. Furthermore, the specified target should be unique in that there are no alternate
pathways able to supplement the function of the target protein and thus overcome the
inhibition provided by the SMI (Anderson, 2003).

After a target is chosen, the structural information is typically obtained using either
X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. However, in
circumstances where experimentally obtained structures are not an option, homology
modeling is a reliable method for target prediction in which known homologous protein
structures are used to predict the structure of unknown proteins (Kalyaanamoorthy, 2011).
The structural information can then be used to identify a potential binding site on the target
where SMIs can bind to produce the desired modulation or inhibition of the target protein.
Ideally, the binding sites identified consist of a pocket or protrusion with an assortment of
hydrogen bond donors and acceptors as well as hydrophobic characteristics (Anderson,
2003).

Upon identification of the binding site, the next step of SBDD is hit discovery
through the use of high-throughput virtual screening to generate a library of compounds
potentially able to bind to the target. This process computationally screens large chemical
databases by docking compounds into the binding site in silico and scoring them based

upon their steric and electrostatic interactions with the binding site, resulting in an
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abbreviated list of compounds with potentially high potency and selectivity (Shoichet,
2004; Sledz, 2018). Furthermore, virtual screening has yielded a 10-fold higher rate at
predicting compounds exhibiting favorable interactions with the target than that of
empirical screening techniques (Kalyaanamoorthy, 2011).

Leads are further evaluated based upon Lipinski’s “rule of five” to estimate the
drug-likeness of compounds (Lipinski, 1997). Several factors are considered when
determining drug-likeness, one such factor is molecular weight, which correlates to
intestinal and blood brain barrier permeability (Navia, 1996). Lipophilicity, expressed as
the ratio of octanol to aqueous solubility (Log P), is another important component related
to absorption. Permeability across a membrane bilayer is affected by the number of
hydrogen bond donor and acceptor groups a compound contains and is also an important
variable to consider (Kumar, 2016). Consequently, the “rule of five” states that poor
absorption and permeation and thus poor drug-likeness are more likely when there are more
than five hydrogen bond donors (expressed as the sum of OHs and NHs), more than 10
hydrogen bond acceptors (expressed as the sum of Ns and Os), the molecular weight is
over 500 g/mol, and the Log P is over five (Lipinski, 1997).

After a lead has been identified in silico as a potential inhibitor to the target protein,
it must be further evaluated in vitro using biochemical assays to validate its lead-likeness
(Anderson, 2003). Upon in vitro validation of the promising lead as potentially binding to
the target, the structure can then undergo additional cycles of optimization to improve the
binding efficiency. Once optimization is complete, the SMI can be synthesized and
evaluated via in vitro and in vivo tests with the goal of clinical trials and ultimately a

commercial drug (Figure 1.5).
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Figure 1.5  Process of structure-based drug design. A potential strategy for lead
generation and the optimization process through which the development of commercial
drugs can employ (modified from Anderson, 2003).

1.4 Design of SMI-10 Analogs using SBDD
SBDD was employed in order to identify potential SMIs that inhibit metastasis
through the disruption of the OSM-OSMR axis. Initially, the protein surface of the human
OSM crystal structure was scanned, which identified three locations where SMls could
potentially bind to OSM. Furthermore, it was found through homology modeling that
binding of SMIs at site 3 would disrupt OSM-OSMR binding directly and the other two

sites were thought to interfere via allosteric effects (Figure 1.6).
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Figure 1.6  Binding sites of OSM and SMI docked in binding pocket of OSM. A.
After scanning the OSM surface, three binding sites were located with site 3 able to directly
disrupt OSM-OSMR binding. Site 2 is located within the waist region and site 1 is located
at the furthest end from the binding interface. B. A potential SMI, available from the
National Cancer Institute Diversity Set I11, identified via high-throughput virtual screening
is shown docked in the binding pocket of OSM at site 3 (results from Danny Xu, PhD and
Matthew King, PhD; unpublished).

Using high-throughput virtual screening of the National Cancer Institute Open
Database and several other accessible databases comprised of about 345,000 compounds,
the top candidates were determined based upon their ability to bind to site 3. The candidates
were condensed to the top 16 compounds found to have a predicted binding constant less
than 10 uM and/or binding free energies greater than -5.0 kcal/mol. Furthermore, the top
compounds were assessed for their ability to inhibit OSM-induced phosphorylation of
STAT3 on Tyr-705 (pSTAT3) via an enzyme-linked immunosorbent assay (ELISA). The
results of the ELISA identified SMI-10 as a lead compound, with the work outlined in this

thesis focused on the structural optimization of second-generation analogs of SMI-10.
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Analogs were designed via a combination of synthetic accessibility and computational
screening to increase binding affinity and thus improve inhibition of OSM-induced
signaling. Specifically, diversity can be achieved through the modification of the
heteraromatic core, the benzodioxole substituents, and the phenylhydrazone side chain.
Additionally, computational experiments predicted an improved binding with the absence

of the nitro group. (Figure 1.7).

SRR RN v AR

Figure 1.7  Structure of SMI-10. A. Structure of the lead compound identified for its
ability to inhibit OSM-induced signaling. For the work outlined in this thesis, second-
generation analogs were designed using structural optimization of the sites shown in bold
to improve binding affinity toward OSM. B. Modification of the benzodioxole substituents
and the heteraromatic core shown in bold provide additional sites for potential future
optimization of analogs.

1.5 Concluding Remarks
The prevalence of cancer is well known, with breast cancer being the most
commonly diagnosed malignancy for women. Five-year survival rates for localized breast
cancer are relatively high, however, the survival rates drop by nearly 72% for metastatic
breast cancer (Howlader, 2017). The work described in this thesis outlines the structure-
based drug design, synthesis, and preliminary evaluation of SMI-10 analogs to be
potentially used as a novel therapeutic treatment option through the inhibition of the OSM-

OSMR axis.
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CHAPTER TWO: SYNTHESIS, CHARACTERIZATION, AND EVALUATION OF
SMI-10 ANALOGS
2.1 Introduction

2.1.1 Metastatic Breast Cancer

Cancer is a major public health concern worldwide and is the second leading cause
of death in the United States. In 2018, it is estimated that there will be about 1.7 million
new cases diagnosed resulting in 600,000 deaths in the United States alone (Siegel, 2018).
At 30% of all cases, the most prevalent malignancy diagnosed for women is breast cancer.
The five-year survival rate for localized breast cancer is 99%, however, for stage IV
metastatic breast cancer the rate drops to only 27% (Howlader, 2017).

In 2017, it was estimated that nearly 155,000 women in the United States were
living with metastatic breast cancer (Mariotto, 2017). Typically, women develop a
metastatic form of breast cancer months or years after completing treatment for earlier
stages of the malignancy, with only about 6% of women initially diagnosed with de novo
metastatic breast cancer (Howlader, 2016). The aim of pre-metastatic breast cancer
treatment is curative. In stark contrast, the primary objective of post-metastatic treatment
is mainly palliative, such that symptoms are controlled and toxicity is minimized (Mestres,
2017).

Approximately 67-70% of metastatic patients are progesterone receptor (PR) and
estrogen receptor (ER) positive and are typically treated with targeted therapies that block

growth of new cancerous cells through the interference of molecules essential for
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carcinogenesis and tumor growth (Mestres, 2017). An example of a targeted therapy
includes cyclin-dependent kinase (CDK) 4/6 inhibitors capable of halting cell cycle
progression and inducing cell cycle arrest (Finn, 2016). The mammalian target of
rapamycin (mTOR) inhibitors are another class of targeted therapy that function via
inhibition of the phosphatidylinositol-3-kinase (PI3K) pathway, which is responsible for
cell survival (Hahne, 2017). Alternatively, radiation therapy and chemotherapy can also be
used to help halt the growth of new tumors and potentially shrink existing tumors.
Chemotherapeutics are used for the treatment of metastatic breast cancer patients
who exhibit human epidermal growth factor receptor 2 (HER2) positive expression and are
either hormone receptor-negative or hormone receptor-positive, but no longer respond to
hormonal therapy. Among the most common chemotherapeutic agents used for the
treatment of metastatic breast cancer are taxanes, such as paclitaxel (Taxol), and
anthracyclines, such as doxorubicin (Adriamycin) (Mestres, 2017). Unfortunately, the
clinical usefulness of such treatment methods is limited due to toxicity that may prevent
adequate dosing (O’Brien, 2004). These chemotherapeutic agents are further limited in that
tumors often become resistant to treatment, which accounts for more than 90% of breast
cancer deaths (Ireland, 2018; Marquette, 2012). Additional chemotherapeutics include
monoclonal antibodies such as trastuzumab (Herceptin), which targets the overexpressed
HER2 gene in breast tumors that is responsible for the promotion of cancerous cell growth
and division (Emens, 2004). Unfortunately, patients with triple negative breast cancer
(TNBC) tend to have a poor short-term prognosis and do not respond to targeted therapies

(Anderson, 2014; Sharp, 2014).
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2.1.2 Oncostatin M as a Therapeutic Target

The interleukin-6 (IL-6) family of cytokines has been implicated in the promotion
of metastasis for breast cancer patients through an increase in epithelial to mesenchymal
transition (EMT), cell motility, and decrease of cellular adhesion (Sullivan, 2009; Knipfer,
2007). A specific member of this family, oncostatin M (OSM), promotes cancer
progression through the promotion of cell detachment, invasive capacity, increasing
circulating tumor cell (CTC) numbers, and enhancement of angiogenesis (Queen, 2005;
Jorcyk, 2006; Bolin, 2012; Tawara, 2018). Interestingly, the expression of OSM is typically
absent in normal breast tissue, but was found to be elevated within malignant tissue (Guo,
2013). Due to the elevated expression and capability to promote tumor progression, OSM
is a viable therapeutic target for the treatment of metastatic breast cancer.

OSM functions via binding to two types of transmembrane receptors: the leukemia
inhibitory factor receptor (LIFR), composed of glycoprotein gp130 and LIFRp subunits,
and the OSM-specific receptor (OSMR), which is made up of gp130 and OSMRJ subunits
(Liu, 1998; Heinrich, 2003). OSM-OSMR interactions have the potential to increase
invasiveness, angiogenesis, and metastasis in malignant cells through the activation of
several signaling pathways. These pathways include the signal transducer and activator of
transcription 3 (STAT3), PI3K, and mitogen-activated protein kinase (MAPK) pathways
(Tester, 2000; Chen, 2013; Meng, 2013; Smith, 2014) (Figure 2.1). Notably, increased
OSM signaling, either by overexpression of OSM or OSMR, has been associated with poor

prognosis in breast cancer patients (West, 2012).
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Figure2.1  OSM induces the STATS3, PI3K, and MAPK pathways. OSM induces
activation of several signaling pathways that include STAT3, PI3K, and MAPK. Upon
activation via phosphorylation of signaling proteins, the translocation of transcription
factors into the nucleus allows for transcription of target genes responsible for the
promotion of cancer metastasis.

