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ABSTRACT 

Link Prediction is the problem of inferring new relationships among nodes in a 

network that can occur in the near future. Classical approaches mainly consider 

neighborhood structure similarity when linking nodes. However, we may also want to 

take into account whether the two nodes we are going to link will benefit from that by 

having an active interaction over time. For instance, it is better to link two nodes 𝑢 and 𝑢 

if we know that these two nodes will interact in the social network in the future, rather 

than suggesting 𝑢, who may never interact with 𝑢. Thus, the longer the interaction is 

estimated to last, i.e., persistent interactions, the higher the priority is for connecting the 

two nodes.  

This current thesis focuses on the problem of predicting how long two nodes will 

interact in a network by identifying potential pairs of nodes (𝑢,𝑢) that are not connected, 

yet show some Indirect Interaction. “Indirect Interaction” means that there is a particular 

action involving both the nodes depending on the type of network. For example, in social 

networks such as Facebook, there are users that are not friends but interact with other 

user’s wall posts. On the Wikipedia hyperlink network, it happens when readers navigate 

from page 𝑢 to page 𝑢 through the search box (on the top right corner of page 𝑢), and 

there is no explicit link on page 𝑢 to 𝑢. This research explores cases that involved 

multiple interactions between 𝑢 and 𝑢 during an observational time interval [𝑢𝑢,𝑢𝑢). 

Two supervised learning approaches are proposed for the problem. Given a set of 

network-based predictors, the basic approach consists of learning a binary classifier to 
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predict whether or not an observed Indirect Interaction will last in the future. The second 

and more fine-grained approach consists of estimating how long the interaction will last 

by modeling the problem via Survival Analysis or as a Regression task. Once the 

duration is estimated, this information is leveraged for the Link Prediction task. 

Experiments were performed on the longitudinal Facebook network and wall 

interactions dataset, and Wikipedia Clickstream dataset to test this approach of predicting 

the Duration of Interaction and Link Prediction. Based on the experiments conducted, this 

study’s results show that the fine-grained approach performs the best with an AUROC of 

85.4% on Facebook and 77% on Wikipedia for Link Prediction. Moreover, this approach 

beats a Link Prediction model that does not consider the Duration of Interaction and is 

based only on network properties, and that performs with an AUROC of 0.80 and 0.68 on 

Facebook and Wikipedia, respectively.  
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CHAPTER 1: INTRODUCTION 

Online social networks (OSN) have become popular among various age cohorts. 

People use them for not only socializing but also to gain insights on different day-to-day 

aspects, such as educational information, following the latest gossip, or interacting with 

peers around the clock. Some of these interactions can be Direct or Indirect. Direct 

Interaction is when a person/node exchanges information directly either through 

messages, emails, or calls, while the Indirect Interaction can be in many ways. People 

can have a third-party moderator to pass the word to connected family members and 

friends, or it can be strangers following up on a group conversation, and they help shape 

the social networks by creating new connections. While text messages and calls are 

traditional ways to interact, there are various forms of interactions on the Internet like 

Facebook’s wall posts, comments, likes, and shares, or Twitter’s tweets and re-tweets.  

                                       
 

Figure 1. Indirect Interaction 
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By Indirect Interaction between nodes 𝑢 and 𝑢, there is a particular action 

depending on the type of network under study that involves both u and v (multiple times) 

during a given time interval [𝑢𝑢,𝑢𝑢). This study’s interest is in the Indirect Interactions 

between nodes that are not connected. Examples of Indirect Interactions are:  

a) On social networks such as Facebook where users can interact with wall posts, 

comments, group conversations and information-sharing with users that are not on 

their friends’ list.  

b) On Twitter, users can re-tweet or reply to tweets written by users who are not in 

their connections.  

c) On the Wikipedia hyperlink network, readers can navigate from page 𝑢 to page 𝑢 

through the search box (on the top right corner of page 𝑢) in case there is no 

explicit link on page 𝑢 to 𝑢. Some of these searches are casual and occasional, 

some last for a while because of current trending associations of topics, while 

others suggest the demand of a physical link from page 𝑢 to page 𝑢.  

d) On the Amazon co-purchased products network, we can discover future co-

purchased products by looking at users’ search logs that may suggest examples of 

product recommendations: people who purchased (or searched for) product 𝑢 may 

also be interested in product 𝑢. Moreover, when considering a pair of products, if 

there are a relatively higher number of users purchasing those two products, then 

it will be helpful to allocate them in some warehouses.  

e) On consumer review websites such as Yelp, people can write and read reviews on 

various products or businesses. As social networking websites, people make 
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connections with others and share information. We can identify Indirect 

Interactions in such networks based on their common reviewed products and predict 

users’ future connections (friendships).  

Indirect Interactions can be categorized as Node-Dependent and Node-

Independent. Node-Dependent Interactions are those interactions that the nodes in the 

network are responsible for. For instance, on Facebook or Twitter, people create user 

profiles and use them to connect and communicate with other people. Node-Independent 

Interactions are between nodes in the network that happen because of external entities 

that use the network. For instance, on Wikipedia, pages are the nodes in the network and 

hyperlinks are the edges. People use these hyperlinks to navigate from one page to 

another. Amazon is another example of a network with Node- Independent Interactions, 

while Yelp is an example of a network with Node-Dependent Interactions.  
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Figure 2.  Indirect Interactions on Wikipedia. Source: 

https://en.wikipedia.org/wiki/Bollywood  

The Indirect Interaction between nodes and during the time interval [𝑢𝑢,𝑢𝑢) is an 

indication that they may have something in common and is convenient to link them. 

However, not all Indirect Interactions are useful. Casual Indirect Interactions are irregular 

and may be “one-time” interactions among different nodes. For instance, on Wikipedia, 

during February 2016, when Donald Trump was nominated as Republican nominee, users 

navigated from his Wikipedia page to various other Wikipedia pages like Trump 

University, Hollywood Walk of Fame, and Hillary Clinton. Though the number of 

interactions between those pages was in the thousands, it was a casual interaction as it did 

not continue after that period. 

Persistent Indirect Interactions are indirect interactions that are continuous in a 

given time interval with interactivity always greater than a minimum threshold 

irrespective of the presence of an edge between them.  

