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Abstract

In the era where big data is the new norm, a higher emphasis has been placed on models

which guarantees the release and exchange of data. The need for privacy-preserving data

arose as more sophisticated data-mining techniques led to breaches of sensitive informa-

tion. In this thesis, we present a secure multiparty protocol for the purpose of integrating

multiple datasets simultaneously such that the contents of each dataset is not revealed to any

of the data owners, and the contents of the integrated data do not compromise individual’s

privacy. We utilize privacy by simulation to prove that the protocol is privacy-preserving,

and we show that the output data satisfies ε-differential privacy.
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Chapter 1

INTRODUCTION

Recent technology has enabled both the size and storage of data to grow exponentially.

Although data is abundant and widely available, it is advantageous for multiple data owners

to integrate their respective data. By doing so, the integrated data becomes an enhanced

version of the original distributed data, in terms of information and usability. This suggests

cooperating parties have access to far better data compared to those working independently.

For cooperation to exist, the parties must ensure that the integration protocol is both correct

and privacy-preserving. Our protocol aims to establish a secure and private multiparty

computation that allows for an efficient means of data integration.

1.1 Motivation

Given a collection of private datasets, parties have the ability to enrich their data analytics

by simply working together. However, due to legal constraints or trust issues, parties may

be unwilling to participate in collaborative computation. If the integrated dataset D̂ can

be provably shown to not leak any information during or after construction, then parties

can act in their best interests without consequence. When parties have access to D̂, they

also have access to superior data relative to their original data. As a result, data mining

techniques will be optimized with respect to D̂.
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1.2 Challenges & Concerns

Integrating datasets is not a new concept. Cryptography has advanced to the point where

we can encode, combine, and decode information with relative ease. However it is not

enough that a dataset’s content remain confidential. Even if sensitive information (name,

social security, address, etc.) is removed prior to integration and the datasets are integrated

securely, that does not guarantee the contents of D̂ are private. In fact, D̂ is typically

less private the more content it contains. When D̂ is both diverse and abundant with

respect to its content, that is normally seen as good. After all, such a dataset can be

easily mined for data. Unfortunately, the tradeoff for good datasets is privacy. Simply

put, the more information a dataset has on record about an individual, the more unique

that individual becomes. In return, unique individuals are more identifiable, which puts

their privacy at risk. There have been several methods developed to minimize this issue,

including k-anonymity [30], l-diversity [21], t-closeness [17]. However these methods

failed to both formalize privacy mathematically and guarantee that the privacy of an indi-

vidual is preserved within an arbitrary dataset. Thus one of the biggest challenge in this

paper is securely integrating datasets in a manner such that privacy is preserved. In 2014,

Mohammed et.al derived an algorithm which integrates datasets in a secure and private

manner. Their algorithm was limited to a two-party scenario. The authors stated that their

algorithm had the potential of multiparty extension. However this extension was limited by

a few factors: Distributed Exponential Mechanism [25], Yao Protocol [20], Random Value

Protocol [4], and the Secure Scalar Product Protocol [1]. Each of these protocols were

designed specifically for two-party communication. In this paper, we attempt to extend the

functionalities of the respective protocols in a manner that is conducive to deriving a secure

multiparty differentially-private dataset.
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1.3 Contributions

Our main contribution involve deriving a protocol which securely integrates multiple datasets

in a differentially-private fashion. This achievement is highlighted by the following:

• Creating an exponential mechanism that is applicable in multiparty setting. This

process was achievable by the Multiparty Exponential Mechanism 4.1.

• Extending the functionality of the Random Value Protocol(RVP) [4] to be applicable

in multiparty party setting, instead of a two-party setting.

• Creating a protocol that allows secure exchange of messages and computation among

multiple users. This process was achievable through the Distributed Comparision 4.2.

Distributed Comparison encodes and decodes messages through ElGamal encryption

[37] and was designed to substitute the functionality of the Yao Protocol [20], which

only offered secure computation in a two-party setting.

• Creating a protocol that allows a party to convert their records into binary-vectors

with respect to one or more attributes. From there, the parties securely intersect

their binary-vectors among themselves which is later used to create a differentially-

private dataset. This process was made possible be the Secure & Private Attribute

Counting Exchange 5.2 (SPACE) protocol. SPACE was designed to substitute the

functionality of Secure Scalar Product Protocol [1], which is conceptually similar

but only applicable in the two-party setting.

• Our proposed protocol has the capacity of securely construct a differentially-private

dataset from other datasets owned by two or more parties. However, our protocol can

easily be reduced to a one-party setting analogous to DiffGen [26].
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1.4 Thesis Statement

The objective of this thesis is to answer the following question: Given multiple data

owners, how can they securely integrate their respective datasets such that the privacy

is maintained and the output model is privacy-preserving?

Given multiple datasets D1, D2, . . . , Dn owned by P1, P2, . . . , Pn respectively, and a

privacy budget ε, the goal of this thesis is to design a protocol that securely publishes an

anonymized and integrated dataset D̂ for the purpose of statistical analysis such that:

1. The protocol is secure (privacy-preserving) in the semi-honest adversarial model.

2. The output is ε-differentially private.

1.5 Organization of the Thesis

This Thesis is organized as follows:

• Chapter 2 provides basic background knowledge which functions as the backbone of

the thesis.

• Chapter 3 discusses relevant literature relating to secure computation, privacy, as well

as various data publishing and data mining techniques.

• Chapter 4 discusses how the parties can securely derive a winning attribute Aw in a

differentially-private manner, using the Multiparty Exponential Mechanism 4.1.

• Chapter 5 will detail the main algorithm, where the parties collectively use Aw to

securely derive a differentially-private dataset D̂.

• We conclude the thesis in Chapter 6 by detailing the future work, summary, and

closing remarks.
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Chapter 2

BACKGROUND

2.1 Privacy & Security

A dataset Dj owned by party Pj is described as a collection of attributes, classifiers,

individuals, and individual records. For each dataset, the classifiers and individuals are

both shared and known publicly. However, attributes and individual records are private to

their respective party. An attribute (age, sex, income, etc.), described as Ai, is owned by

a specific party and describes a single element in the individual record of an individual.

Although each attribute is private, the parties are aware of which attributes belong to which

party. However, the other parties Pk do not know which attribute value corresponds to

an individual records contained in Dj . Individual records (Person 001: 36 years old,

male, 36K, etc.) quantifies how each individual within a dataset is detailed with respect

to an attribute. Classifiers (loan approval, home owner, educated, etc.) also categorize

individuals in the dataset, the outcome of which is public knowledge. Typically, the parties

want to collaborate in such a way that they can predict the outcome of a classifier for a new

individual not in the dataset, given the ’attribute-profile’ of that same individual (Did Person

x get approved for a loan given their attribute-profile?). Before parties begin collaboration,

each individual is assigned a common attribute identifier (ID). This ID is used in place

of an individual’s name for the sake of anonymity. Although their name is omitted from

the data, that does not necessarily mean their data is private. An individual’s privacy can
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be compromised if their ’attribute-profile’ is too unique relative to other individuals in

the dataset [25]. A common side-effect of large datasets is that the more attributes it

acquires, the more unique and identifiable the individuals in the dataset become. To address

this issue, we will employ differential-privacy as a means to protect the privacy of every

individual in every dataset. An algorithm is said to be differentially private if by looking at

the output, one cannot tell whether any individual’s data was included in the original dataset

or not. In other words, a differentially private-algorithm guarantees that its outcome hardly

changes when a single individual joins or leaves the dataset.

Beyond privacy we also want our protocol to be computationally secure. We have

the option of having our protocol be secure with respect to one of the following models:

honest, semi-honest, and malicious. For this thesis, we are only concerned with achieving

security in the semi-honest setting. Semi-honest security assumes every party will follow

the protocol exactly as described. As the parties conduct the protocol they will attempt

to learn or reveal any information about the other participants. For a computation to be

semi-honest secure, requires that no new information about any party is revealed or deduced

during or after the execution of the protocol. A secure protocol requires the scheme to be

mathematically secure prior to implementation.

Example 2.1.1. Imagine hospital P1, health-insurance company P2, and credit-card com-

pany P3 all have distinct attributes. P1 owns datasetD1 = {ID,Classifier, Sex, Salary,R1},

P2 ownsD2 = {ID,Classifier, Education,R2}, and P3 ownsD3 = {ID,Classifier, Job,R3},

as shown in the Table 2.1. For party Pj , Rj corresponds to the individual records that Pj

owns. Each party will also have the outcome of the classifier normally described as ”Class”

in the literature, which indicates whether a specific health-procedure is approved or not. In
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Table 2.1: Vertically-partitioned raw data owned by parties P1, P2 and P3

Shared P1 P2 P3

ID Classifier Job Education Salary Sex
1 Yes Artist No College $30k Male
2 No Unemployed Undergrad $0k Male
3 Yes Unemployed No College $0k Female
4 No Unemployed Graduate $0k Male
5 No Professional Undergrad $40k Female
6 No Professional Graduate $55k Female
7 No Artist Undergrad $40k Female
8 No Artist undergrad $25k Male
9 No Professional No College $30k Female

10 Yes Artist Graduate $40k Female

Table 2.1, each column corresponds to a specific attribute, while each row corresponds

to a single individual and their respective individual records. Notice individuals 1 and 4

have unique profiles, given that they are respectively the only author and lawyer within the

dataset. This means individuals 1 and 4 are vulnerable linking attacks where by occupation

alone the parities (or a data miner) can deduce their identities with absolute certainty,

assuming the data in the dataset was sufficiently rich. To avoid attribute-based linking

attacks, differential-privacy will be introduced later as a privacy measure. �

2.2 Cryptographic Primitives

In this section we will detail all the encryption methods and mechanisms used throughout

the thesis. These encryption methods were picked based on their versatility, specifically

the ability to foster secure communication between two or more parties.

Exponential ElGamal [3]

This primitive allows messages to be jointly encrypted and decrypted among any number
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of users. The encryption is both semantically secure and homomorphically additive. Each

party uses their private keys jointly to encrypt and decrypt message m. The Exponential

ElGamal sees the most amount of use during Protocol 4.2 (Distributed Comparison) and

sees significant application in Protocol 5.2 (SPACE). For brevity, we denote the encryption

of a message m as the ciphertext JmK. Given generator g, prime p, group public-key A,

group ephemeral-key r, and public backdoor gr

JmK := (Ar · gm mod p, gr mod p) (2.1)

There are many times within the paper when we mention “homomorphic addition”. Homo-

morphic addition means that the “×” operator can be understood as the “+” operator. For

instance we can homomorphically add a and b as follows ga × gb mod p = ga+b mode p.

Homomorphic operations are consistently applied when dealing with ElGamal encryption.

In a similar fashion, homomorphic encryption is described as follows: Ja+ bK = JaK× JbK.

Random Value Protocol (RVP) [4]

RVP allows two parties to generate a random value R, where R has been chosen uniformly

within a predefined integer-based interval. This interval starts at 0 and ends at some positive

integer-value σ = σ1 +σ2, where R ∈ [0, σ]. R is not known by either party but it is shared

between them. More specifically, P1 has R1 ∈ [0, σ1], and P2 has R2 ∈ [0, σ2] where σi

are both integers. R1 and R2 are considered random ’shares’ of R, where R = R1 + R2

and R,R1, R2 ∈ [0,
∑2

i=1 σi]. For the Multiparty Exponential Mechanism 4.1 RVP was

generalized to include n parties.

Mix and Match [12]

Mix and Match uses a logic table to securely determine how many times an encrypted value

occurs in a given set of values. This primitive will indirectly identify the unique values in
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the set as well as the multiplicity of their occurrence. However, the unique values and their

respective multiplicities will remain encrypted throughout the scheme. The Mix and Match

primitive is applied in Protocol 5.2.

Mix Network [13]

A mix network allows a list of encrypted messages to be jointly shuffled and re-encrypted

such that no party knows the original arrangement of the encrypted messages. There are

several ways of acquiring a mix network, where most require that each step to be verifiable

by each of the party members. Mix network is applied in Protocol 5.2.

2.3 Privacy Model

In this section we introduce the notion of privacy. Typically, when people attempt to define

privacy they do so holistically. But for the sake of consistency and correctness it is critical

that privacy be defined mathematically. By doing so, there exists a consistent means of

confirming or denying the privacy of a protocol. As to date, differential privacy is the”gold

standard” of privacy. Differential privacy provides a well-defined, mathematical definition

of privacy. This model makes no assumptions about the knowledge of an adversary. This

ensures an adversary learns nothing new about an individual, whether or not their record is

in the dataset [7].

Definition 2.3.1. ε-Differential Privacy: [7]

A randomized mechanism M is ε-differentially private if for all datasets D1 and D2 (where

they differ at most one element), and for all possible anonymized dataset D.

Pr[M(D1) = D] ≤ eε×Pr[M(D2) = D] (2.2)
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�

A standard means to achieve differential privacy is to add random noise to the true

output of the dataset. The noise is calibrated according to the sensitivity of the function.

The sensitivity of a function is the maximum difference of its outputs from two datasets

that differ only in one record. The sensitivity of a utility function is defined as follows

Definition 2.3.2. Sensitivity: [7]

For any function f : D → R, the sensitivity of f is

∆f = max
D1,D2

|f(D1)− f(D2)| (2.3)

For all D1, D2 differing by at most one record. �

Example 2.3.1. Imagine there are two datasets, D1 and D2. D1 contains the individual

records {A1, B1, C1, ..., Y1} with respect to an attribute and D2 contains the individual

records {A2, B2, C2, ..., Z2} with respect to another attribute. Notice D1 and D2 differ

by exactly one record. Since the two datasets are sufficiently close in size, sensitivity can

be applied. Define function f , which counts the elements in a given set.

∆f = max
D1,D2

|f(D1)− f(D2)| = |25− 26| = 1

f described in this manner, is typically called the ’count function’. However f is arbitrary

and can be whatever function we like. �
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2.3.1 Exponential Mechanism

When implementing differential-privacy, it is typically done to numerical attributes where

numerical noise is added to the dataset. By adding noise to the dataset, the privacy of each

individual within the dataset is preserved. However, it is possible for Pj to own a dataset

which contains numerical or categorical attributes. In the case of categorical attributes, it

makes no sense to add noise directly. Luckily, there exists an ’exponential mechanism’ that

achieves differential privacy whenever it makes no sense to add noise [24]. An exponential

mechanism is a differentially private method to select an element from a set with high

utility. The utility function u, takes dataset D ∈ Dn and takes some value A ∈ A as

input, outputting a real value in return. Or in other words, u : (Dn × A) → R. For

the utility function, a higher value corresponds to better data utility [24]. The exponential

mechanism creates a probability distribution over the range A, where we then sample aa

valueAi ∈ A [24]. For this paper,Dn represent the datasets among all parties,A represents

the set of attributes among all parties, and u(D,A) returns utility-score U , where D and A

come from the same party. Our objective regarding the exponential mechanism is to create

an (A,U) pair for all attributes, then probabilistically select an A with high utility-score.

Definition 2.3.3. Exponential Mechanism [7]:

For a set D, a set of possible outputs T , and scoring function U(D, t), privacy-budget

ε > 0, a mechanism is an exponential mechanism if the probability of selecting t ∈ T is

proportional to exp( ε·u(D,t)
2∆u

), where ∆u = max
t,D1,D2

|u(D1, t) − u(D2, t)| and D1, D2 ∈ D

differ by at most one element. �

Theorem 2.3.1. The exponential mechanism preserves ε-differential privacy �

Using the above theorem and definition, we now have the tools necessary tools to verify

whether our protocol is indeed private or not. If a protocol implements the exponential
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mechanism correctly, then the protocol is ε-differentially private. Therefore if our protocol

applies an exponential mechanism throughout some execution, then privacy is satisfied with

respect to that execution.

2.3.2 Laplace Mechanism

Recall each party has a collection of both categorical and numerical attributes. Among

all the parties we would like to probabilistically select a winning attribute Aw which has

the highest utility. For our protocol, utility is loosely described relative to how unique the

individuals are in Dj , with respect to one of Pj’s attribute. For instance, if Pj had the

attribute A1 which corresponds to job, where the majority of the individuals within the Pj’s

dataset had the same job, then A1 would be assigned a low utility score. Conversely, if the

majority of the individuals in the dataset had different jobs, then A1 would be assigned

a high utility score. Once we appropriately create the attribute-score pair (Ai, Ui) for

each attribute, we implemented the exponential mechanism to select a winning-attribute

Aw for use. However, that is not the end of the story regarding privacy. The Multiparty

Exponential Mechanism 4.1 is a sub-protocol of the MAIN Protocol 4.1, meaning we

need to examine the MAIN protocol in its totality to appropriately assess privacy. When

approaching final procedures of the MAIN Protocol we need to account for numerical

values. We must ensure that prior to release, the numerical data is also differentially private.

This is achievable through the Laplace Mechanism, which is designed specifically for

numerical data. Conceptually, in order for a dataset to maintain privacy, it cannot contain

any raw data. Instead, the dataset owner needs to add random noise to the numerical data

in a manner such that it converts the raw data into noisy data, which is statistically similar

to the raw data. Although the noise is random, it is controlled in an algorithmic way. If
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the noise is too large, the data becomes useless. Conversely, if the noise is too small, the

privacy of the data is not preserved. The noise itself is derived from the Laplace random

variable, whose distribution depend on the sensitivity of function f .

