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Abstract

Privacy-preserving data publishing is a mechanism for sharing data while ensuring the

privacy of individuals is preserved in the published data and utility is maintained for data

mining and analysis. There is a huge need for sharing genomic data to advance medical and

health research. However, since genomic data is highly sensitive and the ultimate identifier,

it is a big challenge to publish genomic data while protecting the privacy of individuals in

the data.

In this thesis, we address the aforementioned challenge by presenting an approach

for privacy-preserving genomic data publishing via differentially-private suffix tree. The

proposed algorithm uses a top-down approach and utilizes Laplace mechanism to divide

the raw genomic data into disjoint partitions, and then normalize the partitioning structure

to ensure consistency and maintain utility. The output of our algorithm is a differentially-

private suffix tree, a data structure most suitable for efficient search on genomic data. We

experiment on real-life genomic data obtained from the Human Genome Privacy Challenge

project, and we show that our approach is efficient, scalable, and achieves high utility with

respect to genomic sequence matching count queries.
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Chapter 1

INTRODUCTION

In this revolutionary era of science and technology, it is much easier to access, analyze and

interpret genomic data. Genomes are the most vital part of the human, as they include

health and other information about the person, as well as their ancestors, siblings and

decedents. Since the sharing of genomic data is essential for the advancement of genomic

research, it is important to ensure that the sensitive information about individuals in their

genomic sequences is protected in any shared data for scientific research. Maintaining the

correct trade-off between utility and privacy is particularly challenging for genomic data

as each individuals’ DNA sequence is unique and therefore, a DNA sample can never be

made truly anonymized.

According to the National Human Genome Research Institute (NHGRI) [38]:

“People have a right to keep their medical information, and that of their dependents,

private. Yet medical records are a rich source of research data, and it is in the interest

of medical research, and thus everyone’s health and well-being, that scientists have

access to large numbers of participants and quantities of data. How do we strike the

proper balance between scientific progress and patient privacy?”

The Health Insurance Portability and Accountability Act (HIPAA) [1] and Genetic

Information Nondiscrimination Act (GINA) [2] are the frameworks provided by the gov-

ernment to achieve the aforementioned delicate balance.
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Genome Wide Association Studies (GWAS) investigate genomic and biometric data

with the purpose of identifying genetic variations that may be linked to diseases. The goal

of GWAS is to produce aggregate statistics that are produced by examining many single

nucleotide polymorphism (SNPs) locations from a group of study participants. This can

be achieved by calculating chi-squared and p-value statistics. Since the aggregate statistics

are taken from a sample of thousands of individuals, researchers believed that privacy was

preserved by using de-identification techniques and a large sample size.

With the emergence of cloud computing, the possibility of large scale distribution

of data collection from multiple resources has increased, as has the threat to privacy or

information leakage. Recent work has shown, however, that the large volume of data

collected from each patient exposes them to privacy breaches, even if only the aggregate

statistics are reported. Homer et al. [36] show that a participant’s information can be

inferred from the allele frequencies of a large number of single-nucleotide polymorphisms

(SNPs). Given the minor allele frequencies (MAFs) of both a reference population and a

test population, the presence of an individual with a known genotype can be inferred using

a t-test and a distance metric designed to contrast similarity between an individual and the

test population. Table 1.1 shows example statistics for Homer’s attack, where given the

genome of the victim (set of variants), the size of the mixture and the population allele

frequencies, an attacker can re-identify an individual in a case group with a certain disease

by calculating the distance measure D(x) = |x − p| − |x − m|. If D > 0, it means that

an individual is most likely to be in the mixture and if D < 0, it means that an individual

is most likely to be in the reference population. D = 0 means equally likely to be in the

mixture and in the reference population. Wang et al. [87] show that a participants’ actual

genome can be reconstructed using correlation information about the SNPs. There are

many other attacks [32] [31] [71] that could result in breaching the privacy of individuals.
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Table 1.1: Homer’s Attack : The attacker knows the genome of the victim (set of variants),
the size of the mixture he’s attacking and the population allele frequencies. [36]

Id Allele Frequency Distance Measure
D(x) = |x− p| − |x−m| Inference

Reference Popula-
tion(p)

Mixture(m) Person of In-
terest(x)

j 0.25 0.75 1.0 0.50 Most likely to be in the Mix-
ture

j+1 0.25 0.75 0.50 0.00 Equally likely to be in the
Mixture and in the Refer-
ence Population

j+2 0.25 0.75 0.0 -0.50 Most likely to be in the Ref-
erence Population

It is a challenge to promote privacy-preserving genomic data sharing for scientific

research, given that genomic data is extremely high-dimensional and cannot be revoked.

It is a treasure trove of sensitive information and it is the ultimate identifier, as it contains

millions of SNPs that are easily identifiable. As shown in [36], not only the genomic data

needs to be protected, but the analysis results containing allele frequencies or test statistics

as well. Therefore, there is a need to strike a balance between privacy and utility such that

the output is privacy-preserving while utility is maintained.

1.1 Motivation

Several methods have been proposed to address the problem of privacy-preserving data

publishing. Samarati [74] and Sweeney [77] propose the k-anonymity privacy model,

which stipulates that an individual should not be identifiable from a group of less than k

individuals based on quasi-identifier attributes QIDs. However, Machanavajjhala et al. [55]

show that with additional knowledge about the victim, k-anonymous data is vulnerable

against background knowledge attacks. Similarly, there are a number of other partition-

based privacy models such as (α − k) anonymity [90] [39], t-closeness [53] [76] and

(c − k)-safety that model the adversary differently and have different assumptions about
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its background knowledge. The following example illustrates how background knowledge

can be used to infer sensitive information from k-anonymous genomic data.

Example 1.1.1. Given raw data as shown in Figure 1.1 containing genomic information

about individuals, we anonymize the raw data and generate 2-anonymous data. If the

attacker knows that the data contains information about a person who is an engineer and

35 years of age, then the attacker can determine with 100% certainty that the genomic

sequence of that person starts with nucleotide A. However, a differentially-private version

of the raw data neutralizes the linkage attack i.e., if you cannot link when I am not in the

database, then obviously you cannot link when I am in the database. An attacker can not

infer anything about an individual by looking at differentially-private data, regardless of

any background knowledge. �

Therefore, we use differential privacy to privately publish genomic data. There are

different ways to publish genomic data as shown in Figure 1.2. Given raw genomic data, a

first approach is to apply differential privacy and release the data, where the released data

will provide utility and consistency, but will not support an efficient search on genomic

data. Therefore, to ensure efficiency, a second approach is to release a suffix tree, an

efficient data structure for genomic search, by applying differential privacy on the genomic

data, but this tree will result in poor utility due to inconsistent suffixes. So, a third approach

is to construct a suffix tree from raw data and then apply differential privacy and release a

differentially-private suffix tree. Using this approach, we will be able to achieve efficiency

because it will output a suffix tree, however, measuring utility and consistency is unclear.

Therefore, we came up with a fourth approach (our approach), that is a hybrid approach. It

takes raw genomic data, generates differentially-private suffixes, applies utility constraint

to maintain usefulness and then generates a suffix tree. This approach provides utility,
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Raw Data

Differentially-Private Data 2 - Anonymous Data

Background Knowledge 
(Age: 35, Job: Engineer)

Background Knowledge 
(Age: 35, Job: Engineer)

Figure 1.1: Given raw data that contains age, sex, job and sequence, we anonymize the
data and generate two versions, i.e., 2-Anonymous Data and Differentially-Private Data. If
an attacker has background knowledge that the data contains information about a person
who is an engineer and 35 years of age, then looking at 2-Anonymous Data, the attacker
can determine with 100% certainty that the genomic sequence of that person starts with
nucleotide A. However, a differentially-private version of the raw data neutralizes the
linkage attack and provides privacy guarantees irrespective of an attacker’s background
knowledge and computational power.

consistency and efficiency by ensuring that the suffixes are consistent and the outputted

suffix tree provides differential privacy.

In this thesis, we address the problem of privacy-preserving genomic data publishing

by proposing an approach that efficiently perturbs the raw genome data and outputs an

anonymized suffix tree that is privacy-preserving to effectively and efficiently support

count queries for genomic sequence matching. To generate a privacy-preserving suffix tree,

we utilize differential privacy [21], a rigorous privacy model that provides strong privacy

guarantees independent of an adversary’s background knowledge and computational power.



6

DP-Genomic Data

DP-Suffix Tree

Consistent DP-Suffixes

Suffix Tree

Genomic Data

 

DP

DP-Suffix Tree

DP-Suffixes

DP-Genomic Data

DP-Suffix Tree

Utility

Consistency

Efficiency

Utility

Consistency

Efficiency

Utility

Consistency

Efficiency

Utility

Consistency

Efficiency

Our Contribution

Figure 1.2: Alternative approaches to publish genomic data via differential privacy

Differential privacy is typically achieved through random perturbation, where noise is

carefully calibrated to the sensitivity. A differentially-private mechanism ensures that all

outputs are insensitive to the individual’s data. In other words, an individual’s privacy is

not at risk because of her participation in the dataset.

