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ABSTRACT 

Cellular signaling pathways provide cells with the means to sense their environment 

and communicate with other cells. The Notch signaling pathway is comprised of a set of 

protein machines which work in unison to coordinate cellular processes in response to 

stimuli coming from neighboring cells and changing microenvironmental conditions. 

Notch signaling is an important mode of cellular communication which is crucial to many 

processes involved in development and disease. During Notch activation, information 

about the extracellular environment is fed into the cell and relayed to the nucleus through 

a number of biochemical processes. The information-rich messages carried by Notch 

signaling is used to make genetic decisions through alteration of gene expression which 

ultimately controls cellular physiology. Critical to Notch function, are a series of regulatory 

steps which serve as points of integration where other sources of information are fed into 

the Notch pathway. In this dissertation, I describe five years of work, where I sought to 

discover new ways in which Notch signaling is regulated. Through this work, I have come 

to regard Notch signaling as a highly tunable mode of cellular signal transduction, which 

harmonizes extracellular cues in order to orchestrate cellular behavior. Here, I described a 

series of experiments, performed by myself and my collaborators, which have served to 

uncover novel regulatory mechanisms by which Notch signaling is controlled. Through 

bettering our understanding of this critical mode of cellular communication, we prime 

science with the knowledge which may one day fuel the development of new therapeutic 

strategies to combat Notch-related diseases.
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CHAPTER ONE 

Introduction 

 

Why We Study Cell Signaling Pathways 

Within the body there are many levels of organization. Multicellular creatures are 

made up of organs, which are comprised of various tissues that are composed of cells and 

extracellular matrices. Organ function and organization requires tight coordination 

between cells within the organ’s tissues. Critical to the success of the organism is the ability 

of cells to communicate, or signal, to one another. Cells within the body are highly 

specialized, meaning they have specific jobs which they need to perform. The ability of a 

cell to perform a given function depends on its capacity to perceive and react to an 

assortment of stimuli. Cells are stimulated in a variety of ways, and are highly tuned in 

order to facilitate an appropriate response to a specific set of stimuli amongst a cacophony 

of signals. Biochemical signals move through the body, from one tissue to the next, in order 

to regulate bodily functions. These signals are transmitted through cells by molecular 

machines, which are coordinated into cell signaling pathways. During signal transduction, 

an initial signal can be targeted to a particular cell type, which then converts the information 

into a different type of signal, which can be targeted to a different cell type. Cell signaling 

pathways allow cells to interpret a variety of signals in order to mount an appropriate 

response. 
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When components of cell signaling pathways act abnormally it causes aberrant 

signal transduction, and in turn disturbs tissue function. Improperly functioning proteins 

can cause the dissemination of inappropriate signals. Even the amplitude of a signal being 

too strong or too weak can interrupt tissue activity. This disruption to normal physiological 

activity is at the root of many diseases. Additionally, because signaling pathways are 

natural cellular control circuits, signaling proteins serve as druggable targets for therapeutic 

agents which fight disease. Considering that the human body is made up of approximately 

37 trillion cells 1, all communicating and working together, it is imperative that science 

understands the principles behind cellular communication. In doing so, we equip ourselves 

with the knowledge and tools that aid medical advances which are used to treat and cure 

disease. 

Notch Signaling 

Multicellular creatures have evolved a multitude of diverse cell signaling pathways 

which coordinate tissue function. One such pathway, Notch signaling, is a highly regulated 

signal transduction system present in all animals. Being an ancient pathway, Notch 

signaling components first evolved in single-celled eukaryotes before the rise of 

multicellularity and are present in the closest living metazoan relatives 2. Notch has played 

an important role in metazoan evolution as evidenced by the fact that proteins of the Notch 

pathway are highly conserved among animal species 3,4. The Notch cascade is responsible 

for governing cell fate decisions, proliferation, and apoptosis and thus plays a vital role in 

development and disease 4. Paramount to Notch’s ability to regulate the aforementioned 

cellular processes is the dynamic regulatory nature of the Notch interactome. 
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One commonality amongst various cell signaling pathways is that they are 

comprised of a myriad of molecular machinery which responds to specific stimuli in order 

to elicit a cellular response. Generally speaking, signaling pathways employ a receptor 

protein whose job it is to react to an information containing stimuli, often times a ligand. 

This stimuli evokes a response from the receptor which passes biochemical information 

along to other proteins within its signaling network. Notch signaling is a prototypical 

pathway, in that it responds in exactly this manner to stimuli. Here, the Notch receptor 

responds to a touch-induced signal sent from a signal sending cell, which uses a 

transmembrane ligand to engage the transmembrane Notch receptor of an adjacent cell 

(figure 1.1A). This type of signaling mechanism, which responds to direct cell to cell 

contact, is known as juxtacrine signaling. Mammals have four different forms of Notch 

receptor protein (Notch1-4). The Notch receptor contains many different domains (figure 

1.1B), which afford the protein specific functions 5. In mammals, Notch ligand diversity 

consists of several transmembrane ligands, including two Jagged ligands (Jag1 and Jag2) 

and three Delta-like ligands (DLL1, DLL3, and DLL4). Upon ligation, the signal receiving 

cell’s Notch receptor then undergoes a series of proteolytic cleavages, first by ADAM and 

then by γ-secretase, which releases the intracellular portion of the protein from the 

membrane 6–8. Following proteolytic processing, the Notch ligand will be endocytosed 

back into the signal sending cell, taking the extracellular domain of the Notch receptor with 

it 9,10. The Notch intracellular domain (NICD) is tasked with the job of relaying the signal 

to the nucleus. 

Notch signaling affords one cell the capacity to alter gene expression in a 

neighboring cell through a physical interaction. Upon release from the cell membrane, the 
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NICD undergoes nuclear translocation 11. After moving into the nucleus the NICD binds 

the transcriptional co-factors Recombining Binding Protein Suppressor of Hairless 

(RBPJ/CSL) 12 and Mastermind-Like (MAML) 13 forming a ternary complex which 

induces target gene transcription 14,15. In addition, this ternary complex can recruit the 

histone acetyltransferase p300/CBP which facilitates chromatin acetylation and Notch 

target gene expression 16. RBPJ acts as a transcriptional repressor in the absence of NICD, 

but is transformed into a transcriptional activator through NICD binding 17. 

Mechanistically, assembly of this transcriptional complex is thought to take place in a step-

wise manner. First, the RBPJ-associated module (RAM) domain of the NICD binds RBPJ, 

followed by NICD ankyrin domain adhesion to RBPJ 18. Together, NICD and RBPJ create 

an interface with a long groove which facilitates MAML recruitment 19. Bound to DNA, 

this ternary complex activates transcription of Notch target genes, such as hairy and 

enhancer of split (HES) genes and hairy/enhancer of split related with TYRPW motif 

(HEY) genes 20. These genes code for proteins which act as basic helix-loop-helix 

transcriptional repressors that are well-known for their suppression of tissue specific 

transcriptional activators 21. Through Notch target gene transcription, activation of Notch 

signaling can turn on or off genetic switches which directly affect cell-fate decisions 22. 

Phosphoregulation of Notch Signaling 

After a protein is produced, it can undergo a number of post-translational 

modifications, which alter its function. Phosphorylation events are one of the most 

common ways in which proteins are post-translationally modified. Kinases are enzymes 

which chemically attach phosphate groups to a substrate protein. Generally, 

phosphorylations occur at serine, threonine, or tyrosine amino acids. This type of 
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modification has regulatory implications for the phosphorylated protein, as 

phosphorylations can enhance or inhibit a protein’s activity, or even cause it to take on a 

new function. Many interesting studies have demonstrated the phosphoregulation of Notch. 

Perhaps the best studied way in which phosphoregulation alters Notch activity is 

by mediating the stability of the NICD. There have been several studies which have 

connected Notch phosphorylation with its proteasomal degradation, whereby 

phosphorylations act as a signal which prime the protein for destruction. Generally, it is 

the phosphorylation of the NICD PEST domain that regulates its stability. This is due to 

the recognition of phosphorylated residues by the E3 ubiquitin ligase F-box and WD repeat 

domain-containing 7 (FBW7/Sel-10) which ubiquitinates the phosphorylated NICD, thus 

marking it for proteasomal degradation 23. The transcriptional co-activator MAML is 

thought to induce both the disassembly of the tripartite complex and proteolytic turnover 

of NICD immediately following transcriptional induction 24. MAML facilitates NICD 

turnover by recruiting cyclin-dependent kinase 8 (CDK8) to the Notch transcriptional 

complex 25. Serine and threonine phosphorylation of the trans-activation domain (TAD) 

and PEST domains of Notch1, by CDK8, acts to stimulate FBW7/Sel-10 induced NICD 

degradation 25. Another serine/threonine kinase, known as integrin linked kinase, 

phosphorylates NICD and reduces its stability through FBW7 mediated proteasomal 

degradation 26. While the phosphorylation-induced proteasomal degradation on NICD is 

well documented, the opposite mechanism has been observed, whereby phosphorylation 

protects the NICD from destruction. Here, Glycogen synthase kinase-3β phosphorylates 

threonine 2512 and this activity protects NICD from degradation 27. 
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As it pertains to Notch signaling, not all kinase activity has been linked to the 

degradation of the NICD. Some kinases phosphorylate Notch in order to perturb Notch 

transcriptional activity through disruption of the ternary complex. Whereas PEST domain 

phosphorylation regulates stability, here it is phosphorylation of the ankyrin domain which 

governs ternary complex formation. It has long been established that hyperphosphorylated 

NICD can be detected in the nucleus associated with RBPJ 28. It wasn’t until years later 

that mechanistic insight was uncovered pertaining to how the nuclear behavior of NICD 

was altered by its phosphorylation status. A serine/threonine kinase, Casein kinase 2 

(CK2), phosphorylates the NICD in hierarchical fashion. First, CK2 phosphorylates serine 

1901 within the ankyrin domain, and then produces a second phosphorylation at threonine 

1898, which stimulates dissociation of the ternary complex from DNA 29. This disruption 

of ternary complex association causes a reduction in Notch mediated gene transcription 29. 

Similarly, a mitogen-activated protein kinase member, known as Nemo-like kinase (NLK), 

also phosphorylates the NICD at multiple sites. NLK processively phosphorylates the 

NICD on residues C-terminal to the ankyrin domain, in both its membrane-bound and 

liberated forms, in order to inhibit NICD-MAML binding and suppress Notch signaling 30. 

While most of the research regarding phosphorylation of the Notch protein has 

focused on serine/threonine phosphorylation, there exists scant evidence that Notch is 

phosphorylated on tyrosine residues. Through broad spectrum phosphoproteomics studies, 

where the investigators purified all of the phosphotyrosine proteins from cells and 

identified them using mass spectrometry, Y2074 and Y2145 on the Notch protein was 

discovered to be phosphorylated 31,32. Although, the kinase responsible for phosphorylation 

of these sites was unknown at the time. Two cytoplasmic tyrosine kinases have been shown 
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to interact with the Notch protein. Abelson kinase (ABL) is a tyrosine kinase which has 

been observed to tyrosine phosphorylate the Notch protein 33. The activity of another 

tyrosine kinase, known as Src kinase, synergizes its activity with Notch signaling in order 

to coordinate fruit fly development 34. Additional research has uncovered that Src kinase 

responds to extracellular factors which stimulate cell growth in order to regulate Notch 

receptor maturation in the golgi apparatus 35. Yet another study, discovered that Src 

physically interacts with the Notch protein, and that Notch has phosphotyrosine residues 

which can be abated by disrupting Src activity 35. Through these reports, tyrosine 

phosphorylation of Notch has been documented, but five reports are a tiny fraction of the 

more than 8,000 Notch-specific studies in the literature. Since the insight gained from the 

study of serine/threonine phosphorylation of the Notch receptor has advanced our 

understanding of Notch modulation during development and disease, more work should be 

done to investigate the implications of tyrosine phosphorylation of the Notch receptor. 

Notch Crosstalk 

Signaling pathways do not work in an autonomous fashion, rather, they coordinate 

with the machinery of other signaling mechanisms. In the same way that multiple circuits 

can be controlled by one switch, so too can multiple signaling pathways be controlled by a 

single stimuli source. Proteins which regulate Notch signaling components are shared 

amongst multiple signaling pathways. In this way, information from a variety of stimuli 

can be fed into Notch signaling. Notch is able to respond to signals emanating from Wnt, 

Hedgehog, TGFβ, VEGF, hypoxia, and integrin signaling pathways 36,37. Thus, Notch 

responds to multiple signals and integrates this information to mount an appropriate 

cellular response. 
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What Can Notch Exploration Offer Medicine? 

Notch signaling is instrumental for proper embryonic development as well as the 

progression of many diseases. A well-studied example of Notch functionality occurs during 

angiogenesis. Angiogenesis is the growth of new blood vessels from existing structures. 

Notch responds to proangiogenic stimuli to coordinate endothelial migration, growth, and 

differentiation 38. Angiogenesis occurs during development, but also is stimulated in tumor 

growth. Angiogenesis can be induced through both stimulation 38 and blockade 39 of Notch 

signaling. It is thought that differential Notch ligand expression is the main mechanism by 

which blood vessel cells communicate in order to coordinate their growth 40. This 

demonstrates that tight regulation of Notch signaling is essential for governing 

angiogenesis. During cancer treatment, anti-angiogenic therapies which target Notch 

signaling components are employed to disrupt the vascularization of tumors 41. 

Mutations within Notch signaling proteins are responsible for causing many genetic 

disorders. Mutated proteins can function inappropriately either by disrupting or over-

activating signaling output. Cerebral autosomal dominant arteriopathy with subcortical 

infarcts and leukoencephalopathy (CADASIL) is a brain disorder which causes stroke and 

dementia. Patients with this disorder have been found to harbor mutations within the 

Notch3 gene 42. Additionally, Notch signaling has also been implicated for its regulation 

of cancer growth. One of the best known examples occurs in a type of leukemia called T-

cell acute lymphoblastic leukemia (T-ALL), which has been heavily connected with 

aberrant Notch activation 43. Over 50% of T-ALL patients harbor a Notch receptor 

mutation 44. In order to combat the disease, several therapeutic strategies have been 

developed which directly inhibit Notch signaling machinery 45,46. While mutations within 
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the Notch receptor have been linked with CADASIL and T-ALL, it is mutations found in 

the Notch ligand Jagged1 which causes Alagille syndrome 47. Alagille syndrome is a 

genetic disease that affects many parts of the body, most notably the liver, where 

abnormally developed bile ducts cause liver damage 48. However, in patients afflicted with 

Alagille syndrome who harbor no Jagged1 defects, it is mutations within Notch2 which 

causes the disease 49. These various mutations of Notch machinery cause abnormal Notch 

signaling, and in turn disease. By furthering our understanding of the molecular events 

involved in Notch signaling, we lay the foundation on which new therapeutic strategies to 

treat these disorders will be built. 

Integrin Signaling 

Integrins are transmembrane proteins which serve as adhesion proteins and 

mechanoreceptors at the cell surface. These mechanosensors bind components of the 

extracellular matrix, inducing cytoskeletal rearrangements that causes the integrin complex 

to tug on matrix proteins 50. This application of physical force, about 40 piconewtons, is 

required to fully activate the integrin 51. Once activated, a multitude of intracellular 

components carry out integrin signal transduction. Integrins are heterodimeric proteins 

which are comprised of an α subunit and a β subunit. There are 18 α and 8 β subunits in 

vertebrates, which can combine to form 24 different αβ heterodimers 52. Each integrin has 

the ability to bind multiple ligands, and integrin ligands are usually recognized by multiple 

integrins. This has led to the grouping of integrins based on their substrate specificity. 

αVβ3 integrin recognizes tripeptide Arg-Gly-Asp (RGD) motifs in extracellular matrix 

molecules such as vitronectin and fibronectin 53. RGD motifs which are insolubilized 

within extracellular matrix proteins activate RGD binding integrins such as αVβ3 integrin, 
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whereas solubilized RGD peptides can be used to inactivate them 54. αVβ3 integrin is 

upregulated in tumor vasculature and has been robustly implicated for its role in 

angiogenesis 55,56, a process which Notch is a known regulator 57. The β3 integrin subunit 

is an activator of the intracellular tyrosine kinases Focal Adhesion Kinase (Fak) 58 and Src 

family kinases 59,60. 

Src Family Kinases 

Src kinases are thought to have appeared in metazoans over 500-600 mya 61 with 

their evolution being an important step in the rise of multicellularity 62,63. However, new 

evidence suggests that Src kinase orthologs are present in choanoflagellates 64, thus their 

evolution predates multicellularity affording ample time for coevolution with other 

components of the integrin adhesion/signaling machinery. The Src family has nine 

members of non-receptor tyrosine kinases including c-Src, Blk, Fgr, Fyn, Hck, Lck, Lyn, 

Yes, and Yrk 65. Src kinases share a conserved domain organization. From N- to C- 

terminus Src family members contain: a SH4 membrane targeting domain which contains 

a myristoylation site, a 50-70 amino acid unique domain which is divergent among Src 

family members, a SH3 domain that mediates ligand binding, a SH2 phosphotyrosine 

recognition domain which is important for both substrate recognition and autoinhibition, a 

SH1 tyrosine kinase domain, followed by a C-terminal regulatory segment 65,66. These 

kinases interact with, and phosphorylate, a whole host of membrane bound 67, cytosolic 68, 

and nuclear proteins 69. One study found that c-Src interacted with Notch1 and Notch1 had 

phosphotyrosine residues which could be abated with Src inhibitors 35. This interaction was 

determined to occur between the kinase domain of c-Src and the ankyrin domain of Notch1 

35. However, no specific tyrosine residues were implicated as c-Src substrates in this study. 
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The ankyrin domain of N1ICD is important for RBPJ trans-activation and transcriptional 

activity 70 suggesting that Src may be able to modulate Notch transcriptional output through 

its interaction with the N1ICD ankyrin domain. 

Polyphenols as Nutraceuticals 

There exists many compounds within foods which act as micronutrients providing 

the body with health benefits. Some of these molecules have been studied for their 

medicinal properties. The term nutraceutical has been given to these promising compounds, 

and an entire industry has begun producing and marketing these molecules as health 

supplements. It is thought that supplementing the diet with nutraceuticals may help prevent 

or treat disease. However, their mechanisms of action are often not well defined or 

completely uncharacterized. While these nutraceuticals escape regulation by the US Food 

and Drug Administration (FDA), it is up to science to scrutinize what impact these 

compounds have on human health. 

Resveratrol is a polyphenolic compound produced by plants such as grapes and 

peanuts 71, where it acts to protect the plant from pathogens 72. Besides plant scientists, 

nutritionists have known about resveratrol for decades. Since resveratrol is ingested 

through the intake of wine, peanuts, and many other plant-based products, what effects this 

molecule has on the human body has been the subject of investigation for decades. In 1992, 

an epidemiological study compared the diets of various populations worldwide and noted 

the incidence of heart disease within these groups 73. This seminal paper coined the term 

‘the French paradox’, which describes the paradoxical phenomenon in which French 

populations displayed a lower incidence of heart disease, even though they consumed 

equivalent amounts of saturated fats and alcohol compared to other western populations in 
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the study. In this paper, the authors suggest that high levels of wine consumption by the 

French people may be protective against heart disease. Since alcohol intake among these 

protected populations was no different than that of afflicted populations, researchers began 

to identify other compounds within wine in order to test their effects on heart disease. 

Out of this work, resveratrol was isolated from wine and found to be highly active 

in human tissues by cellular biologists. The formation of atherosclerotic plaques is a major 

symptom of heart disease. Atherosclerotic plaques are formed when healthy, elastic arterial 

walls become rigid and swollen through an inflammatory process in which fats, calcium, 

and white blood cells become deposited in the vessel wall 74,75. Resveratrol has been shown 

to be therapeutic for processes involved in atherosclerosis, including cholesterol 76 and 

white blood cell deposition 77,78 in the arterial wall. Thus, wine consumption is thought to 

be heart-healthy in part due to its high levels of resveratrol 79. 

Besides its ability to inhibit atherosclerosis, resveratrol has been reported to 

promote cardiovascular health in general 80. In addition, resveratrol has been identified as 

an anti-oxidant 81, anti-cancer 82,83, anti-angiogenic 84–87, anti-inflammatory 88, anti-aging 

89, and neuroprotective 90–92 agent. This has led to over the counter sale of resveratrol, often 

times being marketed as a heart-healthy dietary supplement. Even the cosmetic industry 

has adopted resveratrol, marketing it as a key ingredient in anti-aging skin creams 93. 

However, the molecular signaling pathways by which resveratrol promotes health are not 

well defined 74. 

Resveratrol is not the only polyphenol which has been reported to provide health 

benefits. Attempts have been made to divide polyphenols into subclasses in order to 

characterize their health benefits 94. Along with resveratrol, other stilbenes such as 
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piceatannol and pterostilbene are found in grapes 95 and blueberries 96. Aside from 

stilbenes, another large class of polyphenols known as the flavonoids have been studied for 

their potential use as nutraceuticals 97. The flavonoid class of compounds can be further 

subdivided into subclasses such as flavones, isoflavones, and flavonols. Apigenenin is a 

flavone found in several plants, but it is particularly abundant in chamomile flowers 98. 

Chrysin is a flavone found in honey and many plants, and is commercially derived from 

passion flowers of the genus Passiflora 99. Another flavone, luteolin, is one of the most 

common flavonoids known and is found in hundreds of species of edible plants 100. The 

isoflavone, genistein, is found in soy and beer and is also known to acts as a phytoestrogen 

101. The flavonol, myricetin, in found in various plant-derived products such as wine and 

nuts 92,102. Quercetin is another flavonol, which is abundantly produced in onions 103. While 

all of these compounds have been characterized for their various disease fighting 

properties, it is rare to find reports comparing the potency of different polyphenols 

simultaneously. Furthermore, while many of these polyphenolic compounds have 

promising therapeutic potential, the molecular mechanisms responsible are not well 

understood. 

Polyphenolic Regulation of Notch and Integrin Signaling 

Several polyphenolic compounds with similar structures have been shown to 

control Notch signaling. Compared to other polyphenols, resveratrol has received the most 

attention for its role in regulating the Notch cell signaling pathway 104,105. In a high-

throughput screen of over 7,000 compounds attempting to find Notch activating molecules, 

resveratrol demonstrated the greatest capacity to stimulate Notch activity 106. Chrysin has 

been shown to enhance NICD protein levels and turn on Notch target gene transcription 



14 

 

107. Genistein can regulate cellular migration through regulation of Notch 108. Luteolin 

suppresses cancer development by regulating Notch 109,110. Pterostilbene exerts anti-cancer 

activities through stimulation of Notch activity 111. All of this evidence suggests that many 

dietary polyphenols are able to alter Notch signaling. 

Aside from Notch signaling, polyphenols have also been connected with integrin 

function. Integrin αVβ3 bears a receptor site for resveratrol within the extracellular domain 

of the β3 subunit 112. Resveratrol binding to αVβ3 integrin inhibits atherosclerosis 84. 

Apigenin attenuates cancer cell migration through regulating integrin activity 113,114. 

Chrysin inhibits αIIbβ3 integrin function, serving to disrupt platelet aggregation 115. 

Luteolin inhibits integrin β3 function during cancer cell migration 116. Quercetin alters 

integrin expression levels in order to decrease fibrotic wound healing and scar tissue 

formation 117. Polyphenolic regulation of integrin signaling provides yet another 

mechanism of action in which these molecules may provide health benefits. 

Aim and Scope 

Aim 

The aim of this project was to discover new regulatory mechanisms of Notch 

signaling. Little is known about the precise mechanisms by which Notch signaling 

responds to the cellular microenvironment. Our research group focuses on understanding 

how Notch signaling integrates messages coming from adjacent cells with the information 

contained within the cellular microenvironment such as hormones, cytokines, shear stress, 

hyperglycemia, hypoxia, and the extracellular matrix. Thus, we study Notch signaling with 

the view that it acts as a sensor of the cellular microenvironment. Previously, we had 

discovered that an extracellular matrix-associated protein, Microfibril-associated 
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glycoprotein 2 (MAGP2) is able to bind αVβ3 integrin, causing an inhibition of Notch 

signaling through an unknown mechanism 118. While we had discovered how a MAGP2- 

αVβ3 integrin interaction at the cell surface was somehow able to inhibit Notch signaling, 

the cytosolic events leading to this inhibition were unknown. Much of the work in this 

dissertation was aimed at discovering what intracellular machinery linked integrin 

signaling with Notch activity. While Notch signaling is heavily involved in many 

developmental and disease processes, we know almost nothing about its regulation by 

tyrosine kinases. There exists only a couple of reports which have observed the tyrosine 

phosphorylation of the Notch receptor. Additionally, since resveratrol has been shown to 

activate Notch signaling, we sought to test whether other polyphenols act as Notch 

regulators. 

Scope 

In chapter II, we describe a novel mechanism by which Src kinase regulates Notch 

signaling activity. We began by examining the mechanism by which MAGP2 and αVβ3 

integrin are capable of coordinating Notch activity. We discovered that Src, a cytosolic 

tyrosine kinase, responds to integrin activation and phosphorylates the Notch intracellular 

domain. To date, there exists only a couple of reports which have observed the tyrosine 

phosphorylation of the Notch receptor. In this chapter, we identify specific tyrosine 

residues on Notch which Src phosphorylates. We found that these sites of phosphorylation 

serve to decrease Notch transcriptional potency. This is carried out through interference of 

MAML recruitment by phosphorylated NICD. All of this reveals new insight into a little-

known crosstalk mechanism between Src and Notch signaling. 
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In chapter III, we investigated the Notch activating ability of nine polyphenolic 

compounds. We then compared how these polyphenols affect endothelial cell biology. 

While studies have previously addressed how some of these molecules affect these 

processes, a direct comparison of their activity had never been performed. We found that 

resveratrol is a potent Notch activator, but also that other similar polyphenols are capable 

of Notch activation. Next, we discovered that several of these polyphenolic compounds are 

capable of inhibiting endothelial cell proliferation. We then characterized how these 

polyphenols affect endothelial migration during wound healing. In doing so, we discovered 

novel polyphenolic regulators of Notch signaling while also characterizing the potency of 

these molecules for their ability to mitigate angiogenic behaviors in endothelial cells. 

Chapter IV is a summary of the studies and a general discussion about the results, 

including future perspectives. Appendix A is a review of the literature, which expands our 

view of Notch signaling beyond its classical job as a mediator of juxtacrine signaling. Here, 

we shed light on the role Notch signaling plays as a microenvironmental sensor, responding 

to a multitude of cues within the extracellular environment. Appendix B is a review of the 

literature covering non-cononical integrin ligation. Here, we discuss many of the ligands 

of integrins which are not components of the extracellular matrix, such as bacterial 

proteins, viruses, hormones, small molecules, polyphenols, venoms, and cell-cell adhesion 

proteins.
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Figure 1.1: The Notch Signaling Pathway and the Domain Architecture of the 

Notch Receptor 

A.) The Notch signaling pathway. Notch signaling facilitates cell to cell 

communication. Here, the signal sending cell uses a transmembrane ligand to 

engage the Notch receptor of the signal receiving cell. Upon ligation, γ-secretase 

cleaves the Notch receptor, releasing the Notch intracellular domain (NICD). The 

NICD travels to the nucleus and forms a ternary transcriptional complex with 

MAML and RBPJ to induce transcriptional expression of Notch target genes. 

B.) Domain architecture of the Notch receptor. S2/S3= proteolytic cleavage sites, RAM 

= RBPJ Associated Module, NLS = Nuclear Localization Signal, Ankyrin = 

Ankyrin Repeat Domain, TAD = Transcriptional Activation Domain, PEST = 

Proline/Glutamic acid/Serine/Threonine rich domain. 
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Abstract 

Notch signaling is a form of intercellular communication which plays pivotal roles 

at various stages in development and disease. Previous findings have hinted that integrins 

and extracellular matrix may regulate Notch signaling, although a mechanistic basis for 

this interaction had not been identified. Here, we reveal that the regulation of Notch by 

integrins and extracellular matrix is carried out by Src family kinases (SFKs) working 

downstream of integrins. We identify a physical interaction between the SFK member, c-

Src, and the Notch intracellular domain (NICD) that is enhanced by 3 integrin and the 

integrin binding ECM protein, MAGP2. Moreover, we also find that SFK activity 

decreases NICD half-life. Mechanistically, our results demonstrate that c-Src directly 

phosphorylates the NICD at specific tyrosine residues and that mutation of these 

phosphorylation sites increases Notch responsive transcriptional activity. Furthermore, we 

also find that phosphorylation of the NICD by SFKs attenuates Notch mediated 

transcription by decreasing recruitment of MAML to the Notch co-transcriptional complex. 

Collectively, our results provide important mechanistic data that underlie the emerging role 

of Notch as a general sensor and responder to extracellular signals. 