Inhibition of the OSM-OSMR axis has recently been suggested as a targeted
therapy strategy. For instance, administration of OSM-bound antigen binding proteins
capable of disrupting the association of OSM to the gp130 subunit of the receptor has been
evaluated as a method for treating inflammatory disorders and diseases (Bembridge, 2017).
Additionally, inhibition of the OSM-OSMR axis has been suggested as a targeted therapy
against cervical squamous cell carcinomas (Kucia-Tran, 2017; Caffarel, 2014; Tawara,
2018). The aim of the work described in this thesis outlines the approach toward the design,

synthesis, and preliminary testing of small molecule inhibitors (SMIs) that disrupt the
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OSM-OSMR axis and thus prevent signal transduction of pathways promoting metastasis
and angiogenesis as an approach toward the treatment of metastatic breast cancer.
2.2 Design of SMI-10 Analogs

2.2.1 High-Throughput Virtual Screening

Computational screening was employed to identify potential SMIs that inhibit OSM
using ligand shape matching (results from Danny Xu, PhD and Matthew King, PhD;
unpublished). The protein surface obtained from the human OSM crystal structure (PDB
ID: 1EVS) was computationally scanned via the AutoLigand program to identify potential
clefts or pockets where the SMI could bind to OSM, which revealed three sites with a large
enough energy to volume distribution ratio capable of SMI binding. Due to the structural
similarities between OSM and the leukemia inhibitory factor (LIF), a structural alignment
of OSM and the LIF-LIF receptor complex (PDB ID: 2Q7N) was performed using an
AMBER force field. The results of the homology modeling indicated that binding of SMIs
at site 3 would directly interrupt OSM-OSMR binding (Figure 2.2). Furthermore, it was
predicted that bound SMIs at the remaining two sites might contribute to interrupted OSM-

OSMR binding via allosteric effects (unpublished).
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Figure 2.2  Binding sites of OSM and SMI docked in binding pocket of OSM. A.
After scanning the OSM surface, three binding sites were located with site 3 able to directly
disrupt OSM-OSMR binding. Site 2 is located within the waist region and site 1 is located
at the furthest end from the binding interface. B. A potential SMI, available from the
National Cancer Institute Diversity Set I11, identified via high-throughput virtual screening
is shown docked in the binding pocket of OSM at site 3 (results from Danny Xu, PhD and
Matthew King, PhD; unpublished).

The top SMI candidates were identified by high-throughput virtual screening of
about 345,000 compounds within the National Cancer Institute Open Database and other
accessible databases. The compounds were screened for their ability to bind at site 3 of
OSM, which was thought to be responsible for direct OSM-OSMR binding inhibition. The
candidates were then further condensed to the top 16 compounds that were found to have
a predicted binding constant less than 10 M and/or binding free energies greater than -5.0
kcal/mol.

2.2.2 OSM Inhibition Assay

OSM is able to activate several pathways associated with tumor progression,
including STAT3 (Tester, 2000). In order to assess the ability of the potential SMIs

identified via computational screening to disrupt signaling of OSM, inhibition of OSM-
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induced phosphorylation of STAT3 on Tyr-705 (pSTAT3) was evaluated via an enzyme-
linked immunosorbent assay (ELISA). Of the 16 SMIs tested via ELISA, SMI-8, -10, and
-11 exhibited the greatest inhibition of pSTAT3. In addition to inhibition of the STAT3
signaling pathway, the SMIs were also shown, through Western Blot analysis, to inhibit
other downstream components of OSM-induced signaling pathways such as
phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B

(AKT) (Figure 2.3).
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Figure 2.3  Screening of SMIs via ELISA and Western Blot analysis. A. MDA-MB-
231 human breast cancer cells were treated for 30 minutes after co-incubation of each SMI-
1, -8, -10, and -11 (5 uM) with OSM (5 ng/mL) in serum-free media for 1 hour at 37 °C.
The cells were lysed, collected, and pSTAT3 levels were measured by ELISA. The
reduction of pSTAT3 expression by the SMIs is indicative of inhibition of OSM-induced
STAT3 signaling. (mean £ SEM; n=3; *p<0.05; **p>0.01; unpaired t-test) B. A Western
Blot analysis was performed to assess the ability of each SMI to suppress downstream
pSTAT3, pERK, and pAKT signaling in MDA-MB-231 human breast cancer cells with
STAT3 and actin protein levels used as internal loading controls (results from Ken Tawara,
PhD; unpublished).
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2.2.3 Optimization of Lead Compound

Due to the ability of SMI-10 to inhibit OSM-induced signaling, it became the “lead
compound” for the work outlined in this thesis. In order to improve the ability of the lead
compound to inhibit signaling, second-generation analogs were designed based upon
additional computational screening and structural optimization. Specifically,
computational modeling of SMI-10 demonstrated a binding pose that allowed for
additional structural modifications of specific regions on the SMI to potentially improve

binding affinity and inhibition of OSM-induced signaling (Figure 2.4).
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Figure 2.4  Structure of SMI-10. Individual regions of SMI-10 are highlighted (blue
= benzodioxole side group A; yellow = benzodioxole side group B; red = furan core; purple
= nitro side group; green = side chain).

Through computational modeling, it was determined that there are several
electrostatic interactions between OSM and SMI-10 that are potentially favorable for
increased binding affinity (Figure 2.5) (results from Matthew King, PhD; unpublished).
Specifically, the aldimine nitrogen atom on the side chain of SMI-10 interacts with the
nearby positively charged K163 amino acid residue on OSM, resulting in an increased
binding affinity. Furthermore, it was predicted that the aldimine pi bond on the side chain
of SMI-10 might also be able to interact with the K163 amino acid residue to help stabilize

binding with OSM. Additionally, it was predicted that the nitro side group on SMI-10 was



31

not directly binding to OSM and thus potentially lowering the binding affinity of the SMI
as a result of increased interactions with the solvent. Due to this reason, it was projected
that SMI-10 analogs with the nitro group removed would have an increased binding affinity

compared to the parent SMI-10 compound.
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Figure 25  SMI-10 in binding pocket of OSM. Adjacent amino acid residues of OSM
to bound SMI-10 that are potentially favorable for enhancement of electrostatic interactions
via chemical modification of the SMI. Atom types are indicated by color: red = O, blue =
N, gray = C, and white = H. (image from Matthew King, PhD; unpublished).

Another important interaction that was determined computationally revealed a
hydrophobic pocket within the binding site of OSM consisting of 137, L92, P93, L98, L103,
and L108 amino acid residues. This pocket is important because the aromatic phenyl ring
at the end of the side chain on SMI-10 is able to fit into this space to allow for optimized
binding. Therefore, structural modifications of SMI-10 that retain hydrophobic

characteristics at this location should improve the binding affinity to OSM.
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Additionally, the benzodioxole side group A on SMI-10 fits into another
hydrophobic pocket in binding site 3 of OSM (L92 and A159), allowing for enhanced
binding. Furthermore, at the bottom of the hydrophobic pocket are several positively
charged arginine amino acid residues (R91 and R162) that stabilize the oxygen atoms
present on the benzodioxole side group A within the pocket. The electrostatic interactions
within this binding pocket allow for potential chemical modifications of the benzodioxole
side group A to improve binding affinity.

Another important interaction between OSM and SMI-10 involves hydrogen
bonding between the furan core and the adjacent positively charged K163 amino acid
residue. Due to this interaction, it is feasible to alter the oxygen on SMI-10 to other
electronegative atoms that would exhibit a similar electrostatic interaction to potentially
enhance binding affinity between OSM and the SMI. Ultimately, based on these
electrostatic interactions and synthetic accessibility, a small library of second-generation
analogs was synthesized to potentially improve the ability of the lead compound to inhibit
OSM-induced signaling.

2.3 Results and Discussion

2.3.1 Synthesis of SMI1-10 Analogs

The overall approach toward the synthesis of the SMI-10 analogs began with a
Suzuki coupling of the commercially available 4,5-dibromofuran-2-carbaldehyde with
excess 3,4-methylenedioxyphenyl boronic acid. The result of this reaction was an aldehyde
with aryl substituents in place of the original bromine atoms. From this product, a variety

of analogs were then obtained (Scheme 2.1).
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Scheme 2.1  Overall synthetic route for SMI-10 analogs. A Suzuki coupling of the
commercially available starting material results in the aldehyde intermediate with aryl
substituents. From this intermediate, a small library of second-generation analogs can then
be synthesized.

The SMI-10 analogs generated were designed based upon synthetic accessibility
and computational screening (Table 2.1). Specifically, the analogs were designed such that
the binding affinity between the SMIs and site 3 of OSM would be optimized. Ultimately,
the result of increased binding of the analogs to OSM leads to the disruption of the OSM-

OSMR axis and thus inhibition of OSM-induced signaling pathways.
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Table 2.1 Structures of SMI-10 analogs.?
g
0 o
| )R
o1

0

Compound R Compound R

SMI-10A A SMI-10G y
= H OH
N 0
SMI-10B SMI-10H i—<(
OMe

SMI-10C £\ : 4/<o

OH SMI-10I

SMI-10J HN_;

_ / —_
SMI-10E : SMI-10K

SMI-10D

SMI-10F : 4//—-/<0Et

aSummary of the analogs designed via a combination of synthetic accessibility and
computational screening to increase binding affinity and thus inhibition of OSM-induced
signaling.
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Compound 1

The synthesis of 1 began with a Suzuki coupling of the commercially available 4,5-
dibromofuran-2-carbaldehyde with 3,4-methylenedioxyphenyl boronic acid (Scheme 2.2).
The reaction was heated for nearly 24 hours to allow for complete substitution of both
bromine substituents with the aromatic groups despite the deactivated furan ring.
Following purification of the doubly-arylated compound, 1 was obtained in a 78% yield to
be used as an intermediate starting material for the synthesis of several additional SMI-10
analogs. It is worth noting that when the reaction time was decreased, mono-arylation
preferentially occurred at carbon five of the furan core. This result indicates that it is
feasible for future optimizations of SMI-10 analogs to contain two different aryl

substituents, which could potentially enhance binding affinity to OSM.

<I> O

032003 ASPh3

B
rjl/\o)_f Pd(PPhs),Cl,
- H
e 7\ 90 °C, 23 hr <O O 1
78% 5

Scheme 2.2 Synthetic route for 1. Compound 1 was obtained through a Suzuki
coupling of 4,5-dibromofuran-2-carbaldehyde with 3,4-methylenedioxyphenyl boronic
acid.

SMI-10A

Compound 1 was treated with nucleophilic phenylhydrazine to facilitate a
condensation reaction via the loss of the carbonyl oxygen as water and the formation of the
hydrazone product, SMI-10A (Scheme 2.3). However, initial attempts at various
temperatures and with several solvents such as tetrahydrofuran, ethanol, diethyl ether,

methylene chloride, and chloroform were unsuccessful and returned almost exclusively
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starting material. Nonetheless, the work of Furrow, et al. demonstrated the capability of
using a Lewis acid catalyst such as scandium triflate to facilitate condensation reactions
(Furrow, 2004). After the addition of the catalyst, the reaction occurred readily at ambient
temperature with a yield of 55% after purification. However, the purified product proved

to be unstable and partially decomposed over time as verified via NMR analysis.

H
N-NH
.y J e
o) \0 a Sc(OTf)3 o) \0 N
7 W tsne 7 N-NH
0 55% 0 O
{ 1 S SMI-10A
0 0

Scheme 2.3 Synthetic route for SMI-10A. Condensation reaction of the aldehyde
starting material with phenylhydrazine and scandium triflate to obtain the hydrazone, SMI-
10A, as the product.

SMI-10B

SMI-10B was obtained via a one pot synthesis by adding benzylamine to initially
form the imine intermediate through the loss of water. Following the formation of the
intermediate, trifluoroacetic acid was used to protonate the imine and produce the iminium
ion, which was then reduced with sodium cyanoborohydride. After the reductive

amination, the amine was formed with an 83% yield (Scheme 2.4).
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Scheme 2.4  Synthetic route for SMI-10B. Addition of benzylamine to 1 resulted in the
formation of an imine intermediate, which was then protonated to produce the iminium
ion. The reductive amination was completed with sodium cyanoborohydride as a reducing
agent to yield the final amine, SMI-10B, as the product.

SMI-10C and -10D

Initially, a reductive amination was proposed in which the aldehyde of 1 would be
converted to an aldoxime using hydroxylamine hydrochloride following a comparable
reductive amination protocol of furfural (De Roulet, 2015). The aldoxime would then be
subsequently reduced using acetic acid and zinc dust to yield the amine intermediate.
Finally, after the addition of benzamide to the amine following a similar procedure
described by Allen et al., the synthesis of SMI-10D would be achieved (Scheme 2.5)
(Allen, 2012). However, despite alterations in temperature and molar ratios, this route was

unsuccessful, which necessitated a revised synthetic route.
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Scheme 2.5 Proposed synthetic route for SMI-10D. Reductive amination of the
starting aldehyde, 1, to the resulting amine via an aldoxime intermediate followed by the
addition of benzamide to yield SMI-10D.

