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ABSTRACT 

Quorum sensing is an intercellular mechanism used by many bacterial pathogens 

to regulate behaviors, such as motility, virulence, and antibiotic production. Disruption of 

quorum sensing is shown to be deleterious to bacterial pathogenicity, without causing 

lethality. In Gram-negative bacteria, acyl-homoserine lactone (AHL or acyl-HSL) signal 

molecules are synthesized by AHL synthase enzymes using acylated-acyl carrier protein 

(acyl-ACP) and S-adenosyl-L-methionine (SAM) as their substrates. Pantoea stewartii 

EsaI, which causes Stewart’s wilt in corn, and Yersinia pestis YspI, which causes bubonic 

plague are AHL synthases that use 3-oxohexanoyl-ACP and 3-oxooctanoyl-ACP as the 

acyl-substrate to synthesize 3-oxohexanoyl-HSL and 3-oxooctanoyl-HSL signals, 

respectively. Unfortunately, the instability of the β-ketoacyl-ACP substrate due to the 

enolate formation at the -position in the acyl-chain impedes mechanistic investigations 

for β-ketoacyl-ACP utilizing enzymes. In this thesis, we designed, developed, and 

evaluated a library of stable β-ketoacyl-ACP mimics for two β-ketoacyl-ACP utilizing 

AHL synthases, EsaI and YspI. We found that 2-furanacetyl-ACP and 2-benzofuranacetyl-

ACP were the best 3-oxoacyl-ACP alternative substrate for EsaI and YspI, respectively, 

and within an order of magnitude to that observed for well-characterized ACP/CoA-

dependent AHL synthases with their native acyl-ACP/ acyl-CoA substrate, such as RhlI, 

BmaI, and BjaI. The presence of a heteroatom other than oxygen is crucial to retain enzyme 

activity in both EsaI and YspI. Also, substrate inhibition of 2-thiopheneacetyl-ACP was 

observed with both enzymes. The success of synthesis and high activity of β-ketoacyl-ACP 
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mimics for EsaI and YspI should open new doors in characterizing this class of enzymes. 

Moreover, the β-ketoacyl-ACP substrates could be used as chemical probes to explore and 

design inhibitors for therapeutically important AHL synthases and several uncharacterized 

enzymes that impacts human health, such as -ketoacyl-ACP reductase in fatty acid 

biosynthesis and polyketide synthase in polyketide synthesis which are targets for 

antimicrobial, antimalarial, and anti-cancer drugs. 
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CHAPTER ONE: LITERATURE REVIEW 

Quorum Sensing 

In many bacterial pathogens, quorum sensing (QS) serves as an intercellular 

mechanism to establish pathogenic interactions with eukaryotic hosts or to colonize 

inanimate natural habitats. QS coordinates bacterial behaviors in a cell-density dependent 

manner. Bacteria communicate with each other by using small, diffusible chemical 

molecules, called autoinducers.1,2 These chemical signal molecules help bacteria to count 

their local population. When the bacterial cells have reached a sufficient quorum, they 

behave like multicellular species and express virulence.  

Thirty years ago, quorum sensing was first discovered in the bioluminescent marine 

bacterium Vibrio fischeri.1 This bacterium lives in symbiotic relationship with eukaryotic 

hosts, such as squid Euprymna scolopes. When moonlight on a bright clear night penetrates 

clear water, the bacterium V. fischeri provides the squid with counter-illumination to 

prevent the casting of a shadow underneath and avoid getting noticed from predators. The 

regulation of light production is correlated with the cell-population density of the bacteria. 

As the V. fischeri bacterial culture grows, concentration of autoinducer molecules increases 

in the extracellular environment as well as in the intracellular environment. The 

accumulation of autoinducers activates transcription of luciferase operon responsible for 

bacterial luminescence.  

The bacterial communication systems both within and between species have been 

shown to be critical for bacterial survival and interaction in natural habitats. Different 
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groups of bacteria can have different quorum sensing systems.2,3 Two major classes of 

autoinducers are species-specific (autoinducer-1, AI-1) and universal (autoinducer-2, AI-

2).  Gram-negative bacteria produce N-acylated-L-homoserine lactones (AHLs), while 

Gram-positive bacteria produce cyclic or linear peptides as autoinducer peptides (AIP) 

(Figure 1). The AI-2 quorum sensing system is used by both Gram-negative and Gram-

positive bacteria allowing different bacterial species to communicate with each other 

(Figure 1). 

 
Figure 1. Examples of AHL, AIP, and AI-2 molecules in Gram-negative and 

Gram-positive bacteria.  

AHL-based Quorum Sensing in Gram-negative Bacteria 

In the last 30 years, over 50 species of Gram-negative bacteria have been identified 

to be similar to the quorum sensing system of the symbiotic bacterium V. fischeri, which 

contain homologues of two regulatory proteins called LuxI and LuxR.1,2,3,4 LuxI-type 

protein, also called AHL synthase is responsible for the production of N-acyl-L-

homoserine lactone autoinducer (AHL, AI-1), which can diffuse in and out of the cell either 

by free diffusion or AHL specific transporters. LuxR-type protein is the receptor for AHLs 

(Figure 2). When the bacterial cell growth reaches to optimal density, a productive binding 

of AHL to LuxR activates transcription of target genes, such as bioluminescence, swarming 

motility, biofilm formation, cell division, stress survival, horizontal DNA transfer, 
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virulence factors, such as extracellular polysaccharides (EPS), antibiotics, proteases, 

surfactants, and extracellular enzymes.  AHL signal molecules are species-specific. The 

specificity of AHLs come from variation in acyl-chain. The specific signal production from 

AHL-synthase allow bacteria to communicate within its own species efficiently.  

 
Figure 2. AHL-based quorum sensing in Gram-negative Bacteria (LuxI/LuxR-

type). AHLs are represented by red circles, and transcription factors are represented by 

purple rectangular. The LuxI-type protein is an AHL-synthase responsible for the synthesis 

of AHLs. AHLs are freely diffusible across the cell membrane and accumulate in 

proportion to cell density. At high cell density, LuxR-type protein recognizes and binds to 

AHLs to activate transcription of target genes. 

Peptide-based Quorum Sensing in Gram-positive Bacteria 

Unlike Gram-negative bacteria, Gram-positive bacteria use oligopeptides as 

autoinducers for quorum sensing, called autoinducing peptide, AIP.3 The quorum sensing 

system is a dephosphorylation-phosphorylation cascade (Figure 3).1,3 AIPs cannot diffuse 

freely in and out of the cell membrane but transported through oligopeptide transporter. 

Two component signaling system, histidine sensor kinase protein and response regulator 

protein, are the detectors for secretion of peptide signals. The response regulator protein is 

highly selective for a specific peptide signal, which gives rise to specificity between 
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bacteria. Histidine sensor kinase detects a specific peptide autoinducer signal and 

undergoes autophosphorylation cascade. Then, the response regulator protein is activated 

and phosphorylated. The phosphorylated response regulator protein activates transcription 

of target genes.  

 

Figure 3. Peptide-based quorum sensing in Gram-positive Bacteria. AIPs are 

represented by blue hexagon, oligopeptide transporter is represented by cylinder, and 

surface receptor is represented by yellow oval. Quorum sensing system consists of two-

component signal transduction system. The cell membrane consists of oligopeptide 

transporter that is responsible for secretion of signaling peptide molecules (known as 

autoinducing peptide, AIP) out of the cell. At high cell density, AIPs bind to a surface 

receptor, which in turn phosphorylates a response regulator, and regulate gene expression.  

Autoinducer-2-based Quorum Sensing  

Intra-species communication is advantageous to bacteria themselves because signal 

synthesis is specific, and the signal to noise ratio is high so that the interference from 

neighboring bacteria is at minimal. However, in vivo, bacteria live in an environment with 

multiple other different species. Autoinducer-2 (AI-2), synthesized by LuxS is a universal 

signal molecule used in multispecies communities. AI-2, furanosyl borate diester, was first 

identified in the marine bacterium Vibrio harveyi (Figure 1), and is produced and 

recognized by many Gram-negative and Gram-positive bacteria.1,3 Detection of AI-2 

molecule takes place either extra- or intracellularly, depending on the bacterium.  
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Quorum Sensing Inhibitor (QSI) Strategies 

At low cellular density, bacteria are singular cells and harmless. When they grow 

and reach their optimal density, they behave like multicellular organisms. To protect 

themselves from enemies, such as antibiotics and other chemical or physical stresses, 

bacteria attach to a surface and grow as a biofilm.5-7 The bacterial biofilms are composed 

of biopolymer matrix containing polysaccharides, proteins, and DNA originating from the 

bacteria. Bacterial biofilms have been demonstrated to be tolerant to antibiotics and 

involved in chronic infections characterized by persistent inflammation and tissue 

damage.8,9 

Current antibiotics in the market kill bacteria that enforces a selective pressure on 

the bacterium to evolve into a drug-resistant species. Quorum sensing systems are used by 

bacteria to establish virulence and biofilm formation, but they are not essential for 

survival.2 Therefore, quorum sensing inhibitors (QSI) as druggable target is a promising 

strategy against infectious diseases to decrease pathogenicity without imposing selective 

pressure associated with antibacterial treatments.10,11 An effective QSI needs to be 

chemically stable, highly specific for a given quorum sensing regulator with no adverse 

effects on the bacteria or the host, and resistant to degradation by various host metabolic 

systems.11 Quorum sensing can be inhibited or disrupted by several different methods: 1) 

inhibiting AHL cognate receptor, 2) inhibiting the production of AHL signal molecules, 3) 

inactivating quorum sensing signals by enzymatic degradation, such as lactonases and 

acylases, 4) mimicking signal molecules using synthetic analogs, 5) scavenging quorum 

sensing molecules by quorum sensing quenching antibodies as vaccination strategy.11-16 
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Effort to understand and disrupt quorum sensing by inhibiting the activity of AHL-

synthases is explored in this thesis.  

Over the past decades, there have been a lot of debates on whether bacteria will 

eventually evolve and develop resistance to quorum sensing inhibitors.17,18,19 Quorum 

sensing is the mechanism by which the accumulation of small diffusible signaling 

molecules drive the expression of genes coding virulence factors. The production of the 

virulence factors has been shown to be a group-beneficial trait that provides a benefit to 

the local population of bacterial cells. Human infections generally have group-beneficial 

selective environment. There are two barriers obstructing bacteria from developing 

resistance to quorum sensing inhibitors (Figure 4).20 The first barrier is that QSI-resistant 

mutants receive insufficient signals to express their quorum sensing. As bacterial cells 

depend on the production of autoinducers from other cells to reach to a quorum, QSI-

sensitive cells do not produce enough quorum signals to allow the QSI-resistant bacteria to 

thrive. The second barrier is that even if QSI-resistant strains are able to express their 

quorum sensing, the group-beneficial traits, which are formed at the cost of the QSI-

resistant strains, will be shared (“cheated off”) by all neighboring nonresistant strains, 

giving the QSI-resistant strains no selective advantage. Thus, the resistant strains would 

likely to be outcompeted by “cheaters” and failed to spread resistance.  
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Figure 4. Two barriers blocking bacteria from spreading resistance to quorum 

sensing inhibitors (QSI). Left: Signal-dependent resistance. Quorum sensing depends on 

group-beneficial behavior. Insufficient signals prevent rare QSI-resistant from expressing 

quorum sensing. Right: Signal-independent resistance. Assuming the rare QSI-resistant 

mutant is able to express quorum sensing and produces group-beneficial phenotypes, QSI-

sensitive neighbors would benefit the public goods by cheating off the mutant. Eventually, 

the mutants are outcompeted by the cheaters.20   

AHL-synthase Proposed Mechanism 

In Gram-negative bacteria, N-acyl homoserine lactones (AHLs) are the most 

common class of autoinducers. The LuxI-type protein in quorum sensing mechanism that 

are responsible for the synthesis of AHLs are called AHL-synthases. AHL-synthases are 

bi-substrates enzymes utilizing S-adenosyl-L-methionine (SAM) and acyl-acyl-carrier 

protein (acyl-ACP) or acyl-CoA substrates to synthesize AHL signals (Scheme 1).21 The 

proposed mechanism of AHL signal synthesis have two chemical steps: acylation and 

lactonization. The acylation step involves a direct nucleophilic attack of the amine of SAM 

on the α-carbonyl carbon of acyl-ACP/acyl-CoA, resulting in cleavage of the acyl-thioester 

bond to release holo-ACP/ free CoA. Lactonization occurs by the nucleophilic attack on 

the γ-carbon of SAM by its own carboxylate oxygen to produce L-homoserine lactone 

product and release methylthioadenosine (MTA).  
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SAM is a substrate common to all AHL-synthases. SAM is often thought to be a 

substrate involved in methyl group transfers. In an interesting way, AHL-synthases use 

SAM to form lactone ring in AHL product. Acyl-ACP substrate is synthesized from 

bacterial fatty acid biosynthesis.21-23 Both acyl-ACP and acyl-CoA substrates have a 

phosphopantetheine linker that forms a thioester bond to either a variable length acyl-chain 

or an acetyl group. In acyl-ACP, the phosphopantetheine linker is connected to the 

hydroxyl oxygen of Ser36 via a phosphodiester bond (Figure 5). In acyl-CoA, the 

phosphopantetheine linker (pantetheine is colored in blue in Figure 5) is connected to the 

adenosine 3ˊ,5ˊ-diphosphate. AHL signal specificity is derived from acyl-chain of the acyl-

ACP/acyl-CoA that are either unsubstituted or carry modifications such as a 3-oxo, 3-

hydroxy group .21-31 
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Scheme 1. The proposed AHL-synthase signal synthesis mechanism. AHL 

synthases react with two substrates SAM and acyl-ACP/acyl-CoA to produce three 



9 

 

products holo-ACP/ free-CoA, acyl-homoserine lactone (acyl-HSL), and MTA via two 

chemical steps: lactonization and acylation. The acyl-chain length in the AHL signal is 

specific for each bacterial species. 

 
Figure 5. Structures of acyl-CoA, acyl-ACP, holo-ACP, and apo-ACP.  

AHL-synthase Crystal Structures 

To date, LuxI-type AHL synthase family is the most widespread and most studied. 

Yet, only four X-ray structures of Pseudomonas aeruginosa LasI (uses 3-oxododecanoyl-

ACP), Pantoea stewartii EsaI (uses 3-oxohexanoyl-ACP), Burkholderia glumae TofI (uses 

octanoyl-ACP), and Bradyrhizobium japonicum BjaI (uses isovaleryl-CoA) have been 

identified previously (Figure 6).27-32 Unfortunately, crystallization structures of acyl-ACP 

substrate bound to AHL synthases have not been published. Thus, the understanding of 

AHL synthases including binding site of acyl chain, phosphopantethiene moiety, and 

protein core of ACP are based on other enzymes and locations of conserved residues. 

AHL synthases have notable structural similarities to N-acetyltransferases and 

defines a common phosphopantetheine binding fold as the catalytic core.28-32 The topology 
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of AHL synthases is a mixed α-β-α sandwich with a V-shaped cleft and a deep cavity/tunnel 

(Figure 6). The ribbon structures of these AHL synthases reveal conserved regions of 

substrate binding sites and share similarities in binding sites for ACP, acyl-chain in acyl-

ACP, and SAM.  

ACP/CoA binding site 

Acyl-carrier protein (ACP) is a cofactor protein that shuttles covalently bound fatty 

acid intermediates in its hydrophobic pocket to various partner enzymes.22,23 The ACP has 

the negatively charged helix II function as the recognition helix for interaction with the 

partner enzyme. The interactions between the partner enzyme and ACP are largely 

electrostatic. In all ACP-dependent AHL synthases, the putative ACP binding site is 

identified by highly conserved basic residues that form a positively charged patch on the 

surface (Figure 6).28-31 Interestingly, BjaI uses isovaleryl-CoA as the native substrate and 

shows no activity with isovaleryl-ACP.24 Binding of isovaleryl-CoA is supported through 

π-stacking interactions between the adenine ring of isovaleryl-CoA and Trp142 located at 

the beginning of helix α5. The residue stacks with Trp143 resulting in the formation of an 

“indole platform”, providing a foundation for binding to the adenine ring of CoA.32  

SAM binding site 

The N-terminal region of these AHL-synthases is highly conserved and forms a 

binding pocket for SAM, a substrate common to all AHL synthases. The binding pocket of 

SAM is located between helices α1 and α2 (Figure 6). In the four crystal structures of AHL 

synthases (LasI, EsaI, BjaI, and TofI), the strictly conserved residue Trp33 in LasI and TofI 

(Trp34 in EsaI and BjaI) on helix α2 is important in positioning the SAM amine nitrogen 

for acylation at the C1 position of acyl-ACP. The side chain of conserved residue Arg103 
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in BjaI (Arg100 in EsaI, Arg 104 in TofI and LasI) is in close proximity of the adenine ring 

of the bound SAM and significant in hydrogen-bonding network with the adenine moiety 

of SAM. 28-32 

 
Figure 6. Crystal structures of AHL-synthases. Pseudomonas aeruginosa LasI (top 

left), Pantoea stewartii EsaI (top right), Burkholderia glumae TofI (bottom left) and 

Bradyrhizobium japonicum BjaI (bottom right). The common V-cleft for acyl-chain 

binding pocket formed between 5 and 4 (shown in arrow for LasI and EsaI) is observed 

in all four structures. LasI crystal structure shows a much deeper V-cleft than EsaI, Tofl, 

and BjaI, which allow the enzyme to accommodate long acyl-chain (3-oxododecanoyl-

ACP). BjaI structure is crystallized with isovaleryl-CoA native substrate bound. 

Acyl-chain binding site 

The C-terminal region is less conserved among AHL synthases and involved in 

recognition of variable acyl-chain of acyl-ACP substrate.  The analyses of these AHL-

synthase crystal structures (LasI, EsaI, TofI, and BjaI) reported an active site V-shaped 
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cleft that can accommodate variety of acyl-chain of acyl-ACP/acyl-CoA substrate (Figure 

6). The acyl-chain specificity of AHL-synthases depend on the size and shape of this V-

shaped acyl-chain binding pocket.  

The acyl-chain binding pocket in EsaI structure is an enclosed cavity consisting of 

conserved residues (Ser98, Met126, Thr140, Val142, Met146, and Leu176) interacted 3-

oxohexanoyl portion of the substrate.28,30 Many other residues within the protein core but 

not necessarily in direct contact with the hexanoyl chain direct the size and shape of the 

cavity through hydrophobic packing, resulting in the limitation of acyl chain in EsaI to six 

carbons. Nonetheless, LasI can accommodate up to 12-carbon acyl-chain (3-

oxododecanoyl-ACP) due to the elongated acyl-chain binding pocket that is formed by 

hydrophobic residues on helices α6, α7, and α8 (Trp69, Leu102, Phe105, Met125, Thr144, 

Met151, Met152, Ala155, Leu157, and Leu188).29,30 There is no steric restriction on the 

acyl-chain length of acyl-ACP that could bind to LasI. In TofI structure, only five α-helices 

were identified. The acyl-chain binding pocket is enclosed by helices α1, α3, and α4.31 The 

octanoyl-chain is surrounded by hydrophobic residues of β4, β5, α4, and α1. Comparing to 

the pocket of LasI and EsaI, sequence variations in and near the pocket area as well as 

localized structural differences in α3 and α4 lead to high specificity for the octanoyl chain 

substrate in TofI.  

AHL-synthases from different bacteria can have different preferences for 

unsubstituted, 3-oxo-, or 3-hydroxyl-acyl-ACPs due to the selectivity of the AHL-

synthases in a pool of available acyl-ACP substrates in fatty acid biosynthesis. RhlI 

produces unsubstituted C4-HSL, while LasI makes predominantly 3-oxoC12-HSL and 

EsaI synthesizes 3-oxoC6-HSL. The preference of AHL synthases for 3-oxo-substituted 
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acyl-ACP substrates is due to hydrogen bonding interactions between the 3-oxo- carbon in 

acyl chain of 3-oxoacyl-ACP and residues in the acyl-chain binding site.28-30 Structural 

studies revealed that in the acyl-chain binding pocket, two hydrogen bonds are formed 

between the enzyme and the 3-oxo- group of the 3-oxoacyl-ACP substrate. One is from 

Thr140 in EsaI or Thr142 in LasI, and the other hydrogen bond is from the main chain 

carbonyl group of the adjacent residue (Ile141 in EsaI or Ile 145 in LasI). The mutation of 

threonine to alanine leads to a loss of specificity without any loss of enzyme activity, 

indicating the role of Thr140 (or Thr142) is in restricting the acyl-ACPs that can bind to 

the enzyme, rather than enhancing the affinity of the enzyme for 3-oxoacyl-ACPs.26 

Furthermore, enzymes that produce 3-hydroxy-HSLs have serine at this position (for 

example, Rhizoboum leguminosarum CinI) or unsubstituted HSLs have either glycine or 

alanine in this position (for example, Bradyrhizobium japonicum BjaI).28-32 

As a result, the difference in hydrophobic residues and orientation of these catalytic 

residues make up the difference in size and shape of acyl-chain binding pocket. This allows 

AHL synthase to be able to accommodate a certain acyl-chain length in the active site and 

also discriminate its native substrate among a pool of acyl-ACPs. 

Bi-substrates Enzyme Kinetics 

The enzyme-catalyzed reaction with a single substrate can be represented as: 

𝐸 + 𝑆 ⇌ 𝐸𝑆 → 𝐸 + 𝑃   

where E is an enzyme, S is a substrate, ES is an enzyme-substrate complex, and P is product 

released after catalysis. The initial rate of the reaction (V) can be related to Km and Vmax 

as:30  

         𝑉 =  
𝑉𝑚𝑎𝑥[𝑆]

[𝑆]+𝐾𝑚
                                                       (1) 
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where Vmax is the maximal velocity of the enzyme-catalyzed reaction, [S] is the substrate 

concentration, and Km is the amount of substrate required to reach half of Vmax. By plotting 

the initial rate of the reaction against substrate concentration, Vmax and Km can be 

determined.  

With bisubstrate enzymes, the situation is more complicated. The intital velocity 

equation becomes: 

𝑉 =
𝑉𝑚𝑎𝑥[𝐴][𝐵]

𝐾𝑖𝐴𝐾𝐵+𝐾𝐵[𝐴]+𝐾𝐴[𝐵]+[𝐴][𝐵] 
                         (2) 

where KiA is the dissociation constant for substrate A in the absence of B, and KB 

and KA are the Michaelis-Menten constants for substrate B and A, respectively, at 

saturating conditions of the other fixed substrate. If one substrate is held at saturation (for 

example, substrate B), the above equation is simplified as: 

𝑉 =  
𝑉𝑚𝑎𝑥[𝐴][𝐵]

𝐾𝐴[𝐵]+[𝐴][𝐵]
                                                       (3) 

By factoring out the common [B] variable, the above equation is simplified to the 

single substrate Michaelis-Menten equation as:  

𝑉 =  
𝑉𝑚𝑎𝑥[𝐴]

[𝐴]+𝐾𝑎
                                                      (4) 

 



15 

 

 
Figure 7. Hyperbolic Michaelis-Menten curve. Substrate concentration, [S], is 

plotted against intial reaction velocity V0. Vmax is the maximal velocity when enzyme is 

saturated at high substrate concentration and indicated by plateau. Km is defined as 

substrate concentration at half of Vmax.
33 

At high substrate concentrations, some inhibit the enzyme activity because two 

molecules of substrate can bind to the enzyme and block its activity. The substrate 

inhibition equation can be expressed as: 

                                          𝑉 =  
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑚+[𝑆](1+
[𝑆]

𝐾𝑖
)
                       (5) 

Furthermore, the maximum number of substrate molecules converted to product 

per enzyme molecule per second is calculated as: 

     𝑘𝑐𝑎𝑡 =
𝑉𝑚𝑎𝑥

[𝐸]
                        (6) 

Hence, the catalytic efficiency or substrate specificity of the enzyme can be 

obtained by calculating  
𝑘𝑐𝑎𝑡

𝐾𝑚
 . A larger  

𝑘𝑐𝑎𝑡

𝐾𝑚
 value refer to a more efficient substrate for the 

enzyme. 
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AHL-synthase Assays 

Enzyme reaction rates can be determined either by the accumulation of product 

and depletion of substrate over time. Three assays discussed in this thesis are colorimetric 

assay (DCPIP assay), coupled assay, and HPLC assay.  