Our approach consists of a three-phase algorithm. Given raw genomic data D, we first

construct a differential private partitioning tree, then we apply a bottom-up approach to

normalize the tree, and finally we apply a top-down approach on the normalized tree to

obtain a differentially-private suffix tree.

The contributions of this thesis can be summarized as follows:

• We propose a novel non-interactive approach for anonymizing genomic data and
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releasing a B-differentially-private suffix tree with an effective utility for genomic

sequence matching. We are the first to publish a differentially-private suffix tree for

efficient searching on genomic data.

• We propose a top-down partitioning approach using the Laplace mechanism to effi-

ciently process datasets containing a large number of genomic sequences.

• To obtain higher utility, we apply a normalization technique on the partitions to

ensure consistency among genomic sequences and their suffixes.

• We implemented our approach and performed extensive experiments on real-life

genomic data obtained from the Human Genome Privacy Challenge [3]. The results

show that our approach is efficient, scalable, and achieves high utility with respect to

count queries.

1.2 Thesis Statement

The objective of this thesis is to answer the following question: How can a data owner

publish genomic data while simultaneously safeguarding the privacy of the data and

maintaining its usefulness?

More specifically, given a genomic data D, where D contains sequential genomic

data sequences {S1, . . . , Sn} and given a privacy budget B, our objective is to generate a

differentially-private suffix tree T for efficient search that supports data mining and analysis

tasks such that:

1. T satisfies B-differential privacy.

2. T preserves data utility with respect to count queries.
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3. The proposed approach is efficient and scalable.

1.3 Organization of the Thesis

The thesis is organized as follows:

• Chapter 2 discusses the building blocks/preliminaries to establish the background

knowledge needed for this thesis work.

• Chapter 3 talks about the related work that has been done in this field.

• Chapter 4 elaborates the proposed approach to address the problem discussed.

• Chapter 5 discusses the privacy and complexity analysis of our proposed approach.

• Chapter 6 describes the experiments and performance evaluation of our proposed

solution.

• Chapter 7 concludes our work followed by a discussion about future work.
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Chapter 2

BACKGROUND

In this chapter, we introduce and define the building blocks/preliminaries that help establish

the foundational knowledge required to better understand the proposed work.

2.1 Genomic Data

The human genome is the complete set of genetic information which is composed of

four nucleotide bases: adenine, cytosine, guanine and, thymine, represented by the letters

A,C,G,T respectively. Single nucleotide polymorphisms, frequently called SNPs (pro-

nounced “snips”), are the most common type of genetic variation among humans. Mostly,

these variations are found in the DNA between genes in a single nucleotide that occurs at a

specific position in the genome, where each variation is present to some appreciable degree

within a population. Each SNP represents a difference in a single DNA building block,

called a nucleotide, e.g., SNP may replace the nucleotide cytosine (C) with the nucleotide

thymine (T) in a certain stretch of DNA.

Figure 2.1 shows an example of a DNA sequence of three different people. We observe

that at most locations, they have exactly the same nucleotide bases but there is a specific

location in which there is a variation; this variation is called a SNP.

While SNPs occur throughout a person’s DNA, the frequency of occurrence is on

average once in 300 nucleotides. They act as biological markers, which help scientists
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Nucleotide

Single Nucleotide 
Polymorphisms

Figure 2.1: Example of genomic data of three different individuals

and researchers to identify and associate genes with diseases. They also help to identify

and study particular disease trends among particular age groups. When SNPs occur within

a gene or in a regulatory region near a gene, they may play a more direct role in causing

certain diseases by affecting the genes function. For example, at a specific base position in

the human genome, the C nucleotide may appear in most individuals, but in a minority

of individuals, the position is taken by an A. This means that there is a SNP at this

specific position, and the two possible nucleotide variations C or A are said to be alleles

for this position. SNPs also identify differences in our susceptibility to disease, e.g.,

sickle-cell anemia, β-thalassemia and cystic fibrosis. The severity of illness and the way

our body responds to treatments are also manifestations of genetic variations. For example,

a single-base mutation in the APOE (apolipoprotein E) gene is associated with a higher

risk for Alzheimer’s disease [30]. Since the human genome contains the most vital and
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sensitive information about the person, their ancestors and family members, it is essential

to ensure human genome privacy.

2.2 Differential Privacy

Differential Privacy is a model introduced by Dwork et al. [21] for the purpose of preserv-

ing data privacy without making assumptions about the attacker’s background knowledge.

Differential privacy provides a strong guarantee that the presence or absence of an individ-

ual will not affect the final output of the query significantly.

2.2.1 ε-Differential Privacy

Definition 2.2.1. ε-Differential Privacy [88]. Given any two neighbouring datasets D1 and

D2 that differ on, at most, one record, a sanitizing mechanism M preserves ε-differential

privacy if for any output D̂ ∈ Range(M):

Pr[M(D1) = D̂]≤eε×Pr[M(D2) = D̂]

where the probabilities are over the randomness of M . �

To achieve differential privacy, noise must be added to the true output by calibrating

the noise to the sensitivity. The sensitivity of a function is a measure of the change in the

output when one of the inputs is changed. Calibrating noise to sensitivity was introduced

by Dwork et al. [23].

Sensitivity

Noise can be added to any dataset for generating a noisy dataset to achieve differential

privacy. The amount of noise to be added to achieve ε-differential privacy is dependent
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on the sensitivity of the function. Therefore, sensitivity can be informally defined as the

maximum change possible by altering a single record (i.e. added or removed). In some

cases, sensitivity may be represented as global sensitivity and therefore shares the same

definition as sensitivity.

Definition 2.2.2. Global Sensitivity [61]. Given a query function f : D → Rd, the global

sensitivity of f is:

∆(f) = maxD1,D2 ‖ f(D1)− f(D2) ‖1

where D1 and D2 are any two neighbouring datasets that differ on, at most, one record. �

50
30 20

  Total    A       B

50
30 19

  Total     A       B

50
31

19

  Total    A       B

(a) Original Result (b) (f)=1 (f)=2(c) 

Figure 2.2: (a) represents a histogram depicting data of 50 participants who took part in
a survey, the data is distributed into 2 bins A and B, where bin A and bin B represents the
total number of participants who play basketball and football respectively. Figure 2.2(b)
and Figure 2.2(c) represent neighboring datasets of Figure 2.2(a). Now, let’s consider a
participant from B decides to remove his record from the survey, that is, one value is
changed in the histogram as shown in Figure 2.2(b), therefore, the ∆(f ) is 1. However,
if he would have changed his position from playing football to basketball, i.e. from bin B
to A as shown in Figure 2.2(c), the ∆(f ) would be 2, since 1 value was removed from B and
1 value was added to A in the histogram.

Depending on the type of data, the sensitivity may vary, which in return could affect the

added noise. For example, in tabular data, each row/record represents one individual and
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each column represents the associated attributes. Therefore, when an individual’s record

is added to or removed from the dataset, it affects, at most, one row. Hence, by the above

definition of sensitivity, the value of ∆(f ) is equal to 1. Whereas, in the case of histogram

data, the numerical data is represented graphically (bins/buckets) based on the frequency

distribution. Each bin’s area represents the frequency of occurrence of a certain participant-

group’s data (see Figure 2.2).

Laplace Distribution

To achieve differential privacy when using query function f , the principal approach is

to perturb the true output of f by adding to it a random noise that is adjusted based on

∆(f). In the study in [21], the authors propose to generate the noise according to Laplace

distribution, Lap(λ), where the probability distribution function is

Pr(x|λ) =
1

2λ
e
|x|
λ

the mean is 0, and the standard deviation is λ which is determined based on the global

sensitivity ∆(f) and the privacy level ε.

Theorem 2.2.1. For any function f : D → Rd that maps datasets to reals, the privacy

mechanism M : M(D) = f(D) + Lap(∆(f)/ε) satisfies ε-differential privacy.

�

Exponential Mechanism

Exponential mechanism is one of the techniques to analyze which outputs will not make

sense after noise is added, and was proposed by McSherry and Talwar [58] to select an

output from the generated outputs such that the score of the utility function q is considered
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to make the decision. These score values represent the chances that the generated output

will be similar to the optimal output where q has low sensitivity; i.e. the higher the score

value, the more the chances of the generated result being similar to the optimal result, and

therefore the more of a chance of it being selected.

The main goal of the Exponential mechanism is mapping n inputs from the domain D

to a range R. This mapping may be randomized so that each element of the domain D

corresponds to the probability distribution over the range R. Assuming for this scenario, q

: (Dn × R)→ R is a quality function, such that an instance of a database d ∈ Dn, assigns

a score value to all outcomes r ∈ R.

Definition 2.2.3. [58]Exponential Mechanism: Let the sensitivity of score function q be

S(q) = max
r,A∆B=1

‖ q(A,r) - q(B,r) ‖

where M is the mechanism for choosing an outcome r ∈ R such that an instance of a

database d ∈ Dn maintains ε-differential privacy.

M(d,q) = { return r with probability ∝ exp (
εq(d, r)

2S(q)
) } (2.1)

�

As discussed above, the computed score value denotes the likelihood of a pair (d,r)

having been chosen, i.e., when the score is higher, it is more likely to be chosen. Expo-

nential mechanism introduces a class of mechanisms that include all differentially-private

mechanisms [58]. Therefore, it can be said that for a database and a predefined ε value,

the quality function q generates a probability distribution. The Exponential mechanism

samples the output on the output domain over which the probability distribution is gener-
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ated [61]. The high scoring outcomes are exponentially more likely to be chosen, since

the probability function favors them, while ensuring differential privacy. The Exponential

mechanism by [58] is also referred to as exponential sampling technique by [45].