Persistent Indirect Interactions: Let (𝑢,𝑢) be a pair of nodes having an Indirect 

Interaction during the time interval [𝑢𝑢,𝑢𝑢). This Indirect Interaction is persistent during 

the time interval [𝑢𝑢,𝑢𝑢], if for each time 𝑢 ∈ [𝑢𝑢,𝑢𝑢], the number of Indirect 

Interactions between nodes 𝑢 and 𝑢 at that time 𝑢 is always greater than or equal to a 

threshold 𝑢. 

https://en.wikipedia.org/wiki/Bollywood
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Figure 3. Persistent Indirect Interactions.  

Persistent Interactions are the interactions that continue irrespective of an edge 

between them. Predicting connections can also be termed as Link Prediction but is 

different in a few aspects. Classical Link Prediction may or may not follow the 

interactivity between the pages, but it predicts future interactivity based on similarity. 

The scenarios below explain the Link Prediction on Wikipedia.  

On Wikipedia, there were Indirect Interactions between two pages Doctor Strange 

(film), and Baron Mordo in February 2016 and users continued to navigate between these 

two pages even until April 2016 with a threshold always higher than 10. Later on, in 

April 2016, an edge was created from Doctor Strange (film) to Baron Mordo.  

Wikipedia is a vast network of new users and new links are added daily [14]. For 

such a network, editors manually check which of the Wikipedia pages need to have 

hyperlinks between them based on page content and thus add those new links to those 

sites. However, these hyperlinks are subject to change in the future. For example, there 

are links that are deleted after just two days of creation while some remain active. While 

some links are still unchanged, some are changed every day (like the Main_page [2] of 

Wikipedia where its content is updated every day). Oftentimes, there are a few links that 

exist for a long time, and they might never be used. Some of the existing statistics were 

given in [12] stating that out of 800,000 links added to the site in February, 66% of them 

were not even clicked or used once. 

Also, even if the editor chooses particular hyperlinks, there is no guarantee that 

the users will find it useful, or click on that link to navigate between the pages. For 

example, there was an internet viral sticker ‘Trash Dove’ during February 2017. It was an 
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ugly purple dove picture created as a sticker on Facebook. A Wikipedia page for ‘Trash 

Dove’ was created on February 16, 2017. Up until February 19, 2017, this Wikipedia 

page had a link to ‘Anthropology’ but was later removed. The ‘Trash Dove’ might belong 

to a cultural anthropology category as being relevant. It was once stated by Thailand’s 

newspaper Khao Sod as ‘A Cultural Joke’ but there is no valid explanation to say that 

users navigate to ‘Anthropology’ from ‘Trash Dove.’ For an internet meme, it can be 

irrelevant and hence may have been removed. So, even though editors might choose the 

hyperlinks for a particular time, it might not be used or clicked as much as the relevance 

suggests. Also, there is no specific notion of the creation of hyperlinks that can be 

considered valid for a long time. All the hyperlinks created have a single purpose, to be 

useful for internet users to navigate between pages. Also, considering the number of hit 

counts from one page to another does not add weight to the probability of creation of the 

link between those two pages. The best example to support this statement is Wikipedia’s 

main page, which is a recursively changing article that has new content modified and 

added to it daily. This page’s sections are updated every day. However, when we 

considered the Clickstream dataset [3] from February 2016, there were hundreds of hits 

from this page or to this page from a random article. It was mostly because users might 

have navigated to Wikipedia’s main page first and then to their topic of interest. A higher 

number of hits between a pair of pages does not necessarily prove that there has to be a 

hyperlink created between these pages. 
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Figure 4. Box plot of hits concerning classes 𝒚 and 𝒏. 

 
Figure 5. Histogram of hits density concerning classes 𝒚 and 𝒏. 

The experimental results above also prove the same where class y define the 

existence of interactivity and class n define non-existence of interactivity. 

On social networking sites like Facebook, Twitter, or Instagram, users are often 

provided with suggestions to connect, which is most likely based on their network. For 

example, on Facebook, user 𝑢 will get friendship suggestions from user 𝑢 if user 𝑢: a) 

happens to be new to Facebook and has a mutual friend with user 𝑢; b) belong to the 

same sub-network as user 𝑢(workplace, same neighborhood, education at same school) 

or has a relatively higher number of mutual friends. Similar suggestions are also given on 
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other social networking sites like Twitter and Instagram. For all these suggestions, the 

only assumption is that they may know each other or may become future acquaintances. 

However, there is no guarantee that these users will have persistent interactions or no 

interaction at all. In such cases, these connections may not be useful. 

In this thesis, when predicting links between a pair of nodes, priority is given to 

those links that will be useful in the future. On any social networking platform, it is better 

to recommend user 𝑢 to become friends with user 𝑢 if we know that these two nodes will 

interact in the future, rather than suggesting 𝑢 ́ as a friend for 𝑢 even after we know that 𝑢 

and 𝑢 ́ will never interact. Thus, the longer the interaction is estimated to last between a 

pair of nodes; the higher is the priority for recommending a link between them. 

Predicting connections in this study is different from the classical Link Prediction in the 

following ways: 

I. Link Prediction aspects to predict links mostly by analyzing semantic similarities 

among the nodes. Whereas, the current study focuses on predicting connections 

based on Persistent Indirect Interactions. 

II. Link Prediction focuses on growing the network by suggesting missing edges. 

However, it can sometimes lead to over-crowding by unused edges. This study 

focuses on predicting only such connections that are most likely to be useful in 

the future. 

The motto of edges/links/connections on the Internet is to help the user with better 

navigation and interaction. However, if the suggested connections do not suffice the 

requirement, there is no point in clouding the network with more less-used edges. 

Identifying the potential connections can be tricky in the way that hit counts on 
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Wikipedia do not explain. Hence, the problem statement and the approach is to identify 

such Persistent Indirect Interactions and predict connections. 

Two supervised learning approaches are proposed for the problem of predicting 

the Duration of Interactions. Given a set of network-based predictors, the basic approach 

consists of learning a binary classifier to predict whether or not an observed Indirect 

Interaction will last in the future. The second and more fine-grained approach consists of 

estimating how long the interaction will last by modeling the problem via Survival 

Analysis or as a Regression task. Once the duration is estimated, this information is 

leveraged for the Link Prediction problem. 

An extensive experimental evaluation was performed with two longitudinal 

datasets, namely Facebook network and wall interactions, and Wikipedia Clickstream. 