Introduction 

Canonical Notch signaling is a form of juxtacrine cell communication that affords 

one cell the ability to induce changes in a neighboring cell’s transcriptome via physical 

interaction. Notch signaling begins when a Notch ligand from one cell (i.e. the signal 

sending cell), binds to the transmembrane Notch receptor on an adjacent cell (i.e. the signal 

receiving cell). Mammals have four different Notch receptors (Notch1-4). Mammalian 

Notch ligand diversity consists of several transmembrane ligands, including three Delta-
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like ligands (DLL1, DLL3, and DLL4) and two Jagged ligands (Jag1 and Jag2), as well as 

an assortment of soluble Notch ligands 119,120. The force applied to the signal receiving 

cell’s Notch receptor by a neighboring cell’s ligand is critical for Notch activation 51, and 

induces a series of proteolytic cleavage events of the Notch receptor, first by ADAM (A 

Disintegrin and Metalloproteinase) and then by γ-secretase 4,6. The later severance, known 

as the S3 cleavage 7, results in the liberation of the Notch intracellular domain called the 

NICD fragment. The emancipated NICD fragment translocates to the nucleus where it 

binds the co-transcription factors Recombining Binding Protein Suppressor of Hairless 

(RBPJ/CSL), Mastermind-Like (MAML), and the histone acetyltransferase p300/CBP 

inducing target gene transcription 121,122. RBPJ associates with chromatin at specific 

promoter sites, known as CSL sites 11. It is the Notch-RBPJ interface which forms a groove 

that recruits the basic domain of MAML, which settles into this furrow as a long α-helix 

19. Assembly of the RBPJ-NICD-MAML ternary complex at CSL sites activates 

transcription of genes such as, hairy and enhancer of split (HES) genes and hairy/enhancer 

of split related with TYRPW motif (HEY) genes 20. 

Being highly versatile and tunable, Notch signaling does not orchestrate cell to cell 

stimuli exclusively, but rather harmonizes juxtacrine signals with extracellular cues. 

Recent research has revealed that Notch can respond to a multitude of components within 

the cellular microenvironment such as hypoxia, hyperglycemia, shear stress, crosstalk with 

other signaling pathways, and the composition of the extracellular matrix 36. Previously, 

we identified a novel signaling axis consisting of the matricellular, integrin binding protein 

MAGP2 (aka MFAP5), V3 integrin, and Notch1 118. We showed that ligation of αVβ3 

integrin by the RGD containing MAGP2, soluble RGD peptide, and integrin blocking 
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antibodies all were able to regulate the accumulation of the Notch1 intracellular domain 

(N1ICD) and its transcriptional output 118. Although we identified a novel mechanism of 

Notch regulation we were unable to report on the cytosolic events which V3 integrin 

harnesses in order to coordinate Notch signaling. In this work, we have exposed Src family 

kinases (SFKs) as modulators of the Notch signaling axis. We reveal that the Notch-Src 

interaction is enhanced through β3 integrin and MAGP2. We show that interaction of a 

SFK member, c-Src, with the Notch intracellular domain leads to tyrosine phosphorylation 

of the NICD. Furthermore, we identify specific tyrosine residues on the NICD that are 

phosphorylated by c-Src and are important for RBPJ/NICD transcriptional activity. Finally, 

we reveal that these tyrosine residues on the NICD serve to decrease NICD-MAML 

binding. All of this combined reveals mechanistic insight on a novel phosphotyrosine 

regulatory mechanism of Notch signaling carried out by Src family kinases. 

Results 

Notch1 Intracellular Domain Interacts with c-Src  

Our previous work outlined a connection between Notch signaling and integrin 

signaling in which integrin activation by MAGP2 serves to inhibit Notch. We wondered 

what cytosolic mechanism was responsible for this crosstalk between Notch and integrin 

signaling. A well-known mediator of integrin signaling, c-Src (a Src family kinase 

member), has been demonstrated to interact with Notch1, and Notch1 has phosphotyrosine 

residues which can be abated with Src inhibitors 35. Based on this, we hypothesized that 

the MAGP2 and αVβ3 integrin enlisted c-Src to carry out Notch regulation. First, we 

sought to confirm that c-Src physically interacted with N1ICD through co-

immunoprecipitation experiments. Due to a lack of commercially available antibodies 
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capable of immunoprecipitating endogenous NICD we were forced to use an 

overexpression model to test our hypothesis. 293T cells were transfected with cDNA 

encoding for a 3xFLAG tagged murine N1ICD +/- cDNA encoding c-Src, and 

immunoprecipitated with α-FLAG antibodies. Western blot analysis with anti-Src and anti-

Notch1 antibodies confirmed a physical N1ICD-Src interaction (figure 2.1A). To 

determine if c-Src activation downstream of 3 integrin or MAGP2 could facilitate the 

NICD-Src interaction, we co-transfected 293T cells with combinations of 3xFLAG-N1ICD 

and cDNAs encoding 3 integrin or MAGP2. As shown in figure 2.1A, expression of either 

3 integrin or MAGP2 drove a N1ICD-Src interaction even in the absence of 

overexpressed c-Src protein. 

c-Src Phosphorylates the Ankyrin Region of N1ICD 

Since Src family members are tyrosine kinases, we wondered whether the N1ICD 

was phosphorylated by c-Src. To this end, we turned to NetPhos 3.1, which predicts 

phosphorylation sites of eukaryotic proteins 123, in order to determine what tyrosine 

residues on the N1ICD might be phosphorylated by c-Src. Y2074 had the highest 

probability of c-Src phosphorylation, 0.5 out of 1 while Y2145 phosphorylation was 

predicted with a score of 0.3 out of 1. These findings are partially confirmed by previous 

studies involving whole cell immunoprecipitations using α-pY antibodies which were then 

analyzed by mass spectrometry. These studies identified phosphorylation at Y2074 and 

Y2145 on Notch1 31,32, although the identity of the kinase responsible for phosphorylation 

of these residues was unknown. We sought to verify c-Src mediated phosphorylation using 

an in vitro Src kinase assay. We constructed a C-terminally FLAG tagged 103 amino acid 

fragment of N1ICD (amino acids 2058-2161) which contains both of the tyrosine sites of 
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interest (Y2074 & Y2145) (figure 2.1B). This peptide, which maps to the C-terminal of the 

ankyrin domain (ankyrin repeats 6a – 7b + EP region) was expressed in E. coli, purified 

using an anti-FLAG affinity column, and then incubated with purified c-Src kinase in an 

in vitro Src kinase assay. After a 15 minute incubation, samples were subjected to western 

blot analysis and probed with α-pY (phosphotyrosine) antibodies. We found that c-Src was 

able to phosphorylate this portion of the N1ICD in vitro in an ATP-dependent manner 

(figure 2.1C). Seeking to identify which residues (Y2074, Y2145, or both) became 

phosphorylated we created two more peptides in which we substituted tyrosine for 

phenylalanine (YF) at these sites and submitted these proteins to our in vitro c-Src kinase 

assay (figure 2.1D). We found that the Y2074F mutant was not as heavily tyrosine 

phosphorylated when compared to the wild type (WT) peptide, thus pointing to this being 

an important residue for c-Src phosphorylation. Although, the Y2074F mutant did display 

some tyrosine phosphorylation, suggesting that while Y2074 was still a likely candidate of 

phosphorylation, c-Src must be phosphorylating at least one other site on the peptide. 

Surprisingly, Y2145F mutant had enhanced tyrosine phosphorylation when compared to 

WT peptide. Subsequent densitometry analysis revealed that c-Src phosphorylated the WT 

N1ICD ~10 times greater than the Y2074F N1ICD, whereas the Y2145F N1ICD had ~four 

times more phosphorylation than the WT (figure 2.1E). These results confirm that c-Src 

can phosphorylate at least two sites on the N1ICD. 

Upon confirmation that c-Src phosphorylates N1ICD, we next asked if the 2058-

2161 amino acid region of Notch1 was sufficient for Src interaction in living cells. To test 

this, we made fusion proteins of the full-length N1ICD domain and the 2058-2161 

fragment fused to HA tagged BirA biotin ligase, in order to perform proximity biotin 
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ligation (i.e. BioID 124) experiments (figure 2.2B and 2.2D). In these experiments, the BirA 

enzyme biotinylates proteins which are within close proximity (20-30 nm) to the fusion 

protein (figure 2.2A and 2.2C). In addition, we co-expressed wild type Src (WT), 

constitutively active (CA), and dominant negative (DN) forms of Src kinase in combination 

with our fusion proteins. Streptavidin pulldowns were performed to affinity capture 

biotinylated proteins, and streptavidin-HRP was used to detect biotinylated species by 

western blot. Subsequent blotting with α-Src primary antibodies confirmed Src interacts 

with, or at least is within close proximity to both the N1ICD::BirA and 2058-2161::BirA 

fusions. Furthermore, upon overexpression of WT and CA Src, both fusions were found to 

be tyrosine phosphorylated. Additionally, overexpression of DN Src induced no such 

phosphorylation in the 2058-2161::BirA fusion. These results suggest the 2058-2161 

region which maps to the ankyrin domain of N1ICD is sufficient for Src interaction. 

N1ICD is Phosphorylated in a SFK-Dependent Manner 

Having established that Src family kinases interact with and phosphorylate the 

intracellular domain of Notch, it was important to determine whether SFKs alone are 

responsible for NICD phosphorylation, or if other tyrosine kinases phosphorylate NICD. 

To this end, we expressed 3xFLAG N1ICD in 293T cells in the presence or absence of c-

Src overexpression and immunoprecipitated the N1ICD using α-FLAG antibodies. 

Western blot analysis reveals that c-Src overexpression induces greater pY signal 

emanating from N1ICD compared to the no c-Src overexpression control (figure 2.2E). In 

the reciprocal experiment, N1ICD-Src pulldowns were performed in the presence of a 

highly specific inhibitor of SFKs (AZM475271) 125, and it was found that SFK activity is 

required for tyrosine phosphorylation of N1ICD (figure 2.2F). Taken together, this 
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evidence suggests that phosphorylation of tyrosine residues on the N1ICD occurs in a SFK-

dependent fashion. Finally, we wanted to see whether this phenomenon is specific to 

Notch1. We expressed FLAG tagged N1ICD and N4ICD in the presence or absence of c-

Src overexpression in 293T cells and immunoprecipitated the NICDs using α-FLAG 

antibodies (figure 2.2G). Western blot analysis of the immunoprecipitated material 

revealed that both NICD molecules immunoprecipitated with c-Src under conditions of c-

Src overexpression. Furthermore, N4ICD was also tyrosine phosphorylated and this was 

enhanced through c-Src overexpression. Thus, the interaction between c-Src and the Notch 

intracellular domain is not specific to Notch1, but rather a broader mechanism which 

encompasses Notch4 as well. 

It was important to map tyrosine residues that were phosphorylated by SFKs. To 

accomplish this, we first submitted our in vitro c-Src kinase assays samples (figure 2.1) to 

mass spectrometry analysis. No phosphotyrosine residues were detected in samples which 

were not incubated with c-Src. Only in c-Src incubated samples were phosphotyrosines 

detected at the Y2074 (Y2064 in mice) and Y2145 (Y2135 in mice) as predicted by our 

NetPhos 3.1 analysis. In addition, we were able to identify phosphotyrosine at Y2116 

(Y2106 in mice) which had previously escaped our initial attention. To determine if these 

sites are phosphorylated in living cells, 3xFLAG N1ICD was transfected into 293T cells, 

then immunoprecipitated using α-FLAG antibodies. Mass spectrometry analysis of these 

samples verified phosphorylation at Y2074, Y2116, and Y2145 and also identified an 

additional phosphorylated residue, Y1938 (Y1928 in mice), which is not present on our 

2058-2161 peptide. To examine the conservation of these sites, we performed a sequence 

alignment analysis of the identified phosphorylation sites across several species and across 
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all four Notch isoforms in humans and mice (figure 2.3A). For our analysis we also 

included the NetPhos 3.1 score which predicts the likelihood of c-Src induced tyrosine 

phosphorylation at each of these sites. This analysis revealed that Y1938 and Y2074 are 

highly conserved, Y2116 is moderately conserved, and Y2145 is somewhat conserved. It 

should be noted, that residues which lie within the highly structured ankyrin domain 

(Y1938, Y2074, and Y2116) are more conserved than Y2145 which lies proximal to the 

ankyrin domain. The position of residues Y1938, Y2074, and Y2116 within the 

N1ICD/RBPJ/MAML co-crystal (PDB# 3NBN) are indicated in figure 2.3B. 

SFKs Regulate Notch1 Transcriptional Activity 

Having established a physical interaction between N1ICD and SFKs, it was 

important to determine if SFKs control Notch transcriptional activity. To accomplish this, 

293T cells were transfected with Notch responsive 4xCSL reporter which expresses 

luciferase in response to activation of Notch signaling. Cells were transfected with N1ICD 

in the presence or absence of co-expression of a constitutively active SFK, v-Src. Cells 

transfected with v-Src demonstrated decreased luciferase activity (figure 2.4A). This result 

suggests that v-Src activity downregulates Notch mediated transcription. Having found and 

confirmed sites of SFK mediated tyrosine phosphorylation on the N1ICD, it was important 

to determine if phosphorylation at these sites was important for Notch transcriptional 

activity. To this end, we introduced YF substitutions at Y1938, Y2074, Y2116, and 

Y2145 within our 3xFLAG N1ICD construct. We also constructed a “Quad” mutant 

N1ICD which has Y1938F, Y2074F, Y2116F, and Y2145F substitutions. We expressed 

these mutant forms of N1ICD in 293T cells and immunoprecipitated them using α-FLAG 

antibodies. To our surprise, we did not detect an obvious correlation between YF 
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mutation and anti-pY western blot signal (figure 2.4B). Nonetheless, all of the YF 

N1ICD mutants demonstrated enhanced transcriptional activity on the 4xCSL and Hes5 

promoters as compared to WT N1ICD (figure 2.4C and 2.4D). To summarize these 

findings, enhanced SFK activity (i.e. v-Src expression) decreases Notch transcriptional 

output, while removal of sites of tyrosine phosphorylation increases Notch transcriptional 

output. Taken together, these results suggest that SFK activity impedes Notch target gene 

transcription. 

SFK Phosphorylation Sites Decrease NICD-MAML Binding 

Based on the crystal structure analysis of the Notch ternary complex, we sought to 

assess whether SFKs play a role in Notch ternary complex formation. To test this, we 

expressed FLAG tagged N1ICD Quad mutant or WT N1ICD in 293T cells in the presence 

or absence of transfected MAML1 cDNA and used anti-FLAG co-immunoprecipitation to 

monitor N1ICD-MAML interactions. As shown in figure 2.5A and 2.5B, the Quad mutant 

co-immunoprecipitated more MAML1 than the WT N1ICD. We then hypothesized that 

inhibition of SFK activity would equilibrate the amount of MAML interaction between 

WT and Quad N1ICD forms. To test this, we performed the same co-immunoprecipitation, 

but this time in the presence of SFK inhibitor. Under conditions of SFK inhibition both 

WT N1ICD and Quad N1ICD co-immunoprecipitate equal amounts of MAML1 (figure 

2.5C and 2.5D). In figure 2.1A, we demonstrated that Src-N1ICD interaction was 

strengthened by overexpression of 3 integrin or MAGP2, therefore we sought to 

determine if 3 integrin or MAGP2 may also regulate N1ICD-MAML interaction. To test 

this, we examined the N1ICD-MAML interaction by co-immunoprecipitation in the 

presence of 3 integrin or MAGP2 expression. As shown in figure 2.5E, overexpression of 
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integrin machinery including c-Src, 3 integrin, or MAGP2 all decreased WT N1ICD-

MAML interaction while the Quad N1ICD mutant was resistant to this effect. Taken 

together, these results suggest that SFK phosphorylation of N1ICD decreases N1ICD-

MAML binding. 

Having confirmed that SFKs are important for N1ICD-MAML interaction, we next 

sought to determine if the increased transcriptional potency of the N1ICD tyrosine mutants 

was due to enhanced MAML recruitment. We hypothesized that the enhanced 

transcriptional potency of the N1ICD tyrosine mutants was due to their enhanced ability to 

recruit MAML from a limited endogenous supply. We therefore reasoned that providing a 

surplus of MAML (i.e. overexpression) would elevate WT N1ICD transcriptional output 

to match that of the N1ICD tyrosine mutants. To test this, we compared the ability of the 

WT and tyrosine mutant N1ICD forms to drive transcription from the 4xCSL luciferase 

reporter assay in the presence or absence of MAML cDNA (figure 2.5F). In contrast to 

conditions of basal MAML expression where tyrosine mutant N1ICD forms display 

enhanced transcriptional potency, during MAML overexpression the WT and all six 

tyrosine mutant forms of N1ICD had equivalent transcriptional potency (figure 2.5F). 

These results suggest that MAML is the rate limiting factor during Notch target gene 

transcription in this system, because when MAML is in surplus (during overexpression), 

WT and tyrosine mutant N1ICDs have equilibrated transcriptional activity. Taken together, 

this evidence suggests SFK phosphorylation sites within the N1ICD serve to impede 

N1ICD recruitment of MAML, thus decreasing Notch transcriptional output.
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SFK Activity Decreases N1ICD Half-Life. 

Since Notch is heavily involved in many developmental processes such as 

angiogenesis 57,126, and MAGP2 coordinates Notch signaling in order to stimulate 

angiogenesis 39, we wanted to establish whether SFKs alters Notch activity in endothelium. 

To accomplish this, human HMEC-1 microvascular endothelial cells were transfected with 

Notch responsive Hes1 and Hes5 luciferase reporters and treated with the SFK inhibitor, 

AZM (AZM475271). As shown in figure 2.6A, both the Hes1 and Hes5 promoters 

demonstrated enhanced transcriptional activity under conditions of SFK inhibition 

compared to DMSO control. Since Notch activation leads to generation of the 

transcriptionally activity NICD, we sought to investigate what effect SFK activity has on 

endogenous N1ICD accumulation. To this end, we utilized AZM to inhibit SFK activity 

and analyzed endogenous N1ICD accumulation in HMEC-1 cells. N1ICD levels were 

determined by blotting with α-N1ICD antibodies that detect the newly formed Val1744 

epitope at the N-terminal of N1ICD after γ-secretase cleavage of full length Notch1 

receptor. As shown in figure 2.6B, N1ICD appeared as a doublet when blotting HMEC-1 

cell lysates with α-N1ICD antibodies, and it was noticed that after SFK inhibition, a larger 

proportion of N1ICD migrated as a low molecular weight species. We estimated that the 

lower N1ICD band migrated ~9kDa faster than the upper band. 

Ubiquitin is a 9kDa protein 127 that is attached to proteins marking them for 

proteasomal degradation 128. Since the two N1ICD species migrated with a difference of 

~9kDa, we hypothesized that the higher molecular weight species might be mono-

ubiquitinated and that SFKs may regulate Notch signaling through manipulation of NICD 

half-life. In order to track N1ICD half-life, HMEC-1 cells were treated with DAPT (10 
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µM) to inhibit -secretase activity and remaining N1ICD was monitored by western blot 0, 

45, 90, and 135 minutes after DAPT treatment. Interestingly, it was found that before 

DAPT treatment a N1ICD doublet was produced, but following DAPT treatment the lower 

molecular weight species disappeared with time before the higher molecular weight 

species. Performing this same experiment in the presence of SFK inhibition resulted in a 

majority of the N1ICD species to run as the lower molecular weight band (figure 2.6C) that 

did not accumulate as a higher molecular weight band. Densitometry of both higher and 

lower molecular weight species showed that N1ICD had a half-life of ~80 minutes which 

was lengthened to ~135 minutes in the presence of SFK inhibitor (figure 2.6D). Since 

N1ICD is degraded by the proteasome and accumulates with treatment of the proteasome 

inhibitor, MG132 129, we hypothesized that SFKs normally decrease N1ICD stability by 

inducing ubiquitination of N1ICD. To test this, we treated HMEC-1 cells overnight with 

DMSO or SFK inhibitor then with MG132 for 0-2 hours and monitored N1ICD 

accumulation by western blot (figure 2.6E). In support of our hypothesis, it was found that 

the higher molecular weight species accumulated upon proteasomal disruption. We noted 

that the higher mobility fragment accumulates rapidly under control conditions, but this 

accumulation is delayed through inhibition of SFKs. Taken together, these results reveal 

that SFK inhibition reduced the accumulation, whereas proteasomal inhibition enhanced 

accumulation, of the higher molecular weight N1ICD in HMEC-1 cells. 

Discussion 

The Notch signaling mechanism has long been known to facilitate communication 

between adjacent cells thus allowing cells to sense, and respond, to their immediate 

neighbors in the cellular microenvironment 130. However, sensing and responding to cell-
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cell interactions appears to be only a part of the larger emerging function of Notch. Indeed, 

Notch has shown the ability to act as a general sensor for diverse signals in the cellular 

microenvironment including growth factors, extracellular matrix, hyperglycemia, hypoxia, 

and shear stress 36. 

The understanding that extracellular matrix (ECM) is capable of regulating Notch 

has been known for some time and several mechanisms for this have been described. For 

instance, basement membrane laminins regulate expression of the Notch ligand DLL4 

thereby restricting tip cell development in branching endothelial cells 131,132. Other ECM 

proteins including collagen IV 133, CCN3 134, and YB-1 135 regulate Notch through direct 

interactions with Notch receptors. Finally, our previous work determined that the ECM 

proteins MAGP2 and EGFL7 control Notch through RGD-dependent integrin binding, but 

did not describe the molecular mechanism through which this was accomplished 39,118. Our 

current results build upon our previous work by now describing a signaling mechanism 

that couples ECM proteins to Notch through an integrin/SFK signaling circuit. We 

observed that c-Src interacts with the intracellular domain of Notch1, and this interaction 

is enhanced through β3 integrin or MAGP2 expression (figure 2.1A). Furthermore, we have 

identified four tyrosine residues (Y1938, Y2074, Y2116, and Y2145) on the N1ICD which 

serve as SFK substrates (figure 2.1-2.3). We demonstrated that removal of these SFK 

phosphorylation sites leads to enhanced transcriptional activity and MAML binding (figure 

2.4C, 2.4D, and 2.5). ). We also found that N1ICD stability is regulated by SFK activity 

(figure 2.6C-E). Based on this evidence, we propose a regulatory mechanism whereby 

integrin activation of Src family kinases drives phosphorylation of N1ICD to impede the 

Notch signaling pathway by decreasing N1ICD-MAML interactions (figure 2.7). In 
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addition, Src family kinase induced phosphorylation serves to target the N1ICD for 

proteasomal degradation (figure 2.7). Interestingly, our results are not the first to link Notch 

to integrin signaling. Rather, Mo et al., previously determined that Integrin-linked kinase 

(ILK) directly phosphorylates NICD to recruit the ubiquitin ligase FBW7 and ultimately 

destabilize the N1ICD protein 26. Collectively, our findings greatly enhance our molecular 

understanding of how Notch activity is modulated by extracellular matrix within the 

cellular microenvironment. 

The tyrosine residues we analyzed in this study are found within or in close 

proximity to the Notch ankyrin domain, and their positions offer clues as to the biological 

function of tyrosine phosphorylation at these sites. Y1938 is located between alpha-helices 

2a and 2b of the ankyrin domain 136 and is highly conserved in vertebrate Notch 1-3 proteins 

(figure 2.3A). The conservation of this site suggests an important role in Notch signaling 

which, given the projection towards RBPJ, may be to regulate RBPJ-NICD interactions 

(figure 2.3B). Y2074 is located in alpha-helix 6a, while Y2116 is located just C-terminal 

to alpha-helix 7b 136. Y2074 is conserved in Notch1 of all species examined as well as 

human and mouse Notch 1-3 proteins. Y2116 is conserved in vertebrates as well as human 

and mouse Notch 1-2 proteins (figure 2.3A). These residues either project towards (Y2074) 

or are within (Y2116) the EP region of the transactivation (TAD) domain (figure 2.3B). 

The EP region of the TAD domain is required for recruitment of p300 acetyltransferase to 

the N1ICD transcriptional complex and thus phosphorylation at these sites may regulate 

p300 interaction 16,136. In addition, the seventh ankyrin repeat has been implicated in 

controlling the stability and folding of the entire ankyrin domain 137 and it is tempting to 

speculate that phosphorylation of Y2074 and/or Y2116 may affect the overall structure of 
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the ankyrin domain. Finally, the Y2145 residue is also conserved in vertebrates, but is only 

found in Notch1. Y2145 is not located within the existing crystal structures of N1ICD, but 

maps to a position just N-terminal to the second nuclear localization signal. Our 

transcriptional data determined that YF mutation at any of these residues enhanced 

Notch transcriptional activity, suggesting that phosphorylation at these sites represses 

Notch mediated transcription (figure 2.4C and 2.4D). In support of this, Notch mediated 

transcription was enhanced in the presence of SFK inhibitors and repressed in the presence 

of constitutively active v-Src (figure 2.4A and 2.6A). We also observed that simultaneous 

YF mutation of all four tyrosine residues (i.e. Quad mutant) resulted in increased N1ICD 

binding to MAML, and that this was nullified by treatment with SFK inhibitor (figure 

2.5A-D). 

Several lines of evidence are now converging to suggest that the EP and TAD 

domains are important regulatory sites for controlling Notch activity. The EP region is 

located at the N-terminal region of the TAD domain, overlaps with ankyrin repeat 7b at the 

C-terminal of the ankyrin domain, and is defined as a region of NICD critical for p300 

interaction 16. This region of NICD has also been proposed to be at the N1ICD/MAML 

interface 19. Our data demonstrate that MAML interaction with N1ICD is enhanced by 

YF mutations in this region and decreased by c-Src overexpression (figure 2.5A-E). 

Similarly, previous results also found that Nemo-like kinase (NLK) phosphorylates serine 

residues in this region (S2121 and S2141) resulting in reduced MAML interaction 30. 

Together, these results suggest that tyrosine and/or serine phosphorylation within the EP 

or TAD domains may decrease MAML interaction with N1ICD, an idea that is supported 

by our data showing that overexpression of MAML equilibrates mutant N1ICD 
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transcriptional activity to WT levels (figure 2.5F). An additional point of NICD regulation 

that falls within the TAD domain is ILK mediated phosphorylation of human N1ICD at 

S2184 which recruits FBW7 and drives ubiquitination of NICD 26. Finally, our results 

showing that Y2145F mutation resulted in increased phosphorylation in vitro (figure 2.1D 

and 2.1E) hint that phosphorylation at Y2145 may suppress phosphorylation at other NICD 

sites thus functioning as a regulatory site for Notch signaling. Collectively, the fact that 

SFKs, NLK, and ILK all influence Notch signaling through phosphorylation with the 

NICD EP and TAD domains, support a central role for these domains in controlling Notch 

signaling output. 

Broader implications of our findings have yet to be determined. However, the idea 

that Notch signaling can be influenced by integrins and SFKs may have broad reaching 

implications for how Notch functions within cellular microenvironments. For instance, 

SFK signaling is not restricted to integrins but rather, SFKs are activated by a wide range 

of other signaling mechanisms such as RTK and GPCR receptors 138. Therefore, an 

important research goal will be to determine if these signaling mechanisms engage in 

crosstalk with Notch through SFK mediated NICD phosphorylation. In addition, Notch and 

integrins are highly conserved and function in a wide variety of biological circumstances. 

It will be important to discover how the interplay between integrins and Notch function in 

this wide range of biological situations. Finally, based on our sequence comparison of N1-

N4ICD (figure 2.3a), it is clear that not all of the tyrosine sites we identified are conserved 

in all Notch NICDs. Based on this observation, an interesting possibility is that SFKs may 

be able to differentially regulate various Notch isoforms and establish alternative Notch 

signaling activities thereby diversifying overall Notch output. 
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In summary, this work continues to build on the growing evidence that Notch is 

more than a cell-cell signaling mechanism, but rather, an integrator of multiple cues within 

the cellular microenvironment. This work adds an important piece to this puzzle by 

providing mechanistic insight about how extracellular matrix composition regulates Notch 

via integrins and Src family kinase signaling. Future work will continue to dissect 

additional molecular mechanisms by which Notch senses and responds to stimuli from the 

cellular microenvironment. 

Materials and Methods 

Antibodies 

For western blotting primary antibodies against cleaved Notch1 (N1ICD) 

(Val1744, #2421), phosphotyrosine (pY) (P-Tyr-100, #9411), Src (32G6), and MAML1 

(MAML1, #4608) were purchased from Cell Signaling Technology. Primary antibodies 

against β-actin (sc-47778), HA tag (sc-57592), Notch1 C-terminal domain (N1CTD) (sc-

6014-R), and vinculin (sc-5573) were purchased from Santa Cruz Biotechnology. Primary 

antibodies against FLAG (DYKDDDDK) tag (A00170) were purchased from GenScript. 

Secondary antibodies consisted of horseradish peroxidase conjugated antibodies α-mouse 

(NA931V) and α-rabbit (NA934V) purchased from GE Healthcare Life Sciences. 

