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ABSTRACT 

Receiver functions derived from teleseismic earthquakes contain seismic 

amplitude and velocity information that relate to compositional changes within the 

Earth’s crust and upper mantle. The receiver function waveform is a combination of P-S 

converted waves that have reverberated within the lithosphere. Although the largest 

seismic velocity boundary is found at the base of the crust, I explore the use of lower 

amplitude receiver function arrivals that represent smaller velocity contrasts within the 

crust. In my thesis, I calculate and model receiver functions via a Metropolis algorithm 

approach to extract seismic velocity distributions in the lithosphere. I use the results to 

explore changing lithologies and heat signatures beneath the geologically complex 

southern Idaho region. In addition to a robust crustal thickness estimate for my study 

area, I show anomalously thick crust beneath the 14 Ma track of the Yellowstone hotspot 

compared to the surrounding regions, a thinner crust beneath the Oregon-Idaho graben 

and the Basin and Range province, and a distinct boundary between the Basin and Range 

and middle Rocky Mountains provinces. I highlight a high velocity zone between 6-14 

km depth that is consistent with the presence of mid-crustal sills beneath the hot spot 

track, partial melt within the Yellowstone caldera, and relatively low velocities at 

seismogenic depths within the tectonic parabola of eastern Idaho. Anomalously slow 

velocities in the lower to mid-crust beneath the southern margin of the western Snake 

River Plain are coincident with high heat flow values and high total magnetic values, 

offering the possibility of mid-lower crustal partially melted dikes or sill complexes. I 
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utilize legacy active source refraction data to compare with receiver function results to 

further constrain seismic velocities. Overall, I find that receiver function analyses using a 

Metropolis algorithm inversion approach to estimate seismic velocity distributions show 

results below 6 km that are consistent with other studies. This approach offers the 

possibility of complimenting large-scale refraction experiments with low-cost receiver 

function analysis by utilizing earthquake waveforms from both permanent and temporary 

seismic deployments to constrain mid to lower-crustal properties. I discuss the use of this 

method as a tool for geothermal exploration by constraining crustal lithologies and 

identifying the presence of partial melt. 
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CHAPTER ONE: INTRODUCTION 

 Receiver function analysis is a seismic method to extract P-S converted seismic 

waves that have reverberated within the Earth’s lithosphere. A standard receiver function 

objective is to extract crustal thickness by comparing travel time delays between the 

initial p-wave and converted s-waves produced from the high velocity contrast Moho, 

while ignoring other reflected or converted signals. By employing a Markov Chain 

Monte Carlo receiver function inversion technique known as the Metropolis algorithm, I 

extract seismic velocity distributions within the crust beneath southern Idaho using 

receiver functions. To date, physical property estimates for this region have been 

obtained by large scale, active source seismic surveys and by focused seismometer 

deployments. I show that a receiver function approach using past temporary and 

permanent deployment seismic data is a cost-effective way of characterizing large-scale 

earth structure within the crust. 

 The crust beneath southern Idaho and the surrounding regions contain a complex 

geology (Figure 1). Geologic provinces span Proterozoic North American lithosphere and 

the accreted terranes, and include granitic rocks of the Cretaceous Idaho Batholith, 

Neogene and younger sedimentary rocks of the Basin and Range, Neogene and younger 

volcanic rocks along the track of the Yellowstone hotspot, and Pliocene and younger 

lacustrine and fluvial deposits mostly beneath the western Snake River Plain (SRP). This 

complexity makes southern Idaho an ideal and challenging location to characterize 

crustal velocity distributions through receiver function analysis. 
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 By utilizing the large seismic database available through the Incorporated 

Research Institutions for Seismology Data Management Center (IRIS DMC), I analyze 

receiver function waveforms to map seismic velocities in the crust. I use these results to 

highlight geologic province characteristics and specifically to 1) explore for partial melt 

materials to identify the source of high heat flow signatures, 2) compare the distribution 

of mapped mafic and felsic intrusive bodies beneath the SRP to measured seismic 

velocities, 3) characterize seismically active regions of southern Idaho at hypocentral 

depths of about 10-15 km, and 4) compare seismic velocity distributions to mapped 

geothermal resources that have a surface or near surface high heat flow expression. 

 My thesis begins by discussing the geology of southern Idaho and my motivation 

to investigate seismic velocity distributions within the crust. In Chapter 2, I review 

receiver function theory and discuss my approach to extracting receiver functions to 

estimate crustal structure. In Chapter 3, I explore the results from receiver function 

inversions where the output velocity tomograms are used for analysis. In Chapter 4, I 

utilize the velocity tomograms to constrain Moho depth or crustal thickness, explore mid-

crustal seismic velocities in regions of high seismicity, explore for mafic intrusions and 

compare to other geophysical and geological studies, and compare seismic properties to 

regions where high heat flow has been previously identified. Lastly, I compare my 

results, in cross section, to active source legacy seismic refraction results. I show 

comparable results for velocity distributions within the crust and conclude that by 

utilizing earthquake data, rock and fluid properties can be assessed beneath southern 

Idaho and surrounding areas without the expense of active source approaches. 



3 

 

 

Figure 1. Map of northwest United States showing the general location of select 

geological features. Shown in the map are the Columbia River Basalts, High Lava 

Plains, Western SRP (WSRP), Eastern SRP (ESRP), caldera centers of the 

Yellowstone hotspot (white dashed ovals) and their corresponding ages derived from 

Anders et al. (2014), Tectonic Parabola (orange parabolic dashed lines with the head 

at Yellowstone), Oregon-Idaho Graben (OIG), Weiser Embayment (WE), Brothers 

Fault Zone (BFZ) (black lines near High Lava Plains),Western Idaho Shear Zone 

(WISZ) (black line), Idaho Batholith (IB), Yellowstone, the Basin and Range 

province, Wasatch Fault (black line), and Middle Rocky Mountains province. 

Geologic and Geophysical Setting: Pre-Snake River Plain 

Prior to Miocene basin formation related to the formation of the SRP, many 

geologic events shaped the surrounding region. The Idaho Batholith formed during the 

Cretaceous period, in response to the subduction and accretion of the oceanic Farallon 

plate under the continental North American plate, causing the oceanic plate to melt and 

mix with underlying mantle rocks. This melt generated the felsic plutons that slowly rose 
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and crystallized in the crust, causing uplift and producing the granitic composition of the 

batholith (Hyndman, 1983). The 20-25 km thick Idaho Batholith is the cratonic core of 

the region, located in central Idaho, north of the western/central SRP (Figure 1; e.g., 

Davenport et al., 2017). 

The boundary between the North American craton and the accreted Blue 

Mountains province is located near the western border of Idaho and is termed the western 

Idaho Shear Zone (WISZ) (Figure 1). This 5 km wide, right-lateral transpressional 

lithospheric boundary strikes N-S (Giorgis et al., 2008), and separates the accreted 

oceanic terranes with 87Sr/86Sr values less than 0.704 from the plutons of the North 

American craton with 87Sr/86Sr values greater than 0.707 (Manduca et al., 1992). The 

initiation of the WISZ began about 105 Ma and ended around 90 Ma (Manduca et al., 

1993; Giorgis et al., 2005; Giorgis et al., 2008). 

Using receiver function methods, Stanciu et al. (2016) examined crustal thickness 

across the WISZ, utilizing the 85 seismometers from the EarthScope Idaho-Oregon 

experiment that spanned from the Blue Mountains province to the North American craton 

in Idaho. Using the H-k grid search method and common conversion point stacking 

(described in Chapter 2), they imaged a decrease in crustal thickness from 28 km west of 

the WISZ to 36 km to the east. Davenport et al. (2017) studied the crustal structure along 

the same line using active source refraction and wide-angle reflection methods. The 

results showed similar findings when compared to the receiver function analyses where 

the WISZ was near vertical, with a 7 km increase in crustal thickness to the east of the 

WISZ. Davenport et al. (2017) also imaged a high velocity crustal layer west of the 
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WISZ, interpreted as mafic underplating associated with the feeder system of the 

Columbia River basalts (CRB). 

The Basin and Range province is the next oldest geologic landform in the region 

and is bisected by the eastern SRP (Figure 1). This province results from extension and 

thinning of the lithosphere, producing a high mountain horst and basin-forming graben 

setting. The beginning of extension within the Basin and Range province varies over the 

different regions. It is believed that extension began north of the eastern SRP at about 55-

49 Ma across the Idaho Batholith and south of the eastern SRP between 38-20 Ma 

(Wernicke et al. 1987). Extension continues to present day, as evidenced by high 

seismicity rates and a unique geodetic signature. 

West of the SRP lies the High Lava Plains (HLP) province, which is an age-

progressive, bimodal volcanic terrane (Jordan et al., 2004; Streck and Grunder, 2008), 

estimated to contain 220,000 km3 of basalt (Camp and Ross, 2004) (Figure 1). The 

history of the HLP includes back arc volcanism at 30 Ma, ignimbrite flare-up of silicic 

magmas from 20-25 Ma, flood basalt volcanism at 16-17 Ma, and volcanism from the 

Newberry volcano and Yellowstone hotspot around the same time (Carlson and Hart, 

1987; Hart and Carlson, 1987; Jordan et al., 2004; Brueseke et al., 2007; Streck and 

Grunder, 2012).  

Cox et al. (2013) produced crustal models of the HLP region using an integrated 

approach of controlled source seismic, gravity, and geologic constraints. They showed 

that the HLP crust is very similar to that of the Basin and Range province to the south, 

comprised of a thinner crust than the surrounding continental crust. A layer of 

sedimentary and volcanic rocks that reaches a thickness of 5-7 km overlies most of the 
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HLP crust. Evidence of mafic intraplating and underplating were also observed within the 

HLP region. 