Theorem 2.2.2. For any function having utility score Utility, an algorithm that chooses

an output with probability directly proportional to exp ε
2S(q)

(Utility) satisfies ε-differential

privacy. �

Gaussian Mechanism

Gaussian mechanism was proposed in [22] and is similar to the Laplace mechanism but

adds independent and identically distributed (i.i.d.) Gaussian noise to achieve (ε,δ)-differential

privacy, where δ > 0 but typically a smaller ε for the same utility. We know thatQ-function

is defined as Q(x) := 1√
2π

∫∞
x
e
−u2
2 du. We include the following theorem from [67].

Theorem 2.2.3. Let q: D → Rk be a query and ε > 0, 1
2
>δ> 0. Then the Gaussian

mechanism Mq : D × Ω → Rk defined by Mq(d) = q(d) + w, where w ∼ N (0, σ2Ik),

where σ ≥ ∆2q
2ε

(K +
√
k2 + 2ε) and K = Q−1(δ), is (ε,δ)-differentially-private. �

The authors of [22] propose a differentially-private mechanism that adds i.i.d. zero

mean Gaussian noise to modify answers to a numeric query. When Gaussian noise is

added, it results in δ-approximate ε-indistinguishability [21] in the noisy sums, where

the value of ε is greater than [log(1/δ)/R]1/2. Additionally, Exponential noise ensures

ε-indistinguishability, since the value of δ is zero [22]. The Exponential noise and Gaussian

noise both have their own advantages: where Exponential noise provides a more robust

solution, since δ = 0, Gaussian noise provides better accuracy for any ε value.
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2.2.2 (ε, δ)-Differential Privacy

For an input dataset D to a randomized algorithm K, the random variable corresponding

to D is K (D). The probability of an event occurring is not similar to that of a more

probable event under the distribution K(D1) or K(D2), because the metric in differential

privacy is multiplicative. This necessary condition for differential privacy was relaxed in

later research, and (ε,δ)-differential privacy represents a more relaxed differential privacy

model compared with ε-differential privacy, which provides a stronger privacy guarantee.

(ε,δ)-differential privacy is defined as follows.

Definition 2.2.4. (ε,δ)-Differential Privacy: A randomized algorithmK is (ε,δ)-differentially-

private if for all databasesD1,D2 ∈ (D)n such that one individual’s record is varied, where

S represents all subsets of outputs in the equation

Pr [K(D1) ∈ S] 6 exp(ε) × Pr [K(D2) ∈ S] + δ , (2.2)

when the value of δ = 0, the above equation represents an ε-differential privacy guarantee

[51]. �

2.2.3 Local differential privacy

So far, we have talked about centralized data privacy models, where we have a trusted data

administrator who can directly access private data and we have assumed that the adversary

only has access to the output of the algorithm. But what if we trust no one to look at our

data? Local differential privacy comes into play in such scenarios. It enables an agent to

answer questions in a differentially-private manner about their own data, without sharing

it with anyone else. Each individual possesses its own data element i.e. a database of size

1, and answers questions about it only in a differentially-private manner [25]. Consider the
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database x ∈ N |X | is a collection of n elements from some domain X , and each xi ∈ x

is held by an individual. The xi’s are sampled independently from some distribution Pv

where v ∈ {0, 1}. A statistical privatization mechanism Qi is a conditional distribution

that maps xi ∈ X randomly to yi ∈ Y , where Y is an output possibly larger than X . The

yi’s are referred to as the privatized views of xi’s.

Definition 2.2.5. ε-local differential privacy For a given non-negative ε, we say that a

mechanism Q is ε-locally differentially-private if

sup
S∈σ(Y),x,x′∈X

(S|xi = x)

(S|xi = x′)
≤ eε (2.3)

where σ(Y) denotes an appropriate σ-field on Y [43][20].

�

2.2.4 Composition Properties of Differential Privacy

Any sequence of computations that each provides differential privacy in isolation also

provides differential privacy in sequence, which is known as sequential composition.

Lemma 1. Sequential composition [59]. Let each algorithm Ai provide εi-differential

privacy. A sequence of Ai(D) over the dataset D provides (
∑

i εi)-differential privacy. �

If the sequence of computations is conducted on disjoint datasets, the privacy cost does

not accumulate but depends on only the worst guarantee of all the compositions. This is

known as parallel composition.

Lemma 2. Parallel composition [59]. Let each algorithm Ai provide εi-differential pri-

vacy. A sequence of Ai(D) over a set of disjoint datasetsD provides εi-differential privacy.

�
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2.3 Suffix Tree

Genomic data can be represented in a more compact way in terms of a suffix tree. Suffix

trees are a space efficient data structure to store a string that allows many kinds of queries

to be answered quickly. These are very efficient for searching large sequences like a

genome [28] [57]. A suffix tree groups sequences with the same suffix into the same branch,

such that every path from root to leaf in a tree represents a suffix. Let S denote a string,

the length of which is k. Let S[i, j] denote the substring of S from position i to position j.

Before constructing the suffix tree, we concatenate a new character, $ to S. The importance

of this character is twofold. First, by adding it to the string, we can avoid that a suffix will

be a prefix of another suffix, which is undesirable. Second, the generalization is also made

easier by this operation. We always consider a fixed size sequence. A sequence S ′ = AT$

is a suffix of a sequence S = AGAT$. We formally define a suffix tree below.

Definition 2.3.1. Suffix Tree: A suffix tree T of a genomic data is a rooted, directed tree.

The edges of the suffix tree are labeled with nucleotide type A,C,G, T . On a path from the

root to the leaf, one can read the suffix of the string and a $ sign. We call a leaf w reachable

from the node v, if there is a directed path from v to w. �

Example 2.3.1. Consider the sequence S = ACTCAG$ in Table 2.1. Suffix Tree : a tree

of all possible suffixes of S as shown in Figure 2.3. �
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Table 2.1: All possible suffixes of the sequence ACTCAG$

Suffix
1 ACTCAG$
2 CTCAG$
3 TCAG$
4 CAG$
5 AG$
6 G$
7 $

A

T

C

A

G

$

A

G

G

$

C7

6

5

G

$

1

G

$

T

4

2

A

G

$

$

C

T

C

A

G

3

$

C

Figure 2.3: The tree of all possible suffixes of the sequence ACTCAG$, where each path
from root to leaf represents a unique suffix.



20

Chapter 3

LITERATURE REVIEW

In this chapter, we elaborate the related work, and condense the comparative information

into Table 3.1 alongside our proposed work.

3.1 Privacy-Preserving Data Publishing

This related line of work studies how to transform raw data into a version that is immunized

against privacy attacks but that still supports effective data mining tasks. It seeks to publish

private data in a manner that maintains as much utility as possible while accomplishing

the goal of anonymization. Figure 3.1 shows privacy-preserving data publishing in a non-

interactive framework. In the data collection phase, the data publisher collects data from

record owners/individuals (e.g., Jake, Bob). In the data publishing phase, the data publisher

utilizes a differentially-private anonymizer to achieve anonymization and publishes the

collected data to data recipients, who will then perform data mining tasks on the published

dataset.

3.1.1 Genomic Data

Genomic data refers to the genome and DNA data of an organism which is used in bio

informatics for collecting, storing and processing the genomes of living things. Although,

Genome-Wide Association Studies (GWAS) are used for analysis of sets of DNA sequences
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to discover and identify the genetic basis of disease, these statistics that are published as

the result of GWAS can be used for identification of the participating individuals. This has

led to research on publishing GWAS data in a differentially-private manner. The papers

[6] [94] [88] [64] [81] [26] [37] list a number of mechanisms to achieve differential privacy

on genomic data. Akgün et al. [6] have categorized previously identified problems and

their respective solutions introduced in research prior to theirs. Some of the problems and

their solution techniques discussed by paper [6] are discussed in the following paragraphs

in this sub-section.

Wang et al. [88] introduce an approach to disseminate differentially-private genomic

data using top down specialization. This method assumes a data owner has a data table

D(Ai, Asnp) where Ai are explicit identifiers and Asnp a set of SNPs. The algorithm

aims to satisfy ε-differential privacy while retaining data utility with a high sensitivity and

generates an anonymized data table D̂ that can be released to the public. Uhler et al. [81]

introduce methods that focus on releasing differentially-private minor allele frequencies,

p-values, and χ2 statistics for the M most relevant SNPs regardless of arbitrary external

information. They also apply penalized logical regression techniques while maintaining

differential privacy guarantees to locate genome-wide associations in the data. Finally, for

testing the approach, the proposed techniques are compared both on simulation data and on

real canine hair length genomic data. This approach is an adaptation of Bhaskar et al. [8] to

genome wide association studies. Yu et al. [94] and Yu & Ji [94] extend the work of Uhler

et al. [81] by allowing for an arbitrary number of cases and controls and performance

of a risk-utility analysis. Risk-utility analysis is used for assessment of performance of

the proposed methods. This analysis is performed on real datasets that consist of DNA

samples collected by the Wellcome Trust Case Control Consortium. Next, the methods

proposed are compared to the differentially-private publishing mechanism proposed by
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Johnson and Shmatikov [41]. The work of Li et al. [54] introduces the compressive

mechanism, which uses a probabilistic compression procedure that generates a synopsis,

adds Laplace noise to the compressed data, and then decodes the results. Compared to other

synopsis proposals, the compressive sensing mechanism provides more accurate statistical

query results while using less noise under certain conditions. Building upon this work,

Roozgard et al. [72] presents a compressed sensing based, differentially-private genomic

data dissemination algorithm that takes sequences of genomic nucleotides from multiple

subjects, and transforms the frequencies of SNPs into a sparse vector representation. The

Laplace noise is then added to all elements of the sparse vector. Jiang et al. [40] suggest a

method for releasing the top-K most significant SNPs across the genome when K is small.

