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ABSTRACT

The recent explosion of digital data has created an increasing need for improved

data storage architectures with the ability to store large amounts of data over ex-

tensive periods of time. DNA as a data storage solution shows promise with a

thousand times greater increase in information density and information retention

times ranging from hundreds to thousands of years. This thesis explores the challenges

and potential approaches in developing an encoding and decoding algorithm for use

in a DNA data storage architecture. When encoding binary data into sequences

representing DNA strands, the algorithms should account for biological constraints

representing the idiosyncrasies of working with a molecular substance. We present

REDNAM (Robust Encoding and Decoding of Nucleic Acid Memory). REDNAM

includes a novel mapping scheme and translation stage which converts hexadecimal

data to codons while accounting for four constraints; removing start codons, avoiding

repeating nucleotides, excluding longer repeating sequences, and maintaining close

to 50% GC content. We have integrated this mapping scheme into the Fountain

Codes algorithm in an implementation that balances information density with error

correction and parity data. Preliminary results show that our implementation can

successfully recover the original dataset after artificial insertion, deletion and muta-

tion errors have randomly perturbed the encoded information. We also achieved a

speed up of two times for encoding and 435 times for decoding compared to another

Fountain Codes implementation.
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CHAPTER 1

INTRODUCTION

Technological advances in personal computing and computer enabled devices has

caused digital technology to become a consistent part of peoples everyday lives. A

growing number of us interact with web and mobile applications that track our uses,

multiple times a day. There is an increasing utilization of technology in numerous

industries. Data collection is now ubiquitous. Personal and environmental data

are constantly collected. This includes: personal health data, public government

records, Facebook likes, and weather sensor information. Industries are reaching a

point where they are trying to keep this ever expanding amount of information valid

and accessible over extended periods of time. Consistent long-term data storage at

this volume requires innovation beyond traditional data storage techniques. This

thesis explores the challenges and possible approaches to storing large data sets using

synthetic DNA.

By the late 1990’s, not all researchers anticipated the enormity of the impending

data explosion. To show the recent growth, in May of 2013, one researcher estimated

that 90% of the data in the world was generated in just the previous two years [33].

However, in a statement recorded in 1997, after estimating that all of the worlds data

amounted to about 12 Exabytes [24], another researcher concluded that “... storage

media will outrun our ability to create things to put on them ...” [23]. They did not
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foresee this substantial growth of data collection and the need to store large amounts

of it for such long periods of time. Many data storage technologies were only made

to last ten to twenty years with some technologies now becoming obsolete.

It is now clear that the rate of data collection and the variety of data being

collected will continue to increase. Novel technologies and technological advances

will continue to expand to try and fill this need. Some types of data need to be

accessed often, but information such as scientific, financial, government, historical,

genealogical, and genetic records can be stored away for safekeeping for hundreds of

years. In order to combat the excessive use of resources to store huge amounts of

data, especially over long periods of time, researchers are seeking alternative storage

techniques.

A system in which data could be stored for hundreds or even thousands of years

is highly desirable. Deoxyribonucleic acid (DNA) as a data storage material is

a promising concept. This organic material is composed of four unique chemical

components and is used by organisms to store genetic information. Developing an

efficient algorithm to convert arbitrary data to stable strands of quaternary DNA

bases, and then back again, can open the door to a new kind of long-term data

storage solution.

1.1 DNA as a Data Storage Device

DNA is a durable material that when stored under the right conditions can be stable

for hundreds of years [37]. Potentially, DNA can last for longer periods of time, and

complete genomes have even been sequenced from an ∼50,000 year old Neanderthal

[37]. As a data storage method, DNA can be stored in water or dry air, for long
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durations. Under degradation tests completed at 10 degrees Celsius, it was calculated

that DNA has retention values ranging from 2x104 years in water to 2x107 years in

air. Those researchers stated that the effect of hydrolysis is greater than temperature

when it comes to the degradation of DNA [37]. This shows that under the right

conditions, centuries of historical records could potentially be stored for thousands of

years.

Another advantage of DNA as a storage material is its high data density. Molecules

are nanoscale in size, therefore, the physical space needed to store DNA is quite

minuscule. Researchers estimate that todays global storage needs, about 1022 bits,

could be stored within a 10x10x10cm3 box [37], about the size of a square tissue box.

These estimates assume ideal encoding schemes, in which there is a direct translation

from bits to nucleotides. However, incorporating other necessary information, such

as duplication or parity for error resilience, can cut down on the information density.

Yet, utilizing DNA as a storage material can still provide large improvements in

information density over current technologies. For example, a hard disk can store

about 1013 bits per cm3, while DNA can potentially reach a volumetric density of

about 1019 bits per cm3 [37], or several orders of magnitude more dense.

Composing a DNA storage solution involves constructing an algorithm for en-

coding and decoding data from binary to quaternary. An intelligent way to convert

0’s and 1’s into the four molecular bases or nucleotides - adenine (A), thymine (T),

cytosine (C), and guanine (G) - that make up DNA, one that takes into account the

idiosyncrasies of DNA, is needed. Once a mapping scheme is developed, digital data

is converted to sequences of the nucleotide characters. Then, using those sequences,

DNA synthesis technologies are used to piece molecules together to create the physical

strands of DNA. The physical, single-stranded DNA is then stored in a cool, dry
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place for an indefinite amount of time. Once the DNA is ready to be decoded, DNA

sequencing technologies are used to read back the strands of nucleotide sequences.

Finally, the sequences are passed back through the decoding algorithm to recover the

original data. An overview of this process is shown in Figure 1.1. The right half of

this diagram pictures the physical synthesis and sequence stages while the left half of

the diagram represents the conversion of binary data to nucleotides that can be done

programmatically. An understanding of the right half of this diagram is needed in

order to better develop the left half of the diagram, which is the focus of this thesis.

Figure 1.1: Process Overview
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1.2 Thesis Statement

We present a novel DNA encoding and decoding algorithm that can be used to

encode and store arbitrary information in DNA molecules. Unlike other encoding

schemes, our algorithm accounts for biological factors and other DNA-specific issues

that can compromise the ability to encode and recover data accurately from DNA, and

also addresses environmental concerns. Additionally, the algorithm utilizes Fountain

Codes, optimizing for both information density and error recovery, while maintaining

feasible computational bounds.

1.3 Contributions

The main contributions presented in this thesis are summarized as follows:

1. A novel mapping scheme for converting hexadecimal data to codons that ac-

counts for biological constraints and can be incorporated into multiple different

encoding and decoding algorithms.

2. Analysis of the ability of the Fountain Codes algorithm to accurately decode

messages depending on different parameters of the Luby Transform.

3. An implementation of the encoding and decoding algorithms that convert digital

data to sequences of nucleotides and back again. The program includes opti-

mizations made to the Fountain Codes algorithm as well as the integration of our

new mapping scheme. The result is an application that can more accurately

recover data than previous implementations with a running time that is fast

enough to encode and decode large data sets.
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1.4 Thesis Organization

This thesis details research on developing algorithms for encoding data to, and de-

coding data from DNA sequences in six chapters. This chapter includes an overview

of using DNA for data storage. It also includes the thesis statement and a list of the

main contributions.

Chapter two contains background information which starts with an overview of

the current data storage techniques in production and includes a comparison of those

techniques with a DNA data storage system. The next part of chapter two covers

constraints and considerations that need to be accounted for in creating a DNA data

storage application. Finally, chapter two ends with some background information on

information theory and error correction codes, specifically Reed Solomon codes.

Chapter three is the related works section. This section includes a survey of seven

other proposed encoding and decoding algorithms. Each algorithm is explained in

detail and follows with a discussion of highlights and possible areas for improvement.

The contributions of this thesis are reported in chapter four. The first part of

this chapter describes a new mapping scheme for converting binary to nucleotides.

This mapping scheme accounts for multiple biological constraints. The next section

of chapter four includes analyses of the Fountain Codes algorithm and the implemen-

tation used in Erlich and Zielinski’s algorithm called DNA Fountain. The last part

of chapter four details the integration of the new mapping scheme into the Fountain

Codes algorithm and other improvements that were made to the algorithm design.

Chapter five describes the results of this research. This section contains a descrip-

tion of validation tests that were run and the corresponding results. We have shown

that our algorithm can recover from high levels of insertion, deletion, and mutation
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errors. We also found that Erlich and Zileinksi’s proposed algorithm is unable to

successfully decode an encoded dataset in some cases, and when compared to their

implementation, we produced a speed up of 2 times for encoding and 435 times for

decoding, in terms of running time.

The last chapter of this paper is the conclusion and includes possible areas for

continued work. This paper ends with an appendix that includes documentation for

the code implementation.
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CHAPTER 2

BACKGROUND

The multi-disciplinary nature of this thesis project incorporates knowledge from other

areas of research including engineering, materials science and mathematics. This

chapter presents background information on those topics in order to better understand

the research discussed in this thesis. The first section of this chapter focuses on

engineering, where researchers and developers have been working to increase the

storage capacity of current data storage techniques and to extend the lifespan of their

products. In the second section, information from the fields of materials science,

biology, and chemistry helps uncover the intricacies involved in using DNA for data

storage. Molecular reactions present their own set of challenges and constraints

to understand for this application. Finally, mathematicians working in the field

of information theory have researched the theoretical boundaries for the ability to

recover information in a sequence given potential errors. Pulling from research in

these areas, this chapter covers three topics including current data storage solutions,

molecular constraints, and information theory.

2.1 Current Data Storage Landscape

The current most popular data storage techniques include magnetic tapes, magnetic

disks, optical devices (such as CDs, DVDs, and Blu Ray) and flash memory, including
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solid state drives. The following section describes each of these technologies in detail

as well as some possible advantages or disadvantages of using each technique.

Magnetic tape storage includes devices that have a long thin plastic film with a

magnetic coding that is altered with magnetic impressions to represent data. Mag-

netic tape was originally developed for audio storage, so the data access pattern is

sequential and random access requires rewinding the tape. While some data storage

centers are moving away from magnetic tapes in favor of magnetic disks, the low

cost per bit of magnetic tape keeps it as a viable data storage alternative. Magnetic

tape also consumes much less energy than magnetic disks which is an important

consideration for data centers [18]. Recently, research has been conducted into

increasing the storage capacity of magnetic tape and Sony claims to have developed

a magnetic tape technology with an areal density of 148 gigabits per square inch [3].

However, most magnetic tape systems are only guaranteed to retain data up to 30

years [2].

Magnetic disks, such as hard disk drives, store magnetic data on rotating disks.

A magnetic head is used to read and write data. The data can be obtained in a

random-access manner but the system favors sequential access. Most recently, hard

disks have reached a capacity of 12 terabytes [7] and can retain data up to 5 years

[15]. Hard disk drives are common as secondary storage but are starting to reach their

limits in terms of growth and improvements. It is almost impossible to improve upon

rotation speeds and improvements in random access times lag behind the capacity

growth [18].

Optical devices, such as CDs, DVDs and Blu-ray discs, are flat, round discs

that record binary information by changing photo-physical forms on the surface.

Information is accessed from the disks by emitting a light beam against the surface and
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sensing the reflection. Optical disks are common for distributing information because

of their low manufacturing cost. However, optical disks are not widely used for data

storage centers because they lag behind magnetic tape in terms of recording density

[18]. Sony and Panasonic have recently partnered to create an optical disk archival

storage system. The companies have created a roadmap to develop a system with a

recording capacity of 300 gigabytes per disk in the first generation to 1 terabyte in

the third generation [5]. They claim that their system will have an estimated lifespan

of 50 years.

Both magnetic disk devices and optical devices are in competition with and

starting to be replaced by flash memory such as flash drives and solid-state drives.

Flash memory can be electronically programmed by putting or removing an electron

to or from a floating gate. Information can then be read by measuring the voltage

from the floating gate. Some advantages of flash memory over magnetic disks include

dramatically reduced latencies in terms of data access times, and flash memory does

not have mechanical limitations. However, the cost per bit for flash memory is

significantly higher than magnetic disks. Yet, some manufacturers of flash memory

promise retention times of up to 20 years [6]. In 2016, Samsung announced a 32

terabyte solid state drive, which they hope to increase up to 100 terabytes by 2020

[12].

DNA as a storage solution shows improvement over these current techniques in

two main areas. The first is the retention times of the data. DNA can potentially

last hundreds to thousands of years under the right conditions, significantly outlast-

ing current data retention times. Secondly, the volumetric density of DNA is one

thousand times greater than flash memory. Potentially, data could be stored in much

smaller spaces instead of large data storage centers. Table 2.1 shows a comparison of
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DNA for data storage with the four current techniques previously described [37].

Table 2.1: Data Storage Comparison

Magnetic
Tape

Magnetic Disk
(Hard Disk)

Optical Drives
(Blu Ray)

Flash Memory
(SSD)

Cellular
DNA

Retention
Times

30 years 5 years 50 years 20 years >100 years

Areal
Density

109bit/cm2 102bit/cm2 1011bit/cm2 1010bit/cm2 unavailable

Volumetric
Density

1012bit/cm3 1013bit/cm3 1012bit/cm3 1016bit/cm3 1019bit/cm3

Max
Capacity

185 TB 12 TB 300 GB 32 TB unavailable

Read/Write
Latency

unavailable* 3-5ms/bit unavailable* 100us/bit <100us/bit

ON
Power

unavailable 0.04W/GB unavailable
0.001-0.004

W/GB
<10-10W/GB

* Values may vary depending on streaming data or a singular access, as well as the
location of an access and whether the system needs to be rewound.

Since the idea of using DNA for data storage is relatively new, there are a few

disadvantages when compared to current architectures. One is the high cost of

producing the DNA strands themselves and reading them back to retrieve the data.

Currently, the estimated cost of synthesizing 1 megabyte of data into DNA is over

$12,000 and $220 for sequencing the DNA back again [28]. This seems high, but the

cost of DNA sequencing is already one three-millionth what it was 10 years ago [28].

Along with the high cost, it is also slow to synthesize and sequence the DNA

strands. This translates to slow read and write times. These slow access times are

one of the reasons why DNA data storage would be best for long-term data storage

in which the information did not need to be accessed frequently. Although, the
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synthesis and sequencing technologies are currently being improved for use in multiple

industries. Improvements made for these processes could further lower the cost and

decrease read and write times in the future. For now, researchers should focus on

optimizing computational running times for the encoding and decoding algorithms.

It is clear that the sheer amount of data generated and stored each day can cause

problems that need to be addressed. One of those is the large amounts of energy

that current data storage centers require to load data for storage and retrieve the

information when needed. According to the Natural Resources Defense Council, in

2013, U.S. data centers consumed an estimated 91 billion kilowatt-hours of electricity,

which is equivalent to the annual output of 34 large coal-fired power plants [16]. Since

these current storage techniques do not last, after around a decade or two, failing

machines need to be replaced and the data copied over to new machines. In 2015,

IBM estimated that 2.5 quintillion bytes of data are generated each day [4]. Some

researchers suggest that by 2040, world storage needs will be about 2x1024 bits of

information [37]. With more and more data being produced every day, industries

could perceivably end up in a situation in which the rate at which data needs to be

refreshed is outpaced by the time it takes to copy over the data. While research

is taking place on other novel data storage architectures, this thesis focuses on

developing the encoding and decoding algorithms needed in order to store data in

DNA.

2.2 Constraints and Considerations

In developing a reliable encoding and decoding algorithm, the processes of physically

synthesizing and sequencing the DNA must be considered. For example, a straight
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mapping between binary and quaternary does not take into consideration many of the

constraints that can complicate the synthesis and sequencing processes. While DNA is

a durable material, it is also a natural one that has intricate enzymatic properties. Not

all molecular interactions can be known and accounted for. Errors may be introduced

into the DNA strands if molecular interactions interfere with the ability to synthesize

and sequence the DNA correctly. Current synthesis and sequencing technologies are

being improved upon, but are not always precise. However, following general rules

allows for an encoding algorithm to generate DNA sequences that are more likely to

produce accurate strands and readings by the synthesis and sequencing processes.

Three different types of errors can occur on the nucleotide level during these

processes, especially if DNA strands are likely to have molecular reactions. These

types of errors are insertions, deletions and mutations. A mutation occurs when one

nucleotide is transformed into another. In consideration of these processes, a robust

encoding scheme would construct strands that are less likely to cause reactions, and in

turn, more likely to be synthesized and sequenced correctly. The following constraints

should be considered by the encoding and decoding algorithm.

Producing sequences with repeating nucleotides should be avoided when devel-

oping an encoding algorithm. In this category, the simplest constraint to consider

is avoiding consecutive bases. Sequences containing more than 3 or 4 consecutive

bases in a row, also known as homopolymers, can be difficult for the synthesis and

sequencing processes to handle.