Eager et al. (2011) performed receiver function analyses to image the crustal 

structure of the HLP region using 206 seismic stations to perform both H-k stacking and 

Gaussian-weighted common conversion point stacking. They noticed a change in Moho 

from 40 km depth beneath the Cascades, Idaho Batholith, and Owyhee Plateau, to 31 km 

depth beneath the HLP and northern Great Basin (Figure 1). They observed abnormally 

high Poisson’s ratios (~0.320) and low crustal velocities beneath north-central and 

southern Oregon, consistent with the presence of mafic partial melt at the mid to lower 

crust. Eager et al. (2011) suggested that there was a central zone where melts had drained 

to the surface, possibly assisted by the Brothers Fault Zone (Figure 1). 

Volcanism initiated in southeast Oregon around 17.5 Ma to 15.5 Ma with the 

massive CRB eruption and scattered rhyolitic volcanism (Hooper and Swanson, 1990; 

Clemens and Wood, 1991) (Figure 1). These volcanic rocks extended south into the 

northern part of the western SRP and as far as northern Nevada. The CRB initiation has 

also been connected to the Yellowstone mantle plume initiation (Geist and Richards, 

1993). 

North of the western SRP lies the Weiser embayment. This basin contains an 

accumulated 2.1 km of basalt dated to be older than 15 Ma (Hooper and Swanson, 1990; 

Fitzgerald, 1982; Hooper and Hawkesworth, 1993). Slightly west of the western SRP lies 

the 15.5 – 10.5 Ma Oregon-Idaho graben (Cummings et al., 2000). Both of these basins 

contain north-south trending faults, and are postulated to have been one basin prior to the 

initiation of western SRP extension (Wood and Clemens, 2002). 
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Geologic and Geophysical Setting: Snake River Plain 

Around 11-8.5 Ma, volcanism related to the passage of the Yellowstone hotspot 

began to localize around the Bruneau-Jarbidge eruptive center (Figure 1) (Bonnichsen et 

al., 1989). This eruptive center presumably marks the beginning of focused volcanism 

along the track of the Yellowstone hotspot produced by both thermal expansion and 

subsequent contraction that manifest today as a topographic depression when compared 

to the surrounding regions. Continued volcanism along the hot spot track has produced 

the low topography expression of the eastern SRP that follows North America plate 

motions (Figure 1). 

The western SRP is interpreted as a structural graben that trends about N42W. 

The heating of the lithosphere from the injection of large amounts of basaltic magma into 

the mid-crust, presumably from hotspot interaction, initiated western SRP extension 

around 11-8.5 Ma. This basalt also added a considerable amount of weight and in turn, 

caused upper crustal subsidence (Baldridge et al., 1995; Wood and Clemens, 2002). 

Based on deep drill holes in the western SRP, there is a lack of hot spot derived 

rhyolite in the center of the western SRP (Lewis and Stone, 1988; Clemens, 1993), 

whereas 2-km layers of rhyolite have been mapped along the margins of the plain 

(McIntyre, 1979; Ekren et al., 1981; Wood, 1989; Clemens and Wood, 1993). This 

suggests that the plain was an upland during the rhyolitic Bruneau-Jarbidge eruptions. 

Normal faulting that is associated with western SRP extension had slip rates of 0.5 

mm/year from 11-9 Ma, producing roughly 2 km of structural downwarping. Since 9 Ma, 

the average slip rate has lowered to 0.01 mm/year, dropping the basin a total of 0.3 km 
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with respect to the margins (Wood and Clemens, 2002). Thus, low seismicity rates are 

observed along the western SRP margins. 

Upon formation, the western SRP was a closed depocenter that filled with lake 

sediments as early as 10 Ma (Wood and Clemens, 2002). Between 6–4 Ma, lake levels 

rose upwards of 1000 meters (Squires et al., 1992), producing Paleozoic Lake Idaho. 

Then, around 4 Ma the lake rose to the level of the surrounding hills, and downcut the 

present-day Hells Canyon to drain the lake. These lake events left roughly 2 km of 

lacustrine sediments in the western SRP superimposed on, and interbedded with, the 

Miocene and younger basalts. 

Basaltic volcanism in the western SRP resumed approximately 2.2 Ma in the form 

of shield volcanoes, to as recently as 100,000 years ago (Bonnichsen et al. 1997), 

emplacing roughly 300 cubic km of material (Whitehead, 1992). These shield volcanoes 

occurred along the west-trending 100 km long Kuna-Mountain Home volcanic-rift zone. 

This rift has an oblique orientation with respect to the western SRP and may be 

responsible for high heat flow identified in the region (Shervais et al. 2015). 

To image the crust of the western SRP and surrounding region, Hill and Pakiser 

(1967) performed a seismic refraction survey using underground explosions over a 454 

km line extending from Eureka, Nevada to Boise, Idaho (Figure 2). Their interpretations 

involved a rather thin crust beneath the northern Basin and Range province of northern 

Nevada, having a Moho at ~30-35 km depth. Beneath the western SRP, a 5.2 km/s layer 

was interpreted from the surface to ~9 km depth and then a 6.7 km/s layer extending to 

the Moho around 44 km depth. This dataset was reinterpreted by Prodehl (1979) through 
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forward modeling, showing similar results as Hill and Pakiser (1967) except average 

crustal velocities beneath the SRP were found to be higher. 

 

 

Figure 2. Top: Location of Hill and Pakiser’s 1962 refraction survey extending 

from Boise, ID to Elko, Nevada. The outline of the topographic expression of the 

SRP is in green. Bottom: The Prodehl (1979) reinterpretation of Hill and Pakiser 

(1967) refraction data and crustal structure from Boise to Elko. 

Unlike most continental extensional basins that are in-filled with low density 

sediments, the western SRP displays a positive gravity anomaly of +25 to +60 milligals 

and high magnetic anomalies and lineation’s (Figure 3). These signatures represent 
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intrusive volcanic rocks emplaced within the crustal rocks of the Idaho Batholith (Hill, 

1963; Khatiwada and Keller, 2017). Khatiwada and Keller (2017) performed an 

integrated analysis of this gravity and magnetic data to study the western and central 

SRP. Their final models show mid-crustal intrusions at depths of ~10-20 km in both the 

western and central SRP.  

 

Figure 3. Gravity and magnetic maps of the SRP and surrounding area derived 

from the University of Texas El Paso PACES database 

(http://gis.utep.edu/subpages/GMData.html last accessed February, 2017). Left: A 

map of complete Bouguer gravity. Right: A map of magnetic intensity. 

The eastern SRP is a structural downwarp connected to the passage of the mantle-

derived Yellowstone hotspot, with the hotpot track migrating about N57E at roughly 2.34 

cm/year with respect to the North American plate (Gripp and Gordon, 2002, Anders et 

al., 2014). Many studies have linked the age of past eruptive centers to hot spot 

interactions, consistent with the known plate velocity (Armstrong et al. 1975; Morgan et 

al. 1984; Bonnichsen et al. 2008; Anders et al., 2014). 

A seismic refraction survey was performed in 1978 that showed a 10 km thick 

high velocity layer within the eastern SRP crust from 10-20 km depth (Priestley and 

Orcutt, 1982; Sparlin et al., 1982). This high velocity zone has been interpreted to be a 

mid-crustal sill complex. Peng and Humphreys (1998) made similar observations by 
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utilizing receiver functions. Stachnik et al. (2008) produced shear wave velocity models 

of the eastern SRP using Rayleigh wave dispersion and receiver functions. This study 

also located a mid-crustal sill complex, but found it to be deeper than previously thought, 

with the top at 15-20 km depth. 

DeNosaquo et al. (2009) studied the eastern SRP by analyzing gravity data with 

additional constraints from geophysical and geological data. They offered evidence that 

the lower crust of the eastern SRP has been thickened by the addition of an underplated 

layer of high density/high velocity clinopyroxene. They also suggest that a thin layer of 

partial melt lies at the base of the lower crust and that dioritic mid-crustal sills are present 

that varies in thickness from 4-11 km, at a 10-20 km depth. 

Yuan et al. (2010) performed receiver function analyses on the eastern SRP to 

determine Moho topography. This study provided two interesting results: (1) the crust 

beneath the eastern SRP is thickest beneath the young calderas (47 km) and thinnest 

beneath the older Twin Falls caldera (40 km); (2) the crust beneath the plain was 

typically 4 km thicker than the crust along the margins of the plain. Apart from 

examining Moho structure, they found evidence of lower crustal outflow beneath the 

eastern SRP, caused by the injection of dense magmatic materials. 

Geologic and Geophysical Setting: Lithospheric Signature of the Snake River Plain 

The Yellowstone mantle plume geometry has been imaged in many studies using 

passive-source seismic methods. Yuan and Dueker (2005) performed P-wave traveltime 

tomography to image a 100 km diameter mantle plume that extends 500 km deep, 

dipping at 20 degrees from vertical to the northwest. The velocity perturbations of this 

plume were measured to be -3.2% at 100 km depth to -0.9% at 450 km depth, suggesting 
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a uniform 180°C increase in thermal temperatures. This velocity to temperature 

relationship is based on the idea that as a rock is heated to its melting point, the seismic 

velocity will rapidly decrease (Schmitz et al., 1997). 

Smith et al. (2009) studied the Yellowstone hotspot by integrating geophysical 

and geological data. They also found that the hotspot dips, but to the WNW at 30 degrees 

from vertical to 660 km depth. Slow seismic velocities revealed that a magma reservoir 

of 8% - 15% partial melt lies in the mid-crust beneath the Yellowstone caldera. Based on 

their findings of the current hotspot geometry, they extrapolated the plume to its original 

location at 17 Ma and found a connection to the High Lava Plains basalt field, suggesting 

a common mantle plume source.  

Nelson and Grand (2018) used shear wave travel time tomography to image the 

deeper roots of the Yellowstone mantle plume. They found that the plume initially tilts to 

the North, and then dips to South starting at about 500 km depth towards the core mantle 

boundary. Assuming this is a thermal anomaly, the excess temperature in the deepest part 

of mantle is calculated to be 650-850°C. 

