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ABSTRACT 

The equal sign is prevalent at all levels of mathematics however many students 

misunderstand the meaning of the equal sign and consider it an operational symbol for 

the completion of an algorithm (Baroody & Ginsburg, 1983; Rittle-Johnson & Alibali, 

1999). Three constructs were studied through the lens of the Developing Mathematical 

Thinking (Brendefur, 2008), Relational Thinking, Spatial Reasoning and Modes of 

Representation. A review of literature was conducted to examine the effects of 

mathematics instruction on the development of students’ conceptual understanding of 

equivalence through the integration of spatial reasoning and relational thinking. The 

Developing Mathematical Thinking (DMT) curricular resources integrate Bruner’s 

enactive, iconic, and symbolic modes of representations (1966), using tasks designed to 

strengthen students’ spatial reasoning and relational thinking to develop mathematical 

equivalence. The research question “What is the effect of integrating iconic teaching 

methodology into mathematics instruction on first grade students’ relational thinking and 

spatial reasoning performance?” was analyzed to determine whether there was a 

significant difference in pre-and posttest scores for the two groups. Students were found 

to have a better opportunity to develop conceptual understanding of mathematics in their 

early years of school when taught with the progression of EIS, relational thinking and 

spatial reasoning. 

Keywords:  equivalence, spatial reasoning, relational thinking, mathematical 

modeling 
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CHAPTER 1: INTRODUCTION 

Background 

Equivalence has been one of the primary focal points within the body of literature, 

more specifically, understanding the functionality of the equal sign (Falkner, Levi, & 

Carpenter, 1999; Kieran, 1981; McNeil & Alibali, 2005). This understanding is critical in 

order for students to be able to use multiple representations and relational thinking to 

recognize patterns and generalize in many areas of study within the field of mathematics. 

The concept of equivalence is crucial for developing algebraic reasoning (Falkner et al., 

1999).  

The equal sign is prevalent at all levels of mathematics however many students 

misunderstand the meaning of the equal sign and consider it an operational symbol for 

the completion of an algorithm (Baroody & Ginsburg, 1983; Kieran, 1981; Rittle-

Johnson & Alibali, 1999). Students are introduced to the equal sign early on in school 

strictly in its symbolic form with little attention paid to the conceptual meaning or the 

relational function it plays in algebra. This common misconception of the equal sign has 

been found to reinforce student’s mathematical tendency to focus on counting and 

addition in the early years of elementary school (Seo & Ginsburg, 2003).  

Misconceptions can be avoided when instruction shifts to allow student’s view of 

the equal sign as an expressed relation rather than solely as an operator symbol 

(Carpenter & Levi, 2000). When the equal sign is viewed as merely operational in early 

elementary school, children can successfully solve simple equations such as 2 + 3 = 5. 
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However, this type of thinking leaves middle school students struggling to solve for 

unknown numbers in algebra courses because they assume the equal sign is misplaced 

(Kieran, 1981). Instead, if students develop an understanding of the equal sign as an 

expressed relation, they can begin to develop the understanding of solving for an 

unknown or variable within an equivalence statement. It is important that students 

develop the understanding of the equal sign as an expressed relation as early as 

kindergarten to avoid misconceptions of the equal sign (Knuth, 2006), therefore, teachers 

need to structure mathematics instruction appropriately (Knuth, Stephens, McNeil, & 

Alibali, 2006).  

Problem Statement 

Students are unable to connect their operational knowledge of the equal sign from 

elementary school mathematics to the relational thinking of the equal sign needed in 

middle school algebra classes. This disconnected thinking leads to the memorization of 

rules and meaningless operations with very little conceptual understanding (Herscovics & 

Linchevski, 1994). Common misconceptions such as these can be long-standing and 

persist into middle, high school and occasionally college level courses (McNeil & 

Alibali, 2005). Simple arithmetic problems in elementary school promote operational 

thinking, oftentimes making it difficult for students to generalize beyond the given 

problem. Children become entrenched in the operational view of the equal sign, and often 

times procedures become deeply rooted in students’ minds (Chesney & McNeil, 2014). 

Altering the elementary school curriculum with an emphasis on demonstrating the 

relational view of the equal sign can build students schema and improve their 

mathematical performance (McNeil & Alibali, 2005).  
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Purpose Statement 

The purpose of this study was to investigate whether there is a significant 

difference in first grade students’ performance in relational thinking and spatial reasoning 

when they learn to construct and compare numbers using the progression of enactive, 

iconic, and symbolic representation.  

The teachers in the treatment condition taught mathematics lessons intentionally 

designed to focus on the integration of enactive, iconic, and symbolic representation to 

strengthen students’ relational thinking and spatial reasoning performance in first grade. 

The teachers in the comparison group taught the school district’s adopted curriculum 

which with the Common Core Standards for first grade mathematics.  

Nature of the study 

The study compared relational thinking and spatial reasoning for first grade 

students whose teacher received professional development to increase use of enactive, 

iconic, symbolic representation in teaching (EIS group) and those whose teacher received 

no professional development and taught in a more traditional manner (Traditional group). 

Both groups were tested using the Primary Mathematics Assessment Screener (PMA-S) 

in September, prior to the mathematics instruction, and again mid-May after the 

mathematics instruction; therefore, student performance was also compared across time. 

Thus, this study used a 2 (EIS group versus Comparison group) x 2 (pretest versus 

posttest) design. The dependent variable was the students’ knowledge of relational 

thinking and spatial reasoning measured with the PMA-S developed for grades 

kindergarten through second grade (Brendefur, Strother, & Thiede, 2012) to assess 

students’ knowledge of mathematics with a short, comprehensive and predictive screener. 
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The screener builds a profile of students’ strengths and weaknesses for 6 dimensions: 

number sense and sequencing, number facts, contextual problems, relational thinking, 

measurement, spatial reasoning. The Primary Mathematics Assessment Screener (PMA-

S) was administered at the beginning of the study in September as a pretest, and again in 

May as a posttest. The goal of this study was to determine whether student achievement 

on the PMA-S differed between the EIS and Traditional groups, and whether 

achievement differed across time. 

The larger population of interest for this study is first grade classrooms in Idaho. 

Within this larger population, the study consisted of first grade classrooms from five 

school districts. Two of the school districts serve between 15,650 to 26,240 students, and 

three of the districts serve between 600 to 1725 students. There were over 2600 students 

with Limited English Proficiency (LEP) comprising approximately 8% of the total 

districts. In these districts, the student demographics range from 79.3% white, 10.3% 

Hispanic/Latino, 5.9% Asian, 3.3% Black, 0.9% Native American, and 0.8% Pacific 

Islander. For this study, the sampling frame will be first grade classrooms in Idaho 

chosen on the basis of similarly matched demographics related to students who receive 

free and reduced lunch assistance. The target population was first grade teachers in 

general education classrooms included in this study.  

As noted above, this study used a 2 (Treatment group versus Comparison group) x 

2 (pretest versus posttest) design. The dependent variable was the students’ knowledge of 

relational thinking and spatial reasoning measured with the PMA-S. The goal of this 

study was to determine whether student achievement on the PMA-S differed between the 

EIS and Traditional groups, and whether achievement differed across time.  
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Research Question and Hypothesis 

To address the primary purpose of this research study, the following research 

question and hypothesis was investigated: 

1. What is the effect of integrating iconic representation through student drawings 

in conjunction with the enactive, iconic and symbolic teaching methodology into 

mathematics instruction on first grade students’ relational thinking and spatial reasoning 

performance? 

H1: There is a positive effect on integrating enactive, iconic and symbolic 

teaching methodology into mathematics instruction on first grade students’ relational 

thinking and spatial reasoning performance.  

H01: There is not a positive effect on integrating iconic teaching methodology 

into mathematics instruction on first grade students’ relational thinking and spatial 

reasoning performance.  

Theoretical Framework 

This study was informed by three different constructs:  Relational thinking, spatial 

reasoning and modes of representation. The Developing Mathematical Thinking 

(Brendefur, 2008) framework provided a lens for which the three constructs were viewed. 

The DMT was designed to help teachers critically analyze their mathematical practices to 

better serve their students. The framework includes five major components: taking 

student’s ideas seriously, pressing students conceptually, encouraging multiple strategies 

and models, addressing misconceptions, and focusing on structure.  
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Relational Thinking  

Oftentimes, instructional practices are centered around lessons which strengthen 

an operational view of the equal sign. As students continue to formulate ideas about the 

equal sign over the course of their elementary years, the ability to reverse the entrenched 

ideas becomes much more challenging (Chesney & McNeil, 2014). Simple arithmetic 

problems in elementary school promote operational thinking, making it difficult for 

students to generalize beyond the given problem. Altering the elementary school 

curriculum with a relational view of the equal sign can build students schema and 

improve their mathematical performance (McNeil & Alibali, 2005). Therefore, K-12 

reform has included an integration of meaningful lessons designed to enhance algebraic 

thinking into the primary years of school across all mathematical domains, pressing 

students to use critical thinking (Kaput, 2000).  

Spatial Reasoning 

As educators become more aware of the need for relational thinking tasks it is 

important to recognize the critical role spatial reasoning and mathematical modeling play 

in the overall development of algebraic thinking and the equal sign. Developing 

conceptual understanding of the equal sign tends to focus on the symbolic numerical 

relationships in equations. The National Research Council report (2006) urges educators 

to recognize the importance of developing spatial reasoning skills with students across all 

areas of mathematics. 

Modes of Representation 

Bruner’s (1966) modes of representation describe the process of enriching 

students’ understanding by working through enactive, iconic and symbolic (EIS) models. 



 

 

7  

The enactive stage is critical to developing connections to a task and allows for better 

recall later on with the symbolic form of the equal sign and equations. Many 

mathematical concepts rely on an understanding of the equal sign as an expressed 

relation. It is critical for teachers to expose students to different methods of modeling 

relationships with multiple representations. Much of the mathematical instruction is 

limited to the equal sign taught within the confounds of fact fluency in a very abstract, 

symbolic way. Struggling students need to make the necessary connections to equality 

and relational thinking from a more visual approach. Visual models support the 

development of these ideas. Understanding the concepts of the equal sign as an expressed 

relation is more likely to transfer when visual models are used to support conceptual 

development. Students will have a better opportunity to generalize and build on existing 

foundational knowledge of equivalence throughout their mathematical careers.  

Mathematical Modeling 

Many students have difficulty understanding concepts without being able to first 

see a visual or pictorial image of an idea in their mind (Arwood & Young, 2000). 

Auditory learners consist of  5-15% of our general K-12 population, leaving 85-95% of 

our learners equipped with a visual learning system to acquire new concepts (Arwood 

et.al, 2009). Mathematics curricula loaded with symbolic representation require students 

to memorize procedures, denying the student an opportunity to utilize their visual 

thinking modality in the process of building conceptual understanding. Mathematical 

modeling is a way to express what a student visualizes, granting access for them to see 
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the hidden meaning behind the mathematical symbols, such as the equal sign and its 

various meanings (Cai et al., 2014; Gravemeijer, 1999).  

Definitions of Terms 

The operational definitions for this study were as follows: 

Relational Thinking-The ability to recognize the equal sign represents a relationship 

between both sides of the equation, and that there is a need for balance (Matthews, 

2015). 

Spatial Reasoning-The capacity to think about objects in 3D, draw conclusions about 

those objects with limited information, and determine how an object might look when 

rotated (123test.com). 

Visualization-Create an image in the mind, hold it and then transform or manipulate to 

be different (Ontario Ministry of Education, 2014). 

Mental Rotation-The ability to visualize the necessary transformations of numbers within 

equations (Cheng & Mix, 2014). 

Gesturing-Allows students to explain the visual imagery taking place inside one’s head as 

they work to problem solve a specific task (Ehrlich et al., 2006). 

Mathematical Modeling-A way to express what a student is visualizing and reveal the 

meaning behind the mathematical symbols, such as the equal sign (Cai, et.al., 2014). 

Enactive, Iconic, Symbolic-Instruction designed to include a progression of 

representations beginning with the physical manipulatives to a pictorial representation 

depicting the concrete representation, and finally the symbolic form to support 

conceptual understandings (Bruner, 1966; Fyfe et al., 2014). 
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Assumptions, Limitations, and Scope  

It is assumed that all teachers in the EIS group implemented the modules with 

fidelity as was spelled out in the training sessions. It is also assumed the PMA-S was 

administered to students in both EIS and Traditional groups in September before any 

mathematics lessons were taught, and mid-May at the conclusion of the mathematics 

lessons. 

The study was limited in random assignment. School district approval to 

implement a supplemental mathematics resource, collect and analyze students’ scores 

from the PMA-S was attained through district level administrators. Approval then 

allowed district mathematics curriculum directors to recruit first grade classroom teachers 

for the EIS and Traditional groups. The participating schools were chosen based on their 

willingness to participate in the study, leaving two of the schools in the comparison group 

from a more affluent area, and the other six schools from a lower income area.  

In this study, a two by two repeated measures analysis of variance was used to 

determine the significance of iconic teaching methods on students’ relational thinking 

and spatial reasoning on first grade students. The setting was narrowed to include 

Twenty-three first grade general education classrooms.  

Significance of the Study 

The current study provides valuable insight on the integration of the enactive, 

iconic, and symbolic representation into first grade mathematics lessons. The results and 

discussion adds to the body of research concerning the effects of spatial reasoning and 

relational thinking on students’ mathematical competency. Educational researchers with a 

focus on the pedagogy of mathematics in primary school-aged children, in particular, the 
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link between students’ relational thinking and spatial reasoning skills on mathematical 

competency can benefit from the insights of this study. 

Summary 

Simple arithmetic problems in elementary school promote operational thinking, 

often times making it difficult for students to generalize beyond the given problem 

(Chesney & McNeil, 2014). Altering the elementary school curriculum with a relational 

view of the equal sign can build students schema and improve their mathematical 

performance (McNeil & Alibali, 2005). Many mathematical concepts rely on an 

understanding of the equal sign as an expressed relation. It is critical for teachers to 

expose students to different methods of modeling relationships with multiple 

representations. Therefore, the general purpose of this study was to investigate whether 

there was a significant difference in first grade students’ performance in relational 

thinking and spatial reasoning when they had learned to construct and compare numbers 

using iconic modeling.  

Chapter one provided a brief summary of relevant research concerning children’s 

view of the equal sign, relational thinking, and spatial reasoning. The focus of the 

research is to explore the significance of integrating EIS representation into first grade 

mathematics’ lessons.  

