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ABSTRACT

Describing scenes such as rooms, city streets, or routes, is a very common human

task that requires the ability to identify and describe the scene sufficiently for a hearer

to develop a mental model of the scene. When people talk about such scenes, they

mention some objects of the scene at the exclusion of others. We call the mentioned

objects salient objects as people consider them noticeable or important in comparison

to other non-mentioned objects. In this thesis, we look at saliency of visual scenes

and how visual saliency informs what can and should be said about a scene when

describing it.

Previous work on saliency focuses on the scenes themselves, whereas we are

interested in what people actually say about those scenes. For this, we take the

scenes and human dialogue into account. To collect the dialogue data, we developed

a web application and used a crowd sourcing platform to get access to an on-demand

workforce which allowed us to get more realistic and varied responses from users.

To automate the process of detecting salient objects given a novel scene, we used a

popular image content analysis tool to extract objects present in the scene. We used

the dialogue data to rank the detected objects based on their saliency which gives us

candidate objects to mention. We also compare how different features of the gathered

data can be used to develop saliency detection models. Our initial investigation shows

that human dialogue data significantly improves the detection of salient objects.
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CHAPTER 1

INTRODUCTION

1.1 Background

Describing scenes such as rooms, city streets, or routes, is a very common human

task that requires the ability to identify and describe the scene sufficiently for the

hearer to develop a mental model of the scene. A necessary prerequisite to describing

the scene is determining what to perceive and judge as important in the scene, called

visual saliency [4]. Visual saliency is the distinct subjective perceptual quality which

makes some objects in a scene stand out from their neighbors and immediately grab

our attention [20]. Hence, determining what to describe is the goal of this thesis: we

will look at saliency of visual scenes and how visual saliency informs what can and

should be said about a scene when describing it.

Visual saliency, by which we perceive and assign importance to some objects at

the exclusion of others, also depends on the type of the visual scene at hand. Based

on the current visual scene, we identify some objects as visually salient and include

them in our conversation. For example, a birdcage inside a kitchen might be more

visually salient than a birdcage inside a birdcage shop.

Consider Figure 1.1, taken from a study conducted at UIUC where people were

asked to describe images in one complete, but simple, sentence [31]. It shows a

kitchen with a variety of objects, along with several human-generated descriptions.
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“A kitchen dining room with a computer workstation”

“A kitchen table with chairs and a computer work station nearby.”

“A kitchen with a computer in it.”

“An orange light fixture hangs in a kitchen.”

“The interior of someone’s home including kitchen, hall, and bathroom.”

Figure 1.1: An image from UIUC Pascal sentence dataset with 5 descriptions written by
people.

When humans describe the scene, they are quick to identify that it’s a kitchen and

that it has a computer workstation in it. The orange light fixture is mentioned by one

person. Though it contains other objects commonly found in a kitchen, for example,

a refrigerator, they pick out objects to talk about at the exclusion of others. This also

applies to the case when two co-located people are conversing with each other and

talking about their immediate surroundings. This suggests that humans are biased

in perceiving content importance, and that the bias lies towards certain objects while

they ignore the rest. We categorize the objects that are considered important, and

worth mentioning by humans, as salient objects of an indoor scene, and the rest of

the objects as attributes. In the example above, the computer workstation would

belong to the salient category, because such objects are not common in kitchens.
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The remaining objects would belong to the attributes category, since tables, chairs,

refrigerator, and light fixtures are common in a kitchen.

Recently, computer vision has seen major advancements in object detection, and

now, automated systems can recognize and categorize objects very reliably [15, 12,

9, 27], yet we need to look more closely at other questions related to visual saliency,

whereby humans communicate and articulate their perception of their immediate

surroundings. Current object recognition systems would treat all objects in an

image as equally important, despite indications that humans perceive, and apply

importance to objects in a different way. Similarly, existing research on generating

image descriptions [25, 26, 13] use datasets that have been annotated by humans to

train their models. Most often these datasets are gathered by asking humans what

they see in an image, and lack the characteristics of an actual dialogue that occurs

between two humans when they are talking about a scene. This way of gathering

image data lacks the interactive ability of humans to focus on salient aspects of the

image. For this reason, we require human descriptions of images in a natural two-way

conversation setting.

Most of the automated natural language generation systems today involve a

human asking something first, and then waiting for the system to formulate an answer.

We can say that these systems are almost always in a passive state because they wait

for input from the user. A system that does not have some sort of self-initiated

interaction capability cannot appear as being more intelligent. Imagine a situation

where a system scans its visual world, and tries to establish a meaningful conversation

with a human. If the system is to initiate a conversation, it has to figure out what

to say about the visual world. Identifying every object and merely converting the

recognized objects to speech would not only sound uninteresting, but would also defeat
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the purpose of artificial intelligence. An ideal system would scan the surroundings,

identify salient objects, and generate speech pertaining to those objects. The first

step in this approach is to identify and determine what to describe about a scene; i.e,,

a system that perceives and assigns relative importance to objects at the exclusion of

its neighbors.