Many published tomograms are available at the IRIS DMC (2011) that utilize the 

USArray seismic data. Similar to how previous studies have looked for low velocity 

zones to characterize the melt geometry of the Yellowstone hotspot plume, I use these 

data to examine velocity distributions along the relic hotspot track to characterize the 

crustal structure and presence of partial melt along the passage of the hotspot. For this 

study, I utilize the IRIS DMC (2014), DNA13 Earth model 

(https://ds.iris.edu/ds/products/emc-dna13/ last accessed January, 2017), which is a 

https://ds.iris.edu/ds/products/emc-dna13/
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velocity perturbation dataset. This dataset is most useful because of the dense regional 

station coverage and the velocity perturbations are valuable for the goals of this project.  

The DNA13 Earth model is utilized here to define crustal and mantle velocity 

anomaly distributions along the relic Yellowstone hotspot track. This Earth model is a 

joint inversion of teleseismic body-wave traveltime and surface-wave phase velocity 

measurements to constrain body wave (P, SV), and surface wave (SH) wave velocities 

(Porritt et al., 2014). The station coverage includes the USArray transportable array, 

regional seismic networks, and temporary seismic deployments. The recorded data 

includes 400 events for teleseismic body waves, 167 events for phase velocity 

measurements, and 5 years of ambient noise, recorded from January 2007 to December 

2012.  

Figure 4 shows P-wave perturbation cross section slices from the DNA13 dataset 

to a depth of 150 km. The Yellowstone mantle plume is clearly observed in slice C-C’, 

D-D’, E-E’, and F-F’ by its distinct low velocity mantle signature (below 40 km depth) 

that reaches a maximum perturbation of roughly -1 %. Assuming the lower velocity zone 

represents a region of melt produced by the hotspot plume, I use this as a proxy for 

finding other regions of partial melt that have been emplaced throughout time. One 

interesting shallow feature is located along line B-B’, where we see a slow velocity 

anomaly at 10-25 km depth (red box). This anomaly has a high amplitude of negative 

velocity perturbation with a value of -0.47 %. 
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Figure 4. Top: Map of the study area with red lines denoting the locations of the 

cross section slices. The green outline represents the boundary of the SRP. Bottom: 

Cross section slices of the cross sections. The geometry of the relic Yellowstone 

hotspot is represented by the slow velocity zone cutting through the lithosphere. The 

red box in slice B-B’ represents the slow velocity anomaly observed at shallow 

depths. Note the decrease in Vp% beneath the topographic expression of the eastern 

SRP across the northern cross sections. 

Geothermal energy 

Largely in part to abundant Neogene and younger volcanism, southern Idaho is a 

region of high heat flow where geothermal resource extraction is feasible (Blackwell, 

1989). Similar to how a coal power plant is operated to create energy, geothermal power 

plants use hot fluids extracted from the ground to create high-pressure steam, that spins a 

turbine to produce electricity. Because heat sources are typically located at great depths, 

two variables are needed to efficiently tap geothermal energy: (1) a sustainable heat 
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source to produce 150–400 °C temperatures and (2) permeability to deliver deep heated 

water to marketable production depths. There are currently two operating geothermal 

power plants near the SRP region; (1) Neal Hot Springs with reservoir temperatures of 

141 °C (Warren, 2017) and (2) Raft River with reservoir temperatures of 149 °C 

(Bradford et al., 2013). By relating high heat flow areas beneath southern Idaho to 

seismic velocity distributions, additional geothermal resources could be recognized and 

exploited. 

Heat flow and geothermal resources of southern Idaho 

Many studies have suggested the emplacement of sill complexes within the crust 

of the SRP (e.g., Hill and Pakiser, 1967; Prodehl, 1979; Braile et al., 1982; Priestley and 

Orcutt, 1982; Smith et al., 1982; Sparlin et al., 1982; McQuarrie and Rodgers, 1998; Peng 

and Humphreys, 1998; Christiansen, 2001; Shervais et al., 2006; Stachnik et al., 2008). 

Most of these sill complexes have likely been emplaced either through direct passage of 

the Yellowstone hotspot or through residual heat processes. It is plausible that these old 

sill complexes could still contain residual heat that could account for the SRP being one 

of the highest heat flow provinces in North America (Blackwell, 1989). Fleischmann 

(2006) estimated that the SRP volcanic province could contain up to 855 MW of 

geothermal power production. 

To identify high heat sources, Shervais et al. (2016) compiled heat distributions 

based on measured thermal gradients, interpolated heat flow values, groundwater 

temperatures, the distribution of volcanic vents (weighted by age, size, and composition), 

measured temperatures of thermal waters from springs and wells, calculated ionic and 

multicomponent temperatures of thermal waters from springs and wells, and the 
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distribution of high 3He/4He in thermal waters (Figure 5). The sources of these heat 

anomalies are interpreted to be from partial melt, mafic sills, or from radiogenic 

processes related to the Idaho Batholith. In some cases, these heat sources may be mixed 

or undetermined. Because seismic velocities are heat and pressure dependent (i.e., 

sensitive to rock and fluid phases at a range of depths), I use seismic velocity analyses to 

identify and characterize heat sources for southern Idaho. The challenge is to separate 

changing rock chemistry from temperature effects (e.g., Christensen and Mooney, 1995). 

To identify the exact partial melt percentage of these low velocity anomalies is a 

difficult task. Many variables must be considered to estimate partial melt percentage such 

as lithology, grain boundary size, water content, depth, density, etc., and therefore was 

outside of the scope of my thesis. DeNosaquo et al. (2009) provided a velocity-density 

plot for rocks in the SRP volcanic field (Figure 6), which I will use to constrain rock 

properties from seismic velocities.  
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Figure 5. Heat flow estimates of southern Idaho through the Empirical 

Bayesian Krige function approach from Shervais et al. (2015). The map is based on 

measured thermal gradients, interpolated heat flow values, groundwater 

temperatures, the distribution of volcanic vents (weighted by age, size, and 

composition), measured temperatures of thermal waters from springs and wells, 

calculated ionic and multicomponent temperatures of thermal waters from springs 

and wells, and the distribution of high 3He/4He in thermal waters. The sources of 

these heat anomalies are interpreted to be partial melt, mafic sills, and radioactive 

decay of the Idaho Batholith. 
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Figure 6. Velocity–density plot for select rocks in the SRP volcanic field. Figure 

is from DeNosaquo et al. (2009). 

Mabey (1983) compiled reservoir temperature data and defined different 

geothermal areas and systems in Idaho (Figure 7). These geothermal systems (excluding 

Neal Hot Springs) and their estimated mean reservoir temperatures (Table 1.1) are from 

Young and Mitchell (1973), Brook et al. (1979), and Muffler and Guffanti (1979). The 

Neal Hot Springs data is from Warren (2017). Below, I summarize a few of these systems 

that I will compare to my seismic results. 

In the Weiser area, there are a high number of high temperature geothermal 

systems. Miocene sedimentary rocks and basalt underlie this area, with hot springs along 

northwest trending fault zones (Mabey, 1983). The Neal Hot Springs geothermal system 

is already a power plant producing 30 MW annually (Warren, 2017; Figure 7, number 6). 

The Crane Creek-Cove Creek system was explored in 1981, drilling to 7,998 feet and 

finding a temperature of 162.8°C (Figure 7, number 2). Although this was an attractive 
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temperature for a power plant, insufficient amounts of water prohibited the development 

of a facility (Neely and Galinato, 2007). 

In southeastern Idaho, there is another dense population of geothermal systems 

likely created by Basin and Range extension that thins the crust. The Raft River Area 

geothermal plant is located here and produces 11 MW annually (Bradford et al. 2013; 

Figure 7, number 18).  

In the western SRP, the Bruneau-Grand View geothermal system holds the largest 

mean reservoir volume in Idaho of 1830 km3 (Brook et al. 1979; Figure 7, number 12). 

This area contains complex geologic structure due to the history of region. Most of the 

surface comprises of lacustrine sediments with regions of basalt flows. The 3.4 km deep 

Anshutz Corporation well drilled in 1974 reached a temperature high of 147.8°C and the 

2.67 km deep Phillips Petroleum Company well drilled in 1978 measured a temperature 

high of 107.8°C.  The sources of this high heat flow region are unknown but is most 

likely connected to the mafic intrusions that lie beneath the western SRP. It is possible 

that the shallow low velocity zone observed in line B-B’ of Figure 4 is mid-crustal partial 

melt that is the source of this high heat flow region. 

Overall, southern Idaho is a region of high heat flow, largely in part to the passage 

of the Yellowstone hotspot. The sources of these high heat flow values are not fully 

understood and can be better constrained by measuring seismic velocities within the 

region. By doing this, I may be able to better quantifying geothermal resources in the 

area. 
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Figure 7. Map of southern Idaho showing geothermal areas defined by Mabey 

(1983). The numbers correspond to the geothermal systems in Table 1. 
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Table 1.1 Names of the geothermal systems in southern Idaho and their 

estimated mean reservoir temperature. 

No. System Estimated Mean Reservoir 
Temperature °C 

1 White Licks Hot Springs 139 

2 Crane Creek-Cove Creek 171 

3 Weiser area 130 

4 Roystone Hot Springs 135 

5 Payette River area 131 

6 Neal Hot Springs 141 

7 Magic Reservoir area 149 

8 Wardrop Hot Springs 97 

9 Barron's Hot Springs 103 

10 Latty Hot Springs 124 

11 Radio Towers area 125 

12 Bruneau-Grand View area 107 

13 White Arrow Hot Springs 103 

14 Banbury area 117 

15 Murphy Hot Springs 103 

16 Newdale area 100 

17 Ashton Warm Springs 92 

18 Raft River Area 149 

19 Maple Grove Hot Springs 93 

20 Riverdale area 99 

21 Wayland Hot Springs 113 

22 Squaw Hot Springs 119 
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CHAPTER TWO: DATA AND METHODOLOGY 

Receiver Functions 

Three-component seismic stations record teleseismic earthquake waves that 

propagate through the Earth. Teleseismic earthquakes are defined as earthquakes that 

occur more than 1000 km from the station location, and typically contain usable signals 

at magnitude 5.5 or higher. The waveforms and associated travel times contain 

information about the earthquake source, the ray propagation path, the P-wave and S-

wave seismic velocities along the propagation path, and the instrument response. The 

receiver function is the time window that contains signals from within the crust and upper 

mantle with instrument response and source characteristics removed through signal 

processing. This waveform is obtained by deconvolving the radial component with the 

vertical component of motion: 

𝐻(𝜔) =  
𝑅(𝜔)

𝑍(𝜔)
 

where R(ω) is the Fourier transform of the radial component (horizontal shear 

motion with a small p-wave contribution), Z(ω) is the Fourier transform of the vertical 

component (P-wave motion with a small contribution from vertically polarized shear 

waves), and H(ω) is the Fourier transform of the receiver function. The deconvolution 

removes all P-wave phases (except the initial arrival) and leaves behind the S-waves that 

have reverberated within the crust and upper mantle (Figure 8). For more information of 



23 

 

the receiver function process, see Langston (1979); Owens et al. (1984); and Ammon 

(1991). 