Theorem 2.3.2. [26]

For any function f : D → Rd, the mechanism M that adds independently generated noise

with distribution Lap(∆f/ε) to each of the d outputs satisfies ε-differential privacy. �

Thus, as long as the appropriate amount of noise is added to the raw data prior to

publishing, we can ensure that the integrated dataset D̂ is ε-differentially private.

2.3.3 Composition Theorems

What makes differentially privacy nice is that it allows compositions of several mechanism

(or protocols), while keeping track of privacy. This allows us to keep track and tally the

usage of our privacy budget, throughout the execution of the protocol. A privacy budget

is a fixed value, usually denoted as ε. If there is a mechanism which requires some of the

overall privacy budget (like ε′), then we would deduct some of the overall privacy budget (or

what is currently available) by ε′. That being said we are never allowed to consume more

of the privacy budget than we originally started with. There currently exist two well-known

theorems which we will use later on in the paper to manage and keep track of our privacy

budget.

Theorem 2.3.3. Sequential Composition [26]

Let each mechanism Mi provide εi-differential privacy on dataset D. Then mechanism

M(M1,M2, . . . ,Mn) provides (
∑n

i εi)-differential privacy for dataset D. �
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Theorem 2.3.4. Parallel Composition [26]

Let each mechanism Mi provide ε-differential privacy. Given a sequence of Mi(Di) over

a set of disjoint datasets Di (i.e {M1(D1),M2(D2), . . . ,Mn(Dn)}), where D =
⋃n
i=1Di

and ∅ = Da

⋂
Db for all Da, Db ∈ D, as well as a mechanism M(M1,M2, . . . ,Mn), then

M satisfies max(εi)-differential privacy. �

2.3.4 Information Gain

In terms of an adequate utility function we recommend ’information gain’. Although there

exists many utility functions to choose from. Information Gain (IG) takes a dataset and

quantifies it based on how well it can be homogenized relative to a set of attributes and

a classifier attribute. In this case, the set of attributes can be whatever you like (age, sex,

weight, etc.). Similarity, a classifier attribute can also be arbitrary. What distinguishes

the set of attributes from a classifier is that the set of attributes are used to predict the

outcome of a classifier. For example, we can use the age, sex and weight of people within

a dataset to predict whether someone (who is not in the dataset) has a bachelors degree

or not. Doing this requires examining the ’entropy’ of each partition, relative to some

attribute. A partition in this case refers to how the dataset is grouped or ”broken up” into

smaller datasets, all of which consist of unique elements. For some partitionDk and dataset

D, where Dk ⊆ D, the entropy function E is defined as follows

E(Dk) = − a

a+ b
log2(

a

a+ b
)− b

a+ b
log2(

b

a+ b
)

if log(0)2, then E(Dk) := 0
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where a is the number of individuals in partition Dk that satisfies the classifier attribute and

b is the number of individuals in partition Dk that do not satisfy the classifier attribute.

Using entropy we can compute the information gain (IG) on dataset D with c many

partitions such that Di ⊂ D is defined as follows,

IG(D) = E(D)−
c∑
i=1

E(Di)

Typically, one can get many IG values depending on how the D is partitioned. Thus,

the maximum IG value of D normally takes priority. For numerical attributes, partitions

are usually defined through a ’split point’. A split point is a value which splits a single

set into two. For instance, consider the interval I = [a, b], where a and b are integers and

a ≤ b. Assume there exists a split point c ∈ [a, b]. The original set I is now split into

two, I1 = [a, c] and I2 = (c, b]. The contents of I1 and I2 will determine the respective

information gain. Thus information gain is highly dependent on the chosen split point.
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Example 2.3.2. Let us assume we have the following dataset D

ID AGE Education(classifier)

1 22 Yes

2 18 No

3 26 Yes

4 23 Yes

5 22 Yes

6 31 No

7 20 No

8 26 Yes

9 26 Yes

10 19 No
Notice dataset D contains the ”Age” attribute, which we will call A, along with the clas-

sifier ”Education”. For this example let us assume the split point is t = 22. Given t,

we partition A into two sets A1 and A2, where A1 contains the individuals that are 22

or older A1 = {1, 3, 4, 5, 6, 8, 9} and A2 contains the individuals that are younger than

22, A2 = {2, 7, 10}. We start by determining the entropy of attribute A as E(A) =

− 6
6+4

log2( 6
6+4

)− 4
6+4

log2( 4
6+4

) = 0.97095. Now we compute the entropy of each partition.

E(A1, t) = − 6
6+1

log2( 6
6+1

)− 1
6+1

log2( 1
6+1

) = 0.50167 and E(A2, t) is assumed to be zero

since the A2 is perfectly homogenized relative to the classifier. Complete homogenization

of a dataset is assumed to have an entropy of 0. In general, any time we compute log2(0)

is present in our computation the IG for the respective dataset is assigned a value of zero.

Finally we compute the information gain of A, IG(A, t) = 0.97095 − (0.59167 + 0) =
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0.37928. If we assume that this information gain is maximum possible information among

all possible split points, then u(A, t) = 0.37928 �

2.4 Security Model

This section investigates the notion of security, both holistically and mathematically. We

aim to investigate the concepts which will enable us to mathematically determine whether

or not a particular protocol is secure or not.

2.4.1 Types of Security

There are three types of security: honest, semi-honest, and malicious. Each security type

offers different assumptions regarding the behavior of each party. These assumed behaviors

determine the security level of the protocol in question. The lowest level of security occurs

when the parties assume honest behavior. For honest parties, they follow the protocol

exactly as it is described. While the honest parties are executing the protocol, they do not

attempt to learn anything from each other. This means that even if information is leaked and

accessible, the parties will not be tempted to acquire that information. For security to be

achieved in the honest setting, a protocol only needs to to be executable by the participating

parties involved. However, for parties in the semi-honest setting their behavior is somewhat

similar, but varies slightly. The main distinction between honest and semi-honest parties is

that semi-honest parties actively seek new information about each other. For a protocol to

be secure in the semi-honest setting, it needs to be both executable by all parties involved

as well as not leak any information in the process. Following the execution of the protocol,

the parties should not learn anything they did not know prior to the protocol execution.
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If information is preserved throughout the duration of the execution, then the protocol

is secure in the semi-honest setting. Finally, there are parties with malicious behavior.

Malicious adversaries can essentially do as they want. They can deviate from the protocol,

input false values, make no inputs at all, etc. Parties in the malicious-setting have the

freedom to do whatever they feel like, given that the protocol does not have a mechanism

to prevent deviant behavior. They will also attempt to learn new information about the

participants throughout the execution of the protocol. A protocol is secure in the malicious

setting if the protocol is both executable and does not leak any information, given that the

parties will actively seek to deviate from the protocol. In this context, a protocol which is

secure in the malicious case acquires the highest level of security. It may be possible to

assume a variation of behaviors among different parties. For example, assume a protocol

has three parties where one is honest and the other two are respectively semi-honest and

malicious. In this case, the protocol could only be shown to be secure in the malicious

setting. Security is hierarchal, where behavior of at least one party which corresponds to

the highest security among all the parties will set the standard for security.

2.4.2 Computational Indistingushability

Our protocol is provably secure in semi-honest model for multiple parties. Semi-honest

security relies on the concept of computational indistinguishability, where the information

that Pi sends or receives cannot meaningfully be distinguished from the information that

Pj sends or receives. In this section, we will highlight a few important mathematical

components relevant to semi-honest security.

Definition 2.4.1. Computational Indistinguishability [19]

A probability ensemble defined to be a sequence of random variables. If one were to flip a

fair coin, then the outcome of the coin represents a binomial distribution which consist of
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1 (heads) or 0 (tails). Let Z = z1z2 . . . zn be the probability ensemble of the coin, where

zi represents the outcome of the ith coin flip. Two probability ensembles X and Y can be

assigned a computational distance through the following function.

|Pr[D(X,ω) = 1∗]− Pr[D(Y, ω) = 1∗]| (2.4)

where ω is the condition (or event) being tested and 1∗ is a boolean value that indicates

whether the condition had successfully occurred. X and Y are said to be computationally

indistinguishable, or described equivalently as X
c≡ Y , where for any function an efficient-

algorithm D there exists a negligible function epsilon(n) > 0, there exists some n > N

such that

|Pr[D(X,ω) = 1∗]− Pr[D(Y, ω) = 1∗]| < ε(n) (2.5)

where N ∈ N and D is typically referred to as the ’distinguisher’ �

Example 2.4.1. The probability ensembles of X and Y are defined below, where we

will assume X represents a biased blue coin and Y represents a biased red coin. xi and

yi represent the respective outcomes of each coin flip, where the value 1 designates an

outcome of heads and 0 designates tails. In this scenario let us define ω1 as representing a

blue coin that outputs {1n} (all heads).

X(Blue) =


1
3

if xi = 1

2
3

if xi = 0

Y (Red) =


2
3

if yi = 1

1
3

if yi = 0

The distinguisher D is defined below. Z is also a probability ensemble which represents

the outcome ω1
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D(distinguisher) =


1∗(success) if Z = ω1

0∗(failure) else

|Pr[D(X,ω1) = 1∗]− Pr[D(Y, ω1) = 1∗]|

= |(1
3
)n − 0|

= (1
3
)n

limn→∞(1
3
)n = 0 �

Since the red coin can never yield a successful outcome (being blue, while having all

heads), its respective probability is 0. The probability that the blue coin yields a successful

output approaches zero as the number of coin flips increase, meaning the computational

distance among the two coins becomes arbitrarily small. Although the computational

distance in this instance is arbitrarily close , we cannot conclude thatX
c≡ Y . Why? X and

Y can only be computationally indistinguishable if the computational distance is arbitrarily

small for any distinguisher D. We only showed the equation is satisfied with one specific

distinguisher function. Establishing computational indistinguishability requires quite a bit

of effort. For this example, a simple way of distinguishing the coins is by color. One could

construct D2(Z, ω2), where ω2 represents a blue coin that acquires an outcome of heads

heads or tails. �
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2.4.3 Semi-honest Security

The formalization of semi-honest security involves inserting a theoretical simulator Sj into

protocol Π. The simulator wants to simulate communication between itself and Pj with

respect to Π. Sj will communicate on the behalf of the other parties in such a manner

that Pj will not be suspicious of Sj’s messages. In other words, the messages that Sj

sends on the behalf of Pk (some other party not Pj) should be indistinguishable relative

to what Pk would have actually sent. Another component we need to consider is a trusted

third-party, f . The trusted third-party knows Π and all its operations with respect to each

party. In an ideal setting, each party Pj will privately provide their initial-input xj to f .

In return f would privately reveal the final output fj(~x) = fj(x1, x2, . . . , xn) to Pj . In the

literature, f is commonly referred to as the ’functionality’ within the ideal model. The ideal

model differs significantly from the real model, where both models serve a distinct purpose.

Within the real model, the parties conduct Π among each other, with an initial input of

values. In the ideal model, parties are conducting Π with either the trusted third-party or

the simulator, given that each party has an initial set of inputs. When the parties computes

Π with the trusted third-party, that can be loosely described as a perfectly secure procedure.

If the final output in the real model is indistinguishable from the final output in the ideal

model and Sj can properly simulate messages to Pj in an indistinguishable manner, then

Π will be deemed to be secure in the semi-honest setting [19]. The ideal model loosely

represents an idealized execution of Π, with respect to security. If the ideal execution of Π

is indistinguishable from the real execution of Π, then Π is secure. Prior to simulation Sj

has access to Pj’s initial input xj , final output fj(~x), and random tape r∗j .

Definition 2.4.2. Multiparty Semi-honest Security [19]:

Let f : ({0, 1}∗)n → ({0, 1}∗)n be a probabilistic polynomial-time functionality and let Π
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be a protocol where fj(~x) denotes the jth element of f(~x). Let Π be a n party protocol

for computing f , where n ≥ 2. Let the view of Pj during an execution of protocol Π on

~x denote V iewΠ
j (~x) as equivalent to (xj, r

∗
j ,mj1,mj2, . . . ,mjt), where r∗j represents the

outcome of Pj’s internal random tape and mji represents the ith message that Pj received.

The output of Pj during an execution of Π on denoted OutputΠ1 (~x) is implicit in the party’s

view of the execution. We say that Π securely computes f if there exist probabilistic

polynomial time algorithm denoted Sj for all j ∈ [1, 2, . . . , n], such that

{(Sj(xj, fj(x, y)), f(~x))} c≡ {(V iewΠ
1 (xj, fj(~x)), OutputΠ(~x))}

where
c≡ denotes computational indistinguishability and ~x = (x1, x2, . . . , xn). �

Down below, we will detail every component of the above equation. When we say ”real

protocol” we only are referring to an execution of protocol Π with respect to the parties

P1, P2, . . . , Pn. An execution of Π with respect to the functionality f or the simulator Sj ,

can be loosely described as the ”ideal protocol”. A simulation proof basically compares

the real protocol with the ideal protocol to confirm or deny the security level of Π.

• General Notation of Multiparty Semi-honest Security

1. Sj is a simulator that attempts to simulate the roles of all parties that are not Pj .

We will describe all parties being simulated by Sj as Pk. Sj wants to deceive

Pj by making it think that it is communicating with the other parties. Prior to

simulation Sj is provide access to Pj’s initial input xj , final output fj(~x), and

its random tape r∗j .
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2. V iewΠ
j (xj, fj(~x)) = (xj, r

∗
j ,mj1,mj2, . . . ,mjt), represents the values that are

sent to Pj from Pk throughout the execution of protocol Π. The view is not

influenced by the simulator. However, the view will be influenced by all the

parties within the real protocol.

– xj is the initial inputs that Pj receives prior to execution of the protocol.

– mji is the ith message that Pj receives from an entity that does not include

itself.

– r∗j is the random-tape of Pj . Random-tape records the outcome of every

action done by Pj which depends on chance (outcome of a coin flip, dice

roll, etc.).

3. f(~x) = (f1(~x), f2(~x), . . . , fn(~x)) is the output of the ’ideal functionality’ f .

f takes an initial input from each party, described as ~x. f then complies the

final output f(~x) with respect to Π, while internally and privately executing the

intermediate steps of Π. Pj will then privately acquire the output fj(~x) from f .

The output of f is assigned without the influence of a simulator. Excluding the

initial inputs provided, the output for f is assigned without the influence of the

parties.

4. OutputΠ(~x) = (OutputΠ1 (~x), OutputΠ2 (~x), . . . , OutputΠn (~x)) describes the fi-

nal output of each respective party following a complete execution of Π. Pj’s

final output is described as OutputΠj (~x). The final output value may or may

not be private, depends on the instruction of Π. The final output value is

derived without the influence of a simulator. However, the final output will

be influenced by all parties involved since OutputΠ(~x) is a direct reflection of

the real protocol.
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5. Sj(xj, fj(x, y) represents the message(s) that Sj sends to Pj throughout the

execution of Π. The message(s) sent by Sj depends on Pj’s initial input xj in

Π as well as Pj’s final output fj(x, y) in Π.

6. If the simulator Sj can simulate output messages that are indistinguishable from

the view of Pj (the messages it receives) in the real protocol, while at the same

time the functionality’s final output f(~x) is indistinguishable from the final

output of the real protocol, then Π is secure in the semi-honest setting.

Sj is a simulator attempting to execute protocol Π on the behalf of Pk, given that it

knows Pj’s initial-input xj , final output fj(~x), and random tape r∗j . At the same time,

the trusted third-party f outputs a final output of Π to each of the parties when given the

initial-input of each party ~x. If a simulator can indistinguishably simulate the message(s)

that each party would have sent relative to the real protocol and the final output of f is

indistinguishable from the final output of the real protocol, then Π is secure. However, if

such a situation is not achievable, then this implies Π inadvertently leaks extra information

during its execution and is hence insecure [19].
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Chapter 3

LITERATURE REVIEW

The literature review is organized by topic, where we detail various methods involved in

constructing a dataset as well as various methods relating to data publishing and data min-

ing. From there we compare and contrast the protocols within the academic literature with

our own(See Table 3.1). There are two distinctions when it comes to secure computation

of datasets: single-party and multiparty. Single-party computation suggests there is only a

single-party that computes a dataset in a secure manner. There have been a few single-party

algorithms that securely derives new datasets with respect to classification analysis [26]

[10] [16]. Each algorithm uses a ’top-down specialization’ to organize and classify records

contained in a particular dataset, a method which we similarly implemented. Specifically,

Fung et.al [10] and Mohammed et.al [26]et.al organize attributes into their respective

’taxonomy’ (See Figure 5.1). The taxonomy of an attribute (like ’Education’) contains

the possible value-types (like ’Any Education’, ’College’, ’No College’, etc.) that the

attribute can acquire. Each taxonomy is organized by generality, where the most general

value-type (’Any Education’) would be located at the top of the taxonomy and the other

specialized value-types (’College’, ’No College’) are located below. On the other hand, a

multiparty scheme deals with two or more parties communicating in a secure manner such

that multiple datasets can be integrated into a single dataset [27] [28] [25]. Each respec-

tive scheme similarly uses classification methods to organize all the records into a single
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dataset. One can achieve different objectives even with similar classification schemes. For

instance, through classification analysis, Mohammed et.al [27] [28] was able to derive

the dataset for the purpose of data mining, where the data miner and the dataset owner(s)

communicate directly to derive the final dataset. Another paper published by Mohammed

et.al [25], uses a similar classification scheme for the purpose of data publishing, where

the data miner extracts information from the final dataset without needing to consult the

dataset owner(s). Since there are multiple parties, cryptographic methods are employed to

guarantee secure transfer of information. Depending on the scheme, these cryptographic

methods are applicable to two parties [4] [1] [20] or party numbers exceeding two [37]

[12]. Ultimately, the versatility of the general cryptographic scheme will dictate the set

amount of parties that can conduct secure communication. That is why we created multiple

cryptographic protocols with the ability of fostering secure communication between two

or more parties. By doing so, secure computation will not be inhibited by the amount of

parties within the MAIN protocol 5.1.