Cell Culture 

HMEC-1 cells were cultured in MCDB 131 media supplemented with 10% fetal 

bovine serum (FBS), 10 ng/ml epidermal growth factor, and 1 µg/ml hydrocortisone. 293T 

cells were cultured in Dulbecco’s Modified Eagle’s medium (DMEM) (Mediatech) 

supplemented with 10% FBS and 1x pen-strep. Cells were grown in 10 cm plates and 

passaged before reaching confluency. 
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Plasmids 

The 3xFLAG N1ICD construct (Addgene #20183) was a gift from Raphael Kopan 

and contains amino acids Val1744 to Lys 2531 of the murine Notch1 intracellular domain 

with a 3xFLAG N-terminal tag 139. The 3xFLAG N1ICD construct was subjected to site 

directed mutagenesis in order to create YF substitutions at Y1928 (Y1938 in humans), 

Y2064 (Y2074 in humans), Y2106 (Y2116 in humans), Y2135 (Y2145 in humans). This 

3xFLAG N1ICD plasmid and a doxycycline inducible lenti viral destination vector, 

pCW57.1 (Addgene #41393, a gift from David Root) was used to construct a 3xFLAG 

N1ICD lentiviral expression vector. The integrin β3 construct (Addgene #27289) was a 

gift from Timothy Springer and contains human integrin β3 with a C-terminal myc-his tag 

140. The c-Src construct was a gift from William Schiemann and contains full length human 

c-Src with a C-terminal myc-his tag cloned into a pcDNA 3.1/myc-His B vector 141. The 

constitutively active Src construct (Addgene #13660) was a gift from Joan Brugge and 

contains chicken Src with a Y527F mutation. The dominant negative Src construct 

(Addgene #13657) was a gift from Joan Brugge and Peter Howley and contain mouse Src 

K295R Y527F. The v-Src construct (Addgene #14578) was a gift from Joan Brugge and 

contains Src isolated from Rous sarcoma virus. The pcDNA 3.1 C-terminally myc-his 

tagged MAGP2 construct was previously described 142. The Hes1 luciferase construct was 

a gift from Jan Jensen and consists of nucleotides -2553 to -201 relative to the murine Hes1 

transcriptional start site while transcribing for firefly luciferase 143. The Hes5 luciferase 

construct (Addgene #41724) was a gift from Ryoichiro Kageyama and Raphael Kopan and 

contains the murine Hes5 promoter (-800 to +73) relative to the Hes5 transcriptional start 

site while transcribing for firefly luciferase 143. The 4xCSL luciferase construct (Addgene 
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#41726) was a gift from Raphael Kopan and consists of 4 tandem repeats of the high 

affinity CSL binding sites (5′CGTGGGAA3′) while transcribing for firefly luciferase 139. 

The BirA(R118G)-Ha destination vector (Addgene #53581) was a gift from Karl Kramer 

and was used to construct the N1ICD::BirA fusion and 2058-2161::BirA fusion which 

contains 2048-2151 of murine Notch1 (amino acids 2058-2161 in the human protein). The 

2058-2161 peptide use in the in vitro kinase assays was constructed through gateway 

cloning into pET-DEST42. The MAML1 plasmid was a gift from Brandon J. White and 

contains human MAML1 with a myc tag cloned into a pCS2 backbone. 

N1ICD Half-Life Analysis 

In order to track N1ICD half-life, steady-state populations of HMEC-1 cells were 

treated with the γ-secretase inhibitor DAPT (10 µM) to specifically block S3 N1ICD 

cleavage/synthesis and cells were sacrificed after 0, 45, 90, 135 minutes DAPT treatment 

and blotted for N1ICD. Using densitometry, N1ICD half-life was calculated under 

conditions of SFK inhibition and DMSO control by dividing the N1ICD amount after each 

time point by the starting amount. 

Proximity Biotin Ligation Assays 

In this BioID experiment, a mutated version of BirA biotin ligase (R118G BirA) 

was employed, which non-discriminately biotinylates proteins within close proximity 

allowing for streptavidin pull down of proximal proteins 144. 293T cells were TransIT®-

LT1 (Mirus) lipid transfected with either 2058-2161::BirA or N1ICD::BirA fusion 

constructs. 48 hours after transfection, cells were incubated in serum free media 

supplemented with 50 µM biotin for 6 hours before harvesting. Streptavidin magnetic 

beads (10 µL, New England BioLabs) were used to precipitate biotinylated species on a 
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magnetic tube rack. Specific protein targets were detected using primary antibodies 

followed by membrane stripping before detection of overall biotinylated proteins. 

Biotinylated proteins were detected using horseradish peroxidase conjugated streptavidin 

(1:40,000) which was purchased from Thermo Scientific. 

In Vitro c-Src Kinase Assays 

A 14kDa FLAG tagged region (amino acids 2058-2161) of the N1ICD protein was 

produced in E. coli and purified using FLAG affinity resin and dissolved in a TBS solution. 

In addition to a wild type form, two mutant forms of the peptide were created, Y2074F and 

Y2145F. An in vitro c-Src kinase assay was performed with purified GST tagged human 

c-Src (Sigma-Aldrich) using the manufacturer’s protocol. Briefly, the 14kDa peptide was 

mixed into a cocktail containing 2 mM MOPS (pH 7.2), 1 mM glycerol 2-phosphate, 1.6 

mM MgCl2, 1 mM MnCl2, 0.4 mM EGTA, 0.16 mM EDTA, 0.02 mM DTT, 16 ng/L 

BSA, +/- 0.05 mM ATP, +/- 200 ng purified Src. Reaction volumes totaled 25 L and were 

incubated for 15 minutes at 30°C. Reactions were terminated by adding SDS page lysis 

buffer, vortexing, and boiling for 5 minutes and submitted to western blot analysis. 

Luciferase Assays 

HMEC-1 cells were seeded into 24-well plates at a density of 25,000 cells/well. 

293T cells were seeded into 24-well plates at a density of 50,000 cells/well. The following 

day, cells were transfected using TransIT®-LT1 liposomes (Mirus). Cells were transfected 

with 100 ng/well Hes1 luciferase, Hes5 luciferase, or 4xCSL luciferase plasmids which 

produce luciferase in response to Notch pathway activation and 30 ng/well CMV--gal 

plasmid. Co-transfection of a CMV-Beta-Galactosidase construct was used to normalize 

data for transfection efficiency and potential cell death/proliferation. For AZM treated 
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cells, cells were treated with 10 µM AZM for 24 h before being sacrificed on the next day. 

Cells were lysed 48 h after transfection using passive lysis buffer (Promega) and lysates 

were submitted to a luciferase reporter assay as per manufacturer’s protocol and analyzed 

using a Promega© Glomax Multi Detection System luminometer. Luciferase activity was 

normalized to Beta-Galactosidase activity and values were reported as fold change to 

control. All conditions were performed in triplicate for each independent experiment. 

Immunoprecipitations 

Cells were washed twice with 1x PBS, scraped up on ice, and transferred to 1.7 ml 

tubes followed by pelleting by centrifugation whereupon supernatant was removed. Cells 

were lysed for 30 minutes in 500 µL of co-immunoprecipitation buffer (200 mM KCL, 25 

mM Hepes, 1% NP-40, 20 mM NaF, 1 mM Na-orthovanadate, 0.2 mM EGTA, 1x protease 

arrest [G Biosciences], 1x phosphatase inhibitor cocktail II [Alfa Aesar], 20 µM 

nicotinamide, pH 7.5) and sonicated. Lysates were then subjected to centrifugation and 

whole cell lysate samples were generated using the 50 µL of the total lysate, to which 4x 

SDS page lysis buffer was added, followed by vortexing and boiling for 5 minutes. For 

immunoprecipitation of FLAG tagged proteins, the remaining 450 µL of lysate was 

incubated with 20 µL of anti-FLAG G1 affinity resin (GenScript) overnight on a tube 

rotator at 4°C. After incubation, washing was performed to remove non-specific binding 

contaminates. Briefly, samples were centrifuged, supernatant removed, washed with 500 

µL of co-immunoprecipitation buffer, and allowed to rotate at 4°C on a tube rotator for 5 

minutes. These steps were repeated three times, before a final centrifugation and removal 

of supernatant, after which 50 µL of 1x SDS page lysis buffer was added to the pellets 

before vortexing and boiling for 5 minutes. 
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Western Blotting 

Cells were lysed in 1x SDS page lysis buffer and boiled for 5 minutes. Proteins 

were separated through SDS page on 6%-15% polyacrylamide gels and blotted onto 

nitrocellulose membranes. Membranes were blocked in TBS-T (140 mM NaCL, 25 mM 

Tris-HCL, pH 7.4, 0.1% Tween-20) with 5% bovine serum albumin for 1 hour at room 

temperature. Membranes were incubated with primary antibody (1:250, 1:500, or 1:1000) 

overnight on a rotator at 4°C. After incubation, membranes were washed 3 x 10 minutes in 

TBS-T before 1 hour incubation in secondary antibodies at room temperature. Horseradish 

peroxidase conjugated secondary antibodies were used at a concentration of 1:5000. After 

incubation with secondary antibodies, proteins were detected by enhanced 

chemiluminescence. 
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Figure 2.1: c-Src Phosphorylates the N1ICD Ankyrin Domain 

(A) Western blot of N1ICD co-immunoprecipitation experiment. –C denotes a no N1ICD 

transfection control. Src represents c-Src overexpression. β3 represents β3 integrin 

overexpression. M2 denotes MAGP2 overexpression. (B) Sequence of amino acids 2058-

2161 of N1ICD used in subsequent in vitro kinase assays. Y2074 and Y2145 are outlined. 

(C) In vitro c-Src kinase assay with FLAG tagged peptide containing amino acids 2058-

2161 of N1ICD. (D) In vitro c-Src kinase assay comparing phosphorylation of Y2074F and 

Y2145F mutant forms of the 2058-2161 peptide. (E) Densitometry analysis comparing the 

level of phosphotyrosine signal from the +Src lanes of panel C combined with multiple 

identical experiments, n=4. Normalization was achieved by dividing α-pY by α-FLAG 

signal. Student’s t-test was performed to determine statistical significance. P-values are 

reported as p=#. In all panels western blots depict representative images from experiments 

that were replicated at least three independent times.
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Figure 2.2: Phosphorylation of Tyrosine Residues on N1ICD are SFK Dependent 

(A) Diagram of BioID experiment. In the presence of biotin, the NICD::BirA fusion protein 

biotinylates nearby proteins which can be affinity captured through streptavidin 

purification. (B) Western blot analysis of affinity captured material from BioID experiment 

using a N1ICD::BirA-HA fusion protein. Expression of Src variants is denoted as WT = 

wild-type, CA = constitutively active, and DN = dominant negative. (C) Amino acid 

sequence of 2058-2161::BirA-HA fusion protein containing a 104 amino acid fragment of 

N1ICD fused to a biotin ligase. (D) Western blot analysis of affinity captured material from 

BioID experiment using the 2058-2161::BirA-HA fusion. (E) Western blot analysis of 

immunoprecipitated N1ICD in the presence or absence of c-Src overexpression. (F) 

Western blot analysis of immunoprecipitated N1ICD under conditions SFK inhibition 

(AZM) and control. (G) Western blot analysis of immunoprecipitated N1ICD and N4ICD 
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in the presence or absence of c-Src overexpression. In all panels, western blots depict 

representative images from experiments that were replicated at least three independent 

times.  
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Figure 2.3: Sequence Alignment and Crystal Structure Analysis of NICD 

Phosphotyrosine Sites 

(A) Sequence alignment of four tyrosine sites within the Notch intracellular domain 

comparing conservation of sites across different species and different Notch isoforms. Red 

= highly conserved, white = not conserved. NP denotes NetPhos 3.1 prediction scores for 

likelihood of c-Src phosphorylation of the sequence. (B) Partial crystal structure analysis 

of Notch ternary transcriptional complex. N1ICD ankyrin domain = blue (EP region = dark 

blue), MAML basic domain = yellow, RBPJ = red. Insets depict where Y1928, Y2074, and 

Y2116 are found in the N1ICD ankyrin domain.
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Figure 2.4: SFKs Reduces N1ICD Transcriptional Activity 

(A) 4xCSL luciferase assay in 293T cells in the presence or absence of v-Src 

overexpression, n=6. (B) Anti-phosphotyrosine western blot analysis of 

immunoprecipitated N1ICD tyrosine mutants. “Quad” denotes a Y1938F, Y2074F, 

Y2116F, Y2145F mutant N1ICD. Image is a representative image from experiments that 

were replicated three independent times (C) 4xCSL luciferase assay in 293T cells 

expressing WT and mutant N1ICDs, n=16. –C denotes non-N1ICD transfected control. (D) 

Hes5 luciferase assay in 293T cells expressing WT and mutant N1ICDs, n=7. –C denotes 

non-N1ICD transfected control. For A-C, student’s t-test was performed to determine 

statistical significance compared to DMSO control. For E-F, student’s t-test was performed 

to determine statistical significance compared to WT control. P-values are reported as 
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*<.05, **<.01, ***<.001. In all panels, western blots depict representative images from 

experiments that were replicated at least three independent times. 
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Figure 2.5: N1ICD Tyrosine Mutants Display Enhanced MAML Binding 

(A) Western blot analysis of N1ICD/MAML co-immunoprecipitations comparing WT 

N1ICD and Quad N1ICD. (B) Western blot analysis of N1ICD/MAML co-

immunoprecipitations comparing WT N1ICD and Quad N1ICD under condition of SFK 

inhibition (AZM). (C) Densitometry comparing levels of MAML co-immunoprecipitation 

with WT vs Quad N1ICD under conditions of normal SFK activity (n=4) and SFK 

inhibition (n=3). (D) Western blot analysis of N1ICD/MAML co-immunoprecipitations in 

the presence of c-Src, 3 integrin, or MAGP2 (M2), (n=2). (E) 4xCSL luciferase assay 

comparing transcriptional activity WT N1ICD and Quad N1ICD under conditions of RBPJ 

and MAML coexpression, n=5. (F) 4xCSL luciferase assay comparing transcriptional 

activity WT N1ICD and Quad N1ICD under conditions of RBPJ and MAML coexpression 

and basal RBPJ/MAML expression, n=5. (G) 4xCSL luciferase assay comparing 

transcriptional activity of N1ICD tyrosine mutants in the presence or absence of MAML 

overexpression, n=8. In all panels, western blots depict representative images from 

experiments that were replicated at least three independent times. Where applicable, 
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student’s t-test was performed to determine statistical significance. P-values are reported 

as *<.05, **<.01, ***<.001, ns>.05. 
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Figure 2.6: SFKs Decrease the N1ICD half-life 

(A) Hes1 and Hes5 luciferase assay in HMEC-1 cells in the presence or absence of SFK 

inhibitor, n=4. (B) Western blot of HMEC-1 lysates under conditions of increasing 

concentrations of SFK inhibitor (AZM475271). The arrows denote two distinct N1ICD 

species. The asterisk points out that SFK inhibition leads to accumulation of a higher 

mobility N1ICD species. (C) Western blot analysis of N1ICD half-life under conditions of 

SFK inhibition and DMSO control. The arrows denote two distinct N1ICD species. (D) 

Densitometry and half-life analysis of western blot from panel C. Data represents n=4 

independent experiments and * indicates p<.05, students t-test. (E) Western blot analysis 

of N1ICD accumulation under condition of proteasomal inhibition using MG132. 
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Figure 2.7: SFK Regulation of the Notch Signaling Pathway 

Proposed mechanism of the regulation of Notch signaling by Src family kinases. Integrin-

induced SFK activity serves to phosphorylate the Notch intracellular domain. This 

phosphorylation leads to decreased recruitment of MAML to the Notch transcriptional 

complex and subsequent reduction in target gene transcription. Phosphorylation of the 

Notch intracellular domain also leads to the proteasomal degradation of the protein. 
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Figure 2.S.1: N1ICD Tyrosine Mutants Confer Enhanced Endothelial Cell 

Proliferation 

(A) Proliferation of HMEC-1 cells overexpressing WT N1ICD, Y2074F N1ICD, and 

Y2145F N1ICD was tracked for 72 hours. HMEC-1 cells expressing endogenous N1ICD 

levels were also compared, n=5. (B) Bar graph of HMEC-1 proliferation after 72hours. A 

student’s t-test was performed to determine statistical significance compared to WT N1ICD 

overexpressing cells. P-values are reported as *<.05, **<.01, ***<.001  
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Abstract 

Resveratrol is a polyphenolic compound produced by plants which makes its way 

into the human diet through plant-based foods. It has been shown to provide many health 

benefits, helping to ward off age-related diseases and promoting cardiovascular health. 

Additionally, resveratrol is a potent activator of the Notch signaling pathway. While 

resveratrol receives the most attention as a polyphenolic nutraceutical, other compounds 

with similar structures may be more potent regulators of specific cellular processes. Here, 

we compare resveratrol, apigenin, chrysin, genistein, luteolin, myricetin, piceatannol, 

pterostilbene, and quercetin for their ability to regulate Notch signaling. In addition, we 

compare the ability of these polyphenolic compounds to regulate endothelial cell 

proliferation and migration. Out of these compounds we found that resveratrol is the best 

activator of Notch signaling, however, other similar compounds are also capable of 

stimulating Notch. We also discovered that several of these polyphenols were able to 

inhibit endothelial cell proliferation. Finally, we found that many of these polyphenols are 

potent inhibitors of endothelial migration during wound healing assays. These findings 

provide the first side-by-side comparison of the regulation of Notch signaling, and 

endothelial cell proliferation and migration, by nine polyphenolic compounds. 

Introduction 

Our understanding of the role in which diet shapes human health is constantly 

evolving. A nutraceutical is a compound found naturally in food which has medicinal 

benefits. The use of nutraceuticals to combat disease and improve health is an ever-

expanding area of research. One class of molecules, known as polyphenols, are derived 

from various plants and renowned for their health benefits. Major sources of dietary 
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polyphenols include tea, wine, coffee, chocolate, vegetables, and beer 145. However, the 

molecular mechanisms by which these polyphenolic compounds affect human health are 

unclear.  

Perhaps the best-studied polyphenol, resveratrol (RSVT), has been characterized 

for its anti-aging 89, anti-cancer 82,83, anti-oxidant 81, anti-inflammatory 88, and 

neuroprotective 90–92 properties. Trans-RSVT is a polyphenolic stilbene derived from 

plants, such as grapes and peanuts 71. In plants, it acts as a phytoalexin, protecting plant 

tissues against pathogenic assault 72. Once ingested by humans RSVT is thought to promote 

many favorable physiological processes such as the maintenance of vascular health, 

prevention of atherosclerosis 76,146, inhibition of tumor angiogenesis 84–87,147, and 

improvement of cardiovascular function 80,148,149. In addition to RSVT, many other 

polyphenols have been described in the literature that have demonstrated similar activities 

to RSVT. While there exists a vast literature describing the molecular mechanisms by 

which RSVT governs endothelial cell behavior, little is known about how other 

polyphenols perform similar roles. 

RSVT, has been heavily-linked with the Notch cell signaling pathway 104–106. 

Despite the clear association between RSVT and Notch, conflicting results from different 

cell lines suggest that RSVT can enhance or suppress Notch in a cell type dependent 

manner. Being a form of juxtacrine cell communication, Notch signaling begins when the 

transmembrane Notch receptor of one cell (i.e. signal receiving cell) is bound by a 

transmembrane ligand on an adjacent cell (i.e. signal sending cell). A force of 4-12 pN 150 

is applied to the Notch receptor through ligand endocytosis in the signal sending cell. This 

pulling force exposes cleavage sites and facilitates proteolytic processing of the Notch 
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receptor, first by ADAM (A Disintegrin and Metalloproteinase) and then by γ-secretase 4. 

These cleavage events result in the release of the Notch intracellular domain (NICD), 

which then travels to the nucleus where it induces transcription of Notch target genes. Hairy 

and enhancer of split (HES) genes and Hairy/enhancer of split related with TYRPW motif 

(HEY) genes are well-known examples of Notch target genes 20. 

Here, we compare RSVT and several other polyphenols for their ability to regulate 

Notch signaling and endothelial cell proliferation and migration. We chose to compare the 

effects of RSVT with apigenin, chrysin, genistein, luteolin, myricetin, piceatannol, 

pterostilbene, and quercetin in order to see if these molecules, which share similar 

structures, behave similarly to one another. We found that the majority of these 

polyphenols, but not all, enhanced Notch signaling to varying degrees. Similarly, the 

majority of tested polyphenols, but not all, inhibited cell proliferation and migration. These 

results should prove useful to other researchers seeking to harness the biochemical 

properties of polyphenols for therapeutic uses. 

Results 

Resveratrol Induces Notch Target Gene Transcription 

A robust literature exists connecting RSVT with the Notch signaling pathway. The 

association between Notch and RSVT was first established when Pinchot et al. employed 

a high throughput chemical screening method to screen 7,264 compounds in order to 

identify Notch activating compounds 106. Out of all the compounds screened in this study, 

RSVT was identified as the strongest Notch activator. RSVT has been shown to induce 

apoptosis of endothelial cells and it was therefore important to first determine a sub-

apoptotic concentration of RSVT in which to examine Notch activation. HMEC cells were 
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cultured in 1 (.23g/ml), 10 (2.3g/ml), or 100 (23g/ml) M concentrations of RSVT and 

apoptosis was monitored by western blot analysis of cleaved caspase 3 (Figure 3.1A). 

Similar to previous studies 151, we found that 100M solutions of RSVT induced caspase 

3 cleavage, but 1-10M RSVT showed no evidence of apoptosis. To determine the effect 

of RSVT on Notch signaling, we transfected Human Aortic Vascular Smooth Muscle Cells 

(HAVSMC) and Human Microvascular Endothelial Cells (HMEC-1) with Notch 

responsive Hes-1, Hes-5, and 4X-CSL-luciferase constructs and incubated these cells in 

the presence of 1-10M RSVT. In both cell types, and across all three Notch-responsive 

reporters, RSVT activated Notch target gene transcription in a dose-dependent manner 

(Figure 3.1B and 3.1C). These results demonstrated that RSVT controls Notch independent 

of apoptosis and established a model on which we could examine additional polyphenols 

for Notch regulatory activity. 

Other Polyphenols Induce Notch Target Gene Transcription 

A robust literature exists connecting RSVT with the Notch signaling pathway. The 

association between Notch and RSVT was first established when Pinchot et al. employed 

a high throughput chemical screening method to screen 7264 compounds in order to 

identify Notch activating compounds 106. Out of all the compounds screened in this study, 

RSVT was identified as the strongest Notch activator. RSVT has been shown to induce 

apoptosis of endothelial cells and it was therefore important to first determine a sub-

apoptotic concentration of RSVT in which to examine Notch activation. HMEC-1 cells 

were cultured in 1 (.23 g/ml), 10 (2.3 g/ml), or 100 (23 g/ml) M concentrations of 

RSVT in the presence or absence of the Notch inhibitor DAPT and apoptosis was 

monitored by western blot analysis of cleaved caspase 3 (Figure 1A). Similar to previous 
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studies 151, we found that 100 M solutions of RSVT induced caspase 3 cleavage, but 1-10 

M RSVT showed no evidence of apoptosis. Notch inhibition did not induce apoptosis at 

0-10 µM RSVT concentration, and did not reverse or enhance the stimulation of apoptosis 

by 100 M RSVT treatments. To determine the effect of RSVT on Notch signaling, we 

transfected Human Aortic Smooth Muscle Cells (HAVSMC) and Human Microvascular 

Endothelial Cells (HMEC-1) with Notch responsive Hes1, Hes5, and 4xCSL-luciferase 

constructs and incubated these cells in the presence of 1-10 M RSVT. In both cell types, 

and across all three Notch-responsive reporters, RSVT activated Notch target gene 

transcription in a dose-dependent manner (Figure 1B and 1C). These results demonstrated 

that RSVT controls Notch independent of apoptosis and established a model on which we 

could examine additional polyphenols for Notch regulatory activity. 

Polyphenolic Regulation of Endothelial Cell Proliferation 

There are conflicting reports on the role RSVT plays in the regulation of cellular 

proliferation 83,152 and there has not been a head-to-head comparison of polyphenol effects 

on endothelial cell proliferation. Given our results that many polyphenols control Notch 

signaling, we next compared the effect of RSVT and the other polyphenols on endothelial 

cell proliferation in the presence or absence of elevated Notch signaling. For this study we 

used HMEC-1 cells which had been transduced with lentiviral particles encoding N1ICD 

under the control of a doxycycline inducible promoter (HMEC-1-N1ICD cells). HMEC-1-

N1ICD cells were treated with polyphenolic compounds in the presence (i.e. high Notch 

activity) or absence (i.e. basal Notch activity) of doxycycline and cell proliferation was 

monitored daily by WST-1 over the course of 72 hours (Figure 3.3). In agreement with 

previous reports, overexpression of N1ICD reduced cell proliferation 153,154. Under 
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conditions of basal Notch activity (i.e. no doxycycline induction) only luteolin and 

piceatannol were capable of inhibiting cellular proliferation. However, in the presence of 

elevated Notch activity, all of the polyphenols, except pterostilbene and quercetin, were 

demonstrated to cause a reduction in cellular proliferation compared to DMSO control 

under conditions of high Notch activity. Overall, RSVT reduced cellular proliferation by 

22%, but luteolin and piceatannol were the best inhibitors of proliferation, displaying a 

42% and 46% reduction in cellular proliferation respectively. From this evidence, we 

conclude Notch activity is required for the inhibition of proliferation by resveratrol, 

apigenin, chrysin, genistein, and myricetin. Whereas, high Notch activity potentiates, but 

is not required for the inhibition of proliferation by luteolin, and piceatannol. Finally, 

pterostilbene and quercetin did not significantly affect proliferation in our model system. 

Polyphenolic Regulation of Endothelial Wound Healing 

RSVT and several other polyphenols have been shown to decrease endothelial 

migration however a head-to-head comparison of how these polyphenols affect cell 

migration has not been reported. Therefore, we sought to compare the effect of various 

polyphenols on endothelial cell migration using a wound closure scratch assay. To this end, 

HMEC-1 cells were grown to confluency and treated with 10M concentrations of various 

polyphenols for 24 hours prior to monolayer wounding. After wounding, cells were allotted 

18 hours for migration, followed by subsequent wound healing quantification as a percent 

area of wound closure. As previously observed 155, we found that RSVT significantly 

decreased endothelial cell migration (Figure 3.4B). We also found that apigenin, chrysin, 

genistein, luteolin, myricetin, and piceatannol also significantly inhibited endothelial cell 

migration. Of these compounds, luteolin had the largest effect on migration, with only 30% 
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wound closure after 18 hours (Figure 3.4A). Pterostilbene and quercetin did not reduce cell 

migration in a statistically significant manner. 

Discussion 

Notch signaling, endothelial cell proliferation, and endothelial cell migration are 

collectively important for angiogenesis and many polyphenolic compounds have been 

identified as regulators of angiogenesis. However, there has been no direct comparison of 

polyphenols on these cellular activities. Therefore, the goal of this study was to compare 

several polyphenolic compounds for their ability to control Notch signaling, endothelial 

cell proliferation, and endothelial cell migration. Throughout this study, we performed 

several side-by-side comparisons of the biological potency of nine polyphenolic 

compounds. Despite the highly similar structures of these polyphenols, we have found that 

some, but not all, of these natural products are activators of Notch signaling or inhibitors 

of endothelial cell proliferation and migration. Two of the polyphenolics (pterostilbene and 

quercetin) failed to show biological activity in any of the experimental systems we 

examined. 

Polyphenolic compounds fall into several categories according to their structure 156. 

In this work, we examined several polyphenolics with similar structures including the 

stilbenes RSVT, piceatannol, and pterostilbene and the flavonoids apigenin, chrysin, 

genistein, luteolin, myricetin, and quercetin. Many polyphenolic compounds have been 

shown to control Notch signaling, however a direct comparison of the Notch regulating 

activities of these compounds has not been performed. Compared to other polyphenols, 

RSVT has received the most attention for its role in regulating the Notch cell signaling 

pathway 104,105. Through our analysis, it is clear that RSVT warrants its attention as a robust 
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polyphenolic activator of Notch as it demonstrated the greatest Notch inducing activity. 

While RSVT was the most potent Notch activator out of the polyphenols we tested, 

apigenin, chrysin, genistein, and piceatannol were also able to regulate Notch to lesser 

degrees. Our results are consistent with previous findings showing that chrysin 107, and 

genistein 108 can control Notch, however the findings that apigenin and piceatannol can 

also control Notch is novel. In contrast, two other polyphenols which have been previously 

identified as Notch regulators, luteolin 109,110 and pterostilbene 111, did not act as Notch 

regulators in our hands. Finally, myricetin and quercetin have not been linked to Notch 

activity, and our results do not support a Notch regulatory role for these polyphenols. Taken 

together, our results show that polyphenolic compounds are a promising source of Notch 

regulators, but also provide a warning that cell-type specific responses to polyphenols may 

account for conflicting data concerning these molecules. 

While we found that RSVT works synergistically with Notch signaling to suppress 

endothelial cell proliferation, apigenin, chrysin, genistein, luteolin, myricetin, and 

piceatannol also demonstrated similar activity. In fact, out of the compounds we tested, 

luteolin and piceatannol were the most potent inhibitors of endothelial cell proliferation. 

