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ABSTRACT

Atmospheric Rivers (AR) are globally occuring weather features and the primary

mechanism through which water vapor moves from the tropics and subtropics towards

the mid-latitudes, doing so at rates comparable to the world’s largest terrestrial

rivers. AR that encounter mountains often cause extreme precipitation in the form

of rain and snow, high winds, and flooding in many watersheds. They account for as

much as 20-30% of cool season precipitation in the central Idaho Mountains. In the

Northern Hemisphere, seasonal snow cover during Winter and Spring months is the

most variable land surface component in space and time, and acts on the fluxes of

energy and mass into the atmospheric system. To date, there has been little effort to

understand how the land surface snow cover states prior to and during the arrival of

ARs, acting on the surface mass and energy balance, impact the onset, extent, and

evolution of precipitation accumulation during AR events. Using a high resolution

coupled land-atmosphere model, I examine the sensitivity of the precipitation regime

and atmospheric energy balance to an ensemble of realistic snowcover states during

a March 1998 AR case study in central Idaho. The results indicate that snow cover

forcing 1) causes reductions of shortwave radiation and sensible heating that are

balanced by atmpospheric energy transport, 2) increases atmospheric static stability,

and 3) modifies the distributions of total accumulated precipitation by as much as

10mm.
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CHAPTER 1

CONCEPTUAL OUTLINE

Why does it rain or snow? There are three key ingredients: upward motion of air,

dust or aerosols that act as condensation nuclei, and sufficient water vapor to con-

dense and form clouds. Any atmospheric instability that produces upward, vertical

motions of air are called ‘storms’. They can take many forms and are commonly

caused by convection, the large scale interactions between air masses of different

pressures (frontal systems), or the forced movement of air over tall mountain barriers

(‘orographic’ uplift). These three mechanisms are not mutually exclusive, and in

fact occur simultaneously in many instances. Differential heating between mountain

slopes can initiate convection and thunderstorms. Likewise, orographic uplift can be

enhanced by the co-occurrence of frontal uplift. Orographic precipitation plays a vital

role in the hydrologic system across the globe, including the Western United States.

The orographic precipitation signature is written into the ecology – dry desert regions

are found on the leeward sides of large mountain ranges, such as the Sierra or Chilean

Andes. Generally, precipitation totals and rates increase with increasing topography.

Even small topographic features (100 m) sufficiently perturb the atmosphere promote

precipitation. Relief on the order of 1 to 2km can enhance precipitation by as much

as 300% [6]. In addition to height, the amount of enhancement strongly depends on
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the orientation of the mountain slope relative to the oncoming wind direction, the

speed of the wind, and the stability of the atmosphere.

The mid-latitudes atmosphere contains, on average, only about an inch of total

precipitable water at any given time. Not all clouds precipitate, and those that do

are not completely efficient at converting water vapor to precipitation. Generally

only 20-30% of atmospheric precipitable water converts to precipitation during a

storm. This observation begs the question: how do hydrologic extreme events occur,

where storms precipitate inches to several inches over short periods of time? In order

for precipitation totals to exceed fractions of an inch, there must be a mechanism

in place that transports water vapor from a non-local source. Often times this

non-local source is an ocean, but moisture can also be supplied from the continents

in the form of evapotranspiration from plants, soil moisture or open bodies of water.

In the Western US, the land surface ‘recycling ratio’ of moisture is low, meaning that

precipitation starts as evaporation from far away locations.

The land surface records the signal of extreme precipitation events. A river flood

occurs when the rate of surface runoff exceeds the river channel’s capacity for routing

water downstream. The river’s bed and profile has adjusted, over geologic time and

through erosive processes, to the regional hydroclimate and the normal distribution

of runoff. Ignoring the possibility of rain-on-snow or post-fire/anthropogenic land use

changes impacting runoff, it can be safely hypothesized that many floods must result

from anomalous precipitation, and that anomalous precipitation can only come from

either 1) an exceptionally efficient storm, or 2) the anomalous atmospheric transport

of moisture into the region. Even a 100% efficient storm is limited by the roughly one



3

inch of average precipitable water in the atmosphere. So in this simplified conceptual

model we can intuit that anomalous moisture transport is a primary mechanism of

flood generation. Thus, in many cases the flood, and the associated geomorphic

response, begins life in the atmosphere as a pathway of enhanced moisture transport.

Research over the last three decades demonstrates conclusively that extreme

hydrologic events and atmospheric water vapor transport are in fact fundamentally

connected. ‘Atmospheric Rivers’ (henceforth, AR) first hypothesized and observed

in the early 1990s, have been identified as one of the primary mechanisms of water

vapor transport in the mid latitudes. They form in the warm sector of extratropical

cyclones and transport warm, moist air from the tropics and subtropics towards the

mid-latitudes at rates on the order to the world’s largest terrestrial rivers. They

are globally occurring and not particularly rare; at any given time, there are likely

four or five present on the globe [17]. Numerous studies demonstrate the hydrological

significance of AR. They are correlated with flooding [34], extreme winds [48], rain-on

snow conditions [20], avalanches [24] and comprise significant if not the dominant

sources of seasonal water supplies in many regions. In the California Sierra Nevada,

as few as one or two AR events contribute between 30 - 40% of total seasonal snow

water equivalent (SWE) accumulation in the majority of years [18].

In June 2010, a major AR event caused widespread precipitation and flooding

throughout central Idaho’s Payette and Salmon river basins, leading to roadway

failures and the potential for dam management failures. This event highlights some

of the basic scientific questions of AR research and motivates this thesis. How well

can we forecast the hydrologic responses from AR? Are there large scale weather
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features, climate indices or teleconnections associated with AR formation? Where

do ARs cause significant precipitation, and what are the influencing factors? To what

extent do AR control the hydroclimate, and the incidence of hydrologic extremes, in

the intermountain Western US, specifically the SW central Idaho mountains? In this

thesis, I consider the latter two questions. In the first chapter, I explore what factors

impact the precipitation regime of AR events in mountainous SW central Idaho. In

particular, I investigate snow-atmosphere interactions during SW central Idaho AR

events. Acting through the surface energy balance, snow-atmosphere interactions are

responsible for forcing climactic and weather phenomena across a range of spatial

and temporal scales, examples of which I describe in detail later. Snowcover is

highly variable across the intermountain West during the cool season when AR are

active. The first section of chapter two reviews the literature of snow-atmosphere

interactions and describes key components of the snow energy balance. The second

section of chapter two presents the results of AR snow-sensitivity experiments using

a high resolution numerical weather prediction model for a March 1998 AR event.