In summary, we identify two major problems with existing approaches for detect-

ing saliency in visual scenes. The first problem, as stated above, is the focus on every

object detectable in an image. This approach does not detect and categorize objects

based on their saliency. The second problem is the lack of human dialogue data, where

saliency is the core idea. In our approach, we address the above problems related to

saliency detection in visual scenes by combining two datasets. The goal behind this is

to understand how humans use saliency in their day-to-day conversation and use that

knowledge to automate the process of saliency detection, by using objects detected

from image analysis services.

For this, we first conduct an online data collection task, by which we gather inter-

active dialogue data, related to how humans converse when they try to differentiate

indoor scenes of same type. The task involves a pairwise setup, where two humans

in each pair take on the role of Instruction Giver (IG) and Instruction Follower (IF),

respectively. Based on their roles, they see indoor images of the same room type (e.g.

Kitchen, Living Room), and decide whether they are looking at the same image.

Since they look at the images of same room type, they have to mention objects that

differentiate one image from another. The idea behind this setup is that humans pick

some objects at the exclusion of other objects, which is the central idea of our thesis.

We consider this task to be different from a reference resolution [23] task, as, at a

time, we only have one image to discuss, whereas, in the former task, we have the
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ability to view all possible options (objects) at the same time, and decide which one

is the best fit. Next, we gather data related to objects present in indoor images from

a deep-learning based image analysis service. Since part of our thesis is automating

the process of saliency detection, this data provides us possible objects present in an

image, which we later rank based on their saliency. As mentioned above, we combine

the data gathered from two different steps, analyze the distribution of the objects in

each dataset, and develop and evaluate models to rank objects based on their saliency.

1.2 Thesis Statement

In an interactive co-located dialogue between two humans who are talking about

their surroundings, they talk about some objects of the scene at the exclusion of

other objects. We call the former objects salient objects, because we consider them

important and include them in our conversation. Consequently, we call the latter

objects attributes, because such objects prototypically belong to a specific scene type

(e.g., a kitchen), and are ignored or not mentioned by us. We hypothesize that the

salient objects are not attributes, and that we can predict both salient objects and

attributes given an indoor scene and human dialogue data. To address our hypothesis,

we use object detection and natural language processing techniques, to detect saliency

and common attributes of an indoor image.

In this work, we consider several tasks: first, we gather human-dialogue data

when they converse with each other based on scenes presented to them. We then

use a current state-of-the-art object-detection system to extract objects from indoor

images. The object-detection system is capable of giving, as output, both the objects

along with confidences with which those objects are detected. Finally, by combining
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the data from the first and second steps, we address the problem of identifying salient

objects given a novel indoor image. A main question we address is: what objects of

an indoor image do people determine to be important? Hence, the thesis work has

several contributions:

• We gather data that goes beyond just describing images, and emphasizes how

humans would naturally emphasize certain aspects of the images.

• We evaluate and analyze how the distribution of objects detected using current

state-of-the-art computer-vision method compares with objects mentioned in a

human-to-human interactive dialogue.

• We then answer our central question by which we are able to determine salient

objects of an indoor scene.

Though beyond the scope of our work, we consider detecting saliency as one of

the most important factors in Natural Language Generation, the task of generating

natural language from a machine. Because people are often the end consumers

of Natural Language Generation systems, it is imperative that we design systems

that incorporate a saliency model, which people are familiar with from their daily

conversations.
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CHAPTER 2

RELATED WORK

Detecting saliency and generating salient descriptions of indoor environments com-

prises many individual tasks. In this chapter, we present background work on saliency,

object detection and knowledge acquisition, image captioning, the virtual environ-

ment corpus, and interactive dialogue.

2.1 Saliency

Salience is the quality of being particularly noticeable or important [34]. Existing

research addresses detecting salient regions and generating salience models from

human route directions, especially for outdoor environments [19, 18, 7, 3, 10]. This

research has focused on finding or estimating objects and landmarks that are as

salient as possible. Cheng et al. [7] propose a global contrast based algorithm that

automatically estimates salient object regions across images. The algorithm detects

object regions by simultaneously evaluating global contrast differences and spatial

weighted coherence scores. Bao et al. [3] propose a salience scheme that utilizes both

color and depth cues to notify machine systems about novel objects in a 3D scene.

This research focuses and relies on computer-vision and computer-graphics methods

for detecting saliency.
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Outdoor environments contain clear decision points, present in street networks,

and have less complex spatial layouts when compared to indoor environments [28].

Therefore, little research has been dedicated to generating good salience models

for indoor environments. Mast et al. [28] propose a probabilistic framework for

generating route instructions for indoor scenarios, that aims to provide context by

relating instructions to environmental features. However, the authors do not consider

saliency for identifying important indoor objects which are present in conversational

dialogue between humans.

In summary, prior saliency work focuses on the scene information only. We connect

it with what people mention about a scene, using dialogue data. Hence, our work

focuses on detecting important and unique features from indoor scenes that help

identify human-like conversational salient features.

2.2 Object Detection

To determine salient objects, we first need to recognize objects as whole objects

from an image. Borji et al. [5] survey 29 state-of-the-art object-detection models,

and extensively compare them for the purpose of benchmarking object detection

methods. Since our goal is not to build an object-detection method from scratch,

we will use an existing object-detection tool for the purpose of identifying objects in

a scene. Redmon et al. [32] present such a tool for object detection, YOLO (You

Only Look Once), that outperforms other detection methods like DPM (Deformable

Part Models) and R-CNN (Region-based Convolutional Network). Cloud-based image

analysis applications also provide alternatives to the aforementioned object detection

tools. We compared two leading cloud-based image analysis applications: Google
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Vision [17] and Amazon Rekognition [1]. We found, through manual comparison of

objects detected using both services, that Amazon Rekognition service detects more

objects than Google Vision. We show the details of the comparison in Section 3.2. We

pick Amazon Rekognition as the preferred and suitable candidate for object detection

in our work.