This approach was tested to predict the Duration of Indirect Interaction and its 

application to the Link Prediction task. Based on all the experiments, the results show 

that the more fine-grained approach (Survival Analysis on Facebook and Regression 

model on Wikipedia) has maximum improvement for predicting the Duration of Indirect 

Interactions and achieved an AUROC of 0.85 for Facebook and 0.77 on Wikipedia for 

Link Prediction. Moreover, this approach beats a Link Prediction model that does not 

consider the duration of interaction, is based only on network properties, and performs 

with an AUROC of 0.80 and 0.68 on Facebook and Wikipedia, respectively. 

The remainder of this study is organized as follows. Chapter two details the 

related work. Chapter three explains the datasets and how ground truth was estimated on 

those datasets. Chapter four discusses the methods used. Chapter five provides details on 

the proposed approach. Chapter six discusses the various predictors used. Chapter seven 
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is about all the experiments we performed, and Chapter eight concludes with 

recommendations for future work. 



11 

 

 

 

CHAPTER 2: RELATED WORK 

2.1 Link Prediction 

Link Prediction is a problem of predicting connections between two nodes in a 

network. This problem can be applied to different types of networks [21,22,23,24,25,53]. 

For comparatively small networks, it is possible to determine the links and add them to 

the network manually. However, due to the complexity and size of social networks, it is 

important to automate the process to reduce human intervention. Some of the notable 

types of approaches to tackle the Link Prediction problem are discussed next. 

Liben-Nowell and Kleinberg [6] point out that social networks are highly 

dynamic objects, new edges are added to the network along with the removal of some old 

(or) unused edges, from time to time. Their proposed work for the Link Prediction 

problem uses a graph structure on five co-authorship networks available from the physics 

e-Print arXiv, www.arxiv.org. Some of the features introduced are the graph’s distance-

based Common Neighbors, Jaccard’s coefficient, and Adamic/Adar features. One of the 

main problems of having these features on their dataset is that the pages of similar 

categories might have more neighbors in common, and hence have more leniency over 

predicting a hyperlink between those pages. While pages with a different set of neighbors 

belong to different categories, but are somehow related, might not have the same 

probabilities as previous pages. Similar work has been conducted by Hasan et al. [16] 

where a dataset of authors and their papers [28] was chosen. They attempted to predict 

which set of authors are most likely to publish a technical paper together in the near 
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future. Though the size of the dataset was small and it was during that time when the 

Link Prediction Problem was not yet addressed directly, they were able to explore the 

possible network and graph-based features. Their insights to those features are still used 

as baselines for most of the recent works. They address topological features like Shortest 

Distance, Clustering Index, some other Proximity features based on keyword match 

count, and Aggregated features like sum of neighbors, and the count of commonly 

published papers. Also, they give insight into the nature of different classifiers’ 

performances where SVM tend to have a good understanding and prediction over other 

classifiers. 

Considering a network as a graph with nodes and edges, Grover, A., & Leskovec, 

J. [15] created an algorithm, ‘Node2Vec’, on multi-label classification and Link 

Prediction problem that can be used on various real-world networks like Facebook or 

Protein-protein Interactions. It is a semi-supervised algorithm for scalable feature 

learning in networks. It is an optimized graph-based objective function to preserve 

neighborhood using random walks. Using the information from their algorithm, it is 

possible to understand and predict most probable labels of nodes in a network that are 

useful for Link Prediction. Depending on varying parameters in using Node2Vec (like the 

number of walks per node, context size, or the fraction of missing edges), it is possible to 

estimate node and edge features for any network in any domain. This algorithm can even 

be applied to an incomplete network with missing edges. 

2.1.a Link Prediction on Wikipedia  

On Wikipedia, plenty of work has been done on the Link Prediction problem 

which is close to the idea of predicting connections between Indirect Interactions. 
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However, Link Prediction does not entirely focus on Indirect Interactions; it involves 

other factors that can be helpful to predict future interactivity. There are many state-of-

the-art works published based on the Link Prediction task. Some of the interesting related 

works on Wikipedia are discussed below. 

Adafre et al. [5] proposed an approach to find missing links in the network by 

considering Wikipedia corpus and its underlying abstract words. They clustered all the 

Wikipedia pages to rank them by using LTRank and Lucene algorithms on the existing 

links to find similar pages. They stated that similar pages should have similar hyperlinks. 

They extracted anchor text from their related pages and predicted missing out-links in 

those similar pages. They then evaluated those missing links manually. Similar work was 

done by Noraset et al. [9] by considering text from Wikipedia pages. They proposed 

‘3W’ to use semantic information of those pages and identify words/concepts to 

determine links to their referent pages. 

Another study was conducted by West et al. [10] where they used human 

navigation logs available from The Wiki Game [30] (a collection of five different 

challenges like least clicks, speed race, five clicks [or fewer] to Jesus, no United States 

and six degrees of Wikipedia) and Wikispeedia [31,32] to identify missing links on 

Wikipedia. The Wiki Game challenges refer to various ways of reaching a page t by 

starting at a page s and using only hyperlinks on page s to navigate. Wikispeedia is a 

similar game to reach a random page t from a random page s with minimum path length. 

The user needs to click only on page links/hyperlinks on a reduced and static snapshot of 

Wikipedia. West et al. rated the source candidates based on relatedness by using the 

Milne Witten measure [8] and path frequency using singular value-decomposition to 
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obtain link candidates for the path. Based on those ranks, they were able to predict the top 

K pages for Link Prediction. Their evaluation was based on human raters available from 

Amazon Mechanical Turk (a platform where researchers post forms containing 

questionnaire and participants get paid for each form response they give). Another such 

work by West et al. [11] is based on dimensionality reduction where they created an 

adjacency matrix based on out-links from a page 𝑢 to page 𝑢. They used principal 

component analysis on that matrix to determine which of those two pages should be 

linked. Their system was also evaluated using human raters’ responses on Amazon 

Mechanical Turk. 