In the appendix, I review some of the recent AR literature, and in particular focus

on the hydrologic significance of AR events in the Western US. I present results from

an AR detection code that I developed to identify AR events that enter the SW

central Idaho mountains over the past 30 years from climate reanalysis data.
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CHAPTER 2

ROLE OF SNOW-ATMOSPHERE INTERACTIONS IN

CENTRAL IDAHO ATMOSPHERIC RIVER EVENTS

The goal of this chapter is to quantify the role of snowcover forcing in the atmospheric

system during periods of AR activity. This is the first modeling study, to our

knowledge, that addresses this question. Snow modifies the fluxes of energy, in

the form of radiative and turbulent energy exchanges, between the land surface and

atmosphere. In the first section, I review snow-atmosphere interaction literature. I

present the results of a series of numerical modeling experiments of snow-atmosphere

interactions during a central Idaho landfalling AR event from March 1998. This study

uses the Advanced Research (ARW) version of the Weather Research and Forecast-

ing (WRF-ARW) high resolution, convection permitting model coupled with the

Noah-MP land surface model, through which we may query the complex interactions

between the atmosphere and land surface.

2.1 Literature Review of Snow Atmosphere Interactions

Earth’s weather and climate are driven by energy from the sun. Equatorial re-

gions receive higher amounts of solar radiation, and global circulations redistribute
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energy between the latitudes in the form of weather. The latitudinal energy imbal-

ance combined with the tilt of Earth’s rotational axis are the first order drivers of

global climate. The second order driver of Earth’s weather and climate is surface

heterogeneity [44]. On average, approximately half of the solar energy entering

the atmosphere does so from the land surface in the form of thermal radiation

(’longwave’), latent heat associated with energy absorbed/released during the phase

transitions of water, and sensible heat exchange associated with the diffusion of

energy between bodies in contact of different temperatures [44]. Consequently the

thermal, radiative and surface roughness properties of land surface materials, and

regions of large heterogeneity of these surface properties, force the behavior of the

weather and climate. For example, small temperature perturbations in the ocean

system, such as the El-Nino-Southern-Oscillation, are major seasonal influences on

climate and are among the primary mechanisms of seasonal climate predictability

in the mid-latitudes. Mountains influence patterns of precipitation (as described in

Chapter 1) as well as global atmospheric circulation.

The regions of the Earth covered by snow and ice impact weather and climate.

Snow and ice each has a high reflectance in the shortwave spectrum (’albedo’). Snow

and ice reflects more solar radiation relative to non-snow or ice covered surfaces,

promoting cooling at the surface, and thus the persistence and growth of snow and

ice. Once snowmelt begins, another positive feedback mechanism takes place. Snow

crystals metamorphose and grow in size, decreasing albedo, which promotes further

melt. The positive Snow-Albedo-Feedback (SAF) mechanism has contributed to

the complete freezing of the oceans during ‘snowball-Earth’ periods. During the
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Last Glacial Maximum, the SAF promoted favorable climactic conditions for the

persistence of continental glaciers throughout North America, Europe and Asia.

There are many knowledge gaps and deficiencies in the scientific understanding of

seasonal snow’s role as a forcing of weather and climate. The cryosphere includes

both permanent (ice caps, glaciers) and seasonal snow and ice. As agents of climactic

forcing, Earth’s regions of persistent snow and ice have received more research

attention than seasonal snowpacks. During winter, seasonal snow covers a mean

average maximum extent of 47 million km2, over 98% of of which occurs in the

Northern Hemisphere [2]. However, the spatial and temporal variability of snowcover

in the Northern mid-latitudes is large. A single weather event can increase or decrease

snowcover extent within a basin by 100-1000s of km2 and there can be large annual

and inter-annual variation in snow-covered-area (SCA) and snow-water-equivalent

(SWE) [10]. Historically, efforts to understand snow-atmosphere interactions have

been limited by poor representation of snow processes in atmospheric models, spatial

resolution of atmospheric models, and data availability.

2.1.1 Unique Physical Properties of Snow

Snow has many unique properties that control the fluxes of energy, mass and mo-

mentum between the land surface and atmosphere. Snow is one of nature’s best

insulators with a low thermal conductivity that strongly depends on its density,

metamorphic state, and physical structure. The consequences are two fold: the

atmosphere is insulated from ground heat flux, and the ground is insulated from

the atmosphere. Snow has a high thermal emissivity. Emmissivity is defined as the
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ratio of radiant energy flux between a grey body and that of a perfect blackbody.

Fresh snow has an emissivity of .85-.99, very close to that of a perfect blackbody. By

Kirchoff’s law, absorptivity is equal to emissivity. Consequently, snow absorbs nearly

all incident longwave radiation and re-emitts close to the maximum amount allowed

by the Stefan Boltzmann law (proportional to the 4th power of its temperature).

While snow has a low reflectance in the longwave spectrum, it has a high reflectance

in the shortwave portion of the visible spectrum (albedo). The albedo for fresh snow

is typically between .85 and .95. As snow ages, typically the albedo decreases, from

either snow metamorphism, snow-melt, or the deposition of dust and aerosols. Snow

has a high latent heat of fusion (3.34 × 105Jkg1), and thus requires large amounts

of energy to melt. Consequently, conditions in which air temperatures are greater

than 0oC promote sensible heat exchange directed toward snow surfaces, and melting

snowpacks in particular act as large energy sink. As an atmospheric forcing, there

are two important criteria for assessing the effect of seasonal snow: snow covered area

and snow ‘cold-content’, defined as the amount of energy required to completely melt

a snowpack. Even thin snow packs, with low cold-contents, still have a high albedo

and contribute to the SAF mechanism.

2.1.2 Examples of Snow-Atmosphere Interactions

A variety of observational, statistical, and modeling based studies address snow’s

role in the atmosphere system. Over a century ago, British meteorologists specu-

lated that the Indian Monsoon precipitation was anti-correlated with the previous

Spring’s Himalayan snow cover [7]. Subsequently, multiple studies demonstrated
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an anti-correlation between Eurasian (though not exclusively Himalayan snowcover)

and July-August Indian monsoonal precipitation [23] [4]. The positive Eurasian

snow anomaly acts as an energy sink, inhibiting land surface and lower atmospheric

heating, resulting in cold spring temperatures and reduction of the summer thermal

low. Consequently, the ocean-land temperature and pressure gradients necessary for

Monsoonal system formation weaken and reduce total precipitation [5]. A similar

effect may occur in the North American Monsoonal system, which occurs in July and

August across the American Southwest and North central Mexico [22]. However, the

relationship is much less conclusive than for that of the India Monsoon - Eurasian

Snow connection.