The same is true for avoiding longer sequences of repeating nucleotides. If one long

sequence of nucleotides appears in a strand, then that same exact sequence should not

appear elsewhere. For example, if a strand contained the sequence GGACTTCGAAT,

then that same sequence should not appear elsewhere in the same strand. DNA
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naturally forms a double helix structure in which A pairs with T and C pairs with G

on opposite strands. These molecular forces can cause a strand with repeat sequences

to sometimes fold back on top of itself and create bonds. This formation is known

as a hairpin structure. Because of the geometry of the molecules, a hairpin structure

can make sequencing the DNA much more difficult and the information that is read

back may not be accurate.

The chance of forming hairpin structures can be lessened by avoiding repeating

sequences as well as palindromic sequences. Palindromic sequences are two sequences

which are made up of complementary nucleotides that are in reverse order of each

other. For example ATTCAGGC and GCCTGAAT are palindromic sequences.

Finally, the encoding algorithm should attempt to construct DNA strands that

have close to 50% GC content. This means that for a given strand, about half of the

sequence should be made up of the nucleotides C and G, and the other half should

include the nucleotides A and T. Strands that have close to 50% GC content are more

stable [34] and therefore, more likely to be synthesized and sequenced accurately.

Unfortunately, even though the possibility of introducing errors is reduced when

an encoding algorithm has evaluated all of these constraints, accounting for these

constraints does not guarantee perfect synthesis and sequencing of the DNA strands.

The technology is still being improved upon, and the ability to perfectly construct

and read back DNA strands without error, every time, is not yet possible. Thus,

an important element in the development of an encoding/decoding algorithm is to

include a way to recover insertion, deletion, and mutation errors with an additional

error correction code. The simplest way to do this is with high amounts of duplication.

The algorithm can then employ majority voting on all of the sequenced DNA strands.

Although, too much duplication is inefficient and can cut down on the information
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density. This presents a trade off in terms of the amount of error correction included

in contrast with a high information density. The information density should be

maximized while allowing for the complete recovery of data without error when

developing an algorithm for encoding and decoding DNA.

2.3 Information Theory

The upper bounds on the amount of information that can be successfully recovered

without error in a given DNA data storage system can be better understood by draw-

ing from research within the field of information theory. This field was essentially born

in 1948 with the publication of Claude E. Shannon’s paper titled, “A Mathematical

Theory of Communication.” In this seminal paper, Shannon presented a mathematical

way to quantify information. This metric can then be used to determine the minimum

amount of symbols needed for the error-free representation of a given message [36]. In

sending a message, the channel capacity for a discrete memoryless channel is defined

as

C = max
PX

I(X;Y )

where X is a given transmitted sequence, Y is the corresponding received sequence

and I(X;Y) is the mutual information of X and Y [26].

Erlich and Zielinski calculated the channel capacity for their DNA data storage

model in the supplementary information section of their publication. Given a mapping

from two bits to one nucleotide would produce a theoretical maximum of 2 bits/nt.

However, they also account for two specific biological constraints including repeats of

more than three nucleotides in a row and between 45 to 55% GC content. Accounting

for these constraints, Erlich and Zielinski calculated a channel capacity of 1.98 bits/nt
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[17]. They then go a step further and consider the fact that some nucleotides in the

sequence are needed for an index value and there may be a dropout rate of 0.5%.

Including these constraints, the final calculation results in a potential capacity of

1.83 bits/nt [17].

Besides the dropout rate determined by the sequencing coverage, other errors

may be introduced into the channel, as was discussed in Section 2.2. Delving further

into the field of information theory can help determine an optimal amount of parity

symbols necessary for the detection and correction of these errors. The next section

focuses on this subfield of information theory known as channel coding which includes

the study and design of error correction codes.

2.3.1 Channel Coding

Studying channel coding within the field of information theory can provide insights

into recovering from errors. In a channel coding system, information is transmitted

from a sender to a receiver over a noisy channel. Because of noise in the channel,

information sent from the sender may be lost and the receiver is unable to collect all

of the original information. The sender can also add parity information to be sent

across the channel in order for the receiver to have a better chance at recovering the

information, even in the event that some of it is lost. This parity information comes

in the form of an error correction code. Error correction codes have been extensively

studied in order to develop efficient codes that can maximize the probability of

recovering information while minimizing the amount of parity information that has

to be sent.

In the situation of using DNA for data storage, the processes of synthesizing,

storing and sequencing the DNA can be thought of as the channel. During these
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stages, errors can be introduced which may cause loss of information. Including an

error correction code can increase the chance of accurately recovering the data. Some

error correction codes exhibit trade offs in terms of the amount of parity information

included and the probability of fully recovering errors. Certain error correction codes

would be better for certain situations depending on the parameters that a system

would need to optimize.

There are a few ways in which a DNA data storage channel differs from a common

communication channel. Because of these differences, not all error correction codes

can be directly used for DNA data storage systems. One difference is that the DNA

data storage channel is a one-way communication system. An advantage of a two-way

communication system is the possibility for the receiver to communicate back to the

sender whether or not all of the information was recovered, or if more information is

needed. This is not possible in a DNA data storage system. All of the information

is encoded at once and stored away. The DNA will not be decoded until potentially

many years later and only the recovered sequences can be used to decode the original

data.

Another difference between a common communication channel and a DNA data

storage channel is the type of errors that may occur. In a typical communication

channel, only deletion errors are expected. These deletions may affect single bits or

entire packages of information, but the probability of each deletion is modeled to be

independent and identically distributed. On the other hand, for DNA, insertion and

mutation errors may also occur. Single insertion, deletion and mutation errors are

possible as well as consecutive groups of errors. These various types of errors may

need to be handled differently.
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2.3.2 Reed Solomon Codes

One group of error correction codes that are used for multiple information technologies

and have been used for DNA data storage algorithms [20, 9, 17] are Reed-Solomon

codes [31]. Variants of Reed Solomon codes are used on CDs and DVDs as well as

satellite links and other communication systems [21]. Grass et. al., Blawat et. al., and

Erlich et. al. have all successfully employed Reed Solomon codes during lab tests of

their algorithms [20, 9, 17]. Not only are these codes somewhat simple to understand,

compared to other error correction codes, Reed Solomon codes can detect and correct

bit flips, which translates to mutation errors. Another useful feature of these codes

is that the length can be adjusted to the amount of detection and correction needed,

based on prior calculations. A basic example of a Reed Solomon coding application

is shown below so that the reader may gain a better understanding of how the codes

work. This example is based off of the Reed Solomon tutorial by Westall, et. al. [35].

Reed Solomon codes employ algebraic properties in order to operate. One of the

main concepts used by this set of codes are Galois Fields, denoted GF(pm) which are

a type of field. Fields have the following mathematical definition [36].

Let F be a set of objects on which two operations + and · are defined. F is said

to be a field if and only if

1. F forms a commutative group under + (addition). The additive identity element

is labeled ”0”.

2. F - {0} (the set of F with the additive identity removed) forms a commutative

group under · (dot product). The multiplicative identity element is labeled ”1”.

3. The operations + and · distribute: a · (b+ c) = (a · b) + (a · c)
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Galois Fields are fields that have a finite number of elements. When used in coding

applications, p is usually 2 and m represents the size of the codeword. For this small

example, we will use GF(23). The addition and multiplication tables for GF(23) are

shown in Table 2.2 and 2.3, respectively.

Table 2.2: Addition Table for GF(23)
+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

Table 2.3: Multiplication Table for GF(23)
x 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 3 1 7 5
3 0 3 6 5 7 4 1 2
4 0 4 3 7 6 2 5 1
5 0 5 1 4 2 7 3 6
6 0 6 7 1 5 3 2 4
7 0 7 5 2 1 6 4 3

For this example we will also use n = 3 and k = 5. Where n is the number of data

packets and k is the number of check packets. Reed-Solomon codes must satisfy the

property n+ k <= 2m and therefore, only n number of packets (data or check) need

to be received in order to decode the n data packets. Finally, the error correction

code requires a matrix with n+ k rows and n columns and satisfies the following two

properties
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1. The first n rows form an nxn identity matrix.

2. Any n rows of the matrix are linearly independent.

Property two is especially important so that the matrix is invertible and provides the

ability to decode the necessary packets.

The Vandermonde matrix can be used to derive our required matrix because it

is known to follow property two from above. The general form of the Vandermonde

matrix, for any given n and m is shown below



00 01 02 ... 0(n−1)

10 11 12 ... 1(n−1)

20 21 22 ... 2(n−1)

... ... ... ... 0(n−1)

(2m− 1)0 (2m− 1)1 (2m− 1)2 ... (2m− 1)(n−1)


For our given choice of parameters, m = 3, n = 3, and k = 5, the Vandermonde

matrix is as follows

V =



1 0 0

1 1 1

1 2 4

1 3 5

1 4 6

1 5 7

1 6 2

1 7 3
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Since matrix V is derived from the Vandermonde matrix, it satisfies property 2.

However, we need to perform a series of linear transformations in order for matrix V

to satisfy property 1.

D =



1 0 0

0 1 0

0 0 1

1 1 6

4 3 2

5 2 2

5 3 4

4 2 4


From the transformed Vandermonde matrix, D, the bottom k rows are used to

generate the k check packets. This is done by performing matrix multiplication on

the bottom k rows of D and a vector of the three data packets that will be sent. For

this example, let us choose our data packets to have the values {6, 1, 4}.

1 1 6

4 3 2

5 2 2

5 3 4

4 2 4


×


6

1

4

 =



2

5

2

6

1


The resulting k check packets are {2, 5, 2, 6, 1}. When the information is sent

across a coding channel, each packet has an associated index value with it. The

following information is transmitted from the sender to the receiver.

{(0, 6), (1, 1), (2, 4), (3, 2), (4, 5), (5, 2), (6, 6), (7, 1)}
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After the transmitted information gets sent over a coding channel, some packets

may be mutated or lost altogether. The receiver only need know the values m, n

and k and how to derive the Vandermonde matrix to correctly decode the sent data

packets. Continuing with the given example, suppose only the check packets at index

values 4, 6 and 7 are received. Therefore, we need the corresponding rows of the

derived Vandermonde matrix, shown below as D’.

D′ =


4 3 2

5 3 4

4 2 4


The lost data packets are denoted d0, d1, and d2. As we previously showed, the

check packets were produced by performing matrix multiplication on the data packets

and the corresponding rows of the Vandermonde matrix.
4 3 2

5 3 4

4 2 4

×

d0

d1

d2

 =


5

6

1


Solving the equation above, will uncover the correct values for the data packets.

The equation can be solved by inverting D’ and performing matrix multiplication

on the values of the check packets. After inverting the matrix and performing the

calculations, we can confirm the values of the data packets as {6, 1, 4}.
7 5 3

7 4 2

1 7 5

×


5

6

1

 =


6

1

4
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CHAPTER 3

RELATED WORK

Even before the need for better data storage solutions, the idea of using DNA to store

information was first introduced in 1999 by Clelland, Risca, and Bancroft [14]. In

the next decade, more researchers began studying the idea, and advances in DNA

sequencing technologies brought on by the Human Genome Project, along with the

growing need for better long-term data storage solutions, drew more researchers to

the field. Between 2010 to 2018, more research was published on the topic of using

DNA for data storage and the corresponding encoding and decoding algorithms. This

section describes seven of the more prominent approaches in detail and includes an

analysis of each approach.

The following section is organized with the intent to show advancements made in

the field over time. Each approach shows some improvements and new ideas presented

over previous works. These approaches are presented in the order that they were

published with the exception of the technique from Organick et. al., whose paper had

not been peer reviewed at the time that this research was completed. Therefore, their

algorithm is included after Bornholt, et. al. because both approaches come from the

same group of researchers collaborating at Microsoft Research and the University of

Washington. While there are many more algorithms published on this topic, we have

chosen to only include approaches that employ next-generation sequencing techniques
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and have included the results of laboratory testing. The algorithms presented also

address the same research questions that are discussed in this thesis. The work of

this thesis presents a next step in the progression of these ideas over time by building

upon the research of the most recent approach by Erlich and Zielinski [17].

3.1 Church [13]

“Next-Generation Digital Information Storage in DNA,” by Church, Gao, and Kosuri

is one of the first techniques to demonstrate the use of next-generation synthesis

and sequencing technologies for storing large amounts of information. Published

in September of 2012, their approach includes an experiment that successfully stored

5.27 megabits of data, compared to the previous maximum of 7920 bits. This ability to

store more information was aided by next-generation technologies which demonstrated

about 100,000-fold less cost than first-generation techniques. These new technologies

were a key factor in the growth of research in algorithm development for DNA data

storage.

The data that was stored, including text, images, and a JavaScript program, was

converted into a bit stream and these bits then became 54,898 oligonucleotides (oligos)

that were each 159 nucleotides (nt) long. Each oligo included a 96-nt data block, a

19-nt address and flanking 22-nt common sequences that are used for amplification

and sequencing. More specifically, the address section determines the location of the

data block in the bit-stream.

The encoding algorithm that was used is a basic mapping of bits for nucleotides.

A zero is replaced by an A or C and a one is replaced by a G or T. The decision in

choosing A versus C or G versus T is made by the following constraints; resulting
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sequences should not contain extreme GC content, repeats, or secondary structures.

The decoding stage then swaps an A or C for zero and a G or T for a one. When

recovering the data, in the experiment, all blocks were recovered with a total of 10

bit errors out of 5.27 million. These errors generally occurred within homopolymer

runs at the end of the oligos where there was only single sequence coverage. Insertion

and deletion errors were not recorded, although, Table 3.1 shows the amount of each

type of mutation. Because the encoding algorithm maps two nucleotides to one bit,

only 10 of the discrepancies resulted in an actual bit error in the digital data.

Table 3.1: Church: Analysis of Mutations Found
Original A C T A T G C
Mutation G G G C C C A

# of times 3 2 1 8 3 2 3

Church’s approach represents a promising first step in developing an encoding

and decoding algorithm and a significant improvement in the amount of data that

can be stored in DNA. Some amount of implicit error correction also occurs without

the need for error detection. However, a main goal of data storage is to be able to

recover all information without any error. A natural next step would be to include

more robustness to errors that may occur during the synthesis, storage or sequencing

processes.

3.2 Goldman [19]

In the development of their algorithm, Goldman and his team were looking to achieve

an improvement upon the ideas presented by Grass, et. al.. A more scalable approach

to DNA data storage encoding and decoding that is also more robust to errors, is

detailed in their research, “Towards practical, high-capacity, low-maintenance infor-
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mation storage in synthesized DNA.” In order to demonstrate that their approach

can work for arbitrary digital data, their experiment stored five different types of files,

including text, PDF, JPEG, MP3 and ASCII. This dataset totaled 0.75 megabytes.

In pursuance of a more robust technique, Goldman and his colleagues designed an

encoding algorithm that is relatively more complicated than previous designs. The

algorithm not only converts digital data to nucleotides, it also pads sequences to be

of a certain length, includes addressing and parity information, and takes the reverse

complement of every other strand.

The first step is to convert digital data bytes to base-3 using a Huffman code.

Table 3.2 shows how to convert the base-3 values to nucleotides based on the previous

nucleotide, and initializing with a previous value of “A”. This table ensures that there

will not be repeating nucleotides in a row. Next, the nucleotide encoded strings are

split into overlapping segments that are 100 nucleotides long (denoted Fi). If i is odd,

the reverse complement of the strand is selected. A parity bit is also computed and

appended to each strand. Each strand will include 117 nucleotides, that are broken

down as follows: 1 which represents forward or reverse complement strands, 100 of

data information, 2 for the file location, 12 for the address within the file, 1 for parity

and 1 more to label forward or reverse complement strands. An overview of this

process is shown in Figure 3.1.

Table 3.2: Goldman Mapping Scheme
previous next trit to encode

nt written 0 1 2

A C G T

C G T A

G T A C

T A C G
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Figure 3.1: Visualization of Goldman [19] Encoding Algorithm

Even though the researchers were able to test this algorithm and recover all five

digital data files with 100% accuracy, there were some issues that were encountered

during the experiments. Inconsistencies that were introduced during synthesis or

sequencing were discarded. More sequences that were found to have errors during

the decoding process were also abandoned. These errors were likely detected by

examining parity bits and the length of segments. Luckily, because of the amount

of redundancy and the use of majority voting among redundant sections, there were

enough sequences to recover the original information.

Another issue was that two sections, each 25 bases in length, were not able

to be recovered during the experiment. These gaps, totaling 50 bases, had to be

manually inserted in order to restore the original information. Goldman and his

team were able to hypothesize how to fill in these segments by inspecting neighboring
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regions and manually inserting bases so that the sequences could be decoded. Other

inconsistencies were caused by errors within the address sections of the sequences.

These types of errors misplaced strands and misconstrued the majority voting.

In a more detailed analysis of where errors were occurring, the researchers noted

that the unrecoverable sequences were very likely caused by long repeating segments

of 20 bases within the strands. These segments happen to be self-complementary and

can form bonds causing strands to fold over on themselves. This makes it extremely

difficult for the sequencing process to read the correct sequences. Typically, the

severity of the issue varies depending on the sequencing technology used. In the

case of this experiment, those segments were not able to be sequenced at all. In any

case, having an algorithm that avoids creating longer repeating or self-complementary

sequences is a good idea and was admitted in hindsight by the researchers.