Paranjape et al. [12] constructed trees from the server logs of Wikipedia. These 

server logs consisted of information about each HTTP request from a user. The logs were 

grouped by user id, and most recent requests to a page were selected. On this available 

dataset, they used search proportion, path propagation, random walks and a combination 

of search and path propagation methods to identify potential link candidates. The number 

of page hits was the main component for three objective functions to list top K pairs of 

pages to be considered for a link between them. They tested their unsupervised results 

over editors’ choice of newly added links in the following month. Their results showed 

that most of the pairs predicted matched the editors’ choice of hyperlinks. This work is 

similar to the approach in this current thesis but is different in the following aspects: 

I. The dataset for West et al. is the server logs obtained from Wikipedia and by 

constructing heuristic trees to identify the potential link candidates. The dataset 

for this current work is provided by Wikipedia Clickstream consisting of counts 
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of pairs from request logs. However, the pairs with counts less than ten are not 

included. 

II. Their approach was to identify the top K pairs like (s, t) to place a link based on 

click-through rate which is the measure of times that users click on t given that 

they are in s. This current study’s approach focuses on determining Persistent 

Indirect Interactions and suggest links based on users’ usage. Also, it does not 

solely rely on hit count but also on various other features as it was experimentally 

proven that hit counts do not effectively address a solution to the current problem. 

III. They used Search proportion, Path proportion, and Random walks to identify 

potential pairs. This current study’s approach focuses only on the Search-based 

proportion, i.e. other pairs (see section 3.1) to determine Indirect Interactions. 

IV. Their work was validated with editors’ choice of links in the following months. 

This current study’s approach is validated against the users’ choice of Persistent 

Interactions irrespective of a link. 

2.2 Strength of Relationship 

Link Strength Prediction is a problem close to Link Prediction and is defined as 

given an existing link between two nodes, predict the weight or strength of that link. 

While some works focus on predicting the number of interactions between two linked 

nodes [19, 38], others attempt to predict the type of the relationship (i.e., weak or strong 

tie [37,39,49,51,52,55], or degree of likes/dislikes [20, 54, 56, 67]). For any connection, it 

is important to have good relationship strength as it determines how often the nodes in 

that connection will interact or how important their connection is in the network. 

Whereas Link Prediction determines which nodes should have a connection between 
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them because of the similarities among them. 

There have been some interesting works published on estimating the strength of a 

relationship [19,35,36,37,38] in social networks like Twitter, Facebook, and Orkut. While 

some of the works focused on interaction, others focused on the connected network to 

identify string ties. Kumar et al.’s [20] study emphasizes on predicting edge weights to 

demonstrate the strength of their relationship. Zignani et al.’s [19] study was conducted 

to predict the strength of new links on the Facebook dataset. They re-used a dataset from 

[29] and tried to predict the strength of newly connected Facebook users. Their approach 

was to identify the strength of connection at the time of creation without the knowledge 

of prior interactions. They used temporal features to understand the interactivity. 

Wilson et al. [36] addressed the issue of whether all the connections/links are 

valid indicators of real interactions among the users in a social network by performing 

experiments on 10 million crawled Facebook user profiles. They observed that the 

interactivity on Facebook skewed towards a smaller portion of users’ friendship networks 

raising doubt as to whether or not all links imply equal friendship relationships. They also 

suggested that applications in social networks should consider interaction activity rather 

than mere connections. 

Kahanda et al.’s [37] experimental findings indicate that it is necessary to 

consider transactional events such as file sharing, wall posts, photograph tags, and 

messages as they are very useful for predicting link strength among the users in the social 

network. They also stated that while considering friendship, wall, picture and group 

attributes for the Facebook dataset, wall interactions had an utmost impact on their 

model’s performance. Kamath et al.’s [38] study aimed at predicting future interactions in 
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the Twitter network based on historical interactivity. Their approach is to estimate the 

relationship strength between users [49, 50, 54, 55] based on direct interactions. Their 

framework included various graph-based, user-based and interaction-based features to fit 

their model. 

Upon considering all the above-stated works, it is evident that for any social 

network, it is necessary to consider the interactivity to understand and perform any type 

of prediction tasks accurately and thus validating this current study’s approach. 

2.3 Survival Analysis and Regression 

Survival Analysis is a statistical measure to determine the probability that an 

event will occur. This current study estimates the duration of interaction between a pair 

of indirectly interacting nodes by using Survival Analysis to predict individual survival 

probabilities for an event (they will stop interacting), i.e., the probability that they will 

not stop interacting in the given period. Survival Analysis [40,57,64] (see section 4.2) is 

not only used in the medical domain to predict the probabilities for the occurrence of an 

event (i.e., chances or survival, estimated death probabilities), but also in generalizing an 

event and estimating its probability to occur. For example, Dave, V. S et al. [42] used 

Survival Analysis for the Reciprocal Link Prediction problem (RLTP). They used a 

cocktail Algorithm [40], and two other statistical survival methods Accelerated Failure 

Time (AFT) and Buckley-James (BJ) models along with Regression models like 

RidgeReg, LassoReg, FFNN, and SVR. They used various Epinion (a consumer review 

website), MC-Email and Enron datasets (emailing websites) to determine how long it 

would take to get a response to their requests. By using various survival models and 

regression models, they attempted to estimate the duration of a reciprocal response. 
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Rakesh et al. [62] and Li et al. [63] used Survival Analysis on a Crowdfunding 

projects list. Crowdfunding is a platform for people to seek donations for completion of a 

project. It is an open platform where people can donate to a project of their interest. They 

studied whether the goal for the crowdfunding project was met within the stipulated time 

or not. While Rakesh et al. [62] examined the duration of successful projects by using 

censored regression models, Li et al. [63] also included the failed projects by using 

various logistic distributions. 

Student retention rate is one of the major problems for a university. After 

completing a semester, the rate of students who return to the same university to begin the 

next semester is called student retention rate. Student retention rate is important for a 

university to be ranked higher than other universities in a nation and also to secure 

government released funds. Survival Analysis was used on such data by Murtaugh et al. 

[59] and Ameri et al. [64] to estimate the time of event occurrence, i.e., whether a student 

will drop out or not and if so, when will they drop out.  

The Internet provides us with many features. One such feature is advertisements. 

Using advertisements on a website attracts users to click on those links. User-clicking 

probability is the percentage of users who click on the ad with respect to the number of 

times the ad was displayed on the webpage. This is also called the click-through rate 

(CTR). Studies have been conducted to estimate the time it takes for a user to click [60] 

on the advertisement depending on the content of that website and displayed ads [61]. 
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CHAPTER 3: DATASETS 

This study used two datasets to test Wikipedia Clickstream and Facebook network 

with wall interactions. The former is an example of a Node-Independent interactions’ 

network while the latter is an example of a Node-Dependent interactions’ network. Both 

datasets are discussed next.  

