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ABSTRACT 

There is currently a strong focus across the technological landscape to create 

machines capable of performing complex, objective based tasks in a manner similar to, or 

superior to a human. Many of the methods being explored in the machine intelligence 

space require large sets of labeled data to first train, and then classify inputs. Hierarchical 

Temporal Memory (HTM) is a biologically inspired machine intelligence framework 

which aims to classify and interpret streaming unlabeled data, without supervision, and 

be able to detect anomalies in such data. 

In software HTM models, increasing the number of “columns” or processing 

elements to the levels required to make meaningful predictions in complex data can be 

prohibitive to analyzing in real time. There exists a need to improve the throughput of 

such systems. HTMs require large amounts of data available to be accessed randomly, 

and then processed independently. FPGAs provide a reconfigurable, and easily scalable 

platform ideal for these types of operations. One of the two main components of the 

HTM architecture is the “spatial pooler”. This thesis explores a novel hardware 

implementation of an HTM spatial pooler, with a "boosting" algorithm to increase 

homeostasis, and a novel classification algorithm to interpret input data in real time. This 

implementation shows a significant speedup in data processing, and provides a 

framework to scale the implementation based on the available hardware resources of the 

FPGA. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation: The Demand for Smarter Machines 

The field of artificial intelligence has been explored since the mid 1950's, but has 

made a recent resurgence into mainstream society [1]. Technology companies have begun 

marketing their products based on their use of hardware designed specifically to perform 

Artificial Intelligence (AI) tasks. Throughout 2016 and 2017, the technology company 

NVIDIA has pivoted their primary focus from video gaming hardware, to hardware 

accelerated neural networks. Apple has led the smartphone industry by incorporating 

dedicated neural network hardware directly on their SoCs in their 2017 flagship products. 

Qualcomm has followed suit and included similar hardware in some of their top-of-the-

line SoCs. Even enterprise level datacenters are moving to using ASICs and 

reconfigurable hardware to implement machine learning algorithms for the performance, 

cost, and environmental benefits [2]. 

There is a broad range of applications for which machine learning provides both 

increased performance and reduced energy consumption. It's estimated that electricity 

accounts for about 15% of a datacenter's operational cost [3]. Consequently, measurable 

decreases in computational energy consumption can have a significant impact on the 

bottom line for a company, which processes large quantities of data. Machine learning 

algorithms are general learning algorithms which can be applied to datasets with vastly 

differing domains. So, one algorithm, if implemented in hardware, could be used in a 

wide range of applications. As more and more computationally intensive tasks move to 
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using machine learning, the case becomes stronger to utilize specialized hardware for this 

purpose. 

Many machine learning, more specifically deep learning, algorithms require a 

large number of simple operations on large sets of matrices during training. 

Consequently, GPUs are a popular choice as an alternative to commercially available 

CPUs for performing these computations. For instance, the popular machine learning 

platform TensorFlow from Google utilizes GPUs for training many of its machine 

learning models [4]. Whereas GPUs do provide several benefits over CPUs [5], like 

performance per core, and performance per Watt, when it comes to performing only one 

specific type of algorithm, an FPGA or ASIC in many cases will provide even greater 

performance, while using less power. [6, 7] 

1.2 Research Goals 

This thesis will describe and evaluate the effectiveness of a novel implementation 

of the Hierarchical Temporal Memory (HTM) spatial pooler model [8] on reconfigurable 

hardware. The novel elements include: 

1. Pipelining between the "Phase 1" and "Phase 2" portions of the algorithm 

2. FPGA implementation of the HTM "boosting" algorithm, and 

3. Development and implementation of a new online classification algorithm called 

"Scaled Union Overlap" 

To achieve this goal, the HTM algorithm was first built in software and 

parameterized, and then translated to synthesizable Verilog, a common hardware 

description language [9]. This model was then simulated and verified before 

implementing it on a Xilinx 7-series Zynq FPGA development board [10]. Finally, the 
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MNIST dataset [11] was used to verify the functionality of the hardware and its ability to 

implement the HTM algorithm as well as the classifier's accuracy relative to conventional 

software means. 

1.3 Evaluation Methodology 

This section describes the strategy which was used to evaluate the performance of 

the novel components of this work. In addition to the steps taken, the software and HDL 

tools are presented. 

1.3.1 Software Implementation 

To establish the effectiveness of the HTM algorithm to be implemented on the 

FPGA, it was built, verified, and validated in software using Python for its ease of 

development, object-oriented nature, and speed. On the other hand, the new classification 

algorithm was implemented using a Perl script. A support vector machine library called 

LIBSVM [12] was used to validate the effectiveness of the spatial pooler's ability to 

extract meaningful features, and to benchmark the new classification algorithm. 

1.3.2 Verilog and Simulation 

Verilog HDL will be used to create a synthesizeable version of the spatial pooler 

and classification algorithm. The Xilinx IDE Vivado will serve as the synthesis / PNR 

tool. Simulations were run with the open source software Icarus [13] for its cross 

platform support, and waveforms observed with GTKWave [14]. Simulations were only 

used to verify the HDL implementation, and were not used to provide any metrics for 

evaluation of the effectiveness of the algorithms. 
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1.3.3 FPGA Implementation 

The HTM spatial pooler RTL was constructed as an AXI peripheral, and 

controlled by the Zynq processing system. Training data was provided via an SD card, 

and status communicated via UART to a terminal on an external machine. The output of 

the system was written to an SD card, and transferred to a Macbook Pro for analysis (see 

Appendix A for specifications). Figure 1 illustrates the connectivity between the HTM 

core and the external system. 

 
Figure 1.  System Level Diagram 

1.4 Metrics 

1.4.1 HTM Spatial Pooler 

The spatial pooler was evaluated based on four primary metrics: speed, energy 

consumption, resources, and feature extraction. Speed is measured by the number of 

training samples the spatial pooler will be able to process each second, and is denoted by 

𝑓(𝑠𝑡, 𝑡) as shown in equation 1. 

𝑓(𝑠𝑡, 𝑡) =
number of samples

training time
=

𝑠𝑡

𝑡
 

(1) 
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The speeds for the software and hardware implementations are calculated using 

equation 1, and compared. 

Energy consumption is measured in Joules per sample, and is calculated based on 

the total training time, number of training samples, and average power. 

𝐸(𝑃𝑎𝑣𝑒 , 𝑡, 𝑠𝑡) =
average power × training time

number of samples
=

𝑃𝑎𝑣𝑒𝑡

𝑠𝑡
 

(

(2) 

The average power used for the software simulation is found by taking the 

average power consumed while simulating the HTM on the Macbook, and subtracting the 

average power measured while the system is idle. For comparison, the average power for 

the FPGA based solution is measured directly. In both cases, the same power 

measurement device is used, which has a claimed typical error rate of 0.5% [15]. 

The resources metric only applies to the hardware implementation, and is a 

measure of the physical resources used by the FPGA implementation. These resources 

consist of: (a) number of lookup tables (LUTs), (b) number of slice registers (slices), (c) 

number of DSP slices, and (d) number of block RAMs used. The feature extraction 

metric is an indication of the ability of the system to encode the features of a dataset in a 

meaningful way. It is represented as a percentage of correctly classified samples, and is 

used to compare both the hardware and software implementations. 

1.4.2 Classification Algorithm 

The hardware classification algorithm is compared to the software classification 

with speed, energy consumption, and classification accuracy metrics. The speed and 

classification metrics are calculated similarly to that of the spatial pooler, except the 
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difference in time and average power between experiments with both classification 

enabled and classification disabled is used. 

𝑓𝑐(𝑡, 𝑡𝑐 , 𝑠) =
number of samples

time /w classifying - time /wo classifying
=

𝑠

𝑡𝑐 − 𝑡
 

(3) 

The value of 𝑓𝑐  represents the frequency in samples per second that the classifier 

can operate. If 𝑃𝑎𝑣𝑒,𝑐 represents the average power consumed during classification, then 

the energy consumed classifying each sample can be written as: 

𝐸𝑐(𝑃𝑎𝑣𝑒,𝑐 , 𝑃𝑎𝑣𝑒 , 𝑡𝑐 , 𝑡, 𝑠) =
𝑃𝑎𝑣𝑒,𝑐𝑡𝑐 − 𝑃𝑎𝑣𝑒𝑡

𝑠
 

(4) 

The final metric to compare classification algorithms is the classification 

accuracy. For a given set of vectors, each of which belong to one of a discreet set of 

classes, the classifier is measured by its ability to correctly identify to which class each 

vector belongs. The percentage of correctly identified vectors will indicate the 

effectiveness of the classification algorithm. 

𝐴 = 100 ×
correctly identified vectors

total vectors classified
= 100 ×

𝑐

𝑠𝑐
 

 

 

(5) 

1.5 Organization of the Thesis 

The rest of the thesis is organized as follows 

 Chapter 2 discusses the related literature in the fields related to Hierarchical Temporal 

Memory, Spatial Pooler, and Temporal Pooler. 

 Chapter 3 details the design methodology for the Hierarchical Temporal Memory 

Spatial Pooler. 

 Chapter 4 covers the hardware implementation of the HTM on the selected FPGA 

platform. 
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 Chapter 5 discusses the software and hardware results obtained along with the 

experiments, verification, and tests performed. 