2.3 Image Captioning

Automatically generating image descriptions has been receiving much attention, due

to the recent advances in computer vision and natural language processing [11],

using deep learning. Karpathy et al. [21] present a model for generating natural

language descriptions of images and their regions. Their model uses a combination of

Convolutional Neural Networks (CNNs) over image regions, bidirectional Recurrent

Neural Networks over sentences, and a structured objective that aligns the two

modalities through a multi-modal embedding [33]. You et al. [39] use a novel method

for image captioning, that achieves state-of-the-art performance across many popular

benchmarks. Their method combines top-down (images to words conversion) and

bottom-up (combining word description of various aspects of images) strategies, and

couples them with a Recurrent Neural Network to detect rich semantic attributes

from the image.

Though image captioning helps in describing a scene, it is different from identifying

saliency. Hence, the dialogue data we collect fills the gap that image captions can’t

provide for identifying saliency and can be used to improve image descriptions.
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2.4 GIVE-2 Corpus

Byron et al. [6] present a challenge, Giving Instruction in a Virtual Environment

(GIVE), where participants solve a task in a virtual 3D environment, guided by

a Natural Language Generation (NLG) [35] system. The challenge aims to target

various sub-domains of NLG such as referring-expression generation, aggregation,

grounding, realization, and user modeling. Gargett et al. [16] present a new corpus

of human instruction that aims to support the development of NLG systems for

the GIVE challenge. The IG provides typed instructions and the IF uses the virtual

environment to navigate through it and complete a task. They analyze the corpus and

annotate referring-expressions to gain linguistic insights. For example, they annotate

“button” or “square” as a Taxonomic property, “red” or “yellow” as an Absolute

Property, “by the chair” or “next to the plant” as a Micro-level landmark intrinsic,

etc. A major portion of our work involves gathering data about interactions between

humans with the goal of navigating indoor environments, we use the GIVE-2 corpus

strategy to manage our data for further usage during the data analysis phase.

2.5 Interactive Dialogue and Knowledge Acquisition

Interactive dialogue between two people is the most common site for language use [8,

22]. In such interactions, humans refer to entities in the world via definite descriptions,

which makes up a major portion of human communication [29]. These references

often relate to the entities that are present in the environment [22]. In task-oriented

situations, these references can make up a rich set of salient objects. Kennington

et al. [22] present a statistical model for understanding human language that can

learn from conversational data and can potentially be used in applications, such
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as an autonomous robot. This motivates the use of human interaction dialogue as

the major driver for detecting saliency of entities that are being referred to in such

interactions.

Kesavan et al. [24] propose an interface that uses automatically-generated natural

language descriptions to describe indoor scenes, based on photos taken of that scene.

Their work is targeted to assist blind people in knowing the indoor scene contents,

and provide a mental map of the navigational structure based on object descriptions.

In order to determine and generate natural language, they argue that it is necessary

to first understand the ways in which humans would naturally describe the scene.

Ramik et al. [30] describe an autonomous system for knowledge acquisition based on

artificial curiosity. Their approach involves a humanoid robot to explore, discover,

and learn autonomously new knowledge about the indoor environment. However, the

system only acquires knowledge without differentiating saliency from the human in-

put. Furthermore, the learning process involves direct interaction with a human tutor,

which may hinder the human’s ability to communicate effectively the complex and

rich instruction sets. Hence, we consider gathering human-to-human communication

data as a stand alone task and use the data to refine the salience model.
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CHAPTER 3

DATA COLLECTION

Previous work in saliency detection (presented in Chapter 2) has mainly used just the

computer vision approach. As discussed in Chapter 2, most of these projects do not

consider using human dialogue data to identify saliency, partly due to the absence

of such data. To overcome these shortcomings, our approach first involves gathering

human dialogue data and combining it with a dataset of objects detected by using

an image analysis application.

Our approach is depicted in Figure 3.1. The first phase of our work involved

developing a web application that allows people to work in pairs and talk about

indoor images. We used Amazon Mechanical Turk (AMT) [2] to launch the web

application and get access to a diverse and on-demand workforce. The details and

setup of this step are explained in Section 3.1. After gathering human dialogue data,

we used an image analysis application, Amazon Rekognition [1], to construct another

dataset of objects present in the same indoor images as used in the first step. The

analysis of the two datasets is presented in Chapter 4.

The above two steps completed the process of data collection, which enabled us

to develop the saliency detection model. We combined the two datasets and built our

saliency detection model. Given a novel image, the saliency detection model predicts

and ranks the set of objects present in the image, that a system should mention,
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Figure 3.1: Overview of the saliency detection process

based on a saliency score. We present the details of this step in Chapter 5.

3.1 Dialogue Data Collection

In this section, we present the first phase of our work in which we gathered the human

interactive dialogue data based on a task. We used this data to help us identify the

aspects of an indoor scene that humans consider as salient to their conversation.