3.1 Wikipedia Clickstream 

Wikipedia Clickstream is Wikimedia’s research project in progress. It is a dataset 

consisting of pairs consisting of (referrer page, resource page) obtained from the 

extracted request logs of Wikipedia. There are eight months of datasets released to date, 

starting from January 2015. Each dataset consists of four fields (Source: [1]). 

1. prev: the result of mapping the referrer URL (or) Page title if it is on Wikipedia. 

2. curr: the title of the webpage the client requested (or) Page title if it is on 

Wikipedia. 

3. type: describes (prev, curr) 

a. link: if the referrer and request are both Wikipedia pages and the referrer 

links to the request; 

b. external: if the referrer host is not en.wikipedia.org; 

c. other: if the referrer and request are both Wikipedia pages but the referrer 

does not link to the request. This can happen when clients search or spoof 

their referer. 
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4. n: the number of occurrences (greater than 10) of the (referrer, resource) pair. 

Considered as the number of hits from prev to curr.  

 Thus far, the following datasets have been released for the English version of 

Wikipedia: 

a) January 2015: This dataset includes columns of page ids for prev and curr. 

Redirects were not resolved. 

b) February 2015: This dataset includes columns of page ids for prev and curr. 

Redirects were not resolved. 

c) February 2016: More granular set of fixed values for hit counts. 

d) March 2016: More granular set of fixed values for hit counts.  

e) April 2016: There are three language versions of this dataset—Arabic, English, 

and Farsi. More granular set of fixed values is given in this dataset. 

f) August 2016, September 2016, January 2017: These are latest versions released. 

  For this study, February 2016, March 2016 and April 2016 are used as they are 

the longest consecutive months available in Clickstream. 

 We focused on the February 2016 dataset, and we build hyperlinks network by 

considering links from its type column. For nodes having Indirect Interactions, we 

considered the pairs having type as others. The Other type refers to a pair of pages from 

Wikipedia that do not have a direct link between them. This consists of a pair of pages 

that users tried to navigate through the search bar on the Wikipedia page. We considered 

these pairs as potential candidate pairs. To determine Persistent Indirect Interactions, it is 

essential to understand how long will they interact. 
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3.1.a Estimating ground truth about duration of interactions 

Table 1 gives an estimate of the total number of pairs for each type in each month. 

The Main_page is a recursively changing web page on Wikipedia. Though there are pairs 

with a considerably higher number of hit counts, they are considered as noise in the 

dataset. Hence, all the datasets are filtered to remove any occurrence of the Main_page 

among the pairs.  

Table 1: Wikipedia Clickstream Dataset Statistics of Row Count 

  February March April August 

Total 27M 25M 21M 24M 

Other 2.38M 2M 0.6M 0.67M 

External 10M 10M 8.7M 9.2M 

Link 14.62M 13M 12M 14M 

Other (Except 

Main_page) 
2.03M 1.7M 0.3M 0.37M 

          

Of all the potential candidate pairs, we estimated how many pairs stopped 

interacting in March 2016 and then how many pairs continued interacting in April 2016. 

Thus the statistics of these estimates, irrespective of a link in later months, are detailed in 

Table 2. For the classification problem of understanding how many pairs had Persistent 

Indirect Interactions, we classified these pairs into Positives and Negatives. Of all the 

potential candidate pairs, we narrowed down 190,124 pairs that had interactions 

continuing until April 2016 while the rest (1,638,796) did not exhibit Persistent 

Interactions. Also, the duration of these interactions is used in the Survival Analysis 

approach to estimate how long they would interact.  
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Table 2: Statistics of Computed Datasets 

 February 2016 (Potential candidate pairs) 2.03M 

Pairs that stopped interacting in February 536,380 

Pairs that stopped interacting in March 1,102,416 

Pairs that continued to interact in April 190,124 

Positives 190,124 

Negatives 1,638,796 

 

3.2 Facebook  

On Facebook, even though a pair of users may not be friends, they can still be part 

of a common activity. There are different types of interactions on Facebook through 

user’s wall posts, messages, comments, shares, and likes. Facebook wall interactions are 

when a user posts something on a friend’s timeline or vice versa that includes tagging. 

Interactions with the user’s friends list are Direct Interactions and interactions with public 

Facebook users or common friends with another user are called Indirect Interactions. The 

typical Indirect Interactions on Facebook include: 

a) A mutual friend tagging two or more unconnected Facebook users in a single 

post.  

b) Commenting on a common friend’s post. 

c) Joining a common Facebook group and participating together by commenting on 

a post.  

This idea can be studied using a dataset collected by Vishwanath et al. [29] which 

is available for public research. They crawled a New Orleans Facebook network and 
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obtained data from September 2006 to January 2009. All the nodes and their information 

are anonymized. This dataset consists of information about:  

a) Friendship (user1, user2, friendship creation timestamp) 

b) Wall interactions (user1, user2, posts’ timestamp); where user2 is posting on 

user1’s wall at a given timestamp. 

Based on the availability of information in the dataset, only the interactions 

through wall posts are included in this current study.  

3.2.a Estimating ground truth about duration of interactions 

Since there is no evident information about the direction of friendship in the 

dataset, an undirected graph network is assumed. We considered half-yearly timestamps 

to construct six datasets on friendship and a similar six datasets on wall interactions (i.e., 

2006b, 2007a, 2007b, 2008a, 2008b, 2009a where ‘a’ refers to the first six months in the 

year and ‘b’ refers to next six months in the year). To identify Indirect Interactions, we 

grouped the wall interactions in each dataset by timestamp and user. From the results of 

grouping, we formulated all possible pairs that were not connected yet, as the probable 

candidate pairs. We took the 2006b dataset as the starting time, and the candidate pairs in 

the dataset were considered as potential candidate pairs for this study. Table 3 shows the 

statistics on the row count in each dataset. 
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Table 3: Facebook Dataset Statistics of Row Counts 

Timestamps/Dataset

s 

Friendship Number of users Wall interactions 

2006b 37,641 9,108 217,714 

2007a 80,812 14,568 564,622 

2007b 123,220 22,732 789,354 

2008a 201,859 32,584 877,832 

2008b 456,553 53,578 1,874,332 

2009a 5,480 4,963 161,026 

 

With the similar approach followed for Wikipedia, we considered all the potential 

candidate pairs and determined which of those pairs stopped interacting or continued 

interacting in later months. The statistics of these results are given in Table 4. We 

considered the end time as the 2008b dataset and used the 2009a dataset for evaluation 

purposes. Hence, positives in this dataset for the classification approach are 88,155, and 

the negatives are 4,155.  