 Chapter 6 concludes the thesis and provides suggestions for future work. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Hierarchical Temporal Memory 

Hierarchical Temporal Memory, or HTM, is a biologically inspired theory of 

intelligence maintained by the privately funded company Numenta. It is based on the 

cortical learning algorithm, or CLA, described by John Hawkins and Sandra Blakeslee in 

their book "On Intelligence" [16]. The basic algorithm involved in HTM falls within the 

deep learning family of machine learning. The goal of HTM is to model the operation of 

the mammalian neocortex, and in time to help researchers understand the nature of 

human intelligence through building machines capable of replicating it. The HTM spatial 

pooling algorithm was created by Numenta, and is described by Hawkins and Subutai in 

their whitepaper titled “Hierarchical Temporal Memory including HTM Cortical 

Learning Algorithms” [8]. 

The fundamental unit of the HTM model is a cell. A cell is an abstraction of a 

physical cell in the brain, or a neuron. HTM cells have many similarities with biological 

neurons, such as; they have feed forward, as well as lateral I/O connections, each is either 

“active” or “inactive” at a given point in time, the strength of the I/O connections is 

updated based on both current inputs, as well as previous inputs, and both exhibit a form 

of local inhibition to nearby cells. In the interest of simplifying the model, some 

characteristics of neurons are not present in HTM cells. For instance, HTM cells will 

typically only be connected to tens, or hundreds of other cells, whereas real neurons may 

have tens of thousands of connections each. 
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Cells are arranged into groups called “columns”. The name columns comes from 

the physical orientation most neurons have in the neocortex of mammalian brains. 

Columns are an abstraction for a group of cells, and are the fundamental unit of the HTM 

spatial pooler. Each cell in a particular column shares its feed forward input with that of 

the other cells in the same column. A column can be considered active if the number of 

connected active inputs is greater than a particular threshold, and that number is greater 

than that of all other columns in its inhibition radius. 

Groups of cells which share a common input space, and which can inhibit one 

another, make up a region. The use of an activation threshold as well as local inhibition 

of cells ensures that regions should always maintain a sparsely distributed representation 

(SDR) of the input. An SDR is a vector in which relatively few elements are non-zero. 

HTM SDRs maintain a sparsity of about 10%. 

Regions can be grouped into hierarchies in which the output of each region (its 

activation pattern) is made to either be one of the inputs to another region, or the primary 

output of the system. Having multiple levels allows for greater levels of abstraction of the 

input data relative to the lower regions. This hierarchical structure is what qualifies HTM 

as a deep learning algorithm. All regions which exist in the same vertical position in the 

system hierarchy are in the same “level." Figure 1 shows a four level hierarchy, similar to 

the human neocortex, with the lines indicating the flow of temporal information. Lines 

between levels represent the feed-forward and feed-backward flow of data between 

regions. Lines within levels are the distal connections between cells. 
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Figure 2. Levels of hierarchy in an HTM (from Numenta, 2011) 

The system shown in figure 2 includes only one source, and only one output, in a 

pyramid structure. This type of structure where the regions decrease in size from input to 

output is a bottom-up network. The implementation described in this thesis will follow 

this topology. However, HTM isn't restricted to either a single input or a single output. 

Figure 3 shows a system which can take two streaming inputs, audio and video, extract 

features and patterns from each, and then classify and make predictions using both 

simultaneously. 
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Figure 3. Multi-input HTM network (from Numenta, 2011) 

Typically, HTM regions are two-dimensional arrays of columns. Using two 

dimensions of columns most closely resembles the structure seen in the neocortex, but the 

number of dimensions are not restricted to two. The implementation discussed in this 

work treats the columns as a one-dimensional array of columns. Each column consists of 

multiple cells. All cells within a column share the same feed-forward input, but each 

individual cell will have a large number of its own set of distal connections to other cells 

in the region. A column is considered active if at least one of its cells is active. The 

activation of columns indicates spatial information about the input, and the activation of 

the individual cells contains the temporal context. 

Figure 4 shows an array of columns forming a small region, each with four cells. 

The activated cells are shown in dark blue. The number of unique temporal contexts 𝑋 

able to be stored in a region for an activation pattern of columns can be found with 

equation 6. 
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Figure 4. Topology of an HTM region (from Numenta, 2011) 

𝑋 = cells per column2 − 2 = 𝑐2 − 2 (6) 

2.2 Spatial Pooler 

The spatial pooler is responsible for determining which columns within a region 

will be active given the state of the input. Each column is connected to only a subset of 

the inputs to the region. This connection, also referred to as a synapse due to its 

biological counterpart, is represented with a scalar value called permanence. The 

permanence of a synapse is similar to the weights which are associated between 

connected processing elements in artificial neural networks. However, in the HTM 

model, synapses have only a binary weight, either 0 or 1, based on the synapse’s 

permanence being either above or below a certain threshold. Synapses below the 

threshold are labeled as "potential synapses", whereas those above the threshold are 

"functional synapses". 

Initialization of the spatial pooler involves creating the initial feed forward 

synapses connecting each column to the input space for the region. Each column will 

have several synapses, each consisting of a pointer addressing the position within the 
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input, as well as the initial permanence. The mean of the initial permanencies should be 

close to the connectivity threshold, giving roughly the same number of functional 

synapses as potential synapses. 

2.2.1 Phase 1: Overlap 

In the first phase of the spatial pooling algorithm, the activation, or overlap, of 

each column is computed by summing all synapses in which the synapse permanence is 

above the threshold, and the input bit is active. Optionally, the overlap may be scaled by 

a "boosting" factor. Figure 5 shows the pseudo-code for this phase. 

 
Figure 5. SP Phase 1 pseudo-code (from Numenta, 2011) 

2.2.2 Phase 2: Winner Selection 

Once all columns have the overlap computed, only those which have the highest 

local activation relative to the nearest neighboring columns are chosen as winners, and 

declared as active during that iteration. This resulting activation pattern is a sparsely 

distributed representation of the input. This is "Phase 2". The pseudo-code of phase 2 is 

depicted in Figure 6. 
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Figure 6. SP Phase 2 pseudo-code (from Numenta, 2011) 

2.2.3 Phase 3: Learning 

Once the winners are selected, the learning begins in "Phase 3". Learning occurs 

simply by adjusting the permanencies associated with each synapse of only the winning 

columns. For each synapse for every winning column, if the input bit was a 1, the 

permanence is increased. If the input bit of the synapse was a 0, the permanence is 

decreased. In this way, the correlation between the activation pattern and its 

corresponding input pattern is reinforced. The pseudo code of this phase is summarized in 

Figure 7. 
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Figure 7. SP Phase 3 pseudo-code (from Numenta, 2011) 

The first loop updates the permanence values for those columns which were 

deemed as winners in Phase 2. The second loop updates the duty cycles for each column, 

and uses those duty cycles to compute the boost factors. HTM can be used either in an 

"online" or "offline" learning methodology by choosing whether or not Phase 3 occurs 

continuously, or is disabled after training is complete. 

2.3 Temporal Pooler 

The goal of temporal pooling is to identify and learn patterns in sequences of 

inputs. With the temporal pooler, it extends not only the ability of the HTM beyond just 

identifying features and classes of inputs, but also to predict future inputs from past 

patterns, based on the current temporal context of the current input. 
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The temporal pooling algorithm begins after spatial pooling has completed, and is 

likewise separated into 3 phases. The mechanics of the temporal pooling algorithm 

operate similarly to the spatial pooling algorithm, with some additional complexities 

during the learning phase. 

2.3.1 Phase 1: Activation 

Temporal pooling begins where spatial pooling ends, with a set of active and 

inactive columns representing the current input. The temporal pooler will first determine 

which, if any, of the cells in the active columns are in a predictive state. The predictive 

state of the cells would have been set in phase 2 of the previous iteration of the temporal 

pooler. If no cells in an active column are in the predictive state, as is the case with all 

columns in the first iteration of the temporal pooler, then all of the cells in such a column 

are activated. When all of the cells in a column are activated, this represents an 

unexpected event, possibly a transition that has never been observed before by the HTM. 

When a large ratio of the active columns have all of their cells activated, an anomaly has 

occurred in the temporal sequence. In each column, a cell is selected as being the 

"learning cell" for phase 3 based on the activation of the previous time-step. The cell 

which contains the dendrite segment with the highest overlap with the previous activation 

is chosen to be the learning cell. 

Figure 8 shows the state of an HTM with temporal pooling. The white cells are 

inactive, the dark grey cells represent a predictive state, and light grey indicates a cell is 

active for the current time-step. The columns in which all cells are light grey indicates a 

column was determined a winner by the spatial pooler, but no cells were in the predictive 

state prior to temporal pooling. 
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Figure 8. Temporal pooling (from Numenta, 2011) 

2.3.2 Phase 2: Overlap / Prediction 

Phase 2 of the temporal pooler is similar to the overlap phase of the spatial pooler. 

Each cell has a number of its own synapses, but instead of being connected to the input 

space, these synapses are connected to other cells in the region. The synapses for a cell 

are grouped together into several "dendrite segments". The number of dendrite segments 

per cell is small in comparison to the number of synapses per dendrite segment. For each 

dendrite segment, the potential synapses are tested against a threshold. The synapses 

whose permanence is higher than the threshold are considered functional. The overlap of 

a dendrite segment is the sum of all of the functional synapses connected to cells in the 

active state. Here, the active state means a cell is active only due to feed forward input, 

and not simply in the predictive state. If the overlap of any of the dendrite segments for a 

cell is above a threshold, then that cell is put into the predictive state for the next time 

step. 