 

 

Figure 8. Top: Simplified receiver function ray path diagram for a single layer 

crust. Bottom: Vertical and radial time series waveform response of the 

seismometer and the calculated receiver function for a single layer crust by 

deconvolving the radial signal from the vertical signal. 

The receiver function waveform contains P-S converted waves that have reflected 

from high contrast velocity boundaries along the ray’s travel path. For a simple two layer 

(crust/mantle) model, the receiver function would look like the bottom waveform in 

Figure 8. When analyzing this waveform, it is important to look at the arrival travel time 

and amplitude. The arrival times depend on boundary depths and emergence angles of the 

P and S signals. The amplitudes largely depend on reflection coefficients across velocity 



24 

 

and/or density boundaries, while also depending on the incidence angles. The reflection 

coefficient is the amplitude of the reflected wave to the incident wave, and in the case of 

normal (vertical) incidence, can be expressed as, 

𝑅 =  
𝜌2𝑉2 − 𝜌1𝑉1

𝜌2𝑉2 +  𝜌1𝑉1
 

where, 

R = The reflection coefficient 

ρ1 = Density of upper layer 

ρ2 = Density of lower layer 

V1 = Velocity of upper layer 

V2 = Velocity of lower layer 

Assuming constant density (or density ratio) across boundaries, this means that a 

large velocity contrast will produce a large amplitude response with a positive amplitude 

resulting from V2 > V1, and a negative amplitude resulting from V1 > V2. Although 

receiver functions are very useful for determining large velocity boundaries that include 

the crust/mantle interface or Moho (often greater than 15% increase), these same 

waveforms can also be used for finding smaller velocity contrasts in the crust (less than 

5% contrast).  

Traditionally, crustal velocity distributions are obtained by active source 

refraction surveys that require large explosions that can be difficult to permit. These 

refraction surveys typically record signals with a seismic frequency between 10-20 Hz 

with a dense array of geophones or seismometers. In contrast, earthquakes in my study 

are filtered to a maximum seismic frequency of 5 Hz and typically recorded with fewer 

seismometers. This results in my receiver function analysis having less than half the 
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vertical resolution as a typical refraction survey with lower spatial resolution. Here, I 

explore the limits of receiver function analysis to obtain detailed crustal velocity 

distributions. 

Typical methods of analyzing receiver functions involve H-k stacking and 

common conversion point stacking. H-k stacking is a method to determine crustal 

thickness (H) and average Vp/Vs ratio (k) within the crust (Zhu and Kanamori, 2000). 

Common conversion point stacking back projects receiver function amplitudes using ray 

tracing to locate significant velocity discontinuities at depth (Dueker and Sheehan, 1997). 

In this study, I take a different approach by using receiver function waveforms to 

estimate the seismic velocity of the crust through an inversion approach. 

Data 

Through the USArray program, mapping the velocity structure of the Earth has 

been dramatically enhanced. This project began deploying seismometers throughout the 

United States in 2007 to better understand the crustal and mantle structures beneath the 

United States. With ~70 km station spacing across the country, infilled with local 

permanent seismic stations, high velocity anomalies such as subducting slabs (Obrebski 

et al., 2010), and low velocity anomalies like the Yellowstone plume (Obrebski et al., 

2010; Yuan et al., 2010) or the Northern Appalachian Anomaly (Menke et al., 2016; 

Levin et al., 2018) have been imaged. 

The majority of three-component, broadband seismometers used in this study are 

from the USArray (Red bullseyes in Figure 9). Other networks used include the USGS 

networks (Albuquerque, 1980), International Miscellaneous Stations, Intermountain West 

seismic network (Albuquerque, 2003), United States national seismic network 
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(Albuquerque, 1990), University of Utah Regional seismic network (University of Utah, 

1962), Pacific Northwest seismic network (University of Washington, 1963). Focused 

deployment datasets include data from the Yellowstone Wyoming seismic network 

(University of Utah, 1984), HLP network (James and Fouch, 2006), Yellowstone Hotspot 

network (Dueker et al. 2000), Shear-wave Splitting in the Snake River Plain (Walker and 

Klemperer, 2000), DeepProbe (Dueker and Humphreys, 1997), Montana broadband 

array, Ruby Range core-complex (Klemperer and Miller, 2010), and the Boise Fort Noise 

observation (Xu, personal comm.) (White bullseyes in Figure 9).
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Figure 9. A map showing the seismic stations (bullseyes) used in this study. 

USArray stations are red while stations from other various studies are white. The 

topographic expression of the SRP is outlined in green. 

A majority of the seismic data was obtained through Earthscope Automated 

Receiver Survey (EARS). EARS is a EarthScope/USArray data product that uses an 

automatic receiver function generator (Crotwell and Owens, 2005) to estimate the crustal 

thickness and Vp/Vs ratio across the continental United States. This project utilizes 

earthquakes above magnitude 5.5 and between 30 and 100-degree great circle distance 

from all broadband, three component seismic stations available from IRIS DMC. The 
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data is available at http://ds.iris.edu/ds/products/ears/. The automatic receiver function 

generator uses the iterative deconvolution technique of Ligorria and Ammon (1999) with 

a Gaussian width of 2.5, producing both radial and transverse receiver functions. See 

Crotwell and Owens (2005) for more information on the processing of the EARS receiver 

functions. 

Additional seismic data from seismographs in my study area were available at the 

IRIS DMC that were not on the EARS database. This includes data from the HLP (James 

and Fouch, 2006) and Ruby Mountains core complex experiment (Klemperer and Miller, 

2010). To gather and produce receiver functions of this data, I used the MATLAB 

toolbox, FuncLab (Porritt and Miller, 2018). FuncLab is a data management system with 

tools to produce, manage, and visualize receiver function data.  

All of the earthquake events extracted from FuncLab were above a 5.5 magnitude, 

and originated from a great circle distance of 30-100 degrees between the years 2006-

2012. The original seismic data contained 120 seconds of three-component seismic 

information at a sample rate of 40 Hz, starting 30 seconds before the first (P-wave) 

arrival. The data were preprocessed using a 5% taper to the start and end, and a bandpass 

filter between 0.02 and 5 Hz. The iterative deconvolution technique of Ligorria and 

Ammon (1999) was then applied, using a Gaussian width of 2.5 with 400 as the 

maximum number of iterations and a minimum error of 0.0001 s. These steps are very 

similar to the steps used by EARS (Crotwell and Owens, 2005) and when comparing 

results, produce nearly identical waveforms. 

To infill the IRIS and affiliate data, three seismic stations were used from the Fort 

Boise Noise observation (Xu, personal comm.). These data were collected in the city of 

http://ds.iris.edu/ds/products/ears/


29 

 

Boise, Idaho using three 250 Hz broadband seismometers that were located within 200 

meters of each other. To extract the seismic waveforms, I looked for seismic signatures of 

teleseismic earthquakes above a 5.5 magnitude that originated from a distance of 30-100 

degrees. The raw data were then bandpass filtered between 0.3 and 1.5 Hz. For seismic 

events that were visible on more than one station, the data was stacked to help remove 

noise present within the data. The radial and vertical components of the seismic data were 

then used to produce a receiver function using the deconvolution method of Ligorria and 

Ammon (1999). Overall, 22 seismic events were produced into a receiver function 

waveform. Comparable results from this station when compared to published station data 

shows the robustness of this approach to extract velocity structure within the crust. 

Metropolis Algorithm Inversion Technique 

In order to accurately convert these receiver function waveforms into an Earth 

velocity model, I utilize an inversion scheme. This inversion must construct Earth model 

parameters that, when forward modelled, will output receiver function data that match the 

observed receiver function data while minimizing the travel time shift. This can be a 

challenging problem because in general, the inversion of receiver functions is highly non-

linear and non-unique. In order to avoid these problems, the number of parameters must 

be limited. For my analysis, I varied only two parameters, depth to layers and the P-wave 

velocity of these layers. The assumptions made to minimize the non-linearity and non-

uniqueness of the inversion include holding the Vp/Vs ratio constant at 1.73, assuming 

the Earth behaves as a Poisson solid (Shearer, 1999), and holding the density constant 

following the Birch law (Birch, 1964): 

𝜌 (
𝑘𝑔

𝑚3
) = 0.32 (

𝑘𝑔 ∗ 𝑠

𝑚3 ∗ 𝑘𝑚
) ∗ 𝑉𝑝 (

𝑘𝑚

𝑠
) + 770 (

𝑘𝑚

𝑚3
) 
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While these assumptions help minimize the non-linearity and non-uniqueness of 

the inversion, they also introduce more error. It is very unlikely that the Earth would have 

a constant Vp/Vs ratio and density, and therefore, amplitude and travel time errors are 

present in my results. 

 I also constrain the P-wave velocities within realistic bounds, based on the 

seismic velocities of Christensen and Mooney (1995). These velocities are featured in 

Figure 10 below. 

 

Figure 10. Plot showing the velocity constraints for my inversion approach. The 

blue line represents the minimum velocity and the orange represents the maximum 

velocity that I accept in my model. Velocity limits were based on Christensen and 

Mooney (1995). The gray line represents the AK135 standard Earth model and is 

the starting model for my inversions. 