Chapter two covers a thorough review of literature of relational thinking, spatial 

reasoning and mathematical modeling. A theoretical framework describes the lens in 

which a curriculum integrating enactive, iconic, and symbolic representation effects 

students’ relational thinking and spatial reasoning. 
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Next, chapter three presents the methodology of the two-way analysis for this 

study. The design of the study is to determine the significant effects the two independent 

variables (EIS representation or Traditional instruction) have on students’ conceptual 

understanding of relational thinking and spatial reasoning measured by the Primary 

Mathematics Assessment (PMA-S). 

Chapter four is an analysis of the data collected from the pre-and posttest. A two-

way repeated measures analysis of variance was used to assess the effects of both 

independent variables on the dependent variable from pretest to posttest. 

Lastly, chapter five provides conclusions, discussion, rival explanations, and 

recommendations for further study. The goal of this chapter is to highlight the significant 

findings of integrating EIS representation into first grade mathematics lessons to improve 

students’ relational thinking and spatial reasoning. 
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CHAPTER 2: LITERATURE REVIEW 

Introduction 

The most recent educational reform for mathematics, Common Core State 

Standards (CCSS) emphasizes the need for a balance between conceptual understanding 

and procedural knowledge (National Governors Association Center for Best Practices & 

Council of Chief State School Officers, 2010). However, a great deal of time is centered 

on arithmetic facts and fluency with very little context, which leaves students in early 

elementary school lacking a deep conceptual understanding of the equal sign (Knuth, 

Stephens, McNeil, & Alibali, 2006). Students are limited to a repeated application of 

procedural knowledge with very little connections to context (Hunter, 2007). This 

becomes a major issue as elementary students transition to middle school algebra, 

requiring less procedural knowledge and a deeper understanding of relationships within 

an equation (Warren & Cooper, 2005). However, traditional elementary curricula tend 

not to promote spatial reasoning, relational thinking, or the integration of visual models 

(Fyfe, McNeil, Son, & Goldstone, 2014; Hattikudur & Alibali, 2010).  

The purpose of this literature review is to provide an overview of the ways in 

which relational thinking, spatial reasoning, and mathematical models influence students’ 

mathematical competency early elementary school mathematics. The literature has been 

outlined through a theoretical framework to see how integrating enactive, iconic, and 

symbolic representation effects students’ relational thinking and spatial reasoning. 
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First, relational thinking and the various meanings of the equal sign will be 

defined. Next, three of the most well-established connections to mathematical 

competency and spatial reasoning will be explained, in addition to the ways in which 

visualization and mathematical models allow students to connect their ideas to the 

abstract symbolic representation of mathematics. Following this section, the similarities 

and differences between the progressions of conceptual understanding using the concrete, 

representation, and abstract framework and Bruner’s (1966) enactive, iconic, and 

symbolic representations will be delineated.  

The last section of the literature review will explain the impact textbooks have in 

the development of mathematical knowledge related to relational thinking, spatial 

reasoning and students’ misconceptions based off recommendations from the Common 

Core State Standards (2010). Two curricula, Bridges in Mathematics (Frykholm, 2016) 

and Developing Mathematical Thinking (Brendefur, 2014) illuminated students’ 

understanding of the equal sign by incorporating relational thinking, spatial reasoning and 

mathematical modeling. The goal of this literature review was to gain a deeper 

understanding of ways to integrate relational thinking and spatial reasoning into 

mathematics lessons. 
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Figure 1. Framework for developing spatial reasoning and relational thinking. 

Relational Thinking and the Equal Sign 

Most elementary students begin to develop their awareness of the equal sign’s 

functionality at an operational level, where the equal sign acts as a symbol to perform a 

calculation or action (Carraher et al. 2006). When the bulk of instruction is focused on 

procedures and computing facts many elementary students develop a shallow 

understanding of the equal sign and consider it an operational symbol (Baroody & 

Ginsburg, 1983; Rittle-Johnson, Matthews, Taylor, & McEldoon, 2011). For instance, 

students with an operational view of the equal sign will reject any equations presented 

outside of the traditional format, a + b = c, and will define the purpose of the equal sign 

as a cue to perform the calculations on the left side of the equal sign to get an answer 

(Behr, 1980; Carpenter et al., 2003). However, given more exposure to a variety of 
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equations, students can become more flexible with their thinking and progress to different 

levels of understanding (Blanton & Kaput, 2005). Mathematics instruction for early 

elementary classrooms should foster relational thinking by including tasks designed to 

draw attention to how numbers relate to one another, and develop the flexibility to think 

of numbers in a variety of ways to establish the idea of equivalence (Cheng & Mix, 2014; 

A. Stephens, Blanton, Knuth, Isler, & Gardiner, 2015). 

Matthews et al (2012) developed a construct map based on the research of 

Carpenter (2003) and Hunter (2007) to explain the continuum of relational thinking for 

students’ thinking. Figure 2 describes the student thinking associated with each level of 

understanding. 
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Comparative Relational 

 Students recognize that the equal sign represents a relationship between 

both sides of the equation, and that there is a need for balance.  

 Students are aware of the relationships among the numbers and do not 

need to perform a calculation to determine equivalence.  

Basic Relational 

 Students flexibly accept non-traditional equations as correctly written, 

such as 3+2=4+1. 

 Students determine equivalence by performing calculations to both sides 

of the equation.  

Flexible Operational 

 Students still consider the equal sign as a symbol for calculation.  

 Students begin to recognize equations written in a non-traditional way as 

acceptable, such as 8=3+5, and 3=3.  

Rigid Operational 

 Students consider the equal sign as a symbol for calculation.  

 Students only consider equations written in the traditional format to be 

acceptable, such as 3+2=5, and missing term equations such as, 5+__=8.  

 

 Figure 2. Continuum of students’ understanding for the equal sign (Matthews, 

et al., 2012). 

The first level of student understanding is called Rigid Operational. Students at 

this level are calculating traditional or missing term equations. Traditional equations 

written a + b = c, place the equal sign as a function for solving the addition problem a + b 

to produce an answer. This traditional format instills an operational view of the equal 

sign (McNeil et al., 2006). With exposure to non-traditional equations such as, a = b + c, 

students become more flexible in their determination of a correctly written equation. 

However, their view of the equal sign still remains as a cue for calculation. As students 

move into the Basic Relational stage, their flexibility to solve equations written with 
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operations on both sides of the equals sign increases. However, it is not until the final 

stage, Comparative Relational when students consider the number relations on each side 

of the equal sign to determine equivalency, and their need to calculate diminishes. This 

level of relational thinking demonstrates students’ knowledge about how the equal sign 

relates to the entire equation, where they are looking for relatable numbers in the 

equation prior to solving the problem (Jacobs, Franke, Carpenter, Levi, & Battey, 2007). 

Identifying these relationships in equations and their connections with the numbers is a 

critical component of mathematical understanding. Developing and applying the 

knowledge of relational thinking to solve mathematical equivalence problems will 

increase early algebraic understanding (Byrd, McNeil, Chesney, & Matthews, 2015; 

Carpenter & Levi, 2000; Molina, Castro, & Ambrose, 2005; Rittle-Johnson et al., 

2011)NCTM, 2000). Students who think at the Comparative Relational level have a 

strong understanding of the equal sign, and a deeper connection to algebraic reasoning 

(Carpenter et al., 2003; Hunter, 2007).  

The natural tendency for students as young as kindergarten is to demonstrate an 

operational view of the equal sign, however, they do have the capabilities to think 

relationally if given the opportunity (Baroody & Ginsburg, 1983). Therefore, relational 

thinking skills should be explicitly taught at an early age to avoid a deep-rooted set of 

operational skills (McNeil & Alibali, 2005). Relational thinking involves flexible 

thinking to determine how numbers can be manipulated before answering a problem. 

Using relational thinking to solve an algebraic equation requires the conceptual 

understanding that each time a number is manipulated the equation remains equivalent.  
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Providing students with a progression of non-traditional number sentences 

focused on numerical relationships and patterns will develop relational thinking. As a 

starting point for young students reversing the order of the number sentence to begin with 

the answer such as 3 = 2 + 1 presses students to accept that the answer does not always 

need to be after the operation (Matthews, 2012; Warren & Cooper, 2005). Next, students 

develop their understanding of the term equal as they begin to recognize that both sides 

of the equation compute to the same quantity through exposure to non-traditional 

equations written with the operations on both sides of the equal sign (Carpenter et al., 

2003). Students who possess the conceptual knowledge of equivalence recognize 

transformations can occur by adding the same number to both sides of the equal sign 

without changing the structure of the equation. For example, when asked whether the 

equation 18 + 3 = 16 + 5 is true or false, students who are taught to think about the 

relationship between 18 and 16, notice that 18 is 2 more than 16, and reason that it must 

be true because 5 is 2 more than 3. Unfortunately, if students are not taught to look at 

equations relationally, then the transformations between 18 and 16 simply become 

proceduralized and learned as memorized rules (Jacobs et al., 2007). This strategy shows 

a level of relational thinking in which students use number relations to make the problem 

more manageable. Thinking relationally, therefore, is different from applying a collection 

of memorized mathematical rules and procedures (Hattikudur & Alibali, 2010). Students 

who think relationally identify number relations and reason about which transformations 

make sense in a particular problem (Carraher, Schliemann, Brizuela, & Earnest, 2006).  

Providing students with true or false equations can be another way to press 

students to think about number relationships. Equations such as 14 + 18 = 13 + 17 are 
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more compatible with instructing students to see number relationships because a 

numerical answer is not required. Engaging students in a discussion of how the numbers 

relate to each other to determine whether the equation is true or false strengthens their 

conceptual understandings of equivalence (Carpenter et al., 2003). Students with 

sufficient conceptual knowledge of how these number properties are applied have the 

understanding to transfer their procedural knowledge of mathematical equations to 

algebraic thinking (Stephens et al., 2015). Meaningful discussions about number 

relationships and the transferability of those ideas helps students make more 

mathematical generalizations (Bastable & Schifter, 2008).  

Students need time to develop relational thinking, with practice designed to 

explicitly examine the way in which numbers relate, and ways that those relations can 

generalize to other areas of mathematics (Bastable & Schifter, 2008; Blanton & Kaput, 

2005; Carpenter & Levi, 2000; Carraher, Schliemann, Brizuela, & Earnest, 2006). One 

way to increase conceptual understanding is to increase the exposure of problem solving 

tasks involving non-traditional equations (Matthews, 2012). It has been shown that 

students as young as kindergarten and first grade have informal knowledge of number 

relations, however, the mathematics presented in traditional textbooks do not explicitly 

draw out these relations, allow time for the relations to organically emerge, or instruct 

students to determine how the ideas can be generalized (Blanton & Kaput, 2005). 

Consequently, there is a need for mathematics instruction to incorporate more than just 

the traditional format of equations into daily lessons, and include ways to represent 

relational equivalence (Ellis, 2011; Molina et al., 2005). Later, I explain how curricula 



 

 

20  

can be designed to foster relational thinking and develop students’ understandings of the 

equal sign. 

Spatial Reasoning and Mathematical Competency  

Many researchers have confirmed spatial reasoning skills and mathematical 

competency to be directly related to each other (Battista 1990; Casey et al. 2015; 

Reuhkala 2001; Rohde and Thompson 2007; Zhang et al. 2014). Training with specific 

spatial reasoning tasks will improve students’ abilities in the Science, Technology, 

Engineering, and Mathematics (STEM) fields (Newcombe & Frick, 2010; Uttal et al., 

2012). There is a strong link between spatial reasoning ability and geometry where strong 

visuospatial skills predict how well students will complete 3-D geometry tasks (Clements 

2004; Clements & Battista 1992; Pittalis & Christou, 2010). As educators become more 

aware of the need for relational thinking tasks it is important to recognize the critical role 

spatial reasoning and mathematical modeling play in the overall development of 

algebraic thinking and the equal sign. Developing conceptual understanding of the equal 

sign tends to focus on the symbolic numerical relationships in equations. However, there 

is evidence to suggest that spatial reasoning also plays an important role in the 

development of these relationships through a visual lens (Drefs & D'Amour, 2014; Uttal 

et al., 2012). The National Research Council report (2006) urges educators to recognize 

the importance of developing spatial reasoning skills with students across all areas of 

mathematics. The National Governors Association (2010) suggests more spatial 

reasoning be integrated into the elementary mathematics curriculum to promote relational 

thinking skills, and mathematical modeling to be a key component for students to explain 

their thinking when representing algebraic concepts.  
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It has been found that students with strong spatial reasoning skills generally do 

well in mathematics (Mix & Cheng, 2012). Mix and Cheng (2012) claim, “The relation 

between spatial ability and mathematics is so well established that it no longer makes 

sense to ask whether they are related” (Mix & Cheng, 2012, p. 206). The topic for 

researchers now is to determine how they are related. Strong spatial reasoning skills and 

mathematics competency is not limited to one specific mathematical topic or spatial 

reasoning task (Ontario Ministry of Education, 2014). Spatial reasoning is a critical piece 

for developing the way students think about equations (Cheng & Mix, 2014). Given the 

opportunity, students’ spatial reasoning skills can increase when practice is integrated and 

supported throughout mathematics instruction (B. N. Verdine et al., 2013). By the time 

students reach kindergarten, their spatial reasoning skills predict their overall 

mathematical success (Verdine et. al., 2014). Therefore, students’ educational experience 

in early elementary school should have an intentional focus on improving spatial 

reasoning skills. The focus of this section is to reveal the connection between spatial 

reasoning and the ability to conceptualize mathematical symbols such as the equal sign 

through the use of spatial orientation on a number line, gesture, visualization, and mental 

rotation. 

Studies have shown improvement in certain types of spatial reasoning tasks 

transferring to other types of mathematical tasks. A crucial component to understanding 

ordinality—the position of a number in relation to its location on a number line, and 

magnitude—the size of a number is directly linked with the development of a precise 

spatial representation of numbers to the symbolic representations of numbers and the 

visual space of a number (Dehaene, Bossini, & Giraux, 1993). The number line has been 
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shown in cognitive studies to be important for the development of numerical knowledge 

(Booth & Siegler, 2008; Kucian et al., 2011; Schneider & Grabner, 2009). Siegler and 

Ramani (2008) report that students who play board games such as Chutes and Ladders 

increase rote counting skills, number identification, and the conceptual understanding of 

numerical magnitude. Additionally, activities which include puzzles, video games, and 

blocks with significant connections to spatial reasoning skills and mathematical 

competency improves accuracy of symbolically representing a number line (Gunderson et 

al., 2012; Uttal 2012). 