DCPIP Assay 

A colorimetric assay using 2,6-dichlorophenolindophenol (DCPIP) was adapted 

from Tipton and his group.34,35 DCPIP is an oxidizing agent with maximum absorption at 

600 nm. In this assay, acylation of acyl-ACP and SAM substrates releases holo-ACP 

product, which in turn reduces the blue DCPIP dye to colorless DCPIPH2 (Scheme 2). The 

decrease in absorbance at 600 nm due to the reduction of DCPIP can be used to measure 

the concentration of holo-ACP thiol released in the enzyme-catalyzed reaction.  

 
Scheme 2. DCPIP assay using UV-Vis spectrophotometry. (Left) Holo-ACP 

product is released from acylation chemical step in AHL-synthase signal synthesis 

mechanism. The free thiol group of holo-ACP reduces the blue DCPIP to colorless 

DCPIPH2 at 600 nm.  

MTAN-Xanthine Oxidase Assay 

A coupled assay is designed to follow the release of MTA from lactonization 

reaction of acyl-ACP and SAM indirectly by coupling it to methylthioadenosine 

nucleosidase-xanthine oxidase (MTAN-XO) reactions (Scheme 3).36 The concentrations 
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of nucleosidase and xanthine oxidase are made to keep the AHL-synthase reaction rate-

limiting. In this assay, the MTA product from AHL-synthase reaction first reacts with 

MTAN to form adenine and methylthioribose (MTR). Addition of xanthine oxidase to the 

reaction mixture further increase assay sensitivity because the conversion of adenine to 

2,8-dihydroxyadenine is accompanied by a large change in extinction coefficient. For 

instance, the extinction coefficient for the nucleosidase reaction (Δ ε274) is 1600 M-1cm-1, 

while the extinction coefficient for xanthine oxidase reaction (Δ ε305) is 15500 M-1cm-1. 

MTA and adenine react with nucleosidase and xanthine oxidase, respectively, as soon as 

they are formed. Thus, the increase in rate due to the release of 2,8-dihydroxyadenine signal 

at 305 nm reflects the rate of AHL synthesis (Figure 7). 

 
Scheme 3. MTAN-xanthine oxidase coupled assay using UV-Vis spectrometry. 

Lactonization step in AHL-synthase mechanism releases MTA product, which in turn 

reacts with methylthioadenosine nucleosidase (MTAN) to form adenine and 

methylthioribose (MTR). Adenine is converted to 2,8-dihydroxyadenine by xanthine 

oxidase. The coupled reaction is monitored at 305 nm.  
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HPLC Assay 

Two separate methods were designed for separating protein-based substrates form 

small molecule substrates.36 The HPLC method used to monitor acylation half-reaction 

detects protein-based analytes (holo-ACP, acyl-ACP), while the HPLC method for 

monitoring lactonization half-reaction resolves small molecules (MTA, SAM). In 

lactonization assay, SAM is the reactant, and MTA is the product. In acylation assay, acyl-

ACP is the reactant, and holo-ACP is the product (Scheme 4). To calculate reaction rate, 

the concentration of product formed over time is monitored. A calibration curve for each 

assay is generated by taking known concentrations of product and measuring peak area on 

HPLC. In the enzyme-catalyzed reaction, the reaction is quenched with 6 M HCl 

(lactonization) or 4 M acetate buffer, pH 3.7 (acylation) after 4 minutes. Then, peak area 

of product is calculated and converted to product concentration formed over time using 

standard calibration curve.  
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Scheme 4. Lactonization and acylation assays using HPLC. In lactonization (shown 

in green), the substrate SAM produces MTA product, while in acylation (shown in blue), 

the substrate acyl-ACP produces holo-ACP product.  

β-Ketoacyl-ACP Utilizing AHL-synthases 

AHL-synthases use two substrates SAM and acyl-ACP to produce acyl-homoserine 

lactones (AHLs). To design inhibitors of AHL-synthases, the enzymes need to be 

characterized with their native substrate. Unfortunately, many therapeutically relevant 

AHL synthases prefer acyl-ACPs that have 3-oxo substitution at the -carbon in the acyl-

chain (hence named -ketoacyl-ACPs). For example, opportunistic pathogen 

Pseudomonas aeruginosa LasI use 3-oxoC12-ACP, plant pathogen Pantoea stewartii EsaI 

uses 3-oxoC6-ACP, and bubonic plague causing Yersinia pestis YspI uses 3-oxoC8-ACP 

to make the corresponding AHL signals for each of these bacteria (Scheme 5).  
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Scheme 5. Examples of β-ketoacyl-ACP utilizing AHL-synthases. SAM is the 

conserved substrate in all AHL-synthases. Pantoea stewartii EsaI, Yersinia pestis YspI, 

and Pseudomonas aeruginosa LasI use 3-oxohexanoyl-ACP, 3-oxooctanoyl-ACP, and 3-

oxododecanoyl-ACP, respectively.   

The β-ketoacyl-ACP in its stable form has not been synthesized in vitro because 

the keto group at C-3 position is an electron withdrawing group, enhancing the acidity of 

protons at C-2 position. The deprotonation of one of the protons at C-2 forms an 

intermediate enolate (Scheme 6). Even though C=O bond of the carbanion intermediate is 

more stable than C=C bond of the enolate intermediate, resonance stabilization of the 

resulting carbanion favors the tautomer with a negative charge on enolate oxygen. The 

negatively charged oxygen of the enolate intermediate can attack carbonyl carbon of 

another nearby 3-oxoacyl-ACP to cause cleavage of the reactive thioester bond.37,38  

 
Scheme 6. Tautomerization of keto to enolate of β-ketoacyl-ACP substrate.  

The instability of the β-ketoacyl-ACP substrate creates an obstacle to investigate 

EsaI and other important drug targets such as LasI (Pseudomonas aeruginosa), YspI 
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(Yersinia pestis), etc. As mentioned earlier, threonine-140 in the active site of EsaI (or 

threonine-142 in LasI) is important in recognizing the oxygen atom at C-3 position for 

catalytic activity. Although substrates devoid of 3-oxo group are easier to make, they would 

be expected to show low activity (or possibly inactive) to -ketoacyl-ACP substrate 

utilizing enzymes. Hence, an investigation of alternative 3-oxoacyl-ACP substrates that 

carry oxygen or heteroatom in the acyl-chain must be developed to study these signal 

synthases. Finally, it is worth mentioning that in addition to AHL synthases, medicinally 

important enzymes such as -ketoacyl-ACP reductase, polyketide synthase, etc. remain 

unexplored due to lack of access to -ketoacyl-ACP substrate. We expect this study will 

open new avenues (beyond quorum sensing) for researchers to explore and discover 

inhibitors for several uncharacterized enzymes that impacts human health. 

Thesis Objectives 

The main objective of this thesis is to develop alternative 3-oxoacyl-ACP substrates 

and determine the catalytic activity of these substrates with Pantoea stewartii EsaI and 

Yersinia pestis YspI. To achieve the objective, several aspects of designing the alternative 

substrates are taken into consideration: (1) masking C-2 hydrogens with methyl groups in 

3-oxoacyl-ACP, (2) changing position of 3-oxo- group in the acyl-chain, (3) changing the 

heteroatom at the C-3 position, (4) changing the hybridization of C-3 from sp2 to sp3, (5) 

turning the 3-oxo acyl-chain into 3-oxo aromatic analogs, (6) removing the carbonyl 

oxygen at C-3, (7) changing the acyl-chain length from C6 to C8 and C10 and vice versa. 

Chapters 2 and 3 in this thesis, respectively, will focus on the design and evaluation of 3-

oxoacyl-ACP alternative substrates for EsaI and YspI enzymes. 
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CHAPTER TWO: INVESTIGATION OF ALTERNATIVE SUBSTRATES FOR EsaI  

Introduction 

Overview Plant Pathogen Panteoa stewartii  

Pantoea stewartii subsp. Stewartii is the plant-pathogenic Gram-negative 

bacterium causing Stewart’s wilt and leaf blight disease of sweet corn and maize.39,40 Plant-

to-plant transmission does not occur without the presence of the corn flea beetle. Thus, the 

disease incident is correlated directly with the numbers of corn flea beetles present in 

cornfields. The Stewart’s wilt is transmitted by the corn flea beetle Chaetocnema 

pulicaria.41 The infected corn flea beetle feeds on the host plant and deposits the pathogenic 

bacterium directly into the feeding wounds. The bacterium colonizes both the intercellular 

spaces of the leaf tissue, where it causes water-soaked lesion, and the xylem vessels, which 

leads to systemic spread and wilting.41,42 For proliferation, the bacterium preferentially 

colonizes the xylem tissue and establishes dense biofilms encased in an extracellular 

polysaccharide (EPS) and slime.41-43 These dense biofilms block the water flow in the 

xylem and lead to the wilting and death of the host plant. 

According to the United States Department of Agriculture in 2017, more than 90 

million acres of land are planted to corn. The United States is a major player in the world 

corn trade market, with up to 20 percent of the corn crop exported to other countries. Corn 

is the major component of livestock feed and can also be processed into multitude of food 

and industrial products, including starch, sweetener, corn oil, beverage, industrial alcohol, 

and fuel ethanol. 
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Stewart’s wilt is the most serious bacterial disease of sweet corn and maize in the 

North-Central and Eastern USA.39-43 Even though the importance of the disease has 

diminished in the USA due to the use of resistant corn hybrids, Stewart’s wilt remains a 

problem because some desirable sweet corn hybrids and some elite inbred lines used for 

hybrid corn seed production remain highly susceptible to Stewart’s wilt.  

AHL-synthase in Plant Pathogen Pantoea stewartii: EsaI 

EPS production is the major pathogenicity factor responsible for the vascular 

streaking, bacterial oozing, and wilting caused by P. stewartii subsp. stewartii.39-43 The 

anionic EPS is composed of galactose, glucose, and glucuronic acid in a 3:3:1 ratio.42 P. 

stewartii subsp. stewartii possesses a quorum sensing system containing two homologues 

of LuxI and LuxR, which are EsaI and EsaR.39-45 EsaI is the AHL-synthase responsible for 

synthesis of 3-oxohexanoyl-homoserine lactone (3-oxoC6-HSL) signal molecule. In the 

quorum sensing system described for Vibrio fischeri (LuxI/LuxR), LuxR binds to DNA 

and acts as transcriptional activator in the presence of AHL signal molecules. Interestingly, 

EsaR acts as a repressor of transcription of target genes in the absence of quorum sensing 

signal or at low cell density.44-46 In other words, EsaR operates as a negative regulator of 

EPS synthesis. In vivo adhesion assay studied by von Bodman and his group showed that 

surface adhesion and EPS synthesis are governed by inverse coordinate regulation. The 

delayed EPS synthesis by EsaR enables the bacteria to attach to a surface and transition 

through the early steps of biofilm development.44 Hence, quorum sensing in P. stewartii 

subsp. stewartii may be a mechanism to delay the expression of EPS during the early stages 

of infection so that it does not interfere with other mechanisms of pathogenesis.  
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Mutation studies have shown that disruption of EsaI blocks the synthesis of 3-

oxohexanoyl-HSL, which in turn suppresses EPS production and abolishes the capacity of 

the pathogen to induce Stewart’s wilt disease in the plant host.44,45 EsaI AHL-synthase uses 

SAM and 3-oxohexanoyl-ACP as substrates. To design effective inhibitors for EsaI, the 

activity of the enzyme need to be characterized with its native substrate, 3-oxohexanoyl-

ACP. Unfortunately, the native substrate in its stable form has not been successfully 

synthesized. The crystal structure of EsaI revealed that the specific recognition of 3-

oxohexanoyl-ACP over hexanoyl-ACP is due to the formation of two hydrogen bonds 

between the enzyme and the 3-oxo- group of the acyl-ACP substrate.28,30 One hydrogen 

bond is formed from Ile141 backbone amide and the other hydrogen bond is formed from 

threonine Oγ1 at position 140. For enzymes that are known to produce 3-oxo-HSLs, the 

residue at this position is a threonine. Thus, Thr140 in the active site plays a role as gate 

keeper for recognizing the oxygen atom at C-3 position of the native substrate via hydrogen 

bonding (Figure 8 and 9).28 
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Figure 8. Crystal structure of EsaI active site. EsaI structure in its apo- form shown 

with 3-oxohexanoyl-phosphopantetheine (cyan color). Four water molecules lie along β4 

are shown in red spheres. The conserved residues Ser98, Met126, Thr140, Val142, Met146, 

and Leu176 (not shown) surrounded by well-ordered water molecules have position the 3-

oxo-hexanoyl portion neatly into the hydrophobic cavity in EsaI for catalysis.28  
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Figure 9. The electrostatic interactions between the bound 3-oxoC6-

phosphopantetheine and active site residues of EsaI. The dotted lines are hydrogen 

bonds and curved lines are for other types of interactions, such as van der Waals. The 

backbone amide of Val103 forms a hydrogen bond with the carbonyl at C5 position of 

phosphopantetheine. The carbonyl of Phe101 is a hydrogen bond acceptor for the N3 of 

phosphopantetheine. The backbone amides of Arg100 and Phe101 stabilize the oxyanion 

at C-1 through hydrogen bonding during acylation reaction. The O1 of Thr140 and 

backbone amide of Ille141 form hydrogen bonds with the oxygen at C3 position of 3-

oxoC6 part of the substrate. 28  

Substrate Design 

Mass spectrometry study of wild-type EsaI and EsaI T140A mutant showed that 

T140A mutant lost specificity and produced hexanoyl-HSL (C6-HSL) and some other acyl-

HSLs instead.26 Moreover, a kinetic study of wild-type EsaI with C6-ACP resulted in very 

low or no activity at all due to the lack of hydrogen bonding of C6-ACP with T140. In 

contrast, the activity of EsaI T140A mutant with C6-ACP showed an increase in activity 
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by 55-fold because the mutant did not require hydrogen bonding interaction with C6-ACP. 

This result suggested the presence of oxygen in the acyl-chain might play an important role 

in -ketoacyl-ACP substrate recognition. Yet, the specificity for hybridization at the C-3 

position, position of oxygen at , , and  positions, and oxygen vs. other heteroatoms in 

the acyl-chain of the substrate have not been investigated. One objective is to design, 

synthesize, and evaluate the activity of alternative 3-oxoacyl-ACP substrates that have 

oxygen or heteroatom in the acyl-chain with EsaI (Figure 10).  2-Furanacetyl-ACP (1), a 

3-oxo-aromatic analog of 3-oxohexanoyl-ACP has an oxygen atom and a sp2-hybridzed 

carbon at the -position of the acyl-chain. The -carbon in the fully reduced ring analog of 

(1), the 2-tetrahydrofuranacetyl-ACP (2) also carries an oxygen atom at the -position, but 

is instead sp3 hybridized. Two other 3-oxo-aromatic analogs are 2-thiopheneacetyl-ACP 

(3) and 2-pyridylacetyl-ACP (4), which have sulfur and nitrogen atom, respectively, at C-

3 are designed to evaluate the specificity for oxygen vs. other heteroatoms at the C-3 

position. 2-Furoyl-ACP (5), 4-oxohexanoyl-ACP (6), and 5-oxohexanoyl-ACP (7) are 

designed to investigate the importance of the position of the oxygen in the acyl-chain. 2,2΄-

Dimethyl-3-oxohexanoyl-ACP (8) is dimethylated at C-2 to avoid deprotonation of -

hydrogens and enolate formation observed in -ketoacyl-ACPs. Hexanoyl-ACP (9) does 

not have oxygen atom at C-3 position. Furthermore, specificity of EsaI towards C6 vs C8 

was also explored by designing 4-oxooctanoyl-ACP (10), 5-oxooctanoyl-ACP (11), 

octanoyl-ACP (12), and 2-benzofuranacetyl-ACP (13). 
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Figure 10. Structures of alternative 3-oxoacyl-ACP substrates designed to study 

with EsaI. 

Materials and Methods 

General 

All chemical reagents and solvents were purchased from Sigma Aldrich and used 

without further purification. C6-CoA and C8-CoA were purchased from Sigma Aldrich. 

Ethyl butyrylacetate was purchased from Acros. Ni+-NTA resin was purchased from 

Qiagen. Silica gel 230-400 mesh from Fisher was used for flash column chromatography. 

A Thermo Scientific Evolution 260 Bio UV-Vis spectrophotometer was used to measure 

concentration of analytes. HPLC data was analyzed by Chromeleon 7.2 software on a 

Thermo Scientific Dionex UltiMate-3000 HPLC system. Thermo Scientific Hypersil Gold 

C18 reverse-phase analytical UHPLC column (25002-054630) and preparative HPLC 

column (25005-159070) were used in acyl-ACP and acyl-CoA syntheses, respectively. 
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Deuterated chloroform solvent was obtained commercially through Cambridge Isotope 

Laboratories, Inc. NMR spectra were recorded at 298 K using BRUKER AVANCE III 300 

MHz and 600 MHz spectrometers. Chemical shifts for 1H NMR and 13C NMR spectra were 

expressed in parts per million (ppm) and referenced to residual CHCl3 in CDCl3. 

Esai Wild-Type and T140a Mutant Growth, Expression, and Purification 

Recombinant EsaI wild-type and T140A mutant in E. coli were grown in LB media 

containing 100 g/mL ampicillin at 37 C to an OD600 of 0.6-0.8. Expression was induced 

by addition of 0.5 mM isopropyl--D-1-thiogalactopyranoside (IPTG) at room 

temperature. After 4 hours, the growth cultures were then centrifuged to pellet at 5000 xg 

at 4 C for 10 minutes and stored at -20 C prior to lysis. The cell pellets were thawed on 

ice for 30-60 minutes before lysis. The cell pellets were suspended in 3 mL B-PER reagent 

per gram pellet, 1 mL of lysozyme, 40 L of 4 mg/mL DNAse per gram pellet, 40 L of 4 

mg/mL RNAse per gram pellet, and 60 L of (13 g/ 750 L isopropanol) phenyl methyl 

sulfonyl fluoride (PMSF) per gram pellet. Lysate was incubated at room temperature with 

gentle shaking for 15 minutes and centrifuged to collect supernatant at 20,000 xg at 4 C 

for 30 minutes. Ni2+-NTA affinity chromatography column was used to purify the protein. 

The Ni2+-NTA column was first equilibrated with 10X bed volumes of 0.5 M NaCl in 50 

mM Tris/HCl, pH 7.5 buffer (Buffer A). The clear supernatant was loaded onto the column 

to allow the protein of interest to bind to the resin. The column was then washed with 40 

mM imidazole in Buffer A. The EsaI protein was eluted using 15 mL of 200 mM imidazole 

in Buffer A. The presence and purity of EsaI was confirmed by SDS-PAGE gel analysis. 

Concentration of EsaI was determined via UV-Vis (280 = 34170 M-1cm-1). 
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Apo-ACP Growth, Expression, and Purification25 

Apo-ACP in BL21 E. coli competent cell was grown in LB broth containing 25 

g/mL kanamycin, 50 g/mL streptomycin, 50 g/mL spectinomycin, and 25 g/mL 

chloramphenicol at 37 C to an OD600 of 0.6-0.8. An addition of 0.1 mM IPTG was added 

to induce expression. The growth culture was incubated for another 3 hours and then 

centrifuged to pellets at 5000 xg at 4 C for 10 minutes. The cell pellets were suspended in 

3 mL B-PER reagent per gram pellet, 1 mL of lysozyme, 40 L of 4 mg/mL DNAse per 

gram pellet, 40 L of 4 mg/mL RNAse per gram pellet, and 60 L of (13 g/ 750 L 

isopropanol) PMSF per gram pellet. Lysate was incubated at room temperature with gentle 

shaking for 20 minutes and centrifuged to collect clear supernatant at 20,000 xg at 4 C for 

60 minutes. Then, MnSO4 (1.2 mM) and MgCl2 (25 mM) were added to the clear 

supernatant. The mixture was incubated at 37 C for 4 hours to convert all holo-ACP to the 

apo-ACP form. Cellular protein was precipitated by adding isopropanol slowly to 50% 

volume with gentle shaking on ice for 1 hour. The precipitated protein was removed by 

centrifugation at 20,000 xg for 45 minutes. The clear supernatant was then stirred with 

DEAE-sepharose resin overnight at 4C. The media was packed into a column and washed 

with of 0.25 mM LiCl in 10 mM lithium 4-morpholineethane-sulfonate (MES), pH 6.1 

buffer. The protein of interest was eluted with 0.5 M LiCl in 10 mM MES, pH 6.1 buffer. 

Using SDS-PAGE analysis, fractions containing pure protein were pooled and precipitated 

using 0.02 % (0.2 mg/mL) sodium deoxycholate and 5 % (50 mg/mL) trichloroacetate 

(w/v). The mixture was incubated for 60 minutes with gentle shaking at 37 C and 

centrifuged to pellet at 20,000 xg for 30 minutes. The apo-ACP pellet was resuspended in 

0.5 M Tris-HCl, pH 8.0 buffer and concentrated using 3 kD molecular weight cutoff spin 
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filter column. Concentration of apo-ACP was determined using UV-Vis (280 = 1490 M-

1cm-1). 

Sfp Growth, Expression, and Purification 

Bacillus subtilis sfp was expressed in BL21 E. coli competent cells. Sfp was grown 

in LB media containing 100 g/mL kanamycin at 37 C to an OD600 of 0.6-0.8. Expression 

was induced by addition of 0.5 mM IPTG and continued at 37 C for another 3 hours. The 

growth cultures were then centrifuged to pellet at 5000 xg at 4 C for 10 minutes and stored 

at -20 C prior to lysis. The cell pellets were thawed on ice for 30-60 minutes before lysis. 

The cell pellets were suspended in 3 mL B-PER reagent per gram pellet, 1 mL of lysozyme, 

40 L of 4 mg/mL DNAse per gram pellet, 40 L of 4 mg/mL RNAse per gram pellet, and 

60 L of (13 g/ 750 L isopropanol) PMSF per gram pellet. Lysate was incubated at room 

temperature with gentle shaking for 15 minutes and then centrifuged to collect supernatant 

at 20,000 xg at 4 C for 30 minutes. Ni2+-NTA affinity chromatography column was used 

to purify the protein. The Ni2+-NTA column was first equilibrated with 10X bed volumes 

of 0.5 M NaCl in 50 mM Tris/HCl, pH 7.5 buffer (Buffer A). The clear supernatant was 

loaded onto the column to allow the protein of interest to bind to the resin. The column was 

then washed with 10 mM imidazole in Buffer A. The sfp protein was eluted using 15 mL 

of 200 mM imidazole in Buffer A. The presence and purity of Sfp was confirmed by SDS-

PAGE gel analysis. Concentration of sfp was determined using UV-Vis (280 = 29130 M-

1cm-1). 

Synthesis of 2-furanacetyl-succinimide ester (1-succ)47 

To a solution of 2-furanacetic acid (0.20 g, 1.58 mmol) in 1,4-dioxane (3 mL), N-

hydroxysuccinimide (0.18 g, 1.58 mmol) and N,Nˊ-dicyclohexylcarbodiimide (0.33 g, 1.58 
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mmol) were added and stirred for 24 hours. Diethyl ether (2 mL) was added to the reaction 

mixture, and then the white cloudy solution was filtered and concentrated under reduced 

pressure. Warm methanol (3 mL) was added quickly into the residue to precipitate out urea 

by-product and then concentrated under reduced pressure. Cold 1,4-dioxane (2 mL) was 

added to the residue to repeat removal of urea and then concentrated under reduced pressure 

to give 2-furanacetyl-succinimide ester product as pale-yellow liquid (0.19 g, 0.85 mmol, 

54% yield). 1H NMR (300 MHz, CDCl3)  7.40 (t, J = 1.3 Hz, 1H), 6.37 (d, J = 1.4 Hz, 

2H), 4.01 (s, 2 H), 2.85 (s, 4H). 13C NMR (300 MHz, CDCl3)  169.0, 164.8, 144.9, 142.9, 

110.9, 109.4, 31.1, 25.8. ESI-TOF: expected m/z [M+Na]+ 246.0373, observed 246.0389. 