In the past, various studies like [26] and [37] have led to recent mechanisms for publish-

ing differentially-private data. Naveed et al. [64] also surveyed the field and discussed

various techniques that have been used in previous studies and the mechanisms proposed

for achieving differential privacy on genomic datasets. Although these approaches are

 

Figure 3.1: Differentially-Private Data Publishing
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related to PPDP with respect to genomic data, none of them publishes a suffix tree. Our

proposed approach publishes a differentially-private suffix tree, which is the most efficient

data structure for genomic data search and at the same time supports effective data mining

tasks. A comparative evaluation of our approach with the related work done in this field is

represented in the Table 3.1.

3.1.2 Non Genomic Data

Mohammed et al. [62] propose a generalization-based sanitization algorithm for relational

data with the goal of classification analysis. Chen et al. [14] propose a probabilistic

top-down partitioning algorithm for set-valued data. Xiao et al. [92] propose a wavelet-

transformation based approach for relational data to lower the magnitude of noise, rather

than adding independent Laplace noise. Several available PPDP techniques, such as k-

anonymity [74] [78] [49] [90] [60] [50], l-diversity [97] [55], and t-closeness [53] [76]

exist, each having their own merits and based on varying assumptions about the background

knowledge of an attacker. Typically, such techniques utilize one or more anonymization

techniques such as generalization, bucketization, and slicing. Publishing data with k-

anonymous privacy guarantees the record of an individual is indistinguishable from at least

(k-1) others’ as it anonymizes data by generalizing quasi identifiers. Since k-anonymity

assumes that each record represents a distinct individual, it provides little privacy to a

group of k records being owned by fewer than k owners. To overcome this issue in

k-anonymity, (X,Y)-anonymity [83] was introduced. k-anonymity based privacy models

rely on the formation of a group, but if the records in the assigned group consist of sensitive

attributes having similar values, the adversary could perform an attribute linkage attack i.e.

infer an individual’s sensitive value based on the values received from the entire group

and singling out the individual, thereby eliminating privacy guarantees. To avoid this,
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privacy-preserving models that could potentially defend against attribute linkage attacks

were proposed.

One of these contributions was l-diversity, which guarantees privacy by mandating that

every quasi-identifier group will have at least l sensitive attributes. In papers [55] [47] [48]

and [86], techniques were proposed to achieve l-diversity and recursive (c,l)-diversity (an

improvement over l-diversity). While l-diversity is a significant improvement over k-

anonymity, it has its own drawbacks–each sensitive attribute taking values uniformly being

one of them. To avoid this, other privacy models were proposed to prevent attribute linkage

that could be achieved even in l-diversity. These include confidence bounding [85] [84],

(X,Y)-privacy [83], (α,k)-anonymity [90], (k,e)-anonymity [96] and t-closeness [53] [76].

One of the most noteworthy of them being t-closeness, implemented by [53] [76] [11] [70] [52]

which provides good privacy guarantee in the published data. In addition to these models,

other privacy models were researched to provide privacy guarantees in cases where pre-

vious models would fail. Such as a case where an attacker may not know an individual’s

record in the dataset, but may confidently be able to infer the presence or absence of an indi-

vidual’s record in the published data. A number of other privacy models were implemented

to overcome the table linkage attack and to reduce an attacker’s probabilistic belief about an

individual in the published data. The authors in [13] introduced the (c,t)-isolation privacy

model, other techniques that provided privacy guarantees such as δ-presence [66] [65],

(d,γ)-privacy [68] and distributional privacy [9] were employed.

Graph Data: Graph data is a dataset that employs graph structures where the nodes are

connected to each other by edges and therefore possess the property to store and represent

data. Based on the type of neighboring graphs to which differential privacy is applied

before publishing, edge differential privacy and node differential privacy were introduced

by [34]. They indicated that node differential privacy, though it provides a stronger privacy
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guarantee by aiming to achieve node differential privacy for publishing graph data, it may

compromise the utility of the published data. Therefore, numerous research for publishing

graph data intend to achieve edge differential privacy instead.

Edge Differential Privacy: Considering a graph G1, the neighboring possible graphs

include the ones in which an arbitrary edge is either added or removed compared to G1.

Achieving differential privacy, in these neighboring graphs is called edge differential pri-

vacy.

Definition 3.1.1. [34] Edge Differential Privacy. Let G1 = (V1,E1) and G2 = (V2,E2) be a

pair of graphs where V1 = V2 and E2 = E1 - (υ1,υ2) such that (υ1,υ2) is the edge they differ

on. A randomized function K achieves (ε,n)–edge differential privacy, if for all graphs G1

and G2 differing on at most |(υ1,υ2)| = n edges and where S is all the sets of answers,

Pr [K(G1) ∈ S] 6 exp(ε) × Pr [K(G2) ∈ S]

where the parameter ε represents the privacy budget. �

A number of researchers have focused their research for publishing graphs via edge

differential privacy; however, some research [80] also discusses the addition or removal of

n-arbitrary edges from the graph G1 as a representation of edge differential privacy.

Node Differential Privacy: Considering a graph G1, the neighboring possible graphs

include the graph in which a node and all the edges connected to that node are either added

or removed compared to G1. Achieving differential privacy, in these neighboring graphs is

called node differential privacy.
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Definition 3.1.2. [34] Node Differential Privacy. Let G1 = (V1,E1) and G2 = (V2,E2) be a

pair of graphs where V2 = V1 - υ and E2 = E1 - (υ1,υ2) | υ1 = υ ∨ υ2 = υ such that υ ∈ V1.

A randomized function K achieves (ε,n) - node differential privacy, if for all graphs G1 and

G2 differing on one node and it’s connecting edges and where S is all the sets of answers,

Pr [K(G1) ∈ S] 6 exp(ε) × Pr [K(G2) ∈ S]

where the parameter ε is the desired privacy budget. �

Although we have defined node differential privacy, we note that achieving node dif-

ferential privacy is difficult in cases of high sensitivity, where a particular node has a

connection with all other nodes in the graph, thus providing insufficient utility on the

published data.

Next, we discuss various approaches for differentially-private data publishing for graph

data, which guarantee edge differential privacy [63] [73] [44] [80], node differential privacy

[46], or miscellaneous methods [5] [15] [91] to achieve differential privacy for publishing

graph or synthetic data. In addition to data publishing, we include approaches for publish-

ing results to queries that have not been clearly stated to be interactive or non-interactive

query models, where a non-interactive query model lets the data publishers publish the

results to all queries at once.

Mülle et al. [63] propose a graph clustering approach that guarantees (ε,1)-edge dif-

ferential privacy. This approach does not deal with the publishing of graphs, but it is

applied to publish usable graph clustering results under a differential privacy guarantee.

The proposed PIG (privacy-integrated graph) consists of two steps: perturbation of the

input graph PIGpert and a graph clustering algorithm applied to the perturbed graph. The

authors introduced a PIG clustering approach, which perturbs the input graph by perturbing
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the adjacency matrix of the graph based on the value of ε, and applies a graph clustering

approach to the perturbed graph. Perturbation consists of a combination of edge sampling

and edge flipping (edge randomization), and the algorithm introduces a privacy parameter

s to choose between preservation and randomization, where (s ∈ [0, 1]). Next, the ap-

proach employs graph clustering by enacting PIG with two graph clustering approaches:

SCAN [93] and graph k-medoids [69]

Sala et al. [73] introduce a differentially-private graph model Pygmalion, to maintain

a trade-off between privacy and the similarity to the original graph data while publishing

it in a differentially-private manner. The authors state that the addition of significant noise

to apply differential privacy might disrupt the graph structure. The partitioning approach

discussed in the paper [73] provides a strong privacy guarantee while publishing a less

noisy graph. The original graph is converted into dK − 2 degree distributions of itself, and

differential privacy is applied by adding noise to these dK − 2 distributions. The authors

develop a degree-based clustering algorithm, which partitions the statistical representation

of a graph. By maintaining ε-differential privacy within each cluster, ε-differential privacy

is achieved over the entire dataset. Finally, the added noise is evenly distributed, to reduce

the effective errors by applying isotonic regression.