3.1 Privacy-preserving Data Processing

For an interactive dataset, each dataset is owned by a private entity. In this case, the data

miner is looking to derive information from a dataset but only through the permission of

the dataset owner. The data miner then poses a series of questions (known as queries)

about the dataset using some private mechanism. The interactive approach is known as

privacy-preserving data mining(PPDM) [6] [18] [31]. For example, Clifton [6] uses

four private mechanisms (Secure sum, Secure Set Union, Secure Size Set Intersection,

and Scalar Product Protocol), designed with the purpose of data mining. These four



27

mechanisms also functions as a cryptographic mechanism, where sensitive information

is masked throughout the protocol. Since the data miner has to request information from

the dataset owner, the dataset owner must personally account for the computational cost of

each query. Although the dataset owner has complete control of the information that the

data miner can extract, the owner may need to invest in a state-of-the-art device that can

easily handle high computation loads.

For a non-interactive dataset, the data requested is first anonymized by the owner then

released to the data miner. Once the anonymized data is released to the miner the owner

no longer has any control over the data. This non-interactive approach is also known as

privacy-preserving data publishing(PPDP) [9] [23] [33]. Since the dataset is released,

the owner avoids the responsibility of accounting for the computational complexity associ-

ated in extracting information from the dataset. The complexity costs now rest on the data

miner. Although the owner will no longer need to execute computation following a data

publishing, the fact that the dataset is completely available to the miner can cause concern.

If the dataset was derived in a way that makes it vulnerable in an unforeseeable manner,

whether mathematically or errors relating to software/hardware implementation, then the

privacy of the individuals in the dataset may be in jeopardy. Since data publishing is open to

a wider array of attacks by an adversary, the owner must rely on a protocol that is provably

secure prior to execution.

Single-Party and Multiparty Models.

In the multiparty setting, the objective is to integrate datasets owned among various owners,

while not revealing information to other parties. The integrated dataset will be used by the

data miner to acquire information through queries [36] [32] [8]. For clarity, ’multiparty’ in
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the data mining perspective usually refers to at least two or more parties. This should not

be confused with our papers standard of ’multiparty’, which is defined of having at least

three or more parties. For a single party setting, there is only one dataset owned by a single

owner [5] [34] [11]. The data miner will then extract information from the dataset through

queries. In either setting, the security of the protocol must be established prior to execution.

Vertical and Horizontal Partitioning.

When data processing scheme consists of two or more parties we consider how the datasets

are distributed and organized. When each party holds its own unique set of attribute

values for all individuals while other parties hold their other unique set of attribute values

for the same individuals, the datasets that are comprised of these unique attribute values

are ’vertically partitioned’ [22](See Fig 5.2.4). Vertically partitioned datasets are most

applicable when parties typically have unique information about the individuals that they

are unwilling to reveal or share. On the other hand, parties can have access to the same

attribute features while the individuals in each dataset are unique. Such an arrangement

is known as a ”horizontal partition” [35] [15]. Horizontal partitioning is useful when the

parties have access to the same type of data that corresponds to different individuals. For

our proposed algorithm, each dataset will be vertically partitioned (See Table 2.1).

3.2 Multiparty Privacy-preserving Data Publishing

Our protocol specifically focuses on a multiparty, non-interactive datasets. This was chosen

because it was the most efficient method of integrating and releasing data in a secure

and private manner. Down below we highlight different means of acquiring a multiparty

non-interactive dataset. Mohammed et.al [25] uses a multi-layered protocol which allows



29

a data miner to analyze a intergrated dataset with high data-utility, while also perturbing the

output of the integrated dataset in a differentially-private manner. Their scheme allows the

true contents of the integrated dataset to be hidden, while also allowing the data miner to

extract data analytics which are statistically close to the integrated dataset. Pettai et.al [29]

incorporates a secure and differentially-private release of data similar to [25]. However

the dataset can be derived from n many parties instead of two. This is done through

the use of secret-shares between the parties. The dataset is secret-shared between the

computing parties, and so are the parameters of the query. A secret-share owned by a

party is a value that is unknown to all other parties. The secret-shares of all the parties

can collectively operate in such a way that they derive a single desired value. Each query

posed has a corresponding answer, which is also comprised of secret-shares. After the

data miner makes the query, the secret-shares with respect to the answer will be securely

distribute the the other parties. The shares of the answer will then be sent back to the data

miner to be recombined and analyzed in a differentially-private manner. Kairouz et.al [14]

approach secure and differentially-private mechanisms from a theoretical standpoint. Their

protocol focuses on the scenario where each party possesses a single bit of information.

With multiple bits of information among each of the parties, they proved the existence of

a differentially-private protocol with a fixed accuracy implies the existence of a protocol

with the same level of privacy and same level of accuracy for a specific functionality that

only depends on one bit of each of the parties.
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Table 3.1: Comparative evaluation of main features in related query processing approaches
(properties in columns are positioned as beneficial with fulfilment denoted by  and partial
fulfilment by #)

Approach

Party Size Privacy Model Data Processing

One Two Multi Differential-
Privacy

Partition-
Based

Vertical-
Partition

Horizontal-
Partition

PPDM PPDP

Diff-Gen [26]     
Two-Party
Diff-Gen [25]

#     

Kaiorouz [14]   # #  
Pettati [29]     
Mohammed [27]    
Fung [10]    
Our Algorithm
[Protocol 5.1]

#      
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Chapter 4

SECURE DISTRIBUTED MULTIPARTY EXPONENTIAL

MECHANISM

4.1 Protocol Overview

The objective of the Multiparty Exponential Mechanism is to probabilistically select an

attribute with the best data utility. We want our mechanism to output the winning attribute

Aw in a secure and private manner, with the cooperation of at least two parties. To maintain

security we use our cryptographic primitives, ElGamal and RVP, to produce a secure means

of communication among the parties. To maintain privacy we use the definition of the

exponential mechanism to select Aw in a differentially-private manner. The following

section will go into detail about how this process is achieved. It will first describe the

algorithm in its entirety, followed by the algorithm itself. From there, each process of the

Multiparty Exponential Mechanism 4.1 will be documented and detailed with respect to

when it appears in the algorithm.

Each party Pj begins with their respective datasets Dj , which contains: attributes Ak, a

classifier Ac, identification for the individuals ID, and recordsRj . Using a predesignated

utility-function u, Pj uses their datasetDj and an attribute they ownAk as input to privately

derive a utility score Uk, where u(Dj, Ak) = Uk. Each party privately constructs their
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respective attribute-score pair described as (Ak, Uk) for each attribute they own. From

there, Pj uses every Uk they own to derive its respective σj , where σj is a fixed value.

Pj then derives their respective Lj , where the mechanism used to create σj is similarly

used to create Lj . However, Lj differs from σj by the fact that Lj is not a fixed value

and can be increased if a winning-attribute is not declared within a procedural loop. Using

their respective σj , the parties conduct the extended Random Value Protocol to derive their

respective Rj , where Rj is a fixed value. Pj privately derives the following pair (Lj, Rj),

then encrypts each value described as (JLjK, JRjK). We assume the sum of all Lj’s be equal

to L and the sum of all Rj’s equal to R. The parties collectively and securely derive JRK

and JLK through homomorphic addition. From there, the parties determine the encrypted

value JR − LK in a secure and collective fashion. The parties collectively and securely

decrypt JR − LK, then determine if R − L ≤ 0. If true, an attribute Ak in some dataset is

declared a winning-attribute, whereAk → Aw. Else ifR−L > 0, then no winning attribute

is declared. If no winning-attribute is declared, then some particular Lj is increased and

the parties re-verify R − L ≤ 0 in a similar fashion. Based on how R and L are designed,

a winning-attribute will eventually be declared. This protocol will have at least one loop

execution and at most z loop executions, where z is the total amount of attributes distributed

amongst the parties. The overall objective of the protocol is to probabilistically select a

single attribute Ak among the multiple parties that has highest data-utility (quantified as

Uk) in a secure and differentially-private manner. It should be stressed that the values of

Uk, σj, Lj , and Rj are only know to Pj , however R and L are values that remain unknown

to all parties. Down below we will present our protocol which securely selects an attribute

among multiple parties in a differentially-private manner.
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Multiparty Exponential Mechanism
Input: Set of pairs (Ai, Ui) : 1 ≤ i ≤ mn where Ui is the utility score of attribute Ai, Privacy Budget ε̄
Output: Winner attribute Aw

1. Each party Pj : 1 ≤ j ≤ n computes his share Rj with all other parties as follows:

(a) Each party Pj computes the total of the exponential mechanism of all attribute it owns:

σj :=

mj∑
k=mj−1+1

exp(
ε̄ · Uk
2.4u

)

(b) Each pair (Pi, Pj) : i < j and 1 ≤ i, j ≤ n jointly execute the RVP protocol [4], where Pi
inputs σi and generates (sub) share Ri,j , and Pj inputs σj and generates (sub) share Rj,i
such that Ri,j , Rj,i ∈ [0, σi + σj ].

(c) Each party Pj adds all its (sub) shares to compute its final random share Rj :

Rj :=
1

2(n− 1)

n∑
i=1

Rj,i : i 6= j

2. Initialize the party index to the first party: p = 1

3. For i = 1 to mn

(a) If i > mp then p := p+ 1

(b) Each party Pj : 1 ≤ j < p computes:

Lj :=

mj∑
k=mj−1+1

exp(
ε̄ · Uk
2.4u

)

(c) The active party Pp computes:

Lp :=

i∑
k=mp−1+1

exp(
ε̄ · Uk
2.4u

)

(d) Each party following Pp (Pj : p < j ≤ n) computes: Lj = 0.

(e) All parties jointly execute Protocol 4.2 to determine if attribute Ai is a winner, where each
party Pj inputs to the protocol (Rj , Lj).

i. If the return value of Protocol 4.2 is γ ≤ 0, then Ai → Aw and exit.
ii. Otherwise, if i = mn−1, then Ai+1 → Aw and exit.

Protocol 4.1: Multiparty Exponential Mechanism
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Distributed Comparison
Input: Integers Lj and Rj for each party Pj : 1 ≤ k ≤ n
Output: Comparison result γ
Initial Step: All parties agree on a large prime p and generator g such that g ∈ Z∗p .

1. Each party Pj randomly select private key aj ∈R [2, . . . , p−2], and then generates its public key
Aj := gaj mod p.

2. All parties collectively compute the public group-key A :=
∏n
k=1Aj = gΣn

k=1aj mod p.

3. Each party Pj privately chooses ephemeral keys rj , ŕj from [2, . . . , p− 2] and then encrypts Rj
and Lj :

JRjK = (Arj · gRj mod p, grj mod p) , JLjK = (Aŕj · gLj mod p, gŕj mod p)

4. All parties jointly perform the following:

(a) Homomorphically compute the total sum of Rj : 1 ≤ j ≤ n:

JRK =

n∏
j=1

JRjK = (AΣn
j=1rj · gΣn

j=1Rj mod p, gΣn
j=1rj mod p)

JRK = (Ar · gR mod p, gr mod p)

(b) Homomorphically compute the total sum of Lj : 1 ≤ j ≤ n:

JLK =

n∏
j=1

JLjK = (AΣn
j=1ŕj · gΣn

j=1Lj mod p, gΣn
j=1ŕj mod p)

JLK = (Aŕ · gL mod p, gŕ mod p)

(c) Homomorphically subtract L from R:

JR− LK = JRK/JLK = (Ar−ŕ · gR−L mod p, gr−ŕ mod p)

(d) Jointly decrypt JR− LK:

α = (Ar−ŕ · gR−L)/

n∏
j=1

(gr−ŕ)aj = gR−L mod p.

5. Apply discrete-log algorithm on α to compute γ = R− L.

6. Return γ.

Protocol 4.2: Distributed Comparison
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4.2 Protocol Details

The protocol selects a single attribute Ak, among the party-members. The selected at-

tribute is known as the qth winning-attribute Awq . Each attribute has a corresponding

utility-score Uk, creating the attribute-score pair (Ak, Uk). Although there are ’n’ parties,

there may be more than ’n’ attributes. However, there can never be less attributes than

there are party-members. For this paper we will assume there exists ’z’ attribute-scores

pairs, {(A1, U1), (A2, U2), ..(Az, Uz)}, which are distributed among the parties. Given the

score of each attribute, the exponential mechanism will use Uk to select an Ak owned by

Pj . Down below, Awq is selected with the following probability, where ∆u is the sensitivity

of the chosen utility function.

exp( ε·Uk
2∆u

)∑z
i=1( ε·Ui

2∆u
)

(4.1)

Computation

A basic implementation of the exponential mechanism begins with the unit-interval [0,1].

First partition the unit-interval into z sub-intervals, where the length of the kth sub-interval

is equivalent to equation (1). Since the length of the kth sub-interval is determined by Uk,

we can assign attribute-score pair (Ak, Uk) to that sub-interval, where (Ak, Uk) is owned by

some party Pj . We then sample a random number uniformly from [0,1]. The random value

will fall within one of the many possible kth sub-intervals, Since the kth sub-interval cor-

responds to (Ak, Uk), Ak will then be declared as the qth winning-attribute Awq . Although

this method is relatively simple and intuitive, this scheme unfortunately requires a ”secure
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division protocol”, which does not currently exists for our specific purposes. Instead

we use a method similar to what was mentioned above, where we partition the interval

[0,
∑z

i=1 exp(
ε·Ui
2∆u

)] into z sub-intervals instead. Similarly, the kth sub-interval uniquely

corresponds to some attribute-score pair (Ak, Uk). In this case, each kth sub-interval

is equal to length exp( ε·Uk
2∆u

). Finally, we sample a random number uniformly from the

interval [0,
∑z

i=1( ε·Ui
2∆u

)]. This random number will be contained among one of the kth

sub-intervals, which corresponds to the (Ak, Uk) attribute score-pair. We declare Ak as the

qth winning-attribute Awq . By doing this computation Awq would be selected in a manner

consistent with the exponential mechanism. As a result, Awq was selected in a differentially

private manner.

4.2.1 Indexing Attributes

Assume there are n parties and z attributes distributed among the parties. Party Pj , will

own a non-empty set Φ̂j which contains Mj many attributes. Party Pj indexes the first

attribute they own as mj−1 + 1, where m0 := 0. Pj indexes the second attribute they

own as mj−1 + 2. This incrementation continues until Pj indexes their last attribute as

mj . One could easily convince themselves that Pj owns Mj = mj − (mj−1 + 1) + 1

many attributes. For clarity of notation, we see that P1 owns the following set of attributes,

Φ̂1 = {A1, A2, . . . , Am1}. Similarly, P2 owns Φ̂2 = {Am1+1, Am1+2, . . . , Am2}. In general

Pj owns the following attributes, Φ̂j = {Amj−1+1, Amj−1+2, . . . , Amj}, where |Φ̂j| = Mj .

If Pj owns only one attribute, then mj = mj−1 + 1. Thus from an outside perspective (the

reader’s perspective), there exists a set Φ̂ which list all the set of attributes owned by all

parties, Φ̂ := {Φ̂1, Φ̂2, . . . , Φ̂n}. However from Pj’s perspective, they are only aware of the

Φ̂j it privately constructed. Since each party has its own Φ̂j we can specifically select the

attributes contained in Φ̂j in an algorithmic manner.
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4.2.2 Indexing Attribute-Score Pairs

Recall that each attribute Ak corresponds to a utility-score Uk, described as the attribute-

score pair (Ak, Uk). We will extend Φ̂j by incorporating the utility score Uk. In this case,

Φj := {(Amj−1+1, Umj−1+1), (Amj−1+2, Umj−1+2), . . . , (Amj , Umj)}, where |Φj| = Mj .

And in similar fashion, Φ := {Φ1,Φ2, . . . ,Φn}. This notation is seen in summation limits

in Protocol 4.1, where each party Pj derives their σj and Lj from Φj .