We submitted an Institutional Review Board (IRB) application to approve the data

collection. The target age group for the gathering data were adults. An overview of

the process is shown in Figure 3.2.

The data collection process consists of the following steps:

(a) Develop web application and configure the hosting environment

(b) Configure Amazon Mechanical Turk
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Figure 3.2: Overview of the human dialogue data collection process

(c) Pair workers and assign roles

(d) Present the task

(e) Log data and Human Intelligence Task (HIT) Submission

In the next subsections, we present details of the above steps.

3.1.1 Web application and Hosting environment

As shown in Figure 3.2, the web application we developed has three major compo-

nents: a) pairing, b) task, and c) logging server. The pairing server receives users who

want to participate in the data collection task and creates pairs of users. Once a pair is

created, the users in the pair are connected to a task server. The task server presents

the actual user interface for the data collection task. It handles the front end of the

task. A logging server handles the image requests, two-way communication between

a pair of users, and logging key events, such as chat messages, to a database. The
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reason behind creating three separate servers was based on their individual and unique

responsibilities. This approach adds useful abstraction and structure to the entire

web application. It also helped us in localizing errors and debugging the application.

Another major reason behind this approach was that there are many web application,

such as ours, that require data from a pair of users. Creating a separate pairing server

allows anyone to swap the actual task, while the pairing logic remains the same.

We used Nodejs, a popular Javascript framework, to develop the pairing and task

servers. We used Java and a PostgreSql database to develop the logging server. To

host these servers we used Heroku, a web application deployment cloud platform.

Heroku provides an excellent alternative to creating our own hosting environment.

3.1.2 Amazon Mechanical Turk

Gathering human dialogue data constitutes the major portion of our work. To get

access to on-demand people that were willing to participate in our research, we used

Amazon Mechanical Turk (AMT) [2]. AMT is a marketplace for work, academic or

business, to complete tasks in exchange for payment. As depicted in Figure 3.3, there

are three major aspects of AMT: Human Intelligence Task (HIT), Requesters, and

Workers. HITs are micro tasks that Requesters post on the Amazon Mechanical Turk

platform for workers to participate in, in exchange for a predefined payment. The

first step in setting up AMT for the data collection is to Create a HIT. A HIT can

be created by choosing from a list of templates provided by AMT. The templates

are fixed in their design, and allow less room for flexibility for surveys that require

features not preset in the template list. Since our task has a custom design, AMT

allows us to create an External HIT. An External HIT can be created by specifying
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the web address of the custom application. Once the HIT is configured and launched,

workers can start accepting the HIT and proceed with the task.

Figure 3.3: Key aspects of Amazon Mechanical Turk1

3.1.3 Pairing Workers and Assigning Roles

Figure 3.4 shows the process of pairing workers and assigning roles. After the workers

accept the HIT, they enter into an Unready Queue. Once they agree to our terms

and conditions, they enter into the pool of workers (Ready Queue) that are ready to

be paired. Pairs are created in First-In, First-Out order. Since there is no guarantee

for instant availability of a partner for a pair to be created, we set up a wait time of

20 seconds. If the timer expires, the worker has an option to restart the timer and

1Figure uses icons made by Freepik from www.flaticon.com is licensed by CC 3.0 BY



17

wait while another worker becomes available. After a pair is created, each worker

in the pair is assigned one of the two roles: Instruction Giver (IG) and Instruction

Follower (IF), and are presented with the actual task. As shown in the Figures 3.5

and 3.6, both of them have access to a chat area, a current image area, and a list of

images that have been found so far. Only an IF has access to a button that allows

them to change the current image.

Figure 3.4: Pairing of workers and assigning roles

3.1.4 The Task

This is the most important user interface of the web application. It presents a task

to the workers, and allows them to work together in pairs, to solve a problem. As

discussed briefly in the previous section, we divided the task into two different user

roles, Instruction Giver (IG) and Instruction Follower (IF). As the roles suggest, each

worker in a pair is assigned one of the two roles. Based on their role, the IG, the

source of the information, has the responsibility of accurately describing a scene to
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the IF. The IF based on the information received from the IG, navigates through the

set of scenes, and tries to find the scene IG is describing.

Figures 3.5 and 3.6, show the actual user interface of the task for data collection.

The task involves a pair of workers working together to find a set of images that the

IG is currently looking at. We set the number of images to find to 5. The IG can

only chat with the IF about the image they are currently looking at. IF, based on

the information provided by IG, navigates through the list of images to find the right

image (i.e, what IF thinks IG is currently looking at). After they have found a set of

5 images, the task is reset with a new set of images.

For data collection, we limited the indoor images to four room types: Bathroom,

Bedroom, Kitchen, and Living room. During one task, each set of images is picked

from a pool of images of same type. The reason behind this is that we are interested

in objects in the image, and want the participants to spend limited time talking about

room types.

Figure 3.5: Example Instruction Follower View
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Figure 3.6: Example Instruction Giver View

3.1.5 Logging and HIT Submission

As workers proceed through the task, we log key events to the database. We store

the following information that is necessary for data analysis and evaluation.