Problem solving tasks regarding orientation, transformations and movement of 

shapes create an opportunity among students and the teacher to engage in rich, 

mathematical discourse. As students discuss their thinking, they will use their hands to 

gesture while attempting to convey their thoughts surrounding the task. Gesturing allows 

students to explain the visual imagery taking place inside their head as they work to 

problem solve specific tasks (Ehrlich et al., 2006). Students’ gestures represent the 

movement of the transformation and creates an avenue for their thinking to emerge 

through the discussion. Alibali and Nathan, (2012) found gestures to be an excellent tool 

for teaching students how to solve spatial transformation tasks by placing an emphasis on 

the importance of moving the pieces without the actual physical movement. In essence, 

they used their hands to gesture what their mind was creating and convey mathematical 

thinking.  

The ability to gesture what the mind is thinking is dependent upon students’ 

ability to visualize mathematical transformations (Ontario Ministry of Education, 2014). 

The ability to think relationally requires students to visualize how numbers can be 
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manipulated and rearranged in an equation (M. Stephens & Armanto, 2010). Therefore, 

visualization is a key component across mathematical topics (Ontario Ministry of 

Education, 2014). Spatial visualization tasks require students to create an image in their 

mind, hold the image, and then mentally transform or manipulate that image to be 

different. Some examples of these types of tasks include composing and decomposing 

pattern blocks to determine a new composed image, imagining transformations and 

perspectives of a three-dimensional cube, or activities that involve mentally folding a 

two-dimensional shape to form a new three-dimensional shape. In addition to spatial 

visualization, mental rotation has also been shown to increase student performance in 

mathematics (Cheng & Mix, 2014). 

Students who are allotted time to practice mental rotation have demonstrated the 

ability to solve a series of multi-step word problems (Casey et al., 2015). Mental rotation 

consists of the ability to look at an object, or picture of an object and visualize what it 

might look like when rotated in 2-d or 3-d space. The most recent study of spatial training 

with mental rotation was conducted with young students developing number sense, 

counting sequence, fact fluency, and missing term problems (Cheng & Mix, 2012). 

Although the other areas showed improvement with the spatial training, missing term 

problems such as 2 + __ = 6 indicated the most significant effect size. Much like the 

relational skills needed to find the most efficient way to solve missing term problems, the 

completion of mental rotation tasks during spatial training helped to strengthen students’ 

ability to visualize the necessary transformations of numbers within equations for simpler 

computation (Cheng & Mix, 2014).  
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It is important to note that mental rotation and spatial visualization are both 

subsets to spatial reasoning, and that much of their characteristics overlap (Ontario 

Ministry of Education, 2014). Developing both skills is a powerful way to connect back 

to the bigger idea of conceptual understanding for relational thinking, spatial reasoning, 

and equivalence (Suh & Moyer, 2007; Oropeza & Cortez, 2015).  

Mathematical Modeling  

Many students have difficulty understanding concepts without being able to first 

see a visual or pictorial image of an idea in their mind (Arwood & Young, 2000). 

Visualization helps students use the pictures or shapes in their mind to recall, understand, 

make connections, clarify, and remember new information (Arwood & Kaulitz, 2007). 

Auditory learners consist of  5-15% of our general k-12 population, leaving 85-95% of 

our learners equipped with a visual learning system to acquire new concepts (Arwood 

et.al, 2009). Mathematics curricula loaded with symbolic representation require students 

to memorize procedures, denying the student an opportunity to utilize their visual 

thinking modality in the process of building conceptual understanding. However, 

implementing visual representations into daily mathematics lessons can support the 

learning process to increase conceptual understandings (Arwood, 1991).  

Mathematical modeling offers students a visual way to represent their thinking 

and make the necessary connections to problem-solving situations (Erbas, Kertil, 

Cetinkaya, Alacaci, & Bas, 2014). In order for visual thinkers to be awarded access to the 

symbolic representation of mathematics it is necessary for their ideas to be visually 

connected to the symbols in an equation (Arcavi, 2003). Thus, guiding students to 

recognize their visualizations as a valid path to express their thinking can deepen their 
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conceptual understanding. Arcavi (2003) explains visualization as a method to see 

something that is typically unseen, and when a student is able to draw mathematics their 

conceptual understanding becomes more clear. Mathematical modeling is a way to 

express what a student visualizes, granting access for them to see the hidden meaning 

behind the mathematical symbols, such as the equal sign and its various meanings (Cai et 

al., 2014; Gravemeijer, 1999). Students should represent their understandings of 

numerical and spatial relations through mathematical modeling to build conceptual 

understanding (Deliyianni et al., 2009; Deloache, 1991). As conceptual understandings 

develop, background knowledge increases and students’ ability to apply skills across 

different mathematical domains becomes for fluid (Baroody, et al., 2007; Lowrie & Kay, 

2001). Mathematical modeling helps students to make connections between symbolic 

equations and their visual representation of how the numbers relate to one another. 

Providing visual models grants students the access to develop appropriate understandings 

of the equal sign in addition to increased ability to communicate their mathematical 

thinking. Students’ thinking becomes more flexible when viewing symbolic equations 

and they can shift between both symbolic and visual representation with greater ease 

(Anderson-Pence et.al., 2014; Arcavi, 2003). Often times, students who practice symbolic 

problems have little opportunity to develop their conceptual understanding which leads to 

multiple misconceptions or misapplications to procedures (Alibali, 2012). However, 

visual models can be used to highlight the misconceptions or errors in student work and 

can be used to teach the deeper meaning of a problem or concept (Arcavi, 2003; Blum & 

Borromeo Ferri, 2009; Gellert & Steinbring, 2014; Saenze-Ludlow & Walgamuth, 1998). 
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Spending time reviewing student errors and misconceptions help students begin to see the 

structure of equations (Brendefur, 2012). 

Strong visualization and spatial reasoning skills contribute greatly to students’ 

ability to organize the structure of equations and understand the function of the equal sign 

(N. McNeil & Alibali, 2004). Mathematical models can be a way to connect one’s 

visualization to their understandings of the problem (Anderson-Pence et al., 2014). The 

model connects the visualization into the spatial layout of an equation so students can 

devise a solution to solve the problem (Van den Heuvel-Panhuizen, 2014). As students 

visualize the problem, they flexibly decode the context into the spatial layout of an 

equation (Hegarty, Mayer, & Monk, 1995).  

When given the opportunity, students can develop the necessary spatial skills to 

visualize mathematics. Gesturing assists students to communicate their thinking. Mental 

rotation and spatial visualization can strengthen students’ ability to solve non-traditional 

equations and develop conceptual understanding of the equal sign. Therefore, promoting 

relational thinking tasks through spatial reasoning and mathematical modeling early on in 

students’ learning can promote mathematical competency and algebraic thinking.  

Enactive, Iconic and Symbolic Representations 

Mathematical modeling has shown to be helpful for students to connect abstract 

symbols to students’ thinking. Instructional tasks heavily focused on abstract symbols 

tend to draw out the use of rote, memorized skill practice which has been shown to 

compete with the development of the conceptual meaning of the equal sign, relational 

thinking, and spatial reasoning skills (Koedinger & Nathan, 2004). One way to help 

students make the connections between the numbers and symbols is to incorporate 
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concrete materials for students to manipulate during their practice and application 

(Brown, McNeil & Glenberg, 2009). Including concrete manipulatives for mathematical 

tasks has been shown to improve student understanding and retention of the practiced 

concept (Schwartz & Martin, 2005). Although the use of concrete materials in isolation 

does not always guarantee that students will flexibly transfer the concrete representation 

to the symbolic representation of an equation (McNeil & Jarvin, 2007). Alternatively, 

instruction designed to include a progression of representations beginning with the 

physical manipulatives to a pictorial representation depicting the concrete representation, 

and finally to the symbolic form of an equation can support conceptual understanding 

(Bruner, 1966; Fyfe et. al., 2014; Gravemeijer, 2003).  

According to Bruner (1966), students access their background knowledge of the 

representations to help make connections when the abstract symbols are isolated from 

other context. Concrete materials provide an opportunity for students to build background 

knowledge with images depicting the meaning of the abstract symbols. When new 

abstract symbols are introduced, students can use their visual background knowledge as a 

retrieval mechanism to help remind them of the relevant concepts. Bruner’s modes of 

representations begin with the enactive stage, which includes manipulatives, or concrete, 

physical objects. The second stage is iconic, which represents any visual representations 

like diagrams, number lines and graphs. Finally, the third stage is symbolic, which are 

abstract symbols like equations and algorithms.  

Many classrooms utilize concrete objects such as toys, tiles, and blocks to help 

children understand abstract mathematical concepts (Correa, Perry, Sims, Miller, & Fang, 

2008; Laski, Jor'dan, Daoust, & Murray, 2015). The average elementary teacher uses 
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manipulatives nearly every day (Uribe-Flórez & Wilkins, 2010). The use of concrete 

materials used to demonstrate a mathematical concept or aide in the understanding of a 

procedure is based on the Piagetian idea that young children’s thinking is concrete in 

nature (Bruner, 1966; Montessori, 1964; Piaget, 1953). However, the effectiveness of 

such objects has been mixed, where some studies report the benefits and promote 

learning, others report no benefits, and some report manipulatives as a hindrance or 

distraction to learning (McNeil & Jarvin, 2007). Concrete manipulatives which contain 

unnecessary details, can distract the learner from thinking about the actual concept to 

irrelevant information which then has the potential to limit the transfer of knowledge 

from the given task to different problems (Belenky & Schalk 2014; Goldstone and 

Sakamoto 2003; Kaminski et al. 2005; Kaminski et al. 2009). Some claim it can be better 

to exclude the use of concrete manipulatives to focus students’ attention on structure and 

representational aspects, rather than on surface features (McNeil & Uttal, 2009; Belenky 

& Schalk, 2014). The goal becomes memorization for increased procedural transferability 

and generalizability to other situations where a student can be systematically taught the 

relevant symbolic representation (Kaminski et al. 2009; Son et al. 2008). However, 

symbolic representations do not always lead to success for every student. Solving 

problems strictly in symbolic form leads to inefficient solution strategies, entrenchment 

of operational procedures, and inconsistent errors (Carraher, 1985; Stigler et al. 2010; 

Koedinger, 2004; McNeil, 2005). Concrete manipulatives need to be more than a tool for 

learning, rather, they should lead and connect to the abstract, symbolic representation 

(Kaminski et al. 2009). As a whole, mathematics instruction that isolates the symbolic 

representations leads students to manipulate symbols without conceptual understanding 
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and a weakened ability to solve problems outside of their procedural understandings 

(Carbonneau, Marley, & Selig, 2013; Lucas 1966; Steger 1977; Fujimara 2001; Nishida, 

2007). 

Manipulatives are helpful for students to see the mathematical concept of the 

abstract symbols and numbers in an equation. However, without the inclusion of iconic 

representation some students may become too dependent upon the manipulative and 

struggle to transition flexibly between the concrete and abstract symbols (McNeil & 

Jarvin, 2007). The following sections will discuss two frameworks used to teach 

mathematics, which utilize the progression of enactive, iconic, symbolic representation 

that act as a bridge between the concrete and abstract symbols for understanding 

mathematical ideas of relational thinking, spatial reasoning and the equal sign. 

Concrete to Representational to Abstract (CRA) 

When teaching mathematics, the use of concrete objects (concrete), pictorial 

representations (representational), followed by abstract symbols (abstract) is called the 

Concrete to Representational to Abstract (CRA) instructional strategy mostly used with 

students in special education (Witzel, 2005). This approach has found to increase the 

understanding of abstract mathematical concepts and ideas (Witzel, Mercer & Miller, 

2003). The CRA instructional approach is a three-stage process. The first stage allows 

students to manipulate concrete objects to solve problems. During the concrete phase 

students see, hear, and move objects to demonstrate what is happening with the numbers 

as well as the procedures to solve the problems. When implementing instruction in the 

concrete stage, the teacher demonstrates solving mathematics problems through 
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modeling. When modeling, the teacher shows students what is happening with the 

numbers as well as the mathematical procedures to solve the problems.  

 The concrete stage is followed by a pictorial representation of whatever concept 

was physically manipulated in the concrete stage. The representational level of 

instruction provides a transition from the concrete to the abstract level. The 

representational stage acts as a bridge, building the necessary connections between 

solving problems using objects in the concrete stage to solving problems using numbers 

in the abstract stage. Students use pictures or drawings to represent a solution to the same 

concept that was manipulated with objects in the concrete stage (Flores, 2009).  

The final stage of CRA requires students to solve mathematical problems 

abstractly using numbers only (Flores, 2009; Kaffer & Miller, 2011; Hinton et al., 2014). 

To assist in applying the procedures to abstract equations, students are taught mnemonic 

devices. These types of devices help the student to remember how to structure or 

organize a solution to a particular problem, and provide cues for sequential steps if they 

do not remember a particular fact or procedure. One example of a common mnemonic is 

DRAW developed by Mercer and Miller (1992) to teach place value and fact fluency to 

students who were at risk for mathematics failure. The DRAW strategy consists of four 

steps and the mnemonic “DRAW” to help students remember each step. When using 

DRAW students are to “D” discover the sign, “R” read the problem, “A” answer or draw 

a conceptual representation of the problem using lines and tallies, and “W” write the 

answer and check. Mnemonics such as DRAW are used to help students remember to use 

each step to solve basic addition, subtraction, and multiplication problems that involve 

regrouping. Other mnemonics have been developed to teach fluency for problems that 
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involve place value, addition and subtraction of numbers, multiplication, fractions, 

integers and algebra. The abstract problem is taught using memorization of mathematical 

procedures through mnemonics until the student learns the procedure automatically 

(Flores, 2009; Witzel, 2005; Witzel et al., 2003).  

Each level of CRA is strategically designed to prepare the student for the next 

level of learning (Witzel, 2005). An example of CRA can be viewed through a re-

grouping lesson for the subtraction problem 32 take away 15, where students must break 

apart the 32 into two units of ten and twelve units of one to compete the algorithm 

(Flores, 2010). For the concrete stage, base-ten units of ten and units of one cubes are 

used to build the visual representation of the subtraction problem. Once the answer is 

revealed, students notate the units of tens and ones next to the algorithm as a way to show 

how the regrouping procedure works. Lastly, in the abstract stage students perform the 

standard procedures for solving the algorithm.  

The goal of CRA is to help students successfully perform at the abstract level. 