Figure 9 illustrates the phase two prediction computation. In this example, the top 

cell in the center column is being tested to determine if it should be put into the predictive 
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state. Each triangle represents a dendrite segment, and the lines from the dendrite 

segments to the other cells are functional synapses. A grey colored cell was deemed 

active during phase 1 of temporal pooling. The activation for dendrite segment A is two, 

and D is one. B and C are both zero. If the minimum activation for a dendrite segment 

were two or less, this cell would be placed in the predictive state for the next time-step. 

 
Figure 9. Temporal pooling phase 2 

2.3.3 Phase 3: Learning 

The learning phase of the temporal pooler iterates through every cell, and checks 

for two conditions: 

1. If the cell was previously selected as the learning cell in its column, then each of the 

synapses on that learning cell are reinforced by increasing their permanence, but only 

if the synapse is connected to a cell which was activated in the previous time step. 

2. If it was not a learning cell, and not currently in the predicted state, but in the 

previous time-step (predicted to be activated), then decrease the permanence of its 

distal connections. 
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Case 1 reinforces the correlation between the previous state and the activation of 

the updated cells. The result being that the next time the activation pattern from the 

previous time step is seen, the current activation pattern will be predicted. Case 2 looks 

for instances where the previous iteration of the temporal pooler incorrectly predicted that 

a cell would become active, but it did not. Decreasing the permanencies for these cells 

decreases the likelihood of another false positive. 

2.4 Classification of Sparsely Distributed Representations 

A sparsely distributed representation is an encoding of data using a vector in 

which a small minority of its elements are non-zero. When the dimensionality of the 

vector is sufficiently large, there can be a relatively large number of possible encodings 

with only a small percentage of non-zero elements. For instance, a bit string of length 512 

can represent more than 287 billion possible values when only 5, or less than 1%, of its 

bits are 1. The sparsity of an SDR is computed using the following equation. 

Sparsity =
𝑤

𝑛
 

(7) 

where n is the total number of elements, and w is the number of non-zero elements. The 

number of unique encodings possible with an SDR is given by equation 8: 

Unique SDR encodings =
𝑛!

𝑤! (𝑛 − 𝑤)!
 

(8) 

The human neocortex operates on SDRs when considering each neuron to be 

either on or off depending on its action potential [17]. The output of the spatial pooler is a 

sparsely distributed representation of the input features, and can be considered to be a 

"hidden layer" like in other deep learning algorithms. A hidden layer being a layer whose 

output does not directly translate to the system output, but must be processed further in 

order to provide meaningful information. Hierarchical Temporal Memory is in fact 
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hierarchical in nature, and is intended to be used in multiple layers. As the number of 

layers’ increases, so does the level of abstraction the SDRs can represent. However, to 

determine the efficacy of a single layer of the spatial pooler, its output needs to be 

classified using some other type of classification algorithm. 

2.4.1 Support Vector Machines 

Support vector machines (SVMs) aim to classify n dimensional data points by 

separating the data points using n dimensional hyperplanes to bifurcate them into bins. In 

cases where an n dimensional hyperplane is not sufficient, the data points are transformed 

to a space in which they are able to be ideally separated with hyperplanes. This is known 

as the "kernel trick." For an HTM SDR of n bits, an n dimensional SVM can be used 

[18]. This is a common method used to compare spatial pooler accuracy [19, 20]. 

2.4.2 Union Overlap 

The union overlap method described by Ahmad and Hawkins in their paper [21] 

is a method specifically designed for the classification of HTM output activation patterns. 

The method involves first taking the union of a certain number of output patterns that are 

all are associated with the same class. Then, to determine if an output pattern belongs to 

that class, the dot product of the output vector and the union vector is taken, and, if it is 

greater than a threshold, the input is deemed a member of the class. The three primary 

benefits to this method versus an SVM for a hardware implementation are: 

1. This method only requires storage of one vector per classification bucket. On die 

storage is limited, and off die storage has poor latency and would be a bottleneck to 

throughput. 



21 

 

2. Only simple addition, comparison, and bitwise operations on unsigned integers is 

required. 

3. Recomputing the union vectors can be done online whenever labels are available to 

adapt to a changing HTM, thus enabling a dynamic classifier suitable for an online 

application. 

However, this method requires several assumptions be made about the HTM 

outputs. First, the outputs must be truly sparse [21]. Increases in output vector density 

translates into noise, and will cause many more bits being active in the union vector. 

Having a large portion of the union vector bits active will result in a higher rate of false 

positive matches. Second, this classification method operates under the assumption that 

the SDRs are distributed, as well as sparse. "Distributed" means that the activation of 

many neurons is necessary in order to be representative of something significant, which 

sets a lower limit to sparseness. So, when there is overlap between two patterns, it is 

highly likely that the HTM is interpreting inputs with similar features. The likelihood two 

random sparse vectors would have overlap is relatively small. For instance, assuming two 

random vectors of length 512, each with 20 bits of activation, the chance that 50% or 

more of the bits will overlap is ≈ 1.1 × 10−10. If the number of active bits is increased to 

50, that probability drops even further to ≈ 8.8 × 10−15. Of course, this assumes that the 

two vectors are chosen at random, but since the active columns in the spatial pooler are 

reinforced to be more likely to inhibit their neighbors, the output patterns of dissimilar 

inputs will have some correlation. Thus, the union overlap method requires some method 

of enforcing more entropy, or randomness between outputs corresponding to unrelated 

inputs. A spatial pooler exhibiting high entropy has a higher degree of homeostasis. 
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2.5 HTM Spatial Pooler Hardware Implementations 

A few efforts have been made to implement the HTM spatial pooler on 

reconfigurable hardware previous to this work [7, 19]. This thesis is based primarily on 

the implementation described by Zyarah and Kudithipudi in their work titled 

"Reconfigurable Hardware Architecture of the Spatial Pooler for Hierarchical Temporal 

Memory" [20]. In this implementation, they introduce the concept of a "synthetic 

synapse". In HTM, each column is connected to many, sometimes thousands, of bits in 

the input vector. In hardware, having thousands of nets in the fan-in to each and every 

column's processing logic would be prohibitively complex from a routing perspective. 

Instead of having individual physical connections between the inputs of each column, the 

input address and permanence value for each synapse is stored in a memory element, in 

their case a 64-byte RAM for each column. During Phase 1 of the HTM spatial pooling 

algorithm, for every synapse in every column the memory holding the input data is 

indexed with the input space address particular to that synapse, and if that input bit is 

high, the synapse's permanence is compared to the threshold to compute the overlap score 

for each column. 

Their approach capitalized on the parallel nature of the computations involved in 

the HTM algorithm. This method showed significant speedup of the algorithm with 

respect to their software simulations, a 4817 X improvement, and using an SVM to test 

the classification accuracy of their model on the MNIST dataset, they achieved an 

accuracy of 91%. Table 1 details some of the parameters used in their implementation. 
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Table 1: Parameters used for Spatial Pooler (from Zyarah & Dhireesha, 2015) 

Parameter Value 

Number of columns 100 

Winning columns 20% 

Columns per synapse 16 

Synapse permanence threshold 127 

Permanence increment/decrement factor +/- 1 

Inhibition type Global 

Minimum overlap 2 

 

In this implementation, they chose to use a global inhibition as opposed to a local 

inhibition. Global inhibition works by first calculating the overlap scores of all columns, 

and then selecting the columns with the highest overlap, in this case the top 20%, as the 

winners. This is in contrast to local inhibition which selects the winners by comparing the 

overlap score of each column to that of the columns within a certain distance, and 

declaring it a winner if its score is greater than or equal to the score of the columns 

around it. It has been shown that there is little difference between global and local 

inhibition when using the MNIST dataset, in terms of the feature extraction ability of the 

spatial pooler [22]. The minimum overlap parameter sets the minimum overlap threshold 

for each column. In this case, a column must have an overlap of at least 2, while also 

being in the top 20% of all columns to be active. 

Figure 10 shows the activation patterns of two HTM regions with identical 

overlap scores, with the one on the left using local inhibition (radius 1, minimum overlap 
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of 2), and the one on the right using global inhibition (top 6 columns declared as 

winners). 

 
Figure 10. Inhibition comparison 

These two approaches both maintain the same level of activation, but the pattern 

differs slightly. The blue circle in the left figure represents the inhibition radius of the 

column labeled "51", and the orange circle is the inhibition radius for the column labeled 

"9". With local inhibition, the "9" column is declared a winner since it has a higher 

activation than all of the columns within its radius, but is not activated with global 

inhibition due to its low relative overlap score. Conversely, the "51" column is inhibited 

with local inhibition by the "66" to its left, but is active with global inhibition since it has 

a high overlap relative to all other columns. 

2.5.1 Logical Implementation 

Their implementation duplicated the logic required for the overlap calculation and 

learning algorithm for each column in the region. Each column was comprised of LUTs, 

a handful of registers, and a 64-Byte RAM. Each RAM contained 16-Bytes of addresses 

(1 byte per address mapping back the input space), 16-Bytes of permanencies (1 byte per 

synapse), and 32-Bytes of input data. Each cycle the RAM would be indexed to fetch 
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either the permanence of a synapse, the address of the input bit to which that synapse was 

connected, or the input bit itself. Thus, phase 1 of the spatial pooler was able to be 

computed in parallel, in relatively few cycles. The activations of the columns were fed 

back to the "MCU", or main control unit, via a series of shift registers. The MCU would 

perform a sorting algorithm on the overlap scores to determine winning columns. Then, 

only the winners would perform the learning phase. Figure 11 gives an overview of the 

logic required for each column. 