The synthesis of SMI-10C begun by reducing the aldehyde moiety of 1 with sodium
borohydride to yield the resulting alcohol, SMI-10C, in a yield of 99%. Upon synthesis of
SMI-10C, a two-step amidation was attempted in which the alcohol would be converted to
the corresponding amine following a protocol for a similar conversion (Kuang, 2005). The
amine would then be treated with benzoyl chloride to yield the final product, SMI-10D,
according to a comparable synthetic route (Ouairy, 2010) (Scheme 2.6). However, this
route provided little success toward the synthesis of SMI-10D and was consequently

abandoned in favor of a more direct route.
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Scheme 2.6  Proposed synthetic route for SMI-10C and -10D. Synthesis of SMI-10C
was achieved through the reduction of the aldehyde moiety on 1. The alcohol moiety would
then be converted through an amination step to obtain the corresponding amine. The final
proposed amidation step employed an acid chloride to obtain the SMI-10D product.

The most efficient route for the synthesis of SMI-10D was finally determined after
several unsuccessful routes were attempted. The initial reduction step of 1 to the
corresponding alcohol, SMI-10C, followed the same protocol as previously mentioned.
The synthetic route differed in the final step which involved the direct amidation of SMI-
10C to the final product, SMI-10D using benzamide and palladium(ll) acetate based upon
a similar protocol for the n-alkylation of carboxamides (Martinez-Asencio, 2011). Upon

purification, the final amide was obtained in an un-optimized yield of 25% (Scheme 2.7).
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Scheme 2.7  Synthetic route for SMI-10C and -10D. Synthesis of SMI-10C was
achieved through a reduction of the aldehyde moiety on 1. A final amidation step using
benzamide and palladium(ll) acetate allowed for the obtainment of SMI-10D.

SMI-10E

SMI-10E was synthesized via a Horner-Wadsworth-Emmons olefination reaction
using commercially available diethyl (2-oxo-2-phenylethyl)phosphonate, which was
initially deprotonated with sodium ethoxide using a protocol for a comparable reaction
scheme (Kossler, 2015). Following deprotonation, the phosphonate carbanion underwent
a nucleophilic addition to 1. After a final elimination step and purification, SMI-10E was

obtained in a 75% yield as a yellow solid (Scheme 2.8).
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Scheme 2.8  Synthetic route for SMI-10E. Horner-Wadsworth-Emmons olefination
reaction between the aldehyde moiety on 1 and commercially available diethyl (2-oxo-2-
phenylethyl)phosphonate to generate SMI-10E.

SMI-10F and -10G

The synthesis of SMI-10F followed a similar synthetic route to that of SMI-10E in
that it utilized a Horner-Wadsworth-Emmons olefination reaction with triethyl
phosphonoacetate to obtain a yellow oil with a yield of 40%. Following the formation of
SMI-10F, a saponification reaction was employed to convert the ester of SMI-10F to a
carboxylic acid. The hydrolysis of SMI-10F began with the addition of 1M sodium
hydroxide to produce a tetrahedral intermediate. Finally, SMI-10G was generated upon
expulsion of the alkoxide ion to form the carboxylic acid in an un-optimized yield of 21%

(Scheme 2.9).
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Scheme 2.9  Synthetic route for SMI-10F and -10G. A Horner-Wadsworth-Emmons
olefination reaction with triethyl phosphonoacetate and 1 generated SMI-10F in 40% vyield
following purification. Saponification of the ester of SMI-10F to the resultant carboxylic
acid moiety resulted in the synthesis of SMI-10G.

SMI-10H, -101, and -10J

After several unsuccessful attempts to employ a Suzuki coupling of the
commercially available 4,5-dibromo-2-furoic acid with 3,4-methylenedioxyphenyl
boronic acid to obtain SMI-101, it became evident that a new route was necessary. As such,
the carboxylic acid moiety on the furoic acid was first converted to an ester, 2, using an
acid-catalyzed Fischer esterification (Thede, 2010). Subsequently, SMI-10H could then be
successfully synthesized from the newly generated ester through the aforementioned
Suzuki coupling with an un-optimized yield of 51%. SMI-101 was synthesized through
saponification of SMI-10H under basic conditions to regenerate the carboxylic acid moiety
(Thede, 2010). Following an acidic workup and purification, the product, SMI-101, was
obtained with a yield of 80%. Finally, the synthesis of SMI-10J involved an amidation via

an acid chloride intermediate using the procedure of Tang et al. (Tang, 2013). The
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carboxylic acid moiety on SMI-101 was first converted to an acid chloride using thionyl
chloride and then treated with benzylamine to yield the final amide product, SMI-10J, in

78% yield (Scheme 2.10).

Br_oO_ QP MeOH, H,SO,  Br \O o
WOH 80 °C, 42 hr WOMe
Br 72% Br 2
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{ SMI-101 80% 4 SMI-10H
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1. SOCl,
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g
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Scheme 2.10 Synthetic route for SMI-10H, -101, and -10J. A Fischer esterification was
employed to synthesize 2 from the commercially available starting material. Following
esterification, a Suzuki coupling was performed to generate SMI-10H, which was
subsequently saponified to synthesize SMI-10l. Finally, an amidation reaction via an acid
chloride intermediate yielded the final amide product, SMI-10J.

SMI-10K
Using N,O-dimethylhydroxylamine hydrochloride, the commercially available 4,5-

dibromo-2-furoic acid was converted to a Weinreb amide, 3, in 57% yield. Subsequently,
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synthesis of 4 employed a Suzuki coupling with 3,4-methylenedioxyphenyl boronic acid
to replace the bromine substituents with benzodioxole side groups. Before synthesis of
SMI-10K could be completed, the Grignard reagent was first generated using [-
bromostyrene and magnesium. Addition of the resulting Grignard reagent to the Weinreb

amide, 4, resulted in the 69% yield of SMI-10K after purification (Scheme 2.11).

CHsNHOCH4*HCI,
0
Br_O_ f  EtN,DCC,DMAP Br \O
WOH rt, 24 hr / N—OMe
Br 57% B, mé
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o 5-OH
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Scheme 2.11 Synthetic route for SMI-10K. Formation of the Weinreb amide, 3, from
the 4,5-dibromo-2-furoic acid starting material resulted in a 57% yield. Compound 4 was
synthesized via a Suzuki coupling with 3,4-methylenedioxyphenyl boronic acid. After
addition of the Grignard reagent synthesized from p-bromostyrene and magnesium, 4 was
converted to the enone product, SMI-10K.

2.3.2 Predicted Binding Affinity of SMI-10 Analogs

All the second-generation SMI-10 analogs evaluated in the work outlined in this
thesis exhibit the same furan core and benzodioxole side groups as that of the original SMI-

10 compound. However, the analogs differ from the parent SMI-10 in regard to the side
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chain. Therefore, alterations in binding affinity of each analog is a direct result of
electrostatic interactions between the side chains and OSM.

Based upon computational modeling of the parent SMI-10 with OSM, there are
several potentially important interactions between the side chain and OSM. One such
interaction is the capability of the aldimine nitrogen atom on the side chain of SMI-10 to
interact with the nearby positively charged K163 amino acid residue on OSM. This
interaction suggested that analogs exhibiting an atom with a lone pair of electrons, such as
nitrogen, at this location would also be able to interact with this lysine residue and likewise
increase binding affinity. Additionally, it was proposed that analogs lacking this feature,
but instead containing a pi bond within the side chain, similar to the parent SMI-10, might
also be able to interact with the K163 amino acid residue to help stabilize binding, which
led to the development of analogs exhibiting this same structural feature. Lastly, it was
determined that the side chain of SMI-10 fit into a hydrophobic pocket to allow for better
binding, which suggested that analogs designed with similar hydrophobic characteristics
would allow for optimal interactions with OSM. Ultimately, analogs that exhibited at least
one of these interactions should be able to bind to OSM with an increased binding affinity
than that of analogs without any of these interactions (Table 2.1). Specifically, it was
computationally predicted that SMI-10C, -10H, and -10I would display the poorest
inhibition of OSM due to a lack of the aforementioned electrostatic interactions and the

lowest predicted binding affinities of the analogs tested.
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Table 2.2 Electrostatic interactions of SMI-10 analogs.?

SMI-10 Nitrogen and/or Hydrophobic Number of Predicted
Analog pi bond to interact ~ moiety on end electrostatic binding affinity
with K163? of side chain? interactions?  (kcal/mol)

SMI-10 Yes Yes 2 -5.9
SMI-10A Yes Yes 2 -7.4
SMI-10B Yes Yes 2 -6.6
SMI-10C No No 0 -6.0
SMI-10D Yes Yes 2 -7.3
SMI-10E Yes Yes 2 7.7
SMI-10F Yes No 1 -1.4
SMI-10G Yes No 1 -6.9
SMI-10H No No 0 -6.5
SMI-101 No No 0 -6.1
SMI-10J Yes Yes 2 -7.3
SMI-10K Yes Yes 2 -7.8

aPotentially important electrostatic interactions between OSM and the SMI-10 analogs as
an indication toward binding affinity. It was suggested that analogs exhibiting at least one
of the important interactions would bind to OSM more efficiently than analogs without any
of these interactions (results from Matthew King, PhD).

2.3.3 OSM Inhibition Assay

The ability of the SMI-10 analogs to disrupt the OSM-OSMR axis and thus inhibit
OSM-induced signaling was evaluated using an enzyme-linked immunosorbent assay
(ELISA) against both MDA-MB-231 and T47D human breast cancer cell lines (results
from Carsten Ashton; unpublished). Specifically, the ELISA measured the OSM-induced
relative phosphorylation of STAT3 on Tyr-705 (pSTATS3), which is present within the
STAT3 signaling pathway. Consequently, low levels of relative pSTAT3 expression were
indicative of an inactivation of the signaling pathway and thus an inactivation of OSM

itself.
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Based upon the ELISA results, a majority of the second-generation analogs
exhibited levels of OSM-induced signaling inhibition surpassing that of the original parent
SMI-10 (Figure 2.6). Additionally, the analogs seemed to function at relatively comparable
levels of inhibition with the notable exception of SMI-10C, -10H, and -10I, which were
less efficient at inhibiting OSM. This exception to the general trend is important due to the
fact that the analogs demonstrating the weakest disruption of OSM-induced signaling via
the ELISA results were also the analogs predicted computationally to have the weakest
binding affinity to OSM. Therefore, the computational predicted binding affinity

corresponded well to the experimental data obtained regarding OSM inhibition.
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Figure 2.6 = OSM-induced inhibition assay. T47D human breast cancer cells were
treated for 30 minutes after co-incubation of each SMI-10 analog (10 uM, 50 uM, or 100
pMM) with OSM (10 ng/mL) in serum-free media for 1 hour at 37 °C with 5% CO.. The
cells were lysed, collected, and pSTAT3 levels were measured by ELISA. The reduction
of pSTAT3 expression by the SMIs is indicative of inhibition of OSM-induced STAT3
signaling (mean + SEM; n=2 for 10 puM; n=3 for 50 uM and 100 uM; ***p>0.0002;
****p>0.0001; significance determined against positive control; unpaired t-test) (results
from Carsten Ashton; unpublished).
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2.4 Concluding Remarks

Due to the potential of OSM to increase invasiveness, angiogenesis, and metastasis
in malignant cells, inhibition of OSM-OSMR interactions has recently been suggested as a
targeted therapy treatment method (Caffarel, 2014; Kucia-Tran, 2017; Bembridge, 2017).
Based on computational analysis, it was determined that analogs possessing a hydrophobic
moiety at the end of the side chain and the ability to interact with the K163 amino acid
residue would exhibit an increased binding affinity compared to analogs without these
characteristics. Through the use of structure-based drug design, SMI-10 second-generation
analogs were designed, synthesized, and preliminarily evaluated for their ability to disrupt
the OSM-OSMR axis and thus inhibit OSM-induced signaling. Several of the second-
generation analogs were found both computationally and experimentally to be inhibitors
of OSM to an even greater extent than that of the original SMI-10 identified through high-
throughput virtual screening.