The CRA framework utilizes the three stages as tools to aide in accurate computation and 

provides students with a concrete, visual tool to develop the necessary procedural skills 

for solving abstract equations (Maccini, Mulcahy, & Wilson, 2007; Miller & Hudson, 

2007). The stages of CRA provide students with manipulatives to visually represent their 

solutions to mathematical problems without posing a hindrance on the learning of the 

concepts. The next section describes a slightly different approach to modeling equations 

through a progression of stages. 
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Concreteness Fading 

Fyfe and her colleagues (2014) use the term concreteness fading to explain 

Bruner’s progression of enactive, iconic, and symbolic (EIS) representations where 

physical representation of a mathematical concept can gradually become more abstract. 

Concreteness fading progresses from the enactive stage, which includes concrete physical 

objects; the iconic stage, which includes a picture or visual model; and finally the 

symbolic stage, which includes an abstract model of the concept. For example, the 

addition problem of 2 + 3 could first be represented by physical objects such as birds or 

cubes, next by a visual diagram of the cubes representing the birds, and finally by a 

number sentence. The goal of concreteness fading is to start with a manipulative to help 

students make the necessary connections and then gradually move away from the 

physical objects to the most efficient, iconic and abstract representations.  

The equal sign can be represented through balancing objects on a seesaw as a 

visual representation of equivalence (Mann, 2004). Using visuals such as the seesaw 

develop the necessary background knowledge and imagery for the concept of 

equivalence, which better prepares students to think of solutions for missing term 

problems such as 5 + 6 = __ + 2. Giving students the visual representation of the seesaw 

prior to the discussion of relational thinking prepares students’ background knowledge 

and assists in the sense making for devising a plan to solve the equation (Mann, 2004).  

Lessons structured to begin with an enactive example serve as a visual model to 

progressively link conceptual understandings to the symbols in a meaningful way 

(Chesney & McNeil, 2014). Concreteness fading encourages teachers to develop 
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conceptual understandings through the EIS progression and provide students with new 

concepts connected to their own background knowledge (Fyfe et al., 2014).  

McNeil and Fyfe (2012) conducted a study with undergraduates to learn a 

mathematical concept in one of three conditions: concrete, abstract, or concreteness 

fading. The concreteness fading progression included a transitional phase connecting 

both the concrete and abstract without the unimportant details. A transfer test was given 

to the students immediately after the treatment, 1 week later, and 3 weeks later. Students 

in the concreteness fading condition showed the best transfer performance all three times. 

In two additional studies by Fyfe and McNeil (2009), students received instruction on 

missing term problems. In the concrete treatment, problems were presented using toy 

bears on a balance scale. In the abstract treatment, problems were presented in symbolic 

form on paper. Problems from the concreteness fading treatment were presented using the 

progression of concrete manipulatives, to worksheets using pictures to represent the 

bears, and lastly with symbolic equations. An example of this progression is in figure two 

below. Children in the concreteness fading treatment solved more transfer problems 

correctly than children in the other treatments suggesting the progression from enactive, 

to the iconic, and then to the symbolic stage play a pivotal role in students’ mathematical 

ability to solve missing term problems.  



 

 

34  

 

Figure 3. Progression of concreteness fading (Fyfe & McNeil, 2009). 

Concreteness fading offers the opportunity for students to visually represent 

mathematical concepts in a meaningful, connected way. The progression from enactively 

representing an equation to modeling the problem on paper bridges the gap to the 

symbolic equation. This type of modeling develops background knowledge and imagery 

in the student’s memory for later retrieval for solving symbolic equations. 

Differences Between CRA and Concreteness Fading 

Both concreteness fading and CRA are designed to focus instruction on 

conceptual understanding using Bruner’s theory of enactive, iconic and symbolic 

representation. The CRA approach compartmentalizes the progression into each of the 

three stages; beginning with direct instruction through teacher demonstration followed by 

teacher guidance, and student mastery over three lessons. The concreteness fading 

approach comprises the three modes of representations with more fluidity and flexibility 

for each concept. The CRA approach relies more heavily on the memorization of the 

procedures for solving the symbolic representation, whereas the concreteness fading 
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approach tends to focus on the development of conceptual understanding, and 

progressively connects to the symbolic representation. CRA is presented in discreet 

stages, leaving the impression that once a concept has been mastered, the stage becomes a 

distant memory. Concreteness fading has students build a visual representation through 

the enactive stage to access background knowledge, draw out their thinking with a picture 

and connect to the symbolic stage. CRA uses a variety of procedural mnemonic devices 

for particular skills, which are not necessarily generalizable to other mathematical 

concepts or tasks.  

Concrete to representation to abstract (CRA) and concreteness fading have 

established positive connections to mathematical proficiency (McNeil & Fyfe 2012). 

CRA offers a visual model for students to follow a set of procedures when solving 

equations. Concreteness fading prepares students to visually represent mathematical 

topics more flexibly and fluidly through the progression of Bruner’s (1966) enactive, 

iconic, and symbolic stages. In the next section I will explain how traditional textbooks 

and curriculum apply these frameworks to relational thinking and spatial reasoning tasks 

to develop students conceptual understanding of the equal sign (Brendefur, 2015). 

Following that section, I describe a framework developed to support Bruner’s notion of 

enactive, iconic, and symbolic representations. 

Textbooks, Curriculum and Instructional Tasks 

Literature presented so far has shown that intentionally promoting relational 

thinking and spatial reasoning allows students to conceptualize the idea of the equal sign 

and equivalence. However, disregarding the equal sign as an important symbol for the 

concept of equivalence and algebraic thinking has been described as one of the biggest 
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obstacles to achieve this level of understanding for many generations (Renwick, 1932; 

Carpenter et al., 2003). Teacher manuals and material used in classrooms affect the way 

teacher’s present equations and explain the purpose of the equal sign, and many 

textbooks introduce student’s to the equal sign as early as Kindergarten, although the 

conceptual meanings of the symbolic representation are rarely explicitly taught (Knuth et 

al., 2005). Curricular material with frequent use of activities having an operational focus 

develops one way to think, encouraging an operational understanding of the equal sign 

(Molina et al., 2005). This disconnected thinking leads to the memorization of rules and 

procedures with very little conceptual understanding, multiple misconceptions, and a 

difficult transition to algebraic thinking (Ginsburg et al., 2008; Herscovics & Linchevski, 

1994).  

The textbooks used in classrooms determine how the teacher will focus the 

lessons, therefore the mathematical topics in textbooks are one of the important ways to 

influence students' conceptual understandings of the equal sign and development of 

algebraic thinking (Hattikudur & Alibali, 2010; Knuth et al., 2006; Reys, Reys, & 

Chavez, 2004; Seo & Ginsburg, 2003). Although the equal sign is present at all levels of 

mathematics, textbooks using repeated practice of the traditional format a + b = c 

develops a narrow operational viewpoint (Baroody & Ginsburg, 1983; Rittle-Johnson et 

al., 2011; B. Rittle-Johnson & Alibali, 1999). Most equations in traditional curriculum 

are written with the operations to the left of the equal sign and the answer blank to the 

right (N. M. McNeil, 2007; Seo & Ginsburg, 2003). Much of the curriculum promote 

operational thinking through repeatedly performing operations in the traditional format of 

a + b = c (Blanton & Kaput, 2005; Byrd et al., 2015; Falkner, Levi, & Carpenter, 1999) 
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rather than developing algebraic thinking through exposing students to a variety of 

nontraditional problems such as a = b + c, true/false statements, and missing term 

problems. Textbooks that overuse the traditional format promote students’ operational 

view developing a rigid and inflexible application of procedures on non-traditional 

equations (McNeil et al., 2006). For example, in order for students to solve 2 + 3 + 4 = __ 

+ 7, many with an operational view will reorganize the numbers to the left of the equal 

sign so an answer can be placed to the right (McNeil & Alibali, 2004). Students 

frequently use the equal sign as a link between steps and simply misapply shortcuts in 

their procedural work. Students in upper elementary grades predominantly use 

inappropriate strategies to solve open number sentence problems, and few students apply 

relational thinking to equivalence problems (Hunter, 2007). Studies by Falkner (1999) 

and McNeil & Alibali (2004) describe children’s understandings of the equal sign as a 

“do something” function when two numbers are added together to find the answer. 

Falkner found students viewed the equal sign as an operational symbol rather than an 

equivalence statement in missing term problems such as 8 + 4 = __ + 5. Students would 

add the left side of the equation and insert the answer after the equal sign, ignoring the + 

5 completely. Similarly, McNeil and Alibali (2004) found that many students added all 

the numbers together treating the equal sign as an operational symbol and ignored the 

numbers to the right of the equal sign. Although students can successfully solve simple 

equations such as 2 + 3 = 5, this type of repeated practice perpetuates the operational 

view. With continued practice, students’ knowledge of operational practice will increase 

in strength. When students are presented with mathematical problems, their prior 

knowledge of these patterns is activated which influences how the information is stored 
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to memory. Repeated practice of traditional equations blocks students’ ability to learn 

new ideas and generalize to other mathematical topics, such as missing term problems 

(N. McNeil, 2008). If a student is given an equivalence problem, their application of the 

practiced pattern leads to multiple errors, incorrect strategies and misconceptions of the 

equal sign’s purpose (N. M. McNeil & Alibali, 2005). 

Textbooks that over emphasize traditional equations hinder students’ performance 

on algebraic thinking. This operational view becomes entrenched in students’ minds, and 

much of their resistance to learning other strategies becomes difficult to overcome. 

According to Langer (2000), this type of practice promotes mindless learning, a place in 

the mind where students get stuck in a rhythmic pattern of taking in information. Students 

who are not taught to think limit their ability to problem solve and obstruct the learning 

of new information. Therefore, instead of constructing new strategies and developing the 

flexibility to think of numbers relationally, mindless repeated practice of the traditional 

format leads students to be content, relying on the strategies they have used many times 

in the past. 

Seo and Ginsburg (2003) examined elementary school curricula and found the 

equal sign was rarely presented without plus or minus signs, where most number 

sentences were presented in a traditional format, such as a + b = c or a – b = c. The 

textbooks did not offer teachers much assistance with the lesson implementation nor did 

they offer support for students' understanding of the equal sign with a relational meaning. 

McNeil et al. (2006) examined middle school textbooks and found that non-traditional 

equations such as true/false statements with the operations occurring on both sides of the 

equal sign hardly ever appeared in any of the textbooks.  
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Li and Ding (2008) compared United States and Chinese sixth grade students on 

their ability to solve non-traditional equations. The difference between the two sets of 

students is strikingly different, with 28% of United States students successfully solving 

non-traditional equations, to 99% of Chinese students successfully solving the same types 

of problems. The discrepancy was found to be related to the instructional design of the 

curriculum structured in the teacher’s manuals, which guides teachers’ instruction and the 

attention paid (or not paid) to equivalence problems. Additionally, teachers’ manuals are 

scripted with language suggesting that the equal sign is a signal for an operation to occur 

(Li et al., 2008). For example, the language for the addition problem 3 + 2 = 5 is stated as 

“three and three makes six”, placing the equal sign as the operator for combining the 3 

and 2, rather than a relation between both sides of the equal sign. In contrast, the Chinese 

teachers’ manuals used a variety of language and symbols to represent the relationships 

between both sides of the equation, such as, greater than and less than. The textbook and 

student material also included a variety of traditional and non-traditional equations to 

increase flexibility and improve relational thinking for equivalence problems. U.S. 

curricula is written with instructional language in the teachers’ manual to operationalize 

the equal sign, contributing to students’ difficulty to develop conceptual understanding of 

the equal sign and its multiple meanings (Li et al., 2008).  

Designing curricula for young students to have multiple opportunities for practice 

solving both traditional and non-traditional equations has shown to successfully develop 

a deep understanding of equivalence and flexibility to problem solve (McNeil et al. 

2012). Understanding how the equal sign functions is pivotal in order for students to 

flexibly use multiple representations and relational thinking to view numbers and then 
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generalize to other areas of mathematics (Falkner et al., 1999; Kieran, 1981; Rittle-

Johnson et al., 2011). Curricula and textbooks often times determine the instructional 

approach and language used by classroom teachers, which significantly impacts the 

amount of exposure students have to relational thinking and the multiple meanings of the 

equal sign (Reys, Lindquist, Lambdin, Smith & Suydam, 2003; Reys, Reys, and Chavez 

2004; Schmidt et al., 2005).  

Powell (2012) wanted to determine whether eight elementary mathematics 

textbooks promote operational thinking with traditional equations, or contribute to the 

development of relational thinking, equivalence and the multiple meanings of the equal 

sign. The textbooks were commonly found in elementary schools throughout the United 

States and included the grade bands Kindergarten through fifth grade. Across all of the 

curricula chosen, the equal sign was only mentioned, at most, eight times throughout each 

teacher manual for each grade level. Although some of the curricula offered the 

opportunity for students to practice non-traditional equations, none of them provided a 

comprehensive set of instruction explicitly developed for conceptual understanding of the 

equal sign and relational thinking. 

While research continues to support the development of relational thinking and 

spatial reasoning through conceptual understanding of the equal sign, teachers continue to 

lack the necessary resources to adequately design effective instructional tasks. According 

to the work of McNeil et al. (2004) Reys et al. (2003) and Canobi (2009) choosing 

curricula that offers a balance of relational thinking and spatial reasoning tasks is not 

easy. However, it is important to recognize the changes to math curricula beginning to 

emerge with the onset of the recommendations for mathematical models, relational 
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thinking, and spatial reasoning suggested by NCTM (2010) and the CCSS (2010). The 

next section highlights two of those curricular options.  

Bridges in Mathematics  

Bridges in Mathematics (Frykholm, 2016) is a k-5 curriculum designed to cover 

all of the Common Core State Standards with the inclusion of the mathematical practices 

to help students develop conceptual understandings of the mathematics. The primary 

grades, specifically kindergarten and first grade utilize multiple visual models to deepen 

students’ mathematical understandings, such as the number rack, ten-frame, dominos, 

unifix cubes, bundles and sticks, and the number line. Bridges in Mathematics supports 

teachers’ instruction to improve mathematical dialog, critical thinking and problem 

solving. Students are given multiple opportunities to use concrete manipulatives to 

represent solutions for given tasks. Each of the models are used to visually represent how 

to compose and decompose numbers, see the relationships between numbers, addition 

and subtraction, and discover place value through grouping strategies of tens and ones.  