 
Figure 11. RTL representation of a column 

Next, we discuss the drawbacks of this hardware implementation. In order to 

ensure every column can access the input data simultaneously in a single cycle, the entire 

input vector is stored in each column's RAM. This method essentially cuts in half the 
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number of columns which are able to fit on the device. With 100 columns, only 1% of the 

space used to store the input vectors holds unique information. This metric will get worse 

as the complexity of the HTM increases by either increasing the number of columns, or 

adding regions. 

Notably missing from this implementation is a method of boosting the inactive 

columns which is part of the core HTM spatial pooler algorithm. Failing to include the 

boosting mechanism would decrease the homeostasis of the HTM, and could result in 

reduced classification performance. When comparing the performance of HTM spatial 

poolers, Cui, Ahmad, & Hawkins noted both a significant reduction in classification error 

rate, and increased homeostasis when boosting was used [23]. 

The method for classification also requires an offline process, and requires storage 

to preserve all of the previous activation patterns. Classification using a support vector 

machine necessitates storing all of the activation patterns, then processing them to build 

the SVM. 

2.6 MNIST Database of Handwritten Digits 

The MNIST database is a collection of 70,000 images, each containing a single 

numeric digit from 0 through 9. Each image is composed of 28x28, 8-bit, greyscale pixels 

with the digit positioned such that the center of mass is in the center of the image. The 

database is separated into a training set, and a classification set. 60,000 images are used 

for training, and 10,000 for classification. The images consist of digits written by 

approximately 250 writers, and each writer either provided digits for the training set or 

the classification set, but not for both. 
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In order to reduce the size of the HTM domain, and maintain a consistent 

evaluation methodology with Zyarah and Kuduthipudi [20], each pixel was translated 

from 8-bit resolution to one bit by simply truncating the least significant 7 bits. Figure 12 

shows an original MNIST digit on the left, and one converted to a 1-bit black and white 

scale on the right by truncating the 8-bit value to one bit. 

 
Figure 12. MNIST digit comparison 
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CHAPTER 3: DESIGN METHODOLOGY 

3.1 Overview 

There are two main novel components to the hardware implementation described 

in this thesis: implementing the HTM boosting, and an online classification algorithm. 

The following sections provide details on the algorithms and their hardware 

implementations. 

3.2 HTM Boosting 

As previously stated, boosting is a technique used to maintain a higher level of 

homeostasis in column activation. Homeostasis is a property of a system to maintain 

some variable nearly constant across its constituent elements. In the context of the HTM, 

it is a measure of a region's ability to maintain similar activation duty cycles for all of its 

columns. An HTM with a high level of homeostasis would inhibit overactive columns, 

and boost less active columns to maintain a similar duty cycle across all columns. An 

HTM with poor homeostasis would have some columns which are exceptionally active 

relative to others. When a column is active across broadly differing input patterns, its 

activation becomes meaningless for classification, and reduces the likelihood other 

columns can express themselves and identify meaningful features in the input space. 

Boosting seeks to solve this problem by inhibiting overactive columns, boosting the less 

active columns, or a combination of both. 

In this implementation, both boosting and inhibition are evaluated. From a high 

level view, boosting is achieved by keeping track of the activation duty cycles for every 
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column, and increasing a columns overlap score if it is underactive, or decreasing its 

overlap score if it is overactive. The net effect is a more consistent use of each column in 

the regions activation patterns. The novel contribution of this work is implementing the 

HTM boosting functionality in reconfigurable hardware. 

The implemented boosting algorithm computes a boosting factor for each column 

based on the duty cycle of that column, as well as the duty cycles of the columns within 

its inhibition radius. The overlap score of each column is then multiplied by this boosting 

factor to obtain its boosted overlap score. If the boosted overlap score of a column is 

higher than that of the other columns in its inhibition radius, that column is chosen as a 

winner for that iteration. This boosting methodology follows the boosting algorithm 

described in [8]. 

3.3 Online Classification 

The online classification algorithm takes advantage of the fact that the output of 

the HTM region is an SDR. From an intuitive perspective, since the activation patterns 

are sparse, it is unlikely that there will be significant overlap between any two random 

activation patterns. 

The classification method employed in this implementation is a derivative of the 

union overlap method. This modified method will be referred to as Scaled Union Overlap 

(SUO). With SUO, the union vectors are computed in the same manner, but the overlap 

score is then divided by the Euclidean length of each union vector. This penalizes the 

union vectors with longer lengths since they are more likely to have overlap with all 

output patterns simply because more of their elements are non-zero. 
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The objective changes from finding the union vector with the highest overlap (dot 

product) to finding the union vector with the smallest angle between it and the pattern 

being tested. Take for example the situation shown in Figure 13. 

 
Figure 13. Scaled Union Overlap vs. regular union overlap 

In this example, A and B are both union vectors representing classes A and B 

respectively. s is a vector to be classified as either class A, or class B. For the purposes of 

this example, assume A, B, and s are defined as follow: 

𝑨 = (1,1), 𝑩 = (1,0), 𝒔 = (1,0) 

In the union overlap method, both 𝒔 ∙ 𝑨 and 𝒔 ∙ 𝑩 are both 1. However, visual inspection 

shows that s is more similar to B than to A. In scaled union overlap, the dot products are 

divided by the length of the union vector to obtain |𝒔|cos(𝜃𝑢). For all union vectors, |𝒔| 

remains constant, and all elements of each vector are non-negative, so finding U which 

satisfies max(|𝒔|𝑐𝑜𝑠(𝜃𝑢)), ∀𝑼 is the same as finding 𝑚𝑖𝑛(𝜃𝑢), ∀𝑼. The method for 

finding the best 𝑼𝒏 vector then becomes simply iterating through all 𝑼𝒏, and keeping 

track of the best U which satisfies inequality 9. 
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𝑠 ∙ 𝑈𝑛

|𝑈𝑛|
>

𝑠 ∙ 𝑈best

|𝑈best|
 

(9) 

The algorithm can be summarized with the pseudo-code shown in Figure 14. 

 
Figure 14. Scaled Union Overlap pseudo-code 

For each union vector, the dot product is computed, then divided by the length of 

the union vector. Since the union vectors are bit strings, the Euclidean length of the 

vector is simply the square root of the sum of all of the non-zero elements. Making this 

substitution in inequality 9 yields inequality 10. 

𝑠 ∙ 𝑈𝑛

√sum(𝑈𝑛)
>

𝑠 ∙ 𝑈best

√sum(𝑈best)
 

(10) 

In order to preserve the precision of the calculations and avoid floating point 

representations, the hardware implementation modifies this comparison slightly. 

Inequality 10 is altered to become inequalities 11, then 12. 

(𝑠 ∙ 𝑈𝑛)2

sum(𝑈𝑛)
>

(𝑠 ∙ 𝑈best)
2

sum(𝑈best)
 

(11) 

(𝑠 ∙ 𝑈𝑛)2 × 𝑠𝑢𝑚(𝑈𝑏𝑒𝑠𝑡)
> (𝑠 ∙ 𝑈𝑏𝑒𝑠𝑡)2 × 𝑠𝑢𝑚(𝑈𝑛) 

(12) 

Doing this comparison avoids taking square roots and dividing, both of which are 

computationally expensive, and allows the use of only integer arithmetic which avoids 
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any loss of precision. Including this modification produces the pseudo-code shown in 

Figure 15. 

 
Figure 15. Modified scaled union overlap pseudo-code 

Making such modifications removes the need for a DSP block to be implemented 

in the FPGA to perform the division or square root functions, and if vectors of sufficient 

size are used, there is no loss of precision due to using a fixed width floating-point 

representation. 
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CHAPTER 4: HARDWARE IMPLEMENTATION 

4.1 Overview 

The RTL design for the FPGA implementation was written in Verilog using the 

2001 standard, and was synthesized for and tested with a Digilent Zybo board containing 

a Xilinx Zynq XC7Z010 programmable SoC [24]. The HTM core was packaged as an 

AXI peripheral and communicated instructions and data on that bus with the on-die hard-

core ARM based processor. A compiled C program was run on the processor to retrieve 

the test and classification vectors, along with their associated labels, and relay them to the 

HTM core (htm_core). The interface between htm_core and the AXI bus consisted of: 

1. A set of control registers 

2. An SRAM for transferring input vectors to the htm_core, and delivering the 

activation patterns back to the processor 

The htm_core performs the spatial pooling algorithm, and either trains or 

exercises the classifier based on the status of a configuration register. First, the training 

vectors are loaded, and then the classification vectors. During classification, the processor 

compares the classifications returned by the htm_core with the correct classes read from a 

label file located on a micro-SD card. It then communicates the results back to a terminal 

connected through UART. The output vectors, or activation patterns, are also sent back to 

the processor via AXI, and where they can be written to a file on the micro-SD storage 

card. This information is then transferred to a more powerful machine for SVM 

classification (see Appendix A for specifications). 
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The htm_core is made of several distinct components: 

1. A Finite State Machine (FSM) to control all of the constituent parts of the htm_core 

2. Linear Feedback Shift Register (LFSR) used for initializing the synapses to psuedo-

random values 

3. Set of SRAMs used to store the synthetic synapses 

4. A second FSM to select the winning columns based on the activations of the columns 

within an inhibition radius 

5. An SRAM to store the duty cycles of each column 

6. A second SRAM used to store the union vectors required for classification 

The detailed RTL description of each of these components are described in the following 

sections. 