Attention should be paid to these types of errors, and the data that might lead to

bad sequences which cause them, especially in the addressing section. This is because

an algorithm, like this one, indexes strands numerically and then pads the length to

be constant. Having a wide range of index values that starts with small numbers could

generate sequences that are padded with many leading zeros. Based on the mapping

scheme, these repeating zeros could potentially generate long repeating sequences of

nucleotides that might then cause issues for the synthesis or sequencing technology.

This issue may become more relevant as these algorithms and techniques become

more scalable and adapt to store larger amounts of data, as is demanded by industry.

This algorithm has many improvements over previously presented designs. It is

scalable and the use of a parity bit, as well as four-fold redundancy, makes it more

robust to errors. It is difficult to overlook the fact that 50 bases had to be manually

reconstructed to recover one of the files, but it brings attention to the issue of avoiding
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long repeating and self-complementary sequences. Succeeding algorithms attempt to

address this point, as well as including more vigorous error-correction techniques.

3.3 Grass [20]

In building upon previous ideas, Grass and his colleagues wanted to incorporate a

specific technique for error correction in an encoding and decoding algorithm. Their

design is presented “Robust Chemical Preservation of Digital Information on DNA in

Silica with Error-Correcting Codes.” One of the main areas of focus for this work was

to implement a strong error correction model in place of none, or simple redundancy.

Figure 3.2: Visualization of Grass [20] Encoding Algorithm
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For the error correction model, the researchers incorporated two levels of Reed

Solomon error correction codes into their encoding and decoding algorithm. The

digital data is first converted into a number within the Galois Field of size 47 (GF(47)).

These numbers are then put into a block of 594 x 30 values. This can be seen in the

orange block in section B of Figure 3.2. The first Reed Solomon parity information

is added on each row, in the form of 119 values from the GF(47). This section is

referred to as the outer block, or Redundancy A, and is shown in the gray section of

the diagram. Next the teal section is added, which represents 3 values of indexing

information. Also appended to each column is the second level of Reed Solomon

parity. This section is represented by the blue section of the diagram and is referred

to as the inner block, or Redundancy B. The amount added to each column for

Redundancy B is 6 values long. Each column now consists of 39 values (one is

highlighted in yellow in the diagram) and is converted to nucleotides using a special

mapping scheme.

The wheel shown in Figure 3.3 represents the mapping scheme and converts each

value of the GF(47) to a sequence of three nucleotides and is designed in a way that

will not produce runs of more than three of the same nucleotides in a row. The

end result is that each strand consists of 117 nucleotides and is flanked by constant

adapters for a total strand length of 158 nucleotides.

The decoding of the algorithm works by first converting the nucleotides of each

strand back to the values of the GF(47) using the same wheel diagram. Strands are

then put in order based on the indexing information. At this point, any errors that

may have occurred, can be corrected by the inner Reed Solomon code. It is also

possible that a certain number of strands will be missing altogether. If this is the

case, the outer Reed Solomon code should be able to correct the remaining errors.
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Figure 3.3: Grass [20] Mapping Scheme

Once this step is complete, the data block of the GF(47) values can be converted

back to the original digital data.

Grass and his colleagues tested this algorithm by storing two ancient documents

in DNA. They put the Swiss Federal Charter from 1291 and the English translation

of the Method of Archimedes through their algorithm in order to determine the 4,991

sequences that would be used to construct DNA strands. Upon sequencing and

decoding the resulting sequences, they found that the Reed Solomon codes were

successful in detecting and correcting errors that occurred during the synthesis and

sequencing processes. They determined that the inner code had to correct an average

of 0.7 nt errors per sequence. The outer code had to account for a loss of 0.3% of

total sequences and correct about 0.4% of the sequences.

In a more detailed analysis of the error correction capabilities of this technique,

the researchers calculated that the inner code can handle at least three individual

base errors per sequence. In general, the estimated error rate per nucleotide that can
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occur during sequencing is 0.1%. Therefore, correcting three base errors in a strand of

length 117 nts should be sufficient to recover from the mutation errors that may occur.

Insertion and deletion errors were disregarded from the analysis. If one of these types

of errors did happen, the system could detect that the segment length was incorrect

and drop those segments before moving on to the next level of Reed Solomon error

correction. The researchers figure that the outer code can handle the loss of about

17% of all complete segments, or correct about 8.5% of all complete sequences if they

contain errors after the inner error correction code was applied. This indicates that

the algorithm would indirectly be able to recover from a certain amount of insertion

or deletion errors, in addition to correcting mutations. More research would need to

be done to directly detect and recover from multiple insertion and deletion errors.

This leads to a final consideration of this design.

The data in this system is highly coupled with the error correction codes. This

implies that all of the DNA strands must be decoded together in order to retrieve

any one section of information. At this point in the field, as algorithms have become

more scalable and better at handling errors, researchers must consider how to access

different sections of the data. Random access of, and varying techniques for indexing

information are the next set of obstacles to overcome that the algorithm presented in

this research had not yet considered.

3.4 Bornholt [10]

New ideas for indexing and storage techniques were brought to light by Bornholt and

his colleagues in their research from 2016, “A DNA-based archival storage system.”

The two main contributions include a new architecture for DNA data storage that
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allows for random access of data, as well as a new encoding scheme that offers

controllable redundancy. These ideas are supported by experiments and simulations

on a data set of four different images, totaling 0.15 megabytes.

Figure 3.4: Bornholt [10] Pooled Architecture

The first contribution presented in this research is the new architecture. The

authors of this algorithm demonstrate an idea for storing DNA in separate pools.

The algorithm then incorporates a (key, value) system in order to store and access

different sections of the data set from the corresponding pools. The key part of

the system might represent the name of a particular file that a user would want to

access. This key would then map to a specific PCR primer sequence, where the

primer sequence would consist of two parts. The first part of the primer represents

which pool the DNA might come from and the second part is the position of that

data section, within that file. The value associated with the key is the DNA sequence

representation of the data, along with an error correction section. In order to read the

information back, the key would be mapped to the corresponding primer sequence.

Then that primer sequence can be used to extract the relevant strands needed to

retrieve the data.
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Figure 3.5: Example of Bornholt [10] (Key, Value) Encoding

This architecture represents a trade off between reliability, performance, and

storage density. In a comparison between this design and one that stores all strands in

one pool, this architecture is much less dense in terms of the physical density needed

for the system. Other issues can be minimized, for example, using multiple pools

lessens the chance that different primers may react poorly with each other. Bornholt

and his team also argue that having a single pool reduces the likelihood that a random

sample drawn would contain all of the desired strands. The system may need to make

several reads from the pool in order to retrieve all of the pertinent information. With

more pools and a higher likelihood of gathering all the needed strands in one step,

this would arguably save time and energy. The experiments in this research were

therefore made to use reasonably-sized pools. This value could potentially be varied

by the user to maximize performance and storage density for a given system and in
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adaptation to changing trends in the industry.

One other advantage of this design is that different encoding algorithms could be

used for the actual conversion or mapping from digital data to nucleotide sequences.

In order to test the idea, the authors of this technique employed the Goldman

algorithm for encoding and decoding their data along with the (key, value) system

and a new algorithm. Because of the flexibility provided by the architecture design,

Bornholt and his team were able to experiment with another algorithmic idea for

mapping that provides a lower level of redundancy. While the Goldman algorithm

incorporates overlapping strands with a four-fold redundancy, a user may determine

that level of redundancy is not required. The researchers even suggest that different

sections of data could be encoded with different levels of redundancy, depending on

the importance of the data.

The newly presented mapping idea, that incorporates less redundancy, is called

XOR encoding. Under this plan, two DNA strands, comprised of data, are combined

with the exclusive-or function to generate a third strand representing the parity

strand. A diagram of this idea is shown in Figure 3.6. Ideally, only two of the

three strands would be needed to recover the third strand. This would work well for

recovering entire strands if they are lost, or even fixing insertion or deletion errors.

Mutation errors could be detected in the system but would be more difficult to correct.

If any inconsistencies were found when computing the exclusive-or functions, there

would be no way to determine which strand the mutation came from. An extra level

of error detection on each individual strand would likely be needed to uncover where

the mutation was located.

A few different experiments and simulations were completed to test the different

algorithms. The Goldman algorithm, as well as the XOR encoding algorithm were
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Figure 3.6: Visualization of Bornholt [10] XOR Redundancy

used with the new architecture idea on four different image files. The files varied

in size from 5kB to 84kB. Combined, these eight files produced 45,652 sequences,

each 120 nucleotides long. To demonstrate the random access technique, three of the

four Goldman encoded files were recovered and one of the four XOR encoded files

was recovered. The experiments demonstrated a successful result in the ability to

only amplify the targeted files and did not retrieve sequences from the other files. In

recovering and decoding all of the files, a one-byte error was found in one file, encoded

with the Goldman algorithm, that needed to be fixed by hand.

Testing the XOR encoding algorithm allowed the researchers to conduct more

analysis on the DNA data storage system by taking a subset of the produced strands.

Since the XOR encoding produces both parity strands and data strands, dropping the

parity strands would represent a naive encoding that does not include any redundancy.

In decoding and analyzing just the naive encoding set, 11 DNA strands were missing

entirely. A valid JPEG file could not be recovered without the missing information.

The results of this experiment verify the need for some level of redundancy or error

correction to be included in the process using DNA for data storage. This holds true

whether or not the system uses a single or multiple pooled architecture.
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3.5 Organick [29]

This next algorithm, described in “Scaling up DNA data storage and random access

retrieval,” comes from the same group that worked on the previously described

algorithm. In order to expand on the ideas previously presented, the authors of

this technique had the goal of scaling up their experiments in terms of the amount

of data successfully stored in DNA. Another improvement on these experiments was

to incorporate a more robust error correction scheme, instead of varying levels of

redundancy, which can be seen in the form of a Reed Solomon code. Along with

these new goals, experiments included tests for random access retrieval in order to

incorporate previous work.

At the time of this research, the authors claim that they had stored the most data,

to date, in DNA. Their data set includes a music video from OK Go (HD video),

consisting of 44.2 MB and 3.2 million sequences, a classical music collection (music),

consisting of 13.9 MB, and 890 thousand sequences. The Crop Trust database of the

seeds stored in the Svalbard Global Seed Vault (text), consisting of 11.1 MB, and

708 thousand sequences, and the Universal Declaration of Human Rights in over 100

languages. The total amount of data stored is 200.2 MB, and 13.4 million sequences

of DNA.

Important elements of this algorithm include the use of an exclusive-or operation,

a Reed Solomon parity code and a selective amplification technique to successfully

implement random access of the data set. The researchers also designed and validated

a library of primers in order to make the experiments possible.

A high-level overview of the encoding algorithm can be seen in section b of Figure

3.7. First, the exclusive-or operation is used to combine the input data with the
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output of a seeded pseudo-random number generator. This step helps to break up

multi-bit repeats that may be found in the input data. Next, the randomized data is

partitioned into Reed Solomon codewords. Then, the bit sequences are converted to

nucleotide sequences with a rotating code that eliminates homopolymers. While the

rotating code is not explicitly described, one might assume that it would be the same

or similar to what is used by the Goldman algorithm, since that algorithm was used

in previous research by this group. Finally, an address that describes the sequence’s

location, in relation to the other sequences is added to each sequence, along with a

20-base primer sequence on each end.

Figure 3.7: Visualization of Organick [29] Encoding and Decoding Algorithms

With the new elements of the encoding algorithm, the decoding algorithm was

also updated. The decoding algorithm can be described in four stages as is shown in

section c of Figure 3.7. In the first stage, strands are clustered by the similarity of

their entire content, not just the address. This is done with an algorithm based on

an iterative locality sensitive hashing. This also means that strands are not required
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to be of a certain length. Other algorithms studied typically disregard strands that

are of incorrect length. Attempting to correct those errors allows the algorithm to

use the rest of the information in the strand so it is not lost. Part two uses a variant

of the bitwise Majority Alignment algorithm which is adapted to support insertions,

deletions and substitutions. This is used to process each cluster to recover the original

sequence, based on a variant of a majority voting technique. In part three, strands are

decoded from nucleotides to bits in order to obtain indexes and values of individual

coordinates of the outer Reed Solomon code. In part four, the outer Reed Solomon

code is used to correct any errors that may have occurred. Finally, the exclusive-or

randomization is inverted to discover the original input data.

In expanding upon previous works, this research showed many improvements.

Organick et. al. completed experiments that stored the most data in DNA than has

ever before been seen. In terms of algorithm development, they have incorporated

some previously seen techniques into their algorithm in new ways. Employing Reed

Solomon codes for error correction has been implemented before, but not in conjunc-

tion with random access techniques. Although it was not explicitly described in their

research, the Reed Solomon codes must have been broken up among different files

or sections in order to decouple all of the data from the parity information. This

would allow random access of specific sections of data without having to decode the

entire data set. The same way of breaking up the data might also be used for the

exclusive-or operation with a randomly seeded value. If one value was used for the

entire data set then it would be difficult to line up a portion of that for the subsection

of data that was to be accessed individually.

Whether or not one or multiple randomly seeded values are used, the seed would

at least need to be stored outside of the DNA data storage in order to be used for
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decoding later on. While a user may not want extra information to retain, the idea

of using the exclusive-or operation to randomize the data provides a solution for the

problem encountered by Goldman et. al. Their design ran into issues in dealing with

long repeating sections of information and the difficulty in handling this issue could

be lessened with an exclusive-or operation with a randomized value.

3.6 Blawat [9]

The algorithm ideas presented in “Forward error correction for DNA data storage,”

represent one of the most complex encoding and decoding algorithms that have been

researched and tested. Not only is a new method for error correction described,

different levels of error correction are also incorporated throughout the different steps

of the encoding algorithm. This seems to provide a way to more accurately recover

mutated or altered DNA strands that is extremely robust.

More specifically, there are three different types of error correction that are em-

ployed during different steps of the encoding algorithm. The first type of error

correction comes in the form of a BCH code that is used on the address portion

of a given sequence. Also appended to each strand is a 16 bit Cyclic Redundancy

Check (CRC). The CRC provides error correction over the data section of the strand.

The final level of error correction is a Reed Solomon code that is applied over an entire

data block. These three types of error correction are incorporated while the data is

in the form of bits. After the data has been broken into sections, given an address,

and had error correction applied to it, the sequences of bits are then converted to

nucleotides.

The part of the encoding algorithm that converts bits to nucleotides employs two
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different mappings. Table 1 of Figure 3.8 displays the first mapping which converts

two data bits to one nucleotide symbol. This mapping is a direct mapping from one

two-bit set to one nucleotide. The second mapping, represented by Table 2 of Figure

3.8, maps two data bits to a two-nucleotide set. Each two-bit set can be converted

to one of four different options of nucleotides sets.

Figure 3.8: Blawat [9] Mapping Tables

These two mappings are used to convert 8 bits to 5 nucleotides at a time. The

first and second bits, map to the first nucleotide of the converted sequence, using the

first table. The third and fourth bits map to the second nucleotide and the fifth and

sixth bits map to the fourth nucleotide, also using the first table. Then the last two

bits (seventh and eight), are converted to the third and fifth nucleotides by using the

second table. Since the second table maps to two nucleotides, the two are split up

and the first of the pair goes into the third position of the final sequence and the

second of the pair becomes the last nucleotide (fifth) of the final converted sequence.

Which nucleotide pair that is chosen out of the four options from table two is chosen

in order to avoiding any repeating nucleotides in a row.
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Figure 3.9: Blawat [9] Error Detection Technique

The decoding portion of the algorithm can be described in four main stages. Each

stage pulls from the pool of recovered sequences and leaves the rest to be considered

in later stages. In the first stage, the only strands that are considered are the ones

that have the correct length, pass the CRC, have a correct BCH code on the address

and can be converted back to bits without error. Stage two examines strands that

are the correct length but have an erroneous CRC or are greater than or less than

the correct length by one nucleotide. For strands with an incorrect CRC, those with

the same address are grouped together and majority voting is used to determine the

sequence to be kept. For the strands that are off by one, in terms of length, a single

insertion or deletion error likely occurred. The algorithm that converts the nucleotides

back to bits attempts to find these errors and correct them by deleting or inserting

single nucleotides until a valid codeword is generated. An example of this technique

is shown in Figure 3.9. Next, strands that are significantly too short are analyzed in

stage three. For these, majority voting is used at each nucleotide position to piece

together sequences that can complete the entire strand. Finally, in stage four, the

Reed Solomon error correction code is applied over the sequences found in stages

one through three. This step can recover entire strands that were not successfully

recovered, as well as correct any sequences that were decoded incorrectly.
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In an experiment that stored 22 Megabytes of data in DNA, the authors of this

research explained that they were able to use their encoding and decoding algorithm

to recover the data without errors. The experiment included four different libraries,

each containing 225,000 strands of DNA. Library one had the most errors and after

the decoding stages one through three, the Reed Solomon code had to recover 583

strands, or 0.26% of the overall data. In an analysis of the data, the researchers

observed a correlation between the data stored in a strand and the probability that

no correct copy of that strand was found. They detected that sections of data with

long sequences of identical data bytes were encoded into nucleotide sequences with

repetitions of ten nucleotides. These repetitions then propagated into strands that

were lost or unable to be sequenced fully.