• Room configurations (set of images of a room type) per pair

• Chat messages and the active image at the time of sending a message

• Navigation information (Changing an image)

• Unique identifiers associated with Workers and HITs

• Task completion status

As there is a limit on how long a worker can work on a HIT, they have access to

a button that submits the HIT as they approach the time limit. Submitting a HIT

logs a successful task completion entry in AMT, which helps us identify workers that

participated in the data collection, and dispatch payments to the them.
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3.2 Object Detection

This is the second phase of our proposed approach where we extracted objects present

in the same set of images used in the first phase. We need this data to automate

the process of saliency detection. We had a choice between using a desktop object

detection software or an online image analysis application. We chose the latter

approach, as it requires less setup time, and speeds up the process of object detection,

by using powerful cloud services. Currently, we have two such image content analysis

services: Google Cloud Vision and Amazon Rekognition. To pick the right service

among the two, we ran tests on them based on some images.

Figure 3.7: A sample bathroom image

Figure 3.7 shows one of the images from our dataset, which is a bathroom with a

flower pot. When we ran this image in the above two online services, we found that
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(a) Amazon Rekognition Output (b) Google Vision Output

Figure 3.8: Comparison of the two cloud image content analysis services

Amazon Rekognition outperforms Google Cloud Vision, by finding more objects that

could not be found by the latter.

As seen in Figure 3.8, Amazon Rekognition is able to detect labels related to the

flower and the vase that holds it. Google Vision fails to detect these objects. Based

on the manual comparison of output for few images, we chose Amazon Rekognition

as the service for detecting objects from the set of images. In addition to detected

object labels, we get a Confidence score (in percentage scale), with which the system

detected those labels.

We used a set of 150 images from ADE20K image dataset [41, 40] for the data

collection and object detection task. The final data set, a combination of dialogue

data and object detection data, consists of a set of images, detected objects from

those images, confidence scores of detected objects, and chat messages, while IF or
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IG was looking at a particular scene. We use this information, later on, to develop

the saliency detection model.
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CHAPTER 4

DATA ANALYSIS

In this chapter, we provide some analysis for better understanding of the collected

dataset. The number of participants in the data collection task was 24.

4.1 Participant Analysis

Based on the collected dataset, we analyze various participant related activities, such

as average number of times a participant did tasks, average chat turns per participant,

and average number of words per chat turn.

4.1.1 Task participation

To calculate the average number of times a participant did tasks, we filter out

completed tasks and ignore the ones that were in progress (i.e, a participant left

a task before the time ran out). We group the tasks completed by participants based

on their worker id, and take an average. We find that, on average, a worker completed

1.875 tasks in the 20 minute duration allocated for a session.

4.1.2 Chat turns per participant

Next, we calculate the average chat turns a participant takes with their current

partner. For this, we group the messages sent per participant, and take an average.
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We find that, on average, a worker takes 16.05 turns while conversing with their

partner.

4.1.3 Number of words per chat turn

Finally, we look at the average number of words used by participants per chat turn.

We remove punctuations and split the messages into individuals words. We group

these words per participant’s turn, and take an average of the number of words used.

We find that, on average, a participant writes 7.11 words per chat turn.

4.2 Image coverage, token count, vocabulary

From the set of 150 images, we were able to collect descriptions of 72 images through

the data collection task. After removing stop words and punctuations, the data has a

token count of 451. The unique set of words (i.e, the vocabulary) of the data is 344.

Figure 4.1 shows the sentence level distribution of the image descriptions. As shown

in the figure, indicated by the horizontal blue line, the average number of descriptions

per image is 4.46.

We also plot the top ten words mentioned for images of each room type. A

line plot for this is shown in Figure 4.2. As shown in the plot, the most frequently

mentioned word, for images of a room type, is a word corresponding to that room

type. For example, for a set of images of room type kitchen, the most frequently

mentioned word is “kitchen”. We also find something interesting about the image

descriptions. In addition to mentioning room types and other objects in an image,

people mentioned the color of some objects. This provides additional insight into how

humans communicate while talking about objects in an image.
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Figure 4.1: Distribution of image descriptions

Figure 4.2: Top 10 words for each room type
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4.3 Image and Text Summarization

We summarized descriptions of an image, to show how people talked about the image.

Figure 4.3 shows a living room with a bear statue. Figure 4.4 shows the descriptions

for the image. People mentioned things like: “plaid couch”, “bear”, “wicker coffee

table”, “bass fish”. For brevity, we only show the top five and bottom five rows of

descriptions supplied by people for this image ordered by their entry in the database.

Figure 4.3: A sample living room

Figure 4.4: Description of the living room in Figure 4.3
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4.4 Temporal based Image Similarity

We analyzed the correlation between image similarity and the amount of time the

Instruction Follower spends looking at a potential target image, the image the Instruc-

tion Giver is currently looking at. For this, we use the logged navigation information

that keeps track of a user clicking the “Next Image” button to get a new image.

We calculated the time interval between successive clicks. We ignored the first time

interval, due to the fact that as soon the task starts, the Instruction Follower waits

for the Instruction Giver to provide some descriptions of the current target image.

Hence, we considered the second highest time interval. Figure 4.5 shows two such

rooms that have second highest time interval.