The forward modeling technique that I use is modified MATLAB code that 

generates synthetic seismograms from a given Earth model (Jacobsen and Svenningsen, 

2008). Once a synthetic seismogram is calculated, a bandpass filter is applied to match 
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the observed data. A deconvolution between the vertical and radial component is then 

calculated using the iterative deconvolution technique of Ligorria and Ammon (1999), 

using the same parameters as above, giving the final receiver function waveform. 

The inversion technique used in this project is the Metropolis algorithm, which is 

based on the work by Jansson (2008). This method is considered a Markov Chain Monte 

Carlo method, which is a sequence of random models that depend only on the previous 

model. For more information on the Metropolis algorithm, see Mosegaard and Sambridge 

(2002). 

The process of the Metropolis algorithm can best be described in six steps:  

(1) Start with a simple Earth model. The starting model is extremely important 

due to the non-uniqueness present in the inversion of receiver functions. Here, I use 2-km 

thick layers with velocities matching the standard AK135 Earth model (Kennett et al., 

1995; Figure 10) with an adjusted Moho depth derived from previous studies that include 

the EARS database (Crotwell and Owens, 2005), Eager (2010), and Litherland and 

Klemperer (2017). The selection of a 2-km layer thickness will be discussed in further 

detail in chapter 3. 

(2) Adjust a random two km thick layer’s velocity by a random amount. This 

fluctuation in velocity is held to less than 0.5 km/s and the velocities remain within the 

bounds shown in Figure 10. 

(3) Generate the receiver function for the new Earth model via forward modeling.  

(4) Calculate the root-mean-square (RMS) error misfit between the observed and 

synthetic receiver function. RMS error is a standard method of calculating the misfit 
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between two sets of data. For this inversion, the units of RMS will be ignored because 

each waveform is normalized to an amplitude of 0.6. 

(5) If the misfit of the new model is less than the previous iteration, the new 

model is accepted and you return to step 2.  

(6) If the misfit of the new model is more than the previous, the new model is 

accepted with a probability of exp (−
∆𝑚𝑖𝑠𝑓𝑖𝑡

𝑠2 ) and then return to step 2. This function is 

also referred to as the “Metropolis rule” and helps the inversion jump out of any local 

minima (Metropolis et al., 1953; Mosegaard and Tarantola, 1995; Jansson, 2008). ∆misfit 

is the change in misfit from the previous iteration to the current iteration. s2 is the total 

“noise” variance and has a value of 0.1 for all inversions. Jansson (2008) determined this 

value to be a reasonable estimate for this inversion technique. 

One of the challenges in Monte Carlo inversion techniques is to find a balance 

between exploration and exploitation. Exploration in this case, means to find the local 

minima and exploitation means to explore these local minima. Exploitation is covered by 

accepting the new model when the misfit decreases and exploration is covered by 

accepting the new model when the misfit increases. This means that exploration is 

controlled by the Metropolis rule. 
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CHAPTER THREE: RECEIVER FUNCTION INVERSION RESULTS 

Receiver Function Signals 

As shown in the DNA13 velocity perturbation images (Figure 4), I identify 

velocity anomalies in the crust that are likely related to changing temperature or 

lithology. While crustal velocity distributions were not the focus of the Porritt et al. 

(2014) study, other studies including Peng and Humphreys (1998), Eager et al. (2011) 

and Stanciu et al. (2016) have used receiver functions to identify partial melt and 

changing lithology in Idaho. 

Within the receiver function waveform, differences in amplitude or phase 

represent changes in crustal velocities. This assumes ray paths are vertical and that noise 

is not a factor. In Figure 11a, the waveform for a homogeneous crust is shown with P, Ps, 

PpPs, and PsPs+PpPs arrivals (see Figure 8 arrival ray paths). Although these arrivals are 

usually prominent in receiver function waveforms, additional signals produced from 

reflected arrivals within the crust are often observed. Figure 11b shows the two-layer 

crust of the AK135 Earth model. Note the addition of peaks at about 3 and 9 seconds 

after the first arrival and a trough at about 12 seconds. These additional returns represent 

P-S converted waves from the added layer. In figure 11c, I show a stacked receiver 

function from the eastern Idaho station TA.K11A (see Figure 13a), where a positive 

amplitude return is observed at 1.5 s after the first arrival, and amplitude reversals are 

noted at about 3 and 7.5 seconds. This stacked waveform is produced by averaging 33 

receiver functions from different earthquakes. Through forward modeling, this travel time 
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and amplitude pattern can be explained by a slow velocity lower crustal layer (Figure 

11d). Note the variation in travel time and amplitude for individual receiver functions 

(Figure 11e). These variations are related to a violation in my assumption of vertically 

travelling earthquake travel paths or noise included on the seismogram. The variation 

velocity with respect to differing travel paths are discussed below. 
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Figure 11. a) A modeled receiver function for a single velocity crust and mantle. 

b) A modelled receiver function for the AK135 standard Earth model that contains 

two crustal layers and a 36 km thick crust. c) The stacked receiver function 

waveform for all earthquakes recorded on station TA.K11A. d) A modelled receiver 

function for a crustal model that consists of a 10 km thick low velocity zone above 

the 36 km deep Moho. e) All waveforms for station TA.K11A and the stacked 

waveform shown in figure 11c. 



36 

 

Metropolis Algorithm Sensitivity Tests 

To achieve a more accurate velocity model from receiver function waveforms, I 

utilize the Metropolis algorithm inversion technique. To test this approach, I use synthetic 

data that consists of a homogeneous crust to test the accuracy of the inversion (Figure 

12). I use a crustal velocity of 6 km/s, a mantle velocity of 8 km/s, and a crustal thickness 

of 30 km. The starting model for the inversion in Figure 12a consists of a constant 7 km/s 

crust and mantle. After about 100 iterations, the Metropolis algorithm fits a velocity 

change at 34 km depth that closely matches the observed data, however, crustal thickness 

and crustal velocity is overestimated. In the bottom figure, I show the same receiver 

function, but I start my inversion with the AK135 standard Earth model with a crustal 

thickness of 34 km. With this starting model, the algorithm converges to more accurate 

velocities and crustal thickness. This exemplifies the fact that the starting model is very 

important in these inversions. For my inversions, I use the AK135 standard Earth model 

with crustal thickness estimates beneath each station as a further constraint. These H-k 

derived estimates come from the EARS database (Crotwell and Owens, 2005), Eager 

(2010), and Litherland and Klemperer (2017). 
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Figure 12. Metropolis algorithm inversion applied to a synthetic waveform 

generated by a single layered crust (leftmost figure). The observed/known receiver 

function waveform is in blue while the synthetic/calculated receiver function 

waveform is in red (rightmost figures). a) The starting model for the inversion is a 

constant 7 km/s and converges to a solution that overestimates the Moho depth and 

crustal velocity. b) The starting model is the AK135 standard Earth model where 

my inversion converges to a solution that more accurately reflects the true model 

with fewer iterations. 

To explore the range of crustal velocities beneath Idaho, I select three stations 

with contrasting crustal lithologies; TA.I12A, located on rocks associated with the 

granitic Idaho Batholith; XC.Y03, located on basaltic rocks of the eastern SRP; and 

TA.K11A, located along the southern margin of the western SRP (Figure 13a). 

Presumably, the Idaho Batholith contains a simpler crustal velocity distribution 

when compared to a station from eastern Idaho due to the presence of intrusive rocks 

along the path of the Yellowstone hot spot (e.g., Stanciu et al., 2016; Peng and 

Humphreys, 1998). In Figure 13b, I show an observed waveform from station TA.I12A 

and the calculated waveform with minimal error. The crustal velocities for my calculated 

receiver function are similar to that of Davenport et al. (2017), showing a gradual 
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increase in velocity from the surface to the Moho, at 26 km depth. Stanciu et al. (2016) 

estimated the Moho for the Batholith to be at 34 km depth. This discrepancy could be 

because my station is roughly 80 km from their closest seismometers. The EARS 

database, derived from H-k analysis, lists the Moho for this station location to be 27 km.  

Station XC.Y03 lies in the eastern SRP and, given basaltic layering, contains a 

more complex crustal structure than a station that lies upon the Idaho Batholith. High 

velocity mid-crustal sills have been imaged in this region using a variety of geophysical 

methods (Priestley and Orcutt, 1982; Sparlin et al., 1982; Peng and Humphreys (1998); 

Stachnik et al. 2008). In my inversion result (Figure 13c), I identify a high velocity zone 

8-12 km deep that could represent a cooled sill complex. The depth to the top of this sill 

is consistent with observations made by Priestley and Orcutt (1982), Sparlin et al. (1982), 

and Peng and Humphreys (1998), but my sill is approximately 6 km thinner. The Moho is 

also much deeper here (~44 km depth), consistent with the EARS database, Peng and 

Humphreys (1998), and Yuan et al. (2010). 

Station TA.K11A is located in southwest Idaho, and is close to where I note a low 

velocity crustal anomaly in the DNA13 dataset (Figure 4). Figure 13d shows my 

inversion results for this station, containing a low velocity inversion at 20-30 km depth, 

which is similar to the DNA13 dataset. Here, my model shows a crustal thickness of 40 

km, similar to the Eagar et al. (2011) results of ~38 km and EARS published H-k derived 

depth of 38 km. 

In summary, where previous studies have focused on crustal velocities of the 

Idaho batholith, and portions of the SRP, my modeling approach shows consistent results. 
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Because my analysis spans these focus areas, I highlight changes in crustal properties 

across multiple geologic provinces. 

  

Figure 13. Examples of the receiver function inversion where the difference in 

observed/known receiver function waveform (blue) and synthetic/calculated 
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receiver function waveform (red) of figures b, c, and d are minimized. a) A map 

showing the station locations for the example inversions. The topographic 

expression of the SRP is outlined in green. Inversion and calculated waveforms for 

b) an event at station TA.I12A located in the Idaho batholith. c) an event at station 

XC.Y03 located in the eastern SRP. d) an event at station TA.K11A located in the 

southern margin of the western SRP. 

The selection of a 2-km layer thickness was chosen for five reasons related to 

optimization of the inversion calculation and seismic resolution of the input dataset. The 

reasons are: (1) The motivation of this study was to identify mid and lower-crustal 

features rather than bulk crustal properties, so a relatively small layer thickness is better. 