Blawat and his team introduced some novel ideas in terms of incorporating mul-

tiple error correction methods into an encoding and decoding algorithm. They also

presented a new way to convert data bits into nucleotides that avoids repeats and has

built in methods to discover insertion and deletion errors. Yet, one disadvantage of the

mapping scheme is the types of nucleotide sequences that can be produced. Sequences

of three repeating nucleotides in a row, as well as longer sections of repeated nucleotide

sequences can still occur and cause problems in fully sequencing and recovering the

data. Perhaps the researchers were following an approach that focused more on

correcting errors than minimizing the possibility of them arising in the first place.

This is a valid strategy but brings up other constraints that must be considered

in analyzing the appropriateness of a DNA data storage system. One of these

considerations is computational running time. One technique this decoding algo-

rithm employed was to replace each nucleotide one by one, to find a valid sequence,

when attempting to correct insertion or deletion errors. Depending on the size of
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the sequence and the number of errors, this could be a slow process in terms of

computing time. Another constraint to consider is the information density of the

DNA. Creating more strands that include parity information or error correction codes

lowers the information density over the total amount of DNA produced and increases

the amount of DNA needed for a given amount of data. Because of the currently

high cost of production, making more DNA strands is not trivial. Establishing a

necessary amount of error correction that balances information density and accuracy

in recovering from imprecisions is a significant challenge that requires more research

and experimentation.

3.7 Erlich [17]

The ability to approach the information capacity per nucleotide while providing

robustness towards correcting errors is the goal of the algorithm described in “DNA

Fountain enables a robust and efficient storage architecture.” By employing a Foun-

tain Code, this allows the algorithm to approach the Shannon Information capacity.

Experiments described in this research show that the authors were able to store 2.15

MB of varying digital data, including an operating system and a short movie, and

recover the information completely with no errors.

The encoding part of the algorithm comprises of three main stages, including

preprocessing, the Luby Transform, and screening. A diagram outlining the process

is shown in Figure 3.10. The first step of the preprocessing stage includes compressing

the data files. This step helps to minimize the amount of data encoded as well as

removing repeating bits for more randomized data. Next, the digital data is split into

non-overlapping segments of length L. This length, L, can be adjusted by the user,
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and determines how long the final nucleotide strands will be. The researchers decided

upon segments of length 32 bits, which eventually produced strands with a length of

200 nucleotides.

Figure 3.10: Visualization of Erlich [17] Encoding Algorithm

After preprocessing, the encoding algorithm moves on to the Luby Transform

stage. This step includes creating sequences of bits called droplets. Each droplet

includes a seed value and has the option to include an error correction code. In their

experiments, Erlich and Zielinski used a Reed Solomon code attached to each droplet.

The seed values, which can also be considered an index value, are used to initialize

pseudo random number generators (PRNG) and are generated in a specialized way. A

standard seed generation for a Fountain Code would start at zero and iterate by one to

the maximum value produced by the bit size. However, for this algorithm, the typical

seed generation would produce bursts of homopolymer runs which would either need
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to be excluded, or would cause problems for the synthesis and sequencing processes.

Instead, the algorithm employs a Galois linear-feedback shift register (LFSR). This

allows the algorithm to iterate over each number in the interval [1,...,232-1] in a pseudo-

random order and without repetition.

Once a seed is generated for a droplet, two PRNGs are initialized with that seed.

The first PRNG is created over a Robust Soliton probability distribution, shown

in Figure 3.11, and is used to choose d. This value, d, represents how many data

segments, of length L, will be chosen for the droplet. The second PRNG is created

over a uniform distribution and is used to select those d different segments, without

replacement, from the initial digital data. To finalize each droplet, the algorithm takes

the exclusive-or operation over the d chosen segments and the outcome becomes the

data payload for the droplet. The seed and optional error correction code are then

appended to the droplet. More information about the Luby Transform stage and the

Robust Soliton distribution can be found in Section 4.2.

Figure 3.11: Soliton Distribution for the Luby Transform [17]
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The final stage of the encoding algorithm is the screening stage. At this stage,

the bits are converted to nucleotides using the following mapping: {00,01,10,11} to

{A,C,G,T}. The algorithm can then analyze each droplet in the form of a sequence of

nucleotides. Sequences that do not conform to certain properties are then discarded

and not used to generate DNA strands. Valid sequences that are kept are ones that

meet the requirements for GC content and homopolymer runs. For this experiment,

a GC content level between 45 to 55% and length of homopolymer runs less than or

equal to 3 nucleotides was used in order to screen the droplets. Since sequences can be

dropped in this stage, the algorithm has the option to go back to the Luby Transform

to continue to produce droplets until the desired number of nucleotide strands are

accepted. This value, the number of oligonucleotides produced, can be determined by

the user depending on the preferred level of redundancy. For this technique, Erlich

and Zielinski generated 72,000 strands, which yielded a redundancy of 7%.

The decoding part of the algorithm also consists of three major stages which are

preprocessing, droplet recovery and segment inference. In the preprocessing stage,

nucleotide strands are collected and ordered. Only strands of the correct length are

kept. Strands of incorrect length would indicate insertion or deletion errors and are

discarded. Then, the remaining strands are grouped and ordered by the number of

occurrences within each group. This allows the algorithm to first process strands

with multiple occurrences that are less likely to have errors. Singletons, which have

a higher probability of including errors can be left to be processed last, if at all.

The second stage of the decoding algorithm is the droplet recovery stage. At

this point, nucleotides are converted back to binary with the same mapping scheme

used to convert bits to nucleotides. Once in the binary form, the sequence can be

separated into the seed, data payload, and error correction parts. The error correction
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can be applied to the data and if any inconsistencies are detected, then the segment

is discarded.

For the third and final stage of the decoding algorithm, termed segment inference,

the recovered droplets are used to uncover the original digital data. As is done in

the Luby Transform stage of the encoding algorithm, two PRNGs are produced with

the recovered seed from each droplet. The first determines how many segments are

included in the droplet and the second produces the input segment indexes. The

algorithm now knows which segments are included in each droplet and must apply

the exclusive-or operation to recover each segment. When one segment is left in a

given droplet, that bitstring is assigned to the corresponding segment index (in the

final recovered data) and the value is propagated throughout the rest of the droplets

that also contain that segment. This process is repeated, analyzing more and more

sequences, until all of the original data can be recovered.

Upon first glance, the presented algorithm seems complicated. While there are

many components to understand, a survey of the details described in each step

brings together an overall picture of how this algorithm works. The error correc-

tion capabilities appear to be robust enough to recover from insertion, deletion, or

mutation inaccuracies without considerable amounts of redundancy. In a chart that

compares their algorithm against previously published ideas, Erlich and Zielinski’s

design produces the highest net information density of 1.57 bits/nt. The second

highest amount is only 1.14 bits/nt produced by the Grass et. al. design.

Another advantage of this algorithm is the flexibility offered to the user. Depend-

ing on the needs of the system, multiple parameters can be optimized to best meet

certain needs. For example, the length and amount of the DNA strands can be altered,

certain constraints can be followed or ignored when screening for valid sequences, and
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the type of error correction code used on each strand could be switched, augmented,

or even left out entirely. The one thing that is missing from this algorithm is the

ability to access any one portion of the dataset at a time. Since information is spread

across multiple droplets, all strands would need to be decoded in order to retrieve

any section of the encoded data and random access is likely not possible with this

system design. Even so, the flexibility of this algorithm idea seems promising.

The research presented in this thesis builds upon the ideas of the previously

described algorithms, specifically the last one. Overall, some of the previous designs

suffered from repetitions in the data that propagated to repetitions of nucleotides in

sequences that were difficult for the synthesis and sequencing processes. This, in turn,

lead to unrecoverable sections within the datasets. Some algorithms also suffered from

a lack of error correction or redundancy that could successfully recover from insertion,

deletion, or mutation errors. The lessons learned from these researchers influenced

the design of a new algorithm, detailed in the next chapter.
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CHAPTER 4

METHODOLOGY

In this chapter, we present REDNAM (Robust Encoding and Decoding of Nucleic

Acid Memory), our work on creating encoding and decoding algorithms for use in

DNA data storage. The encoding algorithm can be split into two complementary

sections. One section defines the way that binary information is mapped to the

quaternary molecules of DNA (A, T, C, G). This stage is defined as the mapping

and translation stage. The other section details the rest of the operations needed to

encode information, besides mapping. This stage can include the steps necessary to

include an addressing scheme as well as redundancy or parity information such as an

error correction code.

The first contribution of REDNAM includes a novel mapping scheme and trans-

lation process. This stage accounts for certain biological constraints that can cause

errors during the synthesis and sequencing processes. This mapping and translation

scheme is then integrated into a general encoding algorithm known as Fountain Codes.

4.1 Data Translation with Hex-to-Codon Mapping

The work on this project begins with the development of the mapping scheme. On the

digital side, we chose hexadecimal characters which consists of 4 bits in base 16. On

the other side, each hexadecimal value is converted to a codon, or a sequence of three
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nucleotides. This mapping scheme draws inspiration from nature where ribonucleic

acid (RNA) strands are decoded by ribosomes three nucleotides at a time, and each

set of three nucleotides, or each codon, represents a different amino acid needed to

construct certain proteins. By using codons, as opposed to one or two nucleotides,

there are more sequences available for the mapping scheme (a total of 64 codons).

The use of hexadecimal characters allows the algorithm to encode any form of data,

by looking at its binary representation, as opposed to early algorithms which were

restricted to textual data [8, 14, 22, 30].

When building a map that converts hexadecimal data to codons, certain types of

constraints can be built into the mapping. For example, it is possible to construct a

map that automatically excludes the possibility of building sequences that have more

than 4 repeating nucleotides in a row by simply excluding the codons with three

repeating nucleotides (AAA, TTT, CCC, and GGG) from the mapping.

When building this map that converts hexadecimal data to codons, we found

that we could integrate some of the biological constraints into the structure of the

map itself. For example, the encoded sequences should not have multiple repeating

nucleotides in a row. Therefore, the map should not include the codons with three

repeating nucleotides (AAA, TTT, CCC, and GGG). This automatically removes the

chance of having sequences with more than 4 repeating nucleotides in a row.

Along with those 4 codons, 12 other codons were discarded from the map for

biological purposes. These 12 codons are known as start codons and are listed in Table

4.1. During the translation process, in which ribosomes create proteins, specific start

codons signal the ribosomes to start processing. When generating artificial DNA, our

algorithm excludes these start codons from the sequences. This is useful in the case

that artificial data DNA comes into contact with any biologically active translation
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system. The results of this type of interaction are unknown.

Table 4.1: List of Start Codons Excluded from Map
AAT
ATA
ATT
ATG
CAC
CAT
CAG
CTT
CTG
TAT
TTG
GTG

This leaves 48 remaining codons to choose from for the mapping scheme. However,

we do not want any two codons selected for a sequence to contain any of the 16

removed sequences in the overlap of their concatenation. In order to disallow this

situation, we carefully constructed the mapping by looking at all possible codon

options for a given hexadecimal character that can be followed by all 16 hexadecimal

characters. That way, any two consecutive hexadecimal characters are able to be

mapped to two codons in which the encoded sequence of those two codons does not

contain a bad codon sequence. For example, for any given hexadecimal character, it

may be mapped to a certain codon. Then it should be possible for another codon to

follow the first one for each hexadecimal character. This means that there must be

a valid codon option to follow the first one that would not contain a sequence that

matches any of the 16 omitted codons.

In following that rule, we discovered that certain sequences of characters could

not be avoided by including some codons. For example CAT, CAC, and CAG are all

codons in the list of start codons to avoid. So any codon that ended with CA could
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only be followed by a codon that started with an A, but not AA. After excluding

codons that started with AA and any other codons in the list of excluded codon

sequences, there were only 8 possible codons that could follow any particular codon

that ended with CA. These 8 possible codons are not enough to give an option for

each of the 16 hexadecimal characters in the mapping scheme so the four codons,

starting with CA, had to be excluded from the final mapping scheme.

Table 4.2: List of Other Codons Excluded from Map
ACA TCA CCA GCA TGA TGT TGC TGG GAT

A total of 9 codons were discarded from use in the map for similar reasons and

are listed in Table 4.2. While these codons could not be used in the mapping, they

are allowed in the final encoded sequences. Unlike the first 16 codons which were

removed, the set of 9 do not represent sequences that would contradict the biological

constraints. However, including them in the map is not feasible. Therefore, the final

mapping scheme includes 39 codons. This means that each hexadecimal character

has either two or three options of codons to choose from during the data encoding

process. Table 4.3 shows the final hexadecimal-to-codon mapping scheme used in our

algorithm.

The ability for each hexadecimal character to convert to one out of a set of codon

options is a specific technique for our encoding algorithm. This key feature allows the

mapping scheme to account for the biological constraints detailed in Section 2.2. The

ability to consider all constraints is not integrated directly into the mapping scheme.

However, using this map allows for the consideration of more constraints during the

translation phase of the encoding scheme. Since there are two or three options of

codons to choose from during translation, the system can strive to construct optimal
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Table 4.3: Hexadecimal to Codons Mapping Scheme
Hexadecimal Codons

0 AAC, GAC
1 AAG, GAG
2 AGG, GTC, TCT
3 TCG, CGA
4 ACT, GCT, TCC
5 ACC, GCC, CGT
6 ACG, GCG
7 AGA, GGA
8 AGT, GGT
9 AGC, GGC, CCG
a GAA, CGG
b TAA, CAA
c TAC, CCT, ATC
d TAG, CGC
e TTA, CTA, GTT
f TTC, CTC, GTA

sequences.

During the translation phase, the algorithm works to convert each hexadecimal

character into codons. At the start, a random codon is chosen from the set given

in the mapping scheme. Then, for the next hexadecimal character, the algorithm

attempts to choose a codon from the corresponding set. The algorithm must choose

a codon that, when concatenated on the end of the sequence, conforms to each of

the biological constraints. If the algorithm does not find a valid codon to continue

the sequence, it must backtrack and pick a new codon for the previous hexadecimal

character.

Backtracking may be needed in accounting for two other biological constraints.

The first constraint is excluding longer repeating sequences from a strand. Since

the map uses codons, three codons, or nine nucleotides, is the smallest length of a
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sequence that we can limit to be seen one time in the entire strand. If any sequence

of three codons is seen a second time in the translation stage, the algorithm will

backtrack and choose a new codon. This stage also accounts for the ratio of GC

codons to AT codons. As was discussed in Section 2.2, a given sequence should have

close to 50% GC content. If a strand goes too far outside of the range of acceptable

GC nucleotides, the algorithm will again backtrack and choose new codons.

Although this part of the algorithm allows for backtracking, the total number of

times that the system can backtrack for any given sequence should be limited. After a

few runtime tests, it was decided that an optimal number of backtracks per sequence

is 500. This is typically enough time for the algorithm to find a valid sequence.

Allowing the number of backtracks to increase would allow the algorithm to spend

a long time in converting a difficult sequence. In the end a valid sequence may not

even be possible and the time was wasted. As is shown in Section 5.2 on most test

files, our algorithm can translate 89% of the sequences. By doubling the number of

allowed backtracks, to 1000, the percentage of translated sequences only increased

to slightly above 90%. Therefore, an increase in the number of backtracks allowed

during the translation process would barely increases the percentage of translated

sequences while largely increasing the running time.

Two constraints are satisfied with backtracking and another two are satisfied by

the map itself. These next two constraints are the exclusion of repeating nucleotides

and start codons. In our code implementation, when the map is used to convert a

hexadecimal character, it also knows what the previously chosen codon was. There-

fore, the mapping chooses the codon for the current hexadecimal value based on the

previous codon. Since the map was developed to always have a codon option, a valid

codon can be chosen the first time. This valid codon will not cause a sequence of three
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or more repeating nucleotides and it will not form any of the start codons. In using

this mapping scheme during the translation phase of the encoding, the algorithm can

account for a total of four different biological constraints.