Given the large size of the Eurasian continent and the variability of snowcover

across it, research has explored it’s potential role as a forcing of global climate vari-

ability and predictability. Cohen et al (2001) demonstrated that October Eurasian

snowcover is correlated with the strength of the ‘Siberian High’, a semipermanent

synoptic ridge of high pressure that occurs during winter months [11]. Currently, a

statistical sub-seasonal weather prediction models uses October Eurasian snowcover

as a predictor for North American Winter weather through a linkage with the phase

of the Arctic Oscillation [8] [9]. Xu et al (2011) assessed the coupling strength

between snowcover and meteorological variables using a global climate model [52].

In keeping with other studies, the authors find that the strongest coupling strength

generally occurs during Spring and early Summer months when solar insolation is

at the highest; during these times the SAF effect is the strongest. The authors find

that the second mechanism of snow-atmosphere interaction manifests in the snow-soil
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moisture relationship. Spring snow anomalies are associated with Spring and Sum-

mer soil moisture anomalies, which trigger soil-precipitation feedbacks particularly

in regions of strong summertime convective activity. The results demonstrate that

the there exists a coupling between snowcover and precipitation, in addition to a

stronger coupling between snow cover and 2 meter air temperature. The authors do

not posit or explore what physical mechanism explains the coupling.

A variety of studies have attempted to quantify snow cover’s role in depressing

air temperatures at the surface and lower troposphere. Observational studies of

snow and air temperature relationships are difficult to interpret, given the circular

relationship: is a negative air temperature anomaly driven by snow, or does the

negative air temperature anomaly predict the existence of snow? Nonetheless, many

studies have employed statistical approaches to do just this. Walsh et al (1982)

examined surface temperature departures resulting from snow cover as the change

from expected temperature given the 700 hPa height temperature, a height above the

surface that is assumed to be above the planetary boundary layer and independent

of effects of the land surface. Their results suggest that snowcover accounts for as

much as 10-20% of the variance in monthly winters temperatures in regions on the

edge of snow-zones in the United States, and that the effects are greatest in the

late winter [50]. Mote (2007) used an analysis of variance approach to demonstrate

that surface temperatures can be reduced by as much 4.6oC during the daytime in

grass covered, open sites in the United States [31]. Baker et al (1992) examined

surface temperature and radiation components across 11 years at a Minnesota site,

and found that the dominant temperature depressing mechanism was higher snow
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albedo increasing outgoing shortwave radiation. They conclude that snow cover

greater than 10cm decreased 2m air temperature by more than 8.4oC, while 2cm

snowcover decreased 2m air temperature by 6.4oC on average [3]. Using a snowpack

mass balance and energy model, Ellis and Leathers (1999) found that maximum

2m air temperatures without snow present increased by 10 − 15oC and minimum

temperatures increased 1− 2oC. They, however, found little difference between deep

snowcover and lesser snowcover [15]. Walsh and Ross (1988) explored snowcover

impacts on lower atmosphere air temperatures using a model-based approach with

NCAR’s Community Forecast Model, and found that greater prescribed snow covered

area reduced surface temperatures by as much as 5− 10oC for 30 day forecasts [49].

Surface cooling from snow impacts the stability of the atmosphere. An atmo-

spheric temperature profile with an ambient lapse rate greater than the adiabatic

lapse rate is stable, and resists the ascent of air parcels. ‘Inversions’ are exceptionally

stable conditions where environmental temperature increases with height. Snow

cover very effectively radiates longwave radiation, thus promoting surface cooling.

Snowcover, and clear skies in which longwave radiation exits into space, are often

predictive of inversions (Prof. Cliff Mass, personal communication).

Recent modeling efforts have characterized snow atmosphere interactions on re-

gional and local scales. Letcher and Minder (2017) use the WRF regional climate

model to quantify SAF in the Colorado Rockies under current and ‘pseudo-global

warming’ scenarios. They demonstrate that the cooling effect over snow covered grid

cells, driven by reductions in net shortwave radiation, are balanced by increases in the

horizontal energy transport driven by atmospheric motions. Effectively, atmospheric
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motions dampen the cooling response associated with snowcover. In this way, the

SAF mechanism has non-local implications over even non-snow covered regions [27].

The same authors also evaluate the SAF impact on diurnal mountain wind systems.

Diurnal wind systems are prevalent in regions of mountainous terrain, where dif-

ferential heating between low and high elevations establish pressure gradient forces

that typically drive diurnal upslope and downslope winds. The authors found that

numerical models well simulated diurnal patterns of mountain winds in the Colorado

headwaters regions, and that the snow-albedo feedback mechanism increases the

strength of daytime upslope winds and decreases strength of nighttime downslope

winds during non-stormy periods. Using a large-eddy-simulation, Mott et al (2015)

simulated boundary layer processes for regions patchy snow cover over a small (200m)

alpine catchment during both quiet and windy conditions [32]. They used a large

eddy simulation with a 5m horizontal and .5 m vertical spatial resolution and an

integration time of 700s. Their results demonstrate that thermal differences between

snow covered and snow free regions create buoyancy driven winds (katabatic winds)

which they found drive rates of turbulent heat fluxes over snowcovered regions.

Moreover, turbulent kinetic energy above the snow-surfaces are suppressed.

2.1.3 Synopsis of Literature

Seasonal snow is among the most variable land-surface components in the Northern

Hemisphere, both spatially and temporally. Due to the high albedo, low thermal

conductivity, high emissivity, and high latent heat of melting, the results from a

variety of modeling and observational studies demonstrate that snow forces the



13

atmosphere across a wide range of spatial and temporal scales, from the 1000s

of kilometers across an entire season, to the 10s of meters on the order minutes

and hours. The SAF mechanism is generally understood as the dominant mode

of snow forcing in the atmosphere system, especially during Northern Hemisphere

Spring. During the geologic past, there are have been several times in which the

SAF mechanism led to the formation of extensive continental glaciers, likely in

addition to a ‘Snowball-Earth’ scenario. Eurasian snowcover is highly correlated

with monsoon systems and the variability of Northern Hemisphere winter circu-

lation, and a similar mechanism may operate in the American Southwest monsoon

system. Snow depresses surface air temperatures and promotes atmospheric stability,

including the likelihood of temperature inversions. Regional climate modeling studies

demonstrate that snow has non-local, regional influences on weather and climate over

even non-snowcovered regions. While snow’s influence on the climate system is well

documented and researched, snow-atmosphere interactions are poorly understood on

short time scales (hours to weeks) and regional scales [52]. Advances in coupled

land-atmosphere models and the computational feasibility of convection permitting

model resolutions mean that the the atmosphere’s dynamic response to snow forcing

can now be interrogated.
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2.2 AR-Snow Sensitivity Experiments

2.2.1 Introduction

There has been little effort to understand how the land surface snow cover states prior

to and during the arrival of ARs, acting on the surface mass and energy balance,

impact the onset, extent, and evolution of precipitation accumulation during AR

events. Does snow forcing influence orographic precipitation enhancement, and does

the precipitation fall as rain or snow? In this section I test these questions using a

high resolution numerical weather prediction model in a central Idaho study domain.