Synthesis of 2-tetrahydrofuranacetyl-succinimide ester (2-succ)47 

To a solution of 2-tetrahydrofuranacetic acid (0.043 g, 0.33 mmol) in 1,4-dioxane 

(3 mL), N-hydroxysuccinimide (0.038 g, 0.33 mmol) and N,Nˊ-dicyclohexylcarbodiimide 

(0.068 g, 0.33 mmol) were added and stirred for 24 hours. Diethyl ether (2 mL) was added 

to the reaction mixture, and then the white cloudy solution was filtered and concentrated 

under reduced pressure. Warm methanol (3 mL) was added quickly into the residue to 

precipitate out urea by-product and then concentrated under reduced pressure. Cold 1,4-

dioxane (2 mL) was added to the residue to repeat removal of urea and then concentrated 

under reduced pressure to give 2-tetrahydrofuranacetyl-succinimide ester product as clear 

syrupy-like liquid (0.050 g, 0.21 mmol, 62% yield). 1H NMR (600 MHz, CDCl3)  4.34 

(quint, J = 6.7 Hz, 1H), 3.94 (q, J = 8.0, 7.0 Hz, 1H), 3.81 (q, J = 7.9, 6.4 Hz, 1H), 2.94 

(dd, J = 15.4, 6.4 Hz, 1H), 2.86 (s, 4H), 2.78 (dd, J = 15.4, 6.7 Hz, 1H), 2.23 – 2.18 (m, 

1H), 2.17 – 1.95 (m, 2H), 1.72 – 1.69 (m, 1H). 13C NMR (600 MHz, CDCl3)  169.1, 166.4, 
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74.8, 68.5, 37.6, 31.4, 25.8, 25.8. ESI-TOF: expected m/z [M+Na]+ 250.0686, observed 

250.0709. 

Synthesis of 2-thiopheneacetyl-succinimide ester (3-succ)47 

To a solution of thiopheneacetic acid (0.20 g, 1.41 mmol) in 1,4-dioxane (3 mL), 

N-hydroxysuccinimide (0.16 g, 1.41 mmol) and N,Nˊ-dicyclohexylcarbodiimide (0.29 g, 

1.41 mmol) were added and stirred for 24 hours. Diethyl ether (2 mL) was added to the 

reaction mixture, and then the white cloudy solution was filtered and concentrated under 

reduced pressure. Warm methanol (3 mL) was added quickly into the residue to precipitate 

out urea by-product and then concentrated under reduced pressure. Cold 1,4-dioxane (2 

mL) was added to the residue to repeat removal of urea and then concentrated under 

reduced pressure to give thiopheneacetyl-succinimide ester product as tan-brown solid 

(0.27 g, 1.15 mmol, 82% yield). 1H NMR (300 MHz, CDCl3)  7.26 (d, J = 1.2 Hz, 1H), 

7.05 (dd, J = 2.5, 1.1 Hz, 1H), 6.97 (dd, J = 5.1, 3.5 Hz, 1H), 4.14 (d, J = 0.7 Hz, 2H), 2.82 

(s, 4H). 13C NMR (300 MHz, CDCl3)  169.0, 165.9, 131.9, 128.1, 127.3, 126.0, 32.2, 25.8. 

ESI-TOF: expected m/z [M+Na]+ 262.0145, observed 262.0276. 

Synthesis of 2-pyridylacetyl-succinimide ester (4-succ)47 

To a solution of 2-pyridylacetic acid (0.50 g, 2.88 mmol) in 1,4-dioxane (10 mL), 

N-hydroxysuccinimide (0.33 g, 2.88 mmol) and N,Nˊ-dicyclohexylcarbodiimide (0.59 g, 

2.88 mmol) were added and stirred for 24 hours. Diethyl ether (5 mL) was added to the 

reaction mixture, and then the white cloudy solution was filtered and concentrated under 

reduced pressure. Warm methanol (3 mL) was added quickly into the residue to precipitate 

out urea by-product and then concentrated under reduced pressure. Cold 1,4-dioxane was 

added to the residue to repeat removal of urea and then concentrated under reduced 
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pressure. The residue was purified by column chromatography (hexane/ethyl acetate) to 

give 2-pyridylacetyl-succinimide ester product as orange-brownish syrupy-like liquid 

(0.23 g, 0.98 mmol, 29 % yield). 1H NMR (600 MHz, CDCl3)  8.59 (d, J = 4.3 Hz, 1H), 

7.73 (td, J = 7.7, 1.4 Hz, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.26 (dd, J = 6.9, 5.3 Hz, 1H), 4.16 

(s, 2H), 2.83 (s, 4H). 13C NMR (600 MHz, CDCl3)  168.9, 165.9, 151.9, 149.7, 137.1, 

123.8, 122.8, 40.4, 25.6. ESI-TOF: expected m/z [M+Na]+ 257.0533, observed 257.0500. 

Synthesis of 2-furoyl-succinimide ester (5-succ)47 

To a solution of 2-furoic acid (0.50 g, 4.46 mmol) in 1,4-dioxane (10 mL), N-

hydroxysuccinimide (0.51 g, 4.46 mmol) and N,N-dicyclohexylcarbodiimide (0.92 g, 4.46 

mmol) were added and stirred for 24 hours. Diethyl ether (5 mL) was added to the reaction 

mixture, and then the white cloudy solution was filtered and concentrated under reduced 

pressure. Warm methanol (3 mL) was added quickly into the residue to precipitate out urea 

by-product and then concentrated under reduced pressure. Cold 1,4-dioxane (2 mL) was 

added to the residue to repeat removal of urea and then concentrated under reduced pressure 

to give 2-furoyl-succinimide ester product as yellow solid (0.71 g, 3.39 mmol, 76% yield). 

1H NMR (600 MHz, CDCl3)  7.71 (dd, J = 1.6, 0.7 Hz, 1H), 7.47 (dd, J = 3.7, 0.7 Hz, 

1H), 6.61 (dd, J = 3.6, 1.7 Hz, 1H), 2.89 (s, 4H). 13C NMR (600 MHz, CDCl3)  169.2, 

153.7, 148.9, 139.9, 122.4, 112.8, 25.8. ESI-TOF: expected m/z [M+Na]+ 232.0216, 

observed 232.0249. 

Synthesis of 4-oxohexanoic acid (6-acid)48 

Gamma-hexalactone (0.233 mL, 2.0 mmol) was hydrolyzed overnight with 0.5 M 

NaOH in EtOH (1:1, 8 mL). The solvent was removed under reduced pressure. The 

residue was then dissolved in 40 mL buffer solution (5.52 g NaH2PO4 and 1.60 g 
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Na2HPO4). Concentrated NaOCl 10-15% (8 mL) was then added to the reaction mixture 

and stirred for 20 hours at room temperature. The reaction mixture was acidified with 

concentrated HCl solution, washed with diethyl ether (2 x 20 mL) and brine solution (40 

mL). The organic layer was dried with anhydrous MgSO4, filtered, and concentrated 

under reduced pressure to afford 4-oxohexanoic acid product as yellow liquid (0.21 g, 

1.61 mmol, 81% yield). 1H NMR (600 MHz, CDCl3)  2.71 (t, J = 6.4 Hz, 2H), 2.62 (t, J 

= 6.4 Hz, 2H), 2.46 (q, J = 7.3 Hz, 2H), 1.06 (t, J = 7.3 Hz, 3H). 13C NMR (600 MHz, 

CDCl3)  209.7, 178.3, 36.6, 36.1, 27.9, 7.9. 

Synthesis of 4-oxohexanoyl-succinimide ester (6-succ)47 

To a solution of 4-oxohexanoic acid (0.21 g, 1.61 mmol) in 1,4-dioxane (3 mL), N-

hydroxysuccinimide (0.19 g, 1.61 mmol) and N,Nˊ-dicyclohexylcarbodiimide (0.33 g, 1.61 

mmol) were added and stirred for 24 hours. Diethyl ether (2 mL) was added to the reaction 

mixture, and then the white cloudy solution was filtered and concentrated under reduced 

pressure. Warm methanol (3 mL) was added quickly into the residue to precipitate out urea 

by-product and then concentrated under reduced pressure. Cold 1,4-dioxane (2 mL) was 

added to the residue to repeat removal of urea and then concentrated under reduced pressure 

to give 4-oxohexanoyl-succinimide ester product as brown-yellow liquid (0.15 g, 0.66 

mmol, 41% yield). 1H NMR (600 MHz, CDCl3)  2.89 (t, J = 6.4 Hz, 2H), 2.84 (t, J = 6.4 

Hz, 2H), 2.82 (s, 4H), 2.47 (q, J = 7.3 Hz, 2H), 1.07 (t, J = 7.3 Hz, 3H). 13C NMR (600 

MHz, CDCl3)  207.9, 169.2, 168.5, 36.4, 35.9, 25.8, 25.3, 7.9. ESI-TOF: expected m/z 

[M+Na]+ 250.0686, observed 250.0700. 
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Synthesis of 5-oxohexanoic acid (7-acid)48 

Delta-hexalactone (0.44 mL, 4.0 mmol) was hydrolyzed overnight with 0.5 M 

NaOH in EtOH (1:1, 16 mL). The solvent was removed under reduced pressure. The 

residue was then dissolved in 80 mL buffer solution (11.04 g NaH2PO4 and 3.2 g 

Na2HPO4). Concentrated NaOCl 10-15% (16 mL) was then added to the reaction mixture 

and stirred for 20 hours at room temperature. The reaction mixture was acidified with 

concentrated HCl solution, washed with diethyl ether (2 x 20 mL) and brine solution (40 

mL). The organic layer was dried with anhydrous MgSO4, filtered, and concentrated 

under reduced pressure to afford 5-oxohexanoic acid product as dark brown liquid (0.15 

g, 1.15 mmol, 29% yield). 1H NMR (300 MHz, CDCl3)  2.51 (t, J = 7.2 Hz, 2H), 2.38 (t, 

J = 7.2 Hz, 2H), 2.13 (s, 3H), 1.88 (quint, J = 7.2 Hz, 2H). 13C NMR (300 MHz, CDCl3) 

 208.5, 179.0, 42.5, 33.0, 30.2, 18.7. 

Synthesis of 5-oxohexanoyl-succinimide ester (7-succ)47 

To a solution of 5-oxohexanoic acid (0.15 g, 1.15 mmol) in 1,4-dioxane (3 mL), N-

hydroxysuccinimide (0.13 g, 1.15 mmol) and N,Nˊ-dicyclohexylcarbodiimide (0.24 g, 1.15 

mmol) were added and stirred for 24 hours. Diethyl ether (2 mL) was added to the reaction 

mixture, and then the white cloudy solution was filtered and concentrated under reduced 

pressure. Warm methanol (3 mL) was added quickly into the residue to precipitate out urea 

by-product and then concentrated under reduced pressure. Cold 1,4-dioxane (2 mL) was 

added to the residue to repeat removal of urea and then concentrated under reduced pressure 

to give 5-oxohexanoyl-succinimide ester product as black liquid (0.15 g, 0.66 mmol, 56% 

yield). 1H NMR (600 MHz, CDCl3)  2.82 (s, 4H), 2.64 (t, J = 7.0 Hz, 2H), 2.59 (t, J = 7.1 

Hz, 2H), 2.14 (s, 3H), 1.98 (quint, J = 7.1 Hz, 2H). 13C NMR (600 MHz, CDCl3)  207.6, 
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169.3, 168.5, 41.7, 30.2, 30.1, 25.8, 18.7. ESI-TOF: expected m/z [M+Na]+ 250.0686, 

observed 250.0700. 

Synthesis of ethyl-2,2΄-dimethyl-3-oxohexanoate (8-ester)49,50 

To a reaction flask under nitrogen atmosphere, one equivalent of NaH 60% in 

mineral oil (0.5 g, 12.6 mmol) and dry THF (60 mL) were added. The mixture solution was 

refluxing while ethyl-3-oxohexanoate (2.02 mL, 12.6 mmol) was adding dropwise. Then, 

one equivalent of methyl iodide (0.8 mL, 12.6 mmol) was added dropwise into the reaction 

solution. The reaction was refluxed overnight at 70 C in mineral oil bath. Next day, the 

second equivalent of NaH 60% in mineral oil and methyl iodide were added into the same 

reaction flask and stirred overnight. The completion of reaction was checked using TLC 

(5% ethyl acetate: 95% hexane). Under nitrogen atmosphere, saturated ammonium chloride 

solution was added dropwise until all white precipitate dissolved. The product mixture was 

then extracted with dichloromethane (3 x 70 mL). The organic layer was dried with 

anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue 

was purified by silica gel column chromatography (99:1 hexane/ethyl acetate) to give 

ethyl-2,2΄-dimethyl-3-oxohexanoate as a white solid (2.13 g, 11.4 mmol, 91% yield). 1H 

NMR (600 MHz, CDCl3)  4.15 (q, J = 7.1 Hz, 2H), 2.40 (t, J = 7.2 Hz, 2H), 1.62 – 1.57 

(m, 2H), 1.33 (s, 6H), 1.23 (t, J = 7.1 Hz, 3H), 0.87 (t, J = 7.4 Hz, 3H).   DEPT-135 NMR 

(600 MHz, CDCl3)  61.2, 39.8, 21.9, 17.3, 14.0, 13.6. 

Synthesis of 2,2΄-dimethyl-3-oxohexanoic acid (8-acid)51 

To a solution of 1 N NaOH (4.3 mL), ethyl-2,2΄-dimethyl-3-oxohexanoate (0.2 g, 

1.1 mmol) was added and stirred overnight. The reaction mixture was then washed twice 

with ethyl acetate (2 x 8 mL). The organic layer was collected and cooled on ice. 2 N HCl 
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solution was added into the cool aqueous solution until the clear solution turned cloudy or 

pH 2-3. The cloudy solution was filtered and extracted with petroleum ether. The clear 

aqueous phase from extraction was lyophilized to afford the dried 2,2΄-dimethyl-3-

oxohexanoic acid product as white powder (0.12 g, 0.79 mmol, 74% yield). 1H NMR (300 

MHz, MeOD-d4)  2.46 (t, J = 7.1 Hz, 2H), 1.55 – 1.48 (m, 2H), 1.26 (s, 6H), 0.83 (t, J = 

7.4 Hz, 3H).  13C NMR (300 MHz, MeOD-d4)  209.1, 175.6, 55.1, 39.3, 21.0, 16.9, 12.5. 

Synthesis of 2,2΄-dimethyl-3-oxohexanoyl-succinimide ester (8-succ)47 

To a solution of 2,2΄-dimethyl-3-oxohexanoic acid (0.15 g, 0.92 mmol) in 1,4-

dioxane (3 mL), N-hydroxysuccinimide (0.11 g, 0.92 mmol) and N,Nˊ-

dicyclohexylcarbodiimide (0.19 g, 0.92 mmol) were added and stirred for 24 hours. Diethyl 

ether (2 mL) was added to the reaction mixture, and then the white cloudy solution was 

filtered and concentrated under reduced pressure. Warm methanol (3 mL) was added 

quickly into the residue to precipitate out urea by-product and then concentrated under 

reduced pressure. Minimal amount of cold 1,4-dioxane was added to the residue to repeat 

removal of urea and then concentrated under reduced pressure. The residue was purified 

by silica gel column chromatography (1:1 hexane/ethyl acetate) to give 2,2΄-dimethyl-3-

oxohexanoyl-succinimide ester product as clear solid (0.062 g, 0.24 mmol, 26 % yield). 1H 

NMR (600 MHz, CDCl3)  2.81 (s, 4H), 2.64 (t, J = 7.1 Hz, 2H), 1.66 – 1.60 (m, 2H), 1.48 

(s, 6H), 0.89 (t, J = 7.4 Hz, 3H). 13C NMR (600 MHz, CDCl3)  205.5, 169.7, 168.9, 54.7, 

40.3, 25.6, 22.1, 17.3, 13.6. ESI-TOF: expected m/z [M+Na]+ 278.0999, observed 

278.1107. 
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Synthesis of 4-oxooctanoic acid (10-acid)48 

Gamma-octalactone (0.51 mL, 3.5 mmol) was hydrolyzed overnight in 0.5 M 

NaOH in EtOH (1:1, 14 mL). The solvent was removed under reduced pressure. The 

residue was then dissolved in 70 mL buffer solution (9.70 g NaH2PO4 and 2.81 g 

Na2HPO4). Concentrated NaOCl 10-15% (14 mL) was then added to the reaction mixture 

and stirred for 20 hours at room temperature. The reaction mixture was adjusted to pH 3 

with concentrated HCl solution, washed with diethyl ether (2 x 20 mL) and brine solution 

(40 mL). The organic layer was dried with anhydrous MgSO4, filtered, and concentrated 

under reduced pressure to afford 4-oxooctanoic acid product as pale-yellow liquid (0.26 g, 

1.6 mmol, 48 % yield). 1H NMR (300 MHz, CDCl3)  2.69 (t, J = 5.9 Hz, 2H), 2.60 (t, J = 

5.9 Hz, 2H), 2.42 (t, J = 7.5 Hz, 2H), 1.55 (quint, J = 7.5 Hz, 2H), 1.35 – 1.23 (m, 2H), 

0.88 (t, J = 7.3 Hz, 3H). 13C NMR (300 MHz, CDCl3)  209.3, 178.8, 42.6, 36.9, 27.9, 

26.1, 22.5, 14.0. 

Synthesis of 4-oxooctanoyl-succinimide ester (10-succ)47 

To a solution of 4-oxooctanoic acid (0.078 g, 0.49 mmol) in 1,4-dioxane (3 mL), 

N-hydroxysuccinimide (0.057 g, 0.49 mmol) and N,Nˊ-dicyclohexylcarbodiimide (0.10 g, 

0.49 mmol) were added and stirred for 24 hours. Diethyl ether (2 mL) was added to the 

reaction mixture, and then the white cloudy solution was filtered and concentrated under 

reduced pressure. Warm methanol (3 mL) was added quickly into the residue to precipitate 

out urea by-product and then concentrated under reduced pressure. Cold 1,4-dioxane was 

added to the residue to repeat removal of urea and then concentrated under reduced pressure 

to give 4-oxooctanoyl-succinimide ester product as yellow liquid (0.11 g, 0.43 mmol, 88% 

yield). 1H NMR (300 MHz, CDCl3)  2.88 (t, J = 2.6 Hz, 2H), 2.84 (t, J = 5.9 Hz, 2H), 2.79 
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(s, 4H), 2.42 (t, J = 7.4 Hz, 2H), 1.54 (quint, J = 7.5 Hz, 2H), 1.34 – 1.21 (m, 2H), 0.86 (t, 

J = 7.3 Hz, 3H). 13C NMR (300 MHz, CDCl3)  207.6, 169.2, 168.4, 42.5, 36.8, 26.0, 25.7, 

25.2, 22.4, 13.9. ESI-TOF: expected m/z [M+Na]+ 278.0999, observed 278.1009.  

Synthesis of 5-oxooctanoic acid (11-acid)48 

Delta-octanolactone (0.10 g, 0.79 mmol) was hydrolyzed overnight with 0.5 M 

NaOH in EtOH (1:1, 3 mL). The solvent was removed under reduced pressure. The residue 

was then dissolved in 16 mL buffer solution (2.18 g NaH2PO4 and 0.63 g Na2HPO4). 

Concentrated NaOCl 10-15% (3 mL) was then added to the reaction mixture and stirred 

for 20 hours at room temperature. The reaction mixture was acidified with concentrated 

HCl solution, washed with diethyl ether (2 x 20 ml) and brine solution (40 mL). The organic 

layer was dried with anhydrous MgSO4, filtered, and concentrated under reduced pressure 

to afford 5-oxooctanoic acid product as pale-yellow liquid (0.084 g, 0.53 mmol, 67% 

yield). 1H NMR (600 MHz, CDCl3)  2.47 (t, J = 7.2 Hz, 2H), 2.36 (q, J = 7.1 Hz, 4H), 

1.88 (quint, J = 7.2 Hz, 2H), 1.61 – 1.55 (m, 2H), 0.88 (t, J = 7.4 Hz, 3H). 13C NMR (600 

MHz, CDCl3)  210.5, 178.8, 45.0, 41.5, 33.1, 18.8, 17.5, 13.9. 

Synthesis of 5-oxooctanoyl-succinimide ester (11-succ)47 

To a solution of 5-oxooctanoic acid (0.028 g, 0.18 mmol) in 1,4-dioxane (3 mL), 

N-hydroxysuccinimide (0.020 g, 0.18 mmol) and N,Nˊ-dicyclohexylcarbodiimide (0.037 

g, 0.18 mmol) were added and stirred for 24 hours. Diethyl ether (2 mL) was added to the 

reaction mixture, and then the white cloudy solution was filtered and concentrated under 

reduced pressure. Warm methanol (3 mL) was added quickly into the residue to precipitate 

out urea by-product and then concentrated under reduced pressure. Cold 1,4-dioxane (2 

mL) was added to the residue to repeat removal of urea and then concentrated under 
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reduced pressure to give 5-oxooctanoyl-succinimide ester product as orange-yellowish 

liquid (0.038 g, 0.15 mmol, 84% yield). 1H NMR (600 MHz, CDCl3)  2.81 (s, 4H), 2.64 

(t, J = 7.1 Hz, 2H), 2.55 (t, J = 7.1 Hz, 2H), 2.37 (t, J = 7.4 Hz, 2H), 1.99 (quint, J = 7.1 

Hz, 2H), 1.60 – 1.57 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H). 13C NMR (600 MHz, CDCl3)  

209.7, 169.0, 168.3, 44.8, 40.5, 30.0, 25.6, 18.6, 17.3, 13.7. ESI-TOF: expected m/z 

[M+Na]+ 278.0999, observed 278.1012. 

General preparation of 3-oxoacyl-CoA analogs52-54 

Under inert condition, acyl-succinimide ester analog (0.2 mmol) was dissolved in 

mixture solution of water: dimethylformamide (1:1, 3 mL). A pea-size amount of K2CO3 

was added to make the reaction solution basic, pH 8-9. To this reaction mixture, free CoA 

(0.1 mmol) was added after gentle mixing. The reaction was stirred at room temperature 

overnight under nitrogen atmosphere. The reaction mixture was washed twice with diethyl 

ether to remove any organic contaminants. The aqueous layer was collected and filtered 

through a 0.22 m centrifugal spin filter. Acyl-CoA was purified by a preparative C-18 

reverse-phase HPLC with gradient beginning at 95% buffer B (25 mM ammonium acetate, 

pH 5) and ending at 95% solvent D (acetonitrile + 0.1% TFA) at flow rate of 3 mL/min 

over a period of 25 minutes.  

Synthesis of 2-benzofuranacetyl-CoA (13-CoA)55 

To a solution of acetonitrile (3 mL) at -5 ̊C, 2-benzofuranacetic acid (10 mg, 0.057 

mmol) and 1,1’-carbonyldiimidazole (12 mg, 0.073 mmol) were added. The reaction 

mixture was stirred at below 0 ̊C for 1.5 hours. In a separate flask containing 1:1 

acetonitrile: water solution (2 mL), free CoA (22 mg, 0.037 mmol) was dissolved under 

nitrogen environment. The reaction mixture was transferred into the free CoA solution and 
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continued to stir under nitrogen environment for another 3-5 hours at the same temperature 

condition. The crude product was collected and filtered through a 0.22 m centrifugal spin 

filter. 2-Benzofuranacetyl-CoA was purified by a preparative C-18 reverse-phase HPLC 

with gradient beginning at 95 % buffer B (25 mM ammonium acetate, pH 5) and ending at 

95 % solvent D (99.9 % acetonitrile + 0.1 % TFA) at flow rate of 3 mL/min over a period 

of 25 minutes.  