2.5 Materials and Methods

2.5.1 Materials and Reagents

For SMI-10 analogs, all solvents and reagents were obtained from Alfa Aesar,
Acros Organics, Fisher Scientific, EMD Chemical, Sigma-Aldrich, VWR Analytical,
Strem Chemicals, TCI Chemicals, or Oakwood Products unless otherwise specified. 4,5-
dibromofuran-2-carbaldehyde was supplied from Small Molecules, Inc. 3,4-
methylenedioxyphenyl boronic acid was obtained from Combi-Blocks.

For inhibition assays, SMI-10 analogs were diluted to 10 uM stock solutions in
anhydrous DMSO (obtained from Sigma-Aldrich) and stored at -20 °C. The recombinant

human oncostatin M was purchased from PeproTech.
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2.5.2 Equipment

NMR data was acquired via either a 600 MHz Bruker Avance 111 600 coupled with
Bruker Ultrashield 600 Plus or a 300 MHz Bruker Ultrashield 300 coupled with Bruker
Avance 111 300. A Bruker Daltonics maXis quadrupole time-of-flight was used for high
resolution mass spectrometry analysis. IR data was obtained using a PerkinElmer FT-IR
spectrometer with all samples analyzed using attenuated total reflection.

2.5.3 Characterization

All compounds were characterized based upon *H NMR spectroscopy, *C NMR
spectroscopy, high resolution mass spectrometry (HRMS), and infrared (IR) spectroscopy
(Appendix A-D).

2.5.4 SMI-10 Analogs

0
CT o o
WaRY
oy
$ .
4,5-dibromofuran-2-carbaldehyde (0.990 g, 3.90 mmol) was dissolved in 26 mL
dry, distilled DMF into which 3,4-methylenedioxyphenyl boronic acid (1.424 g, 8.58
mmol, 2.2 eq), cesium carbonate (7.624 g, 23.4 mmol, 6 eq), triphenylarsine (0.239 g, 0.78
mmol, 0.2 eq), and bis(triphenylphosphine)palladium(I1) dichloride (0.382 g, 0.14 mmol,
0.16 eq) were added under nitrogen atmosphere. The resulting brown solution was allowed
to reflux at 90 °C for 23 hours and then concentrated under reduced pressure to remove the
excess DMF. The remaining residue was dissolved in 100 mL EtOAc and washed with 3
x 50 mL saturated NaHCOs3 solution. The organic layer was dried with MgSOsa, filtered,

and concentrated to yield a brown solid. The crude product was applied to a 7 inch (5 cm)
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column containing silica gel eluted with 3:1 hexanes:EtOAc. Fractions containing pure
product as determined by TLC (rf = 0.3) were combined and concentrated to yield 1.003 g
of orange solid (78% yield). *H NMR (CDCl;z with 0.03% v/v TMS, 600 MHz) &: 9.64 (s,
1H), 7.19 (dd, 1H, J = 8.3 Hz, 1.7 Hz), 7.08 (d, 1H, J = 1.7 Hz), 6.85 (s, 2H), 6.82 (s, 1H),
6.78 (d, 1H, J = 8.2 Hz), 6.02 (s, 1H), 5.99 (s, 1H). 1*C NMR (CDCls with 0.03% v/v TMS,
600 MHz) o: 177.2, 153.9, 150.5, 148.7, 148.1, 147.9, 147.5, 126.1, 125.0, 123.9, 123.3,
122.4, 122.0, 109.1, 108.9, 108.6, 107.4, 101.5, 101.3. HRMS m/z: [M + H]" Calcd for
Ci19H1206 337.0712; Found 337.0715, Error 0.89 ppm. IR: 2919, 2853 cm'™.
g
0 \ O

7 \-nH
a5 D

Compound 1 (73.2 mg, 0.22 mmol) was dissolved in 5 mL dry CHCIs along with 4

SMI-10A

A molecular sieves. To the resulting solution was added scandium(lll) triflate (1.1 mg,
0.0022 mmol, 0.01 eq) and allowed to stir at rt. After 5 minutes, phenylhydrazine (43 L,
0.44 mmol, 2 eq) was added and allowed to stir for 15 hours. The resulting solution was
filtered using celite, washed with 5 mL CHClIs, and concentrated to yield a red oil. The
crude product was applied to a 6 inch (2 cm) column containing silica gel eluted with 6:1
hexanes:EtOAc (rf = 0.3) to yield 51.7 mg of pure product (55% yield). *H NMR (DMSO-
ds, 600 MHz) &: 10.44 (s, 1H), 7.78 (s, 1H), 7.23 (t, 2H, J = 7.6 Hz), 7.06-7.04 (m, 3H),
6.99-6.94 (m, 4H), 6.90 (dd, 1H, J = 8.0 Hz, 1.6 Hz), 6.83 (s, 1H), 6.76 (t, 1H, J = 7.6 Hz),
6.07 (s, 2H), 6.06 (s, 2H). 3C NMR (DMSO-ds, 600 MHz) &: 149.7, 148.0, 147.9, 147.6,

147.1, 1454, 129.6, 127.4, 127.0, 124.7, 123.4, 122.3, 120.7, 119.4, 113.8, 113.1, 112.5,
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109.21, 109.16, 109.1, 106.6, 101.8, 101.6. HRMS m/z: [M + H]" Calcd for C25H1sN20s

427.1288; Found 427.1297, Error 2.11 ppm. IR: 2891, 1682, 1600 cm™t.
0
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Compound 1 (60 mg, 0.18 mmol) was dissolved in 2 mL benzene. To this solution

SMI-10B

was added freshly distilled benzylamine (22 pL, 0.20 mmol, 1.1 eq) and allowed to reflux
at 85 °C under a nitrogen atmosphere for 4 hours. The reaction was then concentrated under
reduced pressure to remove excess benzene and the resulting residue was dissolved in 1
mL MeOH. Sodium cyanoborohydride (17 mg, 0.27 mmol, 1.5 eq) and trifluoroacetic acid
(15 pL, 0.20 mmol, 1.1 eq) were added to the reaction and allowed to stir at 0 °C. After 30
minutes, the reaction was allowed to warm to rt and continued stirring for 1 hour. The
reaction was then concentrated under reduced pressure to remove excess MeOH and the
resulting residue was dissolved in 20 mL EtOAc. The solution was washed with 15 mL 1
M NaOH and 15 mL brine. The organic layer was dried with MgSQsg, filtered, and
concentrated to yield a red/orange oil. The crude product was applied to a 6 inch (4 cm)
column containing silica gel and eluted with 1:1 hexanes:EtOAc (rf = 0.4) to yield 64.2 mg
of pure yellow oil (83% yield). *H NMR (CDCl3 with 0.03% v/v TMS, 600 MHz) &: 7.39-
7.30 (m, 4H), 7.30-7.23 (m, 1H), 7.02 (dd, 1H, J = 8.1 Hz, 1.7 Hz), 6.97 (d, 1H, J = 1.7
Hz), 6.87-6.82 (m, 2H), 6.80 (d, 1H, J = 8.0 Hz), 6.75 (d, 1H, J = 8.2 Hz), 6.28 (s, 1H),
5.97 (s, 2H), 5.94 (s, 2H), 3.88 (s, 2H), 3.83 (s, 2H), 1.98 (br, 1H). 13C NMR (CDCls with
0.03% v/v TMS, 600 MHz) 6: 152.3, 147.8, 147.6, 147.3, 146.9, 146.7, 139.8, 128.5, 128.3,

128.24,128.16, 127.1, 125.3, 122.0, 121.6, 120.4,111.4, 109.1, 108.6, 108.4, 106.9, 101.0,
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52.9, 45.4. HRMS m/z: [M + H]" Calcd for C26H21NOs 428.1492; Found 428.1491, Error

0.23 ppm. IR: 2891 cm™,
0
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OH

Compound 1 (250 mg, 0.74 mmol) was dissolved in 20 mL MeOH and cooled to 0
°Cinan ice bath. Sodium borohydride (33.8 mg, 0.74 mmol, 1 eq) was added portion-wise
over 15 minutes. The resulting solution was then allowed to stir at rt for 1 hour. The
solution was then once again cooled to 0 °C and sodium borohydride (33.8 mg, 0.74 mmol,
1 eq) was added portion-wise over 15 minutes. The resulting solution was allowed to stir
at rt for 1 hour. A final equivalent of sodium borohydride (33.8 mg, 0.74 mmol, 1 eq) was
added portion-wise to the solution cooled to 0 °C over 15 minutes. The resulting solution
was allowed to stir at rt for 69 hours. To the solution was added 1 mL water and allowed
to stir for 30 minutes. The resulting solution was concentrated under reduced pressure to
remove excess MeOH and diluted with 30 mL 10% 1 M HCI in water. The reaction was
extracted with 3 x 25 mL EtOAc and the organic layers were combined, dried with MgSQOg,
filtered, and concentrated to yield a brown oil. The crude product was applied to a 6 inch
(4 cm) column containing silica gel and eluted with 1:1 hexanes:EtOAc (rf = 0.35) to yield
248.0 mg of pure yellow oil (99% yield). *H NMR (CDCls with 0.03% v/v TMS, 600 MHz)
8:7.04 (dd, 1H, J = 8.3 Hz, 1.7 Hz), 6.98 (d, 1H, J = 1.7 Hz), 6.85-6.81 (m, 2H), 6.80 (d,
1H, J = 8.0 Hz), 6.74 (d, 1H, J = 8.2 Hz), 6.38 (s, 1H), 5.98 (s, 2H), 5.95 (s, 2H), 4.65 (S,
2H), 1.87 (br, 1H). 3C NMR (CDCls with 0.03% v/v TMS, 600 MHz) &: 152.2, 148.1,

147.8, 147.6, 147.1, 146.8, 127.9, 125.0, 122.1, 121.7, 120.5, 112.2, 109.1, 108.6, 108.4,
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107.0, 101.10, 101.08, 57.6. HRMS m/z: [M + Na]* Calcd for C19H1406 361.0682; Found

361.0682, Error 0 ppm. IR: 3369 cm™.
@)
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SMI-10C (25 mg, 0.07 mmol) was dissolved in 1 mL dry toluene. Palladium(Il)
acetate (1.6 mg, 0.007 mmol, 0.1 eq), potassium carbonate (10.6 mg, 0.08 mmol, 1.1 eq),
and benzamide (26.9 mg, 0.22 mmol, 3 eq) were added and allowed to reflux at 150 °C
under nitrogen for 11 hours. The reaction was hydrolyzed with 10 mL saturated ammonium
chloride solution and extracted with 3 x 10 mL EtOAc. The organic layers were washed
with 2 x 10 mL brine, dried with MgSOQsa, filtered through celite, and concentrated. The
crude product was applied to a 6 inch (5 cm) column containing silica gel that was eluted
with 3:2 hexanes:EtOAc (rf = 0.36) to yield 27.7 mg pure product (25% yield). *H NMR
(CDCl3 with 0.03% v/v TMS, 600 MHz) &: 7.81 (d, 2H, J = 7.7 Hz), 7.51 (t, 1H, J = 7.4
Hz), 7.44 ppm (t, 2H, J = 7.9 Hz), 7.02 (dd, 1H, J = 8.3 Hz, 1.7 Hz), 6.96 (d, 1H, J = 1.7
Hz), 6.85-6.81 (m, 2H), 6.79 (d, 1H, J = 8.1 Hz), 6.75 (d, 1H, J = 8.3 Hz), 6.48 (br, 1H),
6.39 (s, 1H), 5.98 (s, 2H), 5.95 (s, 2H), 4.69 (d, 2H, J = 5.5 Hz). 13C NMR (CDCls with
0.03% v/v TMS, 600 MHz) 6: 167.2, 149.5,147.9, 147.8, 147.6, 147.2, 146.8, 134.2, 131.7,
128.6, 127.7, 127.0, 125.0, 122.0, 121.8, 120.5, 112.1, 109.1, 108.6, 108.5, 107.0, 101.10,
101.07,37.1. HRMS m/z: [M + H]" Calcd for C26H19NOg 442.1285; Found 442.1276, Error