2.2.2 Methods

WRF Model Description

I used the advanced research version of the Weather Research and Forecasting

model (WRF-ARW, referred to as WRF hereafter) [45] to simulate a March 1998

Atmospheric river event that impacted the Idaho mountains. The WRF model is

a community developed, fully-coupled numerical weather prediction model used for

both for research and operational forecasting. Global weather and climate model

products operate at a coarse (1 - .5 degree grid cells, typically) spatial resolution

and do not capture the complex interactions of atmospheric motions, land surface

processes and topography that profoundly effect temperature and precipitation in

mountainous mid-latitude regions [39] [26]. WRF can be configured as a dynamical

downscaling model, where a reanalysis product or climate projection prescribes the

lateral and initial boundary conditions for the model equations of motion. The
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Figure 2.1: WRF Model Domains. The outer domain has a 3km spatial cell
resolution, and the inner cell has a 1km resolution

WRF grid uses a finer mesh with higher resolution topography than the reanalysis

product. In this way, the interactions between the atmosphere and the topography

can be resolved with increased fidelity. In this configuration, WRF has repeatedly

demonstrated excellent performance at forecasting/hindcasting precipitation and

snow accumulation in a variety of locales, and rivals the skill of interpolated, station

based precipitation products in mountainous regions [39] [13].

We use two nested domains with different resolutions: an outer grid with a

3km spatial resolution that encompasses a large region of the Snake River Basin,

and an inner, 1km spatial resolution domain encompassing the Boise, Payette and

Salmon river basins (Figure 2.1). For this research, we use the Climate Forecast

System Reanalysis (CFSR) to provide lateral and intial boundary conditions to the

WRF model that encompass the AR event in question. CFSR is a state of the art,

global, coupled land-atmosphere-ocean reanalysis product. The CFSR system uses
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Figure 2.2: Experimental Design. For the 1998 AR event, 5 total experiments are
performed: ‘No-Snow’, ‘Low-Snow’, ‘Medium-Snow’, ‘High-Snow’ initial conditions,
as well as a control run with unmodified initial conditions.

advanced data-assimilation schemes to provide high-resolution global best estimates

of atmospheric states at 6 hourly intervals. CFSR is available freely at 0.5 degree

resolution from the NCAR Research Data Archive. Model ‘nests’ are typically used

in mesoscale numerical models for numerical reasons: the boundary conditions for

the innermost 1km domain are driven by the encompassing 3km domain, which

are driven by the .5 degree CFSR boundary conditions. Our model set-up uses 50

vertical eta levels. Eta coordinates are a hybrid terrain-following coordinate system.

For numerical stability purposes it is more advantageous to represent grid cells on

eta levels as opposed to pressure or elevation surfaces.

WRF has many physical parameterization options designed for different model

configurations and research goals. We employ a convection permitting model con-

figuration, meaning that the processes of convection are explicitly resolved by the

equations of motion, as opposed to convective parameterizations that make gross
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Physics Parameterization Option
Planetary Boundary Layer Mellor-Yamada-Janjic (Eta) TKE

Microphysics Thompson [47]
Radiation Community Atmosphere Model (CAM) [12]

Land Surface Noah MP [36]
Surface Layer Monin-Obukhov similarity theory

Figure 2.3: WRF Parameterization options used for this research.

assumptions about updraft velocities. WRF also uses parameterizations to account

for the formation and precipitation of hydrometeors (Microphysics), sub-grid-scale

flux of energy and mass into the atmospheric column from the surface, friction veloc-

ities and exchange coefficients for the calculation of heat terms by the land surface

model and Planetary Boundary Layer (PBL) model, atmospheric heating due to both

solar (shortwave) and terrestrial (longwave) radiation, and a land surface model to

provide heat and mass fluxes at the bottom boundary of the atmospheric column.

Our model configuration uses the Monin-Obukhov similarity theory surface layer

scheme, the Community Atmosphere Model (CAM) short and longwave raditaion

schemes, the Mellor-Yamada-Janjic (Eta) TKE planetary boundary layer scheme,

Thompson microphysics and the Noah MP land surface model. For a more complete

description of each physics option, refer to Skamrock et al (2005) [45].

The land surface model in WRF supplies fluxes of moisture and energy to both

the surface layer scheme and the PBL scheme, the later of which is responsible for the

vertical transport into the entire atmospheric column. The Noah MP land surface

model (LSM) uses a three layer snow model that accounts for melt/refreeze/liquid

water storage capability, in addition to a separate model layer for vegetation with

subgrid parameterizations for canopy processes [36]. In this configuration, Noah-MP
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is set to ingest the hydrometeor phase (snow, rain, graupel) from the microphysics

scheme in addition to rate and total amounts of precipitation. Noah MP models

emissivity and albedo for each grid point, parameters which are used by the surface

layer scheme to model reflected shortwave and upwelling longwave radiation budgets.

Sub-grid snow-cover fraction (between 0 and 1.0) is a diagnostic value calculated in

Noah-MP based on empirically derived SWE/SCA relationships. Noah MP repre-

sents a marked improvement over Noah in modeling snow processes, though notable

biases persist [51]. Our configuration of Noah-MP uses a simple snow albedo model

where snow surface albedo decays with age. For a complete description of Noah-MP,

consult Nui et al (2011) [36].

Experimental Setup

For the March 1998 AR event, I perform a total of 6 simulations. First, I ran one

‘control’ simulation with the standard CFSR surface and snowpack state for this

time period. Then, five ‘SNOWMOD’ scenarios are created, where I prescribe, by

direct insertion, the initial land surface snow covered area, snow depth, snow skin

temperature and density into the model initial condition file (the ‘wrfinput’ file).

The maps presented in Figure 2.5 show the snow-covered area state for each of these

model scenarios. This yields a total of six ensemble members: five modified initial

conditions (SNOWMOD) and the one standard (control) simulation (Figure 2.2).

The lateral boundary conditions are the same for the control and ‘SNOWMOD’

experiments. In this way, the effects of snow cover alone, as opposed to atmospheric

forcing, can be isolated an tested. Model runs are initialized approximately two days
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Figure 2.4: Initial Snow Covered Fraction maps. Clockwise from top left: No Snow
(NS), Medium Snow (MS), Low Snow (LS), High Snow (HS)
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Figure 2.5: Distribution of mean domain wide Snow Water Equivalent (blue) and
Snow Covered Area (red) by day-of-water year between 1986 and 2016. The solid
lines are the median, dotted lines the mean, and shaded regions are the interquartile
range



21

prior to the onset of each precipitation event, allowing for adequate model spin up

of the atmosphere.