The python code below shows the main while loop that translates hex-

adecimal values to codons.

while i < hex index :

i f ( num backtrack > t o t a l l owed back or i ==0):

# t a k i n g too long f o r b a c k t r a c k i n g

return −1

char = hex sequence [ i ]

opt i ons = map obj . get codon ( prev codon , char )

i f p r e v c h o i c e s [ i ] == len ( opt ions ) :

# no o p t i o n s a v a i l a b l e a t curren t index

backtrack = True

else :

backtrack = False

next codon = opt ions [ p r e v c h o i c e s [ i ] ]

p r e v c h o i c e s [ i ] += 1

i f i <5: #f o r f i r s t 5 codons , don ’ t check f o r r e p e a t s or GC%

nt sequence = append codon ( nt sequence , next codon , i )

prev codon = next codon

t o t g c += next codon . count ( ”G” ) + next codon . count ( ”C” )
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i += 1

else : #check f o r l o n g e r r e p e a t s or GC% f o r r e s t

nt sequence = append codon ( nt sequence , next codon , i )

next gc = next codon . count ( ”G” ) + next codon . count ( ”C” )

t o t g c += next gc

gc range = gc pe r c ∗( i /( hex index +0.0))

gc check = t o t g c /( i ∗ codon l +0.0)

i f ( gc check > gc range ) and ( gc check < (1−gc range ) ) :

# GC in range

t ex t = ’ ’ . j o i n ( nt sequence [ : ( ( i −2)∗ codon l ) ] )

pattern =

’ ’ . j o i n ( nt sequence [ ( ( i −2)∗ codon l ) : ( ( i +1)∗ codon l ) ] )

i f not pattern in t ex t :

# no r e p e a t i n g sequences , move on to next index

prev codon = next codon

i += 1

else :

# found r e p e a t i n g sequence , t r y again

t o t g c −= next gc

i f p r e v c h o i c e s [ i ] == len ( opt ions ) :

backtrack = True

else : # GC out o f range , t r y again

t o t g c −= next gc

i f p r e v c h o i c e s [ i ] == len ( opt ions ) :

backtrack = True
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i f backtrack == True :

# a l l o p t i o n s have been t r i e d at curren t index , go back one

t o t g c −= prev codon . count ( ”G” ) + prev codon . count ( ”C” )

num backtrack += 1

p r e v c h o i c e s [ i ] = 0

i −= 1

prev codon = nt sequence [ ( ( i ∗ codon l )−3):( i ∗ codon l ) ]

Some of the other published algorithms account for only one biological constraint

in their mapping scheme, if any. This one constraint is to exclude repeating sequences

of nucleotides, and most mappings do not allow repeats of 3 or 4 in a row [13, 19, 20, 9].

Additional biological constraints are handled elsewhere in the encoding algorithm, if

at all.

Some of the encoding algorithms use a specific mapping scheme that is intertwined

with the rest of the algorithm. Others separate the mapping from the rest of the

encoding algorithm. This provides the option to swap out different mapping schemes

from different algorithms. In the following sections, one of these types of algorithms,

the Fountain Codes algorithm, is described. Then we discuss how the mapping scheme

and translation process is integrated into that encoding algorithm.

4.2 Fountain Codes Analysis

Fountain Codes cover a class of erasure codes that are rateless and universal. The term

rateless describes the idea that the number of packets sent over an erasure channel,

from a sender to the receiver, is potentially limitless. The number of packets needed



59

to uncover the original message can be determined dynamically. Fountain Codes are

also universal because a given number of packets can be generated to decode the

message, regardless of the statistics of errors produced within the channel [27]. In

other words, it is not required to predetermine the rate of the channel in order to

calculate the optimal parameters of the erasure code.

Byers and his team pioneered the idea of Fountain Codes with Tornado Codes [11].

The basic idea is that an input data source is split up into K segments where each

segment is l bits long. Encoded segments become packets known as droplets. Each

encoded droplet is generated by combining multiple segments from the original data

source. Those segments are combined with the exclusive-or (XOR) operation. The

droplets are then sent over an erasure channel in what can be described metaphorically

as a fountain. On the receiving side, the decoder must collect enough droplets in order

to uncover the transmitted message.

The number of segments per packet is small compared to the total number of

segments in the data source. The collected droplets then form a sparse bipartite graph,

where each packet is a vertex with edges connecting it to each included segment. Since

this graph representation is so sparse, the algorithm allows for extremely fast encoding

and decoding [11]. More in depth descriptions of the encoding and decoding processes

are explained in the next section and Figures 4.1 and 4.2 shows visualizations of the

encoding and decoding, respectively.

4.2.1 The LT Code

The first practical implementation of Fountain Codes was developed by Michael Luby

and are now known as Luby Transform (LT) codes [25]. LT codes use an enhanced
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Figure 4.1: Visualization Example of Fountain Codes Encoding Process

version of the Soliton distribution for encoding and a message passing algorithm for

decoding.

On the encoding side, the first step is to randomly choose a number, dn, from

a robust Soliton distribution. This distribution is described in detail in the next

section. The value, dn, represents the number of segments that will be contained in

a given droplet, or the droplet’s degree. Next, a dn number of segments are chosen

randomly, with replacement, from the original data source. Each segment is chosen
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Figure 4.2: Visualization Example of Fountain Codes Decoding Process

over a uniform distribution. A key value is used to seed each of the two random

number generators and is sent as header information with each droplet. The rest of

the information in the droplet is the combined segments, where the XOR operation

is used over the segments.

The idea for the decoding algorithm is to start with single-segment droplets

and propagate that information through the other droplets until all segments are

recovered. For any given droplet received, the key value is once again used to

determine dn and the dn chosen segments. At this point, if there are multiple segments

contained in a given droplet, then the original values of the segments are not yet
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known. When a droplet is received that contains only one segment, the payload value

is set to the corresponding segment and that segment is marked as decoded. Then, for

all other droplets that also contain that same segment, the value is removed from those

droplets. The XOR operation is used on the decoded segment and the corresponding

droplets to effectively remove that segment from the droplet. This process continues

and eventually, some droplets will be left with one segment. Again, that segment

can be marked as encoded, the value saved in the final message, and propagated

throughout the other droplets. These actions are repeated until all segments have

been recovered from droplets and the message is decoded.

Degree Distribution

The degree distribution is an integral part of the LT code design. Since random

number generators are employed in this algorithm, there is a small chance that the

decoder will be unable to recover the encoded message. The degree distribution

can be tuned to give the algorithm a higher probability of successfully decoding

the message. More specifically, there are two main requirements that the degree

distribution should accomplish. The first is that the encoder should generate enough

single-segment packets to start off the decoding process. Secondly, each segment

needs to be included in at least one droplet. These values are dependent on the size

of the translated data set. Although, only one degree-one droplet would be required

to start the decoding process. Then, after each iteration of processing the degree-one

droplet, another single-segment would be uncovered, and so on. Ideally, the Soliton

distribution would generate these steps. This distribution is represented by equation

4.1, where K is the total number of segments in the original data and d is the degree

of a given droplet.
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ρ(1) = 1/K

ρ(d) =
1

d(d− 1)
for d = 2, 3, . . . , K

(4.1)

Unfortunately, this works poorly in practice [27]. This distribution can produce

situations where there are not enough, if any, degree-one droplets to start or continue

the decoding operations. This is especially true if there are errors in the erasure

channel and droplets can be lost. There is also the chance that some segments from

the dataset are not included in any droplets at all.

Including two more parameters in the distribution allows a user to set the expected

number of degree-one droplets over the entire process. The expected number of

degree-one droplets is represented by S in equation 4.2 and the new parameters are δ

and c.

S ≡ c loge(K/δ)
√
K (4.2)

A new function, τ(d), is used to augment the Soliton distribution is shown in

equation 4.3. This function is based off of the expected value S.

τ(d) =



s
K

1
d

for d = 2, 3, . . . , (K/S)− 1

s
K
log(S/δ) for d = K/S

0 for d > K/S

(4.3)

Finally, equation 4.4, shows the robust Soliton distribution, µ(d). This is produced

by adding the ideal Soliton distribution ρ to the augmented distribution τ , and

normalizing.
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µ(d) =
ρ(d) + τ(d)∑
d ρ(d) + τ(d)

(4.4)

The graph in Figure 4.3 shows what the two distributions look like for a given

case. We can see that at d = 1, there is a larger probability, so there is a better chance

of generating degree-one droplets. These degree-one droplets ensure the progression

of the decoding process. There is also a “spike” in the graph at the value K/S, which

is about 41 for the given case. This spike helps to ensure that every segment from the

data set is included in at least one droplet. This is the equation that we used for our

Fountain Codes implementation and the parameters δ and c can be set by the user.

Figure 4.3: Robust Soliton Distribution [27] for the Case K=10000, c=0.2, δ=0.05

Delta and C Parameters

The choice of values for delta and c can present some trade-offs for the user to decide

which features are more important. Both parameters represent values between zero
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and one. There is less leeway offered for delta and is an easier decision than the user

must make for c.

The delta parameter represents the probability of being unable to decode a mes-

sage given that the decoder recovered an optimal number of droplets. We want the

highest possible chance of discovering the message. Therefore, we choose delta to be

very small, such as 0.001.

The c distribution parameter can be tuned to around 0.025. For a larger value

of c, there are more single-segment droplets produced by the distribution. However,

large values of c also decrease the degree value of the spike (K/S) and increase the

number of droplets that have a degree of K/S. So there would be more droplets

with a smaller degree. On the other hand, small values of c push the degree value

of the spike to be larger. There would be fewer droplets with a large degrees, which

in turn increases the average number of segments per droplet. Since all segments in

a droplet must be removed to recover a final segment, if there are more segments

within a droplet on average, then it would take longer for the decoding process. This

translates to a longer computational runtime. Yet, small values of c also decrease the

average number of recovered droplets needed to successfully decode the message. This

represents a trade off between requiring less droplets overall to decode the message

and an increase in running time.

We performed an analysis on the affects of the degree distribution based on

varying levels of the c parameter. The analysis was conducted using python 2 in

a Jupyter Notebook. For the datasets, we examined the degree per droplet produced

from the robust Soliton distribution. The code used to produce this data was the

DNA Fountain implementation written by Erlich and Zielinski. Since DNA Fountain

includes a screening stage, we removed this to only examine the first 17,601 droplets
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generated. This value of 17,601 droplets is the number of droplets needed to encode a

500 MB randomly generated binary file with 10% redundancy. We set each sequence

to include 32 bytes for a total of 16,000 segments. Figures 4.4, 4.5, and 4.6 show the

degree distributions for c = 0.025, c = 0.1, and c = 0.5.

Figure 4.4: Robust Soliton Distribution for the Case K=16000, c=0.025, δ=0.001

Figure 4.5: Robust Soliton Distribution for the Case K=16000, c=0.1, δ=0.001

Clearly, decoding a message is of utmost importance. However, the algorithm

must be able to recover the message in a given amount of time. Depending on the
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Figure 4.6: Robust Soliton Distribution for the Case K=16000, c=0.5, δ=0.001

situation, and the size of the files being processed, the user may not have time to wait

for a file to be decoded. This equates to the situation of not being able to decode the

message at all. Therefore, the user must determine appropriate values for delta and

c. For our tests δ = 0.001 and c = 0.025 proved to be successful choices.

4.2.2 DNA Fountain

In an application called DNA Fountain, Erlich and Zielinski implemented the Fountain

Codes LT code for their algorithm for DNA data storage [17]. DNA Fountain contains

a few adjustments so that the Fountain Codes algorithm can work specifically for DNA

data storage. These alterations include a preprocessing stage and a post-processing

stage. An overview of their algorithm is included in Section 3.7.

In the preprocessing stage, the data files to be stored are compressed. Not only

does this step make the dataset smaller, it also gives the data a large amount of

entropy, or randomness. The randomization of data is important for the adjustments

made in the post-processing stage. The type of compression tool used can be deter-



68

mined by the user, however, Erlich and Zielinski used gzip in their experiments. After

compressing the dataset, the next steps are the same as Fountain Codes. Based on

the packet length l, chosen by the user, the dataset is split up into K equal length

segments. The robust Soliton distribution is used to generate droplets based off of

the standard LT codes algorithm and the seed used for the PRNGs is prepended to

each resulting sequence.

The post-processing stage includes the possible addition of an error correction

code, converting the data with a mapping scheme, and screening droplets based off

of biological constraints. For the error correction code, DNA Fountain uses a Reed

Solomon code that is appended to each droplet’s sequence (for an in depth description

of Reed Solomon codes, see Section 2.3). This can be checked for errors during

decoding. Next, bits are converted to nucleotides with a basic mapping scheme,

shown in Table 4.4. After each droplet’s sequence is converted to nucleotides, the

droplet reaches the screening stage.

Table 4.4: Basic Mapping Scheme Used by DNA Fountain
bits nucleotide
00 A
01 C
10 G
11 T

The screening stage checks that each droplet’s sequence conforms to two of the

biological constraints discussed in Section 2.2. The algorithm watches for sequences

that contain repeating nucleotides or an amount of GC content that is outside of an

accepted range around 50%. If the sequence of a given droplet is found to have either

of these two properties, the droplet is thrown out. The specifics of these constraints

can be set by the user, however, the DNA Fountain implementation was tested with
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three for the maximum amount of repeating nucleotides and a range of 5% around

50% GC content. While many droplets are screened in this stage, Fountain Codes

are rateless, and the algorithm can continue to generate droplets. When droplets

are excluded for not passing both biological constraints, more droplets are simply

generated until a certain number of sequences are accepted. The number of sequences

generated can be determined by the user for a variable amount of redundancy.

At this point, it is important to note that the Fountain Code is no longer rateless.

Once a given number of sequences are generated, those are the only ones that will

be stored. When decoding the information from the DNA, more droplets cannot

be generated and the system must be able to recover the dataset from the stored

DNA. Since information can also be lost during the synthesis, storage, and sequencing

processes, generating the number of droplets necessary for recovering the information

is a vital feature of the algorithm. We performed an analysis on the DNA Fountain

implementation in order to determine the overall ability to recover encoded datasets.

Known Limitations

It was discovered that the DNA Fountain implementation was not successful in

decoding the encoded data in all cases. There are some small flaws in the DNA

Fountain implementation of the Fountain Codes algorithm that can make the data

recovery improbable.

In particular, the screening stage of DNA Fountain can have a negative impact

on the performance of the algorithm in practice. In test runs for decoding random

binary data of different sizes, the average number of screened droplets can reach

around 90%. For more details on these tests, see Chapter 5. This means that there is

a high probability of losing any given droplet even before DNA synthesis, storage, and
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sequencing. Since a certain distribution of degree values for each droplet is expected,

and certain single-segment droplets are needed for the decoding process, this screening

can potentially remove the metaphorical pieces needed to complete the puzzle.

Specifically, this algorithm does not work well for encoding small files (less than

100 KB) because it is difficult for the algorithm to achieve the desired degree distri-

bution and to gather the needed droplets. For example, an analysis on a 1 KB file

found that two of the single-segment droplets had the same segment. Fortunately,

storing small files is not an efficient use of the DNA data storage architecture at this

point in time.

This algorithm also works well if the dataset is compressed beforehand. After a

compression algorithm is applied, the resulting randomized data is less likely to map

to sequences that would be screened out. If the dataset is compressed and efficiently

randomized, single-segment droplets are not likely to be screened out more often than

other multiple-segment droplets. However, since there is a high probability that any

given droplet will be excluded, there is potential to lose a highly important “linchpin”

type of droplet that could make the difference in a successful decoding process. Erlich

and Zielinski do not compress the data within their DNA Fountain program but do

specify that the process should be previously executed.

In the DNA Fountain program a bug was discovered on the decoding side that

could effect the ability of the program to decode an encoded dataset. As was pre-

viously described, the encoding screens sequences for homopolymer runs and GC

content. Therefore, sequences that do not pass these requirements should not be

seen when attempting to decode. If sequences are seen on the decoding side that

would not have passed screening during encoding, then there must have been an error

that occurred in that sequence and the program would not process those sequences.
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Screening for these types of sequences on the decoding side is a valid step but the code

is located in the wrong spot. On the encoding side, this stage happens after the seed

and error correction values are appended to the payload. However, on the decoding

side, the screening happens after the error correction value has been removed. Because

of this difference (with and without the error correction value), the GC content may

be different and the decoding ends up excluding sequences that did not have errors in

them. Excluding these extra sequences can have a negative impact on the program’s

ability to recover the original information.

Another issue with the DNA Fountain program is the runtime performance. For

files larger than 10 MB, the decoding time becomes an issue for a realistic DNA data

storage application. Since a DNA data storage architecture would be needed to store

large amounts of data, an application that takes days or even weeks to decode tens to

hundreds of megabytes of information is not feasible. A decrease in runtime was found

in two main areas. The first is the screening stage. It takes the encoding longer by

generating more droplets in order to find a given number of valid sequences that can

pass the screening stage. Secondly, a bug was discovered in the decoding code that

added an exponential amount of processing time. This single line of code mapped

the decoded bytes of data to a char representation before writing to the output file.

This line is not necessary as python allows bytes to be written directly to a file.