General preparation of 3-oxoacyl-ACP analogs56,57  

Acyl-ACP can be synthesized by enzymatic modification of apo-ACP with acyl-

CoA using phosphopantheinyl transferase, B. subtilis Sfp. The reaction contained nanopure 

water, 50 mM Tris-HCl, pH 6.8, 10 mM MgCl2, apo-ACP, acyl-CoA (1.25X apo-ACP), 

and 3 M Sfp. Acyl-CoA was added in partition over 15 minute intervals. The reaction 

was incubated at 37 C and monitored by analytical C-18 reverse-phase UHPLC for 

completion. Acyl-ACP separation using UHPLC began with 75 % solvent A (99.9 % H2O 

+ 0.1 % TFA) and 25% solvent D (99.9 % acetonitrile + 0.1 % TFA), and ended with 25% 

solvent A and 75% solvent D over a period of 10 minutes at flow rate of 600 L/min. The 

reaction time varied from 1 hour to 4 hours. Once the reaction went to completion, 

ammonium sulfate was added to the reaction mixture to 75 % saturation to precipitate out 

Sfp.58 After at least 1 hour of stirring at 4 C, the reaction solution was centrifuged to pellet 

out Sfp at 13000 xg for 15 minutes. The clear supernatant containing acyl-ACP solution 

was desalted and concentrated by multiple washes with nanopure water and then 10 mM 

MES, pH 6 + 20 % glycerol buffer using a 3kD molecular cutoff spin filter column. 

Concentration of acyl-ACP was determined using UV-Vis (280 = 1490 M-1cm-1).  
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Mass determination of Acyl-CoA molecules 

Acyl-CoA molecules were analyzed on an ultra-high-resolution Quadrupole Time 

of Flight (QTOF) instrument (Bruker maXis, Bruker Corporation, Billerica, 

Massachusetts) using direct injection to the MS. The ESI source was operated under the 

following conditions: positive ion mode, nebulizer pressure: 0.4 Bar; flow rate of drying 

gas (N2): 4L/min; drying gas temperature: 200 C; voltage between HV capillary and HV 

end-plate offset: 3000 V to -500 V; and the quadrupole ion energy 4.0 eV. Sodium formate 

was used to calibrate the system in the mass range. All MS data was analyzed using the 

Compass Data Analysis software package (Bruker Corporation, Billerica, Massachusetts). 

The Bruker Compass Isotope Pattern application was used to calculate the expected 

molecular mass of each acyl-CoA molecule based on the most abundant isotopes of the 

provided molecular formula of each acyl-CoA. 2-Furanacetyl-CoA (1-CoA): expected 

[M+H]+ 876.1436, observed [M+H]+ 876.1451. 2-Tetrahydrofuranacetyl-CoA (2-CoA): 

expected [M+H]+ 880.1749, observed 880.1721. 2-Thiopheneacetyl-CoA (3-CoA): 

expected [M+H]+ 892.1208, observed 892.1194. 2-Pyridylacetyl-CoA (4-CoA): expected 

[M+H]+ 887.1596, observed 888.0821. 2-Furoyl-CoA (5-CoA): expected [M+H]+ 

862.1280, observed 862.1309. 4-Oxohexanoyl-CoA (6-CoA): expected [M+H]+ 

879.1671, observed 879.1881. 5-Oxohexanoyl-CoA (7-CoA): expected [M+H]+ 

879.1671, observed 879.1877. 2,2΄-Dimethyl-3-oxohexanoyl-CoA (8-CoA): expected 

[M+H]+ 908.2062, observed 908.2022. 4-Oxooctanoyl-CoA (10-CoA): expected [M+H]+ 

907.1984, observed 907.1887. 5-Oxooctanoyl-CoA (11-CoA): expected [M+H]+ 

907.1984, observed 907.1878. 2-Benzofuranacetyl-CoA (43): expected [M+H]+ 

926.1593, observed 926.1626. 
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Mass determination of Acyl-ACP proteins 

Molecular mass of ACP and its derivatives were determined by high performance 

liquid chromatography mass spectrometry (HPLC-MS) using an ultra-high-resolution 

Quadrupole Time of Flight (QTOF) instrument (Bruker maXis, Bruker Corporation, 

Billerica, Massachusetts). The electrospray ionization (ESI) source was operated under the 

following conditions: positive ion mode; nebulizer pressure: 1.2 Bar; flow rate of drying 

gas (N2): 8 L/min; drying gas temperature: 200 °C; voltage between HV capillary and HV 

end-plate offset: 3000 V to −500 V; and the quadrupole ion energy was 4.0 eV. Low 

concentration ESI tuning mix (Agilent Technologies, Santa Clara, California) was used to 

calibrate the system in the mass range. HPLC separation was achieved using a Dionex 

UltiMate® 3000 uHPLC system (Dionex Corporation, Sunnyvale, California). Ten 

microliters of samples were injected onto a Phenomenex Kinetex XB-C18 column (100 x 

2.1 mm, 2.6μm) (Phenomenex Corporation, Torrance, California) at a flow rate of 0.3 

mL/min followed by a simple linear gradient for sample desalting and separation. The 

initial eluent was 98% mobile phase A (99.9% water, 0.1% formic acid) and 2% B (99.9% 

acetonitrile, 0.1% formic acid) for 5 min and then mobile phase B was increased to 50% in 

25 min. LC eluent was diverted to the waste during the first five minutes of the gradient to 

eliminate salts in the sample buffer. Obtained mass spectra were deconvoluted using 

Bruker Data Analysis 4.0 software to obtain charge state (N) of protein ions. To calculate 

the molecular mass of ACP and its derivatives, the measured m/z values were multiplied 

by corresponding charge state (N) of protein ions and were subtracted by the mass of N 

protons (N x 1.0079). Apo-ACP (16): calculated mass 8508.1636 Da, observed mass 

8508.2138 Da; 2-furanacetyl-ACP (1): calculated mass 8957.2798 Da, observed mass 
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8957.6844 Da; 2-tetrahydrofuranacetyl-ACP (2): calculated mass 8961.3068 Da, 

observed mass 8961.2978 Da; 2-thiopheneacetyl-ACP (3): calculated mass: 8972.5905 

Da, observed mass: 8972.5293 Da; 2-pyridylacetyl-ACP (4): calculated mass 8969.2168 

Da, observed mass 8969.1140 Da; 2-furoyl-ACP (5): calculated mass 8942.6020 Da, 

observed mass 8942.5198 Da; 4-oxoC6-ACP (6): calculated mass 8960.3228 Da, observed 

mass 8960.4226 Da; 5-oxoC6-ACP (7): calculated mass 8960.3224 Da, observed mass 

8960.6268 Da; 2,2΄-dimethyl-3-oxoC6-ACP (8): calculated mass 8988.6773 Da, observed 

mass 8988.9023 Da; C6-ACP (9): calculated mass 8946.8127 Da, observed mass 

8946.5601 Da; 4-oxoC8-ACP (10): calculated mass 8988.3234 Da, observed mass 

8988.3352 Da; 5-oxoC8-ACP (11): calculated mass 8988.3225 Da, observed mass 

8988.4745 Da; C8-ACP (12): calculated mass 8974.8667 Da, observed mass 8974.5376 

Da; 2-benzofuranacetyl-ACP (13): calculated mass 9006.2867 Da, observed mass 

9006.0533 Da.  

HPLC assay 

Two chemical steps, lactonization and acylation, could be resolved independently 

using analytical C-18 reverse-phase UHPLC. MTA peak from SAM lactonization was 

monitored using a gradient beginning at 100 % A (99.9% water, 0.1% formic acid) : 0 % 

D (99.9% acetonitrile, 0.1% formic acid) and ending at 70 % A: 30 % D over a period of 

10 minutes at flow rate of 500 L/min. Holo-ACP from acylation half-reaction was 

monitored using a gradient beginning at 75 % A: 25 % D and ending at 25 % A: 75 % D 

over a period of 10 minutes at flow rate of 600 L/min. Standard calibration curves for 

MTA and holo-ACP were generated by serial dilution of known analyte concentrations in 

buffer with quench solution, 6 M HCl (lactonization) or 4 M acetate buffer, pH 3.7 
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(acylation). Peak areas at each MTA and holo-ACP concentration were determined from 

HPLC chromatograms at 260 nm (SAM and MTA) or 220 nm (acyl-ACP and holo-ACP). 

A typical enzyme-catalyzed reaction (100 μL) contained nanopure water, 100 mM HEPES 

pH 7.3 buffer, fixed SAM concentration at 500 M, varied acyl-ACP concentrations. The 

mixture was split into two equal portions for background and reaction. After incubation at 

room temperature for 5 minutes, the reaction and background aliquots were initiated, 

respectively with 1 μM EsaI enzyme (2 μM EsaI for 4-oxo-C8-ACP, 5-oxo-C8-ACP, and 

C8-ACP) and nanopure water. Both aliquots were quenched after 4 minutes of initiation 

using 6 M HCl (lactonization) or 4 M acetate buffer pH 3.7 (acylation) with final 

concentration of 0.4 M HCl or 0.4 M acetate buffer. Peak areas of MTA and holo-ACP at 

each acyl-ACP concentration were determined from HPLC chromatograms. The difference 

between background and reaction in peak area per minute was converted to initial reaction 

rate in M/min using standard calibration curves. MTA standard curve had linear fit 

equation of y = 0.198x; holo-ACP standard curve had linear fit equation of y = 0.4058x, 

where y = peak area of analyte, x = known concentration of analyte. The initial rate was 

fitted to Michaelis-Menten equation (Eq. 4) or substrate inhibition equation (Eq. 5) using 

GraphPad Prism 7.00. All experiments were repeated duplicated to check for 

reproducibility and to estimate errors. 

Results and Discussion 

Purification of EsaI wild-type and T140A mutant  

Inoculation of BL21 (DE3) E. coli EsaI WT and T140A on agar plates containing 

100 g/ mL ampicillin antibiotic showed appearance of small white circular colonies. An 

isolated colony of WT and T140A mutant was picked to inoculate mini growths and then 



47 

 

large growths with the same antibiotic concentration. The large growths of WT and T140A 

mutant reached to OD of 0.6-0.8 within three hours of shaking at 37 C. Chemical lysis 

using B-PER, lysozyme, DNase, RNase, and PMSF gave clear yellow lysate in both large 

growths. EsaI protein was purified using Ni-NTA affinity column chromatography.  The 

molecular weight of EsaI (WT and T140A) is ~ 25 kDa. It was confirmed that the clean 

EsaI WT and T140A proteins were obtained indicating by a band at 25 kDa on SDS-PAGE 

gel (Figure 11 and 12).  

 

 
Figure 11. SDS-PAGE of EsaI wild-type fractions using Ni-NTA affinity column 

chromatography. Lane 1: EZ prestained protein ladder from Fisher; 2: run through of EsaI 

crude; 3: 40 mM imidazole in Tris-HCl buffer wash of EsaI; 4-9: 200 mM imidazole in 

Tris-HCl buffer elutions 1-6. The elutions in lanes 6-9 were on the 25 kDa marker 

indicating the presence of clean EsaI from purification.  

 
Figure 12. SDS-PAGE of EsaI T140A mutant fractions using Ni-NTA affinity 

column chromatography. Lane 1: EZ prestained protein ladder from Fisher; 2: run 
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through of T140A crude; 3: 40 mM imidazole in Tris-HCl buffer wash of T140A; 4-10: 

200 mM imidazole in Tris-HCl buffer elutions 1-7. The elutions in lanes 5-10 were on the 

25 kDa marker indicating the presence of clean T140A from purification.  

Purification of apo-ACP 

 Inoculation of BL21 (DE3) E. coli apo-ACP on agar plate containing 25 g/mL 

kanamycin, 50 g/mL streptomycin, 50 g/mL spectinomycin, and 25 g/mL 

chloramphenicol antibiotics showed appearance of small white circular colonies. An 

isolated colony was picked to inoculate mini growth and then large growth with the same 

antibiotic concentrations. The large growth reached to OD of 0.6-0.8 within three hours of 

shaking at 37 C. Chemical lysis using B-PER, lysozyme, DNase, RNase, and PMSF gave 

clear yellow lysate. Due to the fact that production of holo-ACP is common during fatty 

acid biosynthesis, conversion of holo-ACP to apo-ACP by ACP-hydrolase, which was 

inserted in apo-ACP plasmid, was done by addition of MgCl2 and MnSO4 to the clear 

lysate. The conversion of holo-ACP to apo-ACP resulted in a cloudy solution. ACP-

hydrolase was precipitated with isopropyl alcohol and removed by centrifugation to afford 

clear solution. Anion exchange chromatography using DEAE-sepharose resin was 

successfully used to isolate pure apo-ACP from other cellular debris. The molecular weight 

of apo-ACP is 8639.5 Da or ~ 9 kDa. It was confirmed that the clean apo-ACP protein was 

obtained indicating by a band at ~ 9 kDa on SDS-PAGE gel (Figure 13). 
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Figure 13. Tris-Tricine SDS-PAGE of apo-ACP fractions using DEAE-cellulose 

anion exchange column chromatography. Lane 1: EZ prestained low range protein 

ladder from Fisher; 2: run through of apo-ACP crude; 3: 0.25 mM LiCl in 10 mM MES, 

pH 6.1 buffer wash of apo-ACP; 4-9: 0.5 M LiCl in 10 mM MES, pH 6.1 buffer elutions 

1-6. The elutions in lanes 4-9 showed banding at ~ 9 kDa, indicated that clean apo-ACP 

was successfully isolated by anion exchange chromatography. 

 Purification of Sfp  

Inoculation of BL21 (DE3) E. coli sfp on agar plate containing 100 g/ mL 

kanamycin antibiotic showed appearance of small white circular colonies. An isolated 

colony was picked to inoculate mini growth and then large growth with the same antibiotic 

concentration. The large growth reached to OD of 0.6-0.8 within three hours of shaking at 

37 C. Chemical lysis using B-PER, lysozyme, DNase, RNase, and PMSF gave clear 

yellow lysate. Sfp was purified using Ni-NTA affinity column chromatography.  The 

molecular weight of Sfp is 26990.5 Da or ~ 27 kDa. It was confirmed that the clean sfp 

protein was obtained indicating by a band at ~ 27 kDa on SDS-PAGE gel (Figure 14).  
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Figure 14. SDS-PAGE of Sfp fractions using Ni-NTA affinity column 

chromatography. Lane 1: EZ prestained protein ladder from Fisher; 2: run through of sfp 

crude; 3: 10 mM imidazole in Tris-HCl buffer wash of sfp; 4-9: 200 mM imidazole in Tris-

HCl buffer elutions 1-6. The elutions in lanes 4-9 were on ~ 27 kDa indicating the presence 

of clean sfp from purification. 

Syntheses of acyl-succinimide ester molecules 

 
Scheme 7. Synthesis of acyl-succinimide ester using DCC and N-

hydroxysuccinimide.  

Chemical syntheses of acyl-succinimide ester molecules were prepared by treating 

commercially available carboxylic acids with dehydrating agent N,N΄- 

dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (Scheme 7).47 In the 

reaction, the coupling reagent DCC was used to activate the carboxylic acids, forming the 

highly reactive intermediate O-acylisourea with an activated leaving group. Then, O-

acylisourea reacted with N-hydroxysuccinimide to form the desired acyl-succinimide ester 

product and N,N΄-dicyclohexylurea by-product. DCC was chosen in this type of coupling 

reaction because it is inexpensive and high yielding. The N,N΄-dicyclohexylurea by-
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product was insoluble in organic solvents, such as warm methanol and cold dioxane, and 

was easily removed by simple filtration. NMR characterization of all acyl-succinimide 

esters was achieved using 1H-NMR, COSY, and 13C-NMR (Figures A1-A30). The 

diagnostic feature indicating the presence of acyl-succinimide ester molecule is the singlet 

signal at 2.82 ppm, which integrates to 4 protons in the 1H-NMR, and the signal at 25.8 

ppm in the 13C-NMR, which corresponds to the two methylene (-CH2-) groups of the 

succinimide ring. Additionally, in the synthesis of 2,2΄-dimethyl-3-oxoC6-succinimide 

ester (8-succ), it was difficult to remove trace amounts of urea even though silica gel 

column chromatography was performed. Hence, in order to absolutely confirm the 

presence of 2,2΄-dimethyl-3-oxoC6-succinimide ester, HSQC experiment was done 

(Figure A18). ESI-MS-TOF of all acyl-succinimide ester molecules were obtained to 

confirm their identities (Figures B1-B11).  
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Synthesis of 4-oxo- and 5-oxo- acids (6-acid, 7-acid, 10-acid and 11-acid) 

 

           
        

Scheme 8. Syntheses of 5-oxohexanoic acid/ octanoic acid and 4-oxohexanoic acid/ 

octanoic acid by oxidation of respective - and -lactones in buffered sodium 

hypochlorite.  

In some cases, carboxylic acids were not commercially available to achieve 

synthesis of acyl-succinimide esters, such as 5-oxohexanoic acid (7-acid), 5-oxooctanoic 

acid (11-acid), 4-oxohexanoic acid (6-acid), and 4-oxooctanoic acid (10-acid). The 5-

oxocarboxylic acids and 4-oxocarboxylic acids were prepared chemically by oxidation of 

respective - and -lactones by buffered sodium hypochlorite (Scheme 8).48 Hypochlorous 

acid was a cheap oxidant and is commonly used for conversion of secondary alcohols to 

ketones. In the reaction, the lactone ring was first hydrolyzed under basic conditions 
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(EtOH/NaOH) to afford its open form (hydroxyl-carboxylate salt). A buffer solution of 

sodium dihydrogen phosphate/ disodium hydrogen phosphate at pH 6.6 with hypochlorous 

acid was used to oxidize the 2 alcohols to ketones with reasonable yield. The 

characterization of 6-acid, 7-acid, 10-acid and 11-acid by NMR spectroscopy (1H, 13C and 

COSY) were obtained to confirm their identities (Figures A35-A45). Compounds 6-acid, 

7-acid, 10-acid and 11-acid were then used to prepare the corresponding succinimide 

esters 6-succ, 7-succ, 10-succ and 11-succ. 

Synthesis of 2,2΄-dimethyl-3-oxohexanoic acid (8-acid) 

 
Scheme 9. Synthesis of 2,2-dimethyl-3-oxohexanoic acid.  

Similar to the 5-oxo- and 4-oxo- acids, 2,2-dimethyl-3-oxohexanoic acid was not 

commercially available and was prepared chemically using commercially available ethyl-

3-oxohexanoate as starting material (Scheme 9).49,50 Iodomethane was used as the 

methylating reagent because the iodide ion was the least basic and thus the best leaving 

group among the halogens. Sodium hydride NaH was used as a strong base to deprotonate 

the acidic protons at the C-2 position of ethyl-3-oxohexanoate, forming the carbanion 

intermediate. Then, the reactive carbanion nucleophile attacked the electrophilic carbon in 

iodomethane and displaced iodide in an SN2 reaction. The reaction was done under inert 

condition due to the reactivity of sodium hydride. The dimethylation reaction of ethyl-3-

oxohexanoate gave a successful reaction with high yield (91%). Also, the monomethylated 
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product of the reaction was not observed, indicating the reaction had gone to completion. 

One of the important indication of the success of the dimethylation reaction was the singlet 

at 1.33 ppm, which integrates to 6 protons in the 1H-NMR (Figure A31). In addition, in the 

DEPT135-NMR, the height of signal at 21.9 ppm, which was about twice as high as other 

methyl group signal, indicated the two methyl groups at C-2 overlapped (Figure A32).  

Furthermore, the dimethylated ethyl-3-oxohexanoate was then hydrolyzed using 

1N NaOH and 2N HCl solutions to obtain 2,2΄-dimethyl-3-oxohexanoic acid (Scheme 9).51 

In the 1H-NMR, the complete disappearance of the two signals at 4.15 and 1.23 ppm 

indicated that ethyl group of the dimethylated ethyl-3-oxohexanoate staring material was 

hydrolyzed successfully (Figure A33). In the 13C-NMR, the appearance of signals at 209.1 

ppm and 175. 6 ppm were observed for the respective ketone and carboxylic acid functional 

groups of the desired product 8-acid (Figure A34).  

Syntheses of acyl-CoA molecules 

 
Scheme 10. Synthesis of acyl-CoA molecules using free CoA acid and acyl-

succinimide ester under nitrogen atmosphere.  

The rationale for preparing acyl-succinimide ester molecules was because the 

molecules are activated acids containing an excellent leaving group that could be used to 

prepare acyl-CoA analogs. The syntheses of acyl-CoA molecules were achieved by treating 

the synthesized acyl-succinimide esters with free coenzyme A (CoA) acid under a nitrogen 

environment (Scheme 10).53-55 The free CoA acid was deprotonated under basic conditions 
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and readily attacked the carbonyl carbon of the acyl-succinimide ester starting material, 

substituting for the succinimide group. The crude product from the acyl-CoA reaction was 

extracted and ran on preparative HPLC to collect the desired pure acyl-CoA product. HPLC 

chromatograms of all synthesized acyl-CoA molecules were obtained and are shown in 

Figure 14 (Panels A-J). Molecules with higher polarity or smaller in molecular size eluted 

earlier in reverse-phase HPLC (Figure 15, Panels B-F, H). 2-Thiopheneacetyl-CoA (Panel 

G) is less polar than 2-furanacetyl-CoA (Panel E) and had a retention time at 7.5 minutes. 

2,2΄-Dimethyl-3-oxoC6-CoA (Panel A) is more hydrophobic compared to 4-oxoC6-CoA 

(Panel B) and 5-oxoC6-CoA (Panel C) due to the presence of two methyl groups at C-2 

and had a retention time at 8.5 minutes. 4-oxoC8-CoA (Panel I) and 5-oxoC8-CoA (Panel 

J) had retention times at 8.7 minutes due to the presence of two additional carbons in the 

acyl-chain, causing them to be more non-polar than the other acyl-CoA molecules. Mass 

spectral data using ESI-TOF for all acyl-CoA molecules were also obtained to confirm 

their identities (Figures B12-B22). 
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Figure 15. HPLC chromatograms of synthesized alternative 3-oxo-acyl-CoA 

molecules using preparative HPLC. Excess of starting material, acyl-succinimide ester 

and unreacted CoA eluted from 2.5 – 4.8 minutes. Only peak corresponding to the acyl-

CoA product of interest was collected by fraction collector. (A) 2,2΄-Dimethyl-3-

oxohexanoyl-CoA eluted at 8.5 – 9.2 minutes (B) 4-Oxohexanoyl-CoA eluted at 5.3 – 7.1 

minutes (C) 5-Oxohexanoyl-CoA eluted at 5.4 – 7.2 minutes (D) 2-Furoyl-CoA eluted at 

6.1 – 9.9 minutes (E) 2-Furanacetyl-CoA eluted at 5.2 – 6.8 minutes (F) 2-

Tetrahydrofuranacetyl-CoA eluted at 5.5 – 6.5 minutes (G) 2-Thiopheneacetyl-CoA eluted 

at 7.5 – 9.1 minutes (H) 2-Pyridylacetyl-CoA eluted at 5.0 – 6.0 minutes (I) 4-Oxooctanoyl-

CoA eluted at 8.7 – 10.0 minutes (J) 5-Oxooctanoyl-CoA eluted at 8.7 – 9.3 minutes (K) 

2-Benzofuranacetyl-CoA eluted at 8.4 – 12.0 minutes.  

Interestingly, 2-benzofuranacetyl-succinimide ester was synthesized from 2-

benzofuranacetic acid and treated with free CoA acid did not yield the desired 2-

benzofuranacetyl-CoA product. Mass spectral data confirmed that 2-benzofuranacetyl-

CoA product was not observed under this reaction condition. A different approach was 

attempted to afford the 2-benzofuranacetyl-CoA product. Synthesis of 3-oxo-acid N-

acetylcysteamine thioester was reported using 1,1ˊ-carbonyldiimidazole and N-

acetylcysteamine in dry acetonitrile at below 0 C.52 N-Acetylcysteamine is similar to the 

free-CoA molecule, except that N-acetylcysteamine only has the cystamine part of free-

CoA molecule. By adapting to the reported protocol, the synthesis of 2-benzofuranacetyl-
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CoA was successfully done using 2-benzofuranacetic acid, 1,1ˊ-carbonyldiimidazole, and 

free-CoA (Scheme 11). The HPLC chromatogram was shown in Figure 14 (Panel K). 2-

Benzofuranacetyl-CoA is relatively more hydrophobic and bigger in size than 2-

furanacetyl-CoA and had retention time at 8.4 minutes. The characterization of 2-

benzofuranacetyl-CoA (13-CoA) was confirmed by ESI-TOF (Figure B23). 

 
Scheme 11. Synthesis of 2-benzofuranacetyl-CoA using 2-benzofuranacetic acid, 

1,1ˊ-carbonyldiimidazole, and CoA-SH in dry acetonitrile.  