The high resolution snow data used in the SNOWMOD cases are copied from

a 30 year WRF climate dataset from the same region, run with the same model

configurations and spatial resolutions [16]. The snow conditions have been selected

to sample the range of possible snow conditions. Figure 2.5 shows the distributions

from the 30 year WRF dataset of domain average snow water equivalent and snow

covered area by day of water year from which the snow states were sampled.

During the control scenario for the March 1998 event, there is sparse snowcover

primarily in the higher elevation regions, and is most similar to the “LS” case.

During the HS case, there is a large coverage of low elevation snowpack. For this

region of the intermountain West, it is typical to have persistent snow during the

winters in mountainous, higher elevation regions, and infrequent low elevation snow

coverage across the Snake River plain. The HS case is snow condition of maximum

snow coverage across across the 30 year WRF dataset (Figure 2.5). The snow skin

temperatures (not shown) for all SNOWMOD members are near 0oCinitially.

Energy Budget Analysis

dE

dt
= FTOA + FSFC −∇ · f (2.1)

To analyze the effects of variable initial snow conditions in the atmospheric system,

we analyze the terms of tropospheric energy budget illustrated in Figure 2.6. This

method has been employed in several other WRF regional climate studies [27][37].

The energy storage, E, of a column of the atmosphere is the sum of it’s sensible,
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Figure 2.6: The components of the atmospheric energy budget. Refer to text for
descriptions of terms.

latent, kinetic, and potential energy. The energy tendency, dE
dt

, must balance the

the energy flux at the top of atmospheric column (FTOA), the net energy flux from

the land surface (FSFC), and the divergence of horizontal energy transport between

columns (∇ · f). The energy tendency is calculated as the difference between the

beginning and end timesteps of the model, divided by the change in time in seconds,

yielding an average flux in terms of watts per meters squared. The terms of Equation

2.1 can be expanded:

E =
1

g

∫ P,sfc

P,top

(cpT + LvQ+ Φ + k)dp (2.2)

FSFC = LWSFC + SWSFC + SH + LE (2.3)



23

FTOA = SWTOA + LWTOA (2.4)

f =
1

g

∫ P,sfc

P,top

(cpT + LvQ+ Φ + k)Vdp (2.5)

Equation 2.2 models the total energy storage within the atmospheric column, inte-

grated from the surface (P, sfc) to the top-of-atmosphere (P, top). P is pressure in

pascals, Lv is the latent heat of evaporation, Q is the specific humidity, Cp is the

specific heat capacity of dry air at a constant pressure, T is temperature in Kelvin,

and Φ is the geopotential energy. The moist static energy is the sum of the terms CpT ,

Φ, LvQ, and is comparatively much greater in magnitude than the kinetic energy, k.

For this reason kinetic energy has been omitted from this calculation. In this energy

budget formulation, positive signs indicate a flux of energy into the atmospheric

column and negative sign indicates energy leaving the column. The surface energy

budget, FSFC is calculated from Equation 2.3, where SH and LH are surface sensible

and latent heat fluxes respectively. If the sum of Equation 2.3 is positive, there

is a net flux of energy from the land surface into the atmospheric column. The

top of atmosphere energy balance (Equation 2.4) is the sum of long and shortwave

radiation. The sign of the longwave TOA term will typically be negative, since

the thermal radiation emitted upwards from clouds and the land surface is much

greater than the small amount of longwave received from the upper stratosphere.

Shortwave radiation (SWTOA) is the difference between incoming solar radiation and

the outgoing solar radiation reflected by clouds or the land surface. In Equation 2.5,
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V is the horizontal wind vector. By definition, a negative ∇ · f indicates a source

of energy to the column. Given that in WRF the momentum equations are energy

and mass conserving, ∇ · f can be approximated by differencing the remaining terms

of Equation 2.1 [27]. Since the energy tendency is calculated between the beginning

and end model timesteps, each term calculated from Equation 2.1 is the average flux

over the model time period.

Atmospheric Stability Analysis

As an air parcel lifts over a mountain range, it cools adiabatically, and, if the cooling is

sufficient to lower the saturation vapor pressure to below that of the partial pressure

of vapor within the parcel, the parcel becomes saturated, and clouds form in the

presence of sufficient cloud-condensing nuclei. If the precipitation forming processes

within the cloud are sufficient, hydrometeors grow and precipitate. At the same time,

as the parcel is pushed across a mountain barrier in a stably stratified atmosphere,

buoyant forces resist the ascent, given that the air mass will be denser than the

surrounding air. In order for the air mass to cross and ascend the mountain barrier,

the kinetic energy of the parcel must be greater than the buoyant restoring forces

that the air mass encounters during lifting. Roe (2005) provides a review of the

dynamics of precipitation in mountainous regions [40]. Precipitation enhancement

also depends on the direction of incoming flow relative to the mountain barrier, the

incoming flow speed and the total height of the mountain barrier.

The Froude number is a useful parameter for characterizing orographic precipi-

tation enhancement [25] [6]. For continuously stratified, nonrotating, inviscid flow
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over a 2d obstacle of height h, the Froude number is given by F = U
Nh

, where U is

the incoming windspeed (m/s) and N is the Brunt-Vaisalla (BV) Frequency. The

Brunt-Vaisalla frequency is a measurement of atmospheric static stability defined by

N =
(

g
θva

∂θva
∂z

) 1
2
, where θ is the virtual potential temperature, z is height, and

g is gravitational acceleration. A higher BV frequency indicates a more stable

atmosphere, i.e, one that is more resistant to the ascent of an air parcel. Low

froude number cases (approximately less than 1) may be indicative of blocked airflow,

where the incoming air mass is inhibited from crossing the mountain barrier, and

precipitation enhancement occurs further upwind of the mountain range. Using a

NWP model, Hughes et al (2009) show that the Froude number is closely related to

precipitation rates and slope heights on California’s coast range [25]. Lueng et al

(2009) speculate that small changes in low level stability, and Froude number, relate

to the distribution of orographic precipitation during Western US AR events [28].