Our implementation attempts to improve upon these issues and is described in

the next section. The results of our implementation compared to the DNA Fountain

program is found in Chapter 5. Other issues were found to be outside the scope of

this research and are described in Section 6.2.
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4.3 Integration & Updates

For our encoding and decoding implementation, we chose to integrate our hex-to-

codon mapping scheme and translation process into the DNA Fountain codes algo-

rithm. After completing a detailed survey of other works (found in Chapter 3), we

decided that the Fountain Codes algorithm was one of the most promising designs.

The Fountain Codes algorithm balances a variable amount of parity and redundancy

that can be fine-tuned by the user. Another helpful element of this design is the use

of the XOR operation which can minimize repeating patterns within the data. Since

the indexing seed values represent droplets instead of sequences, this algorithm can

be configured to be scalable for large amounts of data. The Fountain Codes algorithm

is also ideal because the mapping scheme is completely separate from the rest of the

encoding and decoding processes. This allows us to easily swap out the mapping that

Erlich and Zielinski used for our own which takes more biological constraints into

account.

Much of the algorithm follows the original LT codes design for Fountain Codes. We

split the data into equal length segments, where the number of bytes encoded in each

segment is determined by the user. From those segments, we generate droplets with

the same robust Soliton distribution. We also use a Reed Solomon code appended to

each droplet’s sequence. Then, the major difference is that we convert each droplet’s

sequence of binary data to a sequence of nucleotides using the mapping scheme and

translation process detailed in Section 4.1. On the decoding side, the map is also

used to convert nucleotides back to their binary representation, before the segment

recovery process can begin. More details about the code implementation can be found

in the documentation located in Appendix A.
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Besides employing our hex-to-codon mapping scheme, we integrated two other

major updates to the algorithm. These updates include removing the screening stage

and altering the decoding algorithm.

4.3.1 Removed Screening Stage

Unlike Erlich and Zielinski’s DNA Fountain implementation, we did not include a

screening stage. Since the hex-to-codon mapping scheme and translation process

accounted for the biological constraints that the screening process looked for, that

step was no longer needed. Now, for our implementation, droplets are no longer

discarded if their sequences do not pass the two biological constraints. Instead,

our translation process attempts to find a valid sequence within a given number

of backtracks. By setting a limit for the number of times the system can backtrack,

we shorten the running time. However, there is a chance that the system cannot

find a valid sequence within the limit of times backtracked. If a valid sequence is not

found, the droplets with these types of sequences are then excluded. Although, by

moving the biological constraint satisfaction process from a post-processing screening

stage to the translation process we still observed two main improvements over the

DNA Fountain algorithm.

The fact that droplets are not excluded at as high of a rate has a positive affect on

the the algorithm’s ability to recover encoded data. Our algorithm typically discards

about 10% of the droplets generated, while DNA Fountain can exclude up to 88%.

Since our algorithm does not exclude a majority of droplets, we are more likely to

reach the intended distribution. We are also more likely to keep the single-segment

droplets that are imperative to the successful recovery of the data. As an unintended

side affect, we also achieved an decrease in running time. Since DNA Fountain has
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to generate more droplets than are actually accepted, there is a waste in processing

time. Another chance to improve the running time was discovered in the decoding

algorithm.

4.3.2 Altered Decoding Algorithm

We made changes to the decoding algorithm in order to speed up the computational

running time. More specifically, we changed the way single-segment droplets are

propagated throughout other droplets with the same segment. Erlich and Zeilinski’s

DNA Fountain implementation used a depth-first approach for following the path

of connected droplets. We instead used a breadth-first approach which showed a

significant decrease in running time.

After the preliminary recovery and translation of each sequence, the key value

is used to seed both random number generators and eventually, each droplet knows

how many segments it contains and exactly which segments from the original dataset

it contains. Similar to the DNA Fountain decoding algorithm, our implementation

also starts by examining droplets with exactly one segment. Now, other recovered

droplets may also include that segment and need to remove it. The difference in our

decoding approach is the order in which individual recovered segments are removed

from the other droplets that also contain that segment.

DNA Fountain solves the depth-first approach with a recursive function. The

function starts with a recovered segment. It then finds other droplets that have the

same segment. It starts at the beginning of that list of other droplets and removes

the segment from the first droplet. There is a chance that the first droplet in the list

only has two total segments. So if the initial segment is removed, the process has now

recovered one other single-segment. Instead of moving on to the other droplets that
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contain the initial segment, the function now processes the newly recovered segment.

Each time a single-segment is recovered, it is processed immediately.

On the other hand, we implemented a breadth-first approach for processing these

single-segments. Therefore, when a recovered segment is removed from a droplet

with two segments and a new single-segment is discovered, that segment is added

to a first-in-first-out (FIFO) queue, instead of being immediately processed. The

starting single-segment is first removed from all other droplets that also contain that

segment. Any time a new single-segment is discovered, it is simply added to the

queue. Once the starting single-segment is finished being removed from all other

droplets, the algorithm moves on to process the first segment in the queue. This

process is repeated until the queue is empty. If all single-segments in the queue have

been processed and the dataset has not been completely encoded, more droplets are

processed.

The results of a breadth-first decoding approach versus a depth-first approach

includes less calls to the XOR operation in the code. For example, for tests run on a

randomly generated one megabyte file, the depth-first DNA Fountain implementation

made 723,706 calls to the XOR operation. On the other hand, our REDNAM

breadth-first implementation only made 14,636 calls to the XOR operation. The line

of code for the XOR operation is one of the most expensive in terms of computational

runtime. We believe that the reduction in the number of XOR operations has

significantly reduced the computational runtime for the overall decoding program.

Besides changing this algorithm, other small changes were made to clean up the code

and decrease the running time. Chapter 5 details the results of our runtime tests

which showed a speedup of 99.77 percent for decoding on a randomly generated 50

MB file.
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CHAPTER 5

EVALUATION

In order for a DNA data storage architecture to function well in practice, it requires an

encoding and decoding algorithm that can successfully recover the stored information

without error. Performing lab tests in conjunction with REDNAM is outside the

scope of this project. Due to high cost and time constraints, conducting experiments

in synthesizing and sequencing the data produced by REDNAM is not feasible at this

time. Instead of performing lab tests, our algorithm has been tested by running the

encoding and decoding programs on various digital data files with various parameters.

To test REDNAM’s ability to recover from errors in the DNA, the sequences produced

from the encoding program are artificially perturbed with random insertion, deletion

and mutation errors. These tests show that REDNAM can recover encoded digital

data when insertion, deletion and mutation errors occur in the DNA sequences. Our

tests also reveal a speed up in the running time of our algorithm in comparison with

Erlich and Zielinski’s DNA Fountain implementation that is up to four hundred times

faster on larger files.

All tests were run on a computer running Ubuntu 17.10 with 64 GB memory and

an Intel Core i7-6700 CPU at 3.40 GHz.
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5.1 Validation Testing

A python script was created to artificially alter the encoded data. This program

mimics errors that may occur during the synthesis, storage or sequencing processes

for writing and reading the DNA. Corruption of the data that may happen during

any of these three stages can include insertions, deletions or mutations of nucleotides,

as well as lost sections of sequences or loss of entire sequences.

The program, called degrade.py, starts by reading in a file that contains a list of

nucleotide sequences. It is assumed that this file is generated by an encoding program.

Next, the program randomly produces insertion, deletion and mutation errors within

the nucleotide sequences. Lastly, the corrupted sequences are written to an output

file that can be run in a decoding program.

Errors on a nucleotide are introduced into the sequences randomly, where the

probability for insertions, deletions, and mutations are provided by the user. There

is also a chance that entire sequences could be lost. More specifically, the main

degrade code includes a for loop that randomly draws sequences from the input file.

This loops runs for five times the number of input sequences. Then, for each drawn

sequence, another loop runs three times. For each time in the inner loop, there

are three conditional statements. The first statement randomly determines if an

insertion should be made, based off of the probability given by the user. The second

statement is a deletion, and the third statement is a mutation. If the execution

enters one conditional, it will pass on the other two. Therefore, there can only be

up to three errors per sequence. If an insertion error is selected, a new nucleotide to

add is randomly chosen out of the four options and added somewhere randomly in

the sequence. If a mutation error is selected, a nucleotide is randomly chosen from
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the sequence and replaced with a new one. Finally, if a deletion error is selected, a

nucleotide is randomly chosen from the sequence and removed.

The python code below shows the method that alters sequences.

def degrade ( sequence s in , mutate , i n s e r t , d e l e t e ) :

i n s p rob = int ( i n s e r t ∗10)

de l p rob = int ( d e l e t e ∗10)

mut prob = int ( mutate ∗10)

e r r o r s = [ 0 , 0 , 0 , 0 ]

nts = [ ”A” , ”T” , ”C” , ”G” ]

sequences out = [ ]

t imes = len ( s equenc e s i n )∗5

for i in xrange ( t imes ) :

drawn seq = random . cho i c e ( s equence s i n )

for j in xrange ( 3 ) :

i n s chance = random . randint (0 ,100)

i f i n s chance < i n s p rob :

e r r o r s [ 0 ] += 1

e r r o r s [ 1 ] += 1

pos = random . rand int (0 , len ( drawn seq )−1)
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nt new = random . cho i c e ( nts )

drawn seq = drawn seq [ : pos ] + nt new + drawn seq [ pos : ]

continue

de l chance = random . rand int (0 ,100)

i f de l chance < de l prob :

e r r o r s [ 0 ] += 1

e r r o r s [ 2 ] += 1

pos = random . rand int (0 , len ( drawn seq )−1)

drawn seq = drawn seq [ : pos ] + drawn seq [ ( pos +1) : ]

continue

mut chance = random . rand int (0 ,100)

i f mut chance < mut prob :

e r r o r s [ 0 ] += 1

e r r o r s [ 3 ] += 1

pos = random . rand int (0 , len ( drawn seq )−1)

nts . remove ( drawn seq [ pos ] )

nt new = random . cho i c e ( nts )

nts = [ ”A” , ”T” , ”C” , ”G” ]

sequences out . append ( drawn seq )

return sequences out , e r r o r s
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Tables 5.1, 5.2, and 5.3 show different levels of degradation on different file sizes.

The levels of degradation are none, light, medium, and heavy, where there is a 0, 0.25,

0.5, or 0.75 chance of insertions, deletions and mutations for each level. We also alter

the number of bytes used for the Reed Solomon error correction code and the level

of redundancy. These tables demonstrate REDNAM’s ability to recover the original

digital data after the nucleotide sequences have been corrupted with errors.

Table 5.1: Degradation Tests - 2 Bytes Reed Solomon, 10% Redundancy
none - 0 light - 0.25 medium - 0.5 heavy - 0.75

100 KB

encode time 0m2.060s 0m2.019s 0m2.038s 0m2.039s
decode time 0m0.659s 0m1.566s 0m1.360s 0m1.240s
insertions 0 1018 2642 3684
deletions 0 1055 2484 3388
mutations 0 1013 2420 3137

success yes no no no

500 KB

encode time 0m9.400s 0m9.288s 0m9.383s 0m9.449s
decode time 0m2.755s 0m6.480s 0m6.101s 0m5.483s
insertions 0 5305 12985 18444
deletions 0 5098 12591 17022
mutations 0 5076 11793 15805

success yes yes no no

1 MB

encode time 0m18.826s 0m18.768s 0m18.908s 18.998s
decode time 0m5.502s 0m12.150s 0m12.218s 0m11.137s
insertions 0 10718 26744 37491
deletions 0 10648 25848 34978
mutations 0 10170 23929 32412

success yes yes no no

10 MB

encode time 3m14.927s 3m12.930s 3m16.171s 3m16.979s
decode time 1m5.413s 1m56.326s 2m5.378s 2m12.497s
insertions 0 107028 267818 376232
deletions 0 104693 253484 348990
mutations 0 102766 241460 324671

success yes yes yes yes
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Table 5.2: Degradation Tests - 10 Bytes Reed Solomon, 10% Redundancy
none - 0 light - 0.25 medium - 0.5 heavy - 0.75

100 KB

encode time 0m2.863s 0m2.850s 0m2.874s 0m2.852s
decode time 0m1.134s 0m3.589s 0m3.001s 0m2.725s
insertions 0 1009 2572 3802
deletions 0 1067 2464 3311
mutations 0 1001 2447 3215

success yes no no no

500 KB

encode time 0m13.754s 0m13.699s 0m13.859s 0m13.304s
decode time 0m5.159s 0m14.793s 0m14.751s 0m13.161s
insertions 0 5245 12847 18126
deletions 0 5076 12547 16932
mutations 0 5194 11849 16224

success yes yes no no

1 MB

encode time 0m27.257s 0m26.710s 0m26.760s 0m26.896s
decode time 0m10.043s 0m26.772s 0m29.792s 0m26.720s
insertions 0 10751 26721 37433
deletions 0 10506 25474 34744
mutations 0 10357 24549 32418

success yes yes yes no

10 MB

encode time 4m31.004s 4m30.642s 4m33.947s 4m32.265s
decode time 1m49.619s 4m10.141s 4m27.049s 4m46.320s
insertions 0 106779 268062 375308
deletions 0 105018 253058 349562
mutations 0 103065 241388 324409

success yes yes yes yes

The results of Table 5.1 shows how REDNAM reacts to varying levels of errors

with default parameters for two bytes of Reed Solomon error correction code and

ten percent redundancy. In general, smaller files are less likely to be able to recover

the original data. Larger files are more robust because they are more likely to have

a degree distribution that matches the robust Soliton distribution of the LT code.

These degradation tests also show that the computational runtime of the decoding

program takes longer to complete when errors are introduced. This result is expected



82

Table 5.3: Degradation Tests - 2 Bytes Reed Solomon, 20% Redundancy
none - 0 light - 0.25 medium - 0.5 heavy - 0.75

100 KB

encode time 0m2.255s 0m2.264s 0m2.286s 0m2.229s
decode time 0m0.691s 0m1.207s 0m1.405s 0m1.326s
insertions 0 1113 2842 3944
deletions 0 1149 2757 3708
mutations 0 1094 2674 3603

success yes yes yes yes

500 KB

encode time 0m10.336s 0m10.156s 0m10.027s 0m10.273s
decode time 0m2.806s 0m5.170s 0m5.516s 0m5.773s
insertions 0 5663 14176 19964
deletions 0 5610 13421 18265
mutations 0 5432 12683 17203

success yes yes yes yes

1 MB

encode time 0m20.708s 0m20.607s 0m20.806s 0m20.364s
decode time 0m5.465s 0m9.760s 0m10.505s 0m11.007s
insertions 0 11550 29557 40677
deletions 0 11551 27710 37720
mutations 0 11168 26330 35484

success yes yes yes yes

10 MB

encode time 3m32.207s 3m32.226s 3m33.201s 3m31.334s
decode time 1m5.722s 1m40.367s 1m49.603s 1m55.403s
insertions 0 116749 292728 408659
deletions 0 114455 277405 380463
mutations 0 111266 263476 354195

success yes yes no* yes
*Finished decoding but incorrect value.

because when some sequences are dropped for errors, it will take longer to process

more sequences.

Table 5.2 shows the results of different levels of degradation with an increased

number of bytes of the Reed Solomon code. This increase in the size of the Reed

Solomon code did not show much improvement over the two bytes. The only difference

was in the successful recovery of the 1 MB file at the medium degradation level.

Overall, calculating the Reed Solomon code during encoding and validating the code
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during decoding added an increase in the computational runtime of both the encoding

and decoding programs.

The last table, Table 5.3, shows a ten percent increase in the level of redundancy

for a total of twenty percent. When compared with the other two degradation tables,

these tests show the ability to recover all but one of the files over the three levels of

degradation. The only file that was not successfully recovered was the 10 MB file at

medium redundancy. This test was able to complete the decoding process, however

there was a difference in bytes in the recovered file when compared with the original.

In an attempt to find the error that caused the file to be corrupt, we were able to

determine which droplet was faulty. Without keeping track of the original droplet’s

sequence all the way through to the error, it is difficult to say with certainty exactly

what type of error caused the recovery process to break. However, a comparison of the

sequence that was degraded with what the correct sequence likely should have been,

it seems there was an insertion error and a deletion error that shifted a sequence of

nucleotides off by one base. Another issue could have been a mutation that occurred

within the Reed Solomon error correction code which caused the code to incorrectly

alter the data section of the sequence. Unfortunately, the erroneous droplet led to an

incorrect single segment value that propagated throughout many other droplets and

caused the decoded data to be corrupt. The effects of this situation and the possible

ways to correct them can be researched further and a few of these ideas are presented

in the Future Work section of Chapter 6.

Overall, the results of these degradation tests demonstrate that an increase in the

percentage of redundancy will aid in the recovery process better than an increase

in the number of Reed Solomon bytes. This result is not surprising because the

decoding program is currently designed to discard sequences that are too long or too
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short. Therefore, only mutation errors can be detected and corrected by the Reed

Solomon code. Sequences with insertion or deletion errors are discarded so the level

of redundancy can recover that lost information.