2.04 ppm. IR: 3315, 1645 cm™.
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Sodium metal (6.7 mg, 0.29 mmol, 1.2 eq) dissolved in 1 mL THF was added
dropwise to diethyl(2-oxo-2-phenylethyl)phosphonate (67 pL, 0.31 mmol, 1.3 eq) cooled
to 0 °C and stirred for 10 minutes. 1 (74 mg, 0.22 mmol) was added and allowed to stir at
0 °C for 30 minutes. The ice bath was removed and allowed to stir at rt for 1.5 hours. The
resulting solution was diluted with 10 mL Et,O and washed with 15 mL saturated NaHCO3
solution and 15 mL brine. The organic layer was dried with MgSOs, filtered, and
concentrated to yield an orange solid. The crude product was applied to a 6 inch (2 cm)
column containing silica gel and eluted with 3:1 hexanes:EtOAc (rf = 0.7) to yield 72.0 mg
of pure yellow solid (75% yield). *H NMR (CDCl; with 0.03% v/v TMR, 600 MHz) &:
8.09 (d, 2H, J = 7.7 Hz), 7.64-7.60 (m, 2H), 7.55-7.51 (m, 3H), 7.18 (dd, 1H, J = 9.8 Hz,
1.6 Hz), 7.12 (d, 1H, J = 1.6 Hz), 6.90 (dd, 1H, J = 7.7 Hz, 1.9 Hz), 6.85 (d, 2H, J = 7.9
Hz), 6.81 (d, 2H, J = 9.7 Hz), 6.03 (s, 2H), 6.02 (s, 2H). 13C NMR (CDCls with 0.03% v/v
TMS, 600 MHz) &: 189.7, 150.7, 149.7, 148.0, 147.8, 147.2, 138.3, 132.7, 130.3, 128.6,
128.4, 126.9, 124.3, 124.2, 122.2, 121.2, 120.7, 118.8, 109.1, 108.8, 108.6, 107.1, 101.3,

101.2. HRMS m/z: [M + H]* Calcd for C27H1806 439.1176; Found 439.1171, Error 1.14

ppm. IR: 1658 cm™™,
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Sodium metal (15 mg, 0.66 mmol, 1.5 eq) dissolved in 5 mL EtOH was allowed to
stir at 0 °C for 10 minutes. Triethyl phosphonoacetate (122 pL, 0.62 mmol, 1.4 eq) and 1
(148 mg, 0.44 mmol) were added to the solution and allowed to stir at rt for 167 hours until
disappearance of starting material as seen by TLC. The reaction was quenched with the
dropwise addition of 3 mL saturated ammonium chloride solution until a precipitate
formed. The resulting reaction was diluted with 15 mL water and extracted with 3 x 10 mL
DCM. The organic layers were combined, dried with MgSOQg, filtered, and concentrated to
yield a dark yellow oil. The crude product was applied to a 6 inch (4 cm) column containing
silica gel and eluted with 5:1 hexanes:Et,O (rf = 0.31) to yield 71.9 mg of yellow oil (40%
yield). 'H NMR (CDCls with 0.03% v/v TMS, 600 MHz) &: 7.42 (d, 1H, J = 15.6 Hz), 7.10
(dd, 1H, J = 8.3 Hz, 1.6 Hz), 7.02 (d, 1H, J = 1.6 Hz), 6.86-6.80 (m, 3H), 6.76 (d, 1H, J =
8.1 Hz), 6.65 (s, 1H), 6.38 (d, 1H, J = 15.9 Hz), 5.99 (s, 2H), 5.97 (s, 2H), 4.26 (q, 2H, J =
7.0 Hz), 1.34 (t, 3H, J = 7.0 Hz). 3C NMR (CDCls with 0.03% v/v TMS, 600 MHz) &:
167.1, 150.3, 148.9, 147.9, 147.8, 147.7, 147.2, 130.5, 127.0, 124.3, 123.8, 122.2, 121.0,

119.0, 115.5, 109.1, 108.7, 108.5, 106.9, 101.3, 101.2, 60.5, 14.4. HRMS m/z: [M + H]*

Calcd for C23H1s07 407.1125; Found 407.1117, Error 1.96 ppm. IR: 1702, 1009 cm™.
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SMI-10F (45.4 mg, 0.11 mmol) was dissolved in 1 mL EtOH. To the resulting
solution was added dropwise 1 M NaOH (0.44 mL, 0.44 mmol, 4 eq) and allowed to stir at
rt for 30 minutes. The solution was allowed to reflux at 85 °C for 4 hours and continued
stirring for 18 hours at rt. The reaction was quenched with 5 mL water and extracted with
2 x5 mL Et20. The aqueous layer was collected and acidified with 5 mL concentrated HCI
until a precipitate formed. The solid was collected, dissolved in 10 mL Et2O, dried with
MgSOsg, filtered, and concentrated. The crude product was applied to a preparative TLC
plate (20 cm x 20 cm x 1 mm) and eluted with 1:1 hexanes:EtOAc (rf = 0.3) to yield 9.5
mg of product (21% yield). *H NMR (CDCls with 0.03% v/v TMS, 600 MHz) &: 11.22 (br,
1H), 7.52 (d, 1H, J = 15.5 Hz), 7.14 (dd, 1H, J = 8.2 Hz, 1.5 Hz), 7.06 (d, 1H, J = 1.3 Hz),
6.88-6.84 (m, 3H), 6.79 (d, 1H, J = 8.4 Hz), 6.75 (s, 1H), 6.42 (d, 1H, J = 15.6 Hz), 6.03
(s, 2H), 6.01 (s, 2H). 3C NMR (Acetone-ds, 600 MHz) &: 168.1, 151.4, 150.3, 149.42,
149.37, 149.3, 148.7, 131.9, 128.3, 125.5, 125.2, 123.5, 122.2, 120.5, 116.9, 110.1, 109.9,
109.7, 107.9, 102.9, 102.7. HRMS m/z: [M + H]" Calcd for C21H1407 379.0812; Found

379.0815, Error 0.79 ppm. IR: 2902 cm™,
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4,5-dibromo-2-furoic acid (300 mg, 1.11 mmol) was dissolved in 2.8 mL MeOH.
To the resulting solution was added dropwise concentrated sulfuric acid (63 pL, 1.22
mmol, 1.1 eq) and allowed to reflux at 80 °C under a nitrogen atmosphere for 42 hours.
The solution was concentrated under reduced pressure to remove excess MeOH and
quenched with 15 mL saturated NaHCO3 solution until a basic pH was obtained. The
aqueous layers were extracted with 2 x 20 mL EtOAc. The organic layers were combined,
washed with 20 mL DI water, dried with MgSOs, filtered, and concentrated to yield a white
powder. The resulting product was carried on without further purification (72% yield). ‘H
NMR (CDCIs with 0.03% v/v TMS, 600 MHz) &: 7.18 (s, 1H), 3.90 (s, 3H). *C NMR
(CDCl3 with 0.03% v/v TMS, 600 MHz) 6: 157.3, 145.9, 128.4,121.9, 103.8, 52.4. HRMS
m/z: [M + H]" Calcd for CsH4Br.03 284.8580; Found 284.8586, Error 2.11 ppm. IR: 1717
cm™,
0
(X o o
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Compound 2 (0.5 g, 1.76 mmol), 3,4-methylenedioxyphenyl boronic acid (642.9
mg, 3.87 mmol, 2.2 eq), cesium carbonate (3.441 g, 10.6 mmol, 6 eq), triphenylarsine
(107.8 mg, 0.35 mmol, 0.2 eq), and bis(triphenylphosphine)palladium(ll) dichloride (197.7

mg, 0.28 mmol, 0.16 eq) were combined in a flask that had been evacuated and refilled

with nitrogen (5 cycles). The resulting mixture was dissolved in 12 mL dry, distilled DMF
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and allowed to reflux at 90 °C under an argon atmosphere for 113 hours. The reaction was
concentrated under reduced pressure to remove excess DMF. The resulting residue was
dissolved in 50 mL EtOAc and washed with 3 x 50 mL saturated NaHCO3 solution. The
aqueous layers were extracted with 3 x 30 mL EtOAc. The organic layers were combined,
dried with MgSOsa, filtered, and concentrated to yield a yellow/brown oil. The crude
product was applied to a 6 inch (6 cm) column containing silica gel and eluted with 3:1
hexanes:EtOAc (rf = 0.3) to yield 331.3 mg of pure product (51% yield). *H NMR (CDCls;
with 0.03% v/v TMS, 600 MHz) &: 7.24 (s, 1H), 7.17 (dd, 1H, J = 8.2 Hz, 1.7 Hz), 7.08 (d,
1H, J = 1.6 Hz), 6.87 (dd, 1H, J = 8.0 Hz, 1.5 Hz), 6.85 (s, 1H), 6.84 (s, 1H), 6.79 (d, 1H,
J = 8.5 Hz), 6.02 (s, 2H), 6.00 (s, 2H), 3.94 (s, 3H). *C NMR (CDCl; with 0.03% v/v
TMS, 600 MHz) o: 159.2, 151.9, 148.2, 148.0, 147.7, 147.3, 142.2, 126.6, 123.8, 123.0,
122.3,121.7,121.6, 109.1, 108.8, 108.5, 107.4, 101.3, 101.2, 51.9. HRMS m/z: [M + H]*

Calcd for C20H1407367.0812; Found 367.0803, Error 2.45 ppm. IR: 1712 cm™,

0
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SMI-10H (180 mg, 0.49 mmol) was dissolved in 4.6 mL THF and 1.4 mL water
into which was added lithium hydroxide (117 mg, 4.9 mmol, 10 eq) and allowed to reflux
at 70 °C for 3 hours. The reaction was diluted with 5 mL water and quenched with 6 mL 1
M HCI until an acidic pH was obtained. The resulting solution was extracted with 3 x 15
mL EtOAc. The organic layers were combined, washed with 2 x 20 mL water, dried with

MgSQzg, filtered, and concentrated to yield 138.8 mg of a pale yellow solid that was carried

on without further purification (80% yield). *H NMR (DMSO-ds, 600 MHz) &: 13.18 (br,
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1H), 7.36 (s, 1H), 7.03 (dd, 1H, J = 7.9 Hz, 1.6 Hz), 6.99 (d, 1H, J = 8.4 Hz), 6.97-6.95
(m, 3H) 6.88 (dd, 1H, J = 8.2 Hz, 1.8 Hz), 6.08 (s, 2H), 6.07 (s, 2H). 3C NMR (CDCl3
with 0.03% v/v TMS, 600 MHz) 6: 159.8, 151.0, 148.4, 148.1, 148.0, 147.3, 126.5, 123.9,
123.2,122.5,121.7,121.2,111.0, 109.3, 109.23, 109.19, 107.1, 102.0, 101.7. HRMS m/z:
[M + H]" Calcd for C19H1207 353.0656; Found 353.0653, Error 0.85 ppm. IR: 2917, 1667,

1196 cm™.
O
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SMI-101 (50 mg, 0.14 mmol) was dissolved in 1 mL DCM and 5 drops DMF into

SMI-10J

which was added thionyl chloride (21 pL, 0.28 mmol, 2 eq) and allowed to reflux at 60 °C
for 4 hours. The resulting solution was concentrated under reduced pressure to remove
excess DCM. The resulting residue was dissolved in 1 mL Et2O. To the reaction were added
benzylamine (31 pL, 0.28 mmol, 2 eq) and triethylamine (39 pL, 0.28 mmol, 2 eq) and
allowed to stir at rt under a nitrogen atmosphere for 2 hours. The solution was diluted with
10 mL water and extracted with 3 x 10 mL Et,O. The organic layers were combined, dried
with MgSOsu, filtered, and concentrated. The crude product was applied to a 7 inch (2 cm)
column containing silica gel and eluted with 3:2 hexanes:EtOAc (rf = 0.15) to yield 48.2
mg of pure product (78% yield). tH NMR (CDCls with 0.03% v/v TMS, 600 MHz) §: 7.39-
7.33 (m, 4H), 7.31-7.27 (m, 1H), 7.20 (s, 1H), 7.02 (dd, 1H, J = 8.3 Hz, 1.7 Hz), 6.95 (d,
1H, J = 1.7 Hz), 6.84-6.78 (m, 3H), 6.77-6.72 (m, 2H), 5.97 (s, 2H), 5.94 (s, 2H), 4.65 (d,
2H, J = 6.1 Hz). 3C NMR (CDClIs with 0.03% v/v TMS, 600 MHz) &: 158.4, 149.8, 148.1,

148.0, 147.8, 147.3, 145.6, 138.2, 128.9, 128.0, 127.7, 126.7, 124.0, 123.5, 122.3, 121 .4,
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118.4, 109.1, 108.8, 108.6, 107.4, 101.4, 101.3, 43.3. HRMS m/z: [M + H]* Calcd for

C26H19NOg 442.1285; Found 442.1291, Error 1.36 ppm. IR: 3252 cm™.