Conceivably, cooling associated with snow cover may increase static stability, modify-

ing the low level flow around terrain and thus changing the orographic precipitation

regime. We test how snowcover impacts stability of the lower troposphere during

periods of AR activity. Since the assumption of two-dimensional flow is not valid

in the complex topography of central Idaho, I do not calculate the Froude number

explicitly, only the BV frequency. Following Hughes et. al 2009, I calculate the BV

frequency for the lower 5 model surface levels and compare amongst SNOWMOD

model scenarios.
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Rain Snow Unit
Control 560.29 1845.23 m
NS 99.28 98.29 %
LS 99.57 101.42 %
MS 98.50 98.10 %
HS 98.16 96.99 %

Table 2.1: Accumulated Precipitation summed across the entirety of domain 2 for
the control run (meters) and % of the control precipitation for SNOWMOD scenarios

2.2.3 Results

The results of the SNOWMOD experiments for the 1998 AR are presented in the

following section. Three primary observations are compared: changes in total accu-

mulated precipitation, atmospheric energy budget terms, and atmospheric stability

between SNOWMOD endmembers.

Overall, during the 8-day period between March 19-27, 1998, WRF domain 2

(Figure 2.1) received an average of 16 mm of total liquid equivalent precipitation,

and the domain wide maximum was 116 mm (approximately four inches), of which

approximately one quarter on average fell in the frozen phase (snow or graupel).

Table 2.1 shows the accumulated precipitation summed across the entire domain for

the control run and the corresponding percentage of the control run precipitation for

each SNOWMOD experiment.

Figures 2.7 and 2.8 show the total accumulated precipitation differenced between

SNOWMOD members and the control run. During the March 1998 AR, the pre-

cipitation differences SNOWMOD experiments and the control differ by +/−10mm

of liquid equivalent of frozen precipitation. The anomalies are on the order of +/−

5mm of liquid water. For the March 1998 AR, where there was little initial snow
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Figure 2.7: Difference in total accumulated snow and graupel (liquid equivalent)
between SNOWMOD scenarios (clockwise from top left) NS, LS, HS, MS and control
run
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Figure 2.8: Difference in total accumulated rain between SNOWMOD scenarios
(clockwise from top left) NS, LS, HS, MS and control run
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cover during the ‘Control’ case, the greatest differences in precipitation occur during

the ‘HS’ case.

To understand the spatial distribution of energy budget terms, I plot map-views

of select terms of the energy budget 2.1 For convenience of interpretation, the

negative of divergence, i.e. convergence, is plotted. In this way, like the other energy

budget terms, positive values of −∇· f indicate sources of energy to the atmospheric

column. The FTOA(Figure 2.10) map-view shows that there there are regions that

have a positive energy flux (more energy entering the column than leaving) and

regions with a negative net flux (more energy leaving the column than entering).

Regions of negative FTOA generally correspond with areas with high initial snowcover

(refer to Figure 2.4 for each scenario’s corresponding initial snowcover map). The

mountainous regions in the Southeast region of the domain during the HS scenario

display the most negative TOA radiation flux. This same region also shows the

most negative surface energy flux at the surface and the most positive convergence

of horizontal energy transport.

Figure 2.12 shows the domain wide average (bar) and standard deviation (whiskers)

of energy budget terms. There is a significant reduction in SWTOA yet only a modest

increase in LWTOA with increasing initial snowcover. Correspondingly, the top of

atmosphere shortwave radiation balance is reduced, and the convergence of horizontal

energy transport increases from the NS case to the HS SNOWMOD case.

To further examine the role of snow forcings on the divergence of horizontal

energy transport, I calculate the difference between the ‘HS’ and ‘LS’ model scenarios

(Figure 2.13) for all timesteps and grid cells across the model run. Blue regions are
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Figure 2.9: Average horizontal energy transport (−∇ · f) for SNOWMOD scenarios
(clockwise from top left) NS, LS, HS, MS. Units are w/m2
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Figure 2.10: Top of Atmosphere Radiation (FTOA) flux for SNOWMOD scenarios
(clockwise from top left) NS, LS, HS, MS. Units are w/m2
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Figure 2.11: Surface Energy Balance (FSFC) flux for SNOWMOD scenarios (clock-
wise from top left) NS, LS, HS, MS. Units are w/m2
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Figure 2.12: Domain Energy Budget Flux Terms for the 1998 AR event



34

grid cells in which the HS case has greater snow covered area than the NS case; red

regions are grid cells where neither the HS nor NS case are snow covered initially.

Again, for the convenience of interpretation, I plot the negative of divergence (−∇·f),

positive values of which indicate a source of energy to the atmospheric column. There

is an approximately linear relationship between decreasing ∆(SWTOA) and increasing

∆(−∇ · f), as well as an approximately linear relationship between decreasing sensi-

ble/latent heat terms and ∆(−∇·f). For grid cells in which there has been no change

in the initial snowcover between ensemble scenarios, the difference in SWTOA is small,

and ∆(−∇ · f) is generally negative. Moreover, the same grid cells undergo increases

in sensible/latent heat fluxes. Unlike SWTOA, LWTOA increases only slightly with

the additional presence of snow.

Atmospheric Stability

Snow covered area (SCA) and the average BV frequency of the lower 5 eta levels are

differenced between all snow covered grid cells in SNOWMOD scenario HS and the

corresponding grid cell in scenario NS for domain 2 (Figure 2.14), for every timestep

for the duration of the model run. A one-sided t-test shows that the mean change in

BV frequency is positive and significantly different than 0 for both binned ∆ SCA

ranges at the < .005 level. Given that the comparison is between the HS and NS

scenarios, the latter of which is totally snow-free initially, there are few grid cells in

which ∆ FSCA is negative, and there is not a statistically significant relationship

between a decrease in ∆ SCA and stability.
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Figure 2.13: The difference between scenario HS and NS Energy Budget Terms versus
−∇ · f. Grid cells where there is no difference in initial snow covered area between
HS and NS are red; Grid cells with higher initial snow in the HS scenario are blue.
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Figure 2.14: FSCA vs BV frequency D02

2.2.4 Discussion

Figure 2.12 and 2.13 shows that the divergence of horizontal energy transport (∇· f )

is the primary mechanism through which reductions in top-of-atmosphere shortwave

radiation (SWTOA) and turbulent energy exchanges (LH, SH) forced by the presence

of snow are balanced. The reductions in FTOA forced by snowcover are primarily due

to snow-albedo; increasing SCA increases the amount of shortwave radiation reflected

from the land surface. Figure 2.13 demonstrates that snow forcing has non-local

effects; even in grid cells where there is no change in snow covered area, energy is

lost through horizontal energy transport, and the surface cools through sensible and

latent heat exchange. In this way, the energy reflected over snow covered regions, or

lost to the snow surface through melt, becomes balanced by advected energy from

other, potentially over non-snowcovered regions.
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While snow has a higher emissivity than the other land surface materials, snow

temperatures are constrained to a maximum temperature of 0oC. For high snow

versus low snow cases, the average emissivity may be higher in the former, but

surface temperatures are lower, meaning there is a net decrease in outgoing longwave

radiation. Figure 2.13 shows that there is in fact a small increase in LWTOA flux

at the top of the atmosphere forced by increased snowcover; this is consistent with

colder snow temperatures radiating less energy relative to non snow covered surfaces.