Table 4: Facebook Dataset Final Statistics for Wall Interactions 

Potential candidate pairs in 2006b  175,577 

Pairs that stopped interacting in 2006b 88,155 

Pairs that stopped interacting in 2007a 52,858 

Pairs that stopped interacting in 2007b 21,399 

Pairs that stopped interacting in 2008a 8,738 

Pairs that stopped interacting in 2008b 4,155 

Pairs that continued to interact in 2009a 271 
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CHAPTER 4: METHODS 

Two supervised learning approaches are proposed to identify candidate pairs for 

Link Prediction. Given a set of network-based predictors, the basic approach consists of 

learning a binary classifier to predict whether or not an observed Indirect Interaction will 

last in the future. The second and more fine-grained approach consists of estimating how 

long the interaction will last by modeling the problem via Survival Analysis or as a 

Regression task. An outline of these methods is presented below. 

4.1 Classification 

Classification in Machine Learning is the categorization of data into different 

classes. There are different approaches and algorithms on how to classify based on the 

type of datasets (for example, documents can be classified based on content similarity). 

In machine learning, there are two different types of classifications—binary classification 

and multi-class classifications. Binary classification is the problem of having only two 

classes generally named as ′0′ or ′1′. The class ′0′ can also be defined as the classification 

of data into negatives (i.e., data does not belong to the desired class) and hence the class 

′1′ can be defined as a classification of data into positives (i.e., data belongs to the desired 

class). Multi-class classification consists of more than two classes for the data to be 

classified. There are two learning approaches for classification: supervised and 

unsupervised. The supervised learning model is the task of learning on a labeled training 

data and predicting class on a labeled test data. Training data is most of the dataset and 

test data is a smaller part of the dataset. There are various evaluation metrics to check the 
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predictability. The unsupervised learning model uses only unlabeled data to find 

underlying structures in the dataset. There are no metrics to evaluate the unsupervised 

learning models. Some of the supervised algorithms that were used for this thesis are: 

4.1.a K-nearest Neighbors (KNN) 

K-nearest neighbors (KNN) is a classification algorithm that uses distance or 

similarity for prediction. It places the tuples in the space to which they are closest to. 

Classification is done based on the majority vote of each nearest neighbors. For each 

class, there will be a query point that acts as a point of reference to calculate closeness. 

For the first iteration, a random data point is chosen as the query point and then 

iteratively calculates query point until no other changes are possible. Figure 6 shows the 

distribution of points in a dataset with three classes and fifteen neighbors. The ‘weights’ 

parameter defines the value assigned on each data point. By default, it is ‘uniform’ and 

assigns equal weights to all data points. With weights= ‘distance,’ the classifier assigns 

weights inversely to each point regarding its distance to the query point.  

              
Figure 6. K-nearest Neighbor example. Source: http://scikit-

learn.org/stable/auto_examples/neighbors/plot_classification.html. 

 

 



27 

 

 

 

4.1.b Random Forests 

Random Forests is a type of an Ensemble model. The Ensemble model is a 

combination of more than one model. For example, in Figure 7, Classifier1 creates a 

decision boundary 1 to separate three shapes: circle, triangle, and square. It is not 

accurate but works fine. Classifier 2 creates another decision boundary 2 and Classifier 3 

creates decision boundary 3. An ensemble model formed by combining all the three 

classifiers gave an accurate decision boundary to separate shapes effectively.  

 
Figure 7. Pictorial Representation of how Ensemble works. Source: 

http://magizbox.com/training/machinelearning/site/ensemble/. 
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Random Forests is one such model that uses an ensemble of randomly generated 

trees on various subsets of the dataset. It uses averaging to improve accuracy and also 

controls the problem of over-fitting. 

4.1.c Logistic Regression 

Logistic Regression gives the probabilistic view of Regression [65]. Assuming a 

binary class, and 𝑢 as the vector of features for the classifier, then logistic regression 

finds the probability 𝑢 that the class belongs to class ′1′ then the probability is given by 

𝑢 =  
1

𝑢−𝑢𝑢 + 1
 

where 𝑢 is a vector of constants. 

It is also a supervised learning model with different algorithms like the liblinear, newton-

cg, or saga. This current study used the liblinear algorithm. 

4.1.d Support Vector Machines 

Support Vector Machines (SVM) is a supervised learning algorithm usually used 

for classification, regression and also detection of outliers task [66]. There are different 

kernels available using SVM. For a given training data, SVM determines a hyperplane 

that separates the examples to categorize into classes by using a sample of training points 

called support vectors in the decision function. Figure 8 shows the distribution of classes 

for the Iris flower dataset based on flower’s sepal width and length. 
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Figure 8. Pictorial representation of different kernels classification in SVM. 

Source: http://scikit-learn.org/stable/auto_examples/svm/plot_iris.html. 

4.2 Survival Analysis 

 Estimating the duration of an event to occur is one of the critical problems in 

analyzing data. It is possible that during any study on a group of entities, there might be 

instances for which the event did not occur within the study’s duration or may have 

incomplete, missing, or unavailable data about the event occurrence. Such instances are 

called censored instances that can be effectively approached using Survival Analysis [40, 

41, 55, 58, 59]. Survival Analysis uses hazard functions which determines the rate of 

occurrence of an event at a time t with the condition that the event did not happen before 

time t. The results of this function are applied to different statistical methods of Survival 

Analysis to estimate the final probabilities for each of the entities. The following 

descriptions explain the different types of methods [41]: 
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a) Non-parametric: Specific methods of this type are Kaplan-Meir, Nelson-Aalen, 

and Life-Table. These methods are mainly used when there no theoretical 

distribution of the event occurrences are known.  

b) Semi-parametric: Specific methods of this type are the Cox model, Regularized 

Cox, CoxBoost and Time-Dependent Cox. These methods are mainly used where 

the knowledge about the distribution of survival times are not necessary. 

c) Parametric: Specific methods of this type are Tobit, Buckley-James, Penalized 

Regression and Accelerated failure Time. These methods are mainly used when 

the patterns in survival times distribution are known. 

d) Machine Learning methods: There are Survival trees, Bayesian methods, and 

Neural networks. 