4.2.3 Extended RVP & R-Shares

The purpose of Random Value Protocol (RVP) is to acquire a Random Number R within

a closed interval. We first designate two parties to conduct the RVP protocol, Pa and

Pb. Each party will own a set of attribute-score pairs, where Pa owns Φa and Pb owns

Φb. Each party then computes σa :=
∑ma

i=m(a−1)+1
exp( ε·Ui

2∆u
), σb :=

∑mb
i=m(b−1)+1

exp( ε·Ui
2∆u

)

respectively. RVP takes σa and σb as input, RVP(σa,σb), then outputs random-value shares

Ra and Rb to the respective party. Once the shares are securely distributed we acquire three

key properties: RVP(σa, σb) → (Ra, Rb), R = Ra + Rb, and Ra, Rb, R ∈ [0, σa + σb]. Pa

knows the value of Ra, but is unaware of the value of both Rb and R. Similarly, Pb knows

the value ofRb, but is unaware of the value of bothRa andR. If there were only two parties

in the protocol, the RVP would be as simple as letting a = 1 and b = 2. However, since we

are focusing on a multiparty setting we must extend the protocol to accommodate n parties

while using the three key properties to direct our intutions. For two distinct parties (Pa and

Pb) among n parties, we apply the following operation RVP(σa,σb). However, we slightly

adjust the mapping as follows, RVP(σa, σb)→ (R(a,b), R(b,a)), where R(a,b) is Pa’s random-

value sub-share, R(b,a) is Pb’s random-value sub-share, and (R(a,b), R(b,a)) = (Ra, Rb).

Since Pa and Pb are really just operating under the original RVP, their sub-shares will inherit
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the following property, R(a,b), R(b,a) ∈ [0, σa + σb]. Our first objective is to guarantee that

each party Pi has a respective share Ri ∈ [0,
∑n

k=1 σk]. However, if each party conducts

the RVP amongst themselves, that implies Pj will have n − 1 sub-shares to work with. If

we add all of Pi’s n−1 sub-shares we can acquire the share R′i. However, R′i :=
∑n

j=1Ri,j

i 6= j, will be too large where R′i 6∈ [0,
∑n

k=1 σk]. We can avoid this by multiplying R′i by

a constant. If Ri := 1
2(n−1)

R′i and R :=
∑n

k=1Rk, then we acquire the following property:

Ri, R ∈ [0,
∑n

k=1 σk] ∀ i ∈ {1, . . . , n}

Theorem 4.2.1. The functionality of the two-party Random Value Protocol can be extended

to accomadate n parties, where n ≥ 2

Proof. :

To extend the Random Value Protocol (RVP) the party does pairwise RVP with each other.

When Pk does an RVP operation with Pj , Pk receives Rk,j ∈ [0, σk + σj] and Pj has

Rj,k ∈ [0, σj + σk]. From there, we have all we need to extend RVP which will go as

follows:

Given R(i,j) ∈ [0, σi + σj] where i ∈ {1, . . . , n}, assume the following two values:

1.) R′i :=
∑n

j=1 R(i,j) =
∑

j R(i,j), where R(i,i) = 0

=⇒ R′i =
∑

j R(i,j), where j ∈ {1, . . . , n} \ {i}

2.) R′ :=
∑n

i=1R
′
i

The sum in (1) represents exactly n − 1 R(i,j)’s, where we purposefully avoided R(i,i) .

Based on the interval [0, σi + σj], R(i,j) corresponds to exactly one σi and exactly one σj ,

where j 6= i. Thus, party Pi can create a new interval whose length is equivalent to n − 1
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σi’s, plus all the σk’s from the other party members Pk, k 6= i

R′i ∈ [0, (n− 1)σi +
∑

j σk]

R′i ∈ [0, (n− 2)σi +
∑n

i=1 σi]

R′ ∈ [0,
∑n

i=1(n− 2)σi +
∑n

i=1

∑n
i=1 σi]

R′ ∈ [0,
∑n

i=1(n− 2)σi + n
∑n

i=1 σi]

R′ ∈ [0,
∑n

i=1(2n− 2)σi]

R′ ∈ [0, (2n− 2)
∑n

i=1 σi]

R′ ∈ [0, 2(n− 1)
∑n

i=1 σi]

R := R′

2(n−1)

R ∈ [0, 1
2(n−1)

(2(n− 1)
∑n

i=1 σi)]

R ∈ [0,
∑n

i=1 σi]

Conforming to the range of the original RVP protocol for all n ∈ N greater than 1.

Example 4.2.1. :

Let n = 3

RVP(σ1, σ2)→ (R(1,2), R(2,1))

RVP(σ1, σ3)→ (R(1,3), R(3,1))

RVP(σ2, σ3)→ (R(2,3), R(3,2))

R′1 = R(1,2) +R(1,3)

R(1,2) ∈ [0, σ1 + σ2], R(1,3) ∈ [0, σ1 + σ3] (P1’s sub-shares)
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R′2 = R(2,1) +R(2,3)

R(2,1) ∈ [0, σ2 + σ1], R(2,3) ∈ [0, σ2 + σ3] (P2’s sub-shares)

R′3 = R(3,1) +R(3,2)

R(3,1) ∈ [0, σ3 + σ1], R(3,2) ∈ [0, σ3 + σ2] (P3’s sub-shares)

R′1 ∈ [0, 2σ1 + σ2 + σ3] (range of P1’s share)

R′2 ∈ [0, σ1 + 2σ2 + σ3] (range of P2’s share)

R′3 ∈ [0, σ1 + σ2 + 2σ3] (range of P3’s share)

R′ ∈ [0, 4σ1 + 4σ2 + 4σ3] (range of random value R′)

R = R′

4
= R′

2(n−1)

R ∈ [0, σ1 + σ2 + σ3] (range of random value R)

R ∈ [0,
∑3

i=1 σi] �

Example 4.2.2. :

Assume there are three parties P1, P2, and P3. Also assume P1 owns

Φ1 = {(A1, U1), (A2, U2), (A3, U3)}, P2 owns Φ2 = {(A4, U4)}, and P3 owns Φ3 =

{(A5, U5), (A6, U6)}. Each party uses their respective attribute-score pairs (Ak, Uk) to

derive exp( ε·Uk
2∆u

) for each Uk they own. P1 derives the following three values: 234.562,

12.523, and 232.352 (in that order). P2 acquires 232.378, while P3 acquires 24.398 and

2.193 (in that order). RVP only takes input with integer values, thus the parties initially

agree on the value a ∈ N, then multiply their values by 10a, followed by the floor function.

If the parties agree on a = 0, P1 now has the the following values: 234, 12, and 232. P2

has 232, while P3 has 24 and 2. From there, the parties privately and respectively derive

σ1 = 478 = 234 + 12 + 232, σ2 = 232, and σ3 = 26 = 24 + 2. P1 conducts the RVP with
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P2 and P3 separately, acquiring a random share R′1 from the interval [0, 2σ1 + σ2 + σ3] =

[0, 1214]. P2 similarly conducts the RVP with P1 and P3 separately, acquiring its random

share R′2 from the interval [0, σ1 + 2σ2 + σ3] = [0, 968]. Likewise, P3 acquires its random

share R′3 from the interval [0, σ1 +σ2 + 2σ3] = [0, 762]. Given that R′ = R′1 +R′2 +R′3, we

can see R′ ∈ [0, 2944]. However the objective is to collectively derive the random values

R,R1, R2, and R3 which lie in the interval [0, σ1 + σ2 + σ3] = [0, 736]. This is achievable

if for n = 3, R =
R′1

2(n−1)
+

R′2
2(n−1)

+
R′3

2(n−1)
∈ [0, 736]. �

4.2.4 L-Shares

Recall party Pj owns Φj , the set which contains all of its attribute-score pairs. Pj uses Φj to

derive σj =
∑mj

i=m(j−1)+1 exp(
ε·Ui
2∆u

). We will similarly use Φj to derive Lj . The difference

between σj and Lj is σj is a constant, while Lj can vary depending on the amount of

loops executed within Protocol 4.1. Per loop, Lj can acquire one of the values from the

following set {0,
∑m(j−1)+1

i=m(j−1)+1 exp(
ε·Ui
2∆u

),
∑m(j−1)+2

i=m(j−1)+1 exp(
ε·Ui
2∆u

), . . . , σj}, . We can think of

Lj as a sub-summation of σj , where both formulas are fundamentally the same except the

upper summation-limit of Lj does unit increments from m(j−1) + 1 to mj . If Lj is zero

and it changes value following a loop, then the value will equal
∑m(j−1)+1

i=m(j−1)+1 exp(
ε·Ui
2∆u

). If

Lj /∈ {0, σj}, and Lj changes value following a loop, then the upper summation-limit will

increment by one, or in other words
∑m(j−1)+x

i=m(j−1)+1 exp(
ε·Ui
2∆u

) →
∑m(j−1)+(x+1)

i=m(j−1)+1 exp( ε·Ui
2∆u

)

Thus Lj can acquire up to Mj many unique non-zero values, where 0 ≤ Lj ≤ σj . Prior

to starting Protocol 4.1, all Lj’s are initialized to 0. However, once the protocol begins the

Lj’s are initialized as follows: L1 =
∑m0+1

i=m0+1 exp(
ε·Ui
2∆u

) and Lk = 0 where k 6= 1.
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4.2.5 Selecting the Winning-Attribute

Each party Pj privately computes their own respective L-shares and R-shares, (Lj, Rj).

Using the Distributed Comparison 4.2, Pj encrypts its shares as (JLjK, JRjK) then with the

other parties, collectively and securely computes JRK = J
∑n

i=1 RiK and JLK = J
∑n

i=1 LiK

through Protocol 4.2. It should be noted that value of R is a constant, while the value of L

increases after every iteration (or loop). Once R and L are derived, Protocol 4.2 securely

computes γ := R−L. If γ ≤ 0, then we acquire a winning-attribute. Otherwise, we incre-

ment the upper summation-limit of some Lj and determine γ again. If Lj is incremented in

a manner where its upper summation-limit goes from (m(j−1) + x) −→ (m(j−1) + (x+ 1))

resulting in γ ≤ 0, then the corresponding attribute indexed asAm(j−1)+(x+1) is qthwinning

winning-attribute Awq .

Example 4.2.3. :

(Continuation from example 4.2.2)

Recall P1 owns Φ1 = {(A1, U1), (A2, U2), (A3, U3)} and σ1 = 478 = 234 + 12 + 232,

P2 owns Φ2 = {(A4, U4)} and σ2 = 232, and P3 owns Φ3 = {(A5, U5), (A6, U6)} and

σ3 = 26 = 24 + 2. Through the extended RVP, parties collectively derive R ∈ [0, 736],

where R = R1 + R2 + R3. From there we need to securely verify if R ≤ L through

Protocol 4.2. Given L = L1 + L2 + L3, L1 is initialized as 234, L2 is initialized as

0, and L3 is initialized as 0. We first check if R ≤ (234 + 0 + 0). If so, P1 wins

and A1 is the winning attribute. Otherwise we increment L1 and get L1 = 234 + 12.

Now we determine if R ≤ ((234 + 12) + 0 + 0) is true. If so, P1 wins and A2 is the

winning attribute. Continuing this trend we will sequentially check the following: If

R ≤ (234 + 12 + 232) + 0 + 0 (P1 wins, A3 is the winning attribute), R ≤ 478 + 232 + 0
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(P2 wins, A4 is the winning attribute), R ≤ 478 + 232 + 24 (P3 wins, A5 is the winning

attribute), R ≤ 478 + 232 + (24 + 2) (P3 wins, A6 is the winning attribute). Based on how

R and L were designed, a winner must be declared in this procedure. �

4.2.6 Multiparty Exponential Mechanism Summary

For the Multiparty Exponential Mechanism, we were able to select a winning-attribute

owned by Pj that probabilistically has a high utility. Selecting an attribute with a high

utility is advantageous when considering the MAIN Protocol 5.1, which will be discussed

in the next chapter. For now just think of utility as measuring how well an attribute can

partition (or group) individuals in a dataset. An attribute with low utility suggests that the

majority of the individuals are identical with respect to that attribute. We were not only

able to select an attribute with high utility, we were able to do so in a differentially-private

manner. As a result, the partitioned dataset(s) (discussed in the next chapter) will preserve

the privacy of the each individual record. The process of selecting a winning-attribute

involves communication (Random value Protocol and Distributed Comparison) between

multiple parties in a secure manner. Initially, Pj has a collection of attributes Φ̂j then

privately derives its collection of attribute-score pairs Φj . Pj then uses its utility-scores

from Φj to privately derive its σj . Once each party acquires its respective σj , they use it as

input in the Extended Random Value Protocol (RVP). The Extended RVP allows the parties

to acquire their respective Rj’s, where Rj is fixed throughout the duration of the protocol.

Pj will then use the utility scores from Φj to derive its respective Lj , where only one Lj

can be updated per iteration and the value of Lj depends on how many iterations have

already occured. After each party acquires its respective (Lj, Rj), they use the Distributed

Comparison to encrypt each value (JRjK, JLjK), add the values respectively (JLK, JRK),
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subtract the values JR−LK, and finally decrypt R−L. Once R−L is revealed, a winning

attribute will be selected depending on which Lj was most recently updated.

4.3 Protocol Analysis

4.3.1 Security Analysis

For Protocol 4.1(Exponential Mechanism), there are only two instances when the parties

communicate. These communications occur during RVP and Protocol 4.2(Distributed

Comparison). The security of RVP was previously demonstrated in its paper of origin [4],

meaning we only need to demonstrate the security for the Distributed Comparison. For

the rest of the security analysis it will go as follows: Establishing Key Values for the

Distributed Comparison, Axiom 4.3.1, Lemma 1, The Diffie-Hellman Assumption 4.3.1,

Lemma 2, and Theorem 4.3.1

Establishing Key Values For the Distributed Comparison

1. We have the following for Pj

• Axillary Inputs: Prime p, generator g, bit length n, protocol blueprint, and the

Diffie-Hellman Assumption. For simplicity we described the axillary inputs as

z∗.

• xj = ((Rj, Lj), z
∗)

• r∗j = (aj, rj, ŕj)

• m = ( ~Ak, A, ~JRkK, ~JLkK, JRK, JLK, JR− LK, α, R− L)

• ~Ωk represents a set of Ωk’s, where Ωk is owned by Pk
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• V iewΠ
j (xj, fj(~x)) = (xj, r

∗
j ,m)

• OutputΠj (~x) = R− L

• fj(~x) = R− L

2. We have the following simulated output-messages for Sj

• Sj(xj, fj(~x)) = (xj, r
∗
j ,

~ASj(k), A, ~JRSj(k)K, ~JLSj(k)K, JR∗K, JL∗K, JR∗ − L∗K

, α∗, R∗ − L∗),

• R∗ := RSj +Rj = (
∑

k∈Ψ RSj(k)) +Rj , for j /∈ Ψ = [1, . . . , n]

• L∗ := LSj + Lj = (
∑

k∈Ψ LSj(k)) + Lj

• α∗ is the decryption of JR∗ − L∗K before applying the discrete-log algorithm

• XSj(k) represents the simulated value of Xk, where Xk is owned by Pk in the

real protocol

Axiom 4.3.1. If there exists a sub-operation π∗ in Π, where Pj and Pk both conduct π∗ cor-

rectly and expect the same sub-output with respect to Π (i.ema ∈ Outputπ
∗∈Π
j (~x)

⋃
Outputπ

∗∈Π
k (~x)),

then ma is a message that is contained in the view of each party. Or equivalently,

ma ∈ V iewΠ
j (~x)

⋃
V iewΠ

k (~x)

The purpose of the axiom is to highlight a common scenario that arises in our protocol,

where values are encrypted throughout the process and later decrypted. Once the value(s)

are decrypted, the parties will privately see the decrypted value (such as α orR−L). Given

Π is executed in a semi-honest setting, each party knows that every other party will see the

same value. Or in other words, every party knows that every other party has the value ma

derived from π∗ ∈ Π, given a semi-honest setting. Thus, it makes no sense for the parties

to inform each other about the value of ma. But suppose Pj actually sent ma to Pk. By
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doing so ma would be contained within the view of Pk (i.e ma ∈ V iewΠ
k (~x)). However,

Pk did not learn anything new once it received the message. But at the same time, if Pj did

not send anything, Pk would still know that Pj has ma. Therefore, it makes no difference

whether Pj actually sent ma or not, meaning it makes no difference if ma is added to the

view of each party. This assertion directly implies ma is also part of the output-message(s)

of each party.

Lemma 1. Given the initial-input xj of each party Pj , the final-output of the trusted

third-party f is indistinguishable from the final-output of the real protocol. Or equiva-

lently f(~x)
c≡ OutputΠ(~x), where Π is the Distributed Comparison Protocol and ~x =

(x1, x2, . . . , xn).