Task and Clifton [80] introduce a new differential privacy guarantee for graph data

called out-link privacy, which provides a strong privacy guarantee when a small amount

of noise is added. Here, an attacker possessing a record will not be able to determine

the presence or absence of a person in the survey from which the published graph was

produced. The high-degree nodes of the graph are better protected in out-link privacy

than in edge privacy, as all relationships cited by a popular person are protected, and even

when other nodes may be linked to a node the mutuality of the relationship can be denied.

The paper introduces two techniques for implementing out-link privacy, which apply an
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ego-network analysis [56]. This ego-network analysis works by answering queries non-

interactively, which could result in noisy data if edge or node differential privacy were

applied. The ego-network analysis approach is employed to analyze social network data

based on individuals whose records are present in the social network.

The first algorithm results in a dataset from which out-degree and clustering data can

be extracted based on the ego-network. The second algorithm then produces the social

cohesion patterns among individuals in the network. The third algorithm privatizes the

centrality data, and results in a popularity graph that represents the social circles of in-

fluential individuals in the data. The authors apply Laplace noise to the edge weights

when an individual adds or removes their records, based on the sensitivity. Finally, when

post-processing the data the edges with low weights are eliminated, which results in a

weighted popularity graph being published.

Although graph data publishing under node differential privacy guarantee has several

issues concerning the utility of published data, Day et al. [18] propose approaches for

publishing the node degree distribution of a graph using node differential privacy. The two

proposed approaches each employ aggregation and a cumulative histogram for publishing

the node degree distribution of a graph using graph projection. This technique ensures

that the graph is θ-degree bounded, i.e., when the graph is projected, a smaller value of θ

indicates that more edges are pruned, while a greater value leads to the addition of more

noise. The authors propose a series of algorithms and sub-algorithms for publishing degree

histograms under node differential privacy. Of these, the (θ,Ω)-histogram and θ-cumulative

histogram approaches are based on sensitivity bounds. For the selection of input parameters

for these algorithms, the authors introduce low-sensitivity quality functions. Based on

the results obtained by applying the proposed technique to real-world graph datasets, the

authors conclude that this approach significantly reduces the error of approximating the



29

degree distribution.

Ahmed et al. [5], propose a mechanism based on a random projection approach, which

in turn employs random matrix theory to reduce the dimensions of the adjacency matrix,

and therefore achieve differential privacy with the addition of less noise. Next, the au-

thors prove that their mechanism is able to achieve differential privacy, and also list the

theoretical error bounds for approximating the top k eigenvectors. Finally, the authors test

the utility of the published data for two applications that require spectral information of

a graph, and compare their proposed mechanism with Wang et al. [86], which perturbs

the eigenvector of the original data directly by introducing Laplace noise. Through this

comparison, the authors conclude that the performance of their mechanism is viable.

Chen et al. [15] claim that previous research indicated differential privacy is vulner-

able to data correlation, and therefore it cannot be applied to network data that may be

correlated. They claim that introducing a parameter that measures the extent of correlation

could help to provide differential privacy guarantees in correlated network data. The first

step is to generate a private vertical labeling for a given network dataset, to make the

corresponding adjacency matrix generate clusters. These dense clusters of the adjacency

matrix are identified in the next step using partitioning. Finally, the Exponential mechanism

is employed to generate the noisy adjacency matrix.

Xiao et al. [91] introduce an approach for releasing network data from information

networks in a differentially-private manner. The proposed approach is based on the obser-

vation that instead of considering the edges directly the connection probabilities between

vertices are estimated, then the noise that needs to be added by differential privacy is sig-

nificantly reduced. A statistical hierarchal random graph (HRG) [17] model is employed

in the proposed model to infer the structure of the network. The proposed mechanism

samples possible HRG structures using MCMC (Markov chain Monte Carlo) to guarantee
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differential privacy. The authors theoretically proved that the sensitivity is lower when an

inference is performed on the network data published by the proposed mechanism.

However, these approaches cannot be directly applied to genomic data, as the ge-

nomic data is highly sensitive and hence requires careful processing. We use differential

privacy [21] [23] [24] [16] [14] [75] [92] to address privacy-preserving genomic data

publishing.

3.2 Privacy-Preserving Data Mining

In this related line of work, the raw data is first anonymized while maintaining an effective

level of data utility, and then released for the purpose of data mining and analysis. The

data owners jointly compute a data mining function on their private data, and only learn

the correct output and nothing else. Figure 3.2 shows privacy-preserving data mining in

an interactive framework. In the data collection phase, the data owner collects data from

record owners/individuals (e.g., Jake, Bob). In the data mining phase, the data owner

answers queries posed by data recipients and returns differentially-private results.

3.2.1 Genomic Data

There has been ample ongoing research to provide access to published/unpublished datasets

while maintaining differential privacy. Other than publishing the data in a differentially-

private manner, a data miner/analyst could pose queries to the data owner interactively

and non-interactively. While answering non-interactive queries, the system is aware of all

the queries that will be posed by the data miner in advance and it can take appropriate

measures to make the data private. But in the case of interactive queries, the system would

respond to the ad-hoc queries without any knowledge of the queries or any insight into
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the future. Privacy-preserving query processing is the task wherein, the queries posed

over the statistical data are answered by injecting random noise to each of the responses to

guarantee the privacy of an individual. This randomness hides the presence or absence of an

individual in the data, while maximizing the accuracy of the responses to the posed queries.

The techniques to achieve privacy-preserving data mining (PPDM), privacy-preserving

data analysis and privacy-preserving data publishing (discussed in this thesis) under dif-

ferential privacy have been widely studied. Privacy-preserving data mining is the task of

mining information from a dataset wherein the data owner is responsible for maintaining

the privacy guarantees in the results sent to the data miner.

Atallah et al. [7] introduce a privacy preserving sequence comparison algorithm by

modifying the edit-distance protocol. Szajda et al. [79] propose a practical data privacy

scheme based on modifying the Smith Waterman sequence comparison algorithm. Johnson

& Shmatikov [41] propose an algorithm to perform privacy preserving computation of

the location of SNPs and p-value associated with a disease, and measures of correlations

between SNPs. De Cristofaro et al. [19] present a private substring matching protocol to

conduct a test in which no other information is learned by the conducting parties.

3.2.2 Non Genomic Data

Agrawal & Srikant [4] develop the idea of building accurate models about aggregated

data without access to precise information in individual data records. The major ap-

proaches of PPDM include perturbation, anonymization, and crytptographical techniques.

Hardt & Rothblum [33] introduce a differentially-private multiplicative weights mecha-

nism application to privacy preserving data analysis. Important privacy preserving sta-

tistical analysis methods such as logistic regression have been introduced by following
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Figure 3.2: Privacy-Preserving Data Mining

papers [12] [94] [81]. There is much overlap in the field of PPDP and PPDM and many of

the techniques can be applied to both purposes.

Table 3.1 shows the comparative evaluation of our approach with the related work done

in this field. Data publishing to interested data recipients is accomplished via interactive

or non-interactive frameworks. In an interactive framework, the data miners ask the query

to which the data publisher responds by returning the differential private result. A certain

budget is consumed for each query asked by the data miners. Therefore, data miners can

only ask queries based on the budget they possess (Figure 3.2). In a non-interactive frame-

work, the data publisher publishes the anonymized dataset and the miners can query the

dataset to obtain differentially-private results. Our work is focused on privacy-preserving

data publishing.
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Chapter 4

PROPOSED ALGORITHM

Let D is the genomic data that contains n sequences {S1, . . . , Sn}, where each sequence

contains a number of SNPs, for example, S1 = AGAT . To achieve differential privacy, the

principal approach is to perturb the true output by adding a random noise to it. To generate

the noise according to Laplace distribution we need to determine the privacy budget B

beforehand. The suffix tree is one of the most important and widely used data structures in

bio-informatics and comparative genomics. It is a special data structure with a wide range

of applications, including exact matching problems, substring problems, data compression

and circular strings. A suffix tree is crucially important in sequencing and investigating

DNA, such as looking for the longest common substring of two DNA sequences and

finding exact and inexact matchings of a sample in a long sequence. In computational

biology, molecular biology and bio-informatics these problems are crucially important. In

our approach, we aim to generate a differentially-private suffix tree T that will support

count queries. Count queries, as a general data analysis task, are the building block of

many data mining tasks. We denote by user count query any data mining’s count query that

attempts to answer the following question: how many times a specific pattern u occurs in

the data, i.e., suffix-tree T ?

In this chapter, we first present an overview of our proposed privacy-preserving ap-

proach for publishing a differentially-private genomic suffix tree. We then elaborate the
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key steps in each algorithm. The objective of our solution is to publish a suffix tree from

raw genomic data using differential privacy while maintaining utility. Given a genomic data

D containing sequential genomic data sequences {S1, . . . , Sn} and given a privacy budget

B and height h, our approach constructs a partitioning tree P with height h, normalizes it

using a bottom-up approach, and then generates a differentially-private suffix tree T . Our

solution consists of four algorithms:

Algorithm 1 - Differentially-Private Genomic Data Publishing: It is the main al-

gorithm that calls the algorithms 2, 3 and 4 to construct a differentially-private suffix tree

from the genomic data D. To ensure privacy and an efficient search for genomic data,

a differentially-private suffix tree using Laplace mechanism is constructed over the raw

genomic data.