Figure 9 illustrates various Survival Analysis methods. 

Various parametric ACT models and a Cox model were used in this current study. 

In the ACT models, the Weibull, LogNormal and Exponential methods were used.  
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Figure 9.  Taxonomy of methods developed for Survival Analysis. Image source: 

P. Wang et al. [41] 

4.3 Regression 

In statistical analysis, regression is a process of estimating the relationships 

among variables, such as a regression model for variable 𝑢 with respect for feature vector 

variable 𝑢 and a constant vector 𝑢. i.e., 

𝑢 ≈ 𝑢(𝑢,𝑢) 
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There are many regression models in statistics. This current study used Lasso, 

Ridge and Support Vector Regression with Radial Basis Function kernel. Ridge 

Regression is a technique for analysis multi-collinear data. Multi-collinearity occurs 

when the variance is so large that it is far away from the true value. Lasso Regression 

functions to improve the prediction accuracy of the statistical model.  
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CHAPTER 5: APPROACH 

In this chapter, we propose approaches to the problem of predicting how long an 

Indirect Interaction between two nodes will last. The Indirect Interaction on Facebook is 

about a pair of unconnected users participating in a common interaction like comments, 

group messages, shares, and wall posts. Similarly, on Wikipedia, Indirect Interaction is 

between two pages where users navigate through the search box. This study examines the 

cases that involved multiple interactions between 𝑢 and 𝑢 during an observational time 

interval [𝑢𝑢,𝑢𝑢]. The Indirect Interaction between nodes 𝑢 and 𝑢 during that time 

interval indicates that 𝑢 and 𝑢 may have something in common, and it might be useful to 

link them. 

Problem Definition: Given two nodes 𝑢 and 𝑢 in a network such that during the 

time interval [𝑢𝑢,𝑢𝑢) 

(1) there is no link between them, and 

(2) we observe an “Indirect Interaction” between 𝑢 and 𝑢 

predict how long the nodes 𝑢 and 𝑢 will keep interacting after 𝑢𝑢.  

This problem has applications in link recommendation. When recommending a link 

between two nodes 𝑢 and 𝑢, we prefer to recommend links that will be useful in the 

future. In fact, in any social networking platform, it is better to recommend user 𝑢 to 

become friends with user 𝑢 if we know that these two nodes will interact in the future, 



34 

 

 

 

rather than suggesting 𝑢 ́ as a friend for 𝑢 even after we know that 𝑢 and 𝑢 ́ will never 

interact. 

Thus, the longer the interaction is estimated to last between a pair of nodes; the 

higher the priority is for recommending a link between them. 

In our framework, we consider the time period divided into the following intervals:  

a)  [𝑢𝑢,𝑢𝑢) is the time interval used to observe Indirect Interactions between nodes; 

b) [𝑢𝑢,𝑢𝑢] is the time interval used to observe when the Indirect Interaction(s) will 

stop; 

c) (𝑢𝑢,𝑢𝑢] is the time interval used to observe which links have been formed. 

We propose two supervised learning approaches to the problem of predicting the 

duration of Indirect Interaction. Given a candidate pair of indirectly interacting nodes       

𝑢 = (𝑢,𝑢) and a vector of network-based predictors 𝑢𝑢 , the basic approach consists of 

predicting whether or not the Indirect Interaction 𝑢 = (𝑢,𝑢) will last, while the more 

fine-grained approach consists of estimating how long the Indirect Interaction will last. 

These approaches are detailed in the following sections. 

5.1 Basic Approach 

In order to predict whether the Indirect Interaction between a pair of non-linked 

nodes 𝑢 = (𝑢,𝑢) will last or not, we model the problem as a binary classification task 

where the input features are given by 𝑢𝑢 and the positive class is given by the set of 

instances that do not stop interacting in the time interval [𝑢𝑢,𝑢𝑢], i.e., their Indirect 

Interaction continues after 𝑢𝑢. All the instances that stop their Indirect Interaction at any 
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time 𝑢𝑢 ≤ 𝑢 ≤ 𝑢𝑢 fall into the negative class. 

5.2 Fine-grained Approach 

To predict the Indirect Interaction duration in the time interval [𝑢𝑢,𝑢𝑢], two 

different methods were used—Survival Analysis and Regression. Next, we describe how 

we model the problem according to these two methods. 

5.2.a Modeling the Problem via Survival Analysis 

Survival Analysis is a statistical method to estimate the expected duration of time 

until an event of interest occurs [41]. 

We apply Survival Analysis to the interval [𝑢𝑢,𝑢𝑢] to compute the survival time 

of an Indirect Interaction. The event of interest is when the Indirect Interaction between 

two nodes stops. The time when the event of interest happens for the instance 𝑢 = (𝑢,𝑢) 

is denoted by 𝑢𝑢. During the study of our Survival Analysis problem, it is possible that 

the event of interest was not observed for some instances. This occurs because we are 

observing the problem in a limited time window [𝑢𝑢,𝑢𝑢]  or we missed the traces of 

some instances. If this happens for an instance 𝑢 we say that 𝑢 is censored and denote by 

𝑢𝑢 the censored time. Given an instance 𝑢, we denote by 𝑢𝑢 the feature vector. Let 𝑢𝑢 be 

a Boolean variable indicating whether or not the instance 𝑢 is not censored, i.e., if  𝑢𝑢 =

1 then the instance 𝑢 is not censored. We denote by  𝑢𝑢 the observed time for the 

instance 𝑢 that is equal to 𝑢𝑢 if 𝑢 is uncensored and  𝑢𝑢 otherwise. 

    𝑢𝑢 = { 𝑢𝑢          𝑢𝑢  𝑢𝑢 = 1  𝑢𝑢          𝑢𝑢  𝑢𝑢 = 0   

Given a new instance 𝑢 described by the feature vector 𝑢𝑢,  Survival Analysis 

estimates a survival function 𝑢𝑢 that gives the probability that the event for the instance 

𝑢 will occur after time 𝑢.  
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𝑢𝑢(𝑢) = 𝑢𝑢 (𝑢𝑢 ≥ 𝑢) 

The survival function can be used to compute the expected time 𝑢�̂�of event 

occurrence for an instance 𝑢 as explained in the next section.  