As was commonly noted in many textbooks by Seo and Ginsburg (2003) and 

McNeil (2005), the equal sign is first introduced in the context of addition with the 

traditional form of a + b = c. For example, in one lesson the teacher poses a problem 

where students are expected to represent the following context symbolically “Sage has 2 

green Popsicles in her left hand and 4 purple Popsicles in her right hand. How many 

Popsicles does she have in all?”  When students observe number sentences such as this, 

they will most likely interpret the equal sign as a function to perform an action, and 

reinforce their operational view. See figure 3 for an example of the expected student 

work scripted in the teacher’s guide.  
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Figure 4. Student work in Bridges for Mathematics teacher’s guide. 

The authors note the importance of developing algebraic thinking through flexibly 

solving a variety of equations. To promote algebraic thinking and the notion that the 

equal sign is more than just a signal to perform an operation, students play fact family 

games to determine the relationships between quantities. The teacher displays the dot 

card and tells them the total number of dots, but then only reveals part of the dot card. 

Students are encouraged to look at the dot patterns and make assumptions of the possible 

combinations based upon the particular view. Figure 4 shows an example of the game 

and the suggested dialog of the teacher.  

 

Figure 5. Double-Flap dot card game to encourage algebraic thinking. 
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Much of the lessons focus on the use of concrete representations paired with the 

symbolic representations, however the iconic representations are not present. For 

example, students are asked to represent their thinking using a number rack (refer to 

figure four for example) when presented with equations. The textbook provides the 

teacher with a variety of possible student responses to the equation 2 + 4 = ___ using the 

number rack, and the corresponding equation.  

 

Figure 6. Number rack student tool in Bridges to Mathematics (2016). 

The kindergarten through second grade curriculum is heavily emphasizes the use 

of concrete representations as a tool for solving problems. Overall, each lesson 

strategically provides opportunities for students to engage in the enactive and symbolic 

modes of representation. However, with a few exceptions where a number line, hundred 

chart or unifix cubes are presented, the curriculum does not emphasize the use of iconic 

representation. Although geometry topics are included in the Bridges curriculum, the 

emphasis remains on identifying, describing and comparing the attributes of two-

dimensional shapes. As Cheng and Mix (2014) and Fyfe et.al (2014) revealed through 

their research, the need to connect relational thinking tasks and spatial reasoning is 

critical for the development of students’ conceptual knowledge of the equal sign. 
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Curriculum has shown to be a major contributor to students’ misconceptions and lack of 

algebraic knowledge (Seo & Ginsburg, 2003; McNeil, 2014). The following section 

describes a curriculum developed through a framework designed to promote relational 

thinking and spatial reasoning using visual models for students to communicate their 

mathematical ideas. 

Developing Mathematical Thinking  

Research presented so far supports the claim that curriculum should include ways 

to promote relational thinking and spatial reasoning through mathematical modeling to 

develop students’ conceptual understandings of the equal sign (Carpenter et al., 2003; 

McNeil & Alibali 2004; Knuth et al. 2006). Mathematical tasks should include both 

traditional and non-traditional equations (Molina, 2005; Rittle-Johnson et. al. 2011). The 

use of mathematical modeling should connect through a progression of concrete, visual 

representation to an iconic model and then to the formal, abstract symbols of an equation 

(Fyfe et al., 2015). Spatial reasoning tasks should be integrated throughout the 

instructional year to increase students’ flexibility with the structure of equations and 

mathematical competency (Ontario Ministry, 2014; Cheng & Mix, 2014). The 

Developing Mathematical Thinking (DMT) framework offers a comprehensive 

curriculum designed to encompass all of the necessary components for students to 

develop conceptual understandings of the equal sign and advance into middle school 

algebra with less misconceptions and more mathematical competency. The DMT is an 

alternative to the typical curriculum for teaching mathematics to help teachers develop a 

different approach to how mathematics is taught (Brendefur, 2015). Much like the 

Common Core State Standards mathematical practices, the DMT framework consists of 
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five key elements for teachers to reflect upon as they plan, prepare and instruct 

mathematics lessons. The DMT five key elements (Brendefur, 2008) are as follows: 

taking student’s ideas seriously, encouraging multiple solution strategies and models, 

pressing students conceptually, addressing misconceptions, and maintaining a focus on 

the structure of the mathematics. Using students’ informal strategies values their thinking 

and gives the teacher insight as to the level of understanding each student has. Teachers 

use the five elements of the DMT to develop more efficient strategies and multiple 

models for solutions to mathematical problems. Students are encouraged to talk with 

others about their thinking, compare solutions, and make corrections to their errors. One 

of the most critical components of the framework is to draw attention to the structural 

components in mathematics, which extend across grade levels and topics. The DMT 

curriculum is designed to focus students’ attention on the structural components of 

mathematics, which are woven throughout the course of their elementary school years. 

One of the ways the DMT curriculum connects student thinking is through the 

inclusion of Bruner’s (1966) enactive, iconic and symbolic models. Each unit is 

comprised of tasks centered on the EIS framework to develop a strong foundation for the 

development of conceptual understanding for solving problems (Brendefur, 2012). For 

example, students in first grade are given a contextual problem about ten children playing 

in sandbox, where they need to determine whether six of the children are boys, then how 

many children are girls?  Students first demonstrate their thinking using unifix cubes, 

followed by drawing an iconic bar model to match their unifix cubes model. The 

symbolic representation of the numbers is then attached with labels. Relational thinking 

is considered an important component in the DMT curriculum. To highlight the variety of 
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ways to represent the number ten, students are asked to demonstrate the other possible 

representations for making ten following the EIS progression. Modeling all of the 

possible combinations for ten emphasizes the idea of equivalence, and using the EIS 

progression helps all students visually see how the numbers relate to one another. Figure 

six provides a sample solution for the students to use as a model. 

 

Figure 7. Sample solution for making ten in Unit 3 of the DMT curriculum. 

As students become fluent with facts within ten, they are introduced to the variety 

of ways to compose the teen numbers using units of tens and ones. For example, one task 

is to represent each teen number using units of one. Eventually, students begin to 

recognize the inefficiency of counting each unit of one. At that point, the teacher 

introduces a more efficient way of building the teen numbers by using a unit of ten. Over 

time, students independently build efficient models for larger numbers based off their 

previous experiences building with units of one. Once again, tasks such as these expose 

students to relational thinking and highlight the structure of equivalence through the use 

of mathematical modeling. 
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The DMT curriculum encourages students to represent solutions to contextual 

problems, explain their solutions, and then generalize their understandings to other 

concepts. An example of this is with contextual compare problems presented in unit three 

where students represent the number of blocks used to build two different towers. The 

task states that one tower is eight blocks tall, and another tower is six blocks tall. Students 

are asked to represent both towers using unifix cubes, determine whose tower is tallest 

and by how much. Next, students draw an iconic representation of the towers, paying 

attention to the spatial relationship between the number seven and four. The drawing 

should depict that one tower is taller than the other, and the enactive model is used to 

determine the difference between the numbers seven and four. Lastly, students connect 

their understandings of the relationship between the two towers back to the symbolic 

representation by notating 8 – 6 = 2. As students fluently build models to represent the 

context, they are then asked to look at a given set of numbers, build the models with 

unifix cubes to match, draw an iconic representation of the models, and create their own 

story to match their model. Students work in partners to listen to the story, but then also 

explain the relationships between the two towers. With this activity, students often times 

gesture with their hands to explain how many more blocks are in one tower than the other 

tower. 
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Figure 8. Example of student work mat from Unit 3 (Brendefur, 2016). 

 Students who understand the concepts from this task are then able to transfer 

their knowledge to the task in unit four with a spatial reasoning activity using pattern 

blocks. Each student is given the outline of a figure and a variety of pattern block shapes 

to fill in the space. The task encourages students to mentally rotate and visualize how 

different shapes might fit to compose the given figure. Once the figure is covered 

completely with pattern blocks, students record the specific shapes used on a line plot 

graph. Then, students trade their line plot graphs with a partner and try to recompose the 

figure based upon the data on the graph. The understandings of comparing two quantities 

from the previous unit is needed with this graphing activity as students are asked to 

compare their total amount of pattern blocks needed to complete the figure with the total 

amount their partner used. An example of the student work mat can be seen in figure 

eight.  
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Figure 9. Student work mat to graph the shapes used to compose a given figure. 

As suggested by National Governors Association for Best Practices (2010), the 

DMT framework and curriculum intentionally focus on building students’ conceptual 

understandings of mathematical concepts through relational thinking and spatial 

reasoning tasks. Each task presents students with meaningful problem solving situations 

where they are encouraged to begin to represent their thinking through enactive 

mathematical modeling, followed by an iconic representation depicting their thinking, 

and lastly with a connection to the symbolic representation of the problem. Students are 

encouraged to communicate their thinking with partners to check for understanding or 

assess any misconceptions that may arise. The structural components are intentionally 

highlighted within each lesson to foster deep conceptual understanding and help students 

generalize their knowledge to other tasks throughout the year. The overlapping of 

conceptual understandings is woven throughout the complete year to help students build a 

strong foundation in the mathematical concepts for first grade. Overall, the DMT 

framework delivers a comprehensive curriculum designed to increase students’ relational 
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thinking and spatial reasoning skills, which also encourages students’ flexibility with 

understanding the various meanings of the equal sign. 

Conclusion 

Most elementary students begin to develop their awareness of the equal sign’s 

functionality at an operational level, where the equal sign acts as a symbol to perform a 

calculation or action (Carraher et al. 2006). When the bulk of instruction is focused on 

procedures and computing facts many elementary students develop a shallow 

understanding of the equal sign and consider it an operational symbol (Baroody & 

Ginsburg, 1983; Rittle-Johnson et al., 2011). Mathematics instruction for early 

elementary classrooms should foster relational thinking by including tasks designed to 

draw attention to how numbers relate to one another, and develop the flexibility to think 

of numbers in a variety of ways to establish the idea of equivalence (Cheng & Mix, 2014; 

Stephens et al., 2015). Mathematical tasks should include both traditional and non-

traditional equations (Molina, 2005; Rittle-Johnson et. al. 2011).  

As educators become more aware of the need for relational thinking tasks it is 

important to recognize the critical role spatial reasoning and mathematical modeling play 

in the overall development of algebraic thinking and the equal sign. The National 

Research Council report (2006) and the National Governors Association Center for Best 

Practices (NCTM, 2010) suggests more spatial reasoning be integrated into the 

elementary mathematics curriculum to promote relational thinking skills. Spatial 

visualization, gesturing, and mental rotation have been shown to increase student 

performance in mathematics (Cheng & Mix, 2014).  



 

 

51  

Mathematical modeling gives students a visual representation to explain their 

mathematical thinking (Erbas et al., 2014). The use of mathematical modeling should 

connect through a progression of concrete, visual representation to an iconic model and 

then to the formal, abstract symbols of an equation (Fyfe et al., 2015). Curriculum should 

support students’ conceptual understandings through the integration of relational 

thinking, spatial reasoning and mathematical models by incorporating Bruner’s EIS 

framework.  

The Developing Mathematical Thinking (DMT) framework offers a 

comprehensive curriculum designed to encompass all of the necessary components for 

students to develop conceptual understandings of the equal sign and advance into middle 

school algebra with less misconceptions and more mathematical competency. With the 

present literature review, I propose a study to investigate the effectiveness of a 

curriculum that focuses on the EIS framework on first grade students’ conceptual 

understandings of the equal sign, relational thinking and spatial reasoning.  
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CHAPTER 3: RESEARCH METHOD 

Purpose 

The purpose of this study was to investigate whether there was a significant 

difference in first grade students’ performance in relational thinking and spatial reasoning 

when they learn to construct and compare numbers using iconic modeling. The study 

compared relational thinking and spatial reasoning for first grade students whose teacher 

received a curriculum designed to increase use of enactive, iconic, symbolic 

representation in teaching (EIS group) and those whose teacher received district adopted 

curriculum with a more traditional instructional method (Traditional group). Both groups 

were tested using the Primary Mathematics Assessment Screener (PMA-S; Brendefur, 

2012) in September, prior to the mathematics instruction, and again mid-May after the 

mathematics instruction; therefore, student performance was also compared across time. 

Thus, this study used a 2 (EIS group versus Comparison group) x 2 (pretest versus 

posttest) design.  

To address the primary purpose of this research study, the following research 

question and hypothesis was investigated: 

1. What is the effect of integrating iconic representation through student drawings 

in conjunction with the enactive, iconic and symbolic teaching methodology into 

mathematics instruction on first grade students’ relational thinking and spatial reasoning 

performance? 
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H1 : There is a positive effect on integrating enactive, iconic and symbolic 

teaching methodology into mathematics instruction on first grade students’ relational 

thinking and spatial reasoning performance.  

H01:  There is not a positive effect on integrating iconic teaching methodology 

into mathematics instruction on first grade students’ relational thinking and spatial 

reasoning performance.  

This chapter discusses the research design, setting and participants, instructional 

modules, assessment tool, timeline, and analysis. 

Research Design and Approach 

As noted above, this study used a 2 (EIS group versus Traditional group) x 2 

(pretest versus posttest) design. The dependent variable was the students’ understanding 

of relational thinking and spatial reasoning measured with the PMA-S. The goal of this 

study was to determine whether student achievement on the PMA-S differed between the 

EIS and Traditional groups, and whether achievement differed across time. 

Setting and Sample 

Population Definition 

The larger population of interest for this study was first grade classrooms in 

Idaho. Within this larger population, the study consisted of first grade classrooms from 

five school districts. Two of the school districts serve between 15,650 to 26,240 students, 

and three of the districts serve between 600 to 1725 students. There were over 2600 

students with Limited English Proficiency (LEP) comprising approximately 8% of the 

total districts. In these districts, the student demographics were 79.3% white, 10.3% 

Hispanic/Latino, 5.9% Asian, 3.3% Black, 0.9% Native American, and 0.8% Pacific 
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Islander. For this study, the sampling frame will be first grade classrooms in Idaho 

chosen on the basis of similarly matched demographics related to students who receive 

free and reduced lunch assistance. 

Participants 

School district approval to implement a supplemental mathematics resource, 

collect and analyze students’ scores from the PMA-S was attained through district level 

administrators. Approval then allowed district mathematics curriculum directors to recruit 

first grade classroom teachers for the EIS and Traditional groups.  

Tables 1 and 2 display the EIS and Traditional groups’ demographics. 

Table 1: EIS group demographics 

Table 1 

EIS 

Group 

      

DMT 

Modules 

      

School %FRL White Hispanic Other Teacher Experience 

Parkton 63% 72% 19% 9% Mrs. Aura 10 years 

     Ms. 