Syntheses of acyl-ACP proteins  

 
Scheme 12. Enzymatic synthesis of acyl-ACP protein using synthesized acyl-CoA 

molecule and apo-ACP catalyzed by Sfp enzyme.  

Enzymatic synthesis of E. coli acyl-ACP proteins was done by using Sfp enzyme 

(Scheme 12). Bacillus subtilis Sfp 4ˊ-phosphopantetheinyl transferase exhibits 

extraordinarily broad substrate specificity. Sfp transfers the 4ˊ-phosphopantetheinyl group 

of CoA onto a conserved serine residue of acyl carrier protein (ACP) to convert ACPs from 

their inactive apo forms into active forms.56,57 The completion of the reactions was 

monitored by the depletion of apo-ACP at 7.7 minutes and the growth of corresponding 

acyl-ACP peak. The addition of acyl-pantetheine linker and various acyl-chain to apo-ACP 

shifted the retention time for each substrate accordingly (Figure 16, Panels A-J). The Sfp 
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enzyme eluted at 5.1 minutes. Since acyl-ACP with 6 carbons overlapped with apo-ACP 

when using 10 min method with flow rate of 600 L/min, a different method began with 

75% solvent A (H2O + 0.1% TFA) and 25% solvent D (acetonitrile + 0.1% TFA) and ended 

with 25% solvent A and 75% solvent D at flow rate of 200 L/min over a period of 60 

minutes was optimized to separate C6-ACP, 4-oxoC6-ACP, 5-oxoC6-ACP from apo-ACP 

(Figure 17, Panels A-C). 

Once the acyl-ACP reaction had gone to completion, Sfp enzyme was precipitated 

out by addition of ammonium sulfate and removed from the reaction mixture by 

centrifugation. Clean acyl-ACP product from the reaction was obtained by multiple washes 

with nanopure water to remove excess acyl-CoA and ammonium sulfate. These impurities 

absorbed at 260 nm while apo-ACP and acyl-ACP proteins absorbed at 280 nm on UV-

Vis. The reduction of 260 peak after washes indicated the acyl-ACP protein was free of 

contamination. All acyl-ACPs were confirmed by ESI-LC/MS (Figures B24-B39). 
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Figure 16. HPLC chromatograms of apo-ACP and alternative 3-oxoacyl-ACPs 

using analytical HPLC over a period of 10 minutes with flow rate of 600 L/min.  Sfp 

enzyme eluted at 5.1 minutes. (O) Apo-ACP eluted at 7.7 minutes. The completion of acyl-

ACP synthesis reaction was monitored by disappearance of apo-ACP peak over time. (A) 

2,2΄-Dimethyl-3-oxohexanoyl-ACP eluted at 7.6 minutes. (B) 2-Furoyl-ACP eluted at 7.5 

minutes (C) 2-Furanacetyl-ACP eluted at 7.4 minutes. (D) 2-Tetrahydrofuranacetyl-ACP 

eluted at 7.3 minutes (E) 2-Thiopheneacetyl-ACP eluted at 7.8 minutes. (F) 2-

Pyridylacetyl-ACP eluted at 6.5 minutes. (G) 4-Oxooctanoyl-ACP eluted at 8.0 minutes. 

(H) 5-Oxooctanoyl-ACP eluted at 8.1 minutes. (I) Octanoyl-ACP eluted at 8.7 minutes. (J) 

2-Benzofuranacetyl-ACP eluted at 7.5 minutes.  
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Figure 17. HPLC chromatogram of apo-ACP and alternative 3-oxoacyl-ACPs 

using analytical HPLC over a period of 60 minutes with flow rate of 200 L/min. Sfp 

enzyme eluted at 20.8 minutes. (O) Apo-ACP eluted at 33.1 minutes (A) 4-Oxohexanoyl-

ACP eluted at 30.0 minutes (B) 5-Oxohexanoyl-ACP eluted at 30.0 minutes (C) Hexanoyl-

ACP eluted at 31.7 minutes. 

Enzyme assays 

One of the objectives in this thesis is to determine the activity of the alternative 3-

oxo-acyl-ACP substrates with EsaI. Different enzymatic kinetic assays were explored, 

including DCPIP assay, MTAN-XO coupled assay, and HPLC assay. DCPIP assay is the 

simplest and well-documented in literature to determine kinetic parameters by measuring 

the decrease in absorbance at 600 nm related to the concentration of holo-ACP product 

formed over time. Unfortunately, with DCPIP colorimetric assay, the reaction rates did not 

change when substrate concentration and enzyme concentration were increased (Figure 

18). One of the possibility is that the enzyme might have surface-exposed cysteine, which 

can reduce DCPIP, and thus, the enzyme is dead.  
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Figure 18. DCPIP assay. (Left) A representative progress curve for 1 µM EsaI 

reacting with 300 µM SAM and 12 µM 4-oxohexanoyl-ACP. (Right) Plot of initial rate 

versus EsaI concentrations at fixed 300 µM SAM, 50 µM and100 µM 4-oxohexanoyl-ACP. 

The reaction rate did not increase when the EsaI concentrations or 4-oxohexanoyl-ACP 

substrate concentrations increased.  

Methylthioadenosine nucleosidase-Xanthine oxidase (MTAN-XO) coupled assay 

was also tested with EsaI, but collected data was not promising. In MTAN-XO assay, the 

methylthioadenosine nucleosidase (MTAN) reaction rate is directly dependent on MTA 

product concentration from AHL synthase reaction. The concentration of MTA from AHL 

synthase reaction must be low in the beginning, so that the rates for coupling enzymes are 

lower until MTA concentration reaches steady state levels. Unfortunately, MTA is the 

common contaminant in commercial SAM. It is possible that the amount of contaminant 

MTA in SAM had been too high at the beginning, causing difficulty in determining small 

changes in MTA concentrations in the midst of high background MTA in SAM. Thus, the 

accurate determination of reaction rate at low amounts of MTA produced from EsaI AHL 

synthase reaction was impossible. 

Due to the limitations of DCPIP assay and MTAN-XO coupled assay discussed 

above, kinetic data for EsaI substrates were collected using an HPLC method. 

Lactonization assay and acylation assay using HPLC were another two assays developed 

to determine the rates of AHL synthesis independently. Lactonization assay follow 
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production of MTA from SAM substrate, while acylation assay follows production of holo-

ACP from acyl-ACP substrate. One of the advantages of HPLC is the assays are not 

dependent on colorimetric dye or coupling enzyme. Another advantage is that the changes 

in peak areas give a direct measurement of substrate and product concentrations in the 

reaction (Figure 19).  

 
 

Figure 19. HPLC chromatograms showing retention time of SAM, MTA, and 

holo-ACP. SAM is eluted at 0.6 minutes; MTA is eluted at 5.05 minutes; holo-ACP is 

eluted at 6.8 minutes. 

MTA and holo-ACP standard curves 

To calculate the reaction rate of EsaI synthesis by HPLC assay, standard curves for 

MTA and holo-ACP products need to be generated (Figure 20). Two HPLC methods were 

performed to follow small molecules (MTA and SAM) and proteins (holo-ACP and acyl-

ACP) independently. MTA peak from SAM lactonization eluted at 5.05 minutes; holo-

ACP from acylation half-reaction eluted at 6.8 minutes. Standard calibration curves for 
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MTA and holo-ACP were generated by plotting serial diluted known analyte 

concentrations against their respective peak area (Figure 20).  

 

 
Figure 20. HPLC chromatograms of MTA and holo-ACP in standard calibration 

curves. MTA peak eluted at 5.05 minutes; holo-ACP eluted at 6.8 minutes. The standard 

curve of each analyte was generated by plotting serial diluted concentrations of each 

analyte against their respective peak areas (arbitrary units). MTA was monitored at 260 

nm; holo-ACP was monitored at 220 nm. 

Lactonization and acylation assay in EsaI-catalyzed reaction 

In the EsaI-catalyzed reaction, the formation of MTA and holo-ACP products after 

quenching the enzyme were measured quantitatively by using the same HPLC methods 

used to generate the calibration curves. Product formation over a 6 minutes period was 

linear, indicating that quenching after 4 minutes of incubation with enzyme would be 

sufficient to determine the initial reaction rate (Figure 21). 
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Figure 21. Different quenched time (0, 2, 4, 6 minutes) follwing formation of MTA 

and holo-ACP in lactonization and acylation half-reactions in EsaI. In the reaction, 

concentrations of EsaI, SAM, and 2-furoyl-ACP were fixed at 1.3 M, 500 M, and 112 

M, respectively. In lactonization, MTA peak at 0 minute corresponded to contaminant 

MTA in commercially available SAM from Sigma. In acylation, decrease in 2-furoyl-ACP 

peak area was accompanied by increase in holo-ACP product peak area.  

In the lactonization half-reaction, SAM and MTA peaks eluted at 0.6 and 5.0 

minutes, respectively (Figure 22). Since MTA is a common contaminant in commercial 

SAM, the actual amount of MTA produced in the quenched reaction was determined by 

subtracting the total peak area from the contaminant MTA peak area presented in the 

background. The MTA concentration produced in the enzymatic reaction was calculated 

from its respective peak area by using an MTA standard curve. In the acylation half-

reaction, holo-ACP and acyl-ACP (2-furanacetyl-ACP in this case) eluted at 6.8 and 7.4 

minutes, respectively (Figure 23). The overlaid background and EsaI-catalyzed reaction 

chromatograms showed that in the presence of EsaI, holo-ACP peak increased while 2-

furanacetyl-ACP decreased respectively.  
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Figure 22. Lactonization assay for EsaI. HPLC chromatogram of MTA product 

formation in EsaI-catalyzed reaction using 0 M, 7 M, and 15M 2-furanacetyl-ACP 

substrate concentrations, fixed 500 µM SAM, fixed 1 µM EsaI quenched at 4 minutes with 

6 M HCl. SAM eluted at 0.65 minutes; MTA peak from SAM lactonization eluted at 5.05 

minutes. The peak areas were reported in arbitrary units. The actual amount of MTA 

produced in the quenched reaction was determined by subtracting the total peak area from 

the contaminant MTA peak area presented in the background. The MTA concentration 

produced in the enzymatic reaction was calculated from its respective peak area by using 

MTA standard curve. 

 
Figure 23. Acylation assay for EsaI. HPLC chromatogram of holo-ACP product 

formation in EsaI-catalyzed reaction using 80 M (in blue) and 40 M (in pink) 2-

furanacetyl-ACP substrate concentration, fixed 500 µM SAM, fixed 1 µM EsaI quenched 

at 4 minutes with 4 M acetate buffer, pH 3.6. Black chromatogram is background with 2-

furanacetyl-ACP eluted at 7.4 minutes. Blue and pink chromatograms are EsaI-catalyzed 

reactions with the appearance of holo-ACP peak at 6.8 minutes. An increase in holo-ACP 

peak was accompanied with a decrease in 2-furanacetyl-ACP peak area. The peak areas 

were reported in arbitrary units. The holo-ACP concentration in the quenched reaction 

mixture was determined from its respective peak area by using holo-ACP standard curve.  
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Kinetic study of EsaI T140A mutant with C6-ACP 

To examine the importance of Thr140 in recognition of 3-oxoC6-ACP substrate in 

EsaI wild-type, kinetic assays by following lactonization and acylation steps were 

performed using C6-ACP as the variable substrate. In each kinetic reaction, SAM and EsaI 

(both wild-type and T140A mutant) were fixed, respectively, at 500 M and 1 M. The 

kinetic constants obtained by following acylation and lactonization assays were 

comparable (Table 1 and Figure C1). When using EsaI WT with C6-ACP substrate, Km 

values for lactonization and acylation were 62.68 ± 9.87 M and 61.89 ± 7.69 M, 

respectively; kcat/Km value for lactonization and acylation were 0.0082 ± 0.0014 M-1min-

1 and 0.0083 ± 0.0011 M-1min-1. When using EsaI T140A with C6-ACP substrate, Km 

values for lactonization and acylation were 3.43 ± 0.52 M and 3.08 ± 0.33 M, 

respectively; kcat/Km value for lactonization and acylation were 0.445 ± 0.069 M-1min-1 

and 0.507 ± 0.055 M-1min-1. Previously, mass spectrometry study had showed that EsaI 

T140A mutant lost specificity and produced majority C6-HSL.26 In this thesis, kinetic 

studies on T140A with C6-ACP confirmed the earlier observations that the catalytic 

efficiency of hexanoyl-ACP with T140A mutant was about 57-fold higher than with wild-

type EsaI enzyme (Figure 24). The Km value of WT for C6-ACP was about 19-fold less 

than that of T140A. The result is reasonable because alanine does not need to form a 

hydrogen bond with C6-ACP and thus produces high activity with C6-ACP. Therefore, it 

suggested that Thr140 play an essential role in discriminating 3-oxoacyl-ACP from 

unsubstituted acyl-ACP substrate in the active site of EsaI.  
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Table 1. Comparison kinetic parameters of EsaI WT and T140A mutant in the 

presence of C6-ACP by following lactonization (A) and acylation (B).  

(A) Lactonization Km 

(M) 

kcat 

(min-1) 

kcat/Km 

(M-1min-1) 

C6-ACP + EsaI T140A 3.43 ± 0.52 1.52 ± 0.06 0.445 ± 0.069 

C6-ACP + EsaI WT 62.68 ± 9.87 0.52 ± 0.03 0.0082 ± 0.0014 

 

(B) Acylation Km 

(M) 

kcat 

(min-1) 

kcat/Km 

(M-1min-1) 

C6-ACP + EsaI T140A 3.08 ± 0.33 1.56 ± 0.04 0.507 ± 0.055 

C6-ACP + EsaI WT 61.89 ± 7.69 0.51 ± 0.02 0.0083 ± 0.0011 

 

 
Figure 24. Bar diagram comparing the catalytic efficiencies of hexanoyl-ACP with 

EsaI WT and T140A mutant. In both reactions, SAM concentration was fixed at 500 µM 

and EsaI concentration was fixed at 1 µM.  Km (WT + C6-ACP) is 62.68 ± 9.86 µM, kcat is 

0.52 ± 0.03 min-1, kcat/Km is 0.0082 ± 0.0014 µM-1min-1. Km (T140A + C6-ACP) is 3.43 ± 

0.52 µM, kcat is 1.52 ± 0.06 min-1, kcat/Km is 0.445 ± 0.069 µM-1min-1. The catalytic activity 

of T140A mutant with hexanoyl-ACP was about 57-fold higher than that of wild-type with 

hexanoyl-ACP.  
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Determination of kinetic parameters of alternative 3-oxoacyl-ACP substrates in EsaI 

wild-type study 

In this thesis, we were interested in exploring a) the effect of changing the 

heteroatom (oxygen to sulfur and nitrogen) at the C-3 position, b) methylation of 3-oxoC6-

ACP substrate, c) changing the hybridization at C-3, d) changing from straight acyl-chain 

to aromatic analogs, e) changing the position of the oxygen atom in the acyl-chain, f) 

changing the acyl-chain length, and g) removal of oxygen atom in the acyl-chain on EsaI 

activity. The initial rate at each substrate concentration was fitted to the Michaelis-Menten 

equation to determine kinetic constants (Figures C2 and C3). The Km, kcat, and kcat/Km 

values in lactonization and acylation assay were within error (Table 2).  A general trend of 

Km and kcat was observed among all alternative substrates: the substrates that carried 

oxygen at C-3 position had similar range of Km and kcat values. Besides, when the oxygen 

atom at C-3 moved to different position (C-2, C-4, and C-5) or was removed or changed to 

a different heteroatom (nitrogen or sulfur), and acyl chain length changed from 6 carbons 

to 8 carbons, Km increased and kcat decreased. The true understanding of this variation in 

activity is understood when comparing catalytic efficiencies (kcat/Km) of alternative 

substrates all together. Figure 25 summarizes the trend of catalytic efficiency of all 

substrates with EsaI enzyme.  
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Table 2. Determination of Km, kcat, kcat/Km of alternative 3-oxoacyl-ACP substrates on EsaI activity by following (A) 

lactonization and (B) acylation reactions.  

 

(A) Lactonization Km kcat kcat/Km % activity a 

(µM) (min-¹) (µM-1min-1) 

2-Furanacetyl-ACP (1) 10.56 ± 1.03 3.49 ± 0.10 0.330 ± 0.034 100.00 

2,2-Dimethyl-3-oxoC6-ACP (8) 7.63 ± 1.34 2.35 ± 0.10 0.308 ± 0.055 93.33 

2-Tetrahydrofuranacetyl-ACP (2) 11.12 ± 0.99 2.90 ± 0.07 0.261 ± 0.024 79.09 

2-Thiopheneacetyl-ACP (3) 4.34 ± 1.82 0.76 ± 0.15 0.174 ± 0.080 52.73 

2-Pyridylacetyl-ACP (4) 9.15 ± 1.54 1.02 ± 0.04 0.112 ± 0.019 33.94 

5-oxoC6-ACP (7) 19.61 ± 2.74 2.11 ± 0.09 0.107 ± 0.016 32.42 

2-Furoyl-ACP (5) 16.14 ± 2.64 1.43 ± 0.03 0.088 ± 0.015 26.67 

4-oxoC6-ACP (6) 23.56 ± 3.55 0.97 ± 0.05 0.041 ± 0.007 12.42 

5-oxoC8-ACP (11) 39.76 ± 7.56 0.61 ± 0.04 0.015 ± 0.003 4.55 

C6-ACP (9) 62.68 ± 9.86 0.52 ± 0.03 0.0082 ± 0.0014 2.48 

4-oxoC8-ACP (10) 47.16 ± 7.06 0.37 ± 0.02 0.0078 ± 0.0012 2.36 

C8-ACP (12) 101.50 ± 17.54 0.22 ± 0.02 0.0021 ± 0.0004 0.64 

2-Benzofuranacetyl-ACP (13) 16.18 ± 2.24 0.84 ± 0.02 0.0516 ± 0.0073 15.64 

a % activity = 

𝑘𝑐𝑎𝑡
𝐾𝑚

⁄

0.330
× 100 
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(B) Acylation Km kcat kcat/Km % activity a 

(µM) (min-¹) (µM-1 min-1) 

2-Furanacetyl-ACP (1) 10.83 ± 1.42 3.99 ± 0.14 0.368 ± 0.050 100.00 

2,2-Dimethyl-3-oxoC6-ACP (8) 7.65 ± 1.12 2.30 ± 0.08 0.301 ± 0.045 81.79 

2-Tetrahydrofuranacetyl-ACP (2) 11.57 ± 1.51 3.07 ± 0.12 0.266 ± 0.036 72.28 

2-Thiopheneacetyl-ACP (3) 4.33 ± 1.52 1.06 ± 0.17 0.244 ± 0.095 66.30 

2-Pyridylacetyl-ACP (4) 9.42 ± 0.67 1.08 ± 0.02 0.115 ± 0.008 31.25 

5-oxoC6-ACP (7) 18.74 ± 1.89 2.10 ± 0.07 0.112 ± 0.012 30.43 

2-Furoyl-ACP (5) 15.39 ± 3.24 1.51 ± 0.10 0.098 ± 0.022 26.63 

4-oxoC6-ACP (6) 22.24 ± 5.02 1.11 ± 0.09 0.049 ± 0.012 13.32 

5-oxoC8-ACP (11) 38.29 ± 5.52 0.62 ± 0.03 0.016 ± 0.002 4.35 

4-oxoC8-ACP (10) 50.23 ± 6.88 0.44 ± 0.02 0.0088 ± 0.0013 2.39 

C6-ACP (9) 61.89 ± 7.69 0.51 ± 0.02 0.0083 ± 0.0011 2.26 

C8-ACP (12) 102.40 ± 

13.05 

0.25 ± 0.01 0.0025 ± 0.0003 0.68 

2-Benzofuranacetyl-ACP (13) 16.59 ± 1.877 0.84 ± 0.02 0.0505 ± 0.0058 13.73 

a % activity = 

𝑘𝑐𝑎𝑡
𝐾𝑚

⁄

0.368
× 100 

 

Table 3. Effect of 2-thiopheneacetyl-ACP when SAM is fixed on EsaI activity.  

Fixed S Variable S Km 

(M) 

kcat 

(min-1) 

kcat/Km 

(M-1min-1) 

Ki 

(M) 

50 M SAM  2-Thiopheneacetyl-ACP 6.48  1.81 0.68 ± 0.10 0.105 ± 0.033 74.41  28.72 

500 M SAM 2-Thiopheneacetyl-ACP 4.34  1.82 0.76 ± 0.15 0.174 ± 0.080 100.6  54.57 
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Figure 25. Comparison of catalytic efficiency of the alternative 3-oxoacyl-ACP 

substrates for EsaI by following Lactonization assay (A) and Acylation assay (B). 2-

Furanacetyl-ACP with sp2 hybridized carbon at C-3 showed the highest catalytic 

efficiency among all of the tested substrates with EsaI. The second-best substrate was 

2,2-dimethyl-3-oxohexanoyl-ACP. The activity decreased as the hybridization of C-3 

converted to sp3, the change of oxygen atom to sulfur and nitrogen atom, removal of 

oxygen atom and the change of length in acyl-chain from six carbons to eight carbons.  

Among all of the substrates, 2-furanacetyl-ACP showed the highest catalytic 

efficiency (0.330 ± 0.034 M-1min-1). 2-Furanacetyl-ACP, 2,2-dimethyl-3-oxoC6-ACP, 

and 2-tetrahydrofuranacetyl-ACP substrates all had an oxygen atom at C-3 and 6 carbons 

in acyl chain. Both 2-furanacetyl-ACP and 2,2-dimethyl-3-oxoC6-ACP are sp2 

hybridized at C-3 while 2-tetrahydrofuranacetyl-ACP is sp3 hybridized at C-3. The 2,2-

dimethyl-3-oxoC6-ACP resembles the native 3-oxoC6-ACP substrate of EsaI, except 

that this substrate has two methyl groups at the C-2 instead of two hydrogens. The 

catalytic efficiency of 2,2-dimethyl-3-oxoC6-ACP was relatively close to that of 2-

furanacetyl-ACP, indicating that the two methyl groups at C-2 did not introduce steric 

hindrance in acyl-chain binding site of EsaI.  
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Notably, the oxygen of 2-furanacetyl-ACP substrate has two lone pairs of 

electrons: one must involve in part of the -conjugated system (p orbitals); the other is 

in sp2 orbital and must involve in hydrogen bonding with Thr140. One of the hypotheses 

was that if the lone pair of electrons involved in aromaticity of the ring had been 

positioned in a way to also form hydrogen bond with Thr140 in the active site of EsaI, 2-

furanacetyl-ACP would have been a poorer substrate. The kinetic data showed that 2-

furanacetyl-ACP had the highest catalytic efficiency among all alternative substrates, 

suggesting that the lone pair of electrons involved in aromaticity did not affect the 

hydrogen bonding of the other lone pair with Thr140. The protein structure with the 

substrate bound has not yet been studied, the possibility of the substrate binding resulted 

in enzyme’s conformational change still cannot be neglected. It may be possible that the 

aromatic ring of the substrate directed itself to a new binding site and oxygen atom in the 

ring is no longer in close proximity to Thr140 to establish hydrogen bond. Yet, in turn, 

the enzyme conformational change was induced by this new interaction might result in a 

different hydrogen bond acceptor residue closer to Thr140.  

Additionally, even though Km and kcat were somewhat similar between 2-

furanacetyl-ACP and 2-tetrahydrofuranacetyl-ACP, the catalytic efficiencies (kcat/Km) 

showed that the activity of 2-tetrahydrofuranacetyl-ACP was about 21-28 % less than 

that of 2-furanacetyl-ACP. There was no significant change in substrate activity between 

sp2 and sp3 of carbon at C-3 position. This suggests that the effect of changing the 

hybridization of the carbon at the C-3 position on EsaI activity is subtle.  

Moreover, when the oxygen atom at C-3 was changed to nitrogen and sulfur in 

2-pyridylacetyl-ACP and 2-thiopheneacetyl-ACP substrates, respectively, the catalytic 
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activity of these two substrates dropped significantly. Comparing 2-pyridylacetyl-ACP 

to 2-furanacetyl-ACP, the lone pair of electrons of nitrogen is not part of the aromatic 

ring and can serve either as hydrogen bond acceptor or donor. Although Km of 2-

furanacetyl-ACP and 2-pyridylacetyl-ACP were somewhat similar, kcat/Km value showed 

that 2-pyridylacetyl-ACP is less favorable than 2-furanacetyl-ACP when bound to EsaI. 