Br (o) O
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4,5-dibromo-2-furoic acid (996 mg, 3.69 mmol) was dissolved in 25 mL DCM into
which were added N,O-dimethylhydroxylamine hydrochloride (414 mg, 4.24 mmol, 1.15
eq), triethylamine (0.56 mL, 4.06 mmol, 1.1 eq), 1,3-dicyclohexylcarbodiimide (761 mg,
3.69 mmol, 1 eq), and dimethylaminopyridine (235 mg, 1.85 mmol, 0.5 eq) and allowed to
stir for 24 hours. The solid precipitate that formed was collected through gravity filtration,
washed with DCM, and concentrated under reduced pressure. The resulting residue was
dissolved in 30 mL EtOAc and washed with 25 mL brine, 25 mL saturated NaHCO3
solution, and 25 mL water. The organic layer was dried with sodium sulfate, filtered, and
concentrated to yield a white solid. The crude product was applied to a 6 inch (4.5 cm)
column containing silica gel and eluted with a gradient of 3:1 hexanes:EtOAc (1200 mL)
followed by 1:1 hexanes:EtOAc (600 mL) (rf = 0.44) to yield 663 mg of pure product (57%
yield). 'H NMR (CDCls with 0.03% v/v TMS, 600 MHz) &: 7.14 (s, 1H), 3.77 (s, 3H), 3.33
(s, 3H). 13C NMR (CDCl3 with 0.03% v/v TMS, 600 MHz) §: 157.1, 147.3, 127.5, 121.6,
103.4, 61.6, 33.1. HRMS m/z: [M + H]* Calcd for C;H;BroNOs 313.8845; Found

313.8864, Error 6.05 ppm. IR: 3165, 1639 cm™.
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Compound 3 (313 mg, 1.0 mmol) was dissolved in 7.6 mL dry, distilled DMF. To
the resulting solution were added 3,4-methylenedioxyphenyl boronic acid (365 mg, 2.2
mmol, 2.2 eq), cesium carbonate (1.95 g, 6 mmol, 6 eq), triphenylarsine (61 mg, 0.2 mmol,
0.2 eq), and bis(triphenylphosphine)palladium(l1) dichloride (112 mg, 0.16 mmol, 0.16 eq)
and allowed to reflux at 90 °C under a nitrogen atmosphere for 44 hours. The reaction was
concentrated under reduced pressure to remove excess DMF. The resulting residue was
dissolved in 100 mL EtOAc and washed with 3 x 50 mL 25% NaHCOs solution. The
organic layer was dried with MgSQsu, filtered, and concentrated to yield a brown solid. The
crude product was applied to a 8 inch (4 cm) column containing silica gel and eluted with
a gradient of 1:1 hexanes:EtOAc (600 mL) (rf = 0.3) followed by 3:1 hexanes:EtOAc (1500
mL) to yield 297.8 mg of pure yellow, solid product (75% yield). *H NMR (CDCls with
0.03% v/v TMS, 600 MHz) &: 7.21 (s, 1H), 7.16 (d, 1H, J = 8.0 Hz), 7.08 (s, 1H), 6.89-
6.84 (m, 3H), 6.79 (d, 1H, J = 8.0 Hz), 6.02 (s, 2H), 5.99 (s, 2H), 3.84 (s, 3H), 3.39 (s, 3H).
13C NMR (CDCl3 with 0.03% v/v TMS, 600 MHz) &: 159.2, 150.7, 147.9, 147.7, 147.2,
143.6, 127.0, 124.1, 122.7, 122.3, 121.44, 121.43, 109.2, 108.73, 108.69, 108.5, 107.3,
101.3, 101.2, 61.5, 33.4. HRMS m/z: [M + H]* Calcd for C2:H17NO7 396.1078; Found

396.1092, Error 3.53. IR: 1640 cm™.
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B-bromostyrene (0.97 mL, 7.59 mmol, 50 eq)—that was dried in a 1.5 inch (1 cm)
column containing sodium sulfate and neutral alumina—was dissolved in 7 mL dry THF
and purged with nitrogen. The resulting solution was cannulated to a second flask also
purged with nitrogen containing 3 crystals of iodine and magnesium (199 mg, 8.19 mmol,
55 eq) that had been crushed with a mortar and pestle. The original flask was rinsed with
3 mL dry THF and cannulated to the flask containing magnesium and iodine. The resulting
solution was allowed to reflux at 50 °C under a nitrogen atmosphere for 3 hours to
synthesize the Grignard reagent.

Compound 4 (60 mg, 0.15 mmol) was dissolved in 3 mL of the newly synthesized
Grignard reagent and allowed to stir at rt under a nitrogen atmosphere for 1.5 hours. The
reaction was quenched with 10 mL saturated ammonium chloride solution. The reaction
was diluted with 5 mL water and extracted with 2 x 10 mL Et2O. The organic layers were
combined and washed with 10 mL saturated NaHCO3 solution, 10 mL 1 M HCI, and 10
mL brine. The organic layers were then dried with MgSOyg, filtered, and concentrated to
yield a bright yellow oil. The crude product was applied to a 6 inch (5 cm) column
containing silica gel and eluted with 3:1 hexanes:EtOAc (rf = 0.32) to yield 45.4 mg of
pure yellow oil (69% yield). *H NMR (CDClIs with 0.03% v/v TMS, 600 MHz) &: 7.90 (d,
1H, J = 16.0 Hz), 7.69-7.65 (m, 2H), 7.49 (d, 1H, J = 15.6 Hz), 7.45-7.40 (m, 3H), 7.37 (s,
1H), 7.20 (dd, 1H, J = 8.2 Hz, 1.7 Hz), 7.12 (d, 1H, J = 1.7 Hz), 6.88 (dd, 1H, J = 8.1 Hz,

1.8 Hz), 6.86-6.83 (m, 2H), 6.80 (d, 1H, J = 8.2 Hz), 6.00 (s, 2H), 5.99 (s, 2H). 3C NMR
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(CDCl3 with 0.03% v/v TMS, 600 MHz) 6: 177.5,152.4, 151.4, 148.4, 148.0, 147.8, 147 4,
143.6, 134.9, 130.6, 129.0, 128.6, 126.5, 124.1, 123.7, 122.4, 121.9, 121.5, 121.2, 109.2,
108.8, 108.6, 107.4, 101.4, 101.3. HRMS m/z: [M + H]* Calcd for Cz7H1806 439.1176;
Found 439.1194, Error 4.10 ppm. IR: 1723 cm™.

2.5.5 Cell Cultures

Both the MDA-MB-231 and T47D cell lines were obtained from American Type
Culture Collection. Cells were incubated at 37 °C in a humidified atmosphere containing
5% COz. The cell lines were maintained in RPMI-1640 medium supplemented with 10%
(v/v) fetal clone 111 and 1% penicillin/streptomycin.

2.5.6 OSM Inhibition Assays

SMI-10 induced inhibition of pSTAT3 was determined through an ELISA against
both MDA-MB-231 and T47D human breast cancer cell lines. Cells were serum starved
for 4 hours. SMI-10 analogs (10 uM, 50 pM, or 100 puM) and human recombinant OSM
(10 ng/mL) were incubated in serum-free RPMI-1640 medium at 37 °C and 5% CO.. After
incubation, the SMI-10 analogs and OSM were added to the serum starved cells for 30
minutes. Cells were lysed using a 1x PathScan Sandwich ELISA Lysis buffer (CST
#7018S) for 15 minutes after which the lysates were collected and stored at -20 °C. Lysates
were analyzed for pSTAT3 expression using a PathScan Phospho-Stat3 (Tyr705)
Sandwich ELISA Antibody Pair kit (CST #7146). pSTAT3 expression was measured with
absorbance at 450nm and quantified by comparison relative to OSM-induced pSTAT3

expression.
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CHAPTER THREE: BINDING AFFINITY OF SMI-10 ANALOGS

3.1 Introduction

3.1.1 Metastatic Breast Cancer and Oncostatin M

Cancer is the second leading cause of death in the United States after heart disease.
Specifically, it is estimated that about 1.7 million new cases of cancer will be diagnosed in
the United States in 2018 resulting in approximately 600,000 deaths (Siegel, 2018). Breast
cancer, at 30% of all new diagnoses, is the most prevalent malignancy for women. It is
estimated that in 2018 alone there will be 266,000 new cases (Siegel, 2018). The five-year
survival rate for localized breast cancer is 99%, however, the survival rate for distant
metastatic breast cancer drops to 27% (Howlader, 2017), which is indicative of a need for
a novel therapeutic treatment method

The ability of the interleukin-6 (IL-6) family of cytokines to increase epithelial to
mesenchymal transition (EMT), increase cell motility, and to decrease cellular adhesion
has implicated them in the promotion of metastasis for breast cancer patients (Sullivan,
2009; Knipfer, 2007). Notably, a specific member of this family, oncostatin M (OSM),
promotes cancer progression through the activation of several signaling pathways, such as
the signal transducer and activator of transcription 3 (STAT3), phosphatidylinositol-3-
kinase (PI3K), and the mitogen-activated protein kinase (MAPK) pathways (Tester, 2000;
Chen, 2013; Meng, 2013; Smith, 2014) (Figure 3.1). Due to OSM’s ability to increase

metastatic potential, small molecule inhibitors (SMIs) of OSM were designed, synthesized,
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and preliminarily tested for use as novel therapeutic treatment options for metastatic breast

carcinomas.
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Figure 3.1  OSM induces the STATS3, PI3K, and MAPK pathways. OSM is able to
induce activation of several signaling pathways that include STAT3, PI3K, and MAPK.
Upon activation via phosphorylation of signaling proteins, the translocation of
transcription factors into the nucleus allows for transcription of target genes responsible
for the promotion of cancer metastasis.
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3.1.2 Design of SMI-10 Analogs

High-throughput virtual screening of multiple accessible databases comprised of
about 345,000 compounds was used to identify the top candidates computationally
predicted to be capable of binding to OSM. The top compounds were then further assessed
based upon their ability to inhibit OSM-induced phosphorylation of STAT3 on Tyr-705
(pSTAT3) via an enzyme-linked immunosorbent assay (ELISA). The results of the ELISA
identified SMI-10 as one of the “lead compounds.” Second-generation analogs of SMI-10
were subsequently designed and synthesized to potentially improve the binding affinity

and inhibition of OSM-induced signaling (Table 3.1).
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Table 3.1 Structures of SMI-10 analogs.?
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aSummary of the analogs designed to increase binding affinity and thus inhibition of OSM-

induced signaling.
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3.1.3 OSM Inhibition Assay

An ELISA was used to assess the ability of the second-generation SMI-10 analogs
to inhibit OSM-induced signaling. The ELISA measured the relative pSTAT3 expression,
which corresponded to OSM-induced activation of the STAT3 signaling pathway. Due to
this, low levels of relative pSTAT3 expression are an indication of an inactivation of the
STATS3 signaling pathway and thus an inactivation of OSM itself. The majority of the
second-generation analogs examined by ELISA analysis exhibited levels of OSM-induced
signaling inhibition surpassing that of the original parent SMI-10 (Figure 3.2). Notably,

SMI-10C, -10H, and -101 displayed the poorest inhibition of OSM.