Figure 2.7 shows that increasing initial snowcover within the domain leads to the

greater variability in frozen precipitation anomaly (SNOWMOD - Control). The

largest differences are primarily in mountainous regions of complex topography,

where orographic precipitation enhancement is in effect. Compared to the snowcover

anomalies, the precipitation anomalies between SNOWMOD members are smaller in

magnitude and occur over smaller, patchier regions.

Domain wide, the differences in total, domain wide precipitation is small between

SNOWMOD experiments and the control (Table 2.1), on the order of three or fewer

percentage points. Moreover, the ratios of snow/rain do not change significantly

between SNOWMOD experiments, showing that the in some places large (+5oC)

change in surface air temperatures caused by anomalous snowcover (not shown)

is not sufficient to alter the phase of falling precipitation. However, it is worth

noting that hydrometeor phase in complex topography is difficult and poorly modeled

in general. The differences in total accumulated precipitation caused by changing

initial snowcover are likely due to cooling from the snow surfaces, which modify the

atmospheric temperature structure and increase static stability. Figure 2.14 shows
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that increased SCA has a statistically significant effect on increasing the stability

of the lower atmosphere. Calculating the Froude number (or Non-Dimensional

Mountain Height) is beyond the scope of this paper and is not straightforward to

compute in the case of 3-D flow across regions of complex topography. However,

the BV frequency is the denominator of the Froude number; assuming incoming

wind speed stays the same, and the safe assumption that mountain height remains

constant, these results indicate that snow may tend to promote conditions leading to

a lower Froude number more characteristic of blocking conditions, where airmasses

are inhibited from crossing mountain barriers. The small changes in atmospheric

stability between model scenarios, captured by the BV frequency, likely explain

the differences in precipitation distributions across the complex terrain. Moreover,

changes in wind direction and speed likely explain the fact that snow has a greater

spatial variablity than rain. Snow has a slower fall speed than rain (and is modeled

in WRF), so there is more time for it to be advected by wind as it falls. Model

configuration and choice of microphysics, planetary boundary and surface layer

schemes may change the results of this research significantly. The effects of clouds

on radiation exchanges are included in WRF, but are not analyzed separately in this

research. Nevertheless it is evident that even during cloudy conditions associated

with periods of AR activity, the effects of surface snow albedo still exerts a large

control on the radiative budget.
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2.2.5 Conclusions

I demonstrate that during inland AR events in the central Idaho mountains, snow

cover impacts the distribution of precipitation, but not the total domain wide mag-

nitude, and forces atmospheric motions that balance reductions in shortwave top of

atmosphere radiation and energy lost to warm snowpacks. These findings match the

results of Letcher and Minder (2015) who found that horizontal energy transport

effectively dampens the snow-albedo-feedback, manifest in an approximately linear

relationship between reduction TOA shortwave radiation forced by the SAF and a

increased −∇ · f [27]. Changes in stability forced by cooling from snowcover, which

modifies the low level flow around terrain, is the likely mechanism that explains the

spatial differences in total accumulated precipitation between SNOWMOD experi-

ments.

This research demonstrates that snow-atmosphere processes are not only impor-

tant from a global or regional climate perspective, but may also be a significant

forcing in AR systems and an element of numerical weather prediction. Following

this observation, this research highlights the need for greater understanding of snow

processes in mountainous regions in complex terrain; the snow albedo feedback is

recognized (by this work and others) as the primary mechanism through which snow

forces the atmosphere, yet, measurements of snow albedo in areas of mountainous

terrain, in addition to the more well known deficiencies in spatially distributed SWE

and SCA, are problematic and poorly constrained.
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2.3 Summary

Seasonal snow is among the most variable land-surface components in the Northern

Hemisphere in both space and time. Snow has a high albedo, low thermal conduc-

tivity, high emissivity, and high latent heat of melting, that impacts weather and

climate across scales. This study tested the role of snowcover forcing during central

Idaho Atmospheric River events using the WRF numerical weather prediction model

coupled with the Noah-MP LSM, configured at a 1km convection permitting spatial

scale. A March 1998 Atmospheric river was modeled with six different snow cover

initial states, representing a range of possible snowcover conditions. The results

demonstrate that 1) reductions in TOA shortwave radiation forced by by snow-albedo

and sensible/latent heat directed into snow drive atmospheric motions, 2) snowcover

has a stabilizing effect on the lower atmosphere, and 3) initial snowcover influences

the geographic distribution of precipitation accumulation during AR events, but has

relatively little impact on the total magnitude of precipitation summed across the

entire domain. The presence of snow can have non-local influences that drive cooling

even in non-snow covered areas.

The results of this work suggest that snowpack may be a significant land surface

variable to constrain for the modeling and forecasting of precipitation. Snow, and

particularly snow-albedo, are poorly constrained variables in mountainous terrain,

and this reseach underscores the need for better remote sensing approaches for

measuing snow albedo, snow extent, and snow water equivalent. This research

also underscores the need for increased understanding of snow’s role in the regional

climate system, for current climates and future climate regimes.
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ATMOSPHERIC RIVER LITERATURE REVIEW
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A.1 Atmospheric River Review

Atmospheric rivers (AR) have received considerable attention during the past two

and a half decades. Atmospheric Rivers were first identified by Newell, who, in

a now seminal 1992 work, termed them “tropospheric rivers” [35]. AR are long

(typically > 2000km) and narrow (300-400km) corridors of enhanced water vapor

that occur within the warm conveyor belt of extratropical cyclone systems. They

are characterized by concentrated water vapor, typically greater than 2cm of total

precipitable water within 2km of sea level, and strong winds [14]. AR are one of

the primary mechanisms through which the atmosphere distributes water from the

tropics and sub-tropics to the mid latitudes. The “river” analogy is apt, given that

AR typically transport water vapor on the order of the world’s largest river systems.

AR are particularly significant in mountainous regions where orographic precipitation

enhancement is in effect, and single events can contribute large fractions of the total

annual snow accumulation in many snow-dominated regions [18]. The presence or

absence of a handful of AR controls water year totals in the Sierra Nevada. AR

are globally occurring and not particularly uncommon; at any given time, there are

likely 5 or 6 AR systems active globally [17]. AR are identified either from satellite

based measurements of integrated water vapor (IWV) or integrated vapor transport

(IVT), which is a function of specific humidity, zonal and meridional wind speed [19].