Proof. For the ideal functionality f , when given input ~x we get the following output:

f(~x) = (f1(~x), f2(~x), . . . , fn(~x)) = (R − L,R − L, . . . , R − L). For the real pro-

tocol, when given the input ~x we similarly get the following output: OutputΠ(~x) =

(OutputΠ1 (~x), OutputΠ2 (~x), . . . , OutputΠn (~x)) = (R − L,R − L, . . . , R − L). This is

because the protocol is deterministic even though the encryptions are probabilistic. The

encryptions in Π only serve to hide the values, not alter them. Thus, given

(R1, L1), (R2, L2), . . . , (Rn, Ln) we simply compute the valueR−L =
∑n

j=1 Rj−
∑n

j=1 Lj ,

which is algebraically deterministic. Since the outcome of Π is deterministic based on its

initial inputs, this implies the functionality f and the real protocol are similarly determinis-

tic based on its initial inputs. Since both f and and the real protocol have the same inputs,

they must have identical outputs. Identical terms are trivially indistinguishable.
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∴ f(~x)
c≡ OutputΠ(~x)

The Diffie-Hellman Assumption [2]

For the next Lemma will need to invoke the Diffie-Hellman assumption. Under modular

exponentiation with a sufficiently large prime, the Diffie-Hellman assumption implies that

given g and p, the triple (ga modp, gb modp, gc modp) is indistinguishable from the triple

(ga mod p, gb mod p, gab mod p), where a, b, c ∈R {2, . . . , p− 2} and c 6= ab. Or in other

words (gamodp, gbmodp, gabmodp)
c≡ (gamodp, gbmodp, gcmodp), which is equivalent to

|Pr[D(gamodp, gbmodp, gabmodp) = 1∗]−Pr[D(gamodp, gbmodp, gcmodp)]| < ε(n).

In a similar fashion, we can easily see gab mod p
c≡ gc mod p. For example, this suggests

(Aj = gajmodp)
c≡ (Ak = gakmodp). Thus Pj and Pk are not compromising their private-

keys when collectively computing the public-group key A along with its cryptographic

derivatives (JLjK, JRjK, ect.), which makes since due to the fact that ElGamal encryption

is a common encryption standard. It is very important to note that the majority of values

computed within the Distributed Comparison can be algebraically manipulated such that

they look like gβx mod p, where βx is some positive integer. The only computed values

from the Distributed Comparison which cannot be algebraically described using modular

exponentiation is the inital-input values, ephemeral keys, α, and R− L.

Lemma 2. The output messages of the simulator during an ideal (or simulated) execution of

Π is indistinguishable from the messages that Pj would have received (Pj’s view) during a

real execution of Π. Or equivalently Sj(xj, fj(~x)
c≡ V iewΠ

j (~x), where Π is the Distributed

Comparison Protocol.
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Proof. Using proof by contradiction, let us assume that

Sj(xj, fj(~x))
c

6≡ V iewΠ
j (~x)

=⇒ Sj(xj, R− L))
c

6≡ (xj, r
∗
j , Ak, JRkK, JLkK, JRK, JLK, JR− LK, α, R− L)

Denote {gβ} as a set of values that can be represented as gβ mod p

=⇒ Sj(xj, R− L))
c

6≡ (xj, r
∗
j , {gβ}, α, R− L)

= (xj, r
∗
j , ASj , A, JRSjK, JLSjK, JR∗K, JL∗K, JR∗ − L∗K, α∗, R∗ − L∗)

c

6≡ (xj, r
∗
j , {gβ}, α, R− L)

= (xj, r
∗
j , {gΓ}, α∗, R∗ − L∗)

c

6≡ (xj, r
∗
j , {gβ}, α, R− L)

xj and r∗j are identical for Pj and Sj . Identical terms are trivially indistinguishable.

=⇒ ({gΓ}, α∗, R∗ − L∗)
c

6≡ ({gβ}, α, R− L)

= (gc mod p, α∗, R∗ − L∗)
c

6≡ (gb mod p, α,R− L), where b ∈ β and c ∈ Γ

From the Diffie-Hellman assumption recall gc mod p
c≡ gb mod p. Thus we can make a

further reduction

(α∗, R∗ − L∗)
c

6≡ (α,R− L)

Given α, you can directly derive R − L through the discrete-log algorithm. This suggests

that α is a redundant representation of R − L. Since α is redundant, we can easily make
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another reduction.

(R∗ − L∗)
c

6≡ (R− L)

Rj , Lj , andR−L are fixed constants whereR∗−L∗ = (RSj +Rj)+(LSj +Lj) is dictated

by the simulator Sj . Recall that Sj also has access to (Lj, Rj) and R− L. The simulator’s

goal is to have R− L = R∗ − L∗, which can be achieved algebraically as follows:

R− L = R∗ − L∗

= (RSj +Rj)− (LSj + Lj)

= (RSj − LSj) + (Rj − Lj)

=⇒ RSj − LSj = (R− L)− (Rj − Lj)

=⇒ (
∑

k∈ΨRSj(k))− (
∑

k∈Ψ LSj(k)) = (R− L)− (Rj − Lj)

Let (R− L)− (Rj − Lj) := C

where C is a non-negative fixed constant and known ahead of time by Sj

=⇒ RSj − LSj = C

=⇒
∑

k∈Ψ(RSj(k) − LSj(k)) = C

In order for R∗ − L∗ to be equal to R − L, Sj needs to appropriately choose its simulated

values RSj(k) and LSj(k). By doing so, Sj can derive its RSj and LSj . Sj needs to

derive RSj and LSj such that their difference equals C = (R − L) + (Lj − Rj). Since

Sj dictates the values of each RSj(k) and LSj(k), this is easily achievable. Assuming

Sj behaves optimally in the semi-honest setting, we conclude R∗ − L∗ = R − L for

all simulations. However this contradicts (R∗ − L∗)
c

6≡ (R − L), meaning our original



50

assumption Sj(xj, fj(xj, xk))
c

6≡ V iewΠ
j (xj, fj(xj, xk)) is false.

Thus Sj(xj, fj(~x))
c≡ V iewΠ

j (~x)

Theorem 4.3.1. The Multiparty Exponential Mechanism is secure in the semi-honest mul-

tiparty setting

Proof. It is given that RVP is secure, meaning we only need to verify the security of the Dis-

tributed Comparison Protocol. Lemma 1 proves f(~x)
c≡ OutputΠ(~x)) for the Distributed

Comparison Protocol. Using Axiom 4.3.1, Lemma 2 proves Sj(xj, fj(~x))
c≡ V iewΠ

j (~x) for

the same protocol. This directly implies the protocol satisfies the below equation, making

it secure in the the semi-honest multiparty setting.

{(Sj(xj, fj(~x)), f(~x))} c≡ {(V iewΠ
1 (xj, fj(~x)), OutputΠ(~x))}

4.3.2 Complexity Analysis

Lemma 3. The total encryption and communication costs among n parties for Protocol 4.2

is O(n2ξ) and O(n2(ζ +K)) respectively.

Proof. Complexity accounts for the amount of ’loops’ as well as the operations involved

within each loop. To fix an upper bound on complexity, we will examine the worst case

scenario, where the winner candidate-attribute happens to be the last attribute (Amn) owned
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by Pn. Since there are z attributes, we can assume mn = z. This implies there will

be at least z loops in Protocol 4.1. For the encryption cost, RVP is given as O(ξ) [4].

Since we extended the RVP operation, Pj does the RVP operation with the other n − 1

party-members, meaning Pj conducts
(
n
2

)
= n(n−1)

2
RVP operations. Thus for Pj , the

encryption complexity for RVP is O(n(n−1)
2
× ξ) = O(n2 × ξ). The encryption cost

for the Distributed Comparison is measured by how many exponentiations occur, where

(xa)b is considered a single exponentiation. For Protocol 4.2, line 2, there are a total

of n exponentiations. Lines 3, 4a, 4b, 4c, and 4d have the following respective total

exponentiations: 2n, 3n, 3n, 3, and 3. Since we loop through Protocol 4.2 z times, the

encryption complexity cost is O(z × (8n + 6)) = O(zn). Therefore the total Encryption

cost for RVP and Distribution Comparison is O(n2ξ) = O(n2 × ξ + zn).

For the communication cost, RVP is given as O(ζ) [4]. Thus by similar reasoning, we can

see O(n2 × ζ). The communication cost on line 2, line 3, line 4a, line 4b, line 4c, and line

4d have the following respective total communication: n(n− 1)K, 2(n(n− 1))K, 2(n(n−

1))K, 0 and nK, where K is the key size of the message). Thus, the total communication

cost for RVP and Distributed Comparison for Pj is O((n2 × (ζ + K))) = O((n2 × ζ) +

n2K).

4.3.3 Correctness Analysis

Lemma 4. Assuming all parties are semi-honest, Protocol 4.1 correctly implements the

exponential mechanism for all parties.

Proof. Protocol 4.1 selects its candidate-attribute Ai with probability ∝ exp( εUi
2∆U

). Each
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party Pj , computes exp( εUi
2∆U

) for their respective candidate-score pairs Φj . All parties

use the exponential mechanism to collectively build the interval [0,
∑z

i=1 exp(
εUi

2∆U
)]. We

can partition the interval into discrete sub-intervals, where each sub-interval corresponds

to a candidate-attribute with length equal to exp( εU(i)

2∆U
). Since the random number ’R’ lies

uniformly between [0,
∑z

i=1 exp(
εUi

2∆U
)], the probability of choosing a particular candidate-

attribute is given as exp(
εUi
2∆U

)∑z
i=1 exp(

εUi
2∆U

)
. Thus Protocol 4.1, selects an Ai in a manner consistent

with the Exponential Mechanism.
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Chapter 5

SECURE MULTIPARTY PROTOCOL FOR

DIFFERENTIALLY-PRIVATE DATA RELEASE

5.1 Protocol Overview

Recall Pj owns its dataset Dj where Dj contains the attributes owned by Pj as well as

the individual records Rj . The individual records in Dj are only known by Pj . These

records correspond to whether a particular individual satisfies an attribute owned by Pj .

There are two types of attributes, class attribute Ac and predictor attributes Ap. Class

attributes Ac are categorical, publicly available, and represent a parameter that the data

miner attempts to predict. On the other hand, predictor attributes are private and uniquely

distributed among the parties. Predictor attributes Apij can be numerical or categorical and

are used to predict the outcome of a class attribute. We can equivalently describe Pj’s

dataset Dj as Dj(ID,A
c, Ap1j, A

p
2j, . . . , A

p
Mjj

,Rj), where ID assigns the individuals in

the dataset an anonymous username. There are n many Dj’s that form the set D, where

D := {D1, D2, . . . , Dn}. Our proposed algorithm seeks to integrate all Dj’s to produce an

anonymized, differentially-private data set D̂. Since producing D̂ also requires a privacy

parameter ε, a pre-determined amount of specializations S, and knowing the total amount

of numerical attributes N , we can equivalently describe it as D̂(S, ε,N ,D). It should be

noted that S corresponds to how many times Protocol 4.1 is used.
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The parties begin with their respective datasets Dj . Each dataset contains public iden-

tification ID for each individual, a public Classifier Ac, a collection of publicly known at-

tributes ~A, and private individual recordsRj . Thus we can representDj asDj(ID,A
c, ~A,Rj).

Each attribute Ai ∈ ~A that a party owns has a corresponding taxonomy TAi . A taxonomy

describes all the values that Ai can acquire in terms of classification. Each taxonomy

begins as a root node, which is the most general value (or classification) that Ai can

acquire. All taxonomies have the capacity to become specialized, acquiring new child

nodes in the process. For the categorical attributes, the manner in which specialization

occurs is predetermined. For numerical attributes, specialization is computed using the

exponential mechanism. The parties know which taxonomy is specialized based on the

winning-attribute selected through Protocol 4.1. Each party privately organizes (or groups)

their private records Rj (as well as IDs) with respect to all the taxonomies of all the

attributes they own. By doing this, the party create their own Sub-Partitioning Tree P∗j .

Each P∗j similarly has a root node, where all the records they own are classified into

one group. Since P∗j is dependent on each collective taxonomy, if a taxonomy TAi is

updated, then P∗j is specialized with respect to how a TAi was updated, assuming Pj

owns attribute Ai. Each child node in P∗j is regarded as a “sub-partition”. The parties

will then agree on a particular set of sub-partitions (excluding records) that are distributed

among themselves. This particular set of sub-partitions will be known as a ”leaf node”.

With respect to this protocol, each Pj will select the attribute-value(s) contained in a

single leaf-node with respect to their P∗j . Pj will then transformed each attribute value

contained in the leaf node into binary attribute-vectors described as ~Vjk , based on the

records they own. The binary attribute-vectors owned by Pj can then be simplified into

a single binary standardized attribute-vector ~Pj . The parties want to determine how many

records are contained in (or satisfies) all the pre-specified sub-partitions distributed among
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themselves. The amount of records satisfying all the pre-specified sub-partitions is called

the “True Count”, TCount. To acquire TCount, the parties use their respective ~Pj’s

to derive a single count-vector ~C, where the contents of ~C are securely encrypted and

~C indirectly contains TCount. Each party jointly uses an encrypted-table T to derive

JTCountK. The parties will jointly and securely generate encrypted random noise, de-

scribed as JLaplaceK. The parties do the following addition to acquire the encrypted “Noisy

Count”, JNCountK = JTCount+LaplaceK = JTCountK×JLaplaceK. Finally the parties

jointly decrypt and reveal the encrypted Noisy Count, NCount. NCount is then assigned

to the differentially-private dataset D̂, with respect to the pre-specified sub-partitions. Or in

other words, D̂ will contain many different NCount’s with respect to the combination of

pre-specified sub-partitions that the parties are interested in. When D̂ is released, the data

miner will acquire an integrated dataset, which is both secure and differentially private.

5.2 Protocol Details

5.2.1 Attribute Taxonomy

Any_Education Any_Job Any_Sex

College No CollegeCollege

UndergraduateGraduate

Employed Unemployed

Professional Artist

Male Female

Education Job Sex

Figure 5.1: Attribute Taxonomies
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Main Protocol: Input: Raw datasets D = {D1, D2, . . . , Dn}, privacy budget ε, total number of
numerical attributes N , and the number of specializations S

Output: Differentially-private dataset D̂

1. Parties construct the root node T0 =
⋂n
j=1Root(Tj) of the unified taxonomy T, where all

attributes are initially unspecialized

2. Each party determines ε∗ ← ε
4(S·N )

3. Each party determines the split-value for each Ani they own with probability ∝ exp( ε∗

2∆u ×
u(D, Ani ))

4. Each party computes the utility-score for each respective attribute they own, through the utility
function u(D, Ai).

5. For q = 1 to S do the following:

(a) All parties jointly execute Protocol 4.1 (Multiparty Exponential Mechanism) on Tq−1 to
determine the (q − 1)th winning attribute Awq−1.

(b) The party owning the winning attribute Awq−1 performs the following:

i. Derives Tq as follows:
A. If Awq−1 is categorical, specialize Awq−1 on Tq−1 with respect to its taxonomy

TAw
q−1

.
B. IfAwq−1 is numerical, specializeAwq−1 on Tq−1 with respect to its split value va.

ii. Instruct other parties on how to specialize.

(c) Each party determines the split-value for each Ani they own with probability∝ exp( ε∗

2∆u ×
u(T,Ani )).

(d) Each party computes the utility-score of each attribute Ai ∈ Tq from utility function
u(D, Ai).

6. For each leaf partition Pleaf (T) ∈ TS , all parties execute Protocol 5.2 (SPACE) to securely
compute its noisy count NCount.

7. Return D̂ = {(Pleaf (T), NCount)}.

Protocol 5.1: Main Protocol

Before acquiring D̂, we begin with D. Recall each dataset Dj ∈ D, contains a collection

of attributes and records. For categorical attributes, they have a pre-defined taxonomy

on how an attribute (like ’Job’) can be re-classified into sub-attributes (Engineer, Doc-

tor, Lawyer, etc.), as well as how those sub-attributes can also be re-classified into other
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Secure & Private Attribute-Counting Exchange (SPACE) Protocol
Input: Leaf partition P ∗leaf , privacy budget ε̂ = ε

2 .
Output: Noisy count NCount of P ∗leaf .

1. Each party Pk computes its standardize attribute-vector for partition Pleaf , and then encrypts
each element using exponential ElGamal: ~Pk = 〈JXk,1K, JXk,2K, . . . , JXk,dK〉, where d is the
total number of records.

2. All parties homomorphically compute count vector: ~C := 〈JC1K, JC2K, . . . , JCdK〉, where:
JCjK := (g

∑n
k=1Xk,j ·A(

∑n
k=1 rk) mod p, g

∑n
k=1 rk mod p).

3. Apply the Mix and Match protocol M(~C) (Protocol 5.3) to compute the exponential ElGamal
encryption of true count JTCountK of records satisfying all the attributes in Pleaf .

4. Each party Pk computes two gamma variables: Y1,k ∼ Gamma(n, 1/ε̂) and Y2,k ∼
Gamma(n, 1/ε̂), and then encrypts Yk = Y1,k − Y2,k using the group public key A:
JYkK := (gYk ·Ark mod p, grk mod p).

5. All parties homomorphically compute:
JY K :=

∏n
k=1JYkK = (g

∑n
k=1 Yk ·A

∑n
k=1 rkmodp, g

∑n
k=1 rkmodp) = (gY ·Armodp, grmodp).

where Y ∼ Laplace(0, 1\ε̂)

6. Compute the encryption of noisy count JNCountK := JTCountK× JY K.

7. All parties jointly decrypt JNCountK described as α and then apply the discrete-log algorithm
to determine the noisy count NCount.