Commons 

5 years 

Lagunitas 75% 43% 27% 30% Mr. Hops 4 years 

     Mrs. Velitan 12 years 

     Mrs. Shippy 8 years 

Firestone 88% 59% 24% 17% Mrs. Odell 4 years 

     Mr. Antilla 6 years 

     Ms. Hope 8 years 

Sienna 15% 83% 14% 3% Mrs. Joplin 12 years 

     Ms. Wiley 15 years 
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Table 2: Traditional Group Demographics 

Table 2 

 

Traditiona

l Group 

      

District 

Curricula 

      

School %FRL White Hispanic Other Teacher Experience 

Murray 49% 86% 12% 2% Mrs. 

Sterling 

16 years 

     Mrs. Eppe 6 years 

     Mrs. 

Jameson 

8 years 

Hillside 83% 58% 41% 1% Mrs. 

Bentley 

12 years 

     Mrs. 

Jeppeson 

8 years 

Wallace 87% 61% 18% 21% Mrs. Gallon 12 years 

     Mrs. 

Smeade 

6 years 

Eastman 13% 87% 9% 4% Mrs. Jonni 16 years 

     Mrs. 

Sumpter 

13 years 

     Ms. Yarbow 9 years 

     Ms. Deming 

 

6 years 

 

     Mr. Boyd 

 

3 years 

 

 

Instrumentation 

Independent Variable 

The independent variable was separated into two groups—instruction focused on 

the integration of enactive, iconic, symbolic representation for the EIS group, and the 

implementation of district adopted curriculum aligned with Common Core Standards for 

the Traditional group. Teachers in the EIS condition taught a set of eight mathematics 
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unit modules designed to encourage teachers to engage learners in the progression of 

enactive, iconic, and symbolic representation of their mathematical thinking to build 

relational thinking and spatial reasoning in first grade. Teachers in the comparison group 

taught mathematics lessons aligned with the scope and sequence from their curriculum.  

DMT modules. The independent variable was comprised of eight modules for 

teachers to use in their mathematics instruction. The Developing Mathematical Thinking 

(DMT) framework (Brendefur, 2008) includes five critical dimensions to improve 

students’ mathematical understanding: (a) taking student's ideas seriously, (b) pressing 

students conceptually, (c) encouraging multiple strategies and models, (d) addressing 

misconceptions, and (e) focusing on the structure of mathematics. The framework was 

developed with the understanding that students’ mathematical understandings develop 

over time, beginning with the use of informal strategies and models for problem solving. 

Teachers are encouraged to use student thinking and models as a starting point, then press 

them to adopt a more formal and abstract set of strategies through a process called 

progressive formalization (Treffers, 1987; Gravemeijer & van Galen, 2003). The modules 

are designed with Bruner’s (1966) enactive, iconic, and symbolic (E/I/S) modes of 

representation to develop conceptual understanding of the equal sign through a series of 

lessons, which incorporate spatial reasoning and relational thinking tasks. Students 

construct meaning as they problem solve using enactive and iconic models to 

conceptualize the given task, represent their thinking, and draw conclusions about their 

solutions. The DMT modules (DMTI Inc, 2016) incorporate the E/I/S progression to help 

students see the relationships between concepts and equip them with the mathematical 

understandings to choose which strategies work best for a given task (Brendefur, 2008). 
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Within each of the lessons, students are encouraged to discuss their mathematical 

thinking with peers, as well as reason through other students’ solution strategies. The 

DMT modules were designed to develop the following mathematical concepts for first 

grade—number and place value, measurement, geometry, and data analysis. The 

subsequent sections will describe the way in which relational thinking and spatial 

reasoning tasks incorporate enactive and iconic models to increase conceptual 

understanding. 

Number and place value. The number and place value modules develop students’ 

ability to make connections between strategies and models utilizing the E/I/S progression 

to formalize their thinking. Module one, three, five, and seven sequentially build number, 

counting and place value concepts through the use of word problems, physically building 

numbers with place value cubes, tracing of a unit of 1 and a unit of 10 with unifix cubes, 

decomposing units of place value, tree diagrams and bar models, correcting student 

errors, and the introduction of number lines. Table 3 highlights the lessons for each 

module. Samples from the lessons are included in the appendix. 
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Table 3: Number and Place Value descriptions for modules one, three, and five 

(DMTI, 2016). 

Table 3 

 

Number and Place Value 

 

Module Lessons  

Module Focus 

1. Building Number, Counting, 

and Place Value 

The focus for Module one is on counting forward 

and backwards using unifix cubes to represent each 

quantity to build place value understanding of 

numbers 0-20. Contextual story problems are used 

to introduce addition and subtraction for join and 

separate problem types. Each of the lessons 

incorporates enactive, iconic, and symbolic 

models.  

3. Number: Counting and Place 

Value 

The focus for Module three is on adding and 

subtracting using part-whole and compare problem 

types through the use of the bar model. Each lesson 

incorporates enactive, iconic, and symbolic models 

to build understanding of the commutative and 

associate properties. 

5. Number: Join and Separate, 

and Place Value 

The focus for Module five is on adding and 

subtracting using join and separate problem types 

through the use of a bar model and number line. 

Each lesson incorporates enactive, iconic, and 

symbolic models to build understanding of the 

commutative and associate properties, in addition 

to regrouping when adding numbers within 0-100.  

 

 

Measurement and Geometry. The measurement and geometry modules develop 

students’ ability to make connections between strategies and models utilizing the E/I/S 

progression to formalize their thinking. Module two, four, six, and eight sequentially 

build an understanding of informal linear measurement through iteration. The first 

lessons in module one lay the foundation for the use of a more formal measurement tool, 

the ruler. The following lessons build on comparing lengths of objects and analyzing 
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student misconceptions using units of ten and one. Table 4 highlights the lessons for each 

module. Samples from the lessons can be found in the appendix.  

Table 4: Measurement and Geometry descriptions for modules two and four 

(DMTI, 2016).  

Table 4 

 

Measurement and Geometry 

 

Module Lessons  

Module Focus 

2. Informal Linear Measurement 

Through Iteration 

The focus for Module two is on making informal 

linear measurements using paper strips, paper clips, 

and cubes. The number line is introduced as a 

linear tool for measurement, where the bar model is 

used to develop understanding of comparisons 

between measurements. Each lesson includes 

addition and subtraction contextual problems to 

make comparisons between measurements.  

4. Composing Shapes and Space The focus for Module four is on composing and 

decomposing shapes and 3-D objects. Lessons 

examine the way shapes can be configured to 

compose new figures using pattern blocks, square 

tiles, and 3-D shapes. Other lessons include the 

opportunity for shape classification based upon 

particular attributes with enactive and iconic 

models. 

 

District Adopted Curricula. The comparison groups used a variety of k-5 

curriculum recently published with the Common Core State Standards and the inclusion 

of mathematical practices to help students develop conceptual understandings of the 

mathematics. Two of the main curricula used by the comparison group was Bridges in 

Mathematics (Frykholm, 2016), and Math in Focus, Singapore Math (Fong et al., 2015). 

The primary grades, specifically kindergarten and first grade utilize multiple visual 

models to deepen students’ mathematical understandings, such as the number rack, ten-

frame, dominos, unifix cubes, bundles and sticks, and the number line. The curricula 
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support teachers’ instruction to improve mathematical dialog, critical thinking and 

problem solving. Students were given multiple opportunities to use concrete 

manipulatives to represent solutions for given tasks. Each of the models were used to 

visually represent how to compose and decompose numbers, see the relationships 

between numbers, addition and subtraction, and discover place value through grouping 

strategies of tens and ones.  

Authors from both curricula note the importance of developing algebraic thinking 

through flexibly solving a variety of equations. To promote algebraic thinking and the 

notion that the equal sign was more than just a signal to perform an operation, students 

play fact family games to determine the relationships between quantities. The teacher 

displays the dot card and tells them the total number of dots, but then only reveals part of 

the dot card. Students are encouraged to look at the dot patterns and make assumptions of 

the possible combinations based upon the particular view. Figure 4 shows an example of 

the game and the suggested dialog of the teacher.  
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Figure 10. Double-Flap Dot Card game to encourage algebraic thinking. 

 

 

Figure 11. Number bonds to encourage algebraic thinking. 

Many of the lessons focus on the use of concrete representations paired with the 

symbolic representations, however the iconic representations are pre-drawn, and in some 

instances the actual manipulative was photographed for students to refer back to. For 

example, students are asked to represent their thinking using a number rack (refer to 

figure four for example) when presented with equations. The textbook provides the 
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teacher with a variety of possible student responses to the equation 2 + 4 = ___ using the 

number rack, and the corresponding equation. Students are instructed to use the number 

rack as their tool for solving the problems given by the teacher. Although this tool was 

helpful in creating visual representation, the iconic representation was neglected in the 

lesson. 

 

Figure 12. Number rack for solving various problem types. 

As was commonly noted in many textbooks by Seo and Ginsburg (2003) and 

McNeil (2014), the equal sign was first introduced in the context of addition with the 

traditional form of a + b = c. For example, in one lesson the teacher poses a problem 

where students are expected to represent the following context symbolically “Sage has 2 

green Popsicles in her left hand and 4 purple Popsicles in her right hand. How many 

Popsicles does she have in all?” When students observe number sentences such as this, 

they will most likely interpret the equal sign as a function to perform an action, and 

reinforce their operational view. See figure 3 for an example of the expected student 

work scripted in the teacher’s guide.  
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Figure 13. Student work in Bridges for Mathematics teacher’s guide. 

In other instances, the curriculum assumes that a pre-constructed model of unifix 

cubes will transfer as an iconic representation for solving a subtraction problem.

 

Figure 14. Iconic representation to develop knowledge of various problem types. 

Both curricula heavily emphasize the use of visual representations as a tool for 

solving problems. Overall, each lesson strategically provides opportunities for students to 

engage in the enactive and symbolic modes of representation. However, with a few 

exceptions where a number line, hundred chart or unifix cubes are presented, the 

curriculum does not emphasize the use of students representing their own mathematical 
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thinking through iconic modeling. Although geometry topics are included in the Bridges 

curriculum, the emphasis remains on identifying, describing and comparing the attributes 

of two-dimensional shapes. As Cheng and Mix (2014) and Fyfe et. al. (2014) revealed 

through their research, the need to connect relational thinking tasks and spatial reasoning 

is critical for the development of students’ conceptual knowledge of the equal sign. 

Curriculum has shown to be a major contributor to students’ misconceptions and lack of 

algebraic knowledge (Seo & Ginsburg, 2003; McNeil, 2014). The DMT curriculum was 

developed through a framework designed to promote relational thinking and spatial 

reasoning by including the opportunities for students to communicate their mathematical 

ideas by drawing their own iconic models. 

Dependent Variable 

The dependent variable of this study was the difference in scores from the 

Primary Mathematics Assessment (PMA) developed for grades kindergarten through 

second grade (Brendefur, Strother, & Thiede, 2012) to assess students’ knowledge of 

mathematics with a short, comprehensive and predictive screener. The Primary 

Mathematics Assessment Screener (PMA-S) was administered at the beginning of the 

study in September as a pretest, and again in May as a posttest.  

Primary Mathematics Assessment. The Primary Mathematics Assessment 

screener (Brendefur, 2012) is a formative assessment designed to test students’ 

knowledge of mathematics with a short, comprehensive and predictive screener. The 

Primary Mathematics Assessment screener (PMA-S) builds a profile of students’ 

strengths and weaknesses for 6 dimensions: number sense and sequencing, number facts, 

contextual problems, relational thinking, measurement, and spatial reasoning. As stated in 
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the hypothesis, the study will focus specifically on relational thinking and spatial 

reasoning, although the other four dimensions will be highlighted in the analysis. Scores 

on the PMA-S are grouped into quintiles. Figure 15 is an example of a class report from 

the PMA-S administered in the fall to first grade students. 

 

Figure 15. PMA-S class report for teacher.  

The Primary Mathematics Assessment Screener (PMA-S) will be administered at 

the beginning of the study as a pretest, and then again as a posttest at the end of the study. 

Spacing of the pretest and posttest will allow adequate time for the EIS and Traditional 

groups to teach the four modules or units, and then assess to determine student growth.  

The PMA-S has been thoroughly examined to ensure reliability, validity, and 

security with a series of pilot studies, review and psychometric analysis (Siebert & 

Brendefur, 2018). The subscale questions were written to include Webb’s (2002) first 

three depths of knowledge categories:  recall, skill/concept, and strategic thinking. The 

readability of the test questions was rigorously field tested by trained test administrators 
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with teaching experience in kindergarten, first and second grade. Internal consistency was 

evaluated for the psychometric properties of the PMA giving a Cronbach’s alpha between 

.80 or above for the kindergarten and first grade assessment. Each item within the six 

dimensions was tested using Rasch analysis to verify that within each of the dimensions, 

the items were testing similar ideas.  

In this study, students were given the PMA-S as the pretest to all of their students 

in the first month of school, and again in early spring as the post-test. Spatial reasoning 

and relational thinking have shown to be the most predictive of later success in students’ 

mathematical performance. Therefore, it is necessary to further explain the dimensions of 

spatial reasoning and relational thinking.  

Relational Thinking. The screener includes a series of questions for greater than 

or less than, quantitative sameness, identifying missing parts in a bar model, open number 

sentence, and true/false number sentences. Each of the questions are explained in the 

subsequent sections. 

Greater than, less than. This section aims to determine students’  

understanding of number magnitude and place value. The questions are written in 

symbolic notation with a prompt directing students to determine which number is bigger 

or smaller. For example, one prompt asks students to view three numbers “66, 59, 61” on 

the screen and then choose which of the numbers is more.  

 

Figure 16. Sample greater than, less than question of the PMA-S. 

66          59           61 
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Quantitative sameness. This section of the assessment has two different images 

for students to view to determine quantitative sameness. The first image has a two 

dimensional picture of eggs separated into two different baskets where students are 

prompted to count the eggs in each basket, and next students tell how many more need to 

be added so that each basket has the same quantity. The other image consists of dot 

patterns separated by a line where students are prompted to count the dots, and then 

determine if each side has the same amount. 

 

Figure 17. Sample quantitative sameness question from the PMA-S. 

 

Figure 18. Sample quantitative sameness question from the PMA-S. 
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Bar model and missing part. The goal of this section was to see how well students 

understand the concept of part-part whole represented by the bar model. Each question 

has a number represented in the top bar model with two parts spatially drawn to show the 

relative size of each part. Students are prompted to determine the number in each of the 

spaces marked with a question mark. 