Since luteolin and piceatannol have previously been identified as an anti-angiogenic agents 

157,158, our identification of these compounds as suppressors of endothelial cell proliferation 

may provide mechanistic insight into their anti-angiogenic properties. Additionally, the 

effects these molecules have on cellular proliferation may expand beyond endothelium. 

Future work should assess the effectiveness of these polyphenols for their ability to 

suppress tumor growth. Previous work has found that luteolin 109,159 suppresses cell 

migration. In accordance, luteolin was the most potent inhibitor of endothelial migration 



61 

 

we tested. While our identification of these molecules as inhibitors of endothelial migration 

is relevant to angiogenesis, future work should compare polyphenolic regulation of cancer 

cell migration for their potential use as anti-metastatic agents. 

These results provide the first side-by-side comparison of nine polyphenolic 

compounds in their ability to regulate Notch signaling, and endothelial cell proliferation 

and migration. Angiogenic growth requires tight coordination of Notch signaling, 

endothelial cell proliferation, and migration in endothelial cells 160. This study has 

demonstrated that polyphenols act as modulators of angiogenic processes (Summarized in 

Figure 3.5). Future work should expand upon this analysis, comparing how polyphenols 

behave in more sophisticated angiogenic models. Additionally, while angiogenesis is an 

essential step in tumor progression, performing a comparative analysis of polyphenolic 

treatment in the context of cancer cell behavior is necessary, and would complement this 

endothelial-based study, in order to gain a better scope of the use of polyphenols as anti-

cancer agents. More broadly, our findings have laid the groundwork for the potential use 

of polyphenols as modulators of any developmental or disease process in which Notch 

signaling, cellular proliferation, and/or cellular migration are involved. While further 

exploration is necessary, we have shown that polyphenols are promising anti-angiogenic 

compounds which may facilitate natural product based cancer-related therapies in the 

future. 

Materials and Methods 

Cell Culture 

293T cells were cultured in Dulbecco’s Modified Eagle’s medium (DMEM, 

Mediatech) supplemented with 10% fetal bovine serum (FBS) and 1x pen-strep. HAVSMC 
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cells were cultured in EBM2 basal media (Lonza) supplemented with EGM2 growth media 

and 10% FBS. HMEC-1 cells were cultured in MCDB131 supplemented with 10% fetal 

bovine serum (FBS), 10 ng/ml epidermal growth factor, and 1 µg/ml hydrocortisone. Cells 

were grown in 10 cm plates and passaged before reaching confluency. 

Materials 

Trans-RSVT was purchased from Caymen Chemicals. Apigenin, chrysin, luteolin, 

and quercetin were purchased from Alfa Aesar. Myricetin, piceatannol, and pterostilbene 

were purchased from Enzo Life Sciences. Genistein and doxycycline were purchased from 

Tokyo Chemical Industry. All drugs were dissolved in DMSO. 

Plasmids 

The N1ICD construct (Addgene #20183) was a gift from Raphael Kopan and 

contains amino acids Val1744 to Lys 2531 of the mouse Notch1 intracellular domain with 

a 3xFLAG N-terminal tag 139. N1ICD was inserted into a doxycycline inducible lenti viral 

destination vector, pCW57.1 (Addgene #41393, a gift from David Root) in order to 

construct a N1ICD lenti viral expression vector. The 4xCSL luciferase construct (Addgene 

#41726) was a gift from Raphael Kopan and contains 4 tandem repeats of the high affinity 

CSL binding sites (5′CGTGGGAA3′) while transcribing for firefly luciferase 139. The Hes1 

luciferase construct was a gift from Jan Jensen and consists of nucleotides -2553 to -201 

relative to the murine Hes1 transcriptional start site while transcribing for firefly luciferase. 

The Hes5 luciferase construct (Addgene #41724) was a gift from Ryoichiro Kageyama and 

Raphael Kopan and contains the murine Hes5 promoter (-800 to +73) relative to the Hes5 

transcriptional start site while transcribing for firefly luciferase 143.
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Apoptosis Assays 

HMEC-1 cells were seeded into 6 well plates at a density of 150,000 cells/well and 

allowed to grow for 24 hours. Cells were then treated with 0-100 µM concentrations of 

RSVT and/or 10 µM DAPT and allowed to incubate for 24 hours. After incubation, cell 

culture media was collected and cells were lysed in SDS page lysis buffer. Cell culture 

media was pelleted and added to cell lysates. For a positive control for apoptosis, cells were 

exposed to 15 minutes of ultraviolet light before lysing. Apoptosis was monitored through 

western blotting for the presence of cleaved caspase 3. 

Western Blotting 

Cells were lysed in 1x SDS page lysis buffer and boiled for 5 minutes. Proteins 

were separated through SDS page on 6%-15% polyacrylamide gels and blotted onto 

nitrocellulose membranes. Membranes were blocked in TBS-T (140 mM NaCL, 25 mM 

Tris-HCL, pH 7.4, 0.1% Tween-20) with 5% bovine serum albumin for 1 hour at room 

temperature. Membranes were incubated with primary antibody (1:250, 1:500, or 1:1000) 

overnight on a rotator at 4°C. After incubation, membranes were washed 3 x 10 minutes in 

TBS-T before 1 hour incubation in secondary antibodies at room temperature. Horseradish 

peroxidase conjugated secondary antibodies were used at a concentration of 1:5000. After 

incubation with secondary antibodies, proteins were detected by enhanced 

chemiluminescence. Primary antibodies against β-actin (sc-47778) were purchased from 

Santa Cruz Biotechnology. Primary antibodies against caspase 3 (#9662) were purchased 

from Cell Signaling Technology.
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Luciferase Assays 

HMEC-1 cells were seeded into 24-well plates at a density of 25,000 cells/well. 

293T cells were seeded into 24-well plates at a density of 50,000 cells/well. The following 

day, cells were transfected using LT-1 liposomes (Mirus). Cells were transfected with 100 

ng/well Hes1 luc, Hes5 luc, or 4xCSL luc plasmids which produce luciferase in response 

to Notch pathway activation. Co-transfection of a 30 ng/well CMV-Beta-Galactosidase 

construct was used to normalize data for transfection efficiency and potential cell 

death/proliferation. Cells were lysed 48 hours after transfection using passive lysis buffer 

(Promega) and lysates were used to perform a luciferase reporter assay as per 

manufacturer’s protocol and analyzed using a Promega© Glomax Multi Detection System 

luminometer. Luciferase activity was normalized to Beta-Galactosidase activity and values 

were reported as fold change to control. All conditions were performed in triplicate for 

each independent experiment. 

Proliferation Assays 

HMEC-1 cells were lenti viral transduced with doxycycline inducible constructs 

that contain WT N1ICD under the control of a CMV promoter. Cells were treated with 10 

µM polyphenols and seeded into 96-well plates at a density of 2,500 cells/well. 

Doxycycline was added to appropriate wells in order to induce N1ICD overexpression. 

After 24, 48, and 72 hours, a triplicate of wells for each condition was analyzed for cell 

density using a WST-1 colorimetric assay. Absorbance spectra was measured at 410 nm 

using a BioTek Synergy Mx plate reader.
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Scratch Assays 

HMEC-1 cells were seeded into 24-well plates at a density of 25,000 cells/well. 

Upon reaching confluency cells were treated with 10 µM and incubated for 24 hours. 

Wounds were made using 200 µL pipette tips. Wells were washed 3 times with 1x PBS 

and media/polyphenol treatments were replaced. Cells were place in on on-stage incubator 

(5% CO2, 37°C). Images were captured using an EVOS FL auto microscope which 

automatically captured images every 30 minutes for 18 hours. After 18 hours, images were 

analyzed and wound area was calculated using ImageJ. Percent area of wound closure was 

calculated using the following formula, (area of wound at 0h - area of wound at 18h) / (area 

of wound at 0h X 100). 
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Figure 3.1: Resveratrol is a Potent Stimulator of Notch Signaling 

(A) RSVT does not induce HMEC apoptosis at 1-10 M. HMEC cells were treated with increasing 

concentrations of RSVT +/- DAPT. Cellular apoptosis was indirectly examined by monitoring 

cleavage of cleaved caspase 3 from pro-caspase 3 by western blot. HMEC cells were treated with 

UV as a positive apoptosis control and protein loading was monitored by western blotting for -

actin. (B) Notch activation measured by three luciferase reporter constructs in HAVSMC cells. 

Student’s t-test was performed to determine statistical significance compared to 0 µM resveratrol 

control. P-values are reported as *<.05, **<.01, ***<.001. Data represents n≥5. (C) Notch 

activation measured by three luciferase reporter constructs in HMEC-1 cells. Student’s t-test was 

performed to determine statistical significance compared to 0 µM resveratrol control. P-values are 

reported as *<.05, **<.01, ***<.001. 
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Figure 3.2: Other Polyphenolic Compounds are Notch Activators. 

Notch activation measured by 4xCSL luciferase assays in 293T cells in the presence N1ICD 

overexpression. Student’s t-test was performed to determine statistical significance. P-values are 

reported as *<.05, **<.01, ***<.001. Data represents n≥5. Structures of each polyphenol are 

shown above respective graph. (A) Polyphenols which stimulated Notch target gene 

transcription. (B) Polyphenols which did not stimulate Notch target gene transcription. 
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Figure 3.3: Polyphenolic Regulation of Endothelial Cell Proliferation 

Proliferation of HMEC-1 cells measured by WST-1 proliferation assays. HMEC-1 cells which 

had been transduced with lentiviral particles encoding N1ICD under the control of a doxycycline 

inducible promoter were used. One-way anova followed by Bonferroni’s post-hoc tests was 

performed to determine statistical significance. Data represents n=6. (A) Polyphenols which 

inhibit HMEC-1 proliferation in a Notch dependent manner. (B) Polyphenols which inhibit 

HMEC-1 proliferation during both basal and high Notch activity. (C) Polyphenols which do not 

alter HMEC-1 proliferation.
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Figure 3.4: Polyphenolic Regulation of Endothelial Cell Migration 

Migration of endothelial cells measured through scratch assay analysis. (A) Micrograph images 

of scratch assay in HMEC-1 cells for DMSO and luteolin. Area of wound is outlined. (B) Data 

depicts % wound closure after 18 hours. Student’s t-test was performed to determine statistical 

significance. Polyphenols are grouped according to migration inhibitors (RSVT., APIG., CHRY., 

GENI., LUTE., MYRI., PICE.) and polyphenols which do not alter migration (PTER. and 

QUER.). P-values are reported as *<.05, **<.01, ***<.001. Data represents n=3.
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Figure 3.5: Summary 

The summarization of the ability of individual polyphenols to regulate Notch activity, 

endothelial cell proliferation, and endothelial cell migration. E=enhances, I=inhibits, 

N=neutral. 
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CHAPTER FOUR 

Summary 

 

Notch Signaling is Regulated by Src Kinase 

In Chapter II, I discussed our findings which led to the discovery of the molecular 

mechanism whereby Notch signaling is regulated through activation of αVβ3 integrin. 

Integrin stimulation by the extracellular protein, MAGP2, activates the intracellular 

tyrosine kinase, Src. Src phosphorylates the intracellular domain of the Notch receptor at 

several tyrosine residues. These sites of phosphorylation serve to inhibit transcriptional 

expression of Notch target genes. This occurs through phosphotyrosine inhibition of 

MAML recruitment to the ternary transcriptional complex. All of this evidence reveals a 

novel regulatory mechanism whereby Notch signaling is controlled by extracellular cues 

through an integrin-based crosstalk mechanism. 

This discovery has potentially far-reaching implications. Firstly, we have outlined 

a novel phosphotyrosine regulatory mechanism previously unknown to science. Since Src 

is controlled by other signaling mechanisms besides integrin signaling, future work should 

explore whether these pathways regulate Notch. Src is controlled by several major cell 

signaling mechanisms such as vascular endothelial growth factor (VEGF) 161, g-protein 

couple receptor (GPCR) 162, transforming growth factor beta (TGFβ) 163 and Wnt/β-catenin 

164 signaling. Additionally, many of these pathways are known to synergize with Notch (as 
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reviewed in Appendix A). Investigating whether stimulation of these pathways governs 

Notch behavior may uncover new modes of Src-induced pathway crosstalk. 

Additionally, based on our discovery of a phosphotyrosine regulatory mechanism 

of Notch signaling, we speculate that the Notch receptor protein may be phosphorylated by 

other tyrosine kinases besides Src. Since there exists many different tyrosine kinases within 

cells, future work should attempt to uncover if Notch is phosphorylated by other tyrosine 

kinases working under the control of other cell signaling pathways. For example, another 

tyrosine kinase, Abelson kinase (ABL), has been demonstrated to phosphorylate Notch 33. 

Focal adhesion kinase (FAK), is another tyrosine kinase activated by integrin signaling 58. 

FAK and Src activity are highly coordinated 165, so the possibility that FAK phosphorylates 

Notch, or that FAK is involved in the Src-Notch interaction, should be explored. In this 

way, we may be able to uncover novel ways in which Notch signaling is controlled by other 

tyrosine kinase activity. 

Lastly, since we have characterized a crosstalk between αVβ3 integrin and Notch 

signaling, future work should explore whether other integrins coordinate Notch. Integrins 

are involved in many developmental and disease processes. Many chemotherapeutic 

strategies attempt to disrupt integrin activity in tumors 166,167. However, many of these 

approaches fail in their effectiveness. Based on our findings that integrin signaling inhibits 

Notch, it is possible that abatement of integrin function leads to aberrant Notch activation 

which may in turn facilitate tumor progression. Moving forward, it may be prudent to use 

a co-targeting approach, whereby Notch and integrin signaling is simultaneously 

attenuated during cancer treatment. More broadly, this strategy may provide new 
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treatments for diseases where both integrin and Notch signaling have been implicated, such 

as fibrosis 168,169. 

Polyphenolic Compounds Control Notch Signaling and Endothelial Cell Behavior 

In Chapter III, I discussed our comparative study which analyzed how different 

polyphenolic compounds modulate Notch signaling. Out of the nine polyphenols we tested, 

we found resveratrol to be the most potent Notch activator, while identifying novel 

polyphenolic Notch activators. In addition, we tested the inhibition of endothelial cell 

proliferation by these polyphenols. Here, we found that most of the polyphenolic 

compounds we tested acted to mitigate endothelial cell proliferation. Additionally, we 

tested polyphenolic control of endothelial cell migration, and found genistein and luteolin 

to be highly active inhibitors of migration. 

How dietary constituents alter cellular signaling pathways is an active area of 

research. This is particularly relevant during cancer treatment where chemotherapeutics 

target specific signaling mechanisms. Highly active nutraceuticals could potentially aid or 

hinder these treatment strategies. Without first establishing how dietary constituents affect 

the body at the cellular level, these interactions could be overlooked. Our findings that 

polyphenolic compounds are potent stimulators of Notch activity may help medical 

professionals prescribe an appropriate diet for patients battling specific diseases. As an 

example, a patient who suffers from T-cell acute lymphoblastic leukemia (T-ALL), a 

disease hallmarked by over-active Notch signaling 43, may potentially benefit from 

curtailing intake of polyphenolic-rich foods that might exacerbate the condition. 

Since we identified some polyphenolic compounds as capable inhibitors of 

endothelial proliferation and migration, these compounds may serve as good anti-
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angiogenic agents. Angiogenesis is characterized by enhanced endothelial proliferation and 

migration, so natural compounds which curtail these endothelial cell behaviors may be of 

medical interest. Patients undergoing conventional anti-angiogenic strategies during cancer 

treatment could benefit from foods rich in natural angiostatic compounds. Hybridization of 

traditional drug treatments with the use of polyphenolic nutraceuticals may become 

effective holistic anti-cancer approaches in the future. 

Future Directions 

Modern medicine relies heavily on the scientific advancements made through basic 

research. This dissertation has made strides in furthering our collective knowledge about 

Notch signaling, an important cellular communication pathway. Moving forward, it will 

prove necessary to engage in translational research in order to validate if our findings have 

clinical significance. The details we unearthed about these novel regulators of Notch 

signaling may prove key to combating Notch-related developmental disorders and disease. 

Understanding how discoveries made in the petri dish are relevant to human health is 

essential to advancement of modern medicine.  
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Abstract 

The Notch signaling cascade is an evolutionarily ancient system that allows cells 

to interact with their microenvironmental neighbors through direct cell-cell interactions, 

thereby directing a variety of developmental processes. Recent research is discovering that 

Notch signaling is also responsive to a broad variety of stimuli beyond cell-cell 

interactions, including: ECM composition, crosstalk with other signaling systems, shear 

stress, hypoxia, and hyperglycemia. Given this emerging understanding of Notch 

responsiveness to microenvironmental conditions, it appears that the classical view of 

Notch as a mechanism enabling cell-cell interactions, is only a part of a broader function 

to integrate microenvironmental cues. In this review, we summarize and discuss published 

data supporting the idea that the full function of Notch signaling is to serve as an integrator 

of microenvironmental signals thus allowing cells to sense and respond to a multitude of 

conditions around them. 

Introduction 

The Cellular Microenvironment 

Conditions of the local environment in which a cell resides can vary widely 

depending on the species and its anatomical location within the organism. In recent years, 

cellular microenvironments have gained wide acceptance as major determinants 

influencing cellular physiology, especially as it pertains to the cancer microenvironment 

(Liotta and Kohn 2001), the stem cell niche (Morrison and Spradling 2008), the vascular 

system (Giordano and Johnson 2001), and wound healing/granulation tissue (Junker, 

Caterson et al. 2013). A multitude of components contribute to a cell’s microenvironment. 

Extracellular matrices which surround and support cells contribute chemical and physical 
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properties to the microenvironment. Both the chemical composition and the physical 

stiffness of the matrix provide signaling cues that are actively monitored by cells. 

Neighboring epithelial cells, endothelial cells, leukocytes, and fibroblasts are all known to 

influence nearby cells chemically through cytokine and hormone secretions, and physically 

through cell-cell interactions. Other properties of the cellular microenvironment include 

concentrations of dissolved gases such as O2 and CO2, blood sugar concentrations, 

temperature, shear stress, oxidative stress, the presence/absence of foreign antigens, and 

osmolality. Moreover, cellular microenvironments can change rapidly and dramatically in 

response to situations such as wounding and subsequent healing, tumor development, 

hypoxia, glucose availability, and fibrosis. Due to the potentially dynamic nature of the 

cellular microenvironment, cellular responses to both static and changing 

microenvironments need to be calibrated to properly and rapidly respond to these 

situations. Understanding how cells respond to the incredible complexity of the 

microenvironment requires a systems biology approach to integrate the 

microenvironmental information, a task that is immensely complicated. 

Notch 

The Notch signaling mechanism is a highly conserved developmental pathway that 

is used during differentiation in numerous tissues in most, if not all, multicellular 

organisms. Evolutionary evidence for the emergence of the Notch receptors first appears 

in the choanoflagellates, unicellular flagellated free-living eukaryotic cells widely 

considered the closest extant protist relative to metazoans (King, Westbrook et al. 2008, 

Richter and King 2013). The genome of the choanoflagellate Monosiga brevicollis encodes 

three domains that show similarity to metazoan Notch receptors (figure A.1A). However, 
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these domains are split amongst three separate transmembrane proteins in the M. brevicollis 

genome including one gene that encodes 36 epidermal growth factor (EGF) like domains, 

a second gene that encodes two Lin-12-Notch repeats (LNR domains), and a third gene 

that encodes six ankyrin repeats (King, Westbrook et al. 2008). Presumably, these three 

ancestral partial Notch homologs were responsible for individual functions. This suggests 

that modern metazoan Notch receptors, which unify these domains in a single receptor, 

might represent an amalgamation of three independent proteins with independent ancestral 

functions and may help explain why Notch is capable of integrating a multitude of cellular 

microenvironmental signals and conditions as described in this review. Despite the lack of 

a bona fide Notch receptor or Notch ligands, M. brevicollis genome does encode several 

other components of the Notch system (Gazave, Lapebie et al. 2009) (figure A.1B). 

Therefore the origin of Notch domains (if not function) likely predates the rise of the 

metazoans. It has been postulated that these proto-Notch receptors might have served an 

adhesive function that was independent of Notch signaling activity and is conserved in 

modern Notch function (reviewed in (Murata and Hayashi 2016)). It was not until the rise 

of sponges however, that bona fide Notch receptors and ligands appeared and exhibited the 

developmental roles that are representative of the metazoan Notch mechanism (Richards 

and Degnan 2012). Thereafter, Notch receptors, ligands, and other Notch processing and/or 

modifying proteins are expressed throughout all metazoans examined to date (Gazave, 

Lapebie et al. 2009). 

In mammals, the core of the Notch mechanism consists of five Notch ligands 

(Jagged1, 2 and Delta like (Dll) 1, 3, 4) present on the “signaling cell”. The Jagged and Dll 

1 and 4 ligands directly interact with and activate a transmembrane Notch receptor (four 
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different isoforms in mammals) present on the “receiving cell” (Kopan and Ilagan 2009, 

Kopan 2010) (figure A.1B). The Dll3 ligand is a decoy receptor that interferes with Notch 

activation (Ladi, Nichols et al. 2005). Notch receptors undergo a maturation process 

involving three proteolytic cleavage events that ultimately result in Notch activation. The 

first cleavage is performed by a furin convertase during translocation through the Golgi 

complex on the way to the cell membrane (Logeat, Bessia et al. 1998). The resulting two 

Notch fragments remain non-covalently associated at the membrane where canonical 

Notch activation is initiated by interaction between Notch receptors and ligands. Canonical 

Notch activation at the membrane is commonly thought to be dependent on a physical 

tugging mechanism of ~ 4-12 pN (Gordon, Zimmerman et al. 2015, Chowdhury, Li et al. 

2016) that is initiated by Notch ligand endocytosis in the signaling cell (Parks, Klueg et al. 

2000). This pulling force sets up a second cleavage by an ADAM metalloprotease (-

secretase) producing the transient NEXT (Notch Extracellular Truncation) fragment (Brou, 

Logeat et al. 2000), and a third cleavage by -secretase (Mumm, Schroeter et al. 2000) thus 

releasing the intracellular NICD domain of Notch that translocates to the nucleus and 

functions as a co-transcription factor in association with the CSL transcription factor and 

other co-transcription factors including MAML and p300. In addition to this canonical 

mechanism, evidence for several non-canonical Notch activation mechanisms have also 

been gaining traction. In particular, Notch activation that is independent of canonical 

ligands (Palmer and Deng 2015), NICD cleavage and transcriptional activity (Guruharsha, 

Kankel et al. 2012), as well as several non-canonical ligands (D'Souza, Meloty-Kapella et 

al. 2010) have all been described in the literature. Finally, in addition to the core receptors 

and ligands, a wide variety of cellular and secreted proteins have been characterized that 
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modify Notch signaling either through direct interaction and/or modification of 

extracellular Notch receptor or ligand domains (Kadesch 2004) or via post-translational 

modification of intracellular NICD fragments (Fortini 2009). References (Kopan and 

Ilagan 2009, Kopan 2010) provide excellent in-depth reviews of the Notch signaling 

mechanism. 

Notch as an Integrator of Cellular Microenvironments 

While the traditional view of Notch activation focuses on Notch receptor – ligand 

interactions, it is becoming increasingly clear that Notch signaling is also influenced by a 

wide array of molecules and events in the cellular microenvironment. In particular, 

extracellular matrix (ECM) mediated Notch signaling is emerging as a new paradigm for 

controlling Notch signaling. Regulation of Notch by ECM occurs on several levels, 

including direct interaction between ECM and Notch receptor/ligands, transcriptional 

control of Notch receptors and/or ligands, and via cross-talk with other ECM stimulated 

signaling networks, such as integrins. In addition, Notch is engaged in crosstalk with a 

number of signaling pathways that are initiated by growth factors and cytokines commonly 

present in cellular microenvironments including, TGF-, WNT/-catenin, and VEGF. 

Finally, Notch can also be regulated by additional conditions such as shear stress, hypoxia, 

and hyperglycemia. These microenvironmental conditions are summarized in Table A.1. 

Taking into consideration the wide variety of cellular microenvironmental cues that 

regulate Notch signaling output, a new picture of Notch is emerging which depicts Notch 

as an integrating system for the cellular microenvironment, which enables cells to respond 

appropriately to changing ECM composition, growth factor secretions, oxygen tension, 

shear stress, and glucose levels. Importantly, this idea is not inconsistent with the classical 
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model of Notch receptor activation by Notch ligands on adjacent cells, but rather builds on 

this model since cellular neighbors are also an important part of a cell’s microenvironment. 

The goal of this review is to summarize what is known about the role Notch signaling plays 

in responding to and integrating changing microenvironmental conditions, and to explore 

and develop the idea of Notch as a multi-functional integrating system of 

microenvironmental signals.  

ECM-Notch Interactions 

Extracellular matrices are a major component of a cell’s microenvironment. In 

some instances ECM can be stable over decades. In other situations, ECM is rapidly turned 

over and remodeled. Therefore, cells need to be able to adjust to these stable or changing 

conditions. Notch responsiveness to the composition of the ECM has only recently begun 

to be characterized. The interactions between ECM and Notch can be summarized as either 

direct interactions between ECM and Notch receptors or ligands, indirect (transcriptional) 

responses of Notch receptors or ligands to ECM, and indirect (crosstalk) interactions 

between Notch and ECM stimulated signaling cascades (figure A.2). Below, we summarize 

and discuss these interactions between ECM and Notch signaling. 

Direct ECM-Notch Interactions that Control Notch Signaling 

Direct interactions between Notch receptors and several ECM proteins have been 

described in the literature. Below, we summarize the current data available for several 

ECM proteins including Microfibril Associated Glycoprotein-2 (MAGP-2), Epidermal 

Growth Factor–like 7 (EGFL7), Nephroblastoma Overexpressed (NOV, CCN3), 

Thrombospondin-2 (TSP-2), syndecans 2/3, collagens type I and IV, the Y-box binding 

protein (YB-1), and Galectin-3. An interesting observation is that while all these proteins 
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have been shown to regulate Notch signaling via direct interactions with Notch receptors 

or ligands, there is not a common thread of increased or decreased activity connecting these 

proteins. Thus, the Notch regulatory activities of these molecules most likely do not rely 

solely on mechanisms involving a simple steric hindrance model. Moreover, several of 

these molecules appear to control Notch via multiple mechanisms, suggesting that ECM 

control of Notch may be a highly regulated activity. 

MAGP-2 is a component of elastic fibrils that are thought to help recruit 

tropoelastin to fibrillin containing microfibrils during the development of elastin networks 

(Gibson, Hatzinikolas et al. 1996). Since elastin is critical for Windkessel function and 

structural integrity of the aortic wall (Belz 1995), it is not surprising that loss of function 

of MAGP-2 is linked to aortic dilation in mice (Combs, Knutsen et al. 2013) and familiar 

thoracic aortic aneurisms in humans (Barbier, Gross et al. 2014). MAGP-2 may also serve 

other functions in the cardiovascular system since MAGP-2 contains an v3 integrin 

binding RGD domain and has been shown to control angiogenesis (Albig, Roy et al. 2007) 

and vascular density in ovarian cancers (Mok, Bonome et al. 2009). The link between 

MAGP-2 and Notch was first made when MAGP-2 was identified as a Jagged1 interacting 

protein by yeast-two hybrid screening (Nehring, Miyamoto et al. 2005) and was shown to 

induce Jagged1 shedding from the cell surface (Miyamoto, Lau et al. 2006). Subsequent 

analysis determined that MAGP-2 and the related protein MAGP-1 both increased Notch 

signaling in COS cells (Miyamoto, Lau et al. 2006). Mechanistically, MAGP-2 mediated 

stimulation of Notch signaling was shown to involve direct binding between the MAGP-2 

C-terminal domain, and the EGF-like domains of Notch1 and Jagged1 (Miyamoto, Lau et 

al. 2006). In addition, RGDRGE mutation of the MAGP-2 integrin binding domain 
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converted MAGP-2 from a suppressor to an activator of Notch signaling in endothelial 

cells suggesting that MAGP-2 may also regulate Notch via interactions with integrins 

(Deford, Brown et al. 2016). This finding may help to explain the cell type dependent 

effects of MAGP-2 on Notch signaling previously observed (Albig, Becenti et al. 2008) 

and suggests that cell type specific control of Notch may be dependent on several factors 

including integrin and Notch ligand expression profiles. 

EGFL7 is a secreted protein that is specifically expressed from endothelial cells 

during development (Fitch, Campagnolo et al. 2004, Parker, Schmidt et al. 2004). EGFL7 

is predominantly found in the vascular microenvironment where it appears to be an 

important regulator of elastogenesis (Lelievre, Hinek et al. 2008) and angiogenesis (Nichol, 

Shawber et al. 2010, Nikolic, Stankovic et al. 2013). In particular, EGFL7 is important for 

the formation and maintenance of vascular lumen structures (Parker, Schmidt et al. 2004, 

Charpentier, Tandon et al. 2015) and suppressing angiogenic sprouting (Nichol, Shawber 

et al. 2010). The first observations that EGFL7 could control Notch signaling were made 

in neural stem cell cultures where it was found that the N-terminal half of EGFL7 

specifically interacted with EGF domains in Notch1-4 and inhibited Notch signaling 

(Schmidt, Bicker et al. 2009). Subsequent work showed that EGFL7 control of Notch in 

endothelial and placental trophoblast cells was important for placenta development and 

that decreased EGFL7 expression may be linked to preeclampsia (Lacko, Massimiani et al. 