4.2 Primary Finite State Machine 

Two state machines are employed to manage the control signals which are 

detailed in the other RTL modules. The primary FSM is responsible for several functions: 

1. Initialization of the synapses 

2. Communication with the AXI RAM 

3. Interfacing with the synapse RAMs 

4. Controlling the training and classification functions 

5. Keeping track of the duty cycles of the columns 

Figure 16 illustrates the states and their relationships.  
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Figure 16. Primary FSM diagram 

 

The initial state is the “Reset” state, where all registers are reset to their initial 

values. During “Initialization” the LFSR outputs are written to the synapse RAM to their 

pseudo-random values. The FSM stays in the “Idle” state until the enable is asserted. 

Once asserted, the addresses and permanencies are read from the synapse RAM one 

column at a time. Using these addresses, the input vector values are read from the AXI 

interface RAM one address at a time. When all data for a column have been read, that 

data is pushed to the “input FIFO” for the second FSM to process. After all columns have 

been fed to the second FSM, a number of “dummy” columns are sent to flush out the 

input FIFO. As the secondary FSM processes the columns, the primary FSM idles in the 



36 

 

“Wait for activation” state. As data is returned through the “output FIFO”, the “fifo is 

empty” signal is asserted, and the synapse permanencies are updated. Once all winning 

columns have been updated, if training is enabled, the union vectors are updated. 

Otherwise the “Write back” phase begins. During “Write back” the activation vector is 

deposited to the AXI interface RAM. If classification is enabled, the union vector RAM 

is read, and the class with the largest scaled union overlap value is selected as the winner. 

If classification is not enabled, then the duty cycles are updated instead of performing 

classification. Once the algorithm has completed, the FSM returns to the “Idle” state, and 

awaits further input. 

4.3 Linear Feedback Shift Register 

A linear feedback shift register (LFSR) is a common tool used to implement a 

pseudo-random number generator. This LFSR is 128 bits long, with XOR taps at bits 

(from 1 to 128) 128, 126, 101, and 99. This gives a unique sequence of 2128 − 1 bit 

strings of length 128 until the sequence repeats [25]. The LFSR is used to initialize the 

HTM synapses with pseudo-random starting permanencies, and mappings to the input 

space. 

If desired, the htm_core can be configured to restrict the mapping of the columns 

to a particular range of bits within the input space, and is controlled via a compiler macro. 

The motivation for restricting the input range in this way comes from a suggestion made 

by Mnatzaganian, Fokoue & Kudithipudi [22]. Their work involved characterizing the 

HTM spatial pooler using the MNIST dataset, and suggested the spatial nature of image 

data could be exploited by restricting the input of each column to a cluster of nearby 

pixels. 
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This implementation uses a span width of 112 bits, which corresponds to 2 rows 

of pixels in an MNIST dataset image. Each consecutive column will shift its valid 

window by 2 bits. The first column would have possible connections to inputs 0 through 

111, then the next column could be connected to 2 through 113, and so on. Figure 17 

illustrates this concept of "spanning". In the example, each column can have a span of 6 

with the increment is set to 2. 

 
Figure 17. Column input mapping 

 

If the number of columns multiplied by the increment value plus the width is 

greater than the number of utilized inputs, as is the case with this particular use case, the 

upper and lower address limits must be adjusted when they extend beyond the number of 

utilized inputs. For example, see Figure 18, where LB, UB, and IU represent the lower 

bound, upper bound, and number of inputs used respectively. 
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Figure 18. Valid rang of input bits 

 

As the figure illustrates, there are three valid ranges for the two different cases. 

Figure 19 is a block diagram of the LFSR and shows how its output bits are used to 

generate the initial synapse values. 

 
Figure 19. Linear feedback shift register diagram 
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For every column in the SP, the shift register is filled with 48 synapses worth of 

addresses and thresholds. The permanencies are initialized to values between 28 and 35 

by adding 28 to a pseudo-random 3-bit number. Once the shift register has been filled 

with the 48 valid synapses, they are written to the synapse SRAMs for storage. The 

htm_core initialization is complete once all 512 columns have received initial values. 

4.4 Synapse RAMs 

In this design, several 36KB single port SRAMs are used to store the synapse 

data. They are arranged in parallel with read/write widths of 72 bits each, and have a 

depth of 512 words. Each synapse is composed of 12 address bits to map to the input 

space, and 6 bits of permanence. Utilizing 12 SRAMs with 72 bits of input data, 48 

synapses, each consisting of 18 bits, can be written to or read from the SRAM array in a 

single cycle. Access to these RAMs is controlled by the primary state machine, which 

initializes its values, reads the data, and updates permanencies during SP phase 3. 

Reading of the synapse RAM is done once per column. The addresses and 

permanencies are used to index the input SRAM, and to determine whether each synapse 

is connected or unconnected by comparing the permanence to the threshold. This data is 

sent to the "winner selection state machine" through the "input FIFO". After winners 

have been selected, permanence values are incremented or decremented based on the 

state of the input bit associated with each synapse. Figure 20 illustrates this structure. 
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Figure 20. Synapse RAM 

 

4.5 Winner Selection State Machine 

The process of selecting winning columns in the spatial pooler is performed by a 

second independent finite state machine (FSM) which communicates with the primary 

state machine via two SRAMs operating as FIFOs: an input FIFO, and an output FIFO. 

The states and their relationships are shown in Figure 21. 
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Figure 21. Winner selection SM diagram 

The primary FSM retrieves the input from the input SRAM one bit at a time, 

utilizing 2 clock cycles per synapse per column. So, every 96 clocks (48 ∙ 2) the primary 

FSM collects all of the data necessary for an entire column. The primary FSM passes to 

the winner selection FSM four values: 

1. The moving average duty cycle of the column (11-bits), 

2. The largest duty cycle of all columns in the current column's inhibition radius (11-

bits), 

3. 48-bits representing whether each synapse is connected vs unconnected, and 

4. 48-bits representing the inputs associated with each synapse. 
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As the FIFO receives data from the primary FSM, the winner selection FSM will 

read the first entry in the FIFO, process it, and push the results into a shift register. The 

FSM first uses the input space mapping and connectedness information from each 

synapse to compute the overlap for the column. Then, the duty cycle of the column, as 

well as the largest duty cycle of all columns in the inhibition radius, is used to compute a 

"boosted overlap" value. This boosted overlap and the input pattern are pushed into the 

shift register for processing. The depth of the shift register is 2 × inhibition radius + 1, 

in this case 21. As the values for each column fill the shift register, the boosted activation 

of the center column is compared against the boosted activations of each of the columns 

in the inhibition radius to determine if that column is deemed a winner. A column is 

declared a winner if its boosted activation is greater than both the minimum activation, as 

well as the boosted activations of 19 out of the 20 columns in its inhibition radius. 

Assuming a minimum activation of 1, this constraint still guarantees an activation pattern 

density of at most 1 / 6, or approximately 16.7%. 

For each column, a boosting factor is calculated based on the duty cycle of each 

column as measured over the last 2048 iterations. The column's activation is then 

multiplied by its boosting factor to obtain the boosted activation. If the duty cycle is 

above a certain threshold, then a unity boost factor is used. Otherwise, the boost factor for 

𝑏𝑖 for the column is a linear function of the duty cycle 𝐷𝑖 of the column, the minimum 

duty cycle 𝑚𝑖, and the max boosting factor B as seen in Equation 13. Equation 14 shows 

how the minimum duty cycle 𝑚𝑖 is calculated from the maximum duty cycle of all 

columns in the inhibition radius 𝑀𝑖, and a non-negative integer s. If the duty cycle for the 
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column is greater than the computed minimum, then a unity boosting factor (no boosting) 

is used. 

𝑏𝑖 = { 

1,  𝐷𝑖 > 𝑚𝑖

𝐵 + 𝐷𝑖 ×
(1 − 𝐵)

𝑚𝑖
, 𝐷𝑖 ≤ 𝑚𝑖

 

(13) 

𝑚𝑖 =
𝑀𝑖

2𝑠
 

(14) 

 

Since the minimum duty cycle 𝑚𝑖 is a non-constant registered value, the boost 

factor calculation in Equation 13 is altered to be scaled by 𝑚𝑖 in order to avoid the 

division operation. Thus a new boosting factor 𝑏𝑖̂ is computed as shown in Equation 15. 

𝑏𝑖̂ = 𝑏𝑖 × 𝑚 = { 
𝑚𝑖 ,  𝐷𝑖 > 𝑚𝑖

𝐵 × 𝑚𝑖 + 𝐷𝑖 × (1 − 𝐵), 𝐷𝑖 ≤ 𝑚𝑖
 

(15) 

 

Figure 22 details the logic used to track the duty cycle of each column. A single 

SRAM is used to store the duty cycles. The duty cycle logic keeps track of the number of 

times each column is activated during a specific interval. Every 211 iterations of the 

spatial pooler, the running sum of activation counts are latched, and the running sums are 

reset to 0. The latched duty cycle counts are the 𝐷𝑖 values used to calculate the boosting 

factors for each column 𝑏𝑖̂ in equation 15. 
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Figure 22. Duty cycle computation 

Figure 23 demonstrates the logic necessary to compute the boosted activation. 