Algorithm 2 - Differentially-Private Partitioning Tree Generation: This algorithm

efficiently generates suffixes of raw genomic data sequences by constructing a differentially-

private partitioning tree.

Algorithm 3 - Bottom-Up Normalization: To ensure the consistency and utility of the

output genomic data, a bottom-up approach is used to normalize the partitioning tree based

on a proposed utility constraint.

Algorithm 4 - Suffix Tree Generation: This algorithm uses a top-down approach

to generate a B-differentially-private suffix tree from the normalized partitioning tree to

support count queries for genomic sequence matching.

4.1 Differentially-Private Genomic Data Publishing

This main algorithm takes as input a raw genomic data D, which contains sequences

{S1, . . . , Sn} such that the length of i-th sequence |Si| = ki, a privacy budget B and a



36

user-specified height h, and returns a suffix tree T satisfying B-differential privacy, as

shown in Algorithm 1. In Step 1, it calls Algorithm 2 to construct a noisy partitioning tree

P using Laplace noise and the specialization threshold θ. In Step 2, Algorithm 3 is called,

which takes as input a differentially-private partitioning tree P , and normalizes P based

on the utility constraint to maintain the usefulness of the outputted normalized partitioning

tree P̂ . In Step 3, Algorithm 4 is executed to construct a differentially-private suffix tree T

based on the differentially-private suffixes obtained from the normalized partitioning tree

P̂ . In Step 4, the algorithm outputs a differentially-private suffix tree T .

Algorithm 1 Differentially-Private Genomic Data Publishing

Differentially-Private Genomic Data Publishing Algorithm

Input: Genomic Data D = {S1, . . . , Sn}
Input: Privacy Budget B
Input: Height of the tree h
Output: Differentially-private suffix tree T

1. Execute Algorithm 2 to construct a partitioning tree P based on D and B.

2. Execute Algorithm 3 to normalize P according to the utility constraint 4.3.1

3. Execute Algorithm 4 to construct a differentially-private suffix tree T from P̂ .

4. Return suffix tree T .

4.2 Partitioning Tree Generation

In this phase, our approach is to generate differentially-private suffixes to ensure privacy-

preserving data publishing. Our strategy for generating suffixes in a differentially-private

manner is to use a top-down approach based on constructing disjoint partitions for multiple
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levels using Laplace mechanism and the specialization threshold θ. Therefore, we construct

a partitioning tree P by recursively grouping sequences in D into disjoint sub-datasets

based on their suffixes. Given a raw genomic data D = {S1, . . . , Sn}, privacy budget B

and user specified height h, the algorithm generates a differentially-private partitioning tree

P . Each partition contains four values: the nucleotide type, the suffix, sequences containing

the suffix and the noisy count associated with it as described in Definition 4.2.1. In Step 1,

we compute the specialization threshold θ = c∗2
√

2h/Bl (two times the standard deviation

of noise) [14], where c is a constant that will be determined through experiments, h is the

height of the tree and Bl is the privacy budget per level.

Step 2 creates a virtual root partition r, where a partition is a data structure formally

defined as follows.

Definition 4.2.1. Partition. A partition is a tuple with four values [Nuc, UNuc, Seqs,

NCount], where:

• Nucleotide (Nuc) is a type of bases - adenine, guanine, thymine, and cytosine A, G,

T, C in a strand of DNA.

• UNuc keeps track of the suffixes of Seqs = {S1, . . . , Sn} for each child partition.

• Seqs = {S1, . . . , Sn} is the set of sequences that ends with the suffix UNuc.

• NCount is the noisy count which is the summation of count of sequences Seqs and

Laplace noise. �

All sequences in D are initially assigned to r.Seqs, r.UNuc is set to Any, and r.UNuc

and r.NCount are set to Null. In Step 3, for each nucleotide type A, G, T and C, we create

child partition v for r. For each child partition v, we assign v.Nuc as the nucleotide type

and v.UNuc as v.Nuc ∪ Parent(v).UNuc. For each sequence, if v.UNuc is a suffix of
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S, then we assign it to v.Seqs. The variance of the Laplace noise is 2 ∗ ∆f/(Bl −
√
Bl),

where ∆f is the sensitivity and (Bl−
√
Bl) is the privacy budget used for partitioning. The

sensitivity ∆f in our algorithm is upper bounded by h i.e., the height of the tree. The noisy

count associated with each partition is the sum of the true count and the Laplace noise. To

build P , we use a uniform budget allocation scheme. We divide the total privacy budget

B equally, i.e., the privacy budget used per level for constructing P is Bl = B/h. One

important observation is that all partitions at the same level contain disjoint sequence sets,

and therefore the privacy budget allocated to a level can be used in full for each partition

in it. In Step 5, for each child partition v created in Step 3, we continue to create further

child partitions if v.Ncount ≥ θ for that partition and the height h > 0. Step 6 outputs a

differentially-private partitioning tree P .

Example 4.2.1. Consider the sequences {S1, ...., S6} shown in Figure 1.1 as the input

sequences. Initially the algorithm creates one root partition r, where r.Nuc is set to Any,

r.UNuc is set to null, r.Seqs contains all the input sequences S1, S2, S3, S4, S5, S6 and

r.NCount is set to null. At level 1, the algorithm creates four new child partitions A,G, T

and C of r, as shown in Figure 4.1. The sequences with corresponding suffixes will be

assigned to the respective partitions. As none of the sequences has A or C as the suffix,

therefore, the partitions with suffixesA andC will be assigned as null in Seqs, the partition

with suffix G will contain S2, S4, S5, S6 and the partition with suffix T will contain S1, S3.

For level 1, θ = 35 and NCount for the partition with suffix G is 40 ≥ 35, therefore we

will further create the child partitions for G. Similarly, depending on the noisy count of

each partition, we decide whether to create further partitions or not until h > 0. �

Privacy Budget Allocation: B-differential privacy can be achieved by applying a

differentially-private mechanism, commonly Laplace mechanism [23], that consumes a
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Algorithm 2 Differentially-Private Partitioning Tree Generation

Differentially-Private Partitioning Tree Generation Algorithm

Input: Genomic Data D = {S1, . . . , Sn}
Input: Privacy Budget B
Input: Height of the tree h
Output: Differentially-private partitioning tree P

1. Compute the specialization threshold θ = c ∗ 2
√

2h/Bl, where h is the height of
the tree.

2. Construct a partitioning tree P with a virtual root partition r:

(a) Assign all sequences in D to r: r.Seqs = {S1, . . . , Sn}
(b) Set nucleotide r.Nuc to Any.

(c) Set r.UNuc and noisy count r.NCount to Null.

3. For each nucleotide type A,C,G and T , create a child partition v:

(a) Set v.Nuc to the nucleotide type.

(b) Set v.UNuc to v.Nuc ∪ Parent(v).UNuc.

(c) For each sequence S in Parent(v).Seqs, assign S to v.Seqs iff v.UNuc is
a suffix of S.

(d) Generate Laplace noise Lnoise = Lap(2× h/(Bl −
√
Bl)).

(e) Set v.NCount to |v.Seqs| + Lnoise, where |v.Seqs| is the number of
sequences assigned to partition v.

4. h← h− 1.

5. While h > 0, for each child partition v created in Step 3, if v.NCount ≥ θ, then
repeat Steps 3 and 4.

6. Return P .

privacy budgetB and calibrates noise according to the global sensitivity ∆(f) of a function

f. To address the existing utility and privacy trade-off, a geometric mechanism [27] was
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proposed which is a factor of an optimal mechanismMu that is user-independent for every

user u [10]. As in our approach, we will be normalizing the generated partitioning tree P

so that leaf nodes would be least noisy, therefore, to construct partitions at each level, we

employ a uniform budget allocation scheme. That is, the privacy budget allocated to each

level l is Bl = B/h, which is used for constructing partitions at level l in P , as well as to

compute the specialization threshold θ.

Nucleotide

(Nuc)

Any

Sequences

(Seqs)

s1s2….s6

Union Nucleotide 

(UNuc)

Ø

Noisy Count

(NCount)

Ø

G s2,s4,s5,s6G 40A nullA 20 T s1,s3T 33 C nullC 12

GG nullG 5AG s5A 6 TG s2T 5 CG s4,s6C 8

GCG nullG 4ACG nullA 2 TCG s6T 1 CCG s4C 6

GCCG nullG 1ACCG s4A 2 TCCG s6T 3 CCCG s4C 2

θ = 35

θ = 4

θ = 7

θ = 5l = 3

l = 2

l = 4

l = 1

Figure 4.1: Partitioning Tree: At level 1, the algorithm creates four new partitions A,G, T
and C of the root partition. The partition with suffix G contains S2, S4, S5, S6 and the
partition with suffix T contains S1, S3. At level 1, since θ is 35, and NCount for partition
with suffix G is 40, which is ≥ 35, therefore we create the child partition for partition with
suffix G. Similarly, we create child partitions until the height h > 0.

Sensitivity Analysis: The sensitivity of a function is defined as the maximum differ-

ence in the function output when one single element in the function domain is modified.

If sensitivity is low, that means, the presence or absence of an individual will change

the outcome very little, so less noise needs to be added in order to ensure privacy and

vice-versa.