One of the possibility for the lower catalytic efficiency observed in 2-pyridylacetyl-ACP 

is because the binding of a larger 6-membered ring in 2-pyridylacetyl-ACP might induce 

enzyme’s conformational change and cause the necessary reorientation of catalytic 

residues in the enzyme active site for the reaction to occur, which then results in reduction 

of enzyme catalysis. 

Like 2-furanacetyl-ACP, the sulfur atom in 2-thiopheneacetyl-ACP has two lone 

pairs of electrons of which one should be involved in aromaticity and the other capable 

of forming a hydrogen bond with Thr140. However, since the electronegativity of oxygen 

(3.44) is higher than that of sulfur (2.58), hydrogen bonds to sulfur may be weaker than 

those to oxygen.59 Interestingly, among all alternative substrates, 2-thiopheneacetyl-ACP 

has the lowest Km and also showed substrate inhibition when the concentrations of 2-

thiopheneacetyl-ACP were varied and concentration of SAM was fixed (Figure C2, C3, 

C6). Also, Table 3 summarizes kinetic parameters when SAM concentrations were fixed 

at 50 M and 500 M. The inhibition constant Ki value when fixed SAM at 500 M 

(100.6  54.57 M) was compared to Ki value when fixed SAM at 50 M (74.41  28.72 

M). Substrate inhibition was observed in both of the cases and had similar Ki values.   
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Figure 26. Random sequential mechanism. In this diagram, E is free enzyme; A is 

2-thiopheneacetyl-ACP; B is SAM. EA is [E.2-thiopheneacetyl-ACP] complex where 2-

thiopheneacetyl-ACP binds first and follows a productive pathway. EB is [E.SAM] 

complex where SAM binds first and follow a non-productive pathway. EAB is [E.2-

thiopheneacetyl-ACP.SAM] ternary complex. P, R, and Q are products released from 

this mechanism.  

Additionally, Km of SAM when fixed 2-furanacetyl-ACP (111.3  10.7 M) was 

determined and compared to Km of SAM when fixed 2-thiopheneacetyl-ACP (36.09  

4.69 M) (Figure C7). The kcat for fixed concentrations of 2-thiopheneacetyl-ACP with 

variable concentration of SAM (0.796  0.029 min-1) is 5-fold lower than that for fixed 

concentrations of 2-furanacetyl-ACP (3.64  0.09 min-1). However, the kcat/Km for fixed 

2-thiopheneacetyl-ACP (0.0221  0.0029 M-1min-1) is almost similar to that for fixed 

2-furanacetyl-ACP (0.0327  0.0032 M-1min-1). Both 2-thiopheneacetyl-ACP and 2-

furanacetyl-ACP showed normal hyperbolic curves when SAM was the variable 

substrate. This data together with substrate inhibition data observed when fixed SAM 

suggest that all available free enzyme (E) favored the formation of stable EA ([E.2-

thiopheneacetyl-ACP] or [E.2-furanacetyl-ACP]) complex, resulting in the binding of 

SAM to EA to drive the formation of productive EAB ([E.2-thiophenacetyl-ACP.SAM] 

or [E.2-furanacetyl-ACP.SAM]) ternary complex (Figure 26).  
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Further experiments will be needed to understand the binding mechanism of 2-

thiopheneacetyl-ACP to EsaI. Yet, this observation might suggest a possibility that the 

substrate addition could have occurred through a random sequential mechanism where 

one pathway was more productive over the other (Figure 26). Assuming, in the 

productive pathway, 2-thiopheneacetyl-ACP (A) binds to free enzyme (E) first followed 

by SAM (B) forming the [E.2-thiopheneacetyl-ACP.SAM] complex (EAB); whereas, in 

the nonproductive pathway, 2-thiopheneacetyl-ACP binds to [E.SAM] complex and form 

[E.SAM.2-thiopheneacetyl-ACP] complex. At low concentration of 2-thiopheneacetyl-

ACP, free enzyme E can bind to 2-thiophenacetyl-ACP (A) and form a stable EA 

complex; whereas E binds to SAM (B) to form an unstable EB complex and converted 

back to E. Most of available E form will bind to A to populate the productive EAB 

pathway. However, when there is too much A around, it can also bind to the unstable EB 

complex; thus, the nonproductive pathway would now compete with the productive 

pathway and result in a lower turnover number (kcat) and decreased the reaction rate.  

On the other hands, if acyl-ACP (A) is a poorer substrate, EA complex will be 

less stable and convert back to free E form at low acyl-ACP concentrations, resulting in 

the binding of SAM (B) to E to form EB complex. Successive addition of A drives the 

formation of [E.SAM.acyl-ACP] ternary complex (EBA). The accumulation of 

nonproductive EBA complex results in a lag phase. Once the concentration of A is high 

enough, the chance for it to bind to E increases and drives the reaction towards the 

productive [E.acyl-ACP.SAM] ternary complex (EAB). Hence, sigmoidal curve will be 

observed.  
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Furthermore, the C-S bond length in the thiophene ring (1.71 Å) is particularly 

longer than the C-O bond length in the furan ring (1.36 Å).60 It can also be possible that 

the sulfur atom in thiophene found a new binding site in the enzyme active site, causing 

it to position away from Thr140 and interact with a different hydrogen bond acceptor 

residue to establish a new hydrogen bond network with Thr140. The enzyme 

conformational change induced by the interaction between 2-thiopheneacetyl-ACP 

substrate and the active site residues may result in such a favorable conformation that 

keeps the substrate occupied in the active site. Thus, an increase in 2-thiopheneacetyl-

ACP concentration beyond saturation would force another 2-thiopheneacetyl-ACP to 

bind to an allosteric site, resulting in inhibition of the enzyme’s activity. 

Thirdly, the position of the oxygen atom along the acyl-chain was taken in 

consideration to see how it might affect the hydrogen bonding ability of the substrate to 

Thr140. Interestingly, kcat/Km value of 4-oxoC6-ACP (0.041 ± 0.007 M-1min-1) was 

significantly lower than that of 5-oxoC6-ACP (0.107 ± 0.016 M-1min-1) and 2-furoyl-

ACP (0.088 ± 0.015 M-1min-1). The catalytic efficiency of 2-furoyl-ACP was about 1.2-

fold less than that of 5-oxoC6-ACP; and, the catalytic efficiency of 4-oxoC6-ACP was 

about 3-fold less than 5-oxoC6-ACP. The crystal structure of EsaI showed that the 

oxygen at C-3 in 3-oxohexanoyl-phosphopantetheine substrate formed a hydrogen bond 

to Thr140. Thus, in order to establish hydrogen bond to Thr140, the distance from the 

oxygen at C-2, C-4, and C-5 must also be in close proximity. The reason of higher relative 

catalytic efficiency in 5-oxoC6-ACP compared to 2-furoyl-ACP and 4-oxoC6-ACP may 

be because the oxygen at C-5 is in the same face with C-3 and was locked in a position 

where it may be able to establish hydrogen bond network with Thr140. In contrast, the 
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direction of oxygen at C-2 and C-4 is opposite to C-3 and C-5. Although the acyl chain 

of the two substrates (4-oxoC6-ACP and 2-furoyl-ACP) have the ability of free rotation, 

the kinetic data suggested the conformation of enzyme may restrict free rotation of the 

acyl-chain in 4-oxoC6-ACP and 2-furoyl-ACP, causing the oxygen to point away from 

Thr140 and reduce the turnover rate of the substrates.  

In the crystal structure of EsaI, the V-cleft acyl-chain binding pocket of EsaI was 

in enclosed form and suggested that the length of acyl-chain was limited to 6 carbons. In 

this thesis, how alternative substrate activity change with acyl-chain length was also 

examined experimentally. 2-Benzofuranacetyl-ACP is a derivative of 2-furanacetyl-ACP 

with 8 carbons instead of 6 carbons. Although 2-benzofuranacetyl-ACP substrate 

retained some activity (15 % activity), the catalytic efficiency of 2-benzofuranacetyl-

ACP had a 7-fold decrease compared to 2-furanacetyl-ACP. The decrease in catalytic 

efficiency for 2-benzofuranacetyl-ACP can possibly be attributed to the bulkiness of the 

two fused rings of the substrate, causing a hard time for the interaction between the 

enzyme and substrate to successfully lock in a productive conformation that is conducive 

for catalysis. Additionally, 5-oxoC8-ACP and 4-oxoC8-ACP substrates were also 

examined and compared to 5-oxoC6-ACP and 4-oxoC6-ACP. The 4-oxoC6-ACP had 5-

fold higher activity than that of 4-oxoC8-ACP. Similarly, the 5-oxoC6-ACP had about 

6.6-fold higher activity than that of 5-oxoC8-ACP. The kinetic data suggested that the 

acyl-chain binding pocket of EsaI can use alternative 3-oxoacyl-ACP substrates of length 

consisting of up to, but not exceeding 6 carbons. 

Last but not least, the kinetic study of EsaI wild-type with unsubstituted C6-ACP 

and C8-ACP substrates showed that the activity of C6-ACP dropped down to 2.26 – 2.48 
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% compared to the highest activity substrate, 2-furanacetyl-ACP. Also, C8-ACP had the 

lowest catalytic efficiency (less than 1 %) compared to 2-furanacetyl-ACP.  Again, the 

data suggested that the presence of a heteroatom in the acyl-chain (preferably at the C-3 

position) plays an essential role in maintaining the activity of EsaI. Also, chain length 

greater than 6 carbons severely damaged the activity of EsaI.  
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CHAPTER THREE: INVESTIGATION OF ALTERNATIVE SUBSTRATES FOR 

YspI 

Introduction  

Overview human pathogen Yersinia pestis  

Yersinia pestis, Yersinia pseudotuberculosis and Yersinia enterocolitica are three 

pathogenic species in the genus Yersinia. Y. pseudotuberculosis causes Far East scarlet-

like fever in humans, who occasionally get infected zoonotically, most often through the 

food-borne route. Y. enterocolitica causes enterocolitis, which is an inflammation of the 

small intestine and colon in young children. Y. pestis causes bubonic plague in humans, 

which is one of the deadliest diseases. From analyses of DNA sequences of multiple 

housekeeping genes, Y. pseudotuberculosis-Y. pestis evolutionary linkage diverged from 

Y. enterocolitica  between 41 and 186 million years ago, while Y. pestis diverged from 

Y. pseudotuberculosis within the last 1,500 – 20,000 years ago.61-63 By Darwinian 

adaptive evolution, Y. pestis evolved from Y. pseudotuberculosis into a newly emerged 

pathogen that is not only able to parasitize insects in part of its life cycle but also highly 

virulent to rodents and humans, causing pandemics of a systemic and fatal disease. Three 

adaptive evolution mechanisms involved to gain more pathogenic phenotypes in Y. pestis 

were (1) the horizontal acquisition of genes encoding specific virulence determinants 

(“gain-of-function” mechanism), (2) an appropriate functional inactivation or loss of 

preexisting genetic materials (“loss-of-function” mechanism), (3) laterally acquired 

virulence genes either with or without their own specific regulators, which evolve to 



82 

 

being integrated into the host’s regulatory cascades to coordinate expression of virulence 

factors within global gene regulatory networks for maintaining homeostasis through the 

infectious life cycle (“regulation-remodeling” mechanism).61,63  

Plague is primarily a zoonotic disease between mammals by fleas. When a flea 

bites an infected rodent, Y. pestis is ingested with the blood meal. Human usually get 

plague after being bitten by a rodent flea that is carrying Y. pestis or by handling an 

animal infected with plague.61-63 Y. pestis are subdivided into three biovars (Antiqua, 

Medievalis, and Orientalis).61 The biovar Antiqua imported from Africa caused the first 

pandemic, Justinian’s plague, 541-767 AD. The biovar Medievalis imported from central 

Asia caused the second pandemic, the Black Death from 1346 to the early 19th century. 

The biovar Orientalis imported from China and via marine shipping from Hong Kong 

caused the third pandemic in the mid- 19th century and the majority of modern outbreaks 

of plague. One of the most recent cases was reported in July 2016 in southwestern Idaho. 

Out of twelve cats who got sick, six of them were infected with plague due to contact 

with infected squirrels and other wild rodents or rabbits.  

AHL-Synthase in Yersinia pestis: YspI 

Yersinia pestis reproduces and causes blockage in a muscular valve in the gut of 

the flea by forming a biofilm.49 The biofilm blocks the passage between the esophagus 

and the rest of the gut, inhibiting any blood from entering the stomach cavity after intake 

of blood meals from humans. As a result, infected fleas must feed repeatedly, and each 

successive feeding attempt helps transmit the bacterium to more hosts. Studies have 

identified that Y. pestis have two types of quorum sensing systems: LuxS makes AI-2 

signal molecules and two LuxI/LuxR systems make four different AHL molecules (3-
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oxohexanoyl-homoserine lactone, 3-oxooctanoyl-homoserine lactone, hexanoyl-

homoserine lactone, and octanoyl-homoserine lactone).64-66 The two LuxI/LuxR systems 

in Y. pestis are YspI/R and YpeI/R.65-67 The genome sequence of Y. pestis suggests that 

yspI and ypeI genes encoding LuxI AHL-synthases have very similar structure.63,65-67 

Analysis of the recombinant YspI and wild-type Y. pestis by liquid chromatography-

tandem mass spectrometry indicated that YspI AHL-synthase produces 3-oxohexanoyl-

homoserine lactone (39%) and 3-oxooctanoyl-homoserine lactone (53%) 

predominantly.66 AHL-bioassay study showed that YpeI AHL-synthase is responsible 

for octanoyl-homoserine lactone (C8-HSL) synthesis.67-69 The role of YpeI AHL-

synthase in AHL production needs further investigation.  

Substrate Design 

To design quorum sensing inhibitors for YspI, the enzyme needs to be 

characterized first. Similar to EsaI, the obstacle in studying YspI is that the native 3-

oxooctanoyl-ACP substrate is not stable in vitro. Since the crystal structure of YspI is 

unknown, the recognition of YspI towards 3-oxoacyl-ACPs needs to be elucidated. Even 

though mass spectrometry study showed that YspI produced majority of 3-oxooctanoyl-

HSL (53 %) and 3-oxohexanoyl-HSL (39 %), the importance of hybridization at C-3 

position and position of oxygen atom have remained unclear. One of the objectives in 

this thesis is to design, synthesize, and analyze substrate analogues that have high activity 

with YspI so that it can serve as the foundation in understanding chemistry behind YspI 

signal synthesis mechanism.  

Besides the alternative substrates listed in Figure 9, a few more substrates have 

been developed to study with YspI (Figure 27). These substrates are slightly larger in the 
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molecular size compared to EsaI substrates shown in Figure 9, designed to occupy YspI’s 

deeper acyl-chain binding pocket. 2,2΄-Dimethyl-3-oxooctanoyl-ACP (14) is methylated 

at the - position to keep the substrate from deprotonation at C-2 and also mimic the 

native substrate 3-oxooctanoyl-ACP. Decanoyl-ACP (15) has 10 carbons in the acyl-

chain length and does not have an oxygen atom at the C-3 position.  

          
Figure 27. Structures of alternative substrates for YspI. 

The reaction rate for each substrate with YspI can be determined directly and 

independently using HPLC from product concentration of each half-reaction, 

lactonization and acylation.  

Materials and Methods 

General 

All chemical reagents and solvents were purchased from Sigma Aldrich and used 

without further purification. C10-CoA was purchased from Sigma Aldrich. Amylose 

resin was purchased from New England Biolabs, Inc. Silica gel 230-400 mesh from 

Fisher was used for flash column chromatography. A Thermo Scientific Evolution 260 

Bio UV-Vis spectrophotometer was used to measure concentration of analytes. HPLC 

data was analyzed by Chromeleon 7.2 software on a Thermo Scientific Dionex UltiMate-

3000 HPLC system. Thermo Scientific Hypersil Gold C18 reverse-phase analytical 

UHPLC column (25002-054630) and preparative HPLC column (25005-159070) were 

used in acyl-ACP and acyl-CoA syntheses, respectively. Deuterated chloroform solvent 
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was obtained commercially through Cambridge Isotope Laboratories, Inc. NMR spectra 

were recorded at 298 K using BRUKER AVANCE III 300 MHz and 600 MHz 

spectrometers. Chemical shifts for 1H NMR and 13C NMR spectra were expressed in 

parts per million (ppm) and referenced to residual CHCl3 in CDCl3. 

YspI Growth, Expression, and Purification 

YspI strain was expressed in E. coli strain BL21 (DE3) competent cells. The 

recombinant YspI was grown in LB media containing 50 g/mL streptomycin and 50 

g/mL spectinomycin at 37 C to an OD600 of 0.6-0.8. Expression was induced by 

addition of 0.5 mM isopropyl--D-1-thiogalactopyranoside (IPTG) at room temperature. 

After overnight, the growth cultures were centrifuged to pellet at 5000 xg at 4 C for 10 

minutes and stored at -20 C prior to lysis. The cell pellets were thawed on ice for 30-60 

minutes before lysis. The cell pellets were suspended in chilled lysis buffer, containing 

50 mM Tris-HCl pH 7.5, 200 mM NaCl, 5 mM DTT, and 1 mM PMSF, with ratio of cell 

wet weight to buffer volume of 1:1. The cell suspension was cooled on ice for 10 minutes 

and then sonicated with 10 short bursts of 10 seconds followed by intervals of 30 seconds 

for cooling. After that, cell debris was removed by centrifugation at 4 C for 30 minutes 

at 20,000 xg. Amylose affinity chromatography column was used to purify the protein. 

The amylose column was first equilibrated with YspI Buffer A (50 mM Tris-HCl pH 7.5, 

0.2 M NaCl, 0.1 mM EDTA, 0.1 mM PMSF, 0.1 mM tosyl-L-lysinechloromethyl ketone 

hydrochloride, 0.4 M sucrose, and 2.5 % (v/v) glycerol). The clear supernatant was 

loaded onto the equilibrated column to allow the protein of interest to bind to the resin. 

The column was then washed with YspI Buffer A. The YspI protein was eluted using 35 

mL of YspI Buffer A containing 10 mM maltose. The presence and purity of YspI with 
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maltose binding protein (MBP) was confirmed by SDS-PAGE gel analysis. 

Concentration of YspI was determined via UV-Vis (280 = 103710 M-1cm-1). 

Synthesis of hexyl-Meldrum’s acid (14-meldrum’s acid)70  

To a solution of hexanoic acid (0.54 mL, 4.31 mmol) in dry dichloromethane (25 

mL), DMAP (0.55 g, 4.52 mmol), DCC (0.98 g, 4.73 mmol), and Meldrum’s acid (0.62 

g, 4.31 mmol) were added and stirred overnight at room temperature. The cloudy reaction 

solution was filtered, concentrated under reduced pressure, and redissolved in ethyl 

acetate. The dissolved solution was washed with 2N HCl, NaHCO3, and brine solutions. 

The organic layer was dried with anhydrous MgSO4, filtered, and concentrated under 

reduced pressure to give hexyl-Meldrum’s acid product as yellow-brownish oil (0.29 g, 

1.19 mmol, 28% yield). 1H NMR (300 MHz, CDCl3)  15.27 (s, 1H), 3.04 (t, J = 7.5 Hz, 

2H), 1.71 (s, 6H), 1.64 (quint, J = 3.6 Hz, 2H), 1.40 – 1.32 (m, 4H), 0.88 (t, J = 7.0 Hz, 

3H). 

Synthesis of methyl-3-oxooctanoate (14-ester)71  

A solution of hexyl-Meldrum’s acid (0.29 g, 1.19 mmol) in methanol (15 mL) 

was refluxed overnight at 65 C. The solvent was removed under reduced pressure. The 

residue was purified using silica gel column chromatography (1:1 hexane/ethyl acetate) 

to give methyl-3-oxooctanoate as yellow liquid (0.15 g, 0.87 mmol, 75% yield). 1H NMR 

(300 MHz, CDCl3)  3.72 (s, 3H), 3.43 (s, 2H), 2.51 (t, J = 7.4 Hz, 2H), 1.62 – 1.53 (m, 

2H), 1.31 – 1.24 (m, 4H), 0.86 (t, J = 6.8 Hz, 3H). 13C NMR (300 MHz, CDCl3)  203.1, 

167.9, 52.5, 49.2, 43.3, 31.4, 23.4, 22.6, 14.1.  
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Synthesis of methyl-2,2-dimethyl-3-oxooctanoate (14-dimethylated)49,50  

To a reaction flask under nitrogen atmosphere, one equivalent of NaH 60% in 

mineral oil (0.166 g, 4.15 mmol) and dry THF (50 mL) were added. The mixture solution 

was refluxing while methyl-3-oxooctanoate (0.714 g, 4.15 mmol) was adding dropwise. 

Then, one equivalent of methyl iodide (0.209 mL, 4.15 mmol) was added dropwise into 

the reaction solution. The reaction was refluxed overnight at 70 C in mineral oil bath. 

Next day, the second equivalent of NaH 60% in mineral oil and methyl iodide were added 

into the same reaction flask and stirred overnight. The completion of reaction was 

checked using TLC (5% ethyl acetate: 95% hexane). Under nitrogen atmosphere, 

saturated ammonium chloride solution was added dropwise until all white precipitate 

dissolved. The product mixture was extracted with dichloromethane (3 x 70 mL). The 

organic layer was dried with anhydrous sodium sulfate, filtered, and concentrated under 

reduced pressure. The residue was purified by silica gel column chromatography (99:1 

hexane/ethyl acetate) to give methyl-2,2-dimethyl-3-oxooctanoate as white solid (0.6 g, 

3.0 mmol, 72 % yield). 1H NMR (600 MHz, CDCl3)  3.69 (s, 3H), 2.40 (t, J = 7.3 Hz, 

2H), 1.54 – 1.49 (m, 2H), 1.34 (s, 6H), 1.25 – 1.23 (m, 2H), 1.23 – 1.18 (m, 2H), 0.86 (t, 

J = 7.2 Hz, 3H). 13C NMR (600 MHz, CDCl3)  208.3, 174.5, 55.8, 52.6, 38.1, 31.5, 23.7, 

22.7, 22.2, 14.1.  

Synthesis of 2,2-dimethyl-3-oxooctanoic acid (14-acid)51  

To a solution of 1 N NaOH (4.3 mL), methyl-2,2-dimethyl- 3-oxooctanoate (0.6 

g, 3.0 mmol) was added and stirred overnight. The reaction mixture was then washed 

twice with ethyl acetate (2 x 8 mL). The organic layer was collected and cooled on ice. 

2N HCl solution was added into the cool aqueous solution until the clear solution turned 
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cloudy or pH 2-3. The cloudy solution was extracted with petroleum ether. The organic 

layer from extraction was dried under reduced pressure to afford the dried 2,2΄-dimethyl-

3-oxooctanoic acid product as white solid (0.54 g, 2.9 mmol, 97 % yield). 1H NMR (600 

MHz, CDCl3)  2.51 (t, J = 7.3 Hz, 2H), 1.57 (quint, J = 7.4 Hz, 2H), 1.39 (s, 6H), 1.31 

– 1.22 (m, 4H), 0.86 (t, J = 7.2 Hz, 3H). 13C NMR (600MHz, CDCl3)  208.4, 178.9, 

55.6, 38.2, 31.5, 23.7, 22.7, 22.3, 14.1. 

Synthesis of 2,2-dimethyl-3-oxooctanoyl-succinimide ester (14-succ)  

To a solution of 2,2-dimethyl-3-oxooctanoic acid (0.027 g, 0.15 mmol) in 1,4-

dioxane (3 mL), N-hydroxysuccinimide (0.017 g, 0.15 mmol) and N,Nˊ-

dicyclohexylcarbodiimide (0.031 g, 0.15 mmol) were added and stirred for 24 hours. 