2014, Massimiani, Vecchione et al. 2015). In addition to controlling Notch via direct 

interaction with Notch receptors, recent work showed that RGDRGE mutation of the 

EGFL7 integrin-binding domain enhanced Notch signaling in endothelial cells (Deford, 

Brown et al. 2016). By regulating Notch via direct interactions with Notch receptors and 
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via RGD integrin binding, EGFL7 demonstrates similarities with MAGP-2 and suggest 

that dual control of Notch by ECM molecules is a common theme. 

In addition to MAGP-2 and EGFL7, CCN3 (NOV) has also been implicated in the 

regulation of Notch signaling (Sakamoto, Yamaguchi et al. 2002). CCN3 belongs to the 

ECM CCN family of proteins (CCN1-6) that share a modular structure including of 

conserved cysteine knot C-terminal (CT) domain and are multi-functional regulators of 

diverse processes including development, osteogenesis, and angiogenesis (Katsube, 

Sakamoto et al. 2009). The Notch regulatory activity of CCN3 appears to be important for 

controlling a variety of activities including osteoblast differentiation (Minamizato, 

Sakamoto et al. 2007, Katsuki, Sakamoto et al. 2008) and trophoblast senescence 

(Wagener, Yang et al. 2013, Kipkeew, Kirsch et al. 2016). Regulation of Notch signaling 

may be a general feature of the CCN family since CCN2 (CTGF) suppresses Notch 

signaling (Smerdel-Ramoya, Zanotti et al. 2008) and CCN1 (Cyr61) is linked to 

suppression of Notch1 during the epithelial to mesenchymal transition (EMT) (Haque, De 

et al. 2012). Although, mechanistic details describing how CCN3 manipulates Notch 

signaling are lacking, the cysteine rich C-terminal tail of CCN3 binds to Notch1 

(Sakamoto, Yamaguchi et al. 2002) and is required for Notch regulation (Katsuki, 

Sakamoto et al. 2008). Similar to MAGP-2 and EGFL7, CCN3 also interacts with several 

integrins (in an RGD independent manner) (Lin, Leu et al. 2003) although it is unknown if 

control of Notch by CCN3 involves integrin ligation. Interestingly however, CCN1 is 

highly expressed near developing blood vessels where it enhances Notch signaling in an 

integrin dependent manner (Chintala, Krupska et al. 2015). 
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Although MAGP-2, EGFL7, and CCN3 are the best characterized examples of 

ECM proteins known to regulate Notch activity via direct Notch receptor and/or ligand 

interactions, several other ECM molecules have also been implicated in the Notch pathway 

and appear to control Notch via direct interactions with Notch receptors and/or ligands. A 

common thread among these molecules is Notch3, which appears to be frequently targeted 

by ECM interactions compared to other Notch receptors. For instance, Thrombospondin-2 

(TSP-2) and Syndecan-2 specifically interact with Notch3 and promote Notch3 – Jagged1 

signaling (Meng, Zhang et al. 2009, Zhao, Liu et al. 2012). Conversely, collagen type I and 

IV also bind to Notch3 and Jagged1 but suppress downstream Notch signaling (Zhang, 

Meng et al. 2013). An additional example of Notch3 regulation by microenvironment is 

YB-1. The multi-functional YB-1 protein has widespread DNA/RNA binding activities 

(Kohno, Izumi et al. 2003) and has historically been thought of as a cold shock protein 

(Kohno, Izumi et al. 2003). Interestingly however, YB-1 can be secreted from mesangial 

and immune cells after cytokine stimulation via a non-classical mechanism that involves 

ubiquitin E3 ligase HACE-1 mediated K27 ubiquitination and association with the Tumor 

Susceptibility Gene 101 (TSG101) (Frye, Halfter et al. 2009, Palicharla and Maddika 

2015). In turn, secreted YB-1 has been found to specifically interact with Notch3 EGF 

repeats and to control Notch3 downstream signaling, but not Notch1 signaling (Rauen, 

Raffetseder et al. 2009, Raffetseder, Rauen et al. 2011). More recently, non-secreted YB-

1 was found to control Notch4 expression in triple negative breast cancer cells suggesting 

that YB-1 may control Notch on multiple levels (Reipas, Law et al. 2013). Finally, while 

Notch3 appears to be a common target for many ECM molecules, it is not the only target. 

For instance, while Syndecan-2 regulates Notch3 – Jagged1 signaling (Zhao, Liu et al. 
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2012), Syndecan-3 interacts with Notch1 receptor, regulates processing by 

ADAM17/TACE, and is required for Notch signaling activity in skeletal muscle progenitor 

cells (Pisconti, Cornelison et al. 2010). Finally, the sugar binding protein Galectin-3 has 

been reported to directly interact with Notch1 in a sugar-dependent manner and to activate 

downstream Notch signaling without affecting expression of Notch1 receptor (Nakajima, 

Kho et al. 2014). 

Collectively, these examples demonstrate that a diverse array of ECM molecules 

can influence Notch utilizing a wide variety of mechanisms. Given that each of these 

molecules exhibits tissue and/or temporal specific expression patterns, these examples 

serve as a dynamic illustration of how Notch responds to changing ECM 

microenvironments. With this understanding, it will be interesting to see how future work 

refines our understanding of ECM – Notch interactions. 

Indirect ECM-Notch Interactions that Control Notch (Transcriptional Mechanisms) 

Each of the examples described thus far involve matricellular control of Notch that 

appears to be mediated at least in part by direct protein interactions with Notch receptors 

and/or Notch ligands. However, other matricellular proteins control Notch activity in a less 

direct manner by influencing the expression of Notch signaling components. For instance, 

the SPARC protein (Secreted Protein, Acidic, and Rich in Cysteine) stimulates 

differentiation of medulloblastoma cells by suppressing Notch signaling (Bhoopathi, 

Chetty et al. 2011). However, instead of direct interaction with Notch receptors or ligands, 

SPARC seems to transcriptionally control Notch signaling since SPARC null osteoblasts 

express increased Notch1 protein (Kessler and Delany 2007) and SPARC protein 

transcriptionally suppresses Notch1 expression (Bhoopathi, Chetty et al. 2011). In 
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comparison to SPARC, which seems to control Notch via direct manipulation of Notch1 

expression, other ECM proteins such as Fibulin-3, basement membrane laminins, and MGP 

influence Notch signaling by controlling expression of Notch ligands. Fibulin-3 is a 

member of the fibulin family of extracellular matrix glycoproteins that are characterized 

by tandem repeats of calcium binding EGF sites and a C-terminus fibulin-type module 

(Timpl, Sasaki et al. 2003). Fibulin proteins are commonly misregulated during cancer and 

have emerged as important microenvironmental regulators of cancer and tumor 

angiogenesis (Albig, Neil et al. 2006). In particular, Fibulin-3 has emerged as a biomarker 

for pleural mesothelioma and malignant glioma where Fibulin-3 appears to enhance glioma 

malignancy by stimulating tumor cell motility and invasion (Hu, Thirtamara-Rajamani et 

al. 2009). Fibulin-3 also enhances tumor angiogenesis in glioma by increasing endothelial 

expression of the Notch ligand Dll-4 and simultaneously stimulating ADAM10/17 activity 

and downstream Notch signaling (Nandhu, Hu et al. 2014). An interesting observation 

however, is that Dll-4 has been extensively shown to limit branching angiogenesis by 

suppressing the endothelial tip cell phenotype (Hu, Lu et al. 2011). As an example of this 

idea, basement membrane laminins including Laminin-4 and Laminin-111 promote 

Notch activation by increasing Dll-4 expression via interaction with integrins (Estrach, 

Cailleteau et al. 2011, Stenzel, Franco et al. 2011). As opposed to Fibulin-3 however, Dll-

4 induction by these laminins appears to be an important mechanism to maintain 

endothelial quiescence by limiting tip cell behaviors. Thus, perhaps simultaneous 

regulation of ADAM10/17 and Dll-4 enables Fibulin-3 to behave as an angiogenic 

promoter in glioma, but to inhibit angiogenesis in other tumors as previously described 

(Albig, Neil et al. 2006). Finally, Matrix Gla Protein (MGP) is a well-known inhibitor of 
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vascular calcification (Luo, Ducy et al. 1997) that functions by binding to and suppressing 

the osteogenic programs initiated by BMP-2 and other BMPs (Zebboudj, Imura et al. 

2002). In addition to suppressing vascular calcification, MGP has additional roles in the 

vasculature since MGP deficiency in mice leads to increased vascular densities, enhanced 

tumor angiogenesis (Sharma and Albig 2013), and the development of arteriovenous 

malformations (Yao, Jumabay et al. 2011). Mechanistically, MGP deletion results in 

increased Notch signaling via enhanced expression of the Notch ligand Jagged1 (Sharma 

and Albig 2013) and accordingly, deletion of a single Jagged1 or Jagged2 allele in MGP 

knockout animals suppresses arteriovenous malformations (Yao, Yao et al. 2013). 

Although it is not yet clear how MGP controls Jagged1 expression, it appears that MGP 

expression is also controlled by Notch in shear-stressed aortic valve endothelium, (White, 

Theodoris et al. 2015) suggesting that Notch and MGP are coordinated by a feedback 

regulation. 

An important observation is that many of the ECM proteins discussed above not 

only control Notch signaling, but have also been implicated in the matricellular control of 

angiogenesis. Indeed, MAGP-2, EGFL7, the CCN family of proteins (CCN1, 2, 3), 

Thrombospondin-2, Syndecan-2, SPARC, collagens I and IV, Fibulin-3, MGP, and 

laminins have all been characterized as angiogenic regulators. Given that Notch has 

emerged as a major regulator in the cardiovascular system (discussed below), matricellular 

control of Notch activity may be a common mechanism whereby the vascular 

microenvironment exerts control over angiogenic activity. Hopefully, future research will 

be able to determine the relative contributions of these matrix molecules towards Notch 
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regulation during angiogenic processes and begin to understand how these multiple signals 

integrate to control Notch. 

Direct ECM-Notch Interactions that Control Notch Signaling (Crosstalk Mechanisms) 

Reelin is a secreted glycoprotein that is an important regulator of neuronal cell 

migration in the developing brain, (Dulabon, Olson et al. 2000, Yip, Yip et al. 2000) and 

provides one last mechanism to demonstrate how ECM molecules may control Notch. 

Deletion of Reelin in mice causes an abnormal “reeling” gait referred to as a Reeler 

phenotype (D'Arcangelo, Miao et al. 1995). Reelin has several cell surface receptors 

including the VLDLR and ApoER2 lipoprotein receptors on neuronal cells that have been 

described by several investigators (Hiesberger, Trommsdorff et al. 1999, Ballif, Arnaud et 

al. 2003, Bock and Herz 2003). In addition, Reelin has also been described to interact with 

integrins 31 and 51 (Dulabon, Olson et al. 2000, Sekine, Kawauchi et al. 2012). 

Downstream from these receptors, Reelin signaling typically propagates through Disabled-

1 (DAB-1) phosphorylation and downstream PI-3K, AKT, and SRC signaling mechanisms 

(Ballif, Arnaud et al. 2003, Bock and Herz 2003, Hashimoto-Torii, Torii et al. 2008, 

Keilani and Sugaya 2008, Keilani, Healey et al. 2012, Sekine, Kawauchi et al. 2012). Early 

work by Keilani et al (Keilani and Sugaya 2008) and Hashimoto-Torii et al (Hashimoto-

Torii, Torii et al. 2008) suggested that Notch may be important for activities downstream 

of Reelin. For example, Reelin induces a radial glial phenotype in human neural progenitor 

cells, and this effect is phenocopied by activation of the Notch signaling cascade (Keilani 

and Sugaya 2008). Moreover, the Notch NICD domain is sufficient to rescue abnormal 

migration in neurons from reeler mice (Hashimoto-Torii, Torii et al. 2008). 

Mechanistically, Reelin does not appear to directly interact with, or control the expression 
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of Notch receptors and/or ligands. Instead, Reelin appears to control Notch via 

manipulation of downstream signaling networks. For instance, it has been shown that the 

downstream Reelin signaling intermediate, DAB-1, physically associates with NICD 

(Keilani and Sugaya 2008), that Notch works through DAB-1 to regulate axon guidance in 

Drosophila (Le Gall, De Mattei et al. 2008), and that DAB-1 phosphorylation and SRC 

activity are essential for Notch1 activation by Reelin (Keilani, Healey et al. 2012). Taken 

together, these results suggest that Reelin may regulate Notch via a mechanism 

independent of Notch expression or Notch processing, but dependent on downstream 

DAB-1 and/or SRC kinase activities. Although further research is required to confirm this, 

the molecular interaction between Notch and SRC is further explored in the Integrin/Notch 

crosstalk section below. 

Notch Crosstalk with other Signaling Networks: Integrins, TGF-, WNT, and 

VEGF 

An important distinction between Notch regulation by Reelin compared to other 

molecules mentioned in the previous section is that Reelin does not depend on direct Notch 

receptor/ligand interactions nor on transcriptional control of individual Notch signaling 

components. Instead, the evidence supports a mechanism whereby Reelin interaction with 

its cell surface receptors triggers downstream signaling (DAB-1 and SRC) that then 

regulates Notch via undefined mechanisms. Thus, Reelin serves as an example of how 

Notch signaling can be influenced by crosstalk with other signaling pathways. Similarly, 

crosstalk between Notch and several other signaling mechanisms initiated by molecules 

including integrins, TGF-/BMP, VEGF, and WNTs in the cellular microenvironment 

(figure A.3) have been described and are discussed below. 
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Crosstalk between Notch and Integrins 

The earliest evidence that integrins and Notch coordinate comes from studies which 

explored the effect of Notch on integrin activation. For instance, Leong et al. demonstrated 

that Notch4 activation in microvascular endothelium increased 1 integrin affinity for 

collagen (Leong, Hu et al. 2002). This was taken one step further by Hodkinson et al., who 

demonstrated that activation of the small GTPase R-Ras by Notch1 resulted in increased 

1 affinity for collagen (Hodkinson, Elliott et al. 2007). Subsequent work on this topic 

began to uncover the reciprocal interaction wherein integrins also exert control over Notch. 

Initially, integrin control of Notch was focused on transcriptional regulation of Notch 

receptors or ligands. For example, work by Weijers et al. (Weijers, van Wijhe et al. 2010) 

described an effect of integrin blocking low molecular weight fibronectin fragments on the 

expression of the Notch ligand Dll-4 and subsequent Notch activation in endothelial cells. 

Similarly, Estrach et al. (Estrach, Cailleteau et al. 2011) and Stenzel et al. (Stenzel, Franco 

et al. 2011) demonstrated that Laminin 111 and Laminin 4 increase Dll-4 expression in 

endothelial cells via 21 and 61 integrins, and that disruption of this signaling system 

had dramatic complications for normal angiogenesis. While these studies suggested a 

functional coordination of ECM, integrins, and Notch they did little to dissect a molecular 

mechanism, beyond transcriptional control, through which coordination occurs. A handful 

of reports however have suggested that Notch control by integrins is not restricted to 

transcriptional regulation, but rather, may also engage Integrin Linked Kinase (ILK) and/or 

SRC signaling downstream from activated integrins. For instance, Mo et al. (Mo, Kim et 

al. 2007) observed that ILK decreased Notch signaling by stimulating ubiquitination and 

rapid degradation of the NICD fragment. Similarly, Suh et al. (Suh and Han 2011) showed 
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that collagen type I increased ILK signaling and NICD accumulation through interaction 

with 21 integrin. In addition to ILK, the non-receptor tyrosine kinase SRC which is 

commonly activated by integrin ligation, may also regulate Notch. As eluded to above, 

Reelin has been shown to control Notch in a DAB-1 and SRC dependent manner (Keilani, 

Healey et al. 2012). Although a molecular interaction between Notch and SRC was not 

explored in this study, the authors did show that SRC inhibitors did not affect expression 

of Notch1, suggesting a more direct Reelin-SRC-Notch interaction. In support of this, SRC 

was found to be an important regulator of Notch S1 processing by furin and that the kinase 

domain of SRC binds to and phosphorylates the ankyrin domain of active NICD (Ma, Shi 

et al. 2012). Moreover, a genetic interaction between SRC and Notch has been uncovered 

during Drosophila development that is critical for normal eye formation (Ho, Pallavi et al. 

2015). Taken as a whole, these publications show that Notch can control integrin adhesion 

(i.e. inside out signaling), and that integrins can control Notch (i.e. outside in signaling). 

Therefore, these data suggest that integrins and Notch are coordinated into a cellular 

signaling network that involves feedback control between Notch and integrins and may 

involve ILK and/or SRC signaling. 

The implications of integrin/Notch crosstalk are potentially quite numerous. In 

particular, one field of research that may be impacted by this crosstalk is the study of 

pathological tissue fibrosis. Fibrotic diseases are defined by excessive deposition of fibrotic 

ECM molecules, increased tissue stiffness, and can occur in most any tissue although 

fibrosis of the liver, lung, kidney, and heart represent the major impacts of fibrosis on 

human health. Given the increased ECM present in fibrotic tissues, it is not surprising that 

integrins figure predominantly in the pathology of fibrosis (Patsenker and Stickel 2011, 
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Pozzi and Zent 2013, Chen, Li et al. 2016). Adding to this, it has become apparent that 

Notch is also an important regulator of fibrosis in the lung, liver, kidney, and skin (Kavian, 

Servettaz et al. 2012, Hu and Phan 2016). For example, strong expression of Notch was 

observed in myofibroblasts, the pathological cells associated with the progression of 

fibrosis, in lung specimens from patients with idiopathic interstitial pneumonias and in 

bleomycin-induced pulmonary model of fibrosis (Aoyagi-Ikeda, Maeno et al. 2011). 

Moreover, in airway subepithelial fibrosis, the Notch pathway stimulated the promoter 

activity of collagen type I through a Hes1-dependent mechanism (Hu, Ou-Yang et al. 

2014). In the kidney, Bielesz et al. showed that upregulation of Notch pathway components 

(Jag1/Notch1/HeyL) regulated the development of tubulointerstitial kidney fibrosis in mice 

and humans (Bielesz, Sirin et al. 2010). In the liver, the number of Notch1, Notch3 and 

Notch4 positive cells were highly upregulated in CCL4 induced fibrosis (Chen, Zheng et 

al. 2012). Moreover, activated hepatic stellate cells (HSC) showed an increased expression 

of Notch2, Notch3, Hey2 and HeyL (Zhang, Xu et al. 2015). However, after blocking with 

the γ-secretase inhibitor DAPT, activated HSC reversed back to quiescent HSC (Zhang, 

Xu et al. 2015) and attenuated hepatic fibrosis (Chen, Zheng et al. 2012). Collectively, 

these examples clearly illustrate the importance of Notch signaling during fibrotic 

responsis. Given the crosstalk between integrins and Notch, it will be interesting to 

determine if integrins have a strong impact on Notch mediated fibrosis. 

Notch and TGF- 

The TGF- superfamily encompasses more than 30 ligands including TGF-s, 

BMPs, activins/inhibins, and Mullerian Inhibiting Substance (MIS) that specifically 

interact with at least seven ALK receptors. Activation of ALK receptors by TGF- or other 
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ligands stimulates SMADs to translocate to the nucleus where they coordinate 

transcriptional responses (reviewed in (Gordon and Blobe 2008)). TGF- and Notch 

signaling are both involved in several physiological and patho-physiological processes 

including embryonic development, wound healing, cancer, and fibrosis. Several lines of 

evidence indicate that TGF- and Notch can engage in crosstalk (reviewed in (Kluppel and 

Wrana 2005, Tang, Urs et al. 2010)). The first molecular evidence for this interaction was 

revealed in a series of papers showing that Notch is synergistic with both TGF- and BMP 

signaling. Specifically, Blokzijl et al. demonstrated that NICD can form a transcription 

factor complex with SMAD3, an intracellular transducer of TGF- signaling, in chicken 

embryos and in mouse myoblast C2C12 cells (Blokzijl, Dahlqvist et al. 2003). In this study, 

it was also observed that TGF- upregulated the expression of Hes-1, a Notch target gene, 

and the effect was abolished by using a dominant negative form of CSL (Blokzijl, 

Dahlqvist et al. 2003). A similar interaction was observed in mouse regulatory T cells in 

which NICD cooperates with activated SMAD3 and accelerates its nuclear translocation 

(Asano, Watanabe et al. 2008). The importance of TGF-/Notch crosstalk is illustrated by 

several reports showing that Notch activity is required for some TGF- effects such as 

TGF-induced EMT (Zavadil, Cermak et al. 2004) and the well-known pro-fibrotic activity 

of TGF- (Kavian, Servettaz et al. 2010, Nyhan, Faherty et al. 2010, Chen, Zheng et al. 

2012, Xiao, Zhang et al. 2014). Finally, although the majority of interactions between TGF-

 and Notch appear to be synergistic, this may be an oversimplified view of the TGF-

/Notch interaction. In support of this, Fu et al (Fu, Chang et al. 2009), found that while 

Notch did enhance expression of some TGF- responsive genes including PAI1, CTGF, 

and CYR61, other TGF- responsive genes including ID1, and ID2, were decreased by 
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Notch activity. The authors also found that Notch enhanced expression of SMAD3 while 

decreasing expression of SMAD1, 2, and 6, suggesting that differential regulation of R-

SMADs by Notch may be responsible for positive and negative TGF-/Notch interactions. 

From this analysis, it appears that the interaction between TGF- and Notch may be more 

complex than currently thought. 

TGF- however is not the only member of the TGF- superfamily that engages in 

crosstalk with Notch. Early work observed that BMP and Notch signals synergistically 

reinforced one another during various developmental processes such as Xenopus tail bud 

formation (Beck, Whitman et al. 2001) and tooth morphogenesis (Mustonen, Tummers et 

al. 2002). Mechanistically, the BMP/Notch crosstalk involves the formation of a 

SMAD/NICD transcription factor complex, much like the TGF-/Notch crosstalk 

mechanism. Formation of this complex was observed and found to be important for 

endothelial function and neuroepithelial cell differentiation (Mustonen, Tummers et al. 

2002, Itoh, Itoh et al. 2004). Follow up work has now determined that crosstalk between 

Notch and BMP is important for a wide variety of cellular responses including osteoblastic 

differentiation (Nobta, Tsukazaki et al. 2005, Sharff, Song et al. 2009, Hill, Yuasa et al. 

2014) and vascular biology/angiogenesis (Larrivee, Prahst et al. 2012, Moya, Umans et al. 

2012). Finally, besides TGF- and BMP, little is known regarding crosstalk between other 

TGF- superfamily members and Notch. However, given that the majority of the other 

TGF- superfamily members utilize ALK receptors and SMAD signaling intermediates, it 

seems likely that future research may uncover new crosstalk mechanisms between 

members of the TGF- superfamily and Notch. 
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Notch and WNT 

Like Notch, the WNT signaling network is evolutionarily ancient and heavily 

utilized during development. Consisting of ~19 ligands that can bind to ~10 frizzled 

receptors and their co-receptors (LRP5/6), the canonical WNT signaling pathway is 

mediated by ligand binding to receptor, stabilization and nuclear translocation of -catenin, 

and subsequent association with LEF/TCF transcription factors to activate gene specific 

promoters. In the absence of WNT signaling, -catenin is phosphorylated by GSK3 which 

triggers -catenin ubiquitination and rapid protein turnover (reviewed in (Komiya and 

Habas 2008)). The first evidence suggesting a crosstalk between WNT and Notch signaling 

was uncovered in Drosophila where it was shown that Notch and WNT cooperate to 

control wing development (Couso and Martinez Arias 1994, Hing, Sun et al. 1994). The 

first molecular evidence supporting crosstalk between Notch and WNT was made by Ross 

and Kadesch (Ross and Kadesch 2001), when N1ICD was found to increase transcriptional 

activity of the LEF transcription factor independently of the canonical Notch transcription 

factor, CSL. Instead, it was found that the NICD/WNT crosstalk was mediated by a 

NICD/LEF transcriptional complex that regulated a unique subset of promoters compared 

to the -catenin/LEF complex (Ross and Kadesch 2001). Similarly, NICD/-catenin 

complexes have been identified and found to be important for suppression of neural 

precursor cells (Shimizu, Kagawa et al. 2008) and for inducing an arterial fate in vascular 

progenitors (Yamamizu, Matsunaga et al. 2010). Despite these results, this NICD/-catenin 

complex does not appear to be required for all instances of Notch/WNT crosstalk. Instead, 

Hayward et al. demonstrated that membrane-bound Notch is capable of interacting with, 

and deactivating -catenin at the cell membrane in a Notch ligand and cleavage 
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independent fashion (Hayward, Brennan et al. 2005). Subsequent reports reinforced this 

finding by showing that -catenin’s association with uncleaved Notch at the membrane is 

also important for -catenin regulation in stem cells (Kwon, Cheng et al. 2011), and 

imaginal disc development in Drosophila (Sanders, Munoz-Descalzo et al. 2009). Thus, 

Notch signaling can alternatively increase or decrease -catenin function, depending on 

the nature of Notch/-catenin interaction. Finally, while these reports show that -catenin 

is a shared point of overlap during crosstalk between WNT and Notch, other WNT 

signaling intermediates have also been shown to interact with the Notch mechanism. For 

instance, GSK3, a serine/threonine kinase that is inactivated by WNT signaling (Komiya 

and Habas 2008), directly phosphorylates NICD resulting in decreased NICD stability and 

signaling output (Foltz, Santiago et al. 2002, Espinosa, Ingles-Esteve et al. 2003). In this 

way, inhibition of GSK3 by WNT signaling results in a positive interaction between the 

WNT and Notch signaling mechanisms. In contrast to this, WNT activation of the 

Dishevelled protein triggers an inhibitory interaction between WNT and Notch. It is not 

completely clear how this is accomplished however since Dishevelled has been shown to 

interact both with NICD itself, and with the NICD transcriptional factor CSL in the 

nucleus, where it inhibits NICD/CSL mediated transcription (Axelrod, Matsuno et al. 1996, 

Collu, Hidalgo-Sastre et al. 2012). 

In summary, the interplay between WNT and Notch is very complex and involves 

at least four independent mechanisms. This extensive co-regulation may reflect the fact 

that both Notch and WNT are both heavily utilized during development, where WNT and 

Notch must cooperate for proper development (Collu, Hidalgo-Sastre et al. 2014). Future 
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studies will no doubt further dissect and define the relative contributions of these pathways 

to crosstalk between Notch and WNT signaling. 

Notch and VEGF 

The vascular endothelial growth factor (VEGF) signaling pathway coordinates 

vascular development through VEGF ligand binding to cell surface receptor tyrosine 

kinases. The core of VEGF signaling consists of six broadly expressed VEGF ligands and 

four VEGF receptors that are highly restricted to vascular and lymphatic tissues (reviewed 

in (Koch and Claesson-Welsh 2012)). A flurry of publishing activity in recent years now 

supports a strong crosstalk between the Notch and VEGF signaling mechanisms in the 

vascular system. The basis for Notch/VEGF crosstalk appears to be rooted in the reciprocal 

transcriptional control of Notch ligands by VEGF, and VEGF receptors by Notch. For 

instance, early work determined that VEGF was an important regulator of Notch receptors 

and ligands (Lawson, Vogel et al. 2002, Liu, Shirakawa et al. 2003). Around the same time, 

it was also becoming apparent that Notch activity was an important determinant of VEGF 

receptor expression (Taylor, Henderson et al. 2002, Holderfield, Henderson Anderson et 

al. 2006, Williams, Li et al. 2006). It was not until later, however, when a more complete 

picture of the interaction between Notch and VEGF began to come into focus. The prime 

example demonstrating reciprocal regulation between Notch and VEGF occurs during 

angiogenesis, wherein Notch/VEGF crosstalk has been implicated in the selection and 

differentiation of tip versus stalk cells on growing columns of endothelial cells (reviewed 

in (Blanco and Gerhardt 2013)). During tip cell selection, VEGF binding to VEGF 

Receptor 2 (VEGFR2) at the quiescent endothelial membrane causes a phenotypic switch 

into a motile cell state known as a tip cell, while also inducing the expression of Dll-4 
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(Hellstrom, Phng et al. 2007, Lobov, Renard et al. 2007, Suchting, Freitas et al. 2007). Dll-

4 expression in tip cells and subsequent binding to Notch receptors on adjacent endothelial 

cells (stalk cells) reduces stalk cell sensitivity to VEGF through the down regulation of 

VEGFR2, thereby preventing stalk cells from taking on the tip cell phenotype and 

restricting the number of new vascular branches (Hellstrom, Phng et al. 2007, Leslie, Ariza-

McNaughton et al. 2007). Dll-4 signaling in tip cells also increases Jagged1 expression in 

stalk cells which in a twist of understanding, inhibits Dll-4-Notch signaling in tip cells 

resulting in increased VEGFR2 expression and VEGF sensitivity (Benedito, Roca et al. 