 

Figure 19. Sample bar model and missing part question from the PMA-S. 

Open number sentences. Similar to the quantitative sameness section, however, 

the open number sentences are written in symbolic form. Students are asked to think of a 

number for the box so that each side of the equation computes to the same amount.  

 

Figure 20. Sample open number sentences question from the PMA-S. 

True/False number sentences. This section is also presented in symbolic form 

where students look at the given number sentence and determine if the numbers compute 

to be equal or not. Students are asked to use the terms true or false when giving an 

answer for each number sentence.  

 

 10 

1 
    ? 



 

 

69  

 

Figure 21. Sample true/false number sentences question from the PMA-S. 

Spatial Reasoning. The diagnostic includes a series of questions for shape 

composition. There are three subsections which include—shape composition without the 

need to rotate, composing a figure requiring overlapping of pieces during translations, 

and composing a figure by filling in a missing space. Each of the questions is explained 

in the subsequent sections.  

Composing a shape without the need to rotate. The diagnostic for spatial 

reasoning begins by asking students to look at three shapes and determine whether those 

three shapes can be used to compose a new shape. Figure 7 shows an example of one 

question from the PMA-D spatial reasoning assessment. Figure 8 shows an example of 

one question asking students if the given pieces can be used to compose the given shape. 

 

41 + 8 = 42 + 9 
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Figure 22. Sample shape composition question for the PMA-S. 

. 

Figure 23. Sample shape composition question for the PMA-S. 

Composing a figure requiring overlap during translation. The second section asks 

students to determine which of the given shapes can be used to compose a given figure.  

 

Figure 24.  Sample transformation question for the PMA-S. 
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Figure 25.  Sample transformation question for the PMA-S. 

Composing a figure within a missing space. The third section asks students to 

decide whether the given shapes can fill the empty space.  

 

Figure 26.  Sample transformation question for the PMA-S. 

Timeline and Data Collection Procedures  

Data Collection 

Following district approval, expedited IRB approval was granted under #108-

SB16-128. This study took place over a nine-month period – from September through 

A B C 

  

 

 

 

 

 

 

 

 

“I can only make one 
of these by using all 
of the pieces.  
Which one is it?” 

 

A 

B 

C 
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May. Data for both groups was collected in September with the pre-test and May with the 

post-test. Students in the EIS group were instructed with the same unit modules 

developed by the DMT researcher (Brendefur, 2016). Students in the comparison group 

were instructed with district adopted curriculum aligned with the Common Core 

Standards. In both groups, lessons were taught every day, with each lesson lasting 

approximately forty-five minutes in length to students in the general education 

mathematics class. 

The PMA-S was administered to students in both in September before any 

mathematics lessons were taught, and mid-May at the conclusion of the mathematics 

lessons. The PMA-S was administered on laptops by trained proctors to students in both 

groups. Discussion about the fidelity of the testing procedures follows. 

Internal Validity 

Multiple considerations were taken to maintain fidelity and avoid possible threats 

to the validity of the study. Scores from the PMA-S were collected in the fall and spring. 

Trained proctors administered the PMA-S. Teachers were trained on how to implement 

the unit modules. Lastly, observations, note taking, and email correspondence were 

conducted throughout the study.  

Next, careful consideration was taken to ensure all students were present for each 

of the lessons. Teachers with students who received special education or other services 

were mindful of the timing of their mathematics lessons to not interfere with those 

outside services. All students in the EIS group were instructed using all eight modules, 

lasting approximately three to four weeks each, for the duration of the study.  
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Additionally, the teachers in the EIS group were part of a small training session, 

which included ways to develop relational thinking and spatial reasoning through the use 

of the modules. Teachers were provided with ways to supply multiple opportunities for 

students to build the necessary conceptual understanding of relational thinking and spatial 

reasoning through multiple representations including enactive, iconic and symbolic 

models. They were also given ways to present many different problem-solving situations 

for students to draw upon the modes of representation, and flexibly work through 

situations that involved spatial reasoning and relational thinking. The varied practice in 

each module provided students situations for all modes of representation to be utilized in 

problem solving situations. In addition to the modules, the teachers and the researcher 

met to discuss any questions regarding the lesson, preparation of necessary materials, and 

pacing for each lesson.  

Lastly, to ensure consistency during each test, independently trained individuals 

proctored the PMA-S. For testing, each student was taken to a quiet area within the 

school to eliminate as many distractions as possible. Total testing time for each 

participant took approximately eight minutes. Tests were read aloud from a laptop 

computer to each student, with the proctor marking the given answer on the test to avoid 

accidental miscues.  

Data Analysis 

All data analyses were conducted using SPSS Version 24 (IBM, 2016) and/or 

Microsoft Excel for Mac Version 15 (2016). Scores from the PMA-S (DMT, Brendefur, 

2015) database for pre-and posttest were provided as a spreadsheet. All student data files 

were transmitted via email to researcher’s university email account that is password 
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protected. Data were sorted, analyzed, and stored on the researcher’s password protected 

computer. 

Student names and scores were compared between the pre-and posttest to ensure 

accurate reporting of students’ having taken both pre-and posttest for total score and 

within the six subset dimensions. Any incomplete data sets in the pre-and posttest were 

removed. The data were then merged into one single spreadsheet file.  

A two-way design was used to explore the main effects on the different 

treatments, EIS instruction and Traditional instruction, and their interactions under 

different conditions, pretest and posttest. The research question, “What is the effect of 

integrating iconic representation through student drawings in conjunction with the 

enactive, iconic and symbolic teaching methodology into mathematics instruction on first 

grade students’ relational thinking and spatial reasoning performance?” was analyzed 

using a 2 x 2 analysis of variance (ANOVA) to explore whether scores on the pre-and 

posttest was dependent upon the type of instruction.  

Repeated measures analysis of variance (ANOVA) allows a look at change over 

time using the PMA-S given two times over nine months of instruction with different 

conditions (EIS and Traditional instruction). Main effects and interactions were analyzed 

on the independent variables (EIS and Traditional instruction and time) from the 

dependent variable PMA-S scores. There are six assumptions that must be met 

concerning the statistical population of the data set in order to use the repeated measures 

ANOVA. The first three are related to the study design, while the other three relate to 

how the data fits the model. The dependent variable must be measured at a continuous 

level. The scores on the PMA-S range from 0-3, thus meeting the first assumption. One 
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of the independent variables must be categorical, while the other independent variable 

must reflect two or more time slots. The first grade students in the study were taught with 

one of two types of instruction, EIS or traditional. Both groups were given a pre-test prior 

to instruction, and again as a post-test at the end of instruction. The third assumption 

requires that any outliers be removed from the data because they distort the differences, 

and cause problems when generalizing the results of the sample to the population. Data 

found to be +/-3 standard deviations from the mean score are considered to be outliers, 

however, the data remained within the confines of +/-3 standard deviations. The fourth 

assumption is that of confounding data, where an outside variable influences the EIS and 

Traditional groups and the scores on the PMA-S, causing interpretation of the data to 

make false conclusions. There were no other mathematics curriculum or external 

resources used in either the EIS or the Traditional groups. The fifth assumption is that of 

normality. This assumes the averages for Relational Thinking and Spatial Reasoning on 

the PMA-S are normally distributed with the pre-and posttest. According to Kesselman 

(1998) analysis such as this are generally robust to the violation of normality, and can be 

overlooked with a larger sample size such as this study. The final assumption is the 

homogeneity of variance. This assumes the squared standard deviations of both the EIS 

and Traditional groups are clustered near the mean, and that their variances are equal. For 

Relational Thinking homogeneity of variance was met (p > .05, posttest p = .889) except 

for at the beginning of the study (p < .001), as assessed by the Levene’s Test of 

homogeneity of variance, which can also be violated with large, equal sized groups 

(Maxwell & Delaney, 2003).  
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Table 5: Tests of Normality for Relational Thinking 

Tests of Normality 

 Levene’s homogeneity 

of Variance Shapiro-Wilk 

 Statistic df Sig. Statistic df Sig. 

Pretest  29.5 449 .000 .821 451 .000 

Posttest  .02 449 .889 .862 451 .000 

 

Summary 

In summary, the design of the study was to understand whether first grade 

students’ relational thinking and spatial reasoning changed over time when given either 

EIS or Traditional mathematics instruction. Both groups were tested using the Primary 

Mathematics Assessment Screener (PMA-S; Brendefur, 2012) in September, prior to the 

mathematics instruction, and again mid-May after the mathematics instruction. An 

analysis was used to understand the interaction between the two independent variables, 

pre-and posttest (time), and EIS or traditional instruction (group) on the dependent 

variable, scores from the PMA-S. Teachers in the EIS group implemented eight DMT 

modules to progressively press students’ informal strategies and models to a more formal 

way of conceptual understanding using Bruner’s EIS progression of representation. 

Teachers in the Traditional group implemented district adopted curricula aligned with 

Common Core Standards. The next chapter will explain the results from PMA-S given 

the implementation of both independent variables. 
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CHAPTER 4: RESULTS 

Overview of the Study 

The study was conducted to investigate whether there was a significant difference 

in first grade students’ performance in relational thinking and spatial reasoning when they 

learn to construct and compare numbers using iconic modeling. The study compared 

relational thinking and spatial reasoning for first grade students whose teacher received a 

curriculum designed to increase use of enactive, iconic, symbolic representation in 

teaching (EIS group) and those whose teacher received district adopted curriculum and 

taught in a more traditional manner (Traditional group). Both groups were tested using 

the Primary Mathematics Assessment Screener (PMA-S; Brendefur, 2012) in September, 

prior to the mathematics instruction, and again mid-May after the mathematics 

instruction; therefore, student performance was also compared across time. Thus, this 

study used a 2 (EIS group versus Comparison group) x 2 (pretest versus posttest) design. 

The dependent variable was the students’ knowledge of relational thinking and spatial 

reasoning measured with the PMA-S. The goal of this study was to determine whether 

student achievement on the PMA-S differed between the EIS and Traditional groups, and 

whether achievement differed across time. 

The study attempted to answer the following question and null hypothesis: 

1: What is the effect of integrating iconic representation through student drawings 

in conjunction with the enactive, iconic and symbolic teaching methodology into 
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mathematics instruction on first grade students’ relational thinking and spatial reasoning 

performance? 

H1: There is a positive effect on integrating enactive, iconic and symbolic 

teaching methodology into mathematics instruction on first grade students’ relational 

thinking and spatial reasoning performance.  

H01: There is not a positive effect on integrating iconic teaching methodology 

into mathematics instruction on first grade students’ relational thinking and spatial 

reasoning performance.  

Data Analyses 

The analysis compared the mean differences between groups split on two 

independent variables, EIS/Traditional instruction and Time. The purpose was to 

understand if there was an interaction between the two independent variables, 

EIS/Traditional and Time, on the dependent variable, PMA-S. The analysis was used to 

determine whether there were differences between the groups over time. The primary 

purpose of carrying out this analysis was to understand if there was a two-way interaction 

between the EIS/Traditional groups and the pre-and posttest. The goal of the study was to 

understand if first grade students’ relational thinking and spatial reasoning knowledge 

changed over time when given EIS or traditional mathematics instruction and how their 

knowledge changed over time. Understanding this requires the analysis of the two-way 

interaction effect. The analysis allows the researcher to distinguish between the effects of 

different types of instruction over time. 
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PMA-S Scores 

Data from the Relational Thinking and Spatial Reasoning PMA-S scores were 

analyzed using a repeated measures analysis of variance (ANOVA) to determine whether 

there was a significant difference in growth between the EIS and the Traditional groups 

over nine months of instruction. The EIS group had 208 scores, and the Traditional had 

243 scores. Students in the EIS and Traditional groups stayed in their same classroom for 

the duration of the study, thus meeting the assumption of independence to be met.  

A two way repeated measures ANOVA was conducted to determine whether 

there was a significant difference in growth between the EIS group and the Traditional 

group for relational thinking and spatial reasoning. The PMA-S screened four other 

subset dimensions, Facts, Context, Sequence, and Measurement which were not included 

in the design of the study. The results of these other four dimensions provide a deeper 

understanding of students’ mathematical understandings, therefore, follow up analyses 

are presented after Relational Thinking and Spatial Reasoning. 

Relational Thinking 

For the Relational Thinking subtest, there was a main effect for TIME with a 

statistically significant difference for both groups (EIS and Traditional)—scores increase 

from pretest to posttest, F(1, 449) = 105.2, MSe = .9, p < .001. There is also a main effect 

for Group with a statistically significant difference between EIS and Traditional, F(1, 

449) = 5.6, MSe = 1.2, p = .019.  

There was a statistically significant interaction between both groups and time on 

relational thinking, F(1, 449) = 13.2, MSe = .9, p < .001, η2 = .03. This indicates the 

difference of change in students’ knowledge of relational thinking in the EIS and 
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Traditional group was dependent upon the type of mathematical instruction. Based on the 

profile plots of estimated marginal means of Relational Thinking in Figure 28, EIS 

(group 1) and Traditional (group 2), EIS and Traditional groups’ trajectory indicate 

different patterns of mean scores over time. The p-value for the two-way interaction 

effect is < .001, indicating mean Relational Thinking changed differently over time 

depending on whether students were in EIS or Traditional. 

 

Figure 27. Estimated marginal means of Relational Thinking 

To better understand the interaction, tests of simple effects were conducted. These 

results showed for the EIS group, scores on the Relational Thinking scale increased 

significantly from pretest to posttest, t(242) = 10.2, p < .001. For the Traditional group, 

scores on the Relational Thinking scale also increased significantly from pretest to 

posttest, t(242) = 4.6, p < .001. Thus, for both groups, scores increased from pretest to 

posttest. The EIS and Traditional groups were also compared separately on the pretest 

EIS 

Traditional 
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and then the posttest. These results showed that for the pretest, the groups differed 

significantly, t(449) = 4.5, p < .001. For the posttest, the groups were not significantly 

different, t(449) = .53, p = .6. For the pretest scores were greater for the Traditional group 

than for the EIS group. 

Taken all together the results of these analyses show that scores on the Relational 

Thinking subtest scores did not differ across groups. However, significant interaction 

suggests that the change from pretest to posttest was not the same for the two groups. As 

seen in Table 6, the change was greater for the EIS group than for the Traditional group. 