Diethyl ether (2 mL) was added to the reaction mixture, and then the white cloudy 

solution was filtered and concentrated under reduced pressure. Warm methanol (3 mL) 

was added quickly into the residue to precipitate out urea by-product and then 

concentrated under reduced pressure. Cold 1,4-dioxane was added to the residue to repeat 

the removal of urea and then concentrated under reduced pressure. The residue was 

purified by column chromatography (hexane/ethyl acetate) to give 2,2-dimethyl-3-

oxooctanoyl-succinimide ester product as clear solid (0.035 g, 0.12 mmol, 83% yield). 

1H NMR (600 MHz, CDCl3)  2.81 (s, 4H), 2.65 (t, J = 7.3 Hz, 2H), 1.59 (quint, J = 7.4 

Hz, 2H), 1.48 (s, 6H), 1.30 – 1.25 (m, 4H), 0.85 (t, J = 7.1 Hz, 3H). 13C NMR (600 MHz, 

CDCl3)  205.6, 169.7, 168.9, 54.7, 38.5, 31.3, 25.8, 23.5, 22.6, 22.2, 14.1. ESI-TOF: 

expected m/z [M+Na]+ 306.1312, observed 306.1333. 
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Preparation of 2,2-dimethyl-3-oxooctanoyl-CoA 

The synthesis of 2,2-dimethyl-3-oxooctanoyl-CoA was prepared in similar 

fashion mentioned in chapter 2: Materials and Methods-General preparation of 3-

oxoacyl-CoA analogs. 2,2-Dimethyl-3-oxooctanoyl-CoA (14-CoA): expected [M+H]+ 

936.2375, observed 936.2399.  

Preparation of 2,2-dimethyl-3-oxoC8-ACP and C10-ACP 

The synthesis of 2,2-dimethyl-3-oxooctanoyl-ACP and decanoyl-ACP (C10-

ACP) were prepared according to methods described in chapter 2: “Materials and 

Methods-General preparation of 3-oxoacyl-ACP analogs”. 2,2-Dimethyl-3-oxoC8-

ACP (14): calculated mass 9017.3746 Da, observed mass 9017.3185 Da; C10-ACP (15): 

calculated mass 9002.3857 Da, observed mass 9002.3736 Da. 

HPLC assay 

Two chemical steps, lactonization and acylation, in YspI were followed with the 

same protocols as discussed in chapter 2: Materials and Methods-HPLC assay.  

Results and Discussion 

Purification of YspI 

Inoculation of BL21 (DE3) E. coli YspI on agar plate containing 50 g/mL 

streptomycin and 50 g/mL spectinomycin antibiotics showed appearance of small white 

circular colonies. An isolated colony was picked to inoculate mini growth and then large 

growth with the same antibiotic concentration. The large growth reached to OD of 06-

0.8 within three hours of shaking at 37 C. Sonication for cell lysis is a common technique 

due to its adaptability to different sample volumes and ease of use, allowing pulsed, high 

frequency sound waves to lyse cells. Since YspI contained maltose-binding protein 
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(MBP), amylose affinity column chromatography was used.  The molecular weight of 

Ysp with MBP is 67.99 kDa or ~ 68 kDa. It was confirmed that the clean YspI protein 

was obtained indicating by a band at ~ 68 kDa on SDS-PAGE gel (Figure 28).  

 
Figure 28. SDS-PAGE of YspI-MBP fractions using amylose column 

chromatography. Lane 0: EZ prestained protein ladder from Fisher; 1: run through of 

YspI crude; 2: YspI Buffer A wash of YspI; 3-9: 10 mM maltose in YspI Buffer A 

elutions 1-7. The elutions in lanes 4-9 had strong banding at ~ 68 kDa indicating the 

presence of YspI from purification.  

Synthesis of 2,2-dimethyl-3-oxooctanoyl-succinimide ester (14-succ) 

There was no commercially available methyl or ethyl-3-oxooctanoate ester to 

make 2,2-dimethyl-3-oxooctanoic acid. The synthesis of 2,2-dimethyl-3-oxooctanoic 

acid was prepared starting from commercially available hexanoic acid and then coupling 

with DCC, DMAP (4-dimethylaminopyridine) and Meldrum’s acid (2,2-dimethyl-1,3-

dioxane-4,6-dione) in dry dichloromethane to give hexyl-Meldrum’s acid intermediate 

(14-Meldrum’s acid) (Scheme 13). The hexyl-Meldrum’s acid intermediate gave nearly 

quantitative yields and was used without further purification. The characterization of the 

intermediate was confirmed by 1H-NMR and COSY (Figures A46 and A47). The 

structure of hexyl-Meldrum’s acid compound has an active methine hydrogen 

surrounded by three electron withdrawing groups, allowing for the existence of another 
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tautomeric form (Scheme 14). Notably, the presence of singlet signal at 15.27 ppm 

integrated to 1 proton, indicating the H-bonded enolic structure with the enol proton 

(Figure A46).  

 
Scheme 13. Synthesis of hexyl-Meldrum’s acid using hexanoic acid, DCC, 

DMAP, and Meldrum’s acid. 
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Scheme 14. Tautomeric equilibrium of hexyl-Meldrum’s acid, indicating the 

predomination of enol form. 

Then the intermediate hexyl-meldrum’s acid was refluxed in the presence of 

methanol to afford the desired methyl-3-oxooctanoate (14-ester) in quantitative yields 

(Scheme 15). The side product from the reaction was easily removed by silica gel column 

chromatography. 1H-NMR, COSY, and 13C-NMR spectra were obtained to confirm the 

identity of 14-ester (Figures A48-A50). In the 1H-NMR spectrum, the singlet signal at 

3.72 ppm that integrates to 3 protons corresponds to the methyl protons of the ester at C-

1. Also, the singlet signal at 3.43 ppm, which integrates to 2 protons corresponds to the 

methylene protons at C-2 because the protons were surrounded by two electron 

withdrawing groups and resulted in a downfield shift (Figure A48). A small singlet at 

about 4.95 ppm was observed in the 1H-NMR and may correspond to the -hydrogen of 

the enolate tautomer of the product.  
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Scheme 15. Synthesis of methyl-3-oxooctanoate (14-ester). 

 
Scheme 16. Synthesis of 2,2-dimethyl-3-oxooctanoic acid (14-acid). 

Once the methyl-3-oxooctanoate ester was synthesized successfully, methyl-2,2-

dimethyl-3-oxooctanoate was chemically synthesized in a similar fashion as discussed in 

the synthesis of ethyl-2,2-dimethyl-3-oxohexanoate (Scheme 16). The desired methyl-

2,2-dimethyl-3-oxooctanoate was obtained in quantitative yields and confirmed by 1H-

NMR, COSY, 13C-NMR, and DEPT-135 (Figure A51-A54). One of the important 

indication of the success of the dimethylation reaction was the singlet at 1.34 ppm that 

integrated to 6 protons and the disappearance of the singlet peak at 3.43 ppm in the 1H-

NMR (Figure A51). A small amount of monomethyl-product was also observed in the 

crude product and separated from the dimethyl-product using silica gel column 

chromatography. In the 1H-NMR of monomethyl-3-oxooctanoate, a doublet at 1.33 ppm 

integrated to 3 protons corresponding to one methyl group at C-2 and a quartet at 3.50 

ppm integrated to 1 proton corresponding to one hydrogen at C-2 were observed. In 

addition, in the 13C-NMR and DEPT-135 of the methyl-2,2-dimethyl-3-oxooctanoate 

product, the height of the signal at 22.2 ppm, which was about twice as high as other 
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methyl group signal, indicated the two methyl groups at C-2 overlapped (Figures A52 

and A54).  

The synthesis of 2,2-dimethyl-3-oxooctanoic acid was done by hydrolyzing 

methyl-2,2-dimethyl-3-oxooctanoate with NaOH and then acidifying with HCl (Scheme 

16). 1H-NMR, COSY, and 13C-NMR were obtained to confirm its identity (Figure A55-

A57). In 1H-NMR, the complete disappearance of the singlet signal at 3.69 ppm indicated 

that methyl group at C-1 of the methyl-2,2-dimethyl-3-oxooctanoate staring material 

was hydrolyzed successfully (Figure A55). In 13C-NMR, the appearance of signals at 

208.4 ppm and 178.9 ppm was observed for the respective ketone and carboxylic acid 

functional groups of the desired product (Figure A57). 

2,2-Dimethyl-3-oxooctanoyl-succinimide ester was synthesized by treating 2,2-

dimethyl-3-oxooctanoic acid with DCC and N-hydroxysuccinimide in dioxane (Scheme 

17). Most of the urea by-product was removed by filtration. Remaining trace amounts of 

the urea by-product was removed by silica gel column chromatography. The desired 2,2-

dimethyl-3-oxooctanoyl-succinimide ester product was afforded in good yields. 

Characterization by 1H-NMR, COSY, 13C-NMR, and ESI-MS-TOF was obtained to 

confirm their identity of the product (Figures A58-A60, and B11).  

 
Scheme 17. Synthesis of 2,2-dimethyl-3-oxooctanoyl-succinimide ester.  
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Synthesis of 2,2-dimethyl-3-oxooctanoyl-CoA 

Following a similar protocol for the preparation of acyl-CoA compounds in EsaI 

(chapter 2, Scheme 10), the synthesis of 2,2-dimethyl-3-oxooctanoyl-CoA molecule was 

achieved by treating the synthesized 2,2-dimethyl-3-oxooctanoyl-succinimide ester with 

free coenzyme A (CoA) acid under nitrogen environment (Scheme 18). The free CoA 

acid was deprotonated under basic condition and readily attacked the carbonyl carbon of 

the ester starting material, displacing the succinimide group. The crude product was 

extracted and ran on preparative HPLC to collect the desired pure 2,2-dimethyl-3-

oxooctanoyl-CoA product. In HPLC chromatogram shown in Figure 29, 2,2-dimethyl-

3-oxooctanoyl-CoA eluted at 11.1 minutes. Mass spectral data using ESI-TOF for 2,2-

dimethyl-3-oxooctanoyl-CoA molecule was also obtained to confirm its identity (Figure 

B22). 

 
Figure 29. HPLC chromatogram of 2,2-dimethyl-3-oxoC8-CoA molecule using 

preparative HPLC. Excess of 2,2-dimethyl-3-oxoC8-succinimide ester and unreacted 

free CoA eluted from 2.5 – 4.8 minutes. Only peak corresponding to 2,2-dimethyl-3-

oxoC8-CoA product of interest was collected by fraction collector. 2,2-Dimethyl-3-

oxooctanoyl-CoA eluted at 11.1 – 12.0 minutes. 
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Syntheses of 2,2-dimethyl-3-oxoC8-ACP and C10-ACP proteins 

Enzymatic syntheses of E. coli 2,2-dimethyl-3-oxoC8-ACP and C10-ACP 

proteins were in a similar fashion as discussed in acyl-ACP protein syntheses for EsaI 

(chapter 2, Scheme 12). The syntheses of all acyl-ACPs were confirmed by HPLC and 

ESI-TOF (Figures 30 and B37).  

The completion of the reactions was monitored by the depletion of apo-ACP at 

7.5 minutes and the growth of corresponding acyl-ACP peak. The Sfp enzyme eluted at 

5.1 minutes. Once the acyl-ACP reaction had gone to completion, Sfp enzyme was 

precipitated out by addition of ammonium sulfate to 75 % saturation and removed from 

the reaction mixture by centrifugation.58 Clean acyl-ACP product from the reaction was 

obtained by multiple washes with nanopure water to remove excess acyl-CoA and 

ammonium sulfate. These impurities absorbed at 260 nm while apo-ACP and acyl-ACP 

proteins absorbed at 280 nm on UV-Vis. The reduction of 260 peak after washes 

indicated the acyl-ACP protein was free of contamination. 

 

Figure 30. HPLC chromatograms of apo-ACP and alternative 3-oxoacyl-ACPs 

using analytical HPLC over a period of 10 minutes with flow rate of 600 L/min. 

Sfp enzyme eluted at 5.1 minutes (O) Apo-ACP eluted at 7.7 minutes. The completion 
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of acyl-ACP synthesis reaction was monitored by disappearance of apo-ACP peak over 

time. (A) 2,2-Dimethyl-3-oxooctanoyl-ACP eluted at 8.0 minutes (B) Decanoyl-ACP 

eluted at 9.0 minutes.  

Lactonization and acylation assay in YspI-catalyzed reaction 

In the YspI-catalyzed reaction, the formation of MTA and holo-ACP products 

after quenching the enzyme were measured quantitatively by using the same HPLC 

methods discussed in chapter 2 used for determining rates of EsaI. Product formation 

over a 6 minutes period was linear, indicating that 4 minutes of incubation with enzyme 

would be sufficient to determine the initial reaction rate (Figure 31). 

  

Figure 31. Different quenched time (0, 2, 4, 6 minutes) follwing formation of 

MTA and holo-ACP in lactonization and acylation half-reactions in YspI. In the 

reaction, concentrations of YspI, SAM, and 2-furoyl-ACP were fixed at 1.34 M, 500 

M, and 112 M, respectively. In lactonization, MTA peak at 0 minute corresponded to 

contaminant MTA in commercially available SAM from Sigma. In acylation, decrease 

in furoyl-ACP peak area was accompanied by increase in holo-ACP product peak area.  

In the lactonization half-reaction, SAM and MTA peaks eluted at 0.65 and 5.05 

minutes, respectively (Figure 32). Since MTA is a common contaminant in commercial 

SAM, the actual amount of MTA produced in the quenched reaction was determined by 

subtracting the total peak area from the contaminant MTA peak area presented in the 

background. The MTA concentration produced in the enzymatic reaction was calculated 



97 

 

from its respective peak area by using MTA standard curve. In acylation half-reaction, 

holo-ACP and acyl-ACP (2,2΄-dimethyl-3-oxoC8-ACP in this case) eluted at 6.8 and 8.0 

minutes, respectively (Figure 33). The overlaid background and YspI-catalyzed reaction 

chromatograms showed that in the presence of YspI, holo-ACP peak increased while 

2,2΄-dimethyl-3-oxoC8-ACP decreased relatively.  

 
Figure 32. Lactonization assay for YspI. HPLC chromatogram of MTA product 

formation in YspI-catalyzed reaction using 0 M, 10 M, and 20 M 2,2΄-dimethyl-3-

oxoC8-ACP substrate concentrations, fixed 500 µM SAM, fixed 1 µM YspI quenched at 

4 minutes with 6 M HCl. SAM eluted at 0.65 minutes; MTA peak from SAM 

lactonization eluted at 5.05 minutes. The peak areas were reported in arbitrary units. The 

actual amount of MTA produced in the quenched reaction was determined by subtracting 

the total peak area from the contaminant MTA peak area presented in the background. 

The MTA concentration produced in the enzymatic reaction was calculated from its 

respective peak area by using MTA standard curve. 
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Figure 33. Acylation assay for YspI. HPLC chromatogram of holo-ACP product 

formation in YspI-catalyzed reaction using 70 M (in blue) and 20 M (in pink) 2,2΄-

dimethyl-3-oxoC8-ACP substrate concentration, fixed 500 µM SAM, fixed 1 µM YspI 

quenched at 4 minutes with 4 M acetate buffer, pH 3.6.  Black chromatogram is 

background with 2,2΄-dimethyl-3-oxoC8-ACP eluted at 8.0 minutes. Blue and pink 

chromatograms are YspI-catalyzed reactions with the appearance of holo-ACP peak at 

6.8 minutes. An increase in holo-ACP peak was accompanied by a decrease in 2,2΄-

dimethyl-3-oxoC8-ACP peak area in YspI-catalyzed reaction. The peak areas were 

reported in arbitrary units. The holo-ACP concentration in the quenched reaction mixture 

was determined from its respective peak area by using holo-ACP standard curve. 

Determination of kinetic parameters of alternative 3-oxoacyl-ACP substrates with YspI 

wildtype 

Previously, mass spectrometry study had suggested that YspI produced majority 

3-oxoC8-HSL, but the importance of the oxygen and hybridization at C-3 position had 

not yet been elucidated.66 In this thesis, we were interested in exploring the effect of 

change of heteroatom (oxygen to sulfur and nitrogen), methylation of 3-oxoC8-ACP 

substrate, change of hybridization at C-3, change of straight acyl-chain to aromatic 

analogs, change of position of oxygen atom in the acyl-chain, change of acyl-chain 

length, and removal of oxygen atom in the acyl-chain on YspI activity.  

The initial rate at each substrate concentration was fitted to Michaelis-Menten 

equation to determine kinetic constants (Figure C4 and C5). The Km, kcat, and kcat/Km 
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values in lactonization and acylation assay were within error (Table 4). A general Km 

trend was observed among all alternative substrates: the substrates that carried oxygen at 

C-3 position had similar range of Km value; as the oxygen atom moved to different 

position (C-2, C-4, and C-5) or removed, or acyl chain length changed from 8 carbons to 

6 carbons, Km increased and kcat decreased. This variation in activity can be truly 

understood when comparing catalytic efficiencies (kcat/Km) of alternative substrates all 

together. The relative catalytic efficiencies of all substrates were compared in Figure 34.  



 

 

1
0
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Table 4. Determination of Km, kcat, kcat/Km of alternative 3-oxoacyl-ACP substrates on YspI activity by following (A) 

lactonization and (B) acylation reactions.  

(A) Lactonization Km 

(M) 

kcat 

(min-1) 

kcat Km 

(M-1min-1) 

% activity a 

2-Benzofuranacetyl-ACP (13) 7.71 ± 1.19 3.28 ± 0.12 0.425 ± 0.068 100.00 

2,2-Dimethyl-3-oxoC8-ACP (14) 7.78 ± 0.89 1.85 ± 0.05 0.238 ± 0.028 56.03 

2-Furanacetyl-ACP (1) 8.35 ± 1.64 0.701 ± 0.032 0.0840 ± 0.0169 19.76 

2-Tetrahydrofuranacetyl-ACP (2) 8.19 ± 1.46 0.610 ± 0.029 0.0744 ± 0.0137 17.52 

2-Pyridylacetyl-ACP (4) 10.21 ± 1.49 0.742 ± 0.028 0.0727 ± 0.0110 17.12 

2-Furoyl-ACP (5) 15.79 ± 3.12 0.574 ± 0.035 0.0364 ± 0.0075 8.56 

5-oxoC8-ACP (11) 23.42 ± 3.98 0.788 ± 0.041 0.0336 ± 0.0060 7.92 

4-oxoC8-ACP (10) 37.37 ± 5.19 1.12 ± 0.051 0.0299 ± 0.0044 7.06 

5-oxoC6-ACP (7) 25.71 ± 2.44 0.619 ± 0.017 0.0241 ± 0.0024 5.67 

4-oxoC6-ACP (6) 32.34 ± 4.66 0.593 ± 0.026 0.0183 ± 0.0028 4.32 

C8-ACP (12) 87.87 ± 16.83 1.22 ± 0.093 0.0138 ± 0.0028 3.26 

C6-ACP (9) 97.72 ± 15.90 0.780 ± 0.055 0.0080 ± 0.0014 1.88 

C10-ACP (15) 112.60 ± 16.86 0.562 ± 0.038 0.0050 ± 0.0008 1.18 

2-Thiopheneacetyl-ACP (3) 2.81 ± 0.89 0.774 ± 0.115 0.275 ± 0.097 64.84 

a % activity = 

𝑘𝑐𝑎𝑡
𝐾𝑚

⁄

0.425
× 100 
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(B) Acylation Km 

(M) 

kcat 

(min-1) 

kcat/Km 

(M-1min-1) 

% activity a 

2-Benzofuranacetyl-ACP (13) 7.68 ± 1.11 3.24 ± 0.12 0.422 ± 0.063 100.00 

2,2-Dimethyl-3-oxoC8-ACP (14) 7.09 ± 0.64 1.79 ± 0.04 0.253 ± 0.023 59.91 

2-Furanacetyl-ACP (1) 8.86 ± 0.85 0.864 ± 0.020 0.0975 ± 0.0096 23.12 

2-Tetrahydrofuranacetyl-ACP (2) 7.49 ± 0.93 0.643 ± 0.019 0.0858 ± 0.0110 20.34 

2-Pyridylacetyl-ACP (4) 9.64 ± 0.95 0.768 ± 0.0206 0.0797 ± 0.0081 18.88 

5-oxoC8-ACP (11) 21.79 ± 2.80 1.066 ± 0.03917 0.0489 ± 0.0066 11.59 

2-Furoyl-ACP (5) 15.90 ± 2.78 0.707 ± 0.036 0.0445 ± 0.0081 10.54 

4-oxoC8-ACP (10) 36.56 ± 5.25 1.29 ± 0.061 0.0353 ± 0.0053 8.37 

5-oxoC6-ACP (7) 28.05 ± 3.49 0.704 ± 0.027 0.0251 ± 0.00327 5.95 

4-oxoC6-ACP (6) 34.22 ± 3.91 0.649 ± 0.025 0.0190 ± 0.0023 4.50 

C8-ACP (12) 83.89 ± 16.08 1.34 ± 0.098 0.0159 ± 0.0033 3.78 

C6-ACP (9) 97.73 ± 12.07 0.841 ± 0.038 0.0086 ± 0.0011 2.04 

C10-ACP (15) 110.50 ± 10.08 0.579 ± 0.018 0.0052 ± 0.0005 1.24 

2-Thiopheneacetyl-ACP (3) 1.94 ± 0.51 0.659 ± 0.067 0.339 ± 0.095 80.31 

a % activity = 

𝑘𝑐𝑎𝑡
𝐾𝑚

⁄

0.422
× 100 

 

Table 5. Effect of 2-thiopheneacetyl-ACP on YspI activity when SAM is fixed.  

Fixed S Variable S Km 

(M) 

kcat 

(min-1) 

kcat/Km 

(M-1min-1) 

Ki 

(M) 

50 M SAM 2-Thiopheneacetyl-ACP 4.58  2.23 0.48 ± 0.12 0.104 ± 0.058 26.54  12.56 

500 M SAM 2-Thiopheneacetyl-ACP 2.81 ± 0.89 0.774 ± 0.115 0.275 ± 0.097 30.31  9.18 
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Figure 34. Comparison of catalytic efficiency of the alternative 3-oxoacyl-ACP 

substrates for YspI by following Lactonization (A) and Acylation assay (B). 2-

Benzofuranacetyl-ACP with sp2 hybridized carbon at C-3 and eight carbons in acyl-chain 

length showed the highest catalytic efficiency among all of the tested substrates with YspI. 

The catalytic activity of 2-benzofuranacetyl-ACP was about 4-fold higher than that of 2-

furanacetyl-ACP. The change of heteroatom, position of oxygen atom, removal of oxygen 

atom, and variation in acyl-chain length significantly affected the activity with YspI.   

Among all of the substrates, 2-benzofuranacetyl-ACP showed the highest catalytic 

efficiency (0.425 ± 0.068 M-1min-1). Comparing kcat/Km values of all alternative 3-

oxoacyl-ACP substrates, 2-benzofuranacetyl-ACP substrate had the catalytic efficiency 

within an order of magnitude to that observed for ACP-dependent AHL synthases, such as 

RhlI (0.3  0.1 M-1min-1), BjaI (0.5  0.2 M-1min-1), and BmaI1 (0.31  0.05 M-1min-

1). The second-best substrate with YspI was 2,2-dimethyl-3-oxoC8-ACP with kcat/Km 

value of 0.238 ± 0.028 M-1min-1. The 2-benzofuranacetyl-ACP and 2,2-dimethyl-3-

oxoC8-ACP substrates meet the three criteria suggested for YspI activity: 8 carbons in acyl 

chain, sp2 hybridized C-3, and oxygen at C-3. However, the catalytic efficiency of 2,2-

dimethyl-3-oxoC8-ACP was 2-fold less active than 2-benzofuranacetyl-ACP. Similar to 

the situation of 2,2-dimethyl-3-oxoC6-ACP in EsaI, the two methyl groups at C-2 of 2,2-
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dimethyl-3-oxoC8-ACP may possibly introduce some steric hindrance in acyl-chain 

binding site of YspI, thus slightly reducing the kcat and kcat/Km values.  