It should also be noted that the light, medium and heavy levels were chosen

to demonstrate the robustness of the encoding and decoding programs. However,

studies show that the actual chance of errors is likely smaller than our lightest level.

Experiments by Organick, et. al. [29] show that the chance of errors on a nucleotide

basis varies depending on the nucleotide type, its location in the sequence and the

surrounding nucleotides. Organick, et. al. found the highest error rate was 1.5x10-3

for substitutions of T values. Ross et. al. [32] also performed an analysis of error

rates in sequence data for different sequencing technologies.

In general, it is up to the user to determine a balance between the level of

redundancy and the number of bytes of Reed Solomon codes needed. These two

values can have an affect on the computational runtime of the encoding and decoding

programs as well as the cost associated with synthesizing the length and the number

of sequences generated. Based on experiments for error rates, degradation levels, and

the results of these tables, the user should determine the parameters that they require

for the successful recovery of their data when using REDNAM.

5.2 Running Time

As was discussed in Sections 3.7 and 4.2, Erlich and Zielinski produced encoding and

decoding programs that implemented the Fountain Codes algorithm, called DNA

Fountain. In order to see how REDNAM compared to DNA Fountain, the encoding

and decoding programs were run on the same files with the same parameters. These
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test files are listed below. Table 5.4 shows the running times for encoding, the running

times for decoding, the ratio of accepted droplets out of the total number generated,

and whether or not the test was successful in recovering the original file.

The main reason for these tests was to compare the computational runtime of the

programs. Therefore, no errors were added to the sequences between the execution

of the encoding and decoding programs. It should also be noted that the two bugs

found in DNA Fountain, including the incorrect screening step and the extraneous

mapping step were removed before conducting these tests. More details on these bugs

can be found in Section 4.2.

Description of test files:

• 8 Randomly generated binary files ranging in size from 100 KB to 100 MB.

• Erlich and Zilinski’s dataset [17], a 2.1 MB compressed file including:

– The Kolibri operating system

– The Arrival of a Train (Movie)

– The Pioneer Plaque (Image)

– Shannon’s manuscript on information theory (PDF format)

– $50 Amazon gift card (text)

– An empty 4.5 PB compressed file (Malware)

• Artaméne or the Grand Cyrus (1649-1653) by Madeleine de Scudéry, the longest

novel in French literature, an 11 MB text file [1].

• A compressed version of the aforementioned text file, 3 MB in size.
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• Goldman’s dataset [19], a 662 KB compressed file including:

– All 154 of Shakespeare’s sonnets (ASCII text)

– Watson and Cricks paper on the molecular structure of nucleic acids (PDF

format)

– A medium-resolution color photograph of the European Bioinformatics

Institute (JPEG 2000 format)

– A 26 second excerpt from Martin Luther King’s 1963 ’I have a dream’

speech (MP3 format)

– A Huffman code (ASCII text)

Encoding Command for DNA Fountain:

$ time python encode . py \

−− f i l e i n $1 \

−−s i z e 32 \

−m 3 \

−−gc 0 .05 \

−−r s 2 \

−−de l t a 0 .001 \

−−c d i s t 0 .025 \

−−alpha 0 .1 \

−−n o f a s t a \

−−out $1 . dna
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Decoding Command for DNA Fountain:

$ time python r e c e i v e r . py \

−f $1 \

−−h e a d e r s i z e 4 \

−−r s 2 \

−−de l t a 0 .001 \

−−c d i s t 0 .025 \

−n $2 \

−m 3 \

−−gc 0 .05 \

−−max hamming 0 \

−−out $1 . out

Encoding Command for our code:

$ time python encode . pyx \

−f $1 \

− l 32 \

−−de l t a 0 .001 \

−−c d i s t 0 .025 \

−−r s 2 \

−−alpha 0 .1 \

−−out $1 . dna \

−−map or ig ina l map . txt
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Decoding Command for our code:

$ time python decode . pyx \

−f $1 \

−n $2 \

− l 32 \

−−de l t a 0 .001 \

−−c d i s t 0 .025 \

−−r s 2 \

−−out $1 . out \

−−map or ig ina l map . txt

Table 5.4 shows that there were two files which DNA Fountain was unable to

recover the encoded file, including the 100 KB randomly generated file and the 11

MB text file. The 100 KB text file is likely too small for the screened Fountain Codes

algorithm to achieve the needed degree distribution because tests on files smaller that

100 KB were also unsuccessful for both implementations. Secondly, DNA Fountain

likely had trouble with the text file because it was not compressed. There may have

been patterns in the textual data that could not be mapped to nucleotide sequences

without passing the specified constraints in the screening stage. However, since our

implementation can generate a larger ratio of valid sequences, we can better handle

different types of data and possible patterns in a dataset.

REDNAM is most successful in the speedup of the computational runtime. Ad-

justments were made to optimize the code for both encoding and decoding programs.

Although, the largest speedup comes from the different approach for the decoding

algorithm, described in Section 4.3. The long run times for DNA Fountain does not
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pose a problem for smaller files. Yet, for larger files, the time difference is significant.

Tests completed on decoding a 50 MB randomly generated binary file took around

two days to decode, while our implementation took only 6 minutes and 26 seconds, a

speed up of over 400 hundred times as fast.
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Table 5.4: Running Times for Encoding and Decoding Programs
DNA Fountain REDNAM

Encoding
Time

Decoding
Time

Accepted
Droplet
Ratio

Successfully
Recovered

File

Encoding
Time

Decoding
Time

Accepted
Droplet
Ratio

Successfully
Recovered

File

100 KB
Random file

0m3.498s 0m0.803s 0.124 no 0m2.093s 0m0.694s 0.891 yes

500 KB
Random file

0m17.143s 0m8.239s 0.126 yes 0m9.364s 0m2.826s 0.896 yes

1 MB
Random file

0m37.285s 0m36.241s 0.125 yes 0m19.313s 0m5.437s 0.897 yes

2 MB
Random file

1m15.924s 2m17.187s 0.125 yes 0m38.779s 0m11.631s 0.897 yes

3 MB
Random file

1m55.886s 4m7.420s 0.124 yes 0m58.063s 0m17.576s 0.893 yes

10 MB
Random file

6m42.105s 46m53.181s 0.124 yes 3m15.123s 1m5.425s 0.897 yes

50 KB
Random file

35m13.860s 2748m7.409s 0.125 yes 16m48.657s 6m18.876s 0.897 yes

100 MB
Random file

* * * * 33m40.877s 13m11.811s 0.897 yes

2 MB
Erlich .zip

1m16.383s 2m8.578s 0.125 yes 0m38.646s 0m11.793s 0.896 yes

11 MB
Text file

7m57.105s 1m18.249s 0.113 no 4m30.223s 1m13.251s 0.842 yes

3 MB
.zip text file

2m19.386s 17m44.188s 0.124 yes 1m8.149s 0m21.377s 0.897 yes

600 KB
Goldman .zip

0m22.531s 0m11.856s 0.125 yes 0m12.020s 0m3.629s 0.896 yes

* Tests not completed due to long run times.
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CHAPTER 6

CONCLUSION & FUTURE WORK

6.1 Conclusion

Using DNA as a data storage material shows promise despite the fact that this

is a relatively new area of research. Initial iterations in developing encoding and

decoding algorithms have shown some of the strengths and weaknesses in translating

digital data to be stored in DNA. While recent algorithms have tried to balance

information density with error correction and redundancy, not many have taken the

idiosyncrasies of the material itself into account. In this thesis, we have explored an

algorithm’s ability to satisfy certain biological constraints while accounting for errors

and accurately restoring encoded digital data.

We developed REDNAM, which includes a novel mapping scheme and translation

process that can satisfy four different constraints that increase the chances of avoiding

complications during the synthesis, storage and sequencing processes in the data

storage architecture. This mapping scheme is inspired by nature and the translation

process develops nucleotide sequences that conform to the following four constraints;

excluding start codons, excluding more than three repeating nucleotides in a row,

excluding repeating sequences longer than three codons in a given sequence, having

between 45% and 55% GC content in the entire sequence. No other algorithm that

we are aware of has accounted for all of these constraints in the generated sequences.
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REDNAM also improves upon the adaptation of the Fountain Codes algorithm for

generating DNA sequences by integrating our mapping scheme and translation process

into the algorithm. Our translation process has a larger probability of generating

a nucleotide sequence that follows the given set of constraints. This results in a

program that is twice as fast at encoding because it does not need to generate as

many droplets overall. The algorithm is also more likely to reach a robust Soliton

degree distribution that matches the ones specified by the LT Code. Finally, changes

made to the decoding algorithm also resulted in a speedup which makes the program

more feasible for use in a DNA data storage product.

Different levels of redundancy can enhance the algorithm’s ability to correct

insertion, deletion and mutation errors that may occur. However, we have identified

three different improvements that can be made to increase the robustness of this

algorithm to errors while maintaining a low redundancy and high information density.

These areas of future work are detailed in Section 6.2 and can help bring us one step

closer to a viable algorithm that can be employed in a DNA data storage system.

6.2 Future Work

The Fountain Codes algorithm is a quality algorithm for sending data over information

channels. We have shown that Fountain Codes can also be used for encoding and

decoding information into DNA. However, Fountain Codes were originally intended

to be rateless, which is not possible for the DNA data storage architecture. With this

architecture in mind, adjustments can be made to the Fountain Codes algorithm in

order for it to be more robust for a DNA data storage application. The Fountain Codes

algorithm can be enhanced on the encoding side and decoding side. Error correction
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can also be enhanced in order to account for insertion, deletion, and mutation errors

that can occur on a per nucleotide basis during the DNA data storage process. These

areas of further research are all outside the scope of this thesis and can be considered

for future work.

6.2.1 Deterministic Segment Choices

One way to optimize Fountain Codes for use in DNA data storage is to use a more

deterministic approach on the encoding side. The robust Soliton distribution is useful

for randomly choosing which segments should be included in which packets. While

the randomness is useful, the algorithm does not guarantee that the packets will

include the segments needed to successfully decode the original information. This is

especially an issue for small files, because there is a higher chance of selecting the

same segment multiple times for a single-segment packets.

A simple way to determine that all segments are distributed throughout the

packets correctly is to keep track of the packets during encoding. This way, the

algorithm is essentially attempting to decode the packets as they are generated during

the encoding stage. Then, the algorithm can stop generating packets once enough

have been created to successfully decode them later.

Another way would be to deterministically select certain segments to go in certain

packets while keeping track of the generated packets. This would be a better way to

keep track of redundancy because it could keep track of redundant segments instead

of generating an extra number of packets. This implementation could then keep track

of the probability of successful decoding given that a certain number of packets were

lost or compromised.
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6.2.2 Enhanced Decoding

The decoding side of the Fountain Codes algorithm can be enhanced for better per-

formance by augmenting the segment discovery stage. The intended implementation

starts the segment discovery stage by first examining single-segment droplets. Then

those single-segments are propagated throughout the other droplets with that same

segment. This works well when the needed single-segments have been recovered

successfully and start the avalanche of the decoding process. However, if the needed

single-segment droplets are somehow lost then there is no way to continue on with

the decoding process and the algorithm fails in decoding the original information.

Instead, the algorithm can examine pairs of packets with degrees that differ by

one segment. It should attempt to find pairs of packets in which one packet contains

all of the same droplets as the other packet with one extra segment. The XOR

operation can be performed on the payload of the first packet and the payload of the

second packet in order to reveal the value of the one segment that differed. Then this

single-segment packet can be propagated throughout the other packets as usual.

This approach can be taken a step further for pairs of packets that differ by two

degrees. The XOR operation can then be performed on the payload of the pair to

reveal a value that includes two segments. This newly recovered value can potentially

be combined with a packet with three segments in order to discover a single-segment

value. The difficulty in this approach would be to design an implementation with

optimal computational time.

This approach would also reduce the potential of having a ”linchpin” packet that

is needed for the decoding process to get going or to continue at any stage. Therefore,

if this special packet was lost it would not compromise the ability of the decoding
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algorithm to recover the information successfully. This would increase the robustness

of the Fountain Codes algorithm overall.

6.2.3 Enhanced Error Correction

The Fountain Codes algorithm provides multiple areas to add different levels of error

detection and error correction. For example, we augmented our approach with a Reed

Solomon code on each packet. Besides an added error correction code, another step

would be to use majority voting on redundant segments.

One of the features of Fountain Codes is that segments may be included in

multiple packets. Therefore, each time a segment is revealed on the decoding side,

the algorithm should keep track of it. When an individual segment is revealed

multiple times, the algorithm could compare to make sure that the values match.

If there is a discrepancy, majority voting could be used to decide which value was

incorrect. Although, in implementing this approach, one would need to be careful as

to not propagate a single segment value throughout other droplets if that segment

is discovered to have an error. This could cause the error to propagate throughout

multiple other segments.

If implemented correctly, this approach would have the added benefit of saving

some of the information in a given droplet, even if an error has occurred. In the

original Fountain Codes implementation, if an error is suspected in a given packet

then it is thrown out. This could potentially discard useful information that is hiding

underneath the error.
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APPENDIX A

REDNAM CODE DOCUMENTATION

A program has been written in order to test and analyze the developed algorithm.

This program is a command-line application written in Python 2 and compiled into

Cython for extra speedup. Python was determined to be a good choice for three

main reasons. One reason is the ease of readability for those without a background

in computer science or for those with little experience in programming. Another

reason for choosing python is that the website, using the flask framework, is also

written in python. This allows the code to be reusable between the website and

the standalone program. The third reason for using python is that some code was

already available. Erlich and Zielinksi have their implementation of the fountain code

algorithm available for download. Since our algorithm also uses part of the fountain

code algorithm, we were able to make use of some of their code. Python also has a

library implementation for Reed Solomon codes. This library can be imported into

the program for use. Creating a program that reuses code and other libraries allows

us to write less code and saves time during the development stage.

There are two main parts to this program. One part is the encoding algorithm

that can take any file and convert it to a list of nucleotide sequences. The second part

is the decoding algorithm. The decoding side can take a list of nucleotide sequences

and convert them back to the original digital data file. There are ten python files that
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include the code for encoding and decoding programs. Some files are only needed for

the encoding program, some files are only needed for the decoding program, and some

files are used by both. Below is a list of the python files created for these programs.

Then, there is a description of the functionality that each file provides.

List of files:

• encode.pyx

• processing.pyx

• fountain.pyx

• droplet.pyx

• decode.pyx

• pool.pyx

• mapping.pyx

• transpose.pyx

• lfsr.pyx

• robust soliton.pyx

Figure A.1 shows a UML diagram of the code used for the encoding and decoding

programs and how they are connected. Appendix B shows the programs’ usage and

example output.
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Figure A.1: UML Diagram of Encoding and Decoding Programs

encode.pyx

This file includes the main method for the encoding part of the program. It

also includes a method for parsing command line arguments as well as setting up

feedback for the user on program usage. After command line arguments are parsed,

the functionality in the main method includes reading in the given file and setting up

the fountain object. Then, a while loop is used to create droplet objects with a valid

sequence, until enough are created. Valid droplet strands are written to the output

file. Feedback is given to the user while the program is running in the form of logging

messages and a progress bar.
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processing.pyx

This file contains a helper method that reads in and prepares any digital data file

for processing. It is used by the encoding portion of the program to load the file given

by the user to be encoded. This method splits the entire file into segments of equal

length, where the length in bytes is provided by the user. If the number of bytes in

the file does not divide evenly by the number of bytes per segment, then the end of

the file is padded with zeros. Finally, each byte of each segment is converted to its

integer representation. The list of segments, where each segment is represented by a

list of integers, is returned from this method for processing.

fountain.pyx

This file contains a majority of the functionality for the fountain codes encoding

algorithm. It sets up the random number generators, creates droplets and checks

them for valid sequences, all while keeping track of valid droplets in order to determine

when no more droplets need to be created and the processing can stop. The main

loop is controlled in the encode.pyx file, however the important code is contained

in the fountain.pyx file. More specifically, the parameters needed for creating a

DNAFountain object include data in, mapping, delta, c dist, ec, stop, alpha. The

first parameter, data in, represents the 2D list of integers that was previously created

after reading in the given file to encode. The mapping parameter is associated with

a Map Object that represents the user provided mapping scheme. Delta and c dist

are both parameters needed for the random number generators. The parameter ec

represents the number of bytes of Reed Solomon error correction code that should

be used on each droplet. The final parameters, stop and alpha, represent when the

algorithm can stop generating droplets. Stop is a max number of droplets and alpha

is a percentage of redundancy.
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There are five methods associated with this class, not including the initialization

method, and two of them are private helper methods. calc stop() is the first helper

method and it examines the alpha and stop variables to determine the final number

of droplets needed. If provided, stop will override alpha, otherwise, the number of

redundant droplets needed is calculated with alpha. The second helper method is

update seed() and it uses the lfsr object to get the next seed and set it for the

random number generators. The three other public methods are make droplet(),

is valid(droplet), and is done(). Make droplet() calls the update seed() method and

uses the PRNG object to get a list of index values. The segments associated with

each index value are retrieved and combined with an exclusive or (XOR) operator

to generate the payload for the new droplet. The is valid() method is then used to

determine if a given droplet has successfully generated a valid nucleotide sequence.