8. Jointly decrypt JNCountK:

α = (Ar−ŕ · gNCount)/
n∏
k=1

(gr−ŕ)ak = gR−L mod p.

9. Apply discrete-log algorithm on α to compute NCount.

10. Return NCount.

Protocol 5.2: SPACE

sub-attributes (Chemical Engineer, Pediatrician, State Attorney, etc.). In this case ’Job’,

is commonly referred to as the ’root’ node (indexed as Root), since it encapsulates all of

the other classifications. The first set of sub-attributes mentioned earlier can be referred to

as ’1st order child-nodes’ (indexed as Child1). The second set of sub-attributes that were

mentioned can be similarly described as ’2nd order child-nodes’ (indexed as Child2). In
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Mix and Match Count Protocol
Input: Encrypted count vector ~C := 〈JC1K, JC2K, . . . , JCdK〉.
Output: Encrypted true count JTCountK

1. All parties agree on an initial Mix and Match table T encrypted with their group public key A:

Input Output
J0K J0K
J1K J0K
J2K J0K

...
...

JnK J0K

2. For each element JCjK in the count vector ~C, where 1 ≤ j ≤ d:

(a) All parties jointly apply Mix Network protocol to randomly shuffle the rows and re-
randomize all ciphertexts in T .

(b) For each row in T :

i. Jointly apply plaintext equality test (PET) between JCjK and the input ciphertext in
that row.

ii. If there is a match (PET is satisfied), homomorphically increment the corresponding
output by 1 by multiplying the corresponding ciphertext with J1K, and then go back
to Step 2.

3. All parties jointly apply (PET) between JnK and each ciphertext in the input column of M .

4. When a match is found, return the corresponding output ciphertext (which represents the en-
crypted true count JTCountK).

Protocol 5.3: Mix and Match Count

this case, a taxonomy can also be thought of as a collection of values, where all values

have a common relation with a single value, which is the root node. Given a set X

containing values that are all connected by a single root node, the root node of X is defined

as Root(X) = Child0(X), while the kth order child-node of X is defined as Childk(X).

The taxonomy of each categorical attribute is publicly available prior to Protocol 5.1. Since

the taxonomy of categorical attributes are predetermined and public, no privacy budget

is required to generate the sub-attributes of the root node. However, that is not true for
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numerical attributes Ani . The taxonomy of each Ani must be generated using an exponential

mechanism. This can be done by first examining the numerical domain of Ani . We use the

utility function u(D, Ani ) to assign a utility-score to each element in the domain. We group

all the elements in the domain which were assigned the same utility-score into a set Ia. For

each unique utility-score assigned through u(D, Ani ), there exists an Ia which contains the

elements that were assigned the same utility-score. We then use the exponential mechanism

to select Ia amongst the other I’s, where the Ia which contains the highest utility-score is

exponentially more likely to be chosen. Finally, we randomly select an element va ∈ Ia,

where va is now regarded as the ’split-value’ of Ani . The split-value dictates the taxonomy

of Ani . We can also get a visual intuition in regards to attribute taxonomies by examining

Figure 5.1

Example 5.2.1. Assume Pj owns the numerical attribute An1 which has integer values

from 1 to 10, where [1,10] is the root node of An1 . Based on u(D, Ani ), let us say Pj

determined the elements contained in {1, 5, 6} each have the utility-score U1, the elements

in {2, 3, 9, 10} each have have the utility-score U2, and the elements in {4, 7, 8} each have

the utility-score U3. Pj then defines the following sets I1 = {1, 5, 6}, I2 = {2, 3, 9, 10},

and I3 = {4, 7, 8}. Pj uses the exponential mechanism to select I3. Pj then randomly

selects the split-value v3 ∈ I3. In this example, assume v3 = 4. Now that v3 is acquired,

Pj takes the root node [1,10] and splits it into two 1st order child-nodes [1,4] and [5,10].

The root node along with the subsequent child nodes become the updated taxonomy of An1 ,

which is publicly available. Now we have the following,

TAn1 = {[1, 10]Root, [1, 4]Child1 , [5, 10]Child1} �

To explicitly detail how to derive a split value from a numerical attribute Ani mathemati-
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cally, the steps are detailed below

• Construct a discrete interval for Ani containing all possible values of Ani , described

as IAni

• Partition IAni into subsets I1, . . . , Ik such that all elements va within some subset Ia

have the same utility-score where Ua = u(D, va)

• Use exponential mechanism to select an interval Ia with privacy budget ε′ and prob-

ability:

exp( ε′

2∆u
× u(D, va(Ani )))× |Ia|∑k

b=1(exp( ε′

2∆u
× u(D, vb(Ani )))× |Ib|)

where va ∈ Ia, va(Ani ) designates va is derived from Ani , and |Ia| represents the

number of values in the subset.

• Uniformly select a value va ∈ Ia to be the split-value for Ani .

Since the taxonomy of Ani is dependent on the exponential mechanism, whenever the

taxonomy of a numerical attribute is updated some of the privacy budget is consumed. The

exponential mechanism will use ε′ of the total privacy budget, where ε′ < ε. The taxonomy

of every attribute begins as a root node, which is the most generalized classification with

respect to that attribute. If the attribute is selected through Protocol 4.1, the root node is

updated and specialized into sub-classifications(or child-nodes). And as mentioned earlier,

depending on whether the attribute is categorical or numerical will dictate whether its

taxonomy is predetermined or computed. For any attribute Ai, its taxonomy is defined as

TAi . Ai can acquire varying classification values depending on what part of the taxonomy
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you are looking at. A specific classification value is described as ”Ai.value”, where each

Ai.value is initialized as the the root node of its taxonomy, Root(TAi). Ai.value can

be understood to be a set of values, which corresponds to a specific location within the

taxonomy. For instance, the attribute ”Job” that we will describe as A1 can acquire a series

of classification values. For A1.value, assume value ∈{Any JobRoot, EmployeedChild1

, UnemployedChild1 , rofessionalChild2 , ArtistChild2}, each value is an element of TA1 where

Root(TA1) = Any Job. Based on TA1 , theChild1 values a generated from theRoot value.

However, the Child2 are generated from EmployeedChild1 , while UnemployedChild1 gen-

erates nothing.

5.2.2 Partitioning Process

Taxonomies are only concerned with how to classify records. Partitions are very similar,

however they include and incorporate the private records of the datasets. For some Ai

owned by Pj , there exists a TAi that classifies and organizes all records in Rj , as well

as ID. In other words, a taxonomy allows Pj the ability to group its records and ID’s

with respect to an attribute. For simplicity within this section, assume that each record

is accompanied by its respective ID. Pj will need to classify the individual records it

owns, with respect to all the taxonomies they own. The intersection of all the taxonomies

that Pj owns is equivalently described as Pj’s “group taxonomy”, Tj :=
⋂mj
i=mj−1+1 TAi ,

where each TAi ∈ Tj is initialized as a root node. The details of how taxonomies are

intersected and implemented are highlighted in Definition 5.2.1 and Example 5.2.2. Since

the group taxonomy Tj functions as an intersection of all the taxonomies owned by Pj ,

Tj is also a taxonomy. When Pj groups the individual records with respect to the values

within Tj , we have a “sub-partitioning tree”, P∗j . There exists n many of these partitioning
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trees, privately owned by each respective party. From a theoretical standpoint, we can

construct a single Partitioning Tree P∗ :=
⋂n
i=1P∗i , where the word “partition” (defined

in Definition 5.2.2), directly corresponds to the partitions of P∗(See Figure 5.2). These

partitions are analogous to the root node and child nodes of P∗. It is also very important to

understand that P∗ does not actually exist in practice. This is because the records must

remain private and if some Pj has access to P∗, then Pj would have direct access to

everyone’s records. Although no party has direct access to P∗, we will eventually see

why it is useful. From the reader’s perspective, the root node of P∗ will encapsulate the

most general values of each attribute, as well as all the private records of each party. We

describe this root as D0 := P∗root. From there, we run Protocol 4.1 to acquire Aw0 owned

by some Pj , we specialize (or partition) P∗ with respect to Aw0 . From our original root

node, we now have 2 or more 1st order child-nodes. These 1st order child-nodes will be

contained in D1. Similarly, we run Protocol 4.1 again to acquire Aw1 , where each of the

1st order child-nodes, will produce 2nd order child-nodes (it is possible for child-nodes to

be empty). All the non-empty 2nd order child-nodes would similarly be contained in D2.

Since there are S many specializations, the process described will occur S many times.

After the Sth specializations, the partitions that correspond to the Sth order child-nodes

are called ’leaf nodes’ or Pleaf , which function as input for Protocol 5.2. In general,

the set of kth order child-nodes Childk(P ∗) in the Partitioning Tree P ∗ is described as

Dk = Childk(P
∗) ⊆ P∗. Although the reader can see how P ∗ can organize all the values

and records contained in D, the individual parties do not have this perspective. We can

avoid this problem by examining a version of P ∗ without records. When the records are

removed from P ∗, it is actually a taxonomy, which we designate as the unified taxonomy

T. T is really just an intersection of all the Tj’s following the final Sth specialization. In

the same way P ∗ has kth-order child nodes Childk(P ∗), T has corresponding kth order
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child-nodes Tk = Childk(T) ⊆ T that do not contain records.

Definition 5.2.1. = Taxonomic Intersection

A taxonomic intersection between two taxonomies T1 and T2, described as T = T1 ∩T2 is

defined as follows:

LetChildk(Ti) represent the kth order non-empty child-node(s) of Ti, whereChild0(Ti) :=

Root(Ti). For Childa(T1) and Childb(T2), assume 0 ≤ max(a) ≤ max(b). Or in other

words, the taxonomy of T2, is at least as tall (or long) as the taxonomy of T1. Also

let ki ∈ Childc(Ti) be an attribute value in Ti, where arbitrary attribute-values assume

non-empty intersections (i.e ks ∩ kt 6= ∅)

If k1 ∈ Childa(T1) and k2 ∈ Childb(T1), then Childa(T1) ∩ Childb(T2) := {k1 ∩ k2}

The kth order child-node of T is given as,

Childk(T) :=


Childk(T1) ∩ Childk(T2) if 0 ≤ k ≤ a

Childa(T1) ∩ Childk(T2) if a < k ≤ b

Definition 5.2.2. = Partition. A partition C is a tuple:

[A1, A2, . . . , Amn , A
c, Recs], where:

• {A1, A2, . . . , Amn} is the set of all attributes in T , where each attribute Ai : 1 ≤ i ≤

mn can be assigned a single value Ai.value from its corresponding taxonomy tree

TAi . Any record assign to partition C must satisfy these values.

• Ac attribute represents the count of each class value from the records assigned to C.
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• Recs attribute contains the list of records assigned to C.

Example 5.2.2. This example highlights how to intersect taxonomies TAi as well as con-

structing a Sub-Partitioning Tree P ∗j . Imagine party 1 has a dataset which contained three

attributes {A1 = Job, A2 = Sex,A3 = Age} and a total of 5 records. For those who want

to acquire a visual regrading Partitioning Trees or Sub-Partitioning Trees in Figure 5.2 We

will define the values of each attribute as follows:

For A1.value, value ∈ TA1

TA1 = {Any Jobroot, Employeedchild1 , Unemployedchild1} = {Job, E, U}

For A2.value, value ∈ TA2

TA2 = {Any Sexroot,Malechild1 , Femalechild1} = {Sex,M, F}

For A3.value, value ∈ TA3

TA3 = {[18, 99]root} = {Age}

Based on the values above we can see that both A1 and A2 were specialized once and

A3 was not specialized at all. Let us assume that A1 is specialized first, followed by A2.

The order of specialization will dictate the development of the final taxonomy T1

For T1 = TA1 ∩ TA2 ∩ TA3 = TJob ∩ TSex ∩ TAge



66

T1 (public)

Root(T1) Child1(T1) Child2(T1)

Job ∩ Sex ∩ Age E ∩ Sex ∩ Age E ∩M ∩ Age

− U ∩ Sex ∩ Age E ∩ F ∩ Age

− − U ∩M ∩ Age

− − U ∩ F ∩ Age

Observe T1 has 7 values (or classifications). If P1 partitions (or assigns) its recordsR1

with respect to the values of T1, then P1 can easily derive its Sub-Partitioning Tree P∗1 .

Think of P∗1 as party 1 ’injecting’ its records into T1. Let us say R1 = {r1, r2, r3, r4, r5},

then for this example assume P1 can construct the following:

P∗1 (private)

Root(P ∗1 ) Child1(P ∗1 ) Child2(P ∗1 )

{r1, r2, r3, r4, r5} {r1, r5} ∅

− {r2, r3, r4} {r1, r5}

− − {r2, r4}

− − {r3}

Based on P∗1 , the reader (as well P1) can make various conclusions such as the individ-

uals that correspond to record 1 and record 5 are employed, female, and between the ages

of 18 and 99 years old. For instance, the records corresponding to an employed female are

r1 and r5

Since there were only 2 specializations among P1’s attributes, that implies S = 2. Thus

Child2(P ∗1 ) = {P∗leaf1
,P∗leaf2

,P∗leaf3
} = {{r1, r5}, {r2, r4}, {r3}}, where empty child-
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nodes are disregarded. For simplicity, this toy example lacks a classifier attribute. The

classifier attribute (which is public) would be treated exactly like the other attributes. Once

the P ∗leaf ’s appear, P1 will determine which records in each P ∗leaf satisfies the classifier

attribute. �

5.2.3 Computing Count Vector

(The count vector is the input for step 6 in the MAIN Protocol)

After the Protocol 4.1 (Multiparty Exponential Mechanism) is ran S times, the parties

constructed their respective P ∗j . From there, each party will examine their respective leaf

partitionsChildS(P ∗j ) ∈ P ∗j , and encode each partition. Each leaf partition will be encoded

as binary vectors, where each element of each vector is either ’1’ or ’0’.

Following an execution of Protocol 4.1 S number of times, we acquire the following

sequence of winning-attributes: Aw0 , A
w
1 , . . . , A

w
S−1. Each Awi indicates how the respective

owner party Pj specializes their group taxonomy Tj , which is initialized as a root node.

After S many specializations, the parties construct a unified taxonomy T :=
⋂n
j=1 Tj ,

which is an intersection of each parties respective group taxonomy. Once the parties appro-

priately intersect their respective group taxonomies they examine the Sth order child-nodes

of T, described as ChildS(T). For each P ∗leaf ∈ ChildS(T), Pj accounts for all the

attributes-values that correspond to the attributes they privately own. Pj will code the

attribute-values into binary vectors. For a particular attribute-value, a record which satisfies

an attribute-value and classifier attribute will be assigned a value of 1, otherwise the record

will be assigned the value 0. The number of records that satisfies all the attribute-values and

classifier within a particular P ∗leaf is called the true count ’TCount’. To acquire TCount
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in a secure and private manner will require the construction of the encrypted count vector

~C := 〈JC1K, JC2K, . . . , JCpK, . . . , JCdK〉. Recall parties P1, P2, . . . , Pn own a unique set of

attributes, where Pj owns Mj many attributes. We will assume there are z attributes and

d records in total. Given P ∗leaf , each attribute-value that corresponds to an attribute that Pj

owns, can be converted into a row vector ~Vjk , where 1 ≤ k ≤ Mj and the ith column

of ~Vjk corresponds to whether record i satisfied a specific attribute-value and classifier. Pj

owns the following attribute-vector(s)

~Vjk := 〈x1j [k], x2j [k], . . . , xdj [k]〉 (5.1)

Where xik ∈ {0, 1}, k ∈ [1, . . . ,Mj]

Although Pj ownsMj many attribute-vectors, we would prefer if each party had exactly

one vector to reduce complexity. We also would like a single vector to preserve information

of all the attribute-vectors that Pj owns. Pj can construct such a vector by taking all the

~Vjk’s it owns and multiply the respective columns elements together, creating ~Pj . ~Pj is

referred to as Pj’s standardized attribute-vector and is defined as:

~Pj := 〈
Mj∏
k=1

x1j [k],

Mj∏
k=1

x2j [k], . . . ,

Mj∏
k=1

xdj [k]〉 (5.2)

To further simplify notation we have

~Pj = 〈X1,j, X2,j, . . . , Xd,j〉, Xij ∈ {0, 1} (5.3)

Now that all the parties privately constructed their respective ~Pj , we would like to add

all the respective column components together, acquiring a single vector in the process.
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However, if we are going to add the respective column components of each ~Pj then we need

to do so in a secure manner. This can be done in a manner similar to Protocol 4.2, where

Exponential ElGamal was the basis of secure homomorphic addition. Thus the parties can

compute the following ElGamal encryptions,

JCpK := ((
n∏
i=1

gXpi) · A(
∑n
i=1 ri), g

∑n
i=1 ri), 1 ≤ p ≤ d (5.4)

where all operations are in mod p′. To simplify the notation we have

JCpK = ((
n∏
i=1

gXpi) · Ar, gr) (5.5)

Now we finally have the components to construct the encrypted count-vector.

~C := 〈JC1K, JC2K, . . . , JCpK, . . . , JCdK〉 (5.6)

The Cp element in C satisfies all specified attributes-values contained in some P ∗leaf if and

only if Cp = n, where n represents the number of parties. By building ~C, the parties

now have the means of determining how many records in D satisfy a pre-determined set of

attribute values(i.e a leaf node), along with a classifier.