(a) Living room 1 (b) Living room 2

Figure 4.5: Two living rooms

If we take a close look at these images, they appear quite similar. Both of them

have large windows and a fireplace. Figure 4.6 shows the text summarization of these

two images. We can see that people mention the fireplace present in both of the

images. We wanted to find if there was any relationship between the time spent

looking at an image, and the similarity between that image and the target image (the

image IG is looking at). However, we did not find any relationship between these

two variables as there were many cases where dissimilar images had higher amount

of time spent on them.
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(a) Living room 1 (b) Living room 2

Figure 4.6: Two living rooms

4.5 Object detection label and confidence distribution

For object detection, we ran image content analysis on all 150 images and got cor-

responding labels. Figure 4.7 shows the line plot of detected object labels for each

room type. The words with highest frequency correspond to the type of the room and

common objects found in such room type. For example, we have highest frequency

of words such as “kitchen,” “oven,” “bedroom,” “bed,” “living room,” “couch”.

As discussed in Section 3.2, the object-detection service Amazon Rekognition

provides us detected object labels and the confidence with which it detects those

objects. Figure 4.8 shows a line plot of the top-10 object labels with highest con-

fidences. Similar to the top 10 label plot in Figure 4.7, the top object labels with

highest confidence correspond to the room type and common objects found in that

room type.

However, compared to the dialogue data, object detection output doesn’t include

important object attributes such as color of an object. This is a valuable information

while differentiating between two indoor scenes that is missing in the object detection

data. As such, we can only use the objects without any attributes related to them.
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Figure 4.7: Top 10 detected object labels for each room type

Figure 4.8: Confidence plot of detected objects
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4.6 Dialogue vs Object Detection Data

We hypothesize that, while talking about indoor scenes, people mention unique

objects more than commonly occurring objects in those scenes and that we can predict

salient objects using just the object detection data by ordering the detected object

labels in ascending order of frequency.

We also assumed that to support our hypothesis, if we calculated the probabil-

ity distribution of the dialogue data and ordered the objects in ascending order of

probability, then we would get unique objects at the top of the list and common

objects near the bottom of the list. To support our hypothesis, the two probability

distributions should be just the opposite and hence have higher divergence between

each other.

To test the above statements, we compared the probability distribution of human

dialogue data and object-detection data. We used KullbackLeibler (KL) divergence

[37] to get a measure of how the two probability distributions diverge from one

another. The object labels with lowest count, hence higher rank in the ordering,

would be considered more salient. When we ran KL divergence on both the data

sets, we get a very low value. For example, for images of type “bathroom” we get

KL divergence value of 0.24. This indicates to us that the two distributions are very

similar. In other words, both dialogue data and object-detection data have a mixture

of most commonly occurring object and salient objects near the top of the ranked

list of object probabilities and that there is no straightforward way of ranking objects

(ordering the objects probabilities in ascending order of frequency). We also show in

Section 5.3 that probabilities of objects in the object detection data has much less

effect on detecting salient objects.
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CHAPTER 5

EXPERIMENT

In this chapter, we present our approach for developing models that assist in saliency

detection. We combine the human dialogue data and object detection data to develop

the models. We then use Mean Reciprocal Rank metric to evaluate our approach. At

the end of the chapter, we present the results of our approach.

5.1 Methodology

To conduct experiments on the datasets, we first perform some data processing tasks.

This process transforms the raw data into a format that is more appropriate and

valuable for creating models and evaluating them. We perform basic natural language

processing tasks on the human dialogue data, such as: splitting free-form sentences

to unigrams (single words), removing punctuation and stop words, and extracting

nouns. Since we are interested in just the objects present in an image, this process

extracts nouns that corresponds mostly to those objects. We do not need to perform

any additional data processing on the object detection data, as the output of the

object detector contains only objects recognized from an image.

After the transformation of raw data into a desired format, we use ablation analysis

[14] to select features for developing the saliency detection model. Ablation analysis

is the process of iteratively modifying some features of the model, and observing how
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that affects performance. We present the details of the feature selection process,

using ablation analysis in Section 5.3. One of the limitations of the human dialogue

dataset is its small size, and the sparsity of objects present in images. Because of the

small size of the dataset, we use a cross-validation test [36] to evaluate the models.

Cross-validation is a rotation estimate, where a part of the data (subset) is left out

for testing, while the rest of the data is used for training the model. This process

is repeated until all of the data has been used for generating test subsets. For our

dataset, we use a special case of cross-validation technique, called “leave-one-out

cross-validation”, where we filter objects related to one particular image, and train

on the rest of the dataset. We repeat this process until all of the images have been

used as test data. For the evaluation, we use the human dialogue data as the actual

outcome, to compare against the predicted outcomes.

5.2 Evaluation Metric

The saliency detection model produces a ranked list of objects as predictions. We

use Mean Reciprocal Rank (MRR) [38] as the most suitable measure for evaluating

such a ranked list. In general, MRR is a statistical measure for evaluating any model

that produces a list of possible outcomes, ordered by probability of correctness. We

calculate MRR as:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(5.1)

where ranki refers to the rank of position of the first relevant object

Next, we present how we use various features of the datasets, and use them to

create the saliency detection model.
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5.3 Feature Selection and Model Development

A dataset can contain many features that can be used to develop machine learning

models. A good understanding, and careful selection, of such features can lead

to models that perform better while predicting outcomes. The process of feature

selection begins with feature engineering, where we transform raw data into features

that better represent the underlying problem to the predictive models. Once we have

such features, we can start using a combination of them, to build the models and

eventually evaluate them.