(2) Signals produced from layers under 2 km thickness would be poorly resolved. 

Assuming an average crustal velocity of 6 km/s and the highest signal frequency of 3 Hz, 

we obtain an average wavelength of 2 km. (3) The computation required to forward 

model the receiver function for 1 km layers is nearly doubled compared to 2 km layers. 

(4) The difference in RMS error between the 1 km layer and 2 km layer model is 

negligible (Figure 14a and 14b). (5) A layer thickness larger than 2-km provides much 

larger RMS errors (Figure 14c and 14d). Thus, a 2 km layer thickness provides a balance 

between resolution and computation time where a typical crustal thickness of 40 km 

provides a 20-layer model; adequate to identify and characterize anomalous regional 

crustal velocities.  
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Figure 14. Examples of receiver functions waveforms with different layer 

thicknesses to test layer thickness sensitivities. The observed/known receiver 

function waveform is in blue while the synthetic/calculated receiver function 

waveform is in red. Figure a, b, c, and d have layer thicknesses of 1, 2, 4, and 8 km 

respectively. 
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Tomogram Constructions 

I inverted 14107 earthquake records from 202 stations across southern Idaho and 

surrounding areas. To eliminate outliers from noisy or poorly constrained data, I accept 

the 1-D velocity model only if the RMS error is below 1.5, resulting in 8725 usable 

velocity models (see Yang et al., 2016). This error threshold is based on a qualitative 

comparison of the observed and synthetic receiver function. Figure 15 shows this 

comparison to the same earthquake event used in Figures 13d and 14. An RMS error 

above 1.5 (Figures 15a and 15b) fails to match many of the signals, while an RMS error 

at or below 1.5 (Figures 15c and 15d) have more comparable signals. Figure 16 shows 

the RMS error for all receiver functions. Once each receiver function is inverted and a 1-

D seismic velocity model is achieved, these models are put together to create a 3-D 

tomogram. 

 

Figure 15. Examples of receiver functions waveforms with different RMS values. 

The observed/known receiver function waveform is in blue while the 

synthetic/calculated receiver function waveform is in red. Figure a, b, c, and d have 

RMS values of 1.924, 1.707, 1.507, and 1.307 respectively. 
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Figure 16. The RMS error for all 14107 events. If the RMS error exceeded 1.5 

(black vertical line), the crustal model from the inversion was not used.  

To construct a 3-D tomogram, I first estimate the travel path and ray piercing 

points for a given depth using 1-D ray tracing. Because each earthquake travels along a 

different path that depends on epicentral distance and azimuth, each earthquake for a 

station may contain different amplitude and travel time information that can be used for 

building a 3-D model. This is similar to common conversion point stacking for receiver 

functions (Dueker and Sheehan, 1997) or common midpoint stacking for reflection 

processing (Yilmaz, 2001). Because events from a closer epicentral distance arrive at a 

shallower emergence angle, the piercing point at 60 km depth is located upwards of 30 

km lateral distance away from the station. This results in velocities being best constrained 

at greater depths, whereas at shallow depths, velocities can only be constrained directly 
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beneath the station location. This also explains some variations in receiver function 

waveforms for different earthquakes (Figure 11). 

Once the piercing point coordinate is calculated for each depth, the corresponding 

velocity for each receiver function is binned to a 2x2x2 km grid. Topography is also 

accounted for in this process by simply adding the station elevation to the depth 

measurements prior to binning. I select a 2D linear interpolation scheme based on an 

average of the 8 nearest neighbors to infill each empty cell within each layer. Once every 

depth layer is interpolated, I merge each layer to form a 3-D model. I then smooth this 

volume using a 6x6x6 km box filter. This filter was chosen because of its ability to 

remove irregular velocities within the 3D volume, and it produced the most realistic 

results when compared to other box filters. It should be noted that calculated velocities 

that are a significant distance from a recording station are poorly resolved. 
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CHAPTER FOUR: RESULTS AND DISCUSSION 

Crustal Thickness Variations 

To estimate crustal thickness, I identify the depth to the 7.2 km/s contour within 

the 3D model. This velocity value is found in the transition from an average lower crustal 

velocity (6.5 km/s) to an average upper mantle velocity (8.04 km/s) based on the AK135 

standard Earth model (Kennett et al., 1995). This transition value is also consistent with 

lithology/velocity estimates from DeNosaquo et al (2009) (Figure 6). This assumption 

results in a crustal thickness range of 25-45 km depth across my study area (Figure 17) 

and is consistent with many other focused studies. The thinnest crust is associated with 

the region surrounding the Oregon-Idaho graben and with the Basin and Range province 

beneath northwest Utah. The thin crust beneath the Oregon-Idaho graben region has been 

attributed to Miocene and younger extension (Cummings et al., 2000). Similar processes 

are at play along the eastern limits of the Basin and Range in northwest Utah (Latitude: 

41, Longitude: -113). 

The transition from thin to thick crust south of southeastern Idaho (Figure 17) 

corresponds to the transition from the Basin and Range province to the Middle Rocky 

Mountains province across the Wasatch fault (Figure 1). In a seismic refraction 

experiment by Braile et al. (1974), a 28 km thick crust was determined beneath the Basin 

and Range province while a 40 km thick crust was found in the Middle Rocky Mountains 

farther east. These measurements are consistent with the shallow to deep Moho transition 

in northern Utah from my receiver function analyses. 
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The crustal thickness beneath the Idaho Batholith is roughly ~30 km deep and is 

separated from the Basin and Range province to the east, with a Moho depth of ~35 km. 

Crustal thickness across the WISZ does not appear to change as observed in the studies 

by Stanciu et al. (2016) and Davenport et al. (2017). This is likely due to the lack of 

station coverage compared to the studies that have worked on this problem. There is no 

clear transition between the Idaho Batholith and its surrounding regions. Although there 

are some stations in the HLP and CRB provinces, there is not enough station coverage to 

make any interpretations about crustal thickness geometry. 

Along the past 14 Ma track of the Yellowstone hotspot, I observe a 5-10 km 

increase in crustal thickness compared to adjacent regions. The width of this anomalous 

zone is consistent with the topographic expression of the eastern SRP and extends back 

toward the region of hot spot initiation (Figure 17). Yuan et al. (2010) suggested that 

these changes are a result of additional mass from crustal magmatic injections. The 

crustal thickness is also greatest beneath the youngest portion of the eastern SRP (45 km) 

and appears to gradually decrease in thickness towards the southwest (38 km). These 

observations are consistent with active and passive seismic studies of Yuan et al. (2010) 

and Eager et al. (2011). However, DeNosaquo et al. (2009) did not show increasing 

crustal thicknesses along the hot spot track and attribute measured differences to higher 

density mid crustal sills beneath the central portions of the SRP. 
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Figure 17. Map of crustal thickness from receiver function inversions. Dots 

represent the piercing point at the average Moho depth for southern Idaho (36 km). 

The topographic expression of the SRP is outlined in green. Blue areas and red 

areas of indicative of a thinner and thicker crust, respectively.  

It appears that where caldera centers are mapped (Anders et al., 2014), there is a 

general increase in crustal thickness (Figure 18). This is most notable between the Twin 

Falls and Picabo eruptive center (purple star in the figure 18). Although only represented 

by a few seismic stations, the distribution of piercing points at these stations and at Moho 

depths support this observation (Figure 17). I observe a decrease in crustal thickness from 

~41 km to ~36 km from the Picabo eruptive center to the zone between eruptive centers 

(purple star). The crust then thickens from ~36 km to ~39 km toward the Twin Falls 

eruptive center.  
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A relationship between crustal thickness and hotspot location as inferred from 

geodetic measurements is also observed. Anders et al. (2014) compared the distribution 

of eruptive centers with age to determine a North American plate velocity between 2.3 

and 2.38 cm/yr for the last 10 Ma. With this plate rate, the hotspot location with age is 

plotted on Figure 18. This shows a zone of overthickened crust (~42 km average) 

extending back to 10 Ma. Before 10 Ma, Anders et al (2014) showed that the timing of 

eruptive centers does not correlate with a constant plate velocity. There are two ideas for 

this discrepancy: (1) plate rates need to be about 7 cm/yr before 10 Ma to match eruptive 

center ages with location (Pierce and Morgan, 1992) or (2) hotspot derived magma 

emplacement in the crust was more diffuse and therefore regions of overthickened crust 

do not match geodetic plate rates (Geist and Richards, 1993). While my crustal thickness 

measurements cannot provide insight as to which idea is correct, I do see a consistent 

pattern in crustal thickness post-10 Ma hotspot position compared to the pre-10 Ma crust; 

as the crustal thickening is more diffuse and is not as overthickened as the younger crust 

to the northeast. An alternative to either hypothesis is that my assumption of a 7.2 km/s 

transition from crust to mantle is not valid along the length of the hot spot track. 
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Figure 18. Map of crustal thickness from receiver function inversions. Numbers 

and hash marks represent hot spot geodetic position in Ma (from Anders et al., 

2014). Dots represent the seismic station locations. The topographic expression of 

the SRP is outlined in green. Black dashed ovals are eruptive centers and their 

respective ages (from Anders et al., 2014). Black dashed linear line represents the 

track of the hotspot. The purple star represents an area of thinner crust that is 

located between eruptive centers. 

Mid-Crustal Seismic Velocities: Distribution of Mafic Intrusive Rocks 

In Figure 19, I average the velocities derived from my receiver function analyses 

between 6-14 km depth to obtain a map of mid-crustal seismic velocities. The most 

notable high velocity signal follows the track of the Yellowstone hotspot back to the 16 

Ma hot spot origin near McDermitt, Nevada (Latitude: 42 Longitude: -117.7). These 

higher velocities when compared to surrounding regions is likely due to the replacement 

of ~6 km/s crust that is observed to the north and south of the SRP (e.g., Lerch et al., 

2007; Davenport, 2016) with the emplacement of 6.2-6.4 km/s mid-crustal dioritic sills 

(Figure 6). This interpretation agrees with previous work regarding the presence of mid-

crustal sills in the eastern SRP (Priestley and Orcutt, 1982; Sparlin et al., 1982; Peng and 

Humphreys, 1998; Stachnik et al. 2008; DeNosaquo et al, 2009). This observation also 
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suggests that although crustal thickness estimates suggest a more diffuse hot spot 

emplacement of volcanic materials in the lower crust, materials in the mid-crust were 

more consistent and focused back in time to hot spot initiation. Note that my 12-16 km 

depth slice does not show anomalously high seismic velocities in the McDermitt region. 