Example 5.2.3. There are three parties, with 6 attributes and 10 records in total. P1 owns

job (professional, artist), sex (male, female) and salary ([1-10]). P2 owns the education

(As, Bs, Ms, PhD), while P3 owns debt ([1-10]) and health (good, bad). for this example

a record that is assigned a value of ‘1’ satisfies both a predesignated attribute value and

classifier Ac. Let us assume that Ac corresponds to whether an individual was approved for

a loan. The parties construct the following attribute-vectors:
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P1 owns the job attribute-vector

~V11 = ~A1 = 〈1, 0, 0, 1, 0, 1, 0, 1, 0, 0〉, 1 if professional

P1owns the sex attribute-vector

~V12 = ~A2 = 〈1, 1, 0, 1, 1, 1, 1, 1, 0, 1〉, 1 if female

P1owns the salary attribute-vector

~V13 = ~A3 = 〈1, 0, 0, 1, 1, 1, 0, 0, 0, 0〉, 1 if salary 5

P2owns the education attribute-vector

~V21 = ~A4 = 〈1, 1, 1, 1, 0, 1, 0, 1, 0, 1〉, 1 if bachelors

P3owns the debt attribute-vector

~V31 = ~A5 = 〈1, 0, 1, 1, 0, 1, 1, 1, 0, 0〉, 1 if debt 4

P3owns the health attribute-vector

~V32 = ~A6 = 〈1, 0, 0, 0, 0, 0, 0, 0, 0, 0〉, 1 if healthy

Now that each party has an attribute-vector for each attribute, Pj multiplies the respective

column elements among the attribute vectors it owns. Pj then constructs its standardized-

attribute vector ~Pj .

~P1 = 〈X1,1, X2,1, . . . , X10,1〉 = 〈1, 0, 0, 1, 0, 1, 0, 1, 0, 0〉

corresponds to professional ∩ female ∩ salary

~P2 = 〈X1,2, X2,2, . . . , X10,2〉 = 〈1, 1, 1, 1, 0, 1, 0, 1, 0, 1〉

corresponds to bachelors

~P3 = 〈X1,3, X2,3, . . . , X10,3〉 = 〈1, 0, 0, 0, 0, 0, 0, 0, 0, 0〉

corresponds to debt 4 ∩ healthy

Notice that ~Pj correspond to a partition involving an intersection of multiple attribute



71

values. In this case, the records of P1 are contained in the partition of P∗ which only

intersects Professional, Female, and Salary 5. Similarly R2 ∈ {Bachelors} ∈ P∗ and

R3 ∈ {Debt 4∩Healthy} ∈ P∗. After each ~Pj is privately derived, the parties homomor-

phically add their respective column elements among their standardize attribute-vectors.

By doing this, the parties collectively construct ~C.

~C = 〈J3K, J1K, J1K, J2K, J0K, J2K, J0K, J2K, J0K, J1K〉

From the reader’s perspective, we can see record 1 satisfies the intersection of all 6

attributes-values while records 5, 7, and 8 satisfy none of the attribute-values. Since the

parties are interested in the number of records satisfying all attribute-values, called the

’True Count’ (TCount). From the reader’s perspective the TCount in this example is

equal to 1. In the next section we will described how the parties can manipulated and

acquire a representative of TCount given ~C. �

5.2.4 Deriving the Encrypted True Count

(Step 6 of the MAIN Protocol, where C is the input of Protocol 5.3)

After the parties construct their respective ~Pj’s, they collaborate to compute ~C. Their

next objective is to determine TCount, where TCount represents how many elements

JCpK ∈ C satisfy all the attribute values among all parties. Or equivalently, the parties are

interested in how many elements in JCpK = JnK . However, they do not want to reveal

TCount, as that would breach the privacy of the records. So instead, the parties would

like to derive an encrypted version of the TCount, described as JTCountK. This can be
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achieved in Protocol 5.3. This protocol use a table T which contains two equally-sized

columns, designated as ’input’ and ’output’. The ’input’ side of T contains all of the

following values {J0K, J1K, J2K, . . . , JnK}, where n designates the number of parties. The

’output’ side of T initially has n+ 1 many J0K’s.

Table 5.1: General Table T

Input Output
J0K J0K
J1K J0K

...
...

Jn− 1K J0K
JnK J0K

In order to derive JTCountK we must first construct the “count table”, T . Refer to

table 5.1 for a visual observation. It should be noted that T is typically not in numerical

order, and is normally randomized. The numerical ordering was done so the reader can

acquire visual intuition of T . Once T is initialized, then it is defined as T0. Each element

of T0 will be encrypted with a single joint public-key A from ~C, while using a temporary

joint ephemeral-key r (See Protocol 4.2). Party Pj will take JCpK ∈ ~C and compare it with

the elements of the input column, from top (1st row, 1st column) to bottom (nth row, 1st

column). Pj will then conduct a Plaintext Equality Test (PET). If we designate the kth

input element in T as JIkK (kth row, 1st column), Pj will verify if 1 = JCpK/JIkK. If true,

PET is verified which implies Cp = Ik. Since Cp and Ik are both encrypted Pj only knows

that both values are equal. However, Pj does not know what Cp or Ik are numerically.

Following verification, Pj looks at the corresponding kth output element, which we will

describe as JOkK ∈ T (kth row, 2nd column). Pj then homomorphically adds J1K to JOkK,

where JOk + 1K = JOkK × J1K. After the output element is incremented, the parties apply
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a mix-network to the table. This means the rows of T are randomly “shuffled” row-wise

and each element of T are encrypted with a new joint ephemeral-key r′. Thus the ith count

table Ti is updated to Ti+1. Pj would similarly conduct PET and increment similarly on

Ti+1, but using JCp+1K ∈ ~C instead. This process will iterate from JC1K to JCdK. After T0

is updated the dth time as Td, they will make one final update given as Td. The parties will

similarly examine the input column of Td. Pj will then conduct PET with JnK and JIkK,

from top to bottom of Td. Once PET is verified, Pj will examine the corresponding output

element JOkK. This JOkK will not be modified or incremented in anyway. Once Pj has this

particular JOK, Pj now knows the encrypted true count where JTCountK = JOK.

Example 5.2.4. Assume ~P1 = 〈1, 0, 1〉, ~P2 = 〈1, 1, 1〉, ~P3 = 〈1, 0, 1〉. We homomorphi-

cally add the columns of the standardized attribute-vectors yielding ~C = 〈J3K, J1K, J3K〉 =

〈JC1K, JC2K, JC3K〉. Since there are three parties in this example that implies n = 3. The

parties collectively construct the first table, designated as T0. Then begin the process with

JC1K = J3K.

Initialized table T0

T0 =



J3K J0K

J2K J0K

J1K J0K

J0K J0K


First input element in T0 matches JC1K, designate as ’yes’, increment output
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T0 =



J3Kyes← J1K

J2K J0K

J1K J0K

J0K J0K


*Shuffle table row-wise and update ephemeral key*

First input element in T1 matches JC2K, designate as ’yes’, increment output JC2K =

J1K

T1 =



J1Kyes← J1K

J0K J0K

J3K J1K

J2K J0K


*Shuffle table row-wise and update ephemeral key*

JC3K = J3K

T2 =



J0Kno← J0K

J1K J1K

J3K J1K

J2K J0K



T2 =



J0K J0K

J1Kno← J1K

J3K J1K

J2K J0K


Third input element in T2 matches JC3K, designate as ’yes’, increment output



75

T2 =



J0K J0K

J1K J1K

J3Kyes← J2K

J2K J0K


*Shuffle table row-wise and update ephemeral key*

JnK = J3K

T3 =



J3Kyes← J2K

J2K J0K

J1K J1K

J0K J0K


First input element in T2 matches JC3K, designate as ’yes’, acquire corresponding

output element Each party Pj obtains the output J2K, which corresponded to the input

value JnK, thus JTCountK = J2K. �

5.2.5 Deriving the Noisy Count

(Steps 4-8 in the Protocol 5.2(SPACE))

Once the parties acquire JTCountK their final objective is to add random noise to the

JTCountK, using the Laplace Mechanism. In other words, they would like to make the

true count noisy, which in turn preserves ε-differential privacy. Once noise is added to

the encrypted true count, we acquire the encrypted noisy count JNCountK = JTCount +

LaplaceK = JTCountK× JLaplaceK. From there, decrypt the encrypted noisy count to get

the following NCount.
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After each party, Pj acquires JTCountK they start on Step 4 of Protocol 5.2 to derive

the noisy count. To do this, Pj will sample two gamma random variables Y1,j, Y2,j ∼

Gamma(n, 1/ε). Pj will then subtract the gamma variables from each other, yielding

Yj = Y1,j − Y2,j . Using joint group-key A with ephemeral-key rj , Pj encrypts Yj as JYjK.

The parties collectively multiply their encrypted values, acquiring JY K :=
∏n

i=1JYiK. In this

case, Y ∼ Laplace(0, 1/ε) and JY K := JLaplaceK. The goal is to homomorphically add

the encrypted true count to the encrypted Laplacian noise to get, JTCount + LaplaceK =

JTCountK × JLaplaceK, where JNCountK = JTCount + LaplaceK. Once the parties

collectively acquire JNCountK, they will use their private keys to decrypt, followed by a

discrete logarithm-algorithm to acquire NCount.

Example 5.2.5. (Continuation of Example 5.2.4) Assume each of the three parties sam-

pled two gamma variables (Y1,j, Y2,j), then subtract their values. P1, P2, and P3 respectively

own: Y1 = 0.45, Y2 = −0.90, and Y3 = 1.15. From there the parties first encrypt,

then homomorphically add those values. The parties collectively derive JY K = J0.70K =

J0.45− 0.90 + 1.15K. From the example, recall the parties acquired JTCountK = J2K. The

parties homomorphically add JTCountK with JY K, acquiring JNCountK = J2+0.70K. Af-

ter the parties have the encrypted noisy count, they jointly decrypt and apply a discrete-log

algorithm to reveal NCount = 2.7. �

5.2.6 Protocol Summary

The MAIN Protocol is able to construct a differentially private dataset that can be used

for data mining. The protocol initially begins with each party owning their respective

attributes and agreeing on a privacy budget ε. It is already assumed that the taxonomy of

the categorical attributes are already established. It is also assumed that all attributes are
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initially unspecialized as a single root node. For the numerical attributes Ani , the owner

party will determine the corresponding split point. Once the split values are initialized,

each party will use a utility function u(D, Ai) to compute a utility score Ui for each Ai

they own. After Pj has its collection of attribute-score pairs Φj , the parties begin the

Multiparty Exponential Mechanism 4.1 to determine the qth winning attribute Awq . When

Awq is determined, the owner of Awq will update the corresponding taxonomy TAw , which

in turn updates their group taxonomy Tj , which also in turn updates the root-node of the

unified taxonomy T0 ∈ T. It should be noted that all taxonomies are public and T is

an intersection of all taxonomies, and updates relative to how each TAw updates. We

acquire S many winning-attributes, meaning that T will be specialized S times, where

the final ’level’ of partitions correspond to TS . Each partition in TS is regarded as a leaf

partition P ∗leaf (T). The parties will collectivelly examine each P ∗leaf (T) and derive an

NCount through Protocol 5.2. This NCount represents a differentially private version

of the ’true count’, described as TCount. TCount represents how many records satisfy

all the attribute values contained in a specific predetermined set of P ∗leaf (P
∗
j )’s owned

among the parties. Once each leaf partition in T has a corresponding NCount, the parties

have a collection of Leaf − NCount pairs {(P ∗leaf (T), NCount)}. This collection of

Leaf-NCount pairs is actually our differentially-private dataset D̂, therefore each party

acquires D̂ = {(P ∗leaf (T), NCount)} as an output.

5.3 Protocol Analysis

5.3.1 Security Analysis

In this section we will review the security of the MAIN Protocol. To verify security, we

must address moments when the parties specifically communicate with each other. There
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exist three moments where the parties actively communicate with each other Protocol 4.1

(Multiparty Exponential Mechanism), Protocol 5.2 (Secure & Private Attribute-Counting

Exchange), and Protocol 5.3 (Mix and Match Count). We previously verified the security

of the Multiparty Exponential Mechanism. Thus we only need to address the other two pro-

tocols. We will first begin by confirming whether Mix and Match Count Protocol(MMC)

is provably secure. It should be noted that MMC uses a cryptographic primitive described

as “Mix Network”. In the academic literature, Mix Network has many variants, some of

which are provably secure in a multiparty semi-honest setting. Since the security of Mix

Network has been demonstrated in the academic literature, we will not reprove its security

in this paper.

Establishing Key Values For the Mix and Match Count Protocol

1. We have the following for Pj

• xj = (~C, z∗)

• r∗j = (aj, ~rj)

Before Ti is re-randomized, re-shuffled, and updated to Ti+1, Pj uses a new

ephemeral key rji ∈ ~rj , where |~rj)| = d+ 1

• m = (T0, T1, . . . , Td, JTCountK)

• V iewΠ
j (xj, fj(~x)) = (xj, r

∗
j ,m)

• OutputΠj (~x) = JTCountK

• fj(~x) = J ´TCountK

2. We have the following simulated output-messages for Sj
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• Sj(xj, fj(~x)) = (xj, r
∗
j , T ∗0 , T ∗1 , . . . , T ∗d , JTCount∗K),

Lemma 5. Given the initial-input xj of each party Pj , the final-output of the trusted

third-party f is indistinguishable from the final-output of the real protocol. Or equiv-

alently f(~x)
c≡ OutputΠ(~x), where Π is the Mix and Match Count Protocol and ~x =

(x1, x2, . . . , xn).

Proof. When the ideal functionality f is given the initial-input vector ~x, we get the follow-

ing output: f(~x) = (f1(~x), f2(~x), . . . , fn(~x)) = (JTCountK, JTCountK, . . . , JTCountK).

For the real protocol, when given the same initial-input vector ~x we similarly get the

following output: OutputΠ(~x) = (OutputΠ1 (~x), OutputΠ2 (~x), . . . , OutputΠn (~x)) =

(J ´TCountK, J ´TCountK, . . . , J ´TCountK). So we need to verify that JTCountK
c≡ J ´TCountK.

By the Diffie-Hellman assumption, this is trivially true. Recall that ElGamal encryption is

semantically secure. Thus given two unique ciphertext, one cannot make any conclusion

about plaintext. Since no conclusion about the plaintext can be made, the ciphertext are

indistinguishable.

∴ f(~x)
c≡ OutputΠ(~x)

Lemma 6. The output messages of the simulator during an ideal (or simulated) execution

of Π is indistinguishable from the messages that Pj would have received (Pj’s view) during

a real execution of Π. Or equivalently Sj(xj, fj(~x))
c≡ V iewΠ

j (~x), where Π is the Mix and

Match Count Protocol.

Proof. Using proof by contradiction, let us assume,
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Sj(xj, fj(~x))
c

6≡ V iewΠ
j (~x)

=⇒ Sj(xj, JTCount∗K)
c

6≡ (xj, r
∗
j , T0, T1, . . . , Td, JTCountK)

=⇒ Sj(xj, JTCount∗K)
c

6≡ (xj, r
∗
j , {Ti}, JTCountK)

= (xj, r
∗
j , T ∗0 , T ∗1 , . . . , T ∗d , JTCount∗K)

c

6≡ (xj, r
∗
j , {Ti}, JTCountK)

= (xj, r
∗
j , {T ∗i }, JTCount∗K)

c

6≡ (xj, r
∗
j , {Ti}, JTCountK)

xj and r∗j are identical for Pj and Sj . Identical terms are trivially indistinguishable.

=⇒ ({T ∗i }, JTCount∗K)
c

6≡ ({Ti}, JTCountK)

=⇒ (T ∗i , JTCount∗K)
c

6≡ (Ti, JTCountK)

From the Diffie-Hellman assumption recall gc mod p
c≡ gb mod p. Each element in Ti

and T ∗i can be represented as gx mod p, where x is a positive integer. Thus, each table is

indistinguishable from each other, or equivalently Ti
c≡ T ∗i . We can make the following

reduction.

(JTCount∗K)
c

6≡ (JTCountK)

However this contradicts the Diffie-Hellman assumption. Thus our original assumption

must have been false.

∴ Sj(xj, fj(~x))
c≡ V iewΠ

j (~x)
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Theorem 5.3.1. The Mix and Match Count Protocol is secure in the multiparty semi-honest

setting

Proof. Let us assume Π is the Mix and Match Count Protocol. By Lemma 5, we proved

f(~x)
c≡ OutputΠ(~x). And by Lemma 6, we also proved Sj(xj, fj(~x))

c≡ V iewΠ
j (~x).

Therefore Π is secure in the multiparty semi-honest setting which is defined as.

{(Sj(xj, fj(~x)), f(~x))} c≡ {(V iewΠ
1 (xj, fj(~x)), OutputΠ(~x))}

Since we verified the security of MMC, the only thing left to do is verify the security of

the SPACE Protocol. This proof will have a similar flow to the other security proofs. the

only distinction is we invoke the fact that simulator SJ has access to Pj’s random tape,

specifically in Lemma 8. This knowledge will allow Sj to decrypt values at will by being

able to access the outcome of any event conducted by Pj which depends on chance. We

did not invoke this tactic in our other security proofs because it was not necessary to do so.