The human dialogue dataset has features such as “room type”, “active image”, and

“sent text”. A “room type” indicates one of the types (e.g kitchen) an image belongs

to. An “active image” is an image that the Instruction Follower or Instruction Giver

is looking at while they converse. We call each sentence, complete or incomplete,

communicated between the two users as “sent text”. We use these features to build

a language model, which is a probability distribution over sequences of words. We

develop a language model in which the probability of each word only depends on

that word’s own probability in the dataset. This model is a unigram language model,

because it provides the probability of a word

The object-detection dataset has two features: confidence and object. A confidence

is associated with each object and represents the level of confidence that an image

contains the object. The confidence of a detected object ranges from 0 to 100%.

We average the confidences of an object per room type to get another feature called

Average Confidence. Similar to the language model described above, we calculate

the probability distribution of objects in the object detection dataset to get another

model, which we call an object model.
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To develop the saliency detection model, we use a combination of average con-

fidence, object model, and language model. In the next subsections, we describe

different ways we carried out the model development process.

5.3.1 Baseline Model (Confidence Only)

In this model, we consider the confidence of an object in the image and the average

confidence of the object in the entire object-detection dataset. As shown in Equation

5.2, we multiply these two values to get a new score, and rank the objects based on

descending value of the new score. We hypothesize that an object should be ranked

based on its average presence in the dataset.

score = confidence× average confidence (5.2)

Figure 5.1 shows a ranked list of object labels of an image, based on the confidence

model. As shown in the figure, we can observe that even though “monitor” has a low

confidence value (79.80), its average confidence (96.17) increases its rank in the list.

Next, we calculate the metric, MRR, for each image in the object-detection

dataset. As described in Section 5.2, we perform a cross-validation test on the dataset,

in which we leave one image out as the test image, and use rest of the images to build

the confidence model. We repeat this process until all images have been used as test

images.

Figure 5.2 shows the result of the cross-validation test on some of the images. It

shows a list of kitchen images and their corresponding Reciprocal-Rank scores. We

average the metric and get a Mean Reciprocal Rank of 0.018. We use this score as

the baseline score, to compare against other models.
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Figure 5.1: Ranking of objects based on the confidence model

Figure 5.2: Evaluation of the confidence based model

5.3.2 Ablation Analysis of Models

As discussed in Section 5.1, ablation analysis is a well-known general-purpose ap-

proach for assessing parameter importance. We perform ablation analysis using a
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combination of the baseline, object, and language model parameters.

Confidence and Object Model

First, we combine the baseline and object models. The object model takes into

account the probability of objects present in the images. We carry out the cross-

validation approach and use the Equation 5.3 to calculate the new ranking scores.

score = confidence× average confidence× object probability (5.3)

Figure 5.3 shows the result of this approach. We see an increase in MRR with a

value of 0.032.

Figure 5.3: Evaluation of the confidence and object based model

Confidence and Language Model

In this model, we use the confidence and language model. We use Equation 5.4 to

calculate new scores for the object labels.
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score = confidence× average confidence× language probability (5.4)

As shown in Figure 5.4, the language model significantly improves the Reciprocal

Rank. The Reciprocal Rank of 1 indicates that the first relevant prediction is at the

top of the ranked list. When we take the average, the MRR increases to 0.136.

Figure 5.4: Evaluation of the confidence and language based model

Object and Language Model

In this approach, we take out the baseline (confidence) model, and use just the

probability distribution of both object and language models. We use Equation 5.5 to

calculate the new scores for the object labels.

score = object probability × language probability (5.5)
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Figure 5.5 shows the result of this approach. The MRR (0.032) is similar to the

approach where we excluded the language model and used just confidence and object

models. This indicates that inclusion of the object model does not improve the result.

Figure 5.5: Evaluation of the object and language based model

Confidence, Object, and Language Model

In this approach, we use all the models, and find that the results are similar to the

approach where we used just the confidence and language model. We use Equation

5.6 to calculate the new scores for the object labels.

score = confidence×average confidence×object probability× language probability

(5.6)

This model also has similar MRR (0.136) score to the confidence and language

based model. This further shows that the object model doesn’t add information to

the model combination without it.
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Figure 5.6: Evaluation of the confidence, object, and language based model

Language Model

Finally, we look at the effect of using just the language model for saliency detection.

The score of an object is determined by the probability of finding that object in the

language model. For this model, we use Equation 5.7.

score = language probability (5.7)

Figure 5.7 shows that, while previous models only bumped-up kitchen images to

the top, language-only-based model is able to predict labels and increase the rank for

all type of images. Hence, we see a significant increase in MRR (0.536).
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Figure 5.7: Evaluation of language based model

5.4 Results

In this section, we compare the results of the ablation analysis approach, where we

iteratively picked a subset of features while developing the saliency detection model.

Table 5.1 shows the result of various ways we developed the model.

MRR
Baseline (Confidence) Model 0.018
Confidence + Object Model 0.032
Confidence + Language Model 0.136
Object Model + Language Model 0.032
Confidence + Object + Language Model 0.136
Language Model 0.536

Table 5.1: Comparison of different saliency models

We started by developing a baseline model, by using just the average confidence

of an object. We found that the MRR value was very low for the baseline model.