2009, Pedrosa, Trindade et al. 2015). In this way, VEGF first elevates Dll-4 expression, 

which then represses VEGF sensitivity in adjacent cells, thus demonstrating reciprocal 

regulation between Notch and VEGF. Beyond tip/stalk cell differentiation, crosstalk 

between Notch and VEGF has also been shown to be an important mechanism controlling 

other aspects of cardiovascular biology such as arteriovenous differentiation (Fish and 

Wythe 2015), differentiation of vascular progenitors from stem cells (Sahara, Hansson et 

al. 2014), heart valve development (van den Akker, Caolo et al. 2012), tumor angiogenesis 

(Liu, Fan et al. 2014), as well as neuronal development (Thomas, Baker et al. 2013). 

Other Microenvironment Conditions that Control Notch (Shear Stress, Hypoxia, 

and Hyperglycemia) 

As an integrator of cellular microenvironments, the crosstalk between Notch and 

other signaling pathways is fairly well described compared to crosstalk between Notch and 

other microenvironmental conditions. Nonetheless, compelling evidence has been 

emerging in recent years, that stimuli such as shear stress in the cardiovascular system, low 

oxygen levels (hypoxia), and even hyperglycemia all have significant impacts on Notch 
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signaling (figure A.4). Additionally, Notch has been reported to respond to other 

microenvironmental conditions including high salt in endothelial precursor cell media 

(Karcher, Hoffmann et al. 2015) and temperature flux in Drosophila (Shimizu, Woodcock 

et al. 2014, Ishio, Sasamura et al. 2015), however these responses will not be further 

discussed here. Below we summarize the data and provide mechanistic information (where 

possible) for interactions between Notch and shear stress, hypoxia, and hyperglycemia. 

Notch and Shear Stress 

Notch signaling has in recent years been shown to be an extremely important 

regulator in the development and function of vascular systems, and many excellent reviews 

have been published on the role of Notch in vascular development and function (Gridley 

2010, Benedito and Hellstrom 2013). In addition, Notch has also been tightly linked to 

several vascular malfunctions including the development of atherosclerotic lesions 

(Rusanescu, Weissleder et al. 2008). Recently however, a previously unrecognized role for 

Notch in sensing shear stress in the vascular system has also begun to emerge. Shear stress 

in the vascular system is a mechanical force applied to endothelial cells by fluid flow and 

normally ranges from 1-5 Pa (10-50 dynes/cm2) in arteries and capillaries, to 0.1-0.5 Pa (1-

5 dynes/cm2) in veins (Cohen, Wang et al. 1995). Shear stress is an important component 

of the endothelial cellular microenvironment that strongly influences endothelial cell 

biology. Laminar (undisturbed) shear stress provides an athero-protective signal to 

endothelium, while non-laminar, disturbed, or oscillatory shear stress provokes the 

development of endothelial dysfunction and atherogenesis (Glagov, Zarins et al. 1988). 

Several endothelial shear stress sensors have been identified and include a wide range of 

transmembrane proteins on both the apical and basolateral endothelial surfaces and the 
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intracellular kinases and signaling networks that are stimulated by these surface proteins 

(Zhou, Li et al. 2014). The first demonstration that Notch can serve as a sensor for shear 

stress was provided by Wang et al. who showed that Notch signaling targets were 

differentially regulated after exposure to shear stress for as little as 10 minutes (Wang, Fu 

et al. 2007). Masumura et al. subsequently showed that shear stress activates Notch 

signaling and that this signal is critical for embryonic stem cell differentiation to 

endothelium (Masumura, Yamamoto et al. 2009). Although protein expression of Notch1 

and 4, as well as the Notch ligands Dll-4, Jagged1 and 2 increased after exposure to laminar 

flow, increased abundance of the active Notch NICD domain was observed prior to 

increased Notch receptor/ligand expression, suggesting that shear stress may regulate 

Notch signaling on both transcriptional and post-translational levels (Masumura, 

Yamamoto et al. 2009). Mechanotransduction by Notch signaling has since been 

demonstrated to be an important player in both vascular development (Jahnsen, Trindade 

et al. 2015) and dysfunction (Tu, Li et al. 2014). Interestingly, inhibition of Notch under 

atherogenic / low shear stress conditions was shown to inhibit several pro-inflammatory 

molecules, suggesting that inappropriate activation of Notch by low shear stress may also 

be linked to the early stages of atherogenesis (Qin, Zhang et al. 2016). While these findings 

clearly implicate Notch in endothelial shear stress responses, it is not currently understood 

how Notch signaling is activated by shear stress. It seems unlikely that activation of Notch 

is wholly dependent on transcriptional mechanisms since Notch activation is observed after 

as little as 10 minutes of shear stress (Wang, Fu et al. 2007). However, it has also been 

shown that inhibition of VEGFR2 signaling during shear stress blocks Notch activation 

(Masumura, Yamamoto et al. 2009), suggesting that if Notch receptors are flow sensors, 
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that they do not act alone during endothelial response to shear stress. Taken together, these 

findings illustrate the important role Notch plays in responding to shear stress in the 

endothelial microenvironment. Future work will hopefully further explore the mechanism 

by which Notch is activated by shear stress and continue to define the importance of Notch 

in endothelial/vascular response to shear stress. 

Notch and Hypoxia 

Notch signaling responds to oxygen content within the cellular microenvironment, 

showing differential activity under normoxic and hypoxic conditions. The first evidence 

suggesting that Notch might be involved in hypoxic responses came when researchers 

observed that Dll4 expression was increased in hypoxic tissues (Mailhos, Modlich et al. 

2001). Soon after, Notch signaling was observed to be increased in hypoxic neuroblastoma 

cells (Jogi, Ora et al. 2002). Further investigation has discovered a physical interaction 

between NICD and HIF-1α (Hypoxia Inducible Factor α), which was promoted by hypoxia 

and lead to inhibition of cellular differentiation (Gustafsson, Zheng et al. 2005). A similar 

observation was also made in Drosophila when it was observed that Sima (the Drosophila 

HIF1- homolog) could also activate Notch receptor in a ligand-independent manner 

(Mukherjee, Kim et al. 2011). HIF-1α binds to NICD, stabilizes it, and enhances the 

transcriptional activation of Notch downstream genes through an association with NICD 

transcriptional complexes (Gustafsson, Zheng et al. 2005). Subsequently, it was shown that 

hypoxia induced HIF-1α also serves to activate γ-secretase through a direct interaction, 

promoting invasiveness and metastasis in murine breast cancer cells (Villa, Chiu et al. 

2014). Furthermore, HIF-1α can upregulate expression of the Notch ligand Dll-4 in 

endothelial progenitor cells (Diez, Fischer et al. 2007), and lymphatic vessels (Min, Lee et 
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al. 2016). Finally, further sophistication of this mechanism is achieved through FIH (Factor 

Inhibiting HIF-1α), an asparagine hydroxylase (Scholz, Rodriguez et al. 2016), which 

works to inhibit HIF-1α activity in an O2 dependent mechanism (Mahon, Hirota et al. 

2001). FIH also negatively regulates Notch target gene transcription (Gustafsson, Zheng et 

al. 2005), likely through its hydroxylation and destabilization of NICD under normoxic 

conditions (Zheng, Linke et al. 2008). Collectively, the multiple mechanisms by which 

hypoxia controls Notch including HIF-1α association with Notch transcriptional 

complexes, γ-secretase induction, promotion of ligand expression, and FIH activity provide 

at least four independent mechanisms by which Notch cooperates in hypoxic responses. 

Notch and Hyperglycemia 

Recent work has begun to dissect a molecular mechanism by which Notch signaling 

may respond to increased or decreased blood sugar and possibly play a role in diabetes and 

the vascular and renal complications associated with diabetes. For example, Notch 

signaling in hepatocytes is increased in response to high sugar concentrations (Valenti, 

Mendoza et al. 2013) and hyperglycemia induced Jagged1 expression in endothelium was 

proposed to be an important mediator of diabetic vasculopathy (Yoon, Choi et al. 2014). 

Moreover, several investigators have shown that hyperglycemia elevates Notch receptor 

expression/signaling in cultured podocytes (Gao, Yao et al. 2013, Wang, Yao et al. 2014, 

Liu, Zhang et al. 2015), and elevated Notch signaling has been linked to a loss of 

glomerular filtration due to a negative impact on podocyte function (Niranjan, Bielesz et 

al. 2008, Waters, Wu et al. 2008). Thus, hyperglycemic stimulation of Notch may be 

extremely important for understanding the pathology of diabetic nephropathy, especially 

since podocyte damage in diabetic kidneys has been proposed to be an early triggering 
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event leading to other downstream renal complications (Lin and Susztak 2016). In support 

of this, treatment of Streptozotocin induced diabetic mice with the angiotensin inhibitor 

Valsartan, simultaneously decreased renal damage and Notch activation (Gao, Yao et al. 

2016). Mechanistically, the link between hyperglycemia and Notch has been elusive, 

however it is known that hyperglycemia (as well as hypoglycemia) induce VEGF secretion 

and signaling (Natarajan, Bai et al. 1997, Kemeny, Figueroa et al. 2013). Given the 

reciprocal transcriptional regulation between VEGF and Notch (as described above), it 

seems likely that VEGF and Notch may pathologically synergize in hyperglycemic 

conditions. In support of this, a recent report by Chiu et al. found that hyperglycemia 

increased endothelial secretion of heparinase leading to increased VEGF release from 

neighboring myocytes thus enhancing endothelial Notch activity (Chiu, Wan et al. 2016). 

Interestingly, anti-VEGF therapies have shown some success in reducing diabetic renal 

dysfunction (de Vriese, Tilton et al. 2001, Flyvbjerg, Dagnaes-Hansen et al. 2002), 

although it is unknown whether these anti-VEGF approaches also reciprocally decrease 

Notch signaling. It has also been shown that inhibition of Notch reduced the elevated 

VEGF secretions in podocytes cultured under hyperglycemic conditions, as well as diabetic 

nephropathy in diabetic rats (Lin, Wang et al. 2010). Finally, there may be other Notch 

regulatory mechanisms beyond VEGF that are operant during hyperglycemic conditions. 

For example, hyperglycemia induced Notch activity seems to be also be linked to decreased 

CARM1 methyltransferase activity (Kim, Lim et al. 2014), a recently discovered negative 

regulator of Notch signaling (Hein, Mittler et al. 2015). Hopefully future research will be 

able to more clearly define the molecular mechanism by which hyperglycemia controls 

Notch in order to more fully understand the downstream implications of Notch signaling 
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in diabetes. 

Conclusions 

Through the examples presented in this review, it is clear that Notch signaling is 

capable of responding to a range of changing microenvironmental conditions that go far 

beyond the basic model of receptor-ligand interaction for Notch activation. Instead, 

evidence is building that the basic model of Notch activation is manipulated by a variety 

of microenvironmental cues and that the basic cell-cell interaction model of Notch 

activation represents only a part of the broader function of Notch to sense and respond to 

a wide variety of microenvironmental conditions. Despite these findings, many of the 

results discussed here have been gained from simplified models of cellular 

microenvironment. In order to build a more complete understanding of how Notch serves 

its role as an integrator of cellular microenvironments, future studies will need to examine 

how Notch responds to these conditions in more complex in vivo models, an undoubtedly 

complex task. In addition, fleshing out the molecular underpinnings of how Notch responds 

to microenvironmental conditions is an important goal that should provide opportunities 

for pharmacological intervention in the many diseases and processes that are characterized 

by altered microenvironments. Lastly, efforts to therapeutically manipulate Notch are 

ongoing for the treatment of a wide variety of diseases (reviewed in (Andersson and 

Lendahl 2014)). Therefore, an understanding of the full spectrum of activities that Notch 

serves in the microenvironment is an important consideration in developmental biology 

and various Notch targeting strategies. 
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Table A.1 Basic and Proposed Mechanism by which Notch Responds to Various 

Microenvironmental Signals 
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Figure A.1: Canonical Notch Signaling and Notch Conservation between Human 

and Monosiga brevicollis. 

Throughout Figure A.1, conservation of Notch proteins or domains between human and M. 

brevicollis is indicated by green (positive), yellow (unknown), or red (negative) shading 

according to references (King, Westbrook et al. 2008) and (Gazave, Lapebie et al. 2009). 

(A) Conservation of mammalian Notch receptor domains in M. brevicollis. Mammalian 

(human) Notch receptors contain 36 EGF-like repeats and three LNR or NRR (Lin-12 

Notch Repeats or Negative Regulatory Region) repeats in the extracellular domain. The 

intracellular portion of human Notch contains seven ankyrin domains and a PEST sequence 

at the C-terminal. For simplicity, the intracellular RAM (RBPj Association Module) 
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domain, two NLS (Nuclear Localization sequence) domains, and TAD (Transactivation 

Domain) are not shown in this figure. Please refer to references (Kopan and Ilagan 2009, 

Kopan 2010) for complete details. Three separate proteins (N1, N2, and N3) in M. 

brevicollis contain six Ankyrin domains, two LNR domains, and 36 EGF-like repeats 

respectively (King, Westbrook et al. 2008). (B) Model of canonical Notch activation 

mechanism. Notch receptors are modified in the secretory pathway (ER/golgi) by Furin 

cleavage (S1 cleavage) and glycosylation of EGF-like domains by O-fucosyltransferase 

(O-fut), Rumi/Poglut1 (Protein O-Glycosyltransferase 1), and fringe family 

glycosyltransferases. The Furin cleavage products remain non-covalently associated in the 

membrane where a pulling force initiated by Notch ligand endocytosis in sending cells 

enables further cleavage by -secretase (S2 cleavage, NEXT fragment) at the LNR domain, 

and -secretase (S3 cleavage, NICD fragment) in the membrane of receiving cells. Several 

regulatory proteins including Numb, Notchless, and Deltex control Notch availability at 

the membrane. After -secretase cleavage, the NICD fragment translocates to the nucleus 

where it displaces the transcriptional co-repressor SMRT from CSL/RBP-jk. NICD 

participates in a transcriptional complex with CSL, MAML, and p300 to drive transcription 

of Notch targets such as Hes and Hey genes. NICD steady-state levels are controlled by 

nuclear export, ubiquitination (Ub) by Sel10, and subsequent degradation in the 

proteasome.  
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Figure A.2: Summary of ECM Control of Notch Signaling. 

Canonical activation of Notch receptors by Notch ligands can be manipulated in three ways 

by cellular interactions with ECM. 1.) Direct interactions between Notch receptors or 

ligands and various ECM molecules can either inhibit or promote activation of Notch 

signaling. 2.) Indirect interactions between ECM and Notch are characterized by ECM 

mediated increased or decreased expression of Notch ligands on sending cells or Notch 

receptors on receiving cells. 3.) Indirect interactions between Notch and ECM are 

characterized by ECM mediated activation of signaling pathways that post-translationally 

intersect with Notch proteins or signaling intermediates. 
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Figure A.3: Crosstalk between Notch and Other Signaling Pathways. 

Crosstalk between WNT and Notch occurs on several levels including the formation of a 

-catenin-NICD transcriptional complex, interaction between Notch receptors and -

catenin at the membrane, phosphorylation of NICD by GSK3, and inhibitory interactions 

between Dishevelled and CSL. The mechanistic interaction between integrins and Notch 

is poorly characterized, but existing evidence suggests ubiquitination and/or 

phosphorylation of NICD by SRC and ILK kinases. Interaction between the Notch and 

VEGF pathways involves the reciprocal transcriptional regulation of Notch ligands by 

VEGF, and VEGFR2 by Notch. Notch/TGF-, or Notch/BMP crosstalk occurs 

downstream of ALK (TBR1/TBR2 or BMPR1/BMPR2) receptors and is dependent on R-

SMAD and Co-SMAD activation and subsequent formation of a SMAD/NICD 

transcriptional complex similar to the -catenin/NICD complex. 
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Figure A.4: Summary of Microenvironmental Conditions (Shear Stress, Hypoxia, 

and Hyperglycemia) that Control Notch. 

Depicted is a cross-sectional view through a blood vessel showing endothelial cells (EC) 

and vascular basement membrane. Shear stress (laminar versus disturbed or non-laminar) 

controls Notch by largely undefined mechanisms that may include regulation of Notch 

receptors and/or ligands. Hypoxia controls Notch signaling by several mechanisms 

including the formation of HIF1-NICD transcriptional complexes, HIF1 mediated 

stabilization of NICD, enhanced -secretase activity, and FIH mediated NICD 

destabilization. Hyperglycemia controls Notch by largely uncharacterized mechanisms that 

may include increased NICD stability due to decreased CARM1 expression and/or 

increased VEGF release from other cells in the vascular microenvironement. 
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Abstract 

The traditional view of integrins portrays these highly conserved cell surface 

receptors as mediators of cellular attachment to extracellular matrix (ECM), and to a lesser 

degree, as coordinators of leukocyte adhesion to endothelium. These canonical activities 

are indispensable, however, there is also a wide variety of integrin functions mediated by 

non-ECM ligands that transcend the traditional roles of integrins. Some of these 

unorthodox roles involve cell-cell interactions and are engaged to support immune 

functions such as leukocyte transmigration, recognition of opsonization factors, and 

stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by 

integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins 

also serve as cell-surface receptors for various growth factors, hormones, and small 

molecules. Interestingly, integrins have also been exploited by a wide variety of organisms 

including viruses and bacteria to support infectious activities such as cellular adhesion 

and/or cellular internalization. Additionally, disruption of integrin function through the use 

of soluble integrin ligands is a common strategy adopted by several parasites in order to 

inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this 

review, we strive to go beyond the matrix and summarize non-ECM ligands that interact 

with integrins in order to highlight these non-traditional functions of integrins 

Introduction 

Adhesion of cells to extracellular matrices is a fundamental requirement for multicellular 

organisms, and animals employ many mechanisms to fulfill this demand. Amongst these 

mechanisms of adhesion, integrins are perhaps the most ubiquitous. Integrins are 

heterodimeric transmembrane proteins, made up of non-covalently paired α and β subunits, 
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which serve as adhesion and signaling hubs at the cell surface. In mammals, there are 18 

α-integrin subunits and 8 β-integrin subunits that can combine to form as many as 24 

unique heterodimeric receptor complexes [1]. Typically, ligand binding is carried out 

through integrin receptor recognition of small peptide sequences. Target sequences for 

integrins can be as simple as the RGD or LDV tri-peptides, or more complex as in the case 

of the GFOGER peptide [1]. Many classical extracellular matrix (ECM) proteins contain 

these short integrin recognition motifs. RGD sequences are found in both vitronectin and 

fibronectin, a LDV motif is present in fibronectin, GFOGER is found within collagen, and 

the target sequence within laminin has not yet been defined [1]. These sequences are not 

globally recognized by all integrins; therefore, integrin heterodimers are often grouped by 

the target sequences they specialize in recognizing (figure B.1). Once bound to its ligand, 

an integrin not only provides adhesion, but also initiates signaling mechanisms which allow 

cells to respond to the mechanical and chemical properties of the cellular 

microenvironment. The primary signaling mediators working downstream of integrins 

include focal adhesion kinase (FAK), Src-family protein tyrosine kinases, and integrin-

linked kinase (ILK) [2]. Upon adhesion, cytoskeletal proteins are recruited to the 

cytoplasmic tails of integrins, forming a linkage between the ECM and cytoskeleton [2]. 

As a family of proteins, integrins and many of their downstream signaling 

intermediates, have a long evolutionary history. Beginning at the root of the metazoan 

lineage, sponges have been shown to express α- and β-integrin subunits [3, 4] that bind to 

peptides in a similar fashion as mammalian integrins [5]. Interestingly, integrin encoding 

genes have been found in the single-celled eukaryotic relatives of metazoans, thus the 

origin of integrins predates the emergence of metazoans [6]. Moreover, components of 
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integrin signaling machinery such as FAK, Src, and ILK, and integrin-interacting 

cytoskeletal proteins such as α-actinin, talin, vinculin, and paxillin, have pre-metazoan 

origins [6]. This suggests that integrins and their aforementioned signaling machinery may 

have played an important role in the evolution of multicellularity. 

Beyond their traditional role as mediators of ECM attachment, a vast literature has 

developed that describes interactions between integrins and ligands that are not located in 

the classical extracellular matrix. For example, integrins have been shown to interact with 

various proteins on the surfaces of eukaryotic, prokaryotic, and fungal cells, as well as a 

range of viruses. Within eukaryotes specifically, integrin mediated cell-cell adhesion has 

been shown to coordinate a range of interactions and processes including leukocyte 

extravasation, stem cell homing, tumor cell migration, erythrocyte development, and 

interactions in the immune system. For infectious prokaryotes, integrins are exploited as 

cell surface adhesion receptors that mediate colonization and/or the bypassing of epithelial 

or endothelial barriers. Beyond mediating cellular interactions, integrins can also serve as 

cell surface receptors for hormones, growth factors, and polyphenols. Finally, integrins are 

also common targets for a class of small molecules called disintegrins, which are 

components of various snake venoms, and are also employed by hematophagous parasites. 

Collectively, the range of non-ECM molecules that interact with integrins is vast, making 

integrins indispensable mediators of cell biology at large. The goal of this review is to 

highlight some of the best understood non-ECM ligands of integrins, and discuss the 

diverse biological roles for these interactions.
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Integrin-Mediated Cell-Cell Interactions 

The first integrins discovered were isolated based on their ability to bind to fibronectin, 

which had itself, just recently been identified (reviewed in [7]). However, in the early days 

of integrin research, several groups studying cell-cell adhesion in the immune system were 

also on the forefront of integrin identification (reviewed in [8], [9]). In fact, integrins that 

mediate cell-cell adhesion in the immune system were among the first integrins to be 

characterized [8]. As more integrins were discovered, it became apparent that the majority 

of integrins established cell-ECM connections rather than cell-cell connections. 

Nonetheless, it is important to understand that integrins are important mediators of cell-

cell adhesion. The term counterreceptor has often been used to describe membrane-bound, 

non-matrix integrin ligands which facilitate cell-cell contact, and will be used to 

differentiate them from the other non-matrix ligands in this review. While there are many 

types of counterreceptors, the best known examples include the immunoglobulin 

superfamily cell adhesion molecules (IgCAMs) and junctional adhesion molecules 

(JAMs). Collectively, interactions between integrins and these counterreceptors mediate a 

range of immune cell functions including leukocyte extravasation from the blood stream, 

immunological surveillance in the gut, and hematopoietic stem cell homing and 

mobilization. Additionally, non-ECM ligands enhance the interaction between pathogens 

and phagocytic immune cells, acting as phagocytic primers and inducers of neutrophil 

extracellular traps. Beyond the immune system, non-ECM based integrin interactions are 

important during the transmigration and metastasis of tumor cells, and during erythrocyte 

development. Integrins and the non-ECM ligands that mediate these cell-cell interactions 

are listed in Table B.1. 
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Integrin-Counterreceptor Interactions in Leukocyte Extravasation 

Integrin-counterreceptor interactions play multiple roles during extravasation, a 

process in which white blood cells are recruited from the blood stream to a site of 

inflammation (depicted in figure B.2). Extravasation begins when glycoproteins on the 

leukocyte cell surface, such as PSGL-1, bind endothelial selectins which allows the 

leukocyte to slow down as it rolls along the vessel wall [33]. Next, local chemokines 

stimulate leukocyte integrins to adopt a high-affinity state causing them to bind specific 

immunoglobulin superfamily cell adhesion molecules (IgCAMs) on endothelial cells [34]. 

There are many integrin-IgCAM pairs involved in this process: αLβ2 (LFA-1) integrin 

binds to ICAM1, 2, or 3, αMβ2 (Mac-1) integrin binds to ICAM1, and α4β1 (VLA-4) 

integrin binds to VCAM1 or MAdCAM1 (reviewed in [11], [10]). Additionally, leukocyte 

integrins can bind a family of proteins known as junctional adhesion molecules (JAMs) 

found on endothelial cells. Similar to integrin-IgCAM interactions, integrins display 

specificity for particular JAM proteins: JAM-A binds to αLβ2, JAM-B binds to α4β1, and 

JAM-C binds to αMβ2 [11]. All of these integrin-counterreceptor binding events serve to 

tightly adhere the leukocyte to the endothelium, enabling the white blood cell to cross the 

endothelial layer (a process known as transendothelial migration) in order to reach the 

inflamed tissue. 

Non-ECM Integrin Ligands as Primers for Phagocytosis 

One of the best-characterized examples of non-ECM integrin binding ligands in the 

immune system involves the interplay of integrins with the complement system. 

Complement proteins aid in the immune system’s clearance of pathogens by attaching to 

invaders and tagging them for destruction. Integrin β2 is essential for complement 
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recognition by the complement receptors αMβ2 (Mac-1, CR3) and αXβ2 (CR4) integrins 

[23]. αMβ2 and αXβ2 ligation with the iC3b component of complement induces 

phagocytosis of complement opsonized pathogens and particles by phagocytic immune 

cells (depicted in figure B.2) [24]. Despite high homology between both integrins, they 

bind the iC3b fragment of complement via distinctive receptor sites which may afford 

leukocytes greater diversity in opsonized target recognition modes [35]. This leads to the 

intriguing possibility of cooperativity between two integrins binding the same complement 

molecule [35]. 

Phagocytosis mediated by integrins is not strictly complement dependent. Human 

cathelicidin peptide LL-37, an antimicrobial peptide that binds to the prokaryotic cell wall, 

inserts itself into the membrane, and enhances phagocytosis by interacting with M2 

integrin present on neutrophils and macrophages [26, 27]. As an important part of innate 

defenses, LL-37 is expressed in various mammalian tissues and released upon contact with 

bacterial invaders [29]. For example, upon infection by Helicobacter pylori, gastric 

epithelial cells express and secrete LL-37, thus tagging the bacterial invaders for 

destruction by phagocytic immune cells (depicted in figure B.2) [28]. Interestingly, LL-37 

binds αMβ2 with a comparable strength to complement C3d, a ligand with one of the 

strongest known affinities for αMβ2 [25]. 

Non-ECM Integrin Ligands as Triggers for NETosis 

Another example of non-ECM integrin ligation at work in the innate immune system 

is the neutrophil extracellular trap (NET). In the process of NETosis, chromatin is ejected 

from neutrophils upon interaction with pathogens, thus entangling foreign invaders in a 

web of DNA and histones (depicted in figure B.2) [36]. This process is mediated through 
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pathogen recognition by neutrophil integrins. For example, the pathogen associated 

molecular pattern, β-glucan, found on Candida albicans is recognized by αMβ2 at a unique 

lectin-like domain and whose binding stimulates NETosis [21]. Once stimulated, anti-

microbial peptides are integrated into NETs. These include defensins and the αMβ2 ligand 

LL-37 [22]. NETosis is not exclusively used to trap foreign invaders as it is also involved 

in wound healing and sterile inflammation [37]. For instance, during cell necrosis the 

chromatin protein high-mobility group box 1 (HMGB1 aka amphoterin) is released 

extracellularly and recruits neutrophils by binding integrin β2 [38]. HMGB1 has been 

demonstrated to be an inducer of NETosis when presented on platelets during thrombosis 

[30]. This evidence suggests that HMGB1 serves as a molecule that is capable of signaling 

to white blood cells the presence of tissue damage through leukocyte integrins. Although 

αMβ2 plays a starring role in the literature connecting NETosis and integrins, other 

integrins may be involved. Bacterial invasin proteins from Yersinia pseudotuberculosis 

interact with neutrophil integrin β1, stimulating phagocytosis while also causing the release 

of NETs [39]. In addition to trapping cells within a tangle of DNA and histones, fibronectin 

has been identified in NETs, which ligates to αVβ3 and α5β1 integrins found on neutrophils 

and cancer cells, thus potentially enhancing cancer cell-leukocyte interaction [40]. 

Collectively, this information demonstrates rich evidence for the importance of integrin 

engagement during NETosis. 

Non-ECM Integrin Ligands in Immune Surveillance 

The intestinal immune system must display tolerance towards commensal microbiota 

and food antigens, while still maintaining immunogenicity against pathogens. In the gut 

mucosa, resident antigen-presenting cells (APCs) have the job of sampling foreign 
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antigens. APCs then transport these antigens to specialized gut-associated lymphoid tissue 

where they can interact with naïve T cells to promote their maturation. Additionally, the 

APCs imprint intestinal homing properties on the T cells through inducing expression of 

α4β7 integrin and CCR9, a receptor for the gut-associated chemokine CCL25 [41]. Mature 

T effector cells then reenter the circulation and can be recruited back to the gastrointestinal 

tract during times of inflammation through gut endothelial expression of CCL25 and the 

α4β7 counterreceptor, MAdCAM1 [17]. There is also a role for α4β1-VCAM1 interactions 

in the gut; this pair mediates binding of effector T cells to inflamed gut epithelium [12]. 