Figure 19 also shows that the mid crust beneath the western SRP does not contain 

significant amounts of mafic materials and the velocities are more similar to Idaho 

Batholith rocks that are mapped to the north. At shallower depths (4-8 km), I note higher 

seismic velocities match the contour of the western SRP, consistent with basaltic rocks 

mapped in borehole and with gravity data. This supports an idea that narrow dikes and 

broad thin sills occupy the western SRP. 

Another feature observed in Figure 19 is the high velocity zone located beneath 

the Weiser embayment (Latitude: 44 Longitude: -117; Figure 1). This anomaly is 

centered west of the WISZ and is therefore part of the Blue Mountains Province accreted 

terranes. Davenport et al. (2017) measured a velocity of ~6.4 km/s for the mid crust for 

this region, whereas east of the WISZ, Davenport et al. (2017) measured a velocity of 

~6.2 km/s. This decrease in seismic velocity across the WISZ is consistent with my 

observations. These changes in velocity can be attributed to the more intermediate crust 

west of the WISZ where east of the WISZ is a more felsic crust. Other details regarding 

the crustal properties for this region are highlighted in Stanciu et al. (2016) and 

Davenport et al. (2017). 

A NEN-SWS trending low velocity zone of 5.5 km/s coincides with the current 

location of the Yellowstone hotspot (Figure 19). A magma reservoir has been seismically 

imaged beneath Yellowstone by Smith et al. (2009) and Huang et al. (2015) from roughly 
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5-15 ±1 km depth, consistent with my observations. The Idaho Batholith and Basin and 

Range province have a velocity of ~6.1 km/s and ~5.9 km/s respectively. 

 

 

Figure 19. Average velocities between 6-14, 4-8, 8-12, and 12-16 km depth. Both 

the topographic expression of the SRP and Idaho border are outlined in black. Blue 

areas and red areas of indicative of faster and slower velocities, respectively. 

Southern Idaho Cross Sections 

To highlight seismic velocities across southern Idaho, I extract seven cross 

sections from my final 3-D velocity model (Figure 20). I define the Moho where 

velocities increase to greater than 7.2 km/s. Here, the gradient is consistently higher than 

at other depths. This velocity contour increases in depth beneath the topographic 

expression of the hotspot track (black vertical lines). Faster velocities are observed 
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between ~5-15 km depth beneath the hotspot track that I attribute to the presence of mid-

crustal sills (Figure 19). 

Whereas the results of my inversion generally produced smoothed lateral 

velocities in the lower crust, cross section B-B’ shows narrow vertically oriented low 

velocity zones (6 km/s) in the lower crust beneath the southern margin of the western 

SRP. These low velocity zones are coincident with a high total magnetic field that has 

been interpreted to represent a narrow zone of mid-crustal dikes (Figure 3) (Glen and 

Ponce, 2002). Lastly, low velocities are seen at the base of the lower crust in line G-G’ 

and the other cross sections beneath the topographic expression of the hotspot. Peng and 

Humphreys (1998) and DeNosaquo et al. (2009) made geologic interpretations that a thin 

layer of partial melt sits at the base of the crust of the eastern SRP.   

Due to anonymously low velocities and history of volcanism, I suggest that the 

vertically oriented slow velocity zones beneath the southern margin of the western SRP 

may represent a zone of partial melt or differing lithology, and the horizontally oriented 

low velocity zones at the base of the crust under the eastern SRP are layers of partial 

melt. Although these velocities are not as slow as the 5.5 km/s shallow region beneath 

Yellowstone, where partial melt is identified, velocities in the range of 5.8-6 km/s at 

lower crustal depths could be of similar melt percentage due to the increase in pressure 

(DeNosaquo, 2009; Figure 6).  

To address spatial resolution concerns regarding vertically oriented low velocity 

zones, I present Figure 21 that shows the location of piercing points that helped create the 

velocity profiles of B-B’ and C-C’. The presence of raypaths at the same location of the 

anomalous velocities in B-B’ show that these features have likely been created by lateral 
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variations in the velocity model. In line C-C’, this same effect occurs but not to the same 

quantity as B-B’, supporting the possibility of the presence of these intrusive bodies. 

Alternatively, these lateral changes in seismic velocity could be related to changing 

velocities out of the plane of the cross section. Structure that is observed in the velocity 

profile that does not have any corresponding piercing points is produced from 

interpolation of nearby piercing points. 
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Figure 20. Top left: Map of the study area with red lines denoting the locations 

of the cross sections taken from the 3-D model generated from the receiver function 

inversions. Remaining figures: Velocity cross sections based on the inversion of 

receiver functions. The black vertical lines in cross sections A-F represent the area 

of deformation from the passage of the Yellowstone hotspot. Blue areas and red 

areas are indicative of faster and slower velocities, respectively. 
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Figure 21. Plots comparing piercing points (left) to the velocity profile (right). In 

line B-B’, there are ray path piercing points that lead to anomalous velocity in the 

mid crust. In line C-C’, this same effect occurs but not to the same quantity as B-B’. 

Tectonic Parabola 

In figure 22, a relationship between seismicity 

(https://earthquake.usgs.gov/earthquakes last accessed on August 2nd, 2018) and seismic 

velocities derived from receiver functions is observed within what is called the “tectonic 

parabola” (Anders et al., 1989). The tectonic parabola represents a zone of increased 

seismicity centered on the Yellowstone hotspot, extending into eastern Idaho. Anders et 

al. (1989) suggested that the seismicity pattern is created from reduced integrated 

lithospheric strength produced by thermal effects of the hotspot. The aseismicity of the 

eastern SRP is caused by the addition of mafic materials within the crust, increasing the 

https://earthquake.usgs.gov/earthquakes
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lithospheric strength. By comparing seismicity and upper crustal velocity, I see a positive 

correlation. Whereas almost no seismicity is observed where the velocity is greater than 

6.2 km/s (except west to the Yellowstone caldera). the seismically active zones within the 

tectonic parabola shows consistently lower seismic velocities (denoted by A, B, and D in 

Figure 22). These slower regions tend to experience the most seismicity within the arms 

of the parabola. An area within the tectonic parabola that has a higher seismic velocity 

experiences almost no seismicity (denoted by C in Figure 22). These relationships offer 

evidence that this thermal weakening hypothesis is correct. Perhaps these areas are 

thermally heated, which in turn creates deformation and increases the local seismicity. 

This idea is consistent with observations of Smith and Sbar (1974) for portions of the 

tectonic parabola to the south of the eastern SRP. Alternatively, the low velocity zone at 

the border between Idaho, Utah and Nevada shows little to no seismicity, suggesting that 

additional analyses to explore this relationship is warranted. 
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Figure 22. The same as Figure 19, but with seismic events greater than 

magnitude 2.5 shown in gray dots.  A relationship between seismicity and seismic 

velocity is observed where slower velocities correspond to more seismic events. 

Cross section sensitivities: Hill and Pakiser Inversion 

To test the sensitivity of my velocity model, I compare a 1962 seismic refraction 

survey that was performed using underground explosions over a 454 km line extending 

from Eureka, Nevada to Boise, Idaho (Figure 2). The results were published by Hill and 

Pakiser (1967) and then reinterpreted by Prodehl (1979), showing 1) a region of slower 

velocity (~6 km/s) at 10 km depth below the western SRP, 2) a low velocity zone at 10-
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20 km depth beneath the basin and range province of Nevada, and 3) crustal thickness 

ranging from 30-35 km depth (Figure 2).  

Travel time data for the refraction survey is found in the Prodehl (1979) report. I 

use these travel time picks to invert for seismic velocity using the constraints of my 

receiver function results. Because seismic refraction models typically use an increasing 

velocity gradient as the starting model, and rays that encounter a velocity reversal often 

do not appear as first arrivals, it is difficult to resolve low velocity zones within the lower 

crust. Here, I will use the velocity model from the receiver function inversions as the 

starting model for the refraction inversion. The program used for these inversions was 

modified Matlab code from St. Clair (2015). 

Figure 23a shows the profile extracted from my receiver function derived 3-D 

velocity model. I also show the calculated ray paths through this model from the St. Clair 

(2015) approach, and the travel times for those ray paths with the observed picks of 

Prodehl (1979). From this starting model, the RMS error is 0.93753 seconds. Although 

the travel time slope between observed and calculated arrivals are similar, the calculated 

arrivals are consistently early. After I run three inversion iterations, I achieve the model 

shown in Figures 23b. The RMS error is now at 0.61577 seconds and the calculated 

travel times are closer to the observed picks, with the exception of some outliers in the 

observed data. 
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Figure 23. Refraction inversion on Hill and Pakisers (1967) data using the 

receiver function results as the starting model. a) Left: The starting model for the 

refraction inversion with predicted ray paths. Right: The observed travel times 

(dots) and the predicted travel times for the starting model (lines). The RMS error is 

0.93753. b) Left: The resulting velocity model after 3 inversion iterations with the 

predicted ray paths. Right: The observed travel times (dots) and the predicted 

travel times for the velocity model (lines). The RMS error is 0.61577. c) The 

resulting velocity model after 3 inversion iterations. 

The updated velocity model provides new constraints on the crustal architecture 

for southwest Idaho. Within the new velocity model crustal thickness is at similar depth 

as the Prodehl (1979) model, thickest around the western SRP and hotspot track, and 
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shallowest beneath the Basin and Range province of Nevada. A large zone of slower 

velocities is also observed beneath Nevada, extending from the surface to ~20 km depth 

which is consistent with Prodehl’s interpretation. The largest change between the starting 

and final model are the velocities in the upper 10 km which appear to have dropped by as 

much as 0.5 km/s. This exemplifies the ability for my receiver function analyses to 

constrain velocities at mid-crustal or greater depth, but poorly resolve the upper crustal 

velocities, due to limited ray path coverage and seismic frequencies.  