Lemma 3. The sensitivity of our algorithm is upper bounded by h.
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Proof: In the output suffix tree, if a sequence is modified, which means we add, delete

or replace one or more nucleotide; then the maximum number of suffixes in a suffix tree

that will be affected is at most k, where k is the length of the sequence. However, the

maximum length of a sequence that we will be inserting in a final suffix tree based on our

algorithm is h, where h is the height of the tree. Therefore, the overall sensitivity of our

algorithm is upper bounded by h. �

4.3 Bottom-Up Normalization

To ensure the utility (usefulness) and consistency of the data, a bottom-up approach is

proposed to normalize the partitioning tree based on the following utility constraint.

Definition 4.3.1. Utility Constraint. The noisy count NCount of any node v in the par-

titioning tree P should be greater or equal to the total sum of its children’s noisy counts.

That is:

∀v ∈ P , v.NCount ≥
∑

u∈child(v) u.NCount �

Algorithm 3 takes the differentially-private partitioning tree P as an input and updates

the noisy count NCount of the partitions from the leaf to the root to generate a normalized

partitioning tree P̂ . Following the bottom-up approach, we start with level l = h−1, where

h is the height of the differentially-private partitioning tree P . The algorithm ensures that

for each non-leaf node in P , the utility constraint holds true.

If the utility constraint described in Definition 4.3.1 is not satisfied, that is, the noisy

count of the parent is less than the sum of the noisy count of its children, then the parent’s

noisy count is updated to be the sum of the noisy count of all its children, as described in

Step 2. We keep normalizing based on the utility constraint until we reach the root partition
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Algorithm 3 Bottom-Up Normalization

Bottom-Up Normalization Algorithm

Input: Differentially-private partitioning tree P
Output: Normalized partitioning tree P̂

Apply a bottom-up approach on P to obtain a normalize partitioning tree P̂:

1. l← h− 1, where h is the height of P .

2. For each non-leaf node v in P at level l, if the utility constraint 4.3.1 is not
satisfied, then update the noisy count of v:

v.NCount←
∑

u∈child(v) u.NCount.

3. l← l − 1.

4. While l > 0, repeat Steps 2 and 3.

5. Return P̂ .

of the tree. In Step 5, a differentially-private normalized partitioning tree P̂ is produced as

an output.

Example 4.3.1. Consider the partitioning tree P in Figure 4.1. At level 3, the partition

with suffix CCG has NCount = 6 and the sum of the noisy count of its children is 8. As

this violates the utility constraint, we update NCount of the partition with suffix CCG to

8 = 2 + 1 + 3 + 2 and similarly, we update NCount of the partition with suffix CG to

15 = 2 + 4 + 1 + 8 as shown in Figure 4.2. We continue to normalize further till we reach

the root partition. �
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Nucleotide

(Nuc)

Any

Sequences

(Seqs)

s1s2….s6

Union Nucleotide 

(UNuc)

Ø

Noisy Count

(NCount)

Ø

G s2,s4,s5,s6G 40A nullA 20 T s1,s3T 33 C nullC 12

GG nullG 5AG s5A 6 TG s2T 5 CGC

GCG nullG 4ACG nullA 2 TCG s6T 1 CCG s4C

GCCG nullG 1ACCG s4A 2 TCCG s6T 3 CCCG s4C 2

θ = 35

θ = 4

θ = 7

θ = 5l = 3

l = 2

l = 4

l = 1

8 (6)

15 (8)s4,s6

Figure 4.2: Normalized Partitioning Tree: At level 3 in Figure 4.1, the partition with suffix
CCG has NCount = 6 and the sum of the noisy count of its children is 8. As this
violates the utility constraint, we update NCount of the partition with suffix CCG to
8 = 2 + 1 + 3 + 2 and similarly, we update NCount of the partition with suffix CG to
15 = 2 + 4 + 1 + 8 as shown in Figure 4.2. We continue to normalize further following
bottom-up approach until level l> 0.

4.4 Suffix Tree Generation

This algorithm takes as an input the normalized partitioning tree P̂ , and based on a top-

down approach it outputs the B-differentially-private suffix tree T . In the normalized

partitioning tree, U.Nuc represents the suffix andNCount represents the normalized noisy

count. We traverse the normalized partitioning tree level-wise and create a branch in the

suffix tree for each suffix present in P̂ . Starting with level 1, for each partition v in P̂

as depicted in Figure 4.2, we use the suffix present in v.UNuc and its corresponding

v.NCount to create a tree branch in the suffix tree T , as shown in Figure 4.3, and add

the associated noisy count at the end. For each added branch, we append the dollar sign $

equal to the noisy count v.NCount. Every path from the root to the square node represents

a suffix. Because the tree is normalized, there is no violation of utility constraint when we

take the parent suffix and add it to the suffix tree i.e., following a top-down approach. Since,

the noisy count of the parent partition is always greater than or equal to the noisy count of its
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Algorithm 4 Suffix Tree Generation

Suffix Tree Generation Algorithm

Input: Normalized partitioning tree P̂
Output: Differentially-private suffix tree T

Apply a top-down approach on P̂ to obtain a differentially-private suffix tree T :

1. Set the initial level: l← 1.

2. For each node v in P̂ at level l:

(a) Use v.UNuc sequence to create a tree branch in T .

(b) Append v.NCount dollar signs $ to the added branch.

3. l← l + 1.

4. While l ≤ h, where h is the height of P̂ , then repeat Steps 2 and 3.

5. Return T .

children, the suffixes maintain consistency. Step 5 outputs a differentially-private suffix tree

T that supports count queries for genomic sequence matching and maintains data utility.
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Figure 4.3: Differentially-Private Suffix Tree: It is generated from normalized partitioning
tree P̂ shown in Figure 4.2
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Chapter 5

ALGORITHM ANALYSIS

In this chapter, we perform the privacy and complexity analysis of our proposed approach.

5.1 Privacy Analysis

We use the composition properties of differential privacy to guarantee that the proposed

algorithm satisfies B-differential privacy as a whole. Any sequence of computations that

each provides differential privacy in isolation also provides differential privacy in sequence,

which is known as sequential composition.

Lemma 4. Sequential composition [59]. Let each Ai provide Bi-differential privacy. A

sequence of Ai(D) over the dataset D provides (
∑

iBi)-differential privacy. �

However, if the sequence of computations is conducted on disjoint datasets, the privacy

cost does not accumulate but depends on only the worst guarantee of all the compositions.

This is known as parallel composition.

Lemma 5. Parallel composition [59]. Let each Ai provide Bi-differential privacy. A

sequence of Ai(D) over a set of disjoint datasets D provides Bi-differential privacy. �

Proposition 5.1.1. Given a privacy budget B, our algorithm generates a B-differentially-

private genomic suffix tree.
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Proof: Our proposed algorithm consists of three phases - partitioning tree generation,

bottom-up normalization and suffix tree generation. We have a fanout f = 4. According

to the Lemma 5, we can use the same privacy budget for each partition at the same level.

Therefore, if we can prove that the summation of the privacy budget used in each parti-

tioning level is less than or equal to B, we get the conclusion that our approach satisfies

B-differential privacy.

In the partitioning tree generation phase of our algorithm, the allocation of the privacy

budget per level is Bl = B/h, where h is the height of the partitioning tree P . The privacy

budget needed for computing the specialization threshold θ is
√
Bl. As all the partitions

on the same level in the partitioning contain disjoint sets of sequences, according to the

Lemma 4, the total privacy budget for each partition to build the noisy partitioning tree P

isBl−
√
Bl. The only time we refer to the original data is when we compute the total count

of the sequences in each partition, and as mentioned above, for each partition we compute

Bl −
√
Bl privacy budget. For the bottom-up normalization and the suffix tree generation

phase, no privacy budget is consumed as we are not utilizing the original data. Therefore,

the total privacy budget consumed can be formulated as:

h∑
l=1

(Bl −
√
Bl)︸ ︷︷ ︸

partition

+
√
Bl︸︷︷︸

threshold

= h×Bl ≤ B

As proven by Hay et al. [35], a post-processing of differentially-private results remains

differential private. Therefore, our approach satisfies B-differential privacy. �

5.2 Complexity Analysis

Proposition 5.2.1. (Complexity). The overall complexity of our proposed approach in the

average case is O(h2 × n).
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Proof. We can determine the time complexity of the proposed approach in terms of

three phases: Partitioning tree generation, Normalization and Suffix tree generation.

Partitioning tree generation phase. In the partitioning tree generation phase, the

runtime complexity is: the cost of generating each partition, times the number of partitions

in the tree. For each level l of the partitioning tree, the maximum number of possible

partitions in the worst case is 4l, and the total number is
∑h

l=1 4l. However, the use of

the specialization threshold θ restricts the exponential growth of the partitions; θ fluctuates

according to the Laplace noise distribution, which balances the number of partitions [25].

Therefore, in the average case, the number of partitions per level is Pl ≈ 4 × l � 4l, and

the total number of partitions is:

h∑
l=1

4× l = 2× h2

Given that we process n sequences per level, the total cost of constructing a partitioning

tree in an average case isO(n×h2), where, n is the number of sequences and h is the height

of the partitioning tree.