Integrins in the gut also bind to cadherins to modulate the immune response. For 

instance, cadherin 26 binding to integrins αE and α4 can lead to a T cell 

immunosuppression phenotype [42]. Moreover, this study found that a similar phenotype 

is provoked through treatment of T cells with a soluble form of cadherin 26. So, unlike the 

integrin-mediated IgCAM interactions in the gut, cadherin binding appears to moderate the 

immune response. It has been suggested that this interaction may therefore be involved in 

resolving inflammation [42]. Cadherin-integrin interactions in the lungs have been shown 

to mediate the engagement of cytotoxic T lymphocytes (CTLs) with cancer cells. Here, 

CTLs employ αEβ7 integrin to engage E-cadherin on cancer cell surfaces in order to 

facilitate accurate targeting and release of cytotoxic granules [20]. 

Integrin-Mediated Stem Cell Homing  

Homing and mobilization of hematopoietic stem cells (HSCs) to and from the bone 

marrow is also regulated by integrins (reviewed in [13]). After treatment of hematologic 

malignancies with large doses of radiation and/or chemotherapy, transplantation of HSCs 

is commonly performed. Success of the HSC engraftment within the bone marrow is 
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dependent upon proper HSC homing to a bone marrow niche where they can regenerate 

hematopoietic lineages. New evidence is revealing that integrin engagement of 

counterreceptors plays a critical role in this homing process. For example, Murakami et al. 

determined that a subpopulation of murine HSCs expressing integrin β7 have enhanced 

homing capabilities to bone marrow niches compared to their counterparts which do not 

express β7 [18]. Mechanistic insight was provided when it was revealed that α4β7 integrins 

on HSCs were binding MAdCAM1 present on endothelial cells within the bone marrow 

niche, and β7 knockout HSCs showed decreased CXCR4 homing receptor expression [18].  

In addition to α4β7-MAdCAM1 interactions, α4β1-VCAM1 binding also mediates 

HSC retention in bone marrow niches. The importance of α4 integrin to this interaction is 

supported by the phenotypes of multiple α4 knockout mouse models that show elevated 

numbers of HSCs in the bloodstream relative to wild-type littermates (reviewed in [13]). 

Treatment of mice with Bortezomib, which inhibits the expression of VCAM1, also 

increases HSC mobilization [14]. Together, these results support a role for integrins in 

holding HSCs within the bone marrow and have raised great clinical interest in using 

Bortezomib-induced mobilization for the harvesting of HSCs from the peripheral blood of 

healthy individuals for use in transplantation. 

Another integrin-targeting small molecule antagonist is the drug Firategrast; it inhibits 

α4β1 and α4β7 activity and can also be used to mobilize HSCs from the bone marrow to 

the circulation, making HSC harvesting much less invasive. There is particular interest in 

using Firategrast for in utero hematopoietic cell transplants (IUHCT). These transplants 

can be especially useful for diseases where a more mature immune system can thwart the 

therapeutic benefit of the transplanted cells (reviewed in [43]). Firategrast was tested in a 
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mouse model of IUHCT and found to increase long-term engraftment of HSCs; there was 

15% engraftment at six months with Firategrast, compared to 3% with vehicle alone [44]. 

The current thinking is that mobilization of endogenous HSCs through disruption of 

integrin adhesion by Firategrast makes room in the bone marrow for transplanted HSCs to 

compete with endogenous cells for niche binding. Although still in preclinical studies, 

Firategrast is well-tolerated by adults but has not yet been tested in children (reviewed in 

[43]). 

Some interesting new data on mesenchymal stem cell (MSC) homing demonstrates 

that the role of integrin αL (CD11a) in MSC transmigration across vessel endothelium 

differs from that of leukocyte extravasation [45]. Using zebrafish with GFP-labeled 

endothelium as a model system, mammalian leukocytes, cardiac stem cells, and MSCs 

were transplanted to determine their transmigration properties. As expected, leukocyte 

extravasation proceeded in an αL-dependent fashion, as αL-blocking antibodies inhibited 

leukocyte extravasation. However, the blocking antibodies did not inhibit the 

transmigration of cardiac stem cells or MSCs, indicating that these cells were traversing 

the endothelium in an αL-independent fashion that was found to rely on remodeling of the 

endothelium for vascular expulsion of these types of stem cells. Based on this evidence and 

additional phenotypic differences in the transmigration of cardiac stem cells and MSCs, 

the authors have named this alternate process angiopellosis [45]. 

Integrin-Counterreceptor Interactions in Tumor Cell Migration 

Integrin binding to IgCAMs also mediates tumor cell binding to endothelial cells, 

influencing metastasis. Many of these interactions involve L1CAM (reviewed in [46]); this 

protein contains an RGD motif that binds to αVβ3 integrin [47, 48]. Expression of L1CAM 
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by various types of cancer cells is utilized to engage αVβ3 on endothelial cells. It has been 

demonstrated that L1CAM expression in glioma tumor cells serves to promote the motility 

of both cancer cells [31] and endothelial cells [32], thus having important implications for 

both metastasis and angiogenesis respectively. Other non-ECM integrin ligands have been 

implicated in tumor cell migration. For example, when expressed on cancer cells, VCAM1 

has been identified as a driver of metastasis due to its ability to bind α4β1 integrin 

expressed on lymph node endothelium (reviewed in [16]). Additionally, metastatic breast 

cancer cells express the transmembrane glycoprotein NMB that contains an RGD motif 

and can bind to α5β1 integrin on adjacent tumor cells. This interaction activates Src and 

FAK signaling within the tumor and leads to increased growth and metastasis [19]. 

Integrin-Counterreceptor Interactions in Erythrocyte Development 

Since integrins can bind to both ECM and other cells, it is perhaps not surprising that 

there are modulators that can push integrins towards either a cell-ECM or a cell-cell 

interaction. During erythrocyte differentiation in the bone marrow, immature erythroblasts 

cluster around a central macrophage forming what is known as erythroblastic islands. This 

cell-cell interaction is mediated by α4β1 on erythroblasts and VCAM1 on macrophages 

and is an essential part of the maturation process [15]. The same α4β1 integrin can bind to 

fibronectin in the ECM, and the modulation of α4β1 binding to either macrophages or ECM 

is in part due to the activity of erythrocyte tetraspanin proteins CD81, CD82, and CD151 

[49]. These tetraspanins are co-expressed with α4β1 on human proerythroblasts, where 

they increase affinity and/or clustering of integrins to favor α4β1-VCAM1 interactions 

over α4β1-fibronectin interactions [49].
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Non-ECM Integrin Ligands of Viruses 

Although there is debate as to when viruses first emerged in the evolution of life, it is 

likely that viruses (in one form or another) have co-existed with cells for nearly as long as 

cells have existed [50]. It is also safe to assume that viruses have a long history of exploiting 

cell surface receptors to facilitate their infectious cycles. As already discussed, integrins 

are first present in evolutionary history at the root of the metazoan lineage, and perhaps 

predate metazoans [3, 4, 6]. Therefore, it is not surprising that many species of viruses have 

exploited (and continue to exploit) integrins as a major point of cell attachment, entry, and 

eventually infection of target cells. A common theme among many of the viruses discussed 

here is the display of RGD motifs on viral capsids to bind to integrins that are commonly 

found on either epithelial or endothelial surfaces [51, 52]. Presumably, the RGD motif 

serving as a minimal integrin binding unit accommodates the viral quest for genomic 

minimization. Additionally, RGD-recognizing integrins are common in tissues targeted by 

invading viruses. Although, RGD-based mechanisms are not the only means of integrin 

engagement by viruses, as some viruses employ other integrin targeting motifs. The virus-

integrin interactions we have chosen to highlight are in no way an exhaustive list (for a 

more comprehensive review of the subject refer to [53, 54]. Integrins that participate in 

viral interactions that we discuss are listed in Table B.2 and depicted in figure B.3. 

Non-ECM Integrin Ligands of Picornaviridae 

Viruses of the Picornaviridae family cause a variety of human diseases including 

aseptic (viral) meningitis, paralysis, hepatitis, and poliomyelitis [87] and there are currently 

no approved treatments to minimize picornavirus infection. Picornaviruses are non-

enveloped viruses with icosahedral capsids with each face of the 20-sided capsid consisting 
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of 3 capsid proteins (VP1-3) to form a protomer with 60 subunits. The VP4 protein is 

contained within the capsid and is thought to help package the single-stranded RNA 

genome (reviewed in [88]). Several picornaviruses have been shown to exploit integrins as 

cell surface receptors to facilitate cell invasion. In most cases, the non-ECM ligands that 

enable picornavirus binding to integrins are located on the VP1-3 capsid proteins. 

Members of Picornaviridae include the enteric cytopathic human orphan (echo) 

viruses. Echovirus 1 (EV1) utilizes the α2I functional domain of α2β1 integrin as a docking 

receptor on the surface of a target cell [56, 57]. Although the precise peptide sequence of 

EV1 that binds to α2β1 integrin has not been discovered, it is known that EV1 binds to the 

α2I domain of α2β1 integrin 10 times more tightly than collagen [56, 89, 90]. The structure 

of the EV1 capsid provides a pentameric arrangement of binding sites for α2β1, which 

induces clustering of α2β1 integrins, and is thought to promote entry of the virus [56]. 

During infection, EV1 along with α2β1 integrin, are taken into the host cell via caveolar 

endocytosis and moved to a caveosome, where it is thought that the virus ejects its genome 

into the cytosol [91-94]. While EV1 utilizes a non-RGD signal to bind its integrin receptor, 

echovirus 9 (EV9) docks to integrin αVβ3 via an RGD domain located on the EV9 VP1 

capsid protein [72]. RGD motifs are also thought to be critical in host cell attachment for 

echovirus 22 (EV22) to αVβ1 integrins [69, 70]. Another member of the Picornaviridae 

family, coxsackievirus A9 utilizes the coxsackievirus and adenovirus receptor (CAR) 

together with an RGD motif situated in the C-terminal of its VP1 to bind αVβ3 and αVβ6 

integrins and gain cellular entry [73, 95]. Yet another member of the Picornaviridae 

family, foot-and-mouth disease virus (FMDV) is a major scourge of animal husbandry. 

The VP1 protein of FMDV has an exposed flexible loop, termed the GH loop, which 
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contains an RGD motif and mediates binding to host α5β1, αVβ3, and αVβ6 integrins [64, 

74, 84, 85]. 

Non-ECM Integrin Ligands of Flaviviridae 

Flaviviridae is a family of single-stranded, positive sense RNA viruses that are 

commonly transmitted to human hosts from arthropods such as ticks and mosquitos [96]. 

Japanese encephalitis virus (JEV), a mosquito-borne member of the genus Flavivirus, is a 

leading cause of viral encephalitis in humans and animals [97, 98]. JEV has an envelope 

protein, called E protein, which contains an RGD motif [99]. Data suggest that JEV utilizes 

this RGD motif to bind αVβ3 integrin to aid in cellular infection. Specifically, JEV 

infectivity is reduced by shRNA knockdown of integrin αV and β3 subunits, pretreatment 

of cells with soluble RGD peptides, or αV/β3 blocking antibodies. Conversely, expression 

of β3 integrin promotes infectivity in otherwise resistant cell lines [75]. Finally, utilization 

of integrin receptors appears to be a common infection strategy for the Flaviviridae family 

since other members such as West Nile virus [100-102], Murray Valley encephalitis virus 

[103], dengue virus [104], and yellow fever virus [105] have all been connected with 

integrin-mediated infection or have at least been demonstrated to possess RGD containing 

E proteins. 

Non-ECM Integrin Ligands of Herpesviridae 

Members of the Herpesviridae family of viruses also use integrins for cellular 

attachment and entry. Epstein-Barr virus (EBV) utilizes α5β1 integrin for infectivity in 

tongue and nasopharyngeal epithelium by binding host cell integrins with its RGD 

containing envelope glycoprotein, BMRF-2 [65]. In addition, engagement of EBV 

envelope glycoproteins gH and gL with αVβ5, αVβ6, and αVβ8 integrins induces a 
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conformation in these glycoproteins which facilitates fusion with the target cell membrane 

[83]. More mechanistic insight is provided by herpes simplex virus (HSV) which also uses 

gH and gL to dock αVβ6 and αVβ8 integrins, and this engagement routes HSV to acidic 

endosomes, thus promoting viral entry [86]. Another herpes virus, Kaposi’s sarcoma-

associated herpesvirus (KSHV) uses αVβ3 [76], αVβ5 [82], and α3β1 [61] integrins as 

entry receptors. Expression of the envelope protein, known as glycoprotein B (gB), which 

is highly conserved across Herpesviridae and contains an RGD sequence near its N-

terminus, affords KSHV its integrin binding capacity. However, RGD mediated binding is 

not the only mechanism of KSHV-integrin interaction. KSHV gB also contains a 

disintegrin like domain (DLD) which is capable of binding integrin β1 in an RGD-

independent fashion [58]. Walker et al. discovered that α9β1 is the integrin target of the gB 

DLD and plays a critical role in KSHV infection [67]. This mechanism is not unusual 

among Herpesviridae members, as human cytomegalovirus (HMCV) also uses gB to bind 

αVβ3, α2β1, and α6β1 through its DLD [58, 106]. 

Non-ECM Integrin Ligands of Togaviridae 

Ross River fever is a mosquito borne disease caused by the Ross River virus (RRV), 

a member of the Togaviridae family. This disease induces arthritis by viral infection of 

macrophages within synovial joints [107]. It is believed that the spike protein, E2, of RRV 

contains two conserved domains which fold in a manner that mimics collagen IV [55]. This 

allows for infection of mammalian cells by docking α1β1 integrin in matrix binding 

adherent cell types [55].  
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Non-ECM Integrin Ligands of Adenoviridae 

Human adenoviruses, known for causing respiratory, gastrointestinal, and ocular 

infections, are non-enveloped viruses with icosahedral capsids. At each capsid vertex, a 

penton base supports a fiber protein [108]. Many adenoviruses require two receptors for 

efficient infection of cells. The coxsackievirus and adenovirus receptor (CAR) is required 

for initial adhesion of adenoviral particles to target cells while subsequent integrin 

engagement is required for internalization of the viral particle [109]. It is the penton base 

that affords adenovirus a diverse array of integrin targets. RGD peptide sequences are 

located atop each monomer of the penton base, forming an RGD ring around the fiber 

protein [78]. The RGD peptides mediate docking to αVβ1, αVβ3, αVβ5, and α5β1 integrins 

for the purpose of internalization [66, 71, 110-112]. Mechanistically, it is thought that the 

pentameric structure of the base stimulates integrin clustering and downstream integrin 

signaling which further facilitates viral internalization [113-115]. Adenovirus also interacts 

with the laminin binding integrin, α3β1, via its penton base, but in an RGD-independent 

manner [62]. Additionally, αMβ2 integrin on myeloid cells can be targeted by adenovirus, 

but this interaction is dictated through a yet undetermined sequence within the penton base 

[68]. 

Non-ECM Integrin Ligands of Hantaviridae 

As a member of the Hantaviridae family, the rodent-targeting Andes virus can spread 

to humans through inhalation of aerosolized excreted virus, targeting human endothelial 

cells and resulting in several fatal diseases such as hantavirus hemorrhagic fever with renal 

syndrome and hantavirus pulmonary syndrome [116]. Infection of αVβ3 integrin 

expressing endothelial cells occurs through viral targeting of the PSI domain within the β3 
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subunit [77]. Interestingly, a human polymorphism that has a leucine to proline substitution 

at position 33 of the integrin β3 PSI domain, was experimentally shown to abolish Andes 

virus infectivity [77]. Sin Nombre virus also utilizes β3 containing integrins, such as αIIbβ3 

and αVβ3, for viral attachment [81]. Using atomic force microscopy (AFM) to study 

membrane dynamics upon Sin Nombre virus interaction, more mechanistic insight was 

provided for integrin dependent hantavirus infectivity. Bondu et al. used AFM data to 

propose a model in which viral docking to the β3 PSI domain of αIIbβ3, when the integrin 

is in a low affinity state, enhances integrin cis interaction with an RGD containing G-

protein coupled receptor known as P2Y2R [117]. This cis interaction is thought to induce 

a switchblade-like conformational change within the integrin that ultimately leads to 

endocytosis of the viral bound integrin [117]. Other pathogenic hantaviruses also bind and 

cause the dysregulation of β3 integrins, resulting in blockade of endothelial cell migration 

[118], and enhancement of vascular endothelial growth factor (VEGF) mediated vascular 

permeability [119]. 

Non-ECM Integrin Ligands of Birnaviridae 

Infectious bursal disease virus (IBDV) is an immunosuppressive avian pathogen in the 

Birnaviridae family that attacks the bursa of Fabricius (the site of hematopoiesis in birds) 

of young chickens, having a major negative impact on the poultry industry. The IBDV 

capsid is built by 260 trimers of the VP2 polypeptide arranged in an icosahedral lattice 

[120]. VP2 is the only component of the virus capsid, and contains a conserved, fibronectin 

mimicking, IDA peptide sequence that binds to α4β1 integrins present on target cell 

membranes [63]. IBDV binding to α4β1 integrin triggers c-Src tyrosine phosphorylation 

and actin rearrangement that creates membrane protrusions that internalize the virus [121]. 
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Non-ECM Integrin Ligands of Reoviridae 

The family Reoviridae includes the gastrointestinal pathogens, known as the 

rotaviruses, which are the leading etiological factor of diarrheal disease in young children 

worldwide [122]. The outer layer of the rotavirus capsid consists of 60 VP4 spike proteins 

protruding from a VP7 protein shell [123]. It is these outermost structures which mediate 

host cell binding and infectivity. The VP4 spike protein subunit, VP5, contains a DGE 

tripeptide sequence that serves to recognize α2β1 integrin on target cells [59, 60]. Rotavirus 

VP7 contains an αXβ2 recognizing GPR tripeptide, as well as an α4β1 ligating LDV motif, 

embedded in a disintegrin-like domain of the protein [60]. Additionally, rotaviruses can 

target αVβ3 integrin for the purpose of cellular entry, however, this binding does not occur 

within the RGD pocket [80]. Rather it is a novel αVβ3 targeting NEWLCNPDM amino 

acid sequence within the VP7 protein that is thought to mediate rotavirus-αVβ3 interaction 

[79]. It has been proposed that reoviruses employ a sequential binding mechanism to 

multiple receptors for the purpose of internalization. Initial binding to the counterreceptor 

JAM-A is thought to position the virus for subsequent binding to β1 containing integrins 

that facilitate internalization [124]. 

Non-ECM Integrin Ligands in Venoms 

Selectively blocking integrins is a major therapeutic goal when combatting a number 

of pathologies, and a wide variety of approaches have been initiated. One rich source for 

anti-integrin compounds are venoms from various snake species [125, 126], and the study 

of venom derived integrin antagonists remains an active area of research. A venom is 

defined as a secreted toxin, produced by various types of animals, which is injected into 

another animal for the purpose of defense or predation. The Viperidae family of snakes 
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(collectively known as the vipers) produce a venom which causes local necrosis and blood 

coagulation within their prey. The discovery of small integrin targeting peptides found in 

the venom of these snakes initiated the study of disintegrins. These small molecular weight 

(40-100 amino acids in length), non-enzymatic proteins were originally characterized for 

their platelet disrupting properties through antagonistic targeting of αIIbβ3 integrin [127]. 

Since the identification of the first disintegrins, the field has grown with the discovery of 

many more examples. As discussed below, major families of venom-derived disintegrins 

include the RGD, MLD, PIII, and KTS/RTS disintegrins. While C-type lectin-like proteins 

are an example of non-disintegrin toxins which also disrupt integrin acitivity. Integrin 

targeting venomous compounds are summarized in Table B.3. 

The RGD family of disintegrins is the largest family, although RGD sequences are not 

strictly required to be members in this family. Instead, disintegrins containing RGD or 

similar motifs, such as KGD, MGD, VGD, and WGD, are all capable of targeting RGD 

binding integrins serving to disrupt their physiological functions. Moreover, not all RGD 

disintegrins target RGD binding integrins exclusively either. For example, lebein1 and 

lebein2 are two RGD containing disintegrins found in the venom of Macrovipera lebetina, 

which have the unusual property of targeting the laminin binding integrins α3β1, α6β1, and 

α7β1 in an RGD-independent fashion [133]. They are thought to mimic the integrin-

binding motif of laminin, thus allowing these molecules to disrupt cellular attachment to 

the laminin-rich basement membrane [133]. 

Other disintegrin families include the MLD, PIII, and KTS/RTS containing 

disintegrins. Whereas the RGD family of disintegrins possess an RGD (or similar motif) 

tripeptide within the integrin binding loop of the protein, the MLD motif is found at this 
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same position in MLD containing disintegrins [128]. These MLD disintegrins appear in 

heterodimeric complexes and are highly dependent on adjacent sequences to target the 

α4β1, α4β7, and α9β1 leukocyte specific receptor family of integrins [128]. PIII class 

disintegrins are large multi-domain toxins (60-100 kDa) which use an ECD integrin 

targeting motif and contain a metalloprotease domain which is a close homologue to 

cellular ADAMs [150]. The disintegrin known as alternagin uses an ECD tripeptide motif 

to target α2β1 integrin and disrupt matrix binding [151]. Once bound, alternagin uses its 

protease domain to cleave β1 causing integrin shedding and further disruption of collagen-

induced platelet aggregation [152]. Finally, the KTS/RTS group of disintegrins found in 

Viperidae venom, are monomeric proteins which bind the collagen receptor α1β1 integrin 

[129]. This high level of specificity is not matched by RGD and MLD disintegrins as 

KTS/RTS disintegrins only target α1β1 integrin [128]. 

Another class of toxin found in Viperidae venom is the C-type lectin-like proteins 

(CLPs). These proteins do not exhibit the sugar binding capabilities of C-lectin proteins, 

but instead target collagen-binding integrins [153]. The viper species Echis carinatus 

multisquamatus produces EMS16 a potent and selective inhibitor of α2β1 integrin [130]. 

X-ray crystallography reveals that EMS16 spatially blocks collagen-integrin ligation 

through docking with the α2I domain of α2β1 integrin and stabilizing a low matrix affinity 

integrin conformation [131]. Several studies have shown that many viper derived CLPs 

target endothelium and block angiogenesis [130, 154, 155], while applying CLPs to cancer 

cells can inhibit cell-collagen binding [153] and metastasis [156]. Integrins that interact 

with CLPs are summarized in Table B.3. 
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Bacterial Use of Non-ECM Integrin Ligands 

For many bacterial cells, successful adhesion to host cell surfaces is a prerequisite for 

successful colonization and/or infection. Many bacteria take advantage of the binding 

capabilities of integrins on cell membranes for infectious purposes. Some bacteria utilize 

specific integrin dimers for cellular binding while others exploit extracellular fibrous 

proteins that naturally bind to integrins for the purpose of translocating virulence factors. 

For this review, we will highlight three of the most commonly studied interactions between 

bacteria and integrins. There are other notable examples of bacterial cells using integrins 

as host cell receptors that we will not discuss: the intimin protein of Escherichia coli that 

binds to α4β1 and α5β1 integrins [157], the IpaB, C, and D proteins of Shigella flexneri 

that bind to α5β1 integrin [158], and the filamentous hemagglutinin protein of Bordetella 

pertussis that binds αMβ2 integrin [159]. Integrins that participate in bacterial interactions 

are listed in Table B.4. 

Non-ECM Integrin Ligands of Borrelia burgdorferi 

The spirochete Borrelia burgdorferi is the causative agent of Lyme disease, a 

devastating disease of the nervous system. The natural reservoir for B. burgdorferi includes 

mice, birds, and lizards [160]. These spirochetes are transmitted to humans via tick vectors 

of the Ixodes genus [160]. Once injected into the blood stream, B. burgdorferi spirochetes 

adhere to the microvasculature, transmigrate through the endothelium, and disseminate into 

various tissues [161]. Characterizing the proteins that enable this pathological mechanism 

illustrates several interesting examples of how microbes take advantage of host integrins. 

A variety of screening techniques have identified at least 19 B. burgdorferi proteins 

that mediate or enhance adhesion to target cells [162]. The majority of these proteins 



180 

 

mediate indirect adhesion to mammalian cells via interactions with various ECM 

molecules. Three proteins however, P66, BBB07, and BB0172, have been shown to 

interact with integrins on platelets and a variety of cells such as endothelial cells. Prior to 

the discovery of the P66 protein, it had been known for some time that B. burgdorferi cells 

could adhere to β3 chain containing integrins [163, 164]. The P66 protein was later 

identified by phage display and shown to bind αVβ3 and αIIbβ3 integrins [165]. P66 

displays no typical integrin binding sites [165], although adhesion of P66 to integrins can 

be blocked by soluble RGD peptides suggesting that P66 may bind into the RGD pocket 

of β3 integrins [166]. Moreover, a minimal seven amino acid sequence (QENDKDT) from 

P66 was found to bind integrins and deletion of the aspartic acid residues from this peptide 

eliminated P66 integrin binding [167]. Despite the integrin binding activity of P66, deletion 

of P66 does not appear to affect B. burgdorferi adhesion to microvasculature, a key step 

proceeding tissue invasion [168]. Instead, the P66 protein (presumably via its integrin 

binding activity) appears to be essential for the endothelial transmigration and 

dissemination of B. burgdorferi spirochetes into host tissues [167, 168]. Although P66 

deletion did not affect microvascular adhesion, B. burgdorferi binding to various cells can 

be blocked by soluble RGD peptides [163], suggesting the presence of other integrin 

binding proteins. In support of this, two additional integrin-binding outer membrane 

surface proteins, BBB07 and BB0172, have been detected on B. burgdorferi [169, 170]. 

Although both BBB07 and BB0172 have been shown to interact with α3β1 integrins, only 

BBB07 contains an RGD motif [170]. Currently, there is little known about the function 

of α3β1 integrins in endothelial biology, although it has been proposed that α3β1 binding 

to Laminin 511 in the basal lamina may be linked to endothelial barrier function [171], 
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which could provide a link to the transendothelial migration of B. burgdorferi during 

infection. 

Non-ECM Integrin Ligands of Helicobacter pylori 

Helicobacter pylori infects roughly half of the world’s human population and shares 

responsibility for gastric complications including stomach ulcers and gastric 

adenocarcinoma through its infection of gastric epithelial cells [172-174]. H. pylori utilizes 

a type IV protein secretion system (T4SS) involving the cytotoxin-associated gene L 

(CagL) adhesion tip protein, to infect target cells with the virulence factor, cytotoxin-

associated gene A (CagA) [175, 176]. Efficiency of CagA injection is enhanced by an RGD 

domain present on the CagL protein [177]. CagL interacts primarily with α5β1 integrin, 

however αVβ3, αVβ5, and αVβ6 have also been implicated [177-180]. Interestingly, while 

the CagL RGD domain is necessary for CagA injection, additional CagL sequences have 

been identified that enhance integrin binding. For example, an RGD helper sequence, 

FEANE, is located in close proximity to the RGD domain of CagL and reinforces integrin 

engagement [177]. Additional domains on CagL that enhance RGD binding include, a 

TSPSA sequence [181], an LXXL sequence that is directly adjacent to the RGD domain 

[180], and a TASLI sequence located opposite the RGD domain in the CagL integrin 

binding domain [181]. CagL-α5β1 interaction leads to the activation of the kinases Src and 

FAK [179], followed by subsequent tyrosine phosphorylation of the CagA EPIYA motifs 

by Src and ABL kinases [182]. These phosphorylation events potentiate CagA 

pathogenicity (reviewed in [183]). Phospho-CagA interacts with Shp-2 while initiating 

mitogen-activated protein kinase (MAPK) signaling, and inducing cytoskeletal 

rearrangements which serve to cause an elongation of epithelial cells and enhance their 
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mobility. CagA also disrupts cell-cell junctions while triggering an inflammatory response 

including nuclear factor-kB (NF-κB) activation and chemokine production. Additionally, 

in a negative feedback loop phospho-CagA down-regulates Src activity, ensuring that a 

reservoir of nonphospho-CagA remain in the cell, which is necessary for a prolonged 

infection. As mentioned previously, CagL is capable of interacting with other integrins. 

Interestingly, a novel mechanism of CagL-αVβ5 induced production of gastrin has been 

uncovered. It was found that CagL ligation to αVβ5 on gastric epithelial cells, activates 

ILK, which in turn activates the epidermal growth factor receptor (EGFR) and 

subsequently MAPK pathways, serving to induce gastrin expression [184]. This 

mechanism may explain H. pylori induced hypergastrinemia, which is a major risk factor 

for gastric adenocarcinoma. The integrin dependent mechanisms of H. pylori infection 

discussed here are depicted in figure B.2. 

Non-ECM Integrin Ligands of Yersinia 

The gram negative bacteria, Yersinia enterocolitica and Yersinia pseudotuberculosis 

commonly cause food borne illnesses. These Yersinia species express two adhesion 

proteins that facilitate cellular attachment and invasion of target cells in the small intestine. 

The Yersinia adhesion A (YadA) protein indirectly binds to integrins via interaction with 

various molecules of the ECM, but is dispensable for cellular invasion [185, 186]. 