The southern margin of the western SRP lies at roughly 100 km distance in Figure 

23c. Near this boundary at 10 km depth, I observe a slight velocity increase of ~0.3 km/s 

when compared to the region to the south. This velocity increase is either evidence of 

western SRP downwarping or the lack of intrusive volcanic rocks beneath the western 

SRP. Wood and Clemens (2002) measured the total western SRP downwarping to be 2.3 

km with respect to the margins, close to my observations. Another observation made 

within the western SRP is the 2 km thick high velocity layer at 4-5 km depth. Perhaps this 

layer is the reason for the gravitation highs associated with volcanic intrusions in the 

western SRP (Khatiwada and Keller, 2017).  

Comparing the Prodehl (1979) interpretations to my receiver function results 

(Figure 24), we see many similarities in addition to other features. I propose that receiver 

function analysis can be a cost and time effective method of complimenting large scale 

active source seismic surveys. The only issues with receiver function analysis are their 

limited ability to image shallow crustal features (upper 10 km), due to the thin aperture of 

piercing points, and the ability to image thin (less than 2 km) structures because of the 
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measured seismic frequencies. With denser station spacing, it would be possible to better 

resolve these shallow crustal features and possibly outperform active source surveys. 

 

Figure 24. The Prodehl (1979) interpretation of the Hill and Pakiser (1967) 

seismic refraction survey with velocities derived from receiver function inversion 

overlain upon the figure. 

Geothermal Implications 

By utilizing receiver functions to extract crustal velocity distributions, low 

velocity zones in the middle or lower crust that represent partial melt materials are 

identified with P-wave reflection phase reversals. These velocity reversals are difficult to 

constrain or resolve with a traditional (limited seismic source) refraction survey. These 

velocity inversions could be related to partially melted sills or dikes that have been 

emplaced from the passage of the Yellowstone hotspot. Through my analysis, I have 



62 

 

located areas of anomalously slow seismic velocity that I correlate with the high heat 

flow that we see in areas of southern Idaho. 

In Figure 19, a NEN-SWS trending low velocity zone of 5.5 km/s could be related 

to partial melt that coincides with the current location of the Yellowstone hotspot. Smith 

et al., (2009) estimated that this magma reservoir contains 8% -15% partial melt and 

Huang et al. (2015) estimated this magma reservoir to have a volume of ~10,000 km3. 

This demonstrates that large areas of partial melt can been imaged through inverting 

receiver functions for seismic velocity. 

Earlier in this chapter, I interpret possible dikes along the southern margin of the 

western SRP that extend from 10 to 30 km depth. These dikes are also coincident with a 

high heat flow region (Figure 5). This may link these mid to lower crustal dikes to the 

high heat flow of the southern margin of the western SRP. The large abundance of 

Quaternary faults in this region act as conduits for heat transportation from lower crustal 

depths to the near surface. 

The two active geothermal power plants in my study region are the Raft River and 

Neal Hot Springs plants. Both of these power plants are coincident with thin crust  (25-30 

km) and show no signature of partial melt within the crust related to slow velocities. With 

this information, the heat flow from these power plants is most likely driven by crustal 

thinning rather than partial melt or radioactive decay within the crust. 

Geologic Interpretations 

Figures 25, 26, and 27 display the geologic interpretations of cross sections B, D 

and the Hill and Pakiser line, respectively (Figures 2, 23, and 24). Cross section B 

extends from the HLP province, through the southern margin of the western SRP and 
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hotspot track, into the Basin and Range province of Nevada and Utah (Figure 25). 

Velocities of 5.3 km/s are observed from the surface to 5 ±2 km depth beneath the 

volcanic provinces of Oregon and Idaho. These velocities are related to the mafic 

Neogene volcanic rocks of the region and are slower velocities than adjacent areas. 

Within the Basin and Range province, I identify a 5.5 km/s layer from the surface to 

about 2 km depth that is consistent in thickness and velocity with the Lerch et al. (2007) 

interpretation of Paleozoic and Mesozoic sediments. Beneath the SRP, I identify a 5-10 

km thick mid-crustal sill. Based on velocity and depth, the composition of this sill is 

likely diorite, consistent with the DeNosaquo et al. (2009) gravity derived model. I 

interpret the narrow, anomalously slow velocities to be volcanic intrusions, possibly 

partially melted dikes of mafic composition. These velocities are faster than the 8-15% 

partial melt beneath Yellowstone, but slower than surrounding rocks by 0.5 km/s. The 

location of these dikes align with high total magnetic field values along the southern 

margin of the WSRP that is also coincident with heat flow values (Figure 3 and 5). 
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Figure 25. Schematic of the interpreted geology beneath line B-B’ determined 

from the inversion of receiver function for seismic velocity.  

Along cross section D, I observe many velocity anomalies beneath the 

topographic expression of the ESRP (hot spot track) compared to the surrounding regions 

(Figure 26). A velocity of 5.3 km/s in the upper 5 km depth can be related to the Neogene 

volcanic rocks. A 5-10 km thick high velocity zone has been interpreted as a dioritic mid-

crustal sill from 8-15 km depth (Denosaquo et al., 2009). A low velocity zone that can be 

related to mafic partial melt is seen at the base of the lower crust. These low velocity 

partial melts are prevalent at the base of the crust beneath most of the eastern SRP as 
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observed in line H-H’ as well as mentioned by Peng and Humphreys (1998) and 

Denosaquo et al. (2009). 

 

Figure 26. Schematic of the interpreted geology beneath line D-D’ determined 

from the inversion of receiver function for seismic velocity. 

By utilizing both receiver functions and seismic refraction data, I have developed 

new interpretations for the Hill and Pakiser (1967) seismic refraction line (Figure 27). 

Within the upper to mid-crust of the western SRP, there is evidence of mid-crustal sills. 

This is plausible because it is believed that the western SRP exists because of the 

injection of basaltic magma into the mid-crust (Baldridge et al., 1995; Wood and 

Clemens, 2002). Areas of low velocity in the lower crust are also observed that can be 
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related to partial melt. These velocities are greater than the identified mid-crustal magma 

chamber beneath Yellowstone, but slower than the cooled mid-crustal sills identified 

beneath the ESRP. 

 

Figure 27. Schematic of the interpreted geology beneath the Hill and Pakiser 

(1967) seismic refraction line. These interpretations came from inverting the 

refraction travel times for seismic velocity using the results from receiver functions 

as constraints. 
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CHAPTER FIVE: CONCLUSIONS 

Because of the large velocity contrast between the crust and upper mantle, 

receiver functions are commonly used to study crustal thickness by locating signals that 

reflect from the Moho. While this has proved useful to examine lithospheric scale 

processes, other signals are often ignored within the waveform that represent regional 

structures within the crust. These crustal structures are typically imaged through large 

scale refraction surveys that require large explosions and are difficult to permit. To locate 

finer structure, I invert receiver function waveforms to estimate seismic velocity 

distributions within the upper 60 km. I employ a Metropolis algorithm approach to the 

geologically complex region beneath southern Idaho to test the sensitivity of this 

approach, compare with previous studies, and to identify and characterize the seismic 

properties.  

By inverting receiver functions to derive seismic velocities, I am able to resolve 

many lithospheric features. Features related to crustal thickness include: (1) a 5-10 km 

increase in Moho depth along the track of the Yellowstone hotspot; (2) shallow Moho 

measurements around the Oregon-Idaho graben and the Basin and Range province 

associated with crustal thinning; (3) a 12 km increase in crustal thickness along the 

transition zone from the Basin and Range province to the Middle Rocky Mountains. 

Due to the volcanic history of southern Idaho, I identify a zone of mid-crustal 

mafic intrusions along the track of the Yellowstone hotspot. This observation is 

consistent with the emplacement of dioritic mid-crustal sills that others have identified. I 
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also identify anomalous seismic velocities beneath the western SRP, but the velocity 

anomalies are thinner compared to beneath the ESRP. Beneath the current location of the 

Yellowstone hotspot, I observe slow velocities at depths that coincide with a magma 

body, consistent with other studies. Within the lower crust beneath the southern margin 

of the western SRP, I identify vertically oriented, ~15 km wide, low velocity zones that 

are resolved from multiple earthquake events. These slow features are coincident with a 

region of high heat flow and high magnetic susceptibility that are tied to dikes that 

formed from extension of the WSRP. Evidence of a layer of partial melt that lies at the 

base of the crust beneath most of the eastern SRP is also interpreted. 

Applying the results from my receiver function inversions, I provide constraints 

on deep seated heat sources for most of the southern Idaho geothermal systems. The 

Weiser area likely has high heat flow due to the crustal thinning that is observed beneath 

the Oregon-Idaho graben. This supplies the heat necessary to power the Neal Hot Springs 

geothermal power plant in eastern Oregon. Much of the heat flow in the western 

SRP/Owyhee region could be generated from partially melted dike or sill complexes in 

the lower to mid-crust. An abundance of Quaternary faults that lie along the southern 

margin of the western SRP likely act as a conduit that supplies this heat to the upper few 

kilometers. I also find supporting evidence that the heat flow of southeastern Idaho and 

Yellowstone is produced from crustal thinning and a magma reservoir, respectively. 

By utilizing a seismic refraction dataset by Hill and Pakiser (1967), I use my 

receiver function velocity model as a constraint for a new refraction inversion. The new 

velocity model exhibits some similarities as previous interpretations, but also yield some 

new features such as mid-crustal sills. This exhibits that lithospheric structure can be 
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resolved without large-scale, high-cost, and labor intensive seismic refraction surveys. 

However, due to higher resolution signals and denser station spacing, the active source 

results best constrain the upper 5 km of the crust. I show that these methods can 

complement each other by using receiver function based velocity models as a starting 

model for refraction inversions. 
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