1.5+
s 10 uM
50 uM
mm 100 UM

1_0_M
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oSM- + + + + + + + + + + +
SMlAnalog- - A B C D E F G H | K

Figure 3.2  OSM-induced inhibition assay. T47D human breast cancer cells were
treated for 30 minutes after co-incubation of each SMI-10 analog (10 puM, 50 pM, or 100
MM) with OSM (10 ng/mL) in serum-free media for 1 hour at 37 °C with 5% CO>. The
cells were lysed, collected, and pSTAT3 levels were measured by ELISA. The reduction
of pSTAT3 expression by the SMIs is indicative of inhibition of OSM-induced STAT3
signaling (mean + SEM; n=2 for 10 uM; n=3 for 50 uM and 100 pM; ***p>0.0002;
****n>0.0001; significance determined against positive control; unpaired t-test) (results
from Carsten Ashton; unpublished).



73

The SMIs were designed to directly bind with OSM to prevent the protein from
activating signaling pathways responsible for increasing metastatic potential of breast
cancer patients. Importantly, the ELISA analysis used to determine inhibition of OSM-
induced signaling is an indirect assessment of SMI-OSM binding. Therefore, alternative
methods for the evaluation of direct SMI-OSM binding were necessary to validate the
results of the ELISA analysis as a means for detecting OSM inhibition.

3.1.4 Isothermal Titration Calorimetry

Isothermal titration calorimetry (ITC) is a label-free technique capable of directly
measuring the binding energetics of biological processes, such as protein-ligand binding
(Freire, 1990). ITC experiments give thermodynamic information that include binding
stoichiometry (n), equilibrium dissociation constants (Kp), changes in enthalpy (AH),
Gibbs free energy (AG), and changes in entropy (AS) (Holdgate, 2005). Furthermore, the
instrumentation sensitivity level allows for the direct measurement of binding processes
exhibiting binding association constants as high as 10° M (Freire, 1990).

Importantly, ITC has been useful in regard to drug development by answering the
question of how tightly a small molecule binds at a specific interaction site (Freyer, 2008).
Typically, in order for pharmaceutical drugs to be useful, the interaction between the drug
and the biological target must display a Kp greater than or equal to 1 x 10 M. Furthermore,
many modern drugs exhibit nanomolar Kp values.

Due to the capacity of ITC to measure binding constants, it is a useful tool in
determining the drug-likeness of compounds (Leavitt, 2001). The ability of the SMI
analogs to bind to OSM as determined via ITC is of particular interest in regard to the

assessment of direct SMI-OSM binding to validate the results of the previous ELISA
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analyses. Ultimately, SMI-10 analogs capable of binding to OSM and exhibiting Kp values
within the micromolar range or greater are viable inhibitors of OSM and thus can
potentially be used as therapeutic treatment options for metastatic breast cancer.

3.1.5 Heteronuclear HSQC-detected Titrations

Another potential method that can be conducted to determine SMI-10 analog
binding to OSM is heteronuclear single quantum correlation (HSQC)-detected titrations.
In these experiments, the changes in *H-"N HSQC spectra of °N-labeled OSM upon
addition of SMIs can be used to determine Kp values (Fielding, 2007). Furthermore, even
very weak binding with Kp values in the high micromolar to low millimolar range can be
detected. In addition to revealing if SMI-OSM binding is occurring, these experiments also
generate information on the approximate number of residues that are affected and whether
the interaction induces significant changes in the conformation of the protein (Marintchev,
2007). Moreover, the information obtained from the HSQC experiments regarding the
binding of SMIs to OSM can be used in collaboration with the results of the ITC
experiments to validate the Kp values obtained for each analog and to confirm the results
of the ELISA analyses.

3.2 Results and Discussion

3.2.1 Isothermal Titration Calorimetry

In order to further evaluate the SMI-10 analogs as potential inhibitors of OSM, ITC
was used to determine binding affinity. This quantitative technique is often utilized as a
means of studying the binding of small molecules to larger macromolecules, such as
proteins. Specifically, the titration of SMI-10 analogs into human recombinant OSM

protein gave values for the stoichiometry, binding affinity, and enthalpy of binding. These
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values were then used to calculate the free energy and entropy associated with binding

(Table 3.2; Appendix E).

Table 3.2 Thermodynamics of SMI-10 analogs.?

Analog n Ko (M)  AH (kcal/mol) AG (kcal/mol)  TAS (kcal/mol)
SMI-10F 6.03+0.23 61+14 -5.99 + 0.56 -5.83 -0.15
SMI-10G  2.68+0.53 28+19 -1.03+0.33 -6.28 5.25
SMI-10H ND ND ND ND ND
SMI-101 ND ND ND ND ND

aSummary of the thermodynamic values obtained via ITC experiments for the SMI-10
analogs. The results suggest that SMI-10F and -10G are capable of binding to OSM.
Additionally, SMI-10H and SMI-10l are unable to bind to human recombinant OSM as
determined by ITC (ND = non-determinable; n = 3).

The previous ELISA results with the second-generation SMI-10 analogs indicated
that both SMI-10F and SMI-10G inhibit OSM-induced signaling of the STAT3 pathway.
The ability of the SMIs to inhibit OSM-induced signaling was suggestive that the SMls
bind to OSM. However, ELISA analysis is an indirect assessment of SMI-OSM binding.
Therefore, binding affinity between the SMIs and OSM was evaluated using ITC to directly

measure SMI-OSM binding (Figure 3.3 and Figure 3.4).
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Figure 3.3  ITC of SMI-10F. A. Raw data from a representative run using SMI-10F.
B. Normalized data from a representative run with the data fit using a fitting model. C.
Structure of the SMI-10 second-generation analog tested. D. Thermodynamic data obtained
from a representative run of SMI-10F, which suggested that SMI-OSM binding occurred
in a favorable, exothermic, spontaneous manner.
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Figure 3.4  ITC of SMI-10G. A. Raw data from a representative run using SMI-10G.
B. Normalized data from a representative run with the data fit using a fitting model. C.
Structure of the SMI-10 second-generation analog tested. D. Thermodynamic data obtained
from a representative run of SMI-10F, which suggested that SMI-OSM binding occurred
in a favorable, exothermic, spontaneous manner.

The results for both SMI-10F and SMI-10G presented a Kp value within the
micromolar range, indicating that binding occurred and thus corresponded to the ELISA
results. Furthermore, both SMI-10F and SMI-10G analogs exhibited a negative AH
signifying that the binding was a result of an exothermic reaction. The interaction of SMI-
10G was also considered spontaneous, as determined by a positive AS value. Of the three
experiments conducted on SMI-10F, two demonstrated a small, positive AS and one
exhibited a large negative AS, resulting in an overall AS value for SMI-10F that was

negative and thus nonspontaneous. Despite the differences in AS values, it was determined
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from the correlation between AH, AS, and AG that the binding for both SMI-10F and SMI-
10G had a negative value for AG and thus were favorable.

The SMI-10 analogs were designed to bind at a specific site on OSM, which would
presumably correspond to a 1:1 stoichiometry. However, the values obtained for n from
the ITC experiments with SMI-10F and SMI-10G did not correspond to the expected value.
It is worth noting that it is essential for protein and ligand concentrations to be highly
accurate when obtaining ITC as any error in protein or ligand concentration will linearly
change the estimated stoichiometry (Dutta, 2015). Therefore, the variations in n for SMI-
10F and SMI-10G are likely a result of inaccurate concentrations.

Additionally, SMI-10H and SMI-10l, both of which exhibited poor inhibition of
OSM-induced STATS3 signaling via the ELISA results, were also evaluated for binding
affinity toward OSM using ITC. However, when preparing the sample of SMI-10H with
5% DMSO in an aqueous buffer for ITC, a precipitant formed. Due to the insolubility of
SMI-10H, the analog was unable to be tested for binding using ITC (Figure 3.5).
Furthermore, the concern with solubility in aqueous buffers is additionally problematic for

the use of SMI-10H as a potential therapeutic treatment against metastatic breast cancer.
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Figure 3.5  Structure of SMI-10H. Analog was unable to be analyzed using ITC
experiments due to solubility issues in an aqueous buffer.
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Another poor inhibitor of OSM-induced signaling, SMI-10l, was evaluated for

binding affinity with OSM using ITC (Figure 3.6). Importantly, the titration of SMI-10l

into human recombinant OSM yielded results that suggested no binding was occurring.

This information validates the ELISA results that were previously obtained by

demonstrating that SMI-OSM binding is required for the inhibition of OSM-induced

STATS3 signaling. In addition to validating the ELISA analysis, the thermodynamic

parameters obtained from the ITC experiments can be useful in continued rounds of

optimization for the SMI-10 analogs.
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Figure 3.6

ITC of SMI-101. A. Raw data from a representative run using SMI-10l. B.
Normalized data from a representative run, which is suggestive that no binding is occurring
between SMI-101 and OSM. C. Structure of the SMI-10 second-generation analog tested.
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3.2.2 Heteronuclear HSQC-detected Titrations

In order to perform the HSQC experiments, °N-labeled OSM was prepared and a
!H-1N HSQC spectrum was collected, correlating to the chemical shifts of the backbone
amide protons covalently bound to the °N amide nitrogen atoms (Figure 3.7). After this
initial spectrum was collected, additional spectra can be obtained following the addition of
SMI-10 analogs until saturation is reached. Subsequent analysis of the chemical shift
perturbations of the backbone amide within the OSM spectra as a function of ligand
concentration can then be used to determine Kp values as well as indicate regions of SMI-
OSM interactions (Fielding, 2007). Additionally, after assignment of the initial 1°N-labeled
OSM spectrum, the regions of perturbations would reveal the location of the SMI binding

sites on OSM, which can be used to further optimize SMI analogs in the future.
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Figure 3.7  1H-1N HSQC spectrum of OSM. Preliminary spectrum of °*N-labeled
OSM with 177 of 195 peaks picked prior to deconvolution of overlapping peaks.
Subsequent spectra obtained following the addition of SMI-10 analogs can be used to
obtain Kp values.
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3.3 Concluding Remarks

The five-year survival rate for localized breast cancer is 99%, however, for distant
metastatic breast cancer the survival rate drops to only 27% (Howlader, 2017), indicative
of a need for a novel therapeutic treatment method. A specific inflammatory cytokine
within the IL-6 family, OSM, has been shown to promote cancer progression and
metastasis through the activation of several signaling pathways. The ability of OSM to
induce metastasis has led to the design, synthesis, and preliminary testing of SMIs of OSM-
induced signaling to be used as a potential treatment strategy for patients with metastatic
breast cancer. Second-generation SMI-10 analogs were evaluated for binding affinity and
other thermodynamic parameters through ITC experiments. The results indicated that SMI-
10F and SMI-10G, both of which exhibited OSM-induced signaling inhibition via ELISA
analysis, had Kp values within the micromolar range, suggesting specific binding occurred
between the SMIs and OSM. Additionally, ITC results from analogs with poor OSM-
induced signaling inhibition demonstrated that no binding occurred between the SMIs and
OSM. These results—coupled with future heteronuclear HSQC-detected titration
experiments—suggest specific SMI-OSM binding and thus the potential to use optimized

SMIs as a therapeutic treatment for metastatic breast cancer.