Here, the EIS group began the study with significantly lower scores on the Relational 

Thinking subtests, coupled with a greater posttest score confirming EIS has a positive 

effect. 

Table 6: Relational Thinking Descriptive statistics. 

Relational Thinking      

 Pretest  Posttest  

Group Mean SD Mean SD 

EIS .74  .77 1.61 1.2 

Traditional 1.14 1.1 1.55 1.1 

 

Spatial Reasoning 

For the Spatial Reasoning subtest, there was a main effect for TIME with a 

statistically significant difference for both groups (EIS and Traditional)—scores increase 

from pretest to posttest, F(1, 449) = 85.2, MSe = .6, p < .001. There is also a main effect 
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for Group with a statistically significant difference between EIS and Traditional, F(1, 

449) = 3.9, MSe = .9, p = .05.  

There was a marginal significant interaction between both groups and time on 

relational thinking, F(1, 449) = 3.3, MSe = .6, p < .071, η2 = .01. This indicates the 

difference of change in students’ knowledge of spatial reasoning in the EIS and 

Traditional group was dependent upon the type of mathematical instruction. Based on the 

profile plots of estimated marginal means of Spatial Reasoning, EIS and Traditional 

groups’ trajectory indicate slightly different patterns of mean scores over time.  

 

 

Figure 28. Estimated marginal means of Spatial Reasoning 

To better understand the interaction, tests of simple effects were conducted. These 

results showed for the EIS group, scores on the Spatial Reasoning scale increased 

significantly from pretest to posttest, t(207) = 7.4, p < .001. For the Traditional group, 

scores on the Spatial Reasoning scale also increased significantly from pretest to posttest, 

EIS 

Traditional 
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t(242) = 5.5, p < .001. Thus, for both groups, scores increased from pretest to posttest. 

The EIS and Traditional groups were also compared separately on the pretest and then the 

posttest. These results showed that for the pretest, the groups differed significantly, t(449) 

= 2.8, p < .01. For the posttest, the groups were not significantly different, t(449) = .36, p 

= .72. For the pretest, scores were greater for the Traditional than for the EIS group, and 

on the posttest, scores were the same across both groups. 

Taken all together the results of these analyses show that scores on the Spatial 

Reasoning subtest were equal on the posttest across both groups. However, the 

marginally significant interaction suggests that the change from pretest to posttest was 

not the same for the two groups. As seen in Table 7, the change was greater for the EIS 

group than for the Traditional group. The EIS group began the study with significantly 

lower scores on the Spatial Reasoning subtests. The EIS group shows statistically higher 

gains than the Traditional, thus confirming EIS has an effect. 

Table 7: Spatial Reasoning Descriptive statistics. 

 

Spatial Reasoning  

 

    

 Pretest  Posttest  

Group Mean SD Mean SD 

EIS 1.24  .803 1.82 .871 

Traditional 1.46 .905 1.85 .912 

 

Summary 

In summarizing the data, the instructional method (EIS vs. Traditional) did have a 

significant effect on first grade students’ relational thinking and spatial reasoning. The 

study demonstrated statistical significance between the treatment group who 
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implemented the EIS instruction and comparison group who used traditional mathematics 

instruction. The next chapter will provide details of the interpretation of findings, 

practical implications for educators, and recommendations for further study. 
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CHAPTER 5: DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

Summary 

Purpose 

The purpose of this study was to investigate whether there was a significant 

difference in first grade students’ performance in relational thinking and spatial reasoning 

when they learn to construct and compare numbers using iconic modeling. The study 

compared relational thinking and spatial reasoning for first grade students whose teacher 

received professional development to increase use of enactive, iconic, symbolic 

representation in teaching (EIS group) and those whose teacher received no professional 

development and taught in a more traditional manner (Traditional group). Both groups 

were tested using the Primary Mathematics Assessment Screener (PMA-S; Brendefur, 

2012) in September, prior to the mathematics instruction, and again mid-May after the 

mathematics instruction; therefore, student performance was also compared across time. 

Thus, this study used a 2 (EIS group versus Comparison group) x 2 (pretest versus 

posttest) design.  

To address the primary purpose of this research study, the following research 

question and hypothesis was investigated: 

1. What is the effect of integrating iconic representation through student drawings 

in conjunction with the enactive, iconic and symbolic teaching methodology into 

mathematics instruction on first grade students’ relational thinking and spatial reasoning 

performance? 
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H1: There is a positive effect on integrating enactive, iconic and symbolic 

teaching methodology into mathematics instruction on first grade students’ relational 

thinking and spatial reasoning performance.  

H01: There is not a positive effect on integrating iconic teaching methodology 

into mathematics instruction on first grade students’ relational thinking and spatial 

reasoning performance.  

The dependent variable was the students’ knowledge of relational thinking and 

spatial reasoning measured with the PMA-S. The goal of this study was to determine 

whether student achievement on the PMA-S differed between the EIS and Traditional 

groups, and whether achievement differed across time. 

Connection Back to Literature Review 

The review of literature aimed to understand more deeply the relationship among 

relational thinking, spatial reasoning, mathematical models, and their effect on students’ 

conceptual understandings in early elementary school mathematics. Often times, 

instructional practices are centered around lessons which strengthen an operational view 

of the equal sign. As students continue to formulate ideas about the equal sign over the 

course of their elementary years, the ability to reverse the entrenched ideas becomes 

much more challenging (Chesney & McNeil, 2014). Simple arithmetic problems in 

elementary school promote operational thinking, often times making it difficult for 

students to generalize beyond the given problem. Altering the elementary school 

curriculum with a relational view of the equal sign can build students schema and 

improve their mathematical performance (McNeil & Alibali, 2005). Therefore, k-12 

reform has included an integration of meaningful lessons designed to enhance algebraic 
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thinking into the primary years of school across all mathematical domains, pressing 

students to use critical thinking (Kaput, 2000). Much of the mathematical instruction is 

limited to the use of connecting student understanding with the equal sign in a very 

abstract, symbolic way.  

Mathematical modeling gives students a visual representation to explain their 

mathematical thinking (Erbas et al., 2014). The use of mathematical modeling should 

connect through a progression of concrete, visual representation to an iconic model and 

then to the formal, abstract symbols of an equation (Fyfe et al., 2015).  

A review of literature exposed how curriculum should support students’ 

conceptual understandings through the integration of relational thinking, spatial reasoning 

and mathematical models by incorporating Bruner’s EIS framework. There is currently a 

lack of research into the effects of integrating the iconic representation into mathematics 

on students’ relational thinking and spatial reasoning. 

Design of Study  

This study used a two-way repeated measures analysis to find the effect of two 

different independent variables (EIS representation versus Traditional instruction) 

measured by the dependent variable (PMA-S) given once in September and again in May. 

Analysis of variance (ANOVA) is a statistical model used to explain the effects of 

different components and make predictions about the behavior of the statistics. The 

observed variance within the dependent variables is partitioned among the various groups 

to determine if the means of several groups are significantly different or equally 

distributed from the mean. The two-way ANOVA analyzes two independent variables 

under two different conditions. A repeated measures looks at change over time with 
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different conditions. Therefore, the two-way repeated measures ANOVA is used to 

determine the main effects for both independent variables and their interactions across 

two different conditions. 

Interpretation of Findings  

The primary focus of the study was to look into the effects that integrating the EIS 

representation into first grade mathematics lessons had on students’ conceptual 

understandings of relational thinking and spatial reasoning. Data from the PMA-S 

pretests and posttest were analyzed across the six dimensions of mathematical 

competency—Relational Thinking, Spatial Reasoning, Facts, Sequence, Context, and 

Measurement. 

The research question “What is the effect of integrating iconic teaching 

methodology into mathematics instruction on first grade students’ relational thinking and 

spatial reasoning performance?” was analyzed with a 2x2 repeated measures ANOVA to 

determine whether there was a significant difference in pre-and posttest scores for the 

two groups (EIS representation and Traditional instruction). The result of this test was 

separated into its six subsets. 

6 Dimensions 

For the six subtests—Relational Thinking, Spatial Reasoning, Facts, Context, 

Sequence, and Measurement, the scores increase from pretest to posttest (p < .001), 

which suggests there was an interaction between group and time (Facts, p < .001; 

Context, p = .07; Sequence, p < .001; Measurement, p = .075; Relational Thinking, p < 

.001; Spatial Reasoning, p = .071). The simple effects of the EIS (pre-and posttest) and 

Traditional (pre-and posttest) showed significant effects for both EIS time and 
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Traditional time (Facts, p < .001; Context, p = .03; Sequence, p = .12; Measurement, p = 

.03; Relational Thinking, p < .001; Spatial Reasoning, p = .72). When comparing mean 

scores from pretest to posttest, there is very little difference in the posttest means for all 

dimensions. The Traditional group starts out higher than the EIS group in pretest scores, 

but the posttest EIS had a larger effect than the Traditional with significantly higher gains 

shown in Table 13.  

Table 8: Dimensions Gain Scores from pretest to posttest. 

6 Dimensions Posttest Mean Scores 

Group EIS Traditional 

Relational Thinking 1.27 .89 

Spatial Reasoning .58 .39 

Facts 1.02 .64 

Context .66 .51 

Sequence 1.26 0.8 

Measurement .51 .33 

 

The EIS group performed statistically higher in Relational Thinking than the 

Traditional group, doubling mean scores from pretest (.74) to posttest (1.27). Previous 

work has shown students who are instructed to solve equations strictly in symbolic form 

struggle with algebraic thinking (Falkner et al., 1999; Seo & Ginsburg, 2003). Integrating 

EIS representation into first grade mathematics lessons with a balanced set of equations 

has shown to be effective at developing students relational thinking.  

As Cheng and Mix (2014) revealed through their research, the need to integrate 

spatial reasoning tasks is critical for the development of students’ conceptual knowledge. 
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Similar claims can be made based off results from this study. The EIS group started lower 

on the pretest, yet had higher gains in Spatial Reasoning (.58) and Measurement (.51) 

than the Traditional group. This study concluded the integration of spatial reasoning had 

positive effects on first grade students’ spatial reasoning skills, the development of 

conceptual understanding, and mathematical competency. 

The Findings for Facts and Context support the notion that the integration of EIS 

representation into mathematics lessons offers students sufficient conceptual knowledge 

to develop number operations and mathematical competency (Stephens et al., 2015). Gain 

scores in Facts and Context are found to be consistent with earlier works from 

Carbonneau, et al. (2013), who suggests mathematics instruction should refrain from 

isolated skill and procedural practice in lieu of the development of conceptual 

understanding. Instruction designed to include a progression of enactive, iconic, and 

symbolic form of an equation support conceptual understanding (Bruner, 1966; Fyfe et. 

al., 2014; Gravemeijer, 2003). Students in the EIS group were instructed to enactively 

build and iconically represent their math facts simultaneously. In doing so, they increased 

conceptual understandings of the mathematics occurring quickly solve math facts. In 

addition to recalling facts, fluency with first grade math facts helped students solve 

context questions with ease.  

 With scores from the pretest being heavily skewed, one possible rival explanation 

could be results occurred only by happenstance. Given scores of the EIS group were 

considerably low from the start of the study, any sort of mathematics instruction would 

have had a positive effect. However, K-12 reform has included an integration of 

meaningful lessons designed to enhance algebraic thinking across all mathematical 
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domains, and altering the curriculum to include relational thinking and spatial reasoning 

tasks has shown to improve mathematical performance (Kaput, 2000; McNeil & Alibali, 

2005). This study has shown first grade mathematics lessons designed to integrate EIS 

representation have a positive effect on students’ relational thinking, spatial reasoning, 

and overall mathematical competency. 

Implications for Social Change 

It has been shown that students as young as kindergarten and first grade have 

informal knowledge of number relations, however, the mathematics presented in 

traditional textbooks do not explicitly draw out these relations, allow time for the 

relations to organically emerge, or instruct students to determine how the ideas can be 

generalized (Blanton & Kaput, 2005). Consequently, there is a need for mathematics 

instruction to incorporate more than just the traditional format of equations into daily 

lessons, and include ways to represent relational equivalence (Ellis, 2011; Molina et al., 

2005). The DMT modules offer practical instruction, well aligned with the current body 

of research in support of integration of relational thinking, spatial reasoning and the 

progression of EIS representation.  

Results from the study support an immediate need for other school districts to 

advocate the need for learners to have access to a curriculum, which supports relational 

thinking, spatial reasoning, and the progression of EIS representation for mathematics 

instruction. The dissemination of the findings is vitally important to share with 

mathematics educators, administration, and school district officials. A collaborative effort 

by members of the mathematics community must be made aware of the effect of 

implementing accessible mathematics instruction to all learners. This can be achieved by 
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the ongoing professional development and instruction provided by our local universities 

and state department. 

Recommendations for Further Study 

More research of sustained instruction integrating relational thinking, spatial 

reasoning, and EIS representation is needed (Blanton et.al, 2015). This study served as a 

preliminary springboard for more research to be conducted across elementary grade 

levels to determine the longitudinal effects from a whole school implementation. The 

current body of literature would benefit from a longitudinal analysis to determine the 

long-term effects on students’ conceptual understandings of equivalence with 

instructional practices integrating relational thinking, spatial reasoning, and visual models 

for algebraic reasoning and computational. Implementation of such instruction assumes it 

will in turn effect students’ overall success in the later years of schooling, which require 

deep understanding of algebraic concepts (Britt & Irwin, 2008). Further research is 

necessary to determine the effects of sustained instructional practices included in this 

study over the course for the duration of students’ elementary school experience. Based 

on the conclusions of this study, further research on the integration of EIS teaching 

should include: 

1. How does the implementation of EIS representation effect at-risk students’ 

spatial reasoning and relational thinking skills, and overall mathematical competency? 

2. What is the effect of integrating iconic representation through student drawings 

in conjunction with the enactive, iconic and symbolic teaching methodology into 

mathematics instruction on fifth grade students’ mathematical performance? 
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Conclusion 

The purpose of the study was to investigate the effectiveness of a curriculum 

focused on the integration of Bruner’s (1966) EIS progression into first grade 

mathematics lessons, and the change in students’ conceptual understandings of relational 

thinking and spatial reasoning. Findings from this research strongly support the 

integration of such lessons, not only to improve relational thinking and spatial reasoning, 

but also develop an overall level of mathematical competency including fact fluency, 

sequence of numbers, measurement, and contextual problems. Students have a better 

opportunity to develop conceptual understanding of relational thinking and spatial 

reasoning in their early years of school when instructed with the progression of enactive, 

iconic, and symbolic representation. 
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