5.2.b Modeling the Problem via Regression 

Another way to estimate the duration of an Indirect Interaction is to model the 

problem as a Regression task, i.e., estimating the parameters 𝑢 of a function 𝑢  such that 

𝑢𝑢 ≈ 𝑢(𝑢,𝑢), for each instance 𝑢 in the training set. 

The main difference between Regression and Survival Analysis is that regression 

is not able to incorporate the information coming from censored instances within the 

predictive model. In the case of regression, censored instances are typically ignored or 

their observed time 𝑢 is modeled as constant 𝑢𝑢 much bigger than 𝑢𝑢.  

5.3 Link Prediction 

In this section, we address the problem of predicting whether or not a pair of non-

linked nodes showing an Indirect Interaction will become a link in the future. We adopt 

the Link Prediction framework with a single feature proposed by Liben-Nowell and 

Kleinberg [6]. This framework consists of the following steps:  

a) assign a score to each candidate pair of non-linked nodes,  

b) order the candidate pairs in descending order and take the top-n pairs with the 

highest score, 

c) evaluate how many of these top-n pairs are links in the test set. 

Our assumption in this study is that pairs of nodes for which we can predict that 

the Indirect Interaction will last longer should be prioritized concerning candidates that 



37 

 

 

 

are predicted to last a shorter time because in the former case linking the two nodes can 

be more beneficial for both of them. Therefore, we propose to assign 𝑢𝑢𝑢𝑢𝑢 (𝑢,𝑢) to 

each pair of indirectly interacting nodes (𝑢,𝑢) that are not linked during the time interval 

[𝑢𝑢,𝑢𝑢) that is proportional to the estimated duration of their Indirect Interaction during 

the time interval [𝑢𝑢,𝑢𝑢]. As we proposed various methods in the previous section to 

predict the Indirect Interaction duration, the value of 𝑢𝑢𝑢𝑢𝑢 (𝑢,𝑢) depends on the 

method used. 

5.3.a Classification 

When using classification, 𝑢𝑢𝑢𝑢𝑢 (𝑢,𝑢) is equal to the probability given by the 

classifier that the instance 𝑢 =  (𝑢,𝑢) is in the positive class, i.e., the Indirect Interaction 

will last.  

5.3.b Survival Analysis 

When using Survival Analysis, the score is given by the expected time 𝑢�̂� the 

interaction is predicted to stop, i.e. 𝑢𝑢𝑢𝑢𝑢 (𝑢,𝑢) = 𝑢�̂�. The predicted expected time 𝑢�̂� 

of event occurrence is computed as follows. From the Survival Analysis model, we will 

have the following probabilities: 

𝑢𝑢(𝑢𝑢) = 𝑢𝑢 (𝑢𝑢 ≥ 𝑢𝑢), 𝑢𝑢(𝑢𝑢 + 1) = 𝑢𝑢 (𝑢𝑢 ≥ 𝑢𝑢 + 1), …, 𝑢𝑢(𝑢𝑢) =

𝑢𝑢 (𝑢𝑢 ≥ 𝑢𝑢). The probability 𝑢𝑢 (𝑢𝑢 + 𝑢 ≤ 𝑢𝑢 ≤ 𝑢𝑢 + 𝑢 + 1),  that the Indirect 

Interaction will stop in the interval [𝑢𝑢 + 𝑢,𝑢𝑢 + 𝑢 + 1) is given by  

𝑢𝑢 (𝑢𝑢 + 𝑢 ≤ 𝑢𝑢 ≤ 𝑢𝑢 + 𝑢 + 1)  = 𝑢𝑢 (𝑢𝑢 ≥ 𝑢𝑢 + 𝑢)  − 𝑢𝑢 (𝑢𝑢 ≥ 𝑢𝑢 + 𝑢 +

1)  

for 0 ≤ 𝑢 < 𝑢, where 𝑢 is the number of units we divided the interval [𝑢𝑢,𝑢𝑢] into.  

The expected time 𝑢�̂� when the Indirect Interaction will stop is given by  
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𝑢�̂� = (∑𝑢
𝑢=1 (𝑢 + 1) × 𝑢𝑢 (𝑢𝑢 + 𝑢 ≤ 𝑢𝑢 ≤ 𝑢𝑢 + 𝑢 + 1) ) + (𝑢 × 𝑢𝑢 (𝑢𝑢 ≥

𝑢𝑢) )  

Because we have a limited time window [𝑢𝑢,𝑢𝑢] to observe when the Indirect 

Interaction is stopping, when 𝑢�̂� =  𝑢𝑢 we have a lower bound on when the interaction is 

stopped, i.e., the Interaction can stop at any time 𝑢 ≥ 𝑢𝑢 , but we do not know exactly 

when. 

5.3.c Regression 

 When using Regression, 𝑢𝑢𝑢𝑢𝑢 (𝑢,𝑢) = 𝑢�̂� where 𝑢�̂� ≈ 𝑢(𝑢,𝑢) is the 

estimated duration of the Indirect Interaction 𝑢 predicted by the Regression model. 
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CHAPTER 6: LIST OF PREDICTORS 

In this chapter, we report the set of predictors used in our thesis. The predictors 

are computed by considering the network [34] and are divided into three types of features 

namely Node-based features, Neighborhood-based features, and Network-based features. 

Additionally, some extra features on page content are used based on the availability of 

resources (Wikipedia API - sandbox) to gather such information. 

6.1 Notations in Formulae: 

Let 𝑢 =  (𝑢,𝑢: 𝑢) be an undirected weighted graph where  

a) 𝑢 is a set of vertices and  

b) 𝑢 ⊆ 𝑢 × 𝑢 is the set of Edge(s) 

c)  𝑢:𝑢 → 𝑍+ 

 
 Let u be a node in 𝑢, we denote by 𝑢(𝑢) is the set of neighbors of node 𝑢 where      

   𝑢(𝑢) =  {𝑢 ∈  𝑢| (𝑢,𝑢) ∈ 𝑢 ⋁ (𝑢,𝑢) ∈ 𝑢 } 

For directed graphs, we define  𝑢𝑢𝑢(𝑢) to be the set of neighbors pointed towards 𝑢, i.e., 

                                𝑢𝑢𝑢(𝑢) =  {𝑢 ∈  𝑢| (𝑢,𝑢) ∈ 𝑢}  

And 