3.4 Materials and Methods

3.4.1 Materials and Reagents

For inhibition assays, SMI-10 analogs were diluted to 10 uM stock solutions in
anhydrous DMSO (obtained from Sigma-Aldrich) and stored at -20 °C. The recombinant

human oncostatin M was purchased from PeproTech.
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For human recombinant OSM used for ITC and HSQC experiments, D-(+)-glucose
and imidazole were purchased from Acros Organics. Ammonium chloride, N ammonium
chloride, D-glucose $3Cs, and isogro 13C, N powder growth were obtained from Aldrich.
From Alfa Aesar were purchased glycerol, kanamycin monosulfate cell culture grade
powder, and D-(+)-biotin. Magnesium sulfate heptahydrate was purchased from EMD
Millipore Corporation. Chemicals obtained from Fisher Chemical include calcium
chloride, sodium chloride, thiamine hydrochloride, LB broth, tris base, and guanidine
hydrochloride. Isopropyl-p-D-thiogalactopyranoside was purchased from Gold
Biotechnology. One shot BL21(DE3) chemically competent cells, NUPAGE 4-12% bis-tris
gel (2.0 mm x 10 well), and NUPAGE MES SDS running buffer (20X) were obtained
through Invitrogen Corporation. Both lysozyme and 2-mercaptoethanol were purchased
from MP Biomedicals. Bolt LDS sample buffer (4X) was obtained from Novex by Life
Technologies. Quiagen Company provided the Ni-NTA superflow. 5X M9 salts media
without ammonium chloride and ammonium sulfate were purchased from Teknova.
Finally, HALT protease inhibitor was obtained from Thermo Scientific.

3.4.2 Equipment

ODsoonm Values were obtained using a Thermo Fisher Spectronic 200 Spectrometer.
ITC data was acquired using a Malvern Microcal PEAQ-ITC. NMR data was acquired
using a 600 MHz Bruker Avance 111 600 coupled with Bruker Ultrashield 600 Plus.

3.4.3 OSM Inhibition Assays

SMI-10 induced inhibition of pPSTAT3 was determined through an ELISA against
both MDA-MB-231 and T47D human breast cancer cell lines. Cells were serum starved

for 4 hours. SMI-10 analogs (10 uM) and human recombinant OSM (10 ng/mL) were
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incubated in serum-free RPMI-1640 medium at 37 °C and 5% CO>. After incubation, the
SMI-10 analogs and OSM were added to the serum starved cells for 30 minutes. Cells were
lysed using a 1x PathScan Sandwich ELISA Lysis buffer (CST #7018S) for 15 minutes
after which the lysates were collected and stored at -20 °C. Lysates were analyzed for
pSTAT3 expression using a PathScan Phospho-Stat3 (Tyr705) Sandwich ELISA Antibody
Pair kit (CST #7146). pSTAT3 expression was measured with absorbance at 450nm and
quantified by comparison relative to OSM-induced pSTAT3 expression.

3.4.4 Human Recombinant OSM

Transformed competent cells were generated using BL21(DE3) competent cells
(20-50 pL) and 6His-OSM plasmid DNA (1-5 pL) incubated on ice for 30 minutes. The
cell/lDNA mixture was heat shocked at 42 °C for 45-60 seconds and then placed on ice for
two minutes. LB media (250-1000 pL) was added to the cell/DNA mixture and incubated
at 37 °C and 250 rpm for 45 minutes. The transformation (50 pL and 450 pL, respectively)
was plated on two separate 10 cm LB agar plates containing kanamycin and incubated
overnight at 37 °C. The transformed cells were stored at -80 °C in 50% glycerol.

Unlabeled or uniformly labeled N OSM protein was produced in transformed
competent Escherichia coli BL21(DE3) with 6His-OSM plasmid DNA grown in M9
minimal medium. The cells (swiped from glycerol stock at -80 °C) were first grown in 5
mL unlabeled LB medium enriched with kanamycin (10 mg/mL, 5 pL). The cells were
incubated overnight at 30 °C and 250 rpm in a 50 mL falcon tube under agitation until an
ODsoonm ~2.50 was obtained. The cells were centrifuged (5 min, 4000 x g, 30 °C) and the
supernatant was discarded. The pre-inoculum was prepared in a 250 mL Erlenmeyer flask

with the cell pellet resuspended in 50 mL of the unlabeled M9 medium prepared with 5x
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M9 salts (10 mL), 10x natural abundance ammonium chloride (5 mL), 20% natural
abundance glucose (750 pL), 1 M calcium chloride (50 pL), 1 M MgSOa (50 pL), thiamine
(20 mg/mL, 50 pL), biotin (10 mg/mL, 50 pL), kanamycin (10 mg/mL, 50 pL), and water
(QS 50 mL). The culture was incubated at 30 °C and 250 rpm overnight until it reached an
ODsoonm ~2.50. The inoculum was prepared in a 2 L Erlenmeyer flask with the equivalent
of pre-inoculum necessary to obtain a starting ODeoonm Of 0.1 (20-50 mL). The pre-
inoculum was centrifuged (5 min, 4000 x g, 30 °C) and the supernatant was discarded.

For unlabeled OSM protein, the cell pellet was resuspended in 500 mL of unlabeled
M9 medium prepared with 5x M9 salts (100 mL), natural abundance ammonium chloride
(0.5 g), 20% natural abundance glucose (7.5 mL), 1 M calcium chloride (500 pL), 1 M
MgSOs (500 pL), thiamine (10 mg/mL, 500 pL), biotin (10 mg/mL, 500 pL), kanamycin
(10 mg/mL, 500 pL), and water (QS 500 mL). For uniformly labeled >N OSM protein, the
cell pellet was resuspended in 500 mL of labeled M9 medium prepared with 5x M9 salts
(100 mL), **N ammonium chloride (0.5 g), 20% natural abundance glucose (7.5 mL), 1 M
calcium chloride (500 pL), 1 M MgSO4 (500 pL), thiamine (10 mg/mL, 500 pL), biotin
(20 mg/mL, 500 pL), kanamycin (10 mg/mL, 500 pL), and water (QS 500 mL).

For both unlabeled or uniformly labeled °N OSM protein, the culture was then
incubated at 37 °C and 250 rpm until it reached an ODgoonm between 0.5 and 0.8. Protein
expression was induced with 0.5 mM IPTG (1g/5mL, 500 pL) and incubated overnight at
20 °C and 250 rpm until it reached an ODgoonm between 2.0 and 2.5. The cells were
harvested by centrifugation (20 min, 5000 x g, 4 °C) and the supernatant was discarded.
Cell pellets were resuspended in lysis buffer containing 50 mM Tris, 100 mM NacCl (30

mL), lysozyme (10 mg/mL, 30 pL), AEBSF (100 mM, 30 pL), and HALT (100 mM, 30
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ML). The cells were sonicated (30 sec pulse on, 30% amplitude; 30 sec pulse off; 8 min
total cycle) and centrifuged (30 min, 18000 x g, 4 °C). The supernatant was filtered (0.45
pm) and shaken with Ni-beads (1.5 mL packed resin; 3 mL 50% slurry) overnight. The
filtered lysate and Ni-beads were applied to column and allowed to flow through. The
column was washed with 25 bed volumes (40 mL) cold lysis buffer (50 mM Tris, 100 mM
NaCl, pH = 8) and with 28 bed volumes (45 mL) cold buffer (50 mM Tris, 100 mM NaCl,
25 mM Imidazole, pH = 8). The column was eluted with 12 bed volumes (17 mL) cold
buffer (50 mM Tris, 100 mM NaCl, 200 mM Imidazole, pH = 8) that were collected in 1
mL, 5 mL, 5 mL, 5 mL, 1 mL fractions. Fractions containing 6His-OSM protein as
determined by SDS-Page gel analysis and confirmed for activity via ELISA were
combined, concentrated, dialyzed, and stored in 50 mM Tris, 100 mM NaCl, pH = 7.6
buffer.

3.4.5 Isothermal Titration Calorimetry

Binding affinity of the SMI-10 analogs was determined by ITC. SMI-10 analogs
were dissolved in DMSO to form a 20 mM stock solution. A 1 mM SMI-10 analog sample
in 5% DMSO was then prepared using 7.5 pL of the stock solution diluted with 142.5 uL
of 50 mM Tris, 100 mM NaCl, pH = 7.6 buffer. The OSM sample in 5% DMSO was
prepared using 332.5 pL of 21.97 or 31.34 puM recombinant 6His-OSM in 50 mM Tris,
100 mM NaCl, pH = 7.6 buffer combined with 17.5 uL DMSO. Parameters: a single 0.4
ML injection followed by twelve 3 pL injections; initial delay of 60 seconds; 150 seconds

between injections; temperature at 25 °C; reference power 5 or 10 pCal/sec.
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3.4.6 Heteronuclear HSQC-detected Titrations

1H-1N HSQC spectrum of OSM was obtained using °N-labeled OSM in 100 mM

NaPi, 100 mM NaCl, 1x HALT protease inhibitor, pH = 7.5 buffer containing 10% D-0.
The spectrum was acquired at 298 K with 176 scans.
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'H NMR (CDCls with 0.03% v/v TMS, 600 MHz)
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APPENDIX B: 3C NMR Spectra
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13C NMR (CDCI3 with 0.03% v/v TMS, 600 MHz)
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13C NMR (CDCI3 with 0.03% v/v TMS, 600 MHz)
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13C NMR (CDCI3 with 0.03% v/v TMS, 600 MHz)
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13C NMR (CDCl3 with 0.03% v/v TMS, 600 MHz)
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13C NMR (Acetone-ds, 600 MHz)
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13C NMR (CDCI3 with 0.03% v/v TMS, 600 MHz)
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13C NMR (CDCI3 with 0.03% v/v TMS, 600 MHz)
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13C NMR (CDCl3 with 0.03% v/v TMS, 600 MHz)
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13C NMR (CDCl3 with 0.03% v/v TMS, 600 MHz)



117

wdd (114 or 09 08 00t (ir4} ovl 091
0p°T 24 | | | L I I I
0 g
ZH 00°T a1 |
0 458
W3 Mam
ZHW 0608Z06°0ST as
89LZE 15
siajswexed Dburssadolrg - 7Z4
M 000LSTZT 0 £IMId
M 666691720 ZIM1d
M 096668FPL°TT cM1d
o@sn 00°0L £adod
9TZITEM z19¥dadn
HT ZONN
ZHW SO00VZET* 009 zo4s
======== ZJ TINNVHD) ========
M ZTS6669€°06T M1d
oesn 00°Z1 1d
O£ TO0N
ZHW T868LT6°0ST 104S
===m==== T[] TINNVH) ========
1 oar
035 000000£0°0 110
28s 00000000°2 1a
M 17862 A1
o@sn (05°9 A0
o@sn (98°€T Ma €
0502 9y
095 6S9L806°0 (o) 4 .wS_ 19
ZH L6T0SS"0 SEYAId _
ZH 169°LS09€ HMS Wo-N g |
b sa
FZ0T SN o 0" ™a
£100D INFATOS
9£559 ar
ocbdbz 20¥41nd
JHT IXI¥d um §  (QHEOMd
jo0ads WOYISNI
£2°0T SWTL
0ZL08T0C “e3eq
sisjaweied uoT3TtsTnboy - z3
1 ONDOYd =
z ONdx3 O
2Ind-L-A-HWNL TWEN (]
Si93lsweIed BlEJ Ju=2IIND C

13C NMR (CDCl3 with 0.03% v/v TMS, 600 MHz)
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13C NMR (CDCl3 with 0.03% v/v TMS, 600 MHz)
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APPENDIX C: MASS SPECTROMETRY
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APPENDIX D: INFRARED SPECTROSCOPY
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APPENDIX E: ISOTHERMAL TITRATION CALORIMETRY
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