In the YspI-catalyzed reaction, 2-furanacetyl-ACP had only about 19-23 % activity 

in compared to the EsaI-catalyzed reaction. Yet, 2-furanacetyl-ACP is very similar to 2-

benzofuranacetyl-ACP in term of hybridization of C-3 and oxygen at C-3, except that 2-

furanacetyl-ACP is smaller than benzofuranacetyl-ACP in molecular size. The catalytic 

efficiency of 2-furanacetyl-ACP decreased by 4-fold compared to 2-benzofuranacetyl-

ACP in YspI because YspI has a deeper acyl-chain binding pocket compared to EsaI that 

could result in too much fluctuations of acyl chain in the acyl-chain binding pocket of YspI 

and make it difficult to dock the 2-furanacetyl-ACP substrate in a productive conformation. 

2-Tetrahydrofuranacetyl-ACP substrate with sp3 hybridized C-3 instead of sp2 had a 5-fold 

decrease in catalytic efficiency compared to 2-benzofuranacetyl-ACP. There is not much 

different in catalytic efficiency between 2-tetrahydrofuranacetyl-ACP and 2-furanacetyl-

ACP although the hybridization of carbon at C3 position is different. 

The alteration of heteroatom from oxygen to nitrogen at C-3 position also affected 

the kcat/Km value drastically. The catalytic efficiency of 2-pyridylacetyl-ACP with nitrogen 

in place of oxygen at C-3 decreased by 6-fold compared to 2-benzofuranacetyl-ACP and 

1-fold compared to 2-furanacetyl-ACP. Although the lone pair of electrons of nitrogen 

center of pyridine is not part of the -conjugated system and can serve as hydrogen bond 

acceptor/donor, kcat/Km value showed that 2-pyridylacetyl-ACP is less favorable than 2-

benzofuranacetyl-ACP when bound to YspI.  

Unlike EsaI, YspI shows a very distinctive loss in activity when position of oxygen 

in acyl-chain changed to C-2, C-4, and C-5. 2-Furoyl-ACP, 5-oxoC8-ACP, and 4-oxoC8-
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ACP had activity of about 7-12 % compared to 2-benzofuranacetyl-ACP. The kcat/Km 

values of 5-oxoC8-ACP and 2-furoyl-ACP were almost similar. The kcat/Km value of 4-

oxoC8-ACP was about 1.2-fold less than that of 5-oxoC8-ACP and 2-furoyl-ACP. 

Interestingly, when chain length of the substrate was shortened by 2 carbons with the same 

position of oxygen (5-oxoC6-ACP and 4-oxoC6-ACP), the catalytic efficiencies dropped 

by 2-fold compared to those of 5-oxoC8-ACP and 4-oxoC8-ACP. In YspI-catalyzed 

reaction, the kcat/ Km value of 5-oxoC8-ACP was about 1.4-fold higher than that of 5-

oxoC6-ACP. Likewise, the kcat/Km value of 4-oxoC8-ACP was about 1.6-fold higher than 

that of 4-oxoC6-ACP. The data may suggest that acyl-chain of 8 carbons is able to reach 

to the bottom of the acyl-chain binding pocket more easily and produce easier productive 

conformation. However, the shorter acyl-chain in 4-oxoC6-ACP and 5-oxoC6-ACP may 

increase the flexibility of acyl-chain in the shorter substrates resulting in a nonproductive 

binding for the enzyme-substrate ternary complex. This will decrease the turnover number 

(kcat) of the substrate. 

Furthermore, without a heteroatom in the acyl-chain, the activity of C6-ACP, C8-

ACP, and C10-ACP dropped significantly (1 – 4 %) compared to the highest activity 

substrate, 2-benzofuranacetyl-ACP. The data indicated that the presence of a heteroatom 

plays a role in retaining the activity of YspI. In addition, the preference of YspI for a 

specific chain length was also examined by looking catalytic efficiencies of C6-ACP, C8-

ACP, and C10-ACP. Although these three substrates do not carry any heteroatom in acyl-

chain, but the difference in chain length may provide useful information about acyl-chain 

length specificity of YspI for acyl-ACP substrate. The catalytic efficiencies of these three 

substrates can be ranked in high to low order: C8-ACP > C6-ACP > C10-ACP. The activity 
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of C10-ACP was only 1 % compared to 2-benzofuranacetyl-ACP and 3-fold less than C8-

ACP. This may be explained that the difference by 2 carbons in C10-ACP compared to C8-

ACP may cause the acyl-chain to protrude from the V-cleft binding pocket in YspI. 

Looking at all 14 substrates together, it is clear that YspI exhibits a strong preference for 

substrates with length of 8 carbons. 

Last but not least, 2-thiopheneacetyl-ACP is an interesting substrate. It exhibited 

substrate inhibition when SAM was fixed and 2-thiopheneacetyl-ACP was varied (Figure 

C4, C5, and C8). Table 5 summarizes kinetic parameters when SAM concentrations were 

fixed at 50 M and 500 M. The inhibition constant Ki value when fixed SAM at 500 M 

(30.31  9.18 M) was compared to Ki value when fixed SAM at 50 M (26.54  12.56 

M). Substrate inhibition was observed in both of the cases and had similar Ki values. 

Yet, when 2-thiopheneacetyl-ACP was fixed and SAM was the variable substrate, 

substrate inhibition was not observed (Figure C9). In addition, Km of SAM when fixed 2-

benzofuranacetyl-ACP (75.98  17.49 M) was determined and compared to Km of SAM 

when fixed 2-thiopheneacetyl-ACP (23.52  4.03 M) (Figure C9). The kcat for fixed 

concentrations of 2-thiopheneacetyl-ACP with variable concentration of SAM (0.764  

0.029 min-1) is  about 5-fold lower than that for fixed concentrations of 2-benzofuranacetyl-

ACP (3.21  0.18 min-1). However, the kcat/Km for fixed 2-thiopheneacetyl-ACP (0.0325  

0.0057 M-1min-1) is almost similar to that for fixed 2-benzofuranacetyl-ACP (0.0423  

0.0100 M-1min-1). Both 2-thiopheneacetyl-ACP and 2-benzofuranacetyl-ACP showed 

normal hyperbolic curves when SAM was the variable substrate. This result together with 

substrate inhibition data when SAM is fixed indicated that all available free enzyme (E) 

favored the formation of stable EA (E.2-thiopheneacetyl-ACP or E.2-benzofuranacetyl-
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ACP) complex, resulting in the binding of SAM to EA to follow the productive pathway 

(Figure 25). Product inhibition studies will need to be conducted to determine the order of 

substrate addition with YspI. One of the explanations for substrate inhibition of 2-

thiopheneacetyl-ACP in YspI can be described by random sequential mechanism discussed 

in chapter 2 (Figure 25). At low concentrations of 2-thiopheneacetyl-ACP, it populated the 

productive pathway by formation of E.2-thiopheneacetyl-ACP.SAM complex. However, 

when 2-thiopheneacetyl-ACP reached beyond saturation, the excess of 2-thiopheneacetyl-

ACP could also bind to E.SAM complex, pushing the nonproductive pathway to compete 

with productive pathway. The result is a lower turnover number and the reaction rate 

decreased. Another explanation is that the binding of 2-thiopheneacetyl-ACP in the acyl-

chain binding pocket of YspI partially locks the enzyme in a conformation that the substrate 

can’t be released to perform catalysis, resulting in decrease of released product. 

As a result, these data indicated that the presence of heteroatom is important in 

maintaining activity of YspI, but chain length can also play a critical point in establishing 

the necessary interactions to position the acyl-chain into a productive conformation to 

undergo catalysis. 



107 

 

CHAPTER FOUR: CONCLUSIONS 

In Gram-negative bacteria, AHL synthases catalyze the synthesis of AHL signal 

molecules using acyl-ACP and SAM substrates. Many therapeutically relevant AHL 

synthases utilize -ketoacyl-ACPs; yet, these enzymes remain uncharacterized with their 

native substrate due to the instability of the β-ketoacyl-ACP substrate in vitro. This thesis 

work is the first systematic investigation to design and evaluate the alternative 3-oxo-acyl-

ACP substrates for Pantoea stewartii EsaI and Yersinia pestis YspI. This study will open 

new doors to explore inhibitors for several uncharacterized AHL synthase enzymes as well 

as other -ketoacyl-ACP utilizing enzymes that impacts human health. 

From the kinetic study of EsaI T140A mutant with C6-ACP, it was confirmed that 

the acyl-chain binding pocket of EsaI lost specificity with respect to the - position of the 

acyl chain when the key threonine residue was mutated to alanine (Figure 34). The kinetic 

studies of the alternative 3-oxoacyl-ACP substrate analogs with EsaI wild-type suggest that 

the presence of an oxygen at the -carbon position and the chain length of six carbons are 

preferable to yield high catalytic efficiency. When studying kinetics of the alternative 3-

oxoacyl-ACP substrate analogs with YspI wild-type, our data indicate that YspI shows a 

strong preference for substrate with an acyl-chain length of eight carbons and an oxygen 

heteroatom at the -carbon. From this thesis work, we found that 2-furanacetyl-ACP and 

2-benzofuranacetyl-ACP are the best alternative substrate for EsaI and YspI, respectively. 

The catalytic efficiencies of these substrates are within an order of magnitude to that 

observed for ACP/CoA-dependent AHL synthases with their native acyl-ACP/ acyl-CoA 
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substrate, such as RhlI, BmaI, and BjaI (Figure 35).  Also, the presence of heteroatom other 

than oxygen is crucial to retain enzyme activity in both EsaI and YspI. Surprisingly, our 

data suggest that the sp3 hybridization at -carbon only has a minimal effect on EsaI 

activity. Finally, the substrate with sulfur atom (2-thiophenacetyl-ACP) in place of oxygen 

at the -carbon exhibits substrate inhibition in both EsaI and YspI enzymes, suggesting a 

possibility of random sequential mechanism. Future product inhibition experiments are 

needed to confirm this observation. 

 
Figure 35. Comparison catalytic efficiency analysis of characterized AHL 

synthases with their native substrate. 2-Furanacetyl-ACP and 2-benzofuranacetyl-ACP 

are the best alternative substrate for EsaI and YspI, respectively. The catalytic efficiencies 

of these two substrates are within an order of magnitude to that observed for ACP/CoA-

dependent AHL synthases with their native acyl-ACP/ acyl-CoA substrate, such as RhlI, 

BmaI, and BjaI. 
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In summary, this project met the criteria proposed in my thesis objective. The 

success of synthesis and high activity of β-ketoacyl-ACP mimics for EsaI and YspI should 

open new doors in characterizing this class of enzymes. Moreover, the β-ketoacyl-ACP 

substrates could be used as chemical probes to explore and design inhibitors for 

therapeutically important AHL synthases and several uncharacterized enzymes that 

impacts human health, such as -ketoacyl-ACP reductase in fatty acid biosynthesis, 

polyketide synthase in polyketide synthesis which are targets for antimicrobial, 

antimalarial, and anti-cancer drugs. 
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NMR Spectra 

 

 
Figure A1. 1H NMR of 2-furanacetyl-succinimide ester in CDCl3 at 300 MHz.  
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Figure A2. 13C NMR of 2-furanacetyl-succinimide ester in CDCl3 at 300 MHz.  
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Figure A3. COSY of 2-furanacetyl-succinimide ester in CDCl3 at 300 MHz.  
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Figure A4. 1H NMR of 2-tetrahydrofuranacetyl-succinimide ester in CDCl3 at 

600 MHz. 
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Figure A5. 13C NMR of 2-tetrahydrofuranacetyl-succinimide ester in CDCl3 at 

600 MHz.  
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Figure A6. COSY of 2-tetrahydrofuranacetyl-succinimide ester in CDCl3 at 600 

MHz.  
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Figure A7. 1H NMR of 2-thiopheneacetyl-succinimide ester in CDCl3 at 300 

MHz. 
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Figure A8. 13C NMR of 2-thiopheneacetyl-succinimide ester in CDCl3 at 300 

MHz. 
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Figure A9. COSY of 2-thiopheneacetyl-succinimide ester in CDCl3 at 300 MHz. 
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Figure A10. 1H NMR of 2-furoyl-succinimide ester in CDCl3 at 600 MHz. 
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Figure A11. 13C NMR of 2-furoyl-succinimide ester in CDCl3 at 600 MHz.  
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Figure A12. COSY of 2-furoyl-succinimide ester in CDCl3 at 600 MHz.  
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Figure A13. 1H NMR of 2-pyridylacetyl-succinimide ester in CDCl3 at 600 MHz. 
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Figure A14. 13C NMR of 2-pyridylacetyl-succinimide ester in CDCl3 at 600 MHz.  
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Figure A15. 1H NMR of 2,2ˊ-dimethyl-3-oxohexanoyl-succinimide ester in CDCl3 

at 600 MHz.  
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Figure A16. 13C NMR of 2,2ˊ-dimethyl-3-oxohexanoyl-succinimide ester in 

CDCl3 at 600 MHz. 
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Figure A17. COSY of 2,2ˊ-dimethyl-3-oxohexanoyl-succinimide ester in CDCl3 at 

600 MHz. 
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Figure A18. HSQC of 2,2ˊ-dimethyl-3-oxohexanoyl-succinimide ester in CDCl3 at 

600 MHz. 
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Figure A19. 1H NMR of 4-oxohexanoyl-succinimide ester in CDCl3 at 600 MHz. 

.  
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Figure A20. 13C NMR of 4-oxohexanoyl-succinimide ester in CDCl3 at 600 MHz.  



138 

 

 

 

 
Figure A21. COSY of 4-oxohexanoyl-succinimide ester in CDCl3 at 600 MHz. 
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Figure A22. 1H NMR of 5-oxohexanoyl-succinimide ester in CDCl3 at 600 MHz. 
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Figure A23. 13C NMR of 5-oxohexanoyl-succinimide ester in CDCl3 at 600 MHz.  
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Figure A24. HSQC of 5-oxohexanoyl-succinimide ester in CDCl3 at 600 MHz.  
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Figure A25. 1H NMR of 4-oxooctanoyl-succinimide ester in CDCl3 at 300 MHz. 
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Figure A26. 13C NMR of 4-oxooctanoyl-succinimide ester in CDCl3 at 300 MHz.  
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Figure A27. COSY of 4-oxooctanoyl-succinimide ester in CDCl3 at 300 MHz.  
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Figure A28. 1H NMR of 5-oxooctanoyl-succinimide ester in CDCl3 at 600 MHz. 
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Figure A29. 13C NMR of 5-oxooctanoyl-succinimide ester in CDCl3 at 600 MHz. 
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Figure A30. COSY of 5-oxooctanoyl-succinimide ester in CDCl3 at 600 MHz. 
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Figure A31. 1H NMR of ethyl-2,2ʹ-dimethyl-3-oxohexanoate in CDCl3 at 600 

MHz. 
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Figure A32. DEPT-135 NMR of ethyl-2,2ʹ-dimethyl-3-oxohexanoate in CDCl3 at 

600 MHz.  
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Figure A33. 1H NMR of 2,2ʹ-dimethyl-3-oxohexanoic acid in MeOD-d4 at 300 

MHz. 
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Figure A34. 13C NMR of 2,2ʹ-dimethyl-3-oxohexanoic acid in MeOD-d4 at 300 

MHz.  
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Figure A35. 1H NMR of 4-oxohexanoic acid in CDCl3 at 600 MHz. 
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Figure A36. 13C NMR of 4-oxohexanoic acid in CDCl3 at 600 MHz.  
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Figure A37. 1H NMR of 5-oxohexanoic acid in CDCl3 at 300 MHz. 
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Figure A38. 13C NMR of 5-oxohexanoic acid in CDCl3 at 300 MHz. 
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Figure A39. COSY of 5-oxohexanoic acid in CDCl3 at 300 MHz. 
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Figure A40. 1H NMR of 4-oxooctanoic acid in CDCl3 at 300 MHz. 
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Figure A41. 13C NMR of 4-oxooctanoic acid in CDCl3 at 300 MHz.  
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Figure A42. COSY of 4-oxooctanoic acid in CDCl3 at 300 MHz. 
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Figure A43. 1H NMR of 5-oxooctanoic acid in CDCl3 at 600 MHz. 
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Figure A44. 13C NMR of 5-oxooctanoic acid in CDCl3 at 600 MHz.  
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Figure A45. COSY of 5-oxooctanoic acid in CDCl3 at 600 MHz.  

 

 



163 

 

 

 

 
Figure A46. 1H NMR of hexyl-Meldrum’s acid in CDCl3 at 300 MHz.  
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Figure A47. COSY of hexyl-Meldrum’s acid in CDCl3 at 300 MHz.  
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Figure A48. 1H NMR of methyl-3-oxooctanoate in CDCl3 at 300 MHz. 
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Figure A49. 13C NMR of methyl-3-oxooctanoate in CDCl3 at 300 MHz. 
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Figure A50. COSY of methyl-3-oxooctanoate in CDCl3 at 300 MHz. 
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Figure A51. 1H NMR of methyl-2,2-dimethyl-3-oxooctanoate in CDCl3 at 600 

MHz. 
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Figure A52. 13C NMR of methyl-2,2-dimethyl-3-oxooctanoate in CDCl3 at 600 

MHz. 
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Figure A53. COSY of methyl-2,2-dimethyl-3-oxooctanoate in CDCl3 at 600 MHz. 
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Figure A54. DEPT-135 NMR of methyl-2,2-dimethyl-3-oxooctanoate in CDCl3 at 

600 MHz. 
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Figure A55. 1H NMR of 2,2-dimethyl-3-oxooctanoic acid in CDCl3 at 600 MHz. 
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Figure A56. 13C NMR of 2,2-dimethyl-3-oxooctanoic acid in CDCl3 at 600 MHz. 
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Figure A57. COSY of 2,2-dimethyl-3-oxooctanoic acid in CDCl3 at 600 MHz. 
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Figure A58. 1H NMR of 2,2-dimethyl-3-oxooctanoyl-succinimide ester in CDCl3 

at 600 MHz. 
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Figure A59. 13C NMR of 2,2-dimethyl-3-oxooctanoyl-succinimide ester in CDCl3 

at 600 MHz. 
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Figure A60. COSY of 2,2-dimethyl-3-oxooctanoyl-succinimide ester in CDCl3 at 

600 MHz. 
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Mass Spectrometry Data 

 

 
Figure B1. Mass spectrum of 2-furanacetyl-succinimide ester. 

.  

 

Figure B2. Mass spectrum of 2-tetrahydrofuranacetyl-succinimide ester. 
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Figure B3. Mass spectrum of 2-thiopheneacetyl-succinimide ester. 

 
Figure B4. Mass spectrum of 2-pyridylacetyl-succinimide ester. 
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Figure B5. Mass spectrum of 2-furoyl-succinimide ester. 

 
Figure B6. Mass spectrum of 4-oxohexanoyl-succinimide ester. 
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Figure B7. Mass spectrum of 5-oxohexanoyl-succinimide ester. 

 
Figure B8. Mass spectrum of 2,2ʹ-dimethyl-3-oxohexanoyl-succinimide ester. 
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Figure B9. Mass spectrum of 4-oxooctanoyl-succinimide ester. 

 
Figure B10. Mass spectrum of 5-oxooctanoyl-succinimide ester. 
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Figure B11. Mass spectrum of 2,2ˊ-dimethyl-3oxooctanoyl-succinimide ester. 

 
Figure B12. Mass spectrum of 2-furanacetyl-CoA. 
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Figure B13. Mass spectrum of 2-tetrahydrofuranacetyl-CoA. 

 
Figure B14. Mass spectrum of 2-thiophenacetyl-CoA. 
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Figure B15. Mass spectrum of 2-pyridylacetyl-CoA. 

 
Figure B16. Mass spectrum of 2-furoyl-CoA. 
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Figure B17. Mass spectrum of 4-oxohexanoyl-CoA. 

 
Figure B18. Mass spectrum of 5-oxohexanoyl-CoA. 
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Figure B19. Mass spectrum of 2,2ʹ-dimethyl-3-oxohexanoyl-CoA. 

 
Figure B20. Mass spectrum of 4-oxooctanoyl-CoA. 



189 

 

 

 

 
Figure B21. Mass spectrum of 5-oxooctanoyl-CoA. 

 
Figure B22. Mass spectrum of 2,2ʹ-dimethyl-3-oxooctanoyl-CoA. 
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Figure B23. Mass spectrum of 2-benzofuranacetyl-CoA. 

 
Figure B24. Mass spectrum of 2-furanacetyl-ACP. 
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Figure B25. Mass spectrum of 2-tetrahydrofuranacetyl-ACP. 

 
Figure B26. Mass spectrum of 2-thiopheneacetyl-ACP. 
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Figure B27. Mass spectrum of 2-pyridylacetyl-ACP. 

 
Figure B28. Mass spectrum of 2-furoyl-ACP. 
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Figure B29. Mass spectrum of 4-oxohexanoyl-ACP.  

 
Figure B30. Mass spectrum of 5-oxohexanoyl-ACP. 
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Figure B31. Mass spectrum of 2,2ˊ-dimethyl-3-oxohexanoyl-ACP. 

 
Figure B32. Mass spectrum of 4-oxooctanoyl-ACP. 
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Figure B33. Mass spectrum of 5-oxooctanoyl-ACP. 

 
Figure B34. Mass spectrum of decanoyl-ACP. 
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Figure B35. Mass spectrum of hexanoyl-ACP. 

 

 
Figure B36. Mass spectrum of octanoyl-ACP. 
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Figure B37. Mass spectrum of 2,2ˊ-dimethyl-3-oxoC8-ACP. 

 

 
Figure B38. Mass spectrum of 2-benzofuranacetyl-ACP. 
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Figure B39. Mass spectrum of apo-ACP. 
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Enzyme-kinetic data 

 

Figure C1. Substrate-velocity curve for EsaI T140A with C6-ACP following (left) 

lactonization and (right) acylation. 
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Figure C2. Substrate-velocity curves of alternative 3-oxoacyl-ACP substrates in 

EsaI-catalyzed reaction by following lactonization assay. 
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Figure C3. Substrate-velocity curves of alternative 3-oxoacyl-ACP substrates in 

EsaI-catalyzed reaction by following acylation assay. 
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Figure C4. Substrate-velocity curves of alternative 3-oxoacyl-ACP substrates in 

YspI-catalyzed reaction by following lactonization assay. 
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Figure C5. Substrate-velocity curves of alternative 3-oxoacyl-ACP substrates in 

YspI-catalyzed reaction by following acylation assay. 
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Figure C6. Substrate-velocity curve of 2-thiopheneacetyl-ACP in EsaI-catalyzed 

reaction following lactonization. SAM and EsaI concentrations were fixed at 50 M and 

1.02 M, respectively. Kinetic parameters were summarized in table 3.  

        

Figure C7. Determination of 𝐊𝐦
𝐒𝐀𝐌

  in EsaI-catalyzed reaction. (Left) 2-

Thiopheneacetyl-ACP and EsaI concentrations were fixed at 40 M and 1.01 M, 

respectively. The value of  𝐊𝐦
𝐒𝐀𝐌 was 36.09  4.69 M, kcat was 0.796  0.029 min-1, kcat/Km 

was 0.0221  0.0029 M-1min-1. (Right) 2-Furanacetyl-ACP and EsaI concentrations were 

fixed at 103 M and 1.01 M, respectively. The value of  𝐊𝐦
𝐒𝐀𝐌 was 111.3  10.7 M, kcat 

was 3.64  0.09 min-1, kcat/Km was 0.0327  0.0032 M-1min-1. 
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Figure C8. Substrate-velocity curve of 2-thiopheneacetyl-ACP in YspI-catalyzed 

reaction following lactonization. SAM and YspI concentrations were fixed at 50 M and 

1 M, respectively. Kinetic parameters were summarized in table 5.  

                                                
Figure C9. Determination of 𝐊𝐦

𝐒𝐀𝐌  in YspI-catalyzed reaction. (Left) 2-

Thiopheneacetyl-ACP and YspI concentrations were fixed at 40 M and 1.04 M, 

respectively. The value of  𝐊𝐦
𝐒𝐀𝐌 was 23.52  4.03 M, kcat was 0.764  0.029 min-1, 

kcat/Km was 0.0325  0.0057 M-1min-1. (Right) 2-Benzofuranacetyl-ACP and YspI 

concentrations were fixed at 80 M and 1.03 M, respectively. The value of  𝐊𝐦
𝐒𝐀𝐌 was 

75.98  17.49 M, kcat was 3.21  0.18 min-1, kcat/Km was 0.0423  0.0100 M-1min-1. 