Finally, the is done() method compares the number of valid droplets that were created

with the final number of droplets needed as was previously specified. If the valid

number is greater than the final number, then enough droplets have been created and

the method returns true.

droplet.pyx

This file contains the class variables and methods for the droplet object, where

droplets are created by the fountain algorithm. There are ten class variables associ-

ated with this object and five total methods, not including the initialization method,

that are used by the encoding portion of the program. Currently, only the encoding

program makes use of this class and the decoding program does not utilize this class.

The first class variable represents the map object based of off the user provided

mapping scheme. The next variable represents the seed value that is used to set the

PRNGs for finding segment index values. Next is the payload variable. This is the
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actual byte data that is to be stored in the droplet and represents multiple segments

XOR-ed together. While the segments themselves are not stored in a droplet, a list of

the segment index values is referenced by the segments indexes variable. The degree,

or number of segments contained in the droplet payload is also stored. The next

two variables, ec and ec obj represent the error correction variables. Here, ec is the

number of bytes of error correction code to be appended to the seed and payload bytes

and ec obj is the Reed Solomon object that is used to find the actual bytes of the

code. For the final class variables, the droplet converts its data, including the seed,

payload, and error correction code into two different representations. The first, stored

in the bytes variable is the integer representation of a list of bytes. The second, stored

in the DNA variable is a sequences of nucleotide letters stored as a string. Then, if

the mapping algorithm is able to convert the bytes to a valid nucleotide sequence, the

valid variable is set to one.

The first two methods in this file are private methods and are used to create the

different data representations of the droplet. The first, to DNA strand(), converts

the bytes to a nucleotide sequence based on the given map object. The second

method, package(), converts the seed, payload, and error correction code to a single

concatenated list of bytes. The next three methods are getter methods for some

of the droplet data. The first, get byte strand(), returns the bytes variable, while

the second method, get DNA strand(), returns the DNA variable. The third getter

method returns the valid variable that was previously set.

decode.pyx

This file includes the main method for the decoding part of the program. This

file also has a method for parsing command line arguments and setting up usage

feedback for the user. Instead of using a fountain object, the decoding program uses
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a pool object. The main loop then reads in nucleotide sequences line-by-line from the

given file. Each nucleotide sequence is processed by the pool object until enough are

processed to decode the original file that was previously encoded. If successful, the

decoded information is written to a file before the program ends. While the program

is running, logging messages are printed to the output to update the user on the

progress of the decoding process.

pool.pyx

This file contains the functionality for reversing the fountain codes algorithm

to decode the original data. The pool class includes class variables and methods

for decoding nucleotide sequences and uncovering the segments of the original data.

Many of the parameters needed for creating a pool object are similar to the ones for

creating a fountain object. The first parameter represents the number of segments

that the final decoded data will contain. The second parameter, mapping, represents

the map object that corresponds with the user specified mapping scheme. Seed size

is the size of the seed value, in bytes, so that a given sequence can split the seed

from the rest of the data. This value is currently hard-coded to four bytes on the

encoding side of the program. Data size is the number of bytes represented in each

segment. The delta and c dist variables are the same as in the fountain object and

are used to set up the random number generators. The ec variable is also the same as

in the fountain object and represents how many bytes of the Reed Solomon code are

contained in the sequences. Finally, the flag correct variable is a boolean that allows

the user to choose if they would like to analyze the error correction code or simply

parse it out of the sequence.

The methods that make up this class include five private helper methods and

five other methods for use by the decode.py main method. The first helper method,
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called check ec(), checks the error correction code as is specified by the user defined

variables. This method can check the Reed Solomon error correction code if it exists

or simply remove and not analyze the code. If the code exists, is analyzed and too

many errors are found, then the sequence is discarded and not used for the rest of the

decoding process. The second helper method, called parse strand(), will split the

the seed value from the data portion in a given sequence. The seed is then converted

to its integer representation and returned along with the data section. The next

helper method, called add droplet(), updates a dictionary data structure for use in

the decoding process. This dictionary, called droplets per segment keeps track of all

droplets that are associated with each segment index value. Since multiple droplets

can contain a single segment, each segment index value can keep a list of droplets

that contain the corresponding segment. This method attaches a single droplet to all

index values contained in that droplets segments indexes list in the dictionary.

The final two helper methods include a majority of the code for processing the de-

coding algorithm and removing segments from droplets and are called update entry()

and process singles(). For a newly seen droplet, update entry() is called first. If

the droplet contains one segment, the process singles() method is called right away.

Otherwise, the droplet must have multiple segments so the method checks for any done

segments that may be included in that droplet. If there are already done segments in

the droplet, they are removed with the XOR operation and the droplet information is

updated. If the droplet is left with one segment, it is added to the single segment queue

called singles q. Finally, a while loop in the update entry() method continues to call

the process singles() method for each single segment droplet that is remaining in the

queue. The purpose of the process singles() method is to set the single segments

to the corresponding index in the done segments and then propagate that segment
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throughout all other droplets that also contain the single segment. If a new single

segment is recovered during the propagation process, it is added to the queue.

The next five methods in this file are called by code in the main method of

the decoding file. The first of these methods, called add dna(), includes code for

processing a given nucleotide sequence. This method converts the given sequence

into a byte array, checks for error correction, and splits out the seed and the data.

The recovered seed is then used to set up a PRNG object in order to retrieve the

corresponding number of segments and list of segment index values associated with

that data. These values are added to a dictionary that keeps track of each droplet’s

information and the helper methods are called to process that information. Droplet

objects are not generated here, as they are during encoding, in order to save on

processing time and increase efficiency. If any errors occur during this method, a

-1 is returned to the main, otherwise the seed value is returned. The next three

methods are getter methods. The first, called num seen seeds() returns the number

of seed values that have been processed while the second getter method, called

num done segments() returns the number of segments that have been recovered out of

the final dataset. The third getter method returns the list of all the recovered segments

in the correct order and is called get string(). This method was recently changed by

discarding the map function call which was shown to take up too much processing

time. Instead, the decoding file uses they bytearray() function. The last method of

this file, called is done(), returns a boolean value that is false if the number of done

segments is less than the total number of required segments and true otherwise. This

method signals to the main method whether or not enough processing has been done

to recover the final data.
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mapping.pyx

The main functionality of this code is to set up a mapping scheme given by the

user. A user can provide their own mapping scheme, however, the code is designed

to work with our specific mapping scheme described in Section 4.1. There are six

class variables, three helper methods, and three public methods. The first two class

variables are hard-coded lists of codons. One list represents valid codons that can

appear in the mapping scheme and the second list represents illegal codons that

should be excluded from the mapping scheme, even in the overlap of two concatenated

codons. The third parameter, map file represents the name of the user provided file

with the mapping scheme. It is expected that the file converts hexadecimal characters

to codons, where the hex is first, then a semicolon, then codons separated by commas.

For example, each line would look something like this “ 0 : AAC, GAC ”. The last

three variables represent dictionary representations of the map. A short map, which

is the basic hex to codons, the full map, which includes previous codons, and a reverse

map which maps codons back to their corresponding hex values.

The three helper methods of this class read in the map from the given file and

set up the three mapping dictionaries. The three public methods then use those

dictionaries to return the requested information to the user. These methods are

get codon first(hex val), get codon(prev codon, hex val), and get hex(codon). The

first method would be used at the beginning of the translation process to retrieve

the very first codon of the sequence. Therefore this method uses the short map and

does not need a previous codon value. The next method for getting a codon uses the

previous codon value to ensure that no illegal codon sequence is generated when the

next codon is chosen. Finally, the last method is used for decoding codons back to

their hexadecimal representation.
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transpose.pyx

The code from this file is meant to be used in conjunction with map objects

created from the mapping class. By utilizing the map object, this code represents

the main functionality for converting bytes to sequences of nucleotides. There are

two main methods, hex to codons(a, map obj) and codons to hex(dna str, map obj)

and one helper method, append codon(nt sequence, codon, i). The first method,

hex to codons, takes the given list of bytes and map object and returns a nucleotide

sequence, or a -1. The -1 represents the inability of the algorithm to find a valid

sequence within the set number of allowed backtracks. This method is responsible for

generating sequences that do not include repeating sequences and have a GC content

that remains between 45 and 55 percent. More information on this algorithm and the

constraints can be found in Section 4.1. The helper method, append codon, can add

the nucleotide letters from a codon into the main sequence and is utilized during the

main translation process. The last method, codons to hex, is used during decoding

and conducts the reverse functionality of hex to codons. Given the map object, a

nucleotide sequence is converted back to a list of bytes.

lfsr.pyx

This file uses a Galois linear feedback shift register to generate seed values. These

seed values are used by the Fountain Code to seed the PRNG object, in order to

generate the needed data for droplets. This code was created by Yaniv Erlich for their

Fountain Codes algorithm program and it was not changed for this implementation.

robust soliton.pyx

This file contains the main functionality for the PRNG object. The code in this

file creates a pseudo random number generator that can be seeded with a given value.

Besides the helper methods for setting up the correct distribution, there are two
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fundamental methods that are used by the fountain and pool code sections. This

includes a method to set the seed value. It also has a method to return a number, d,

from the Soliton distribution and a list of d numbers randomly generated from the

total number of segments. This code was created by Yaniv Erlich for their fountain

codes algorithm program and it was only slightly changed for this implementation.
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APPENDIX B

REDNAM USAGE & EXAMPLE OUTPUT

Specific python libraries needed for this program include tqdm, reedsolo, numpy, scipy

and Cython. The code can be compiled with the following command.

$ python setup . py b u i l d e x t −−i n p l a c e

After cython code is compiled, the program can be run. For a help message, use the

-h or –help flag:

$ python encode . pyx −h

which gives the following output.

usage : encode . pyx [−h ] [−− c o n f i g f i l e ] −f FILE IN [− l SIZE ]

[−−de l t a DELTA] [−− c d i s t C DIST ] [−− r s RS ]

−−map MAP [−−stop STOP] [−−alpha ALPHA]

−−out OUT [−− j o b i d JOB ID ]

Encode a g iven f i l e to a l i s t o f DNA sequences .

op t i ona l arguments :

−h , −−help show t h i s help message and exit
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−−c o n f i g f i l e parameters can be wr i t t en to the

f i r s t l i n e o f the output f i l e

−f FILE IN , −− f i l e i n FILE IN

f i l e to encode

− l SIZE , −−s i z e SIZE number o f in fo rmat ion bytes per sequence

−−de l t a DELTA Degree d i s t r i b u t i o n tuning parameter

−−c d i s t C DIST Degree d i s t r i b u t i o n tuning parameter

−−r s RS Number o f bytes for r s codes

−−map MAP F i l e that conta in s mapping scheme

−−stop STOP Maximal number o f o l i g o s

−−alpha ALPHA How many more fragments to generate

on top o f f i r s t k ( example : 0 . 1 w i l l

generate 10 percent more fragments )

−−out OUT F i l e with DNA o l i g o s

−−j o b i d JOB ID Used in con junct ion with web app

An example run of the encoding program is shown below.

$ python encode . pyx −f one mb . rand − l 32

−−de l t a 0 .001 −−c d i s t 0 .025 −−r s 2

−−map or ig ina l map . txt −−alpha 0 .1

−−out one mb . rand . dna

INFO: root : Reading the f i l e . This may take a few minutes

DEBUG: root : Input f i l e has 1048576 bytes

INFO: root : F i l e MD5 i s ed64ba6aa05e1adac70423061954a42c

INFO: root : There are 32768 input segments
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INFO: root : Upper bounds on packets for decoding i s 3

4168 ( x1 .042732) with 0.001000 p r o b a b i l i t y

INFO: root : F in i shed . Generated 36045 packets out

o f 40172 t r i e s ( 0 . 8 9 7 )

A help message can also be displayed on the decoding program.

usage : decode . pyx [−h ] [−− c o n f i g f i l e ] −f FILE IN

[−n NUM SEGMENTS] [− l SIZE ]

[−−de l t a DELTA] [−− c d i s t C DIST ]

[−− r s RS ] [−−map MAP]

[−−n o c o r r e c t i o n ] −−out OUT

Decode a given l i s t o f DNA sequences to the o r i g i n a l data .

op t i ona l arguments :

−h , −−help show t h i s help message and exit

−−c o n f i g f i l e parameters can be found on the

f i r s t l i n e o f the input f i l e

−f FILE IN , −− f i l e i n FILE IN

f i l e to decode

−n NUM SEGMENTS, −−num segments NUM SEGMENTS

the t o t a l number o f segments in

the decoded f i l e

− l SIZE , −−s i z e SIZE number o f in fo rmat ion bytes per sequence
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−−de l t a DELTA Degree d i s t r i b u t i o n tuning parameter

−−c d i s t C DIST Degree d i s t r i b u t i o n tuning parameter

−−r s RS number o f bytes for r s codes

−−map MAP F i l e that conta in s mapping scheme

−−n o c o r r e c t i o n Skip e r r o r c o r r e c t i n g

−−out OUT Output f i l e

An example run of the decoding program is shown below.

$ python decode . pyx −f one mb . rand . dna −n 32768 − l 32

−−de l t a 0 .001 −−c d i s t 0 .025 −−r s 2

−−map or ig ina l map . txt −−out one mb . rand . dna . out

INFO: root : After read ing 1000 l i n e s , 1 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 1000 seen seeds

INFO: root : After read ing 2000 l i n e s , 2 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 2000 seen seeds

INFO: root : After read ing 3000 l i n e s , 8 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 3000 seen seeds

INFO: root : After read ing 4000 l i n e s , 16 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 4000 seen seeds

INFO: root : After read ing 5000 l i n e s , 20 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 5000 seen seeds

INFO: root : After read ing 6000 l i n e s , 22 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 6000 seen seeds

INFO: root : After read ing 7000 l i n e s , 24 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 7000 seen seeds
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INFO: root : After read ing 8000 l i n e s , 29 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 8000 seen seeds

INFO: root : After read ing 9000 l i n e s , 34 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 9000 seen seeds

INFO: root : After read ing 10000 l i n e s , 37 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 10000 seen seeds

INFO: root : After read ing 11000 l i n e s , 43 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 11000 seen seeds

INFO: root : After read ing 12000 l i n e s , 45 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 12000 seen seeds

INFO: root : After read ing 13000 l i n e s , 45 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 13000 seen seeds

INFO: root : After read ing 14000 l i n e s , 53 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 14000 seen seeds

INFO: root : After read ing 15000 l i n e s , 63 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 15000 seen seeds

INFO: root : After read ing 16000 l i n e s , 78 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 16000 seen seeds

INFO: root : After read ing 17000 l i n e s , 85 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 17000 seen seeds

INFO: root : After read ing 18000 l i n e s , 105 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 18000 seen seeds

INFO: root : After read ing 19000 l i n e s , 130 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 19000 seen seeds

INFO: root : After read ing 20000 l i n e s , 147 segments are done .
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So f a r : 0 r e j e c t i o n s (0 . 000000) 20000 seen seeds

INFO: root : After read ing 21000 l i n e s , 164 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 21000 seen seeds

INFO: root : After read ing 22000 l i n e s , 169 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 22000 seen seeds

INFO: root : After read ing 23000 l i n e s , 180 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 23000 seen seeds

INFO: root : After read ing 24000 l i n e s , 201 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 24000 seen seeds

INFO: root : After read ing 25000 l i n e s , 242 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 25000 seen seeds

INFO: root : After read ing 26000 l i n e s , 322 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 26000 seen seeds

INFO: root : After read ing 27000 l i n e s , 487 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 27000 seen seeds

INFO: root : After read ing 28000 l i n e s , 563 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 28000 seen seeds

INFO: root : After read ing 29000 l i n e s , 672 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 29000 seen seeds

INFO: root : After read ing 30000 l i n e s , 756 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 30000 seen seeds

INFO: root : After read ing 31000 l i n e s , 988 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 31000 seen seeds

INFO: root : After read ing 32000 l i n e s , 1181 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 32000 seen seeds
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INFO: root : After read ing 33000 l i n e s , 3711 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 33000 seen seeds

INFO: root : After read ing 34000 l i n e s , 9625 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 34000 seen seeds

INFO: root : After read ing 34366 l i n e s , 32768 segments are done .

So f a r : 0 r e j e c t i o n s (0 . 000000) 34366 seen seeds

INFO: root : Done !

INFO: root : Writing to f i l e

INFO: root : Done Writing f i l e

Note that the input number of segments for the decoding parameter can be seen in the

output of the encoding program. The user may need to know the amount of padding

added to the file which can also be found in the output of the encoding program.