 
Figure 23. Boosting logic 

4.6 Classification Logic 

The final major logic component is the scaled union overlap classifier. The 

classifier is comprised of an SRAM used to store the union vectors, logic used to update 
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the union vectors during training, and logic to compare an output vector with the union 

vectors in order to select the winning class. 

The union vector SRAM DI and DO busses are composed of 3 sections: 

1. A segment of the running union vector (16 bits) 

2. A segment of the "latched" union vector (16 bits) 

3. The number of active bits in the "latched" union vector segment (5 bits) 

Utilizing one 36Kb SRAM, union vectors can be stored for up to 31 distinct classes.  

Once the activation pattern is computed during training, the tag provided for the 

input vector is used to compute the address of the first section in the union vector RAM 

for that particular tag. The current activation pattern is OR'ed bitwise with the union 

vector in 16 bit increments, until all 512 bits of the activation pattern have been utilized. 

Every 100 times a tag is trained, the union vector is "latched". Then the sum of active bits 

are also computed and stored. When classification begins, only the latched union vectors 

are used in the scaled union overlap classification phase. This ensures that each union 

vector is comprised of the same number of output vectors. 

During classification, writing to the RAM is disabled, and registers containing the 

best tag (best_tag), the number of active bits of the union vector corresponding to the best 

tag (best_length), and the squared dot product of the output activation and the same union 

vector (best_overlap_squared) are all reset to their initial values as given in Table 2. 
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Table 2. Classification registers initial values 

Register Initial value 

best_tag 5'd0 

best_length 9'd1 

best_overlap_squared 0 

 

The dot product of the output and the latched union vector representing class "0" 

is computed at a rate of 16 bits per clock cycle. Once complete, the comparison described 

in equation 12 is evaluated to determine if class "0" is a better match than the tag 

contained in "best_tag". This process is performed until all union vectors have been 

tested, and the remaining "best_tag" register then holds the resulting class. The 

comparison operation utilizes three clock cycles. Squaring of the dot product comes first, 

multiplication second, with the comparison operation occurring on the third clock cycle. 

Squaring of the dot product is performed with a ROM. The number to be squared is used 

as the address bus to the ROM, and the output is the precomputed squared value 

contained at the corresponding address. Figures 24 shows the union vector SRAM 

implementation while the classification logic implementation is shown in Figure 25. 
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Figure 24. Union vector SRAM 

 
Figure 25. Classification logic 
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CHAPTER 5: RESULTS 

5.1 Overview 

This chapter documents the results of both the software and hardware 

implementations of both the spatial pooler and the scaled union overlap classification 

method. Following these sections, a final summary is presented, along with some 

suggestions for future work. 

5.2 Software 

The Python implementation of the spatial pooling algorithm is used to sweep 

across several parameters for the spatial pooler to identify the optimal topology, as well 

as evaluate deviations from the canonical spatial pooling algorithm. The deviations from 

the spatial pooling algorithm produced only marginally better classification results, so 

were discarded in favor of evaluating only the implementation of the SP itself, and not 

the alterations. 

As explained earlier, several parameters were swept with the Python script to 

determine the following optimal settings: 

1. Number of columns 

2. Number of synapses per column 

3. Permanence threshold 

4. Inhibition radius 

5. Minimum target active columns (used for variable minimum overlap) 

6. Maximum target active columns (used in for variable minimum overlap) 
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7. Minimum overlap 

8. Maximum boost factor 

9. Span (the size of the subsection of the input space each column can address) 

The method to test each parameter was to use a common set of settings as a 

baseline, and vary the only the parameter being tested while leaving all others static. The 

metrics used for the tests were the classification accuracy of an SVM and the scaled 

union overlap method. An underlying, and likely incorrect, assumption was that each of 

these parameters were independent variables with respect to the classification accuracy 

metrics. In all cases, five tests were conducted for each experiment, each with a unique 

RNG seed to initialize the spatial pooler's synapses. The average classification accuracy 

and standard deviations of the five tests are being reported in the following subsections. 

These metrics are reported for both the SVM, and scaled union overlap classification 

methods. In each table, the baseline results are highlighted in blue. Table 3 summarizes 

the baseline settings, as well as the values tested. 

  



50 

 

Table 3. Software parameter sweep 

Parameter Baseline value Tested values 

Columns 512 256, 512 

Synapses per column 32 16, 32, 48 

Permanence threshold 30 16, 20, 24, 26, 28, 30, 32 

Inhibition radius 4 2,4,10,20 

Minimum target activated 

columns 

Unused 0, 25, 50, 75, 100 

Maximum target activated 

columns 

Unused 25, 50, 75, 100, Number of columns 

Maximum boost factor 1 (no boost) 1, 1.5, 2, 3 

Minumum overlap 1 1,2,3,4,5,6,7,8,9,10 

Span Input size (no span) 28, 56, 84, 112, 140, 168, Input size 

 

5.2.1 Number of Columns 

The SP was tested with two different numbers of columns, 256, and 512. In the 

case of scaled union overlap, increasing the number of columns provided a slight bump to 

classification accuracy. For this reason, 512 columns will be used in the hardware 

implementation. The results are shown in Table 4. 
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Table 4. Number of columns software sweep 

Columns SVM Mean % SVM STD SUO Mean % SUO STD 

256 92.61 0.51 41.08 2.41 

512 92.91 0.33 44.56 2.74 

 

5.2.2 Synapses per Column 

Interestingly, the trend seems to be opposite for the SVM and scaled union 

overlap accuracies when varying the number of synapses per column. However, each of 

the scaled union overlap means are within two standard deviations of each other. For the 

hardware implementation, 48 synapses per column will be used. Results are shown in 

Table 5. 

Table 5. Synapses per column software sweep 

Synapses per column SVM Mean % SVM STD SUO Mean % SUO STD 

16 93.66 0.15 43.45 2.13 

32 92.91 0.33 44.56 2.74 

48 92.87 0.21 45.98 1.85 

 

5.2.3 Permanence Threshold 

Setting a lower threshold seems to correlate with an increase in classification 

accuracy. One possible explanation for this is that when the threshold is higher, there may 

be more columns which are initialized as "dead" from the beginning. The synapses from 

these columns may have low initial permanence values, and are unable to ever achieve a 

high enough activation to participate in learning. When the threshold is lower, it reduces 

the bias towards selecting columns with synapses with high initial permanencies making 

it possible for the columns with the most significant proximal connections to stand out 
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among the others. Table 6 includes an additional column showing the entropy calculated 

for the activation patterns for the different configurations. Permanence threshold seems to 

also be negatively correlated with entropy, showing that reducing the similarity between 

activation patterns correlates to better classification. 

Table 6. Permanence threshold software sweep 

Threshold SVM Mean % SVM STD SUO Mean % SUO STD Entropy 

16 93.66 0.15 49.31 1.37 421.82 

20 92.22 0.12 47.63 2.31 428.34 

24 93.13 0.21 50.54 1.42 430.78 

26 93.16 0.21 46.87 3.23 427.83 

28 93.01 0.36 46.48 2.65 424.00 

30 92.91 0.33 44.56 2.74 417.13 

32 92.42 0.48 42.10 2.30 406.51 

 

5.2.4 Inhibition Radius 

As shown by Table 7, increasing the inhibition radius of the columns also 

increases classification accuracy, as well as decreases variation. However, increasing the 

inhibition radius also increases runtime. The hardware will use an inhibition radius of 10 

columns. 
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Table 7. Inhibition radius software sweep 

Inhibition radius SVM Mean % SVM STD SUO Mean % SUO STD 

2 92.41 2.02 47.42 14.77 

4 92.91 0.33 44.56 2.74 

10 94.82 0.26 54.73 1.22 

20 94.33 0.12 61.29 1.59 

 

5.2.5 Variable Minimum Overlap 

Having a variable minimum overlap was an enhancement explored during the 

software experiments. The HTM was presented with both minimum and maximum 

targets for activated columns during each iteration. During training, if the number of 

active columns was outside the target range the minimum overlap would either be raised 

or lowered by one to stay within the desired range. The effect was an integral feedback 

system to control the number of active columns. The results of this experiment, shown in 

Table 8, were promising, but interfered with the boosting mechanism when implemented 

together. 
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 Table 8. Variable min overlap software sweep 

Minimum 

columns 

Maximum 

columns 

SVM Mean 

% 

SVM 

STD 

SUO Mean % SUO STD 

No minimum No maximum 92.91 0.33 44.56 2.74 

12 25 87.06 2.00 31.02 27.40 

25 50 90.51 0.93 31.78 27.98 

37 75 92.52 0.24 58.72 10.29 

50 100 92.79 0.37 44.58 23.88 

75 150 94.48 0.07 54.00 1.75 

100 200 93.00 0.29 45.00 1.42 

 

5.2.6 Boosting 

Increasing the maximum boosting factor shows a positive trend for the scaled 

union overlap classification average as explained by Table 9, but is not statistically 

significant. Since the boosting factor is computed based on the duty cycles of the 

columns only within the inhibition radius, the full effect of boosting is likely not captured 

since the baseline inhibition radius is only four.  

Table 9. Boosting software sweep 

Maximum boost SVM Mean % SVM STD SUO Mean % SUO STD 

1 92.91 0.33 44.56 2.74 

1.5 92.74 0.28 44.60 2.24 

2 92.61 0.27 43.27 2.33 

3 92.76 0.24 46.01 2.86 
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5.2.7 Minimum Overlap 

Raising the minimum overlap by a fixed value instead of varying based on 

activation shows an improvement in accuracy, but without the large variation in 

accuracies between runs as was seen with the variable minimum overlap method. Using a 

value of three or four provides a nice compromise between accuracy and variation. These 

results are shown in Table 10. 