However, the Yersinia invasin protein directly binds to a variety of β1 subunit containing 

integrins (α3, α4, α5, α6, αV) and is crucial for cellular adhesion and invasion [187, 188]. 

Yersinia species invading through the small intestine, target the apical membrane of 

Peyer’s patch M-cells, which express integrin β1 [189, 190]. Invasins lack the typical RGD 

domain used to bind integrins, although RGD peptides prevent invasin binding to β1 
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integrins [191]. This suggests that invasin proteins interact with the RGD binding domain 

of β1 containing integrin heterodimers. In support of this, structural analysis of the invasin 

protein, and comparison to fibronectin, reveals similar structures with key conserved 

integrin-binding residues, suggesting the convergent evolution of invasins to match 

fibronectin [192]. 

Protists and Multicellular Parasites that Use Non-ECM Integrin Ligands 

A broad array of examples of non-ECM ligands for integrins are employed by many 

parasitic organisms. Here we discuss just a few examples, including non-ECM ligands 

produced by the amoebozoa Entamoeba histolytica and a range of hematophagic (blood-

sucking) organisms. These examples illustrate the importance of non-ECM ligands to 

parasitic infections. Although compared to bacteria and viruses, there is far less literature 

on the subject of non-ECM ligands as components of pathogenicity in protozoan and 

multicellular parasites. Non-ECM integrin ligands derived from parasitic organisms are 

summarized in Table B.4. 

Non-ECM Integrin Ligands of Entamoeba histolytica 

Entamoeba histolytica (Eh) causes amoebic dysentery and liver abscess [205] and is 

responsible for ~100,000 deaths/year [206]. Eh invasion into host tissues involves multiple 

integrin-mediated steps. The best characterized of these integrin-mediated steps involves 

the EhCP5 cysteine proteinase 5 protein (PCP5) binding to αVβ3 integrins [203, 204]. 

Binding of EhCP5 to αVβ3 integrins on colonic epithelial cells via an RGD domain triggers 

NF-κB mediated inflammation [203], and mucin exocytosis [204]. The EhCP5 protein has 

also been shown to interact with α5β1 integrins to mediate local inflammation which is 

crucial to Eh invasion into host tissues [201]. Additional involvement of integrins in Eh 
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invasion have been linked to β2 integrin activation and release of reactive oxygen species 

[207, 208] as well as an integrin β1-like receptor present on Eh trophocytes that mediates 

adhesion to host fibronectin [209]. 

Non-ECM Integrin Ligands of Hookworms 

The hookworm platelet inhibitor (HPI) protein illustrates another fascinating example 

of non-ECM integrin ligands. Hookworms are blood-feeding intestinal parasites and a 

leading cause of iron deficiency in humans. HPI was isolated from the hookworm, 

Ancylostoma caninum, based on its ability to inhibit function of integrins αIIbβ3 and α2β1 

[193, 194]. HPI appears to block platelet aggregation and blood clothing, thus enabling 

continued feeding. Interestingly, sequence and structural analysis has failed to identify any 

integrin binding domains in the HPI protein [210]. In addition to the HPI protein, 

Ancylostoma caninum also expresses the neutrophil inhibitor factor (NIF) that interacts 

with M2 integrins present on neutrophils [202, 211]. NIF disrupts αMβ2 interaction with 

ICAM1 [202] which is necessary for stable neutrophil adhesion to endothelium and 

transendothelial migration thus suppressing local inflammation. Collectively, the 

combined actions of HPI and NIF help ensure hookworms are able to feed from their host 

for a prolonged period of time. 

Non-ECM Integrin Ligands of Blood-Sucking Parasites 

In addition to Entamobea histolytica and Ancylostoma caninum, several other 

examples of integrin inhibition by hematophagic (blood-sucking) arthropods have been 

described in the literature (reviewed in [212]). Many of these strategies involve non-ECM 

integrin ligands that interfere with various integrin-mediated steps that are essential for 

blood coagulation. The majority of these non-matrix ligands block platelet αIIbβ3 integrin 
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interactions with fibrin, von Willebrand factor, and vitronectin which are collectively 

essential for blood coagulation. Examples of these proteins include the decorsin protein 

from the leech Macrobdella decora [195], the vasotab TY and tablysin-15 proteins from 

the horsefly Tabanus yao [196, 197], and the disagregin (Ornithodoros moubata), YY-39 

(Ixodes pacificus and Ixodes scapularis), and variabilin (Dermacentor variabilis) proteins 

from ticks ([198-200]. Many of these proteins contain RGD or similar integrin binding 

domains (KGD, VGD, MLD, KTS, RTS, WGD, or RED) which bind to and interfere with 

αIIbβ3 function on platelets. Additional RGD or RGD-like integrin antagonists have been 

identified in silico from other blood-sucking arthropods such as mosquitos and sand flies 

[212], but have yet to be explored. 

Hormones, Small Molecules, and Growth Factors that Mimic Integrin Ligands 

To this point, we have focused on the non-ECM integrin ligands utilized by various 

organisms to mediate adhesion to target cell membranes. However, as it turns out, a wide 

variety of small molecules (including hormones and growth factors) can also interact with 

integrins thus broadening the role for integrins in non-ECM interactions. As described in 

the examples below, integrins binding to small molecules serve a number of cellular 

functions ranging from cell surface receptor-signaling roles as in the case of thyroid 

hormone, DHT, ANGPTLs, and VEGF, to activation of growth factors as in the case of 

TGFβ. Integrins that interact with hormones, small molecules, or growth factors are 

summarized in Table B.3 and depicted in figure B.4. 
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Small Molecules and Hormones that Bind Integrins (Resveratrol, Thyroid Hormone, 

DHT) 

Trans-resveratrol is a stilbenoid produced in plants such as grapevines that is well 

known for its anti-inflammatory activity [213], anti-angiogenic function [214] and anti-

cancer properties [215-217]. Resveratrol binds the extracellular portion of the β3 monomer 

of αVβ3 integrin near the RGD pocket [137]. This binding inhibits αVβ3 integrin 

dependent endothelial cell adhesion to vitronectin-coated plates, while also exhibiting 

angiostatic function and inhibiting tumor growth [139]. Resveratrol binding to αVβ3 

integrin induces extracellular signal-regulated kinase (ERK1/2) activation, which leads to 

p53 induced apoptosis in various cancer cell lines [137, 138]. This evidence implicates 

resveratrol binding αVβ3 integrin as being at least in part responsible for resveratrol’s 

ability to mitigate angiogenesis and tumorigenesis. 

Integrin αVβ3 bears a receptor site for the thyroid hormones T3 and T4 and thyroid 

hormone analogs (reviewed in [140]). Perhaps the first evidence of this interaction was 

uncovered when Hoffman et al. [218] used an αVβ3 inhibitor (SB-273005) to block T4 

induced bone resorption in rats. Binding of T3 and T4 to αVβ3 integrin induces cell 

proliferation and angiogenesis through MAPK activation, and this effect is negated by a 

T4 derivative tetraiodothyroacetic acid (tetrac), RGD peptide, and αVβ3 integrin blocking 

antibodies suggesting that the thyroid hormone receptor site is at or near the RGD binding 

pocket [141-143]. Through radioligand binding experiments, it was shown that purified 

αVβ3 integrin binds T4 preferentially over T3, and binds T4 with high affinity, having a 

dissociation constant (Kd) of 333 pM and an EC50 of 371 pM [219]. Lin et al. have proposed 

a model for the thyroid hormone receptor activity of αVβ3 integrin that describes two 
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distinct thyroid hormone binding sites on αVβ3 [220]. The site known as ‘site 1’, appears 

to bind T3 but not T4, while another site called ‘site 2’ binds both T3 and T4 [220]. T3 

binding at site 1 leads to Src and phosphatidylinositol 3-kinase (PI3K) activation that 

induces nuclear translocation of thyroid hormone receptor (TR) α1, and these effects can 

be disrupted through addition of RGD peptide [220]. Whereas, T3/T4 binding at site 2 

induces ERK activation that causes nuclear translocation of TRβ1, and only T4 induced 

effects at this site are disrupted by RGD peptides [220]. This suggests that αVβ3-dependent 

thyroid hormone signaling acts as a complex, hierarchical system capable of mediating 

distinct site-specific activities. Since some of these activities are disrupted through RGD 

binding, this leads to the possibility that cells embedded in an RGD-rich matrix may 

respond differentially to thyroid hormone compared to those embedded in a RGD-deficient 

matrix. Perhaps this is a mechanism by which a ubiquitous receptor, such as αVβ3, can 

provide tissue specific responses to thyroid hormone. 

In addition to thyroid hormones, αVβ3 integrin also interacts with the biologically 

active form of testosterone, DHT. Whether or not this interaction is involved in the normal 

physiological roles of DHT is unknown; however, DHT binding to αVβ3 has been 

implicated in cancer cell growth. For example, DHT binding to αVβ3 stimulates MDA-

MB-231 breast cancer cell proliferation [143]. Additionally, DHT binding to αVβ3 integrin 

inhibits resveratrol induced p53 dependent apoptosis effects in MDA-MB-231 cells [144], 

thus highlighting the complexity of hormone signaling through αVβ3 integrin. Through 

these examples, it is clear that αVβ3 integrin has diverse receptor activity which affords 

hormones additional non-canonical signaling capacity. 
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Growth Factors that Bind Integrins (ANGPTLs, TGFβ, VEGF) 

Many growth factors are capable of binding integrins. An interesting example is the 

angiopoietin-like proteins (ANGPTLs), also known as angiopoietin-related proteins 

(ARPs), which consist of a family of proteins that display structural similarity to the growth 

factor angiopoietin, although they do not bind classical angiopoietin receptors [221]. 

Instead, ANGPTLs have been demonstrated to bind various integrins through a C-terminal 

fibronectin like domain containing a conserved RGD sequence [222]. In human prostate 

cancer (LNCaP) cells, ANGPTL2 binds α5β1 integrin inducing migration and 

proliferation, and this effect can be negated by use of integrin-blocking antibodies [134]. 

Furthermore, ANGPTL2 binding α5β1 integrin on macrophages mediates pro-

inflammatory responses in mice, and ANGPTL2 knockout mice have muted immune 

responses leaving them more susceptible to infections [135]. In the kidney, glomerular 

podocyte motility is enhanced through cytoskeletal rearrangement induced by ANGPTL3 

binding podocyte αVβ3 integrin [145]. Deletion of ANGPTL3 can reduce proteinuria in 

mouse models of nephropathy, and ANGPTL3 activation of integrin β3 has been identified 

in patients with nephrotic syndrome [223]. The ANGPTL family also affects vascular 

integrity. In response to decreased albumin levels during peak proteinuria, podocytes and 

extrarenal tissues secrete ANGPTL4 into the blood, which binds glomerular endothelial 

αVβ5 integrin and serves to reduce proteinuria [147]. This effect may be explained by 

another study where surface plasmon resonance and proximity ligation assays were used 

to discover that ANGPTL4 also binds another endothelial integrin, αVβ3, which serves to 

recruit Src kinase and enhance endothelial junction stability, thereby reducing vascular 

permeability [146]. Taken collectively, these studies suggest that ANGPTL3 binding 
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podocyte integrins enhances proteinuria, whereas ANGPTL4 binding glomerular 

endothelial integrins decreases proteinuria. The ANGPTLs are a good example of a protein 

family that mimics a classical extracellular matrix protein in order to bind integrins and 

implement their cellular effects. 

Integrins also play a critical role in the activation of TGFβ (reviewed in [148]). An 

inactive form of TGFβ (pro-TGFβ) is secreted from cells with an RGD containing latency 

associated peptide (LAP) non-covalently bound to TGFβ, which must be removed before 

TGFβ is biologically active. While the RGD binding αVβ6 integrin plays a key role in 

separating LAP from TGFβ, other αV containing integrins, including αVβ3, αVβ5, and 

αVβ8, have been implicated in this process. Mutation of the LAP integrin binding site in 

mice yields normal levels of pro-TGFβ, but results in a lethal phenotype which appears 

identical to TGFβ deletion [224]. LAP separation is mediated by a tensile force generated 

by a cell’s cytoskeleton that is transmitted via αVβ6 integrin in order to reshape and 

activate the pro-TGFβ [149]. The dependence of pro-TGFβ on αVβ6 for activation, and the 

fact that TGFβ is a well-known master regulator of fibrosis [225], has led to the suggestion 

that inhibition of αVβ6 integrin binding may represent a clinical strategy to treat diseases 

characterized by fibrosis, such as scleroderma [226]. This idea is supported by observations 

showing that αVβ6 knockout mice [227] or treatment with αVβ6 blocking antibodies [228, 

229] substantially decrease fibrosis in mouse models of lung fibrosis. 

The vascular endothelial growth factors (VEGFs) comprise a group of cytokines which 

are important mediators of angiogenesis and lymphangiogenesis. VEGF signaling 

functions through VEGF binding to a group of receptor tyrosine kinases, known as VEGF 

receptors (VEGFRs). Since this pathway is an inducer of angiogenesis, it has been the 
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target of many anti-cancer therapies with the hope of inhibiting tumor vascularization. One 

therapeutic strategy involves inhibiting VEGF-VEGR binding through the targeting of 

VEGFRs with monoclonal antibodies [230]. However, this approach has not proven as 

effective as drug developers and clinicians envisioned [230, 231]. One reason for this 

failure may be that VEGFRs are not the only membrane-bound receptor of VEGFs, as these 

growth factors are also known to bind integrins. Some VEGF isoforms are integrated into 

the extracellular matrix, where they bind α3β1, αVβ3, and other αV integrins to promote 

endothelial cell adhesion [132]. Interestingly, the solubility of VEGF ligands greatly effects 

the integrin response. Vlahakis et al. found that when α9β1 integrin binds immobilized 

VEGF-A it induces the recruitment of VEGFR2 into macromolecular structures at the cell 

membrane [136]. This serves to permit endothelial cell adherence and migration on VEGF-

A functionalized petri dishes, and stimulates the phosphorylation of the downstream 

effectors paxillin and ERK [136]. In contrast, when soluble VEGF binds α9β1 integrin, 

paxillin is phosphorylated, but neither the phosphorylation of ERK nor formation of 

VEGFR2 macromolecular complexes are induced [136]. Moreover, VEGF-A is not the 

only VEGF member to have these functions. VEGF-C and VEGF-D also bind α9β1 

integrin, stimulating the phosphorylation of paxillin and ERK, while contributing to 

lymphangiogensis [232]. Taken together, these findings suggest a VEGF induced synergy 

between VEGFR and integrins. Therefore, it may be beneficial to co-target integrins when 

employing an anti-VEGF therapeutic strategy during cancer treatment. 

Conclusions 

Throughout this review, we have sought to venture beyond the matrix and highlight 

biological examples of integrin ligands that do not fit the classical model of ECM-mediated 
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integrin function. Given the strong conservation of integrins across much of the biological 

world, it is no surprise that there exists an extremely diverse array of these non-ECM 

integrin ligands. Consequently, interactions between integrins and non-ECM ligands are 

actively being exploited for a number of applications in the biotechnology realm. RGD 

peptides are being used to target liposomes and small molecules to specific tissues for 

various purposes, including the improvement of chemotherapeutic delivery to cancer cells 

[233-235]. Similarly, RGD peptides are also being used to target viral particles to various 

tissues. For instance, the new field of “chemical virology” seeks to load viral capsids with 

chemotherapeutics that in some instances, utilize RGD functionalization to deliver these 

nanoparticles to specific tissues [236]. In a related example, a plant virus known as the 

cowpea mosaic virus, which does not normally target mammalian cells, was functionalized 

with RGD peptides to successfully target cancer cell lines [237]. Demonstrating another 

example of applied integrin biotechnology, various artificial “extracellular matrices” are 

now being created and designed with incorporated RGD peptides to enable cell seeding 

and growth [238]. Two exciting examples include the development of graphene that has 

been functionalized with RGD peptides which is being used to detect nitric oxide release 

from living cells [239], and DNA origami tubes that have been tagged with RGD peptides 

and shown to bind neural stem cells and promote their differentiation [240]. These 

instances and many others provide fascinating examples of how the unique binding 

properties of integrins continue to be uncovered and utilized. 
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Table B.1 Selected Non-ECM Ligands which Mediate Cell-Cell Interactions 

Table B.1: Selected non-ECM ligands which mediate cell-cell interactions. 

Integrin 

dimers 
Common name non-ECM ligand Function of interaction [key refs] 

α4β1 VLA-4 Very late antigen-4 

MAdCAM1 

VCAM1 

 

 

JAM-B 

Leukocyte adhesion [10-12] 

Leukocyte adhesion [10-12] 

Erythrocyte differentiation [13-15] 

Cancer cell metastasis [16] 

Leukocyte transmigration [11] 

α4β7 LPAM 

Lymphocyte Peyer’s 

patch adhesion 

molecule 

MAdCAM1 
T-lymphocyte homing [17] 

HSC homing to bone marrow [18] 

α5β1 
Fibronectin 

receptor 
Fibronectin receptor NMB Cancer cell growth, metastasis [19] 

αEβ7   E-cadherin 
Cytotoxic T cell targetting of tumor 

cells [20] 

αLβ2 LFA-1 

Lymphocyte 

function associated 

antigen-1 

ICAM1, 2, 3 

JAM-A 

Leukocyte adhesion [10, 11] 

Leukocyte transmigration 

αMβ2 
Mac-1 / 

CR3  

Macrophage 

antigen-1 / 

Complement 

receptor-3 

ICAM1 

-glucan 

Complement C3  

LL-37 

JAM-C 

HMGB1 

Leukocyte adhesion [10, 11] 

NETosis [21, 22] 

Phagocytosis [23, 24] 

Bacterial opsonization [25-29] 

Leukocyte transmigration [11] 

NETosis [30] 

αVβ3 
Vitronectin 

receptor 
Vitronectin receptor L1CAM Cancer cell metastasis [31, 32] 

αXβ2 

CR4 / 

CD11c 

/CD18 

Complement 

receptor-4 
Complement C3  Phagocytosis [23, 24] 
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Table B.2 Selected Integrin Binding By Viruses 

Table B.2: Selected integrin binding by viruses 

Integrin Virus name [key refs] 

α1β1 Ross River virus [55] 

α2β1 

Echovirus 1 [56, 57] 

Cytomegalovirus [58] 

Rotavirus [59, 60] 

α3β1 
Kaposi’s sarcoma-associated herpesvirus [61] 

Adenovirus [62] 

α4β1 
Infectious bursal disease virus [63] 

Rotatvirus [60] 

α5β1 

Foot-and-mouth disease virus [64] 

Epstein-Barr virus [65] 

Adenovirus [66] 

α6β1 Cytomegalovirus [58] 

α9β1 Kaposi’s sarcoma-associated herpesvirus [67] 

αMβ2 Adenovirus [68] 

αVβ1 
Echovirus 22 [69, 70] 

Adenovirus [71] 

αVβ3 

Echovirus 9 [72] 

Coxsackievirus A9 [73] 

Foot-and-mouth disease virus [74] 

Flaviviridae [75] 

Kaposi’s sarcoma-associated herpesvirus [76] 

Cytomegalovirus [58] 

Andes virus [77] 

Adenovirus [78] 

Rotavirus [79, 80] 

Sin Nombre virus [81] 

αVβ5 

Kaposi’s sarcoma-associated herpesvirus [82] 

Adenovirus [78] 

Epstein-Barr virus [83] 

αVβ6 

Coxsackievirus A9 [73] 

Foot-and-mouth disease virus [84, 85] 

Epstein-Barr virus [83] 

Herpes simplex virus [86] 

αVβ8 
Epstein-Barr virus [83] 

Herpes simplex virus [86] 

αXβ2 Rotavirus [60] 

αIIbβ3 Sin Nombre virus [81] 
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Table B.3 Integrin Binding by Small Molecules, Hormones, Venoms, and CLPs 

Table B.3: Integrin binding by small molecules, hormones, venoms, and CLPs 

Integrin Non-ECM ligand Function [key refs] 

α1β1 KTS/RTS disintegrins Block cell adhesion [128, 129] 

α2β1 EMS16 Block adhesion to collagen [130, 131] 

α3β1 
VEGF 

Disintegrin Lebein 1/2 

Cell adhesion [132] 

Block cell adhesion [133] 

α4β1 MLD disintegrins Block cell adhesion [128] 

α4β7 MLD disintegrins Block cell adhesion [128] 

α5β1 ANGPTL2 
Cancer cell migration / proliferation [134] 

Macrophage pro-inflammatory response [135] 

α6β1 Disintegrin Lebein 1/2 Block cell adhesion [133] 

α7β1 Disintegrin Lebein 1/2 Block cell adhesion [133] 

α9β1 
VEGF-A, -C, -D 

MLD disintegrins 

Endothelial adhesion & lymphogenesis [136] 

Block cell adhesion [128] 

αVβ3 

Resveratrol 

Thyroid hormones (T3/T4) 

DHT 

ANGPTL3 

ANGPTL4 

VEGF 

Anti-angiogenesis [137-139] 

Cell proliferation / Angiogenesis [140-142] 

Cancer cell proliferation [143, 144] 

Podocyte motility [145] 

Enhanced endothelial junctions [146] 

Endothelial cell adhesion [132] 

αVβ5 ANGPTL4 Reduce proteinuria [147] 

αVβ6 Pro-TGFβ TGFβ activation [148, 149] 
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Table B.4 Integrin Binding by Bacteria and Parasitic Organisms 

Table B.4: Integrin binding by bacteria and parasitic organisms. 

Integrin Species Binding protein [key refs] 

α2β1 Ancylostoma caninum Hookworm platelet inhibitor (HPI) [193, 194] 

αIIbβ3 

Ancylostoma caninum 

Macrobdella decora 

Tabanus yao 

 

Ornithodoros moubata 

Ixodes pacificus 

Dermacentor variabilis 

Hookworm platelet inhibitor (HPI) [193, 194] 

Decorsin [195] 

Vasotab TY [196] 

Tablysin-15 [197] 

Disagregin [198] 

YY-39 [199] 

Variabilin [200] 

α3β1 
Borrelia burgdorfori 

Yersinia 

BBB07, BB0172 [170] 

Invasin [187, 188] 

α4β1 
Escherichia coli 

Yersinia 

Intimin [157] 

Invasin [187, 188] 

α5β1 

Helicobacter pylori 

Escherichia coli 

Shigella flexneri 

Entamoeba histolytica 

Yersinia 

CagL [177, 179] 

Intimin [157] 

Ipa B, C, D [158] 

EhCP5 [201] 

Invasin [187] 

α6β1 Yersinia Invasin [187, 188] 

αMβ2 
Bordetella pertussis 

Ancylostoma caninum 

Filamentous hemagglutinin protein [159] 

Neutrophil inhibitor factor (NIF) [202] 

αVβ1 Yersinia Invasin [187] 

αVβ3 

Borrelia burgdorfori 

Helicobacter pylori 

Entamoeba histolytica 

P66 [165] 

CagL [177] 

EhCP5 [203, 204] 

αVβ5 Helicobacter pylori CagL [177, 184] 

αV6 Helicobacter pylori CagL [180] 
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Figure B.1 Integrin Heterodimers and their Ligands. 

Integrins are heterodimeric cell surface receptors that bind extracellular matrix (ECM) 

molecules. In addition to this role, integrins also bind many non-ECM ligands. Integrin 

subunits connected by a ray represent heterodimeric α/β binding partners. The inner 

ring depicts integrin heterodimers grouped into families based upon their classical 

binding profile. These families include RGD receptors, collagen (GFOGER) 

receptors, laminin receptors, or leukocyte-specific receptors. Within the outer ring, the 

non-ECM ligands of these families are listed. Non-ECM ligands include growth 

factors, hormones, venomous compounds, disintegrins, bacterial proteins, fungal 

polysaccharides, viruses, polyphenols, and counterreceptors. 
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Figure B.2 Integrins Act as “Double Agents” During Infection, Serving to 

Potentiate Bacterial Pathogenicity while also Aiding in the Immune Response. 

During Helicobacter pylori infection in the stomach, integrins play diverse roles. H. 

pylori bacteria in the gastric lumen are able to bind integrins on gastric epithelial cells 

and inject virulence factors. As seen in the magnified view of this process, docking of 

α5β1 integrin is achieved through integrin affinity for the RGD motif of the CagL 

protein component of the type IV secretion system (T4SS). Integrin α5β1 mediated 

stabilization of the T4SS facilitates the translocation of the virulence factor CagA and 

activation of intracellular kinases. Once in the cytosol, CagA is phosphorylated by Src 

family kinases (SFKs) and ABL kinases, which potentiates its virulence. Phospho-
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CagA then activates SHP-2 and MAPK signaling, triggering cytoskeletal remodeling. 

CagA also disrupts cell-cell junctions, activates the NF-kB pathway, and stimulates 

cytokine production. Alternatively, CagL docking with αVβ5 integrin on gastric G 

cells activates ILK, which stimulates EGFR and MAPK activation, inducing gastrin 

production. These mechanisms increase the permeability of the gastric epithelium 

which aids H. pylori dissemination into the underlying lamina propria. This process 

initiates an inflammatory response that causes the release of the antimicrobial peptide 

LL-37 from gastric epithelial cells. The immune system responds by recruiting 

leukocytes from the blood stream. In the magnified view of the recruitment process, 

we see that leukocytes first stick to inflamed endothelial cells through selectin binding 

which facilitates integrin mediated tight adhesion. Tight adhesion leads to leukocyte 

transendothelial migration into the lamina propria where immune cells, such as 

neutrophils and macrophages, phagocytize bacteria. Phagocytosis is mediated through 

integrin recognition of the opsonization factors LL-37 and complement. Neutrophil 

extracellular traps (NETs) are stimulated through integrin interaction with pathogens. 
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Figure B.3 Viruses Hijack Integrins for Adhesion and Infectivity. 

Virus families use specific integrins in order to adhere to target cells for the purposes 

of internalization and infectivity. Members of the family Adenoviridae are non-

enveloped viruses with icosahedral capsids that have penton base structures which 

facilitate RGD-dependent docking with αV1, αVβ3, αVβ5, and α5β1 integrins and 

RGD-independent engagement of α3β1. Adenoviruses also target αMβ2 integrin 

through an undetermined mechanism. Birnaviridae contains members who employ a 

fibronectin mimicking IDA peptide to bind α4β1 integrin. Members of the 
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Flaviviridae family have an RGD containing E-protein which binds αVβ3 integrin. 

Viruses in the family Hantaviridae target the PSI domain of αVβ3 and αIIbβ3 

integrins. Herpesviridae has members that employ a few different mechanisms of 

integrin engagement for the purposes of viral entry. The envelope protein BMRF-2 

contains an RGD sequence that docks α5β1 integrin. The envelope proteins gH and 

gL dock with αVβ5, αVβ6, and αVβ8. Whereas another envelope protein, known as 

gB, contains both an RGD motif and disintegrin-like domain which affords viral 

targeting of αVβ3, αVβ5, α2β1, α3β1, α6β1, and α9β1 integrins. Members of the 

Picornaviridae family use capsid proteins to target integrins. Targeting of α2β1 

integrin proceeds in an RGD-independent manner, while αVβ1, αVβ3, αVβ6, and 

α5β1 integrins are bound in an RGD-dependent fashion. Reoviridae contains members 

which employ a DGE sequence within a VP4 capsid protein to engage α2β1. 

Additionally, the reovirus VP7 capsid protein has a GPR tripepetide which recognizes 

αXβ2, an LDV motif that ligates α4β1, and a novel NEWLCNPDM amino acid 

sequence that targets αVβ3. Togaviridae has members which have a collagen 

mimicking spike protein that docks α1β1 integrin. 
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Figure B.4 Integrins Serve as Cell Surface Receptors for Growth Factors, 

Hormones, and Small Molecules. 

Various growth factors use integrins as cell surface receptors. Angiopoietin-like 

proteins (ANGPTLs) bind α5β1 and αVβ3 integrins to facilitate a host of cellular 

effects. Pro-TGFβ is activated by αVβ3, αVβ5, αVβ6, and αVβ8, through integrin 

dependent dissociation of an RGD containing latency associated peptide (LAP), thus 

converting it to its active form. Activated TGFβ acts as a master regulator of fibrosis 

among other roles. Vascular endothelial growth factor (VEGF) ligates α3β1, α9β1, 

αVβ3, and other αV containing integrins, resulting in cellular effects that promote 

angiogenesis and lymphangiogenesis. The polyphenol trans-resveratrol, which is 

derived from grapevines, binds the β3 subunit of αVβ3 integrin near the RGD 

recognition pocket. This binding event induces ERK activation and p53 dependent 

apoptosis, while promoting angiostasis. Like trans-resveratrol, the active form of 

testosterone (DHT) also binds the β3 subunit of αVβ3 integrin near the RGD pocket. 

DHT-αVβ3 interaction inhibits trans-resveratrol induced effects and stimulates 
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cellular proliferation. The thyroid hormones, T3 and T4, utilize αVβ3 integrin as a cell 

surface receptor to activate a range of signaling molecules which induce angiogenesis. 

When binding to αVβ3 integrin, the thyroid hormone analog tetrac blocks T3/T4 

integrin-induced effects. 
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