AR are significant in terms of both water resources and natural hazards. Nu-

merous studies document the relationship between AR, extreme precipitation, and

flooding in the Western United States, and recent research demonstrates a link be-

tween AR and avalanche fatalities [29] [24]. Guan (2010) showed that between 30-40
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% of SWE accumulation in their Sierra Nevada study domain between water years

2004-10 occurred the day before or following an AR observation [18]. Rain-on-snow

flooding is a primary mechanism of flood generation in the Western US [30], and it

has been shown that AR are often the cause of such events. Guan et al 2016 show

that between 1998 and 2014, AR are associated with 17% of precipitation events and

50% of rain-on-snow events in the Sierra Nevada [21]. Snow likely acts as an efficient

conduit for overland flow, and the combination of advected and latent heat exchange

into snowpack from warm rain causes intense melting and runoff generation. There

are demonstrable connections between the incidence of AR and flooding in many

watersheds [34]. In California’s Russian River basin, all seven floods over an eight

year period were assosciated with with landfalling AR events [38]. Understanding

AR response to climate change is an area of ongoing inquiry. In theory, the water

vapor carrying capacity of AR will likely increase at the clausius clapeyron rate

of 7% per K of warming, likely meaning increased precipitation from AR events

[17]. However, climate change’s effects on global circulation patterns remains less

clear. A study of California AR using seven different future-climate models suggest

an increase in the length of AR season, maximum water vapor transport rate, and

temperature increases for extreme AR events. [33]. More work is needed to assess

possible changes in AR frequency.

The majority of AR research focuses on coastal regions, though AR are significant

actors in the intermountain West. Rutz et al (2015) used an AR identification

method and Snotel records to establish that between 25-30% of cool season (Nov-

April) precipitation in the Southwest central Idaho mountains result from inland
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Atmospheric River events. Understanding the pathways of moisture through complex

terrain is a relatively new field of study. [46]. In order to understand the dominant

pathways of AR into the intermountain West, Alexander et al. used a combination of

empirical orthogonal function analysis and back-trajectory analysis to demonstrate

that the dominant moisture routes into the intermountain West are associated with

topographic lows in the Sierra Nevada and Cascade ranges[1]. Rutz et al (2015)

likewise find the same, including a moisture pathway through the Snake River plain.

Rutz et al. find that integrated vapor transport (IVT) has a higher correlation with

precipitation than integrated water vapor (IWV) alone, suggesting that not only

precipitable water, but also incoming flow velocity is an important component of AR

precipitation for this region [41].

Lueng et al (2009) used the Weather Research and Forecasting regional cli-

mate model to simulate several flood producing Atmospheric River events across

the Western United states [28]. Their findings suggest that WRF reasonably well

models orographically enhanced precipitation from AR events. They also speculate

that while AR are typically characterized by moist-neutral static stability, small

differences in stability between AR events influence the low-level atmospheric flow

over terrain and precipitation. Specifically, the authors speculate that the Froude

number, defined by stability and low-level wind speed, are a useful diagnostic for

characterizing orographic precipitation enhancement during AR events.
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A.2 Atmospheric River Detection

To identify historic AR events that have impacted central Idaho, I employed an

AR detection routine that follows the work of Guan [19]. I downloaded a subset of

6-hourly Climate Forecast System Reanalysis (CFSR) from 1979 - 2015 comprising

specific humidity (kg water vapor/ kg air, abbreviated as Q), U (meridional) and V

(zonal) wind velocity from NCAR’s Research Data Archive [43]. The dataset is over

3TB in total. There are many different reanalysis products available, and with minor

modifications the code could work for another dataset. The code uses an Integrated

Vapor Transport (IVT) based identification threshold to define AR (Equation A.1).

IVT is a vector quantity, defined as the inverse of gravity times the integral of specific

humidity Q (kg water vapor/ kg air) times the horizontal wind vector V, from the

surface to the top of the atmosphere.

IVT =
1

g

∫ Ptop

Psfc

Q ·VdP (A.1)

The identification algorithm operates by first identifying regions of IVT that

exceed the background transport. A given grid cell i,j at time t must exceed a

fixed IVT threshold of 100 kg/m/s, or the 85th percentile of IVT from the period

of record. The percentile maps are calculated by finding the 85th percentile of each

grid cell for each month which as interpreted as a centered estimate at the middle of

the month. Then, for a given day, the 85th percentile map is calculated by linearly

interpolating between the current month grid and the next/previous month grid.

Grid cells with lesser magnitudes than the fixed threshold are set to a null value.
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Parameter Value
Location Northern Hemisphere Pa-

cific between 30◦ and 50◦ N.
Min. Length 2000 km
Max Width 1000 km
Min. Mean IVT 250 kg/m/s
Poleward component of IVT
Magnitude

50 kg/m/s

Figure A.1: AR Identification Criteria, based on Guan et al (2015)

Regions of contiguous grid cells that pass the threshold are grouped and assigned

a common label using Python’s Scipy ‘skimage regionprops’ object identification

code. These regions are potential AR features, and subsequently a series of tests are

performed to determine if they meet the criteria outlined in Table A.1. AR objects

that meet the criteria are logged in a database. Overall, 3431 AR events intersecting

the North American coast between 30 and 50N are identified between 1980 and 2010,

the equivalent of roughly 7 per month. Maps of three select AR events are shown in

Figure A.2. The color shading corresponds with the magnitude of the IVT vector,

and the arrows show IVT direction.

A.3 Summary and Conclusion

Atmospheric rivers can cause disastrous flooding, landslides and avalanches, yet they

also bring rain and snow necessary for many regional water supplies. Atmospheric

Rivers area globally occurring phenomena and are not particularly rare– 5 or 6 are

occurring at any time. Yet, the bulk of the research has focused on California’s Sierra

Nevada, where only a handful of AR per year often result in significant fractions
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of total precipitation accumulation. AR cause 25-30% of cool season precipitation

in the central Idaho mountains and precipitation is highly correlated with mean

IVT of the AR. [42][41]. The dominant AR tracks into the intermountain west

are associated with topographic lows in the Sierra and Cascade mountain ranges.

Modeling and observational studies suggest that the orientation of AR with respect

to topography is an important mechanism that influences the intensity of orographic

precipitation associated with AR, and that low level stability, and the Froude number,

are important diagnostics of the orographic precipitation enhancement during AR

events.
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Figure A.2: A selection of AR events modeled in this thesis. Axes are lat/lon
coordinates, color shading corresponds with the magnitude of IVT, and the arrows
indicate IVT direction. Values in box refer to mean values of IVT, object length,
wind direction, and wind direction variance. The black line is the object centerline.