The reason behind this is that we are using object-detection dataset as the predicted

outcome, and comparing it against a human dialogue dataset. Though the goal of
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our work is to automate the process of saliency detection, we cannot completely rely

on the object-detection output. This necessitates human dialogue data. We also used

the object model, in combination with confidence and language model for predicting

ranks of objects, but it does not improve the accuracy and rank. Use of a language

model adds the missing information, and increases both the accuracy and rank of the

prediction. We can see from the Figure 5.8 that, by using the language model alone,

the MRR increases significantly.

Figure 5.8: MRR values for different models

To summarize the results, we can say that focusing completely on an arbitrary

scene (i.e, the Confidence only Model) doesn’t help us. Even taking a lot of the

same types of scenes (e.g, all kitchens) and computing a distribution over common

objects (i.e, the Object Model) does not improve matters much. Just because an
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object is common or uncommon does not tell us much. Only when we consider what

people said in conjunction with those scenes (i.e, the Language Model) do we get

some respectable results. This is not surprising since we are making the assumption

that what people mention should affect what is mentioned. This is an interesting

finding: saliency in the way we are using it does not just mean objects that pop out;

it means objects that are worth mentioning in order to identify a room from other

rooms of the same type.
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CHAPTER 6

CONCLUSION

Automated systems are ubiquitous. A special class of such automated systems com-

municate with humans using natural language. The generation of natural language

involves a lot of effort on such systems part. Thus, an essential aspect of natural

language generation involves figuring out what to say. This formed the overarching

goal of our thesis: determining what to say about something, in our case, an indoor

image.

We introduced the term saliency to refer to things that humans consider important

in their daily conversation. We then began laying the ground work for saliency.

We discussed that saliency is an integral part of human-to-human communication.

We also differentiated between salient objects and attributes. Most of the existing

research done on saliency detection focuses on taking the computer-vision (object-

detection) approach. They fail to take into account that in order to develop human

like intelligence in saliency detection systems we have to analyze, and learn from, how

humans communicate. We presented such research efforts in Chapter 2.

Before we could develop models to detect saliency, we needed a dataset that we

could use to analyze, and learn from, how humans communicate with one another.

The major portion of our work and contribution was dedicated to developing a web

application to gather such a dataset. We used Amazon Mechanical Turk to get access
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to an on-demand workforce that would help us in our data-collection task. We called

this dataset the Human Dialogue Dataset. Since our goal was to automate the process

of saliency detection, we used the Amazon Rekognition API to detect objects present

in images. We called this dataset the Object Detection Dataset. After getting these

two datasets, we performed an analysis on the datasets, as presented in Chapter 4.

Based on these two datasets, we developed the saliency detection model. We used

ablation analysis to pick features that identify the most salient objects, and we used a

cross-validation technique to verify our predictions. We learned from the experiment

and evaluation that language models are very informative while building the saliency

detection model. This helps us conclude that computer vision techniques for object

detection alone cannot achieve better performance. We need to look at, and learn

from, how humans communicate, and integrate that knowledge, to train and develop

the models.

6.1 Limitations and Future Work

This thesis lays the ground work for a human dialogue based approach for building

saliency detection models. We believe that we have carried out an initial investigation

for the long-term goal of building intelligent systems that have some, if not all, char-

acteristics of how humans communicate, and what they consider important in their

communication. However, there any some limitations, and room for improvement, to

our approach.

First, we used Amazon Mechanical Turk (AMT) to collect human dialogue data,

which was motivated by being able to have many participants in a short amount of

time. However, our final data, though enough to carry out the preliminary investiga-
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tion into saliency detection, is very sparse. The reason behind this is that we launched

the data collection task in multiple iteration. After each iteration, we analyzed the

collected data and the issues with our web application. Since our primary focus was

to confirm the correctness of the data collection task (i.e, tasks assigned to IG and

IF as described in Section 3.1), most of our efforts were dedicated to improving the

task correctness. Furthermore, launches of each iterations in AMT are very time

consuming. Considering the short time period for the project, we were satisfied

with the data collected. We believe that in the future iterations, we can collect large

amount of data and utilize the most important benefit of using AMT, which is having

access to a large number of participants in a short amount of time.

Second, we were able to get descriptions of only half of the images during the

human dialogue data-collection process. This gives us a very sparse dataset, and it

affects the knowledge we have about some room types. Furthermore, our approach

considers static 2d images, however we imagine that an interactive 3D virtual indoor

environment with 360-degree navigation would create a more natural setting for

human conversation. This can add diverse information to the dataset, and help us

better understand the human communication process. We found in Chapter 4 that, in

addition to objects, humans also mention colors of objects. Current object-detection

systems detect only objects from images. We find that it limits the output of the

saliency detection model. An object-detection system that can detect objects along

with the color of those objects would help in creating more realistic saliency detection

models.

Finally, while building the saliency detection models, we used a combination of

different features, and used a simple scoring system to rank objects. We believe that

we can improve the feature engineering process, to come up with better-performing
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models. Finally, our work ranks all of the objects present in an image, which is

certainly not desirable if an image has many objects. This can be improved by

finding a suitable cut-off point in the ranked-object list, and mentioning only the top

n interesting objects.
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