Normalization phase. In the normalization phase, we traverse the partitioning tree

once. Therefore, the total cost to construct a normalized partitioning tree in an average

case is:
∑h

l=1 4× l = 2× h2 = O(h2).

Suffix tree generation phase. In the suffix tree generation phase, the runtime complex-

ity is: the time taken to insert a full sequence, times the number of sequences generated. As

stated by [82] [89] [29], a string of length h can be inserted in O(h). In the average case,

the number of full sequences to be generated from the partitioning tree is O(h), where

these full sequences will account for all the trimmed sequences (short inbuilt suffixes).

Therefore, the average computational cost to build a suffix tree is O(h× h) = O(h2).
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Therefore, the overall complexity of our proposed approach in the average case is:

O(h2 × n+ h2 + h2) = O(h2 × n). �

Given that h� n, we show in our experiment that our algorithm scales linearly w.r.t. a

linear increase of n.
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Chapter 6

EXPERIMENTAL EVALUATION

In this chapter, we evaluate the performance of our algorithm. First, we discuss the imple-

mentation details, and then we present the experimental results that include determining the

optimal value of constant c for computing θ, scalability of query processing with respect

to the number of input sequences, efficiency with respect to the privacy budget B and the

utility with respect to the percentage of the query length. We also perform a comparative

evaluation of our proposed algorithm with differentially-private genome data dissemination

through top-down specialization algorithm [88]. We implemented our algorithm in Java,

and our experiments were conducted on a machine equipped with an Intel(R) Core(TM) i7-

6700 CPU @ 3.40GHz processor and 32.0 GB RAM, running Windows 10 64-bit operating

system.

6.1 Datasets

The humane SNPs were obtained from the Human Genome Privacy Challenge [3]. The

chr2 and chr10 datasets contain 311 SNPs and 610 SNPs respectively. The length of the

sequences is 200. The details of the datasets is provided in Table 6.1.
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Table 6.1: Properties of Experimental Datasets

Dataset # of SNP Sequences Length of Sequence
chr2 311 (29504091-30044866) 200

chr10 610 (55127312-56292137) 200

6.2 Determining Optimal Value of Constant c

Recall that θ = c ∗ 2
√

2h/Bl. To determine the optimal value of constant c for the

specialization threshold θ, we randomly generate queries of varying length from the suffix

tree and experiment the data utility for different c values. We started experimenting with

a c > 0.25, and noticed that θ was too big and the condition to partition further was never

satisfied. Therefore, we experimented on c values from the range [0, 0.25]. As shown in

Figure 6.1, the best results in terms of average relative error is for c = 0.15.

0%

10%

20%

30%

40%

50%

60%

0.1 0.15 0.2 0.25

A
ve

ra
ge

 R
el

at
iv

e 
Er

ro
r

     c

h = 200 
B = 1

Figure 6.1: Determining the optimal value of c for computing the threshold θ
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6.3 Scalability

The objective is to measure the runtime of each construction phase in order to ensure its

capability to scale up in terms of the number of sequences. We measure the runtime of our

proposed algorithm with respect to the linear increase in the number of sequences. We set

the privacy budgetB to 1, the height of the tree to 200 and the value of c as 0.15. Figure 6.2

illustrates the runtime of our algorithm with respect to a linear increase in the number of

sequences in the randomized dataset (200k, 400k, 600k, 800k and 1000k records). The

x-axis represents the number of records and the y-axis shows the runtime in minutes. We

observe that the growth in total runtime is linear when the data records increase linearly.

We also observe that the partitioning tree construction phase is the most dominant phase in

the algorithm. However, all the three phases scale linearly with respect to the number of

sequences.
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6.4 Efficiency

We evaluate the efficiency of our proposed approach on the chr2 and chr10 dataset with

respect to the privacy budget B varying from 0.5 to 1.25 at an interval of 0.25. The x-axis

represents the privacy budget B and the y-axis represents the runtime in milliseconds as

shown in Figure 6.3. We observe that for the chr2 dataset the runtime is between 200-

300 milliseconds and for the chr10 dataset the runtime is between 600-700 milliseconds.

However, the runtime is consistent with the increase in B for both the datasets.
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6.5 Utility

We measure the utility of a count query Q over the sanitized dataset D̃ by its relative error

with respect to the actual result over the raw dataset D. The relative error is computed as:

Relative Error =
|Q(D̃)−Q(D)|
max(Q(D), s)

(6.1)

where s is a sanity bound that is set to 1.

We randomly generate 500 counting queries with varying length of sequences. We di-

vide the query set into five subsets such that the query length of the i-th subset is uniformly

distributed in [1, i
5

√
k] and each query is drawn randomly, where k = 200 is the length of

the sequence . All relative errors will be computed based on the average of 10 runs.

The experimental results are generated using both datasets: chr2 and chr10. We use

500 random queries of length l ∈ [1, 14], since i = 5 in our experiments. The first

subset for 20% of query length is [1, 1
5

√
200], which is equal to [1,3]. Similarly, the five

uniformly distributed subsets for 20%, 40%, 60%, 80% and 100% of query length are

[1, 3], [1, 6], [1, 8], [1, 11], [1, 14] respectively. We select five random queries for each sam-

pling and the relative error is the average of 10 runs.

Figures 6.4 and 6.5 depict the average relative error as the value of the privacy budget

B grows from 0.75 to 1.25 at an interval 0.25, and height is set to 100, 150 and 200 with

c = 0.15. The x-axis represents the maximum query length of each subset in terms of the

percentage of
√
k and the y-axis represents the average relative error. We observe that the

average relative error decreases with the increase in B with respect to both the datasets,

and the best data utility is obtained for the privacy budget B = 1.25. This observation

remains true irrespective of the height h of the tree, as shown in both the figures for h ∈

{100, 150, 200}. This is due to the fact that as we increase the privacy budget, we are
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decreasing the noise that is being added and hence the data utility is increased. Also, we

observe that in the chr2 dataset (the smaller dataset), the average relative error is almost

constant for each B and h, regardless of the query length. On the other hand, in the chr10

dataset, given B and h, the average relative error is variable depending on the query length.

This is due to the fact that in the larger dataset the size of the data grows, and more noise is

added to ensure privacy since the noisy count of more partitions will surpass the threshold θ.

Therefore, we conclude that as the data grows, the utility increases but it becomes sensitive

to the query length.

We also compare the performance of our proposed algorithm with the research work

done by Wang et al. [88] for the differentially-private genome data dissemination through

top-down specialization. We use the same dataset as in [88], and make the experimental

settings as close as possible. We set the privacy budget B = 1, and determine the accuracy

of our algorithm as follows:

Accuracy = 1− Average Relative Error (6.2)

where the relative error is computed using Equation 6.1.

Figure 6.6 illustrates that for both the datasets chr2 and ch10, our proposed algorithm

provides higher accuracy than [88]. That is, for B = 1, both the algorithms achieve better

accuracy on the larger dataset (chr10), however our solution achieves a higher accuracy of

up to 70%.
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Summary

In this thesis, we did extensive research on differentially-private data publishing and pro-

pose an approach for privacy-preserving genomic data publishing via differentially-private

suffix tree that maintains effective level of data utility for data mining and is scalable and

efficient. We observe that it is feasible to design an algorithm for differentially-private

genomic data publishing that generates high utility. In the experimental evaluation of our

approach, the best data utility is obtained for B = 1.25 for both the datasets irrespective of

h. As the data grows, the utility is higher but it becomes more sensitive to the query length.

In Chapter 2, we introduce and discuss the terms and definitions that are significant

to our thesis work. We explain genomic data, differential privacy and the mechanisms to

achieve differential privacy i.e., Laplace, Exponential and Gaussian. We also discuss the

relaxations of differential privacy, local differential privacy and the composition properties

of differential privacy.

In Chapter 3, we elaborate the related work that has been done in the field of our

thesis research. We discuss privacy-preserving data publishing and privacy-preserving

data mining with respect to genomic and non-genomic data. We also did a comparative

evaluation of the PPDP and PPDM techniques related to genomic data.

In Chapter 4, we propose our solution for privately publishing genomic data. We pro-
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pose a three-phase approach that includes differentially-private partitioning tree generation,

bottom-up normalization and differentially-private suffix tree generation. The proposed

solution is scalable, efficient and preserves high utility for the data mining tasks.

In Chapter 5, we perform the privacy and complexity analysis of our approach. We

show that our approach preserves privacy and is scalable even with respect to the large

datasets.

In Chapter 6, we evaluate the performance of our algorithm. We performed the exper-

iments to determine the scalability, efficiency and utility of our solution. The experiments

demonstrate that our approach is scalable, efficient and maintains high utility with respect

to count queries.

In a nutshell, the main contribution of this thesis is to propose an approach for privacy-

preserving genomic data publishing via differentially-private suffix tree, which satisfies

B-differential privacy, preserves data utility and is efficient and scalable.

7.2 Looking Ahead

As for future work, it would be interesting to explore how to determine the optimal value

of tree height h in a differentially-private manner instead of having it as a user input, given

that it determines the depth of the partitioning tree P and the length of the suffixes that will

eventually be inserted in the suffix tree. We also look forward to exploring how to support

different types of count queries for searching on the genomic data, as well as other types of

queries, such as fuzzy search matching queries and frequent sequential pattern queries.
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