Table 10. Minimum overlap software sweep 

Minimum overlap SVM Mean % SVM STD SUO Mean % SUO STD 

1 92.91 0.33 44.56 2.74 

2 93.90 0.23 48.92 3.60 

3 94.82 0.16 52.17 2.38 

4 94.37 0.37 52.34 2.57 

5 91.58 0.39 50.32 0.82 

6 86.72 0.25 45.95 7.71 

7 80.89 1.10 18.47 9.56 

8 71.35 0.24 8.08 2.39 

9 57.28 2.44 9.89 2.85 

10 43.72 1.84 10.78 1.37 

 

5.2.8 Span 

The span setting controls how many different inputs may be to connected to each 

synapse in a particular column. By restricting the input space to which a column may be 

connected, each column will be restricted to identifying features in a smaller range. As 

can be seen in Table 11, this has a positive effect on classification accuracy. However not 
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all data will have as much spatial significance as an image like was used in these 

experiments. Input data without spatial significance would not be likely to benefit from 

applying a span constraint. The hardware implementation will use a span of 112 since 

that span shows higher classification and the least variation. 

Table 11. Span software sweep 

Span SVM Mean % SVM STD SUO Mean % SUO STD 

None (entire input) 92.91 0.33 44.56 2.74 

28 (1 row) 96.31 0.15 53.88 2.54 

56 (2 rows) 96.25 0.16 53.58 1.77 

84 (3 rows) 96.15 0.19 54.50 2.03 

112 (4 rows) 95.67 0.12 55.31 0.42 

140 (5 rows) 95.68 0.24 55.37 1.12 

168 (6 rows) 95.45 0.23 55.06 2.74 

 

5.2.9 Final Parameters for Hardware Configuration 

Through this analysis, as well as more iterative testing, a final set of parameters 

were selected as the seed for the hardware testing. These parameters are detailed in Table 

12. 
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Table 12. Final software experiment parameters 

Parameter Value 

Columns 512 

Synapses per column 48 

Permanence threshold 24 

Inhibition radius 10 

Minimum target activated columns Unused 

Maximum target activated columns Unused 

Maximum boost factor 2 

Minumum overlap 3 

Span 112 

 

With these final parameters used, the Python model produces the following results 

show in in Table 13. 

Table 13. Final software experiment results 

SVM 

Mean 

% 

SVM 

STD 

SUO 

Mean 

% 

SUO 

STD 

Power HTM 

time per 

sample 

Energy 

per 

sample 

SUO time 

per 

sample 

SVM time 

per sample 

95.43 0.24 66.06 2.57 12.125W 11.11 ms 135 mJ 2.06 ms 330.6 ms 

 

The classification results show that the original assumption that each of the 

parameters were independent variables was incorrect since the mean classification 

accuracy differences are not additive. However, in the case of SUO classification, the 

final configuration shows the highest classification accuracy of all experiments. The 

power reported is the difference in power of the system while running the HTM spatial 

pooler Python model, and the idle power consumption. The HTM time per sample also 
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includes the time taken to read and write the input and output vectors to the disk. In the 

hardware results section, there are more details on how the IO delay is contributing to the 

processing time. The energy per sample metric is simply the recorded power multiplied 

by the time per sample. SUO time is the time required to process a single sample by the 

Perl based SUO script, and SVM time per sample is how long on average the SVM 

classification algorithm took to classify a single sample. 

Table 14 shows the average classification accuracy of the scaled union overlap 

method versus that of the non-scaled union overlap across all experiments. As seen, there 

is a measurable difference between the average classification accuracies. The average 

runtime increase of adding the scaling was 53%. 

 

Table 14. Scaled union overlap versus union overlap 

SUO Mean % SUO STD UO Mean % UO STD 

45.00 5.21 29.47 2.25 

 

5.3 Hardware 

The HDL was written such that each of the previously described parameters are 

configurable through either instantiation parameters, “localparam” statements, compiler 

directives, or configuration registers programmed via AXI. Several iterations were 

performed in both hardware and software to derive a reasonably ideal set of parameters 

balancing runtime, resource utilization, timing constraints, and classification accuracy. 

These settings are the ones described in the previous section. The next subsections will 

provide results of the hardware implementation experiments, and compare the hardware 

SUO implementation against both the software equivalent and SVM classifiers. 
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5.3.1 Classification Methods Results 

The parameters used to evaluate the hardware implementation are shown in the 

previous section in Table 14, with two exceptions: The minimum overlap parameter, as 

well as another parameter referred to as "shift", were swept by the Zynq processor on the 

FPGA. The shift parameter controls the calculation of the boost factor for each column. 

As discussed previously, the duty cycle of each column is represented by an 11-bit 

unsigned integer, and is used to calculate the variable 𝑚𝑖 in Equation 13, as shown in 

Equation 16. 

𝑚𝑖 =
𝑀𝑖

2𝑠ℎ𝑖𝑓𝑡
 

(16) 

 

Where the division operation is implemented as a logical right-shift of the duty cycle by 

"shift" number of bits. No boosting occurs when shift = 11, since 𝑚𝑖 = 0, and maximum 

boosting occurs when shift = 0. Table 15 details the best results for both SUO and SVM 

classification methods. Again, five separate tests were conducted with each set of 

parameters, each with a unique RNG seed. 

Table 15. SVM vs. hardware SUO (%) 

Method Mean STD Shift Min overlap Runtime 

SVM 

(software) 

94.66 0.22 8 1 47 m, 33s 

SUO 

(hardware) 

71.08 1.75 6 5 36s 

 

5.3.2 Hardware Parameter Sweep 

The shift parameter was swept from 0 through 11, and minimum activation 

ranged from 1 through 12. Tables 16 and 17 highlight the classification accuracies as 

functions of these parameters. In each column, the highest accuracy is highlighted in 
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blue. Accuracy dropped off rapidly when minimum overlap (MO) was greater than 7, and 

shift was less than 3, so these values are omitted from the tables. 

Table 16. SVM accuracies with hardware vectors (%) 

Shift MO 1 MO 2 MO 3 MO 4 MO 5 MO 6 MO 7 

11 (no boosting) 94.62 94.64 94.48 94.43 94.31 94.06 93.49 

10 94.62 94.64 94.48 94.43 94.31 94.06 93.49 

9 94.64 94.65 94.46 94.45 94.31 94.00 93.49 

8 94.66 94.65 94.44 94.45 94.27 93.97 93.45 

7 94.55 94.53 94.39 94.41 94.21 94.10 93.47 

6 94.55 94.62 94.45 94.36 94.28 93.98 93.62 

5 94.55 94.42 94.34 94.33 94.16 93.83 93.55 

4 93.64 93.72 93.84 93.70 93.39 93.22 92.78 

3 (most aggressive boosting) 93.36 93.26 92.87 92.86 92.83 93.01 92.84 

 

Table 17. SUO accuracies with hardware vectors (%) 

Shift MO 1 MO 2 MO 3 MO 4 MO 5 MO 6 MO 7 

11 (no boosting) 70.57 69.97 69.99 70.29 69.50 69.45 68.74 

10 70.57 69.97 69.99 70.29 69.50 69.45 68.74 

9 70.55 69.96 69.95 70.20 69.50 69.49 68.72 

8 70.47 69.98 69.87 70.19 69.55 69.36 68.74 

7 70.40 69.89 69.84 70.09 69.41 69.74 68.80 

6 70.28 69.90 70.06 69.88 70.08 70.28 69.24 

5 70.73 70.23 70.67 70.62 70.22 71.08 70.36 

4 70.38 69.90 70.32 69.94 68.97 68.22 65.73 

3 (most aggressive boosting) 63.23 62.53 62.81 62.26 61.69 62.95 60.05 
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The data in Table 16 suggests there is not much of a benefit to boosting in the 

spatial pooler with respect to using SVM classification. However, Table 17 shows there 

does seem to be a slight positive correlation between boosting and accuracy when using 

SUO. In fact, for this test set, across all values of minimum overlap, a shift of five 

produces the best results. Figure 26 provides a surface plot of the data from Table 17. 

 
Figure 26. SUO accuracy surface plot 

5.3.3 FPGA Resources 

Three experiments were performed in order to determine how many hardware 

resources are being utilized for these three separate functions: 

1. The core HTM SP algorithm 
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2. Boosting 

3. Scaled Union Overlap 

Three versions of the HDL design were synthesized, placed, and then routed. 

After placing the design, reports are written by the Vivado suite detailing how many of 

each type of hardware blocks were used to implement the logic. The htm_core Verilog 

module was written such that the boosting and classification functions can be included or 

excluded independently based on the definition of pre-processor macros. For the first 

experiment, both the boosting and classification functions were enabled to get a 

maximum utilization. The other two experiments enabled only one of the two functions, 

boosting or classification, and the results were recorded. The decrease in resources 

required when each function was removed represents can be seen below in Figure 27. 

The full utilization reports can be found in Appendix B. 
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Figure 27. Slice LUTs utilization 

  

The number of slice Look-Up Tables (LUTs) reflects the combinatorial logic 

operations required to implement each function. The slice registers are the number of 

single bit memory elements used to preserve state. The block RAMs refers to the number 

of discreet 36 KB SRAM macros used. The Digital Signal Processors (DSPs) are logic 

blocks used to perform common complex arithmetic functions such as single cycle 

addition or multiplication. 

This data shows that the block RAMs and slice logic are dominantly used to 

implement the core spatial pooling algorithm. However, the DSP usage is almost entirely 

attributed to the boosting functionality. This is because DSPs are being used to do the 
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arithmetic operations shown in Figure 23 to generate the boosting factors from Equation 

15. Classification also requires some DSPs, but the squaring functionality, which is the 

most logically complex operation classification uses, was offloaded to a block RAM. 

From a utilization perspective, it should be reasonable to expect to be able to implement 

two htm_cores on this programmable SoC. 

5.4 Comparison 

This section summarizes and compares metrics between the software and 

hardware spatial poolers, as well as the hardware SUO implementation against the SVM 

and SUO classifiers. 

5.4.1 Spatial Poolers 

As expected, the hardware implementation improved speed and power efficiency. 

Table 18 summarizes the major metrics used to characterize the spatial pooler. 

Table 18. Hardware versus software SP 

SP Type Accuracy 

(SVM) 

Speed 

(us per vector) 

Efficiency 

(mJ per vector) 

Software 95.43 11114.43 135 mJ 

Hardware 94.66 85.71 154 uJ 

Difference -0.81% 130X speedup 877X reduction 

 

The hardware implementation shows significant improvements to both speed and 

power efficiency, with a slight degradation in accuracy. A small difference in accuracy is 

expected between implementations since each uses a different method for generating 

pseudo-random numbers during initialization. 
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5.4.2 Classifiers 

This section documents the results of comparing four classifiers: 

1. The support vector machine classifier, which provides a high classification accuracy 

at the cost of speed and power. 

2. The scaled overlap method, which is the simplest yet least accurate method, and 

3. Hardware implementations of scaled union overlap. Both the third and fourth 

classifiers provide an intermediate level of accuracy at the expense of a slight 

increase in complexity. 

Table 19 provides the metrics of interest for these four methods. The vectors used 

to characterize the classifiers are those produced by the hardware SP with the shift 

parameter set to 5. Each of these values represents the average across all of these test 

cases. 

Table 19. Classifier metric comparison 

Classifier Accuracy (%) Speed 

(us per vector) 

Energy consumption 

(mJ per vector) 

SVM (software) 94.17 300.1 ms 3637.50 

Union overlap 

(software) 

63.93 1.54 ms 18.67 

Scaled union 

overlap (software) 

70.62 2.34 ms 28.37 

Scaled union 

overlap 

(hardware) 

70.65 0.1 ms 0.18 

 

This table highlights the main benefits of implementing a classifier on the 

hardware, as opposed to an offline software equivalent. However, it is also possible that 

the SUO could be performed on-chip by the Zynq processor instead of offline on a 
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separate processor. This would have the benefit of providing real-time online 

classification, without the additional complexity to the programmable logic. However, 

there would likely be both a speed as well as efficiency penalty in doing this. 

The Intel Core i7 required roughly 6.8 million clock cycles to perform one 

classification. Assuming the same number of cycles would be required to do the same 

operation on the Zynq, at 100 MHz, this same operation would take approximately 67.9 

ms. Also, at the nominal 1.796 Watts that the FPGA consumes, this would translate to an 

estimated 121.9 mJ per classification. Thus, moving the classification algorithm into the 

programmable logic could theoretically speed performance, and consequently increase 

energy efficiency as well, both by 680X. 
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CHAPTER 6: CONCLUSION 

6.1 Summary 

This thesis introduced a novel implementation of the HTM spatial pooler on a 

programmable SoC. The design was based mostly on the work described by Zyarah and 

Kudithipudi titled "Reconfigurable Hardware Architectures of the Spatial Pooler for 

Hierarchical Temporal Memory" [20], with two main contributions. The first being the 

introduction of a method for boosting unused columns, and the second adding a modified 

version of the classification algorithm described by Ahmad and Hawkins in their work 

"How do neurons operate on sparse distributed representations? A mathematical theory of 

sparsity, neurons and active dendrites" [21], both to the programmable logic. The efficacy 

and benefits were explored, and a mild benefit was found from the addition of boosting, 

and a sizable benefit in both speed and power efficiency from the classification being 

moved to the programmable logic. 

6.2 Future Work 

This thesis explored the effectiveness of the boosting functionality by classifying 

image data from the MNIST database. A modest benefit was shown to enabling this 

functionality for this test case. Further work may be done to evaluate the benefits of this 

method of boosting by testing datasets with different properties. The MNIST dataset only 

requires classification into ten different bins. It's possible that increasing the number of 

bins might highlight the benefits of higher SDR entropy which boosting provides. 
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A large portion of the hardware resources were dedicated to storing and 

processing the addresses which map the synapses back to the input space. If restricting 

the range of inputs is not required, another solution to producing these addresses is to 

dynamically create them during each pooling iteration with a linear feedback shift 

register, or some other pseudo-random number generator. With an LFSR, the state of the 

shift register could be reset to the same value at the beginning of the pooling algorithm, 

thus ensuring the same pattern of addresses would be repeated each iteration. In this case, 

a saving of 36 kilo-bytes of SRAM resources can be achieved. 

The spatial pooling algorithm performs only one part of the HTM model. The idea 

of the synthetic synapse and processing techniques presented here could also be extended 

to include temporal pooling. However, since there are several cells per column, the 

processing bandwidth and storage requirements would need to be higher than that of 

spatial pooling. In this case, the previous suggestion above to recreate the indexed 

addresses during each iteration could potentially provide more of an area benefit, at the 

cost of higher energy consumption per sample. 
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Macbook Pro Specifications 

A late 2016 Macbook Pro with Touchbar was used for running all simulations, as 

well as creating and testing of support vector machines. This machine had the following 

specifications: 

Processor 

Intel 2.9 GHz Core i7 (I7-6920HQ), 4-cores, 256 KB L2, 8MB L3 

DRAM 

2 DIMMs, 8 GB (16 GB total) LPDDR3 @ 2133 MHz 

Storage 

512 GB SSD, PCI-Express 3.0 

Operating System 

macOS 10.13.6 

  



74 

 

APPENDIX B



75 

 

Utilization Reports 

Table B.1 All functions enabled LUT utilization 

Site Type Used Fixed Available Util% 

Slice LUTs 8219 0 17600 46.7 

LUT as Logic 7374 0 17600 41.9 

LUT as Memory 845 0 6000 14.08 

LUT as Distributed RAM 424 0   

LUT as Shift Register 421 0   

Slice Registers 7324 0 35200 20.81 

Register as Flip Flop 7324 0 35200 20.81 

Register as Latch 0 0 35200 0 

F7 Muxes 223 0 8800 2.53 

F8 Muxes 74 0 4400 1.68 

 

Table B.2 All functions enabled RAM utilization 

Site Type Used Fixed Available Util% 

Block RAM Tile 18 0 60 30 

RAMB36/FIFO* 17 0 60 28.33 

FIFO36E1 only 3    

RAMB36E1 only 14    

RAMB18 2 0 120 1.67 

RAMB18E1 only 2    
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Table B.3 All functions enabled DSP utilization 

Site Type Used Fixed Available Util% 

DSPs 44 0 80 55 

DSP48E1 only 44    

 

Table B.4 Boosting disabled LUT utilization 

Site Type Used Fixed Available Util% 

Slice LUTs 7970 0 17600 45.28 

LUT as Logic 7125 0 17600 40.48 

LUT as Memory 845 0 6000 14.08 

LUT as Distributed RAM 424 0   

LUT as Shift Register 421 0   

Slice Registers 6784 0 35200 19.27 

Register as Flip Flop 6784 0 35200 19.27 

Register as Latch 0 0 35200 0 

F7 Muxes 206 0 8800 2.34 

F8 Muxes 71 0 4400 1.61 
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Table B.5 Boosting disabled RAM utilization 

Site Type Used Fixed Available Util% 

Block RAM Tile 17 0 60 28.33 

RAMB36/FIFO* 16 0 60 26.67 

FIFO36E1 only 2    

RAMB36E1 only 14    

RAMB18 2 0 120 1.67 

FIFO18E1 only 1    

RAMB18E1 only 1    

 

Table B.6 Boosting disabled DSP utilization 

Site Type Used Fixed Available Util% 

DSPs 2 0 80 2.5 

DSP48E1 only 2    

 

Table B.7 Classification disabled LUT utilization 

Site Type Used Fixed Available Util% 

Slice LUTs 7591 0 17600 43.13 

LUT as Logic 6746 0 17600 38.33 

LUT as Memory 845 0 6000 14.08 

LUT as Distributed RAM 424 0   

LUT as Shift Register 421 0   

Slice Registers 6970 0 35200 19.8 

Register as Flip Flop 6970 0 35200 19.8 

Register as Latch 0 0 35200 0 

F7 Muxes 148 0 8800 1.68 

F8 Muxes 61 0 4400 1.39 
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Table B.8 Classification disabled RAM utilization 

Site Type Used Fixed Available Util% 

Block RAM Tile 16.5 0 60 27.5 

RAMB36/FIFO* 16 0 60 26.67 

FIFO36E1 only 3    

RAMB36E1 only 13    

RAMB18 1 0 120 0.83 

RAMB18E1 only 1    

 

Table B.9 Classification disabled DSP utilization 

Site Type Used Fixed Available Util% 

DSPs 42 0 80 52.5 

DSP48E1 only 42    

 