Establishing Key Values For the SPACE Protocol

1. We have the following for Pj

• xj = (Pleaf , z
∗)

• r∗j = (aj, ~́rj, Yj)

Pj uses a unique ephemeral key ŕji ∈ ~́rj for each element in ~Pj , where ~́rj = d.

• m = (~C, JTCountK, J ~YkK, JY K, JNCountK, α,NCount)
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• V iewΠ
j (xj, fj(~x)) = (xj, r

∗
j ,m)

• OutputΠj (~x) = NCount

• fj(~x) = ´NCount

2. We have the following simulated output-messages for Sj

• Sj(xj, fj(~x)) = (xj, r
∗
j ,
~C∗, JTCount∗K, J ~YS(k)K, JY ∗K, JNCount∗K, α∗, NCount∗),

Lemma 7. Given the initial-input xj of each party Pj , the final-output of the trusted

third-party f is indistinguishable from the final-output of the real protocol. Or equiva-

lently f(~x)
c≡ OutputΠ(~x), where Π is the Secure & Private Attribute-Counting Exchange

Protocol and ~x = (x1, x2, . . . , xn).

Proof. For the ideal functionality f , when given input ~x we get the following output:

f(~x) = (f1(~x), f2(~x), . . . , fn(~x)) = (NCount,NCount, . . . , NCount). For the real

protocol, when given the input ~x we similarly get the following output: OutputΠ(~x) =

(OutputΠ1 (~x), OutputΠ2 (~x), . . . , OutputΠn (~x)) = ( ´NCount, ´NCount, . . . , ´NCount). So

we need to verify that NCount
c≡ ´NCount. Based on the probabilistic nature of this

protocol It should be assumed NCount 6= ´NCount. Recall that NCount = TCount +

Laplace, where Laplace is a random variable selected from the random distribution

Laplace(0, 1\ε), which is notationally equivalent to Laplace∼Laplace(0, 1\ε). Define

Θ := TCount + Laplace(0, 1\ε). Thus, that implies NCount and ´NCount are sampled

from the same distribution, or equivalently NCount, ´NCount∼Θ. Although NCount 6=

´NCount, since the participants are semi-honest and the final-output falls within a proba-

bility distribution, the values cannot be distinguished. In other words, assuming Pj already
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derived NCount after executing Π once, given the same inputs from all parties, Pj would

expect that its new final-output NCount2 is not equal to NCount for the second execution

of Π. However NCount2 is arbitrary. Thus NCount 6= NCount2 is no different than

NCount 6= ´NCount. This suggests if Pj were sent ´NCount or NCount2, Pj would

assume either value is valid.

∴ f(~x)
c≡ OutputΠ(~x)

Lemma 8. The output messages of the simulator during an ideal (or simulated) execution

of Π is indistinguishable from the messages that Pj would have received (Pj’s view) during

a real execution of Π. Or equivalently Sj(xj, fj(~x))
c≡ V iewΠ

j (~x), where Π is the Secure

& Private Attribute-Counting Exchange Protocol.

Proof. Using proof by contradiction, let us assume that

Sj(xj, fj(~x))
c

6≡ V iewΠ
j (~x)

=⇒ Sj(xj, NCount)
c

6≡ (xj, r
∗
j , ~C, JTCountK, J ~YkK, JY K, JNCountK, α,NCount)

=⇒ Sj(xj, NCount)
c

6≡ (xj, r
∗
j , ~C, {gβ}, α,NCount)

=⇒ (xj, r
∗
j , ~C

∗, JTCount∗K, J ~YS(k)K, JY ∗K, JNCount∗K, α∗, NCount∗)
c

6≡

(xj, r
∗
j ,
~C, {gβ}, α,NCount)

=⇒ (xj, r
∗
j ,
~C∗, {gΓ}, α∗, NCount∗)

c

6≡ (xj, r
∗
j ,
~C, {gβ}, α,NCount)

xj and r∗j are identical for Pj and Sj . Identical terms are trivially indistinguishable.
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=⇒ ( ~C∗, {gΓ}, α∗, NCount∗)
c

6≡ (~C, {gβ}, α,NCount)

=⇒ ( ~C∗, gc mod p, α∗, NCount∗)
c

6≡ (~C, gb mod p, α,NCount)

From the Diffie-Hellman assumption recall gc mod p
c≡ gb mod p.

=⇒ ( ~C∗, α∗, NCount∗)
c

6≡ (~C, α,NCount)

~C∗ is similarly composed of sematically secure elements, thus we can make a further

reduction

=⇒ (α∗, NCount∗)
c

6≡ (α,NCount)

Recall that α is actually NCount before the Discrete-Logarithm algorithm is applied. This

means that α is a redundant representation of NCount. Thus we can make the following

reduction.

=⇒ (NCount∗)
c

6≡ (NCount)

All is left to show is that Sj can derive NCount∗ such that NCount∗ = NCount. Recall

that Sj has access to Pj’s random tape r∗j . Since Sj knows Pj’s random tape, Sj knows that

Pj selected Yj . Sj also knows Pj’s private key aj and ephemeral keys ~́rj . This suggests Sj

can directly derive Pj’s JYjK. Now we can proceed with the following algebraic argument.

JNCountK = JNCount∗K

=⇒ JNCountK = JTCount∗K× JY ∗K
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=⇒ JNCountK = JTCount∗K× J
∑

k∈Ψ YS(k) + YjK

Since Sj knows r∗j , Sj has Pj’s encryption components(private key aj , ephemeral keys ~́rj)

as well as the randomly generated Yj value. Sj also used its own encryption components

while simulating each Pk. Thus Sj can easily decrypt and algebraically manipulate the

homomorphic equation as follows,

=⇒ NCount = TCount∗ + (
∑

k∈Ψ YS(k) + Yj)

=⇒ NCount− Yj = TCount∗ + (
∑

k∈Ψ YS(k))

=⇒ (NCount− TCount∗)− Yj = (
∑

k∈Ψ YS(k))

Let C := (NCount− TCount∗)− Yj , where C ∈ R is a fixed value.

=⇒ C =
∑

k∈Ψ YS(k)

In order for NCount∗ to be equal to NCount, Sj needs to appropriately choose its sim-

ulated values YSj(k). Since NCount, TCount∗, and Yj are known by Sj this is easily

achievable. Note that Sj does not have full control of NCount, TCount∗, and Yj since

these values are dependent on the intermediate values that Pj executes throughout the

protocol. Those intermediate values are either unknown to Sj , or fixed. Assuming Sj

behaves optimally in the semi-honest setting, we conclude NCount∗ = NCount for all

simulations. However this contradicts (NCount∗)
c

6≡ (NCount), meaning our original

assumption Sj(xj, fj(xj, xk))
c

6≡ V iewΠ
j (xj, fj(xj, xk)) is false.

∴ Sj(xj, fj(~x))
c≡ V iewΠ

j (~x)
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Theorem 5.3.2. The Secure & Private Attribute-Counting Exchange (SPACE) Protocol is

secure in the multiparty semi-honest setting.

Proof. From Theorem 7.2.1, we proved that the intermediate protocol Mix and Match

Count is secure in the multiparty setting. In Lemma 7 we proved f(~x))
c≡ OutputΠ(~x)),

where Π represents the SPACE protocol. Also in Lemma 8 we showed Sj(xj, fj(~x))
c≡

(V iewΠ
1 (xj, fj(~x)). Therefore SPACE satisfies the below equation, making it secure in the

multiparty semi-honest setting.

{(Sj(xj, fj(~x)), f(~x))} c≡ {(V iewΠ
1 (xj, fj(~x)), OutputΠ(~x))}

Theorem 5.3.3. The Multiparty (Main) Protocol is secure in the multiparty semi-honest

setting.

Proof. Theorem 7.2.2 and 5.2.1 encapsulates every communication-based protocol in the

Main Protocol. Since all communication is secure in the multiparty semi-honest setting,

then we conclude the Main Protocol is secure in the multiparty semi-honest setting.

5.3.2 Complexity Analysis

Proposition 5.3.1. (Complexity) The total encryption and communication costs among n

parties for the Protocol 5.1 is respectively bounded by O(n2ξ) and O(dn3K), where d are

the number of records, n is the number of parties, and K is the bit length.

Let us begin with Protocol 5.3 (MMC). Recall that JmK := (Ar·gmmodp, grmodp) requires

3 exponentiations. We will assume the worst case scenario, where ~C := 〈JnK1, JnK2, . . . , JnKd〉
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and for all i ∈ [0 . . . , d], each Ti is defined as,

Ti =



J1K Jx1K

J2K Jx2K
...

...

Jn− 1K Jxn−1K

JnK JxnK


We can easily deduce that each Ti has 3 · 2n many exponentiations, implying there’s

3 · 2n(d+ 1) many exponentiations among all the Ti’s. For each k ∈ [0, . . . , d− 1], Tk has

exactly n many PET tests, and 1 homomorphic addition. Both a PET and homomorphic

addition requires 3 many exponentiations. This means Tk accounts for 3n · (d− 1) + 3 ·

(d− 1) many exponentiations, respectively. On the other hand, Td has exactly n many PET

tests, with 0 homomorphic additions. Thus, Td accounts for 3n · 1 many exponentiations.

Therefore, by taking the sum of the previously mentioned values, MMC accounts for

9dn + 3d + 6n many exponentiations, where d >> n. MMC also uses a Mix Network

protocol for the sake of randomization. Since there are several variations of Mix Networks,

we assume the complexity of some Mix Network to be Ω. Thus the encryption complexity

for MMC is O(Ω + 9dn+ 3d+ 6n) = O(Ω + dn).

For Protocol 5.2(SPACE) each party independently constructs ~Pj , which requires 3d

many exponentiations per party. Then the parties homomorphically compute ~C, which is

3d · n many exponentiations. After conducting MMC, the parties compute JYkK and JY K,

which both require 3 many exponentiations per party. And finally decryption requires 3

many exponentiations per party. Thus, SPACE requires 6d + 6 many exponentiations per

party, meaning its encryption complexity is given asO(3dn+3d+6) = O(dn). Recall the
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encryption complexity of Protocol 4.1 isO(n2ξ+zn). Since the Exponential mechanism is

ran S times, we get the followingO(S ·n2ξ + zn), which trivially reduces down toO(n2ξ).

Thus the encryption cost of Protocol 5.1(MAIN) is given by O(Ω + dn + n2ξ), reduces

to O(Ω + n2ξ). Since the complexity is low for the Mix Network we can make the final

reduction O(n2ξ).

For communication cost, lets first examine MMC. Each encrypted element in Ti has an

encryption cost of n(n− 1)K, where K designates the key size. Thus the communication

cost of each Ti is 2n·n(n− 1)K, where there is d+1 many Ti’s. This means that generating

all d + 1 tables requires a communication cost of 2n · n(n− 1)K · (d + 1). For SPACE,

line 2, 4, 5 and 6 has the following respective communication costs: d · n(n− 1)K, 0,

n(n − 1)K, and nK. Thus the communication cost for SPACE is O(((d + 1) · n3)K).

Recall the communication cost for Protocol 4.1 is O(n2ζ + nK). And for some Mix

Network, we will assume the communication cost is Ψ. Thus for Protocol 5.1(MAIN), the

communication cost is O(Ψ + (d + 1)n3K + n2ζ + nK) = O((dn3)K), since the Mix

Network complexity is low.

5.3.3 Correctness Analysis

Theorem 5.3.4. Assuming all parties are semihonest, Protocol 5.1(MAIN) releases ε-

differentially private data when all parties hold different attributes for the same set of

individuals

The MAIN Protocol has three major components which consumes the original privacy

budget ε: attribute selection, updating the taxonomy, and computing the noisy count. In
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this section, we will briefly overview their correctness and then algebraically prove that the

MAIN Protocol preserves ε-differential privacy.

• Attribute Selection

MAIN selects an attribute distributed among n parties S number of times using

the MultiParty Exponential Mechanism. MAIN uses an exponential mechanism to

select a winning-attribute Aw distributed among the parties. Since an exponential

mechanism was applied, then by Theorem 2.3.1 (exponential mechanism), Aw is

selected in a differentially private manner. The total privacy budget is ε, however for

the attribute selection we assume that consume ε1 much of the privacy budget per

selection, where ε1 < ε.

• Updating T

T is the taxonomic representation of the partitioning tree P ∗. T is publicly available,

and updates with respect to the taxonomy of some winning-attribute Aw. When a

winner is selected, both TAw and Aw are publicly announced among the n parties.

When categorical attributes are specialize, we do not consume any of the privacy

budget. This is because the taxonomy of all categorical attributes are already known

in advance, thus there is no privacy to protect. However, for numerical attributes,

their taxonomy is dictated by an exponential mechanism. Since we used the expo-

nential mechanism to specialize the taxonomy of a numerical attribute, we consumed

some of the privacy budget. In either case, if we are dealing with with categorical or

numerical attributes, differential privacy is preserved. Each time a numerical attribute

is updated, we assume that we consume ε2 much of the budget, where ε2 < ε.

• Computing the Noisy Count

MAIN reaches the final update after our Sth specialization, when we encounter leaf
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nodes. All the leaf nodes are contained in outputs DS , where P ∗leaf ∈ DS . MAIN

indirectly derives and encrypts the true count as JTCountK for some P ∗leaf . For each

respective P ∗leaf , the parties compute a noisy count NCount, where JTCountK →

NCount. Since the noise being added to TCount is Lap(1/ε′), by Theorem 2.3.2

(laplace mechanism), it is differentially private. Let use assume that each time we

use the Laplace Mechanism we consume ε3 much of the budget, where ε3 < ε.

Let us by assuming the following:

1. Per attribute, the Multiparty Exponential Mechanism, consumes ε1 := ε
4S of the

privacy budget.

2. Per attribute, the Exponential Mechanism used to determine the split value of a

numerical attributes consumes ε2 := ε
4SN .

3. For each P ∗Leaf , the Laplace Mechanism used to add numerical noise to the leaf

partitions of P ∗ to acquire the noisy count, consumes ε3 := ε/2 of the privacy budget.

Claim: The cumulative budget for (1)-(3) does not exceed ε

The Multiparty Exponential Mechanism is conducted S many times. The Exponential

Mechanism is also done S and applied among the N numerical attributes per iteration.

Thus by Theorem 2.3.3(sequential composition), we can sum the respective budgets
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S · ε1 + S · N · ε2

=⇒ S · ( ε
4S ) + S · N · ( ε

4SN )

=⇒ S·ε
4S + S·N ·ε

4SN

=⇒ ε
4

+ ε
4

= ε
2

Thus (1) and (2) consumes half the privacy budget. As for (3), recall that each leaf

partition P ∗Leaf uses ε
2

of the privacy budget. Although this may seem like we would quickly

go over budget, this is justified by Theorem 2.3.4. The leaf partitions are all derived from

the original dataset D, but are all disjoint from each other content-wise. Since we are

applying the same mechanism to disjoint sets, each set can consume the same budget ε′ is

overall equivalent to ε′-differential privacy. Thus for the Laplace Mechanism we can easily

assign a privacy budget of ε
2
.

∴ The MAIN Protocol consumes exactly ε = ε
2

+ ε
2

of the privacy budget, meaning it

preserves ε-differential privacy. �
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Chapter 6

CONCLUSION

6.1 Summary

In this thesis, we were able to construct a protocol that allows parties to integrate their

vertically-partitioned datasets in a secure and private manner. The protocol needed to

account for several instances of communication between the parties, where correspondence

needed to be provably secure. Using proof by simulation, we were able to prove that all

instances of communication were secure in the semi-honest setting for n parties, where

n ≥ 2. To ensure our the integrated dataset D̂ maintained privacy, we specialized the

dataset using a differential-private exponential mechanism and slightly perturbed numerical

data using Laplacian noise. From our efforts we found an efficient means of publishing

data in a multiparty setting, while preserving the privacy and confidentiality of the original

datasets. Such a certainly would allow organizations to freely cooperate without the risk of

leaking sensitive data inadvertently. Preserving data is becoming a more relevant issue

as companies who inadvertently leak information risk hurting their brand and/or legal

repercussions. Therefore we hope to pave a path where data owners can freely cooperate

in a manner which optimizes security, privacy, and data analytics.



93

6.2 Future Work

As far as our future work, we hope to extend the functionality of the MAIN Protocol to be

suitable in the malicious setting. This will be more challenging as we need to account for

arbitrary situations where any of the parties can deviate from the MAIN Protocol for any

reason. The current MAIN Protocol is contingent on the assumption that everyone follows

the rules, but attempts to learn information from the other parties. Our protocol is well-

suited for the semi-honest setting, but would fail miserably if for example Pj arbitrarily

assigned each attribute a ridiculously high utility score. In this situation, Pj would surely

have winning attributes nearly every time which would both wreck the privacy and utility

of the integrated dataset D̂. Understanding the malicious framework would allow a proper

execution of the MAIN Protocol in the most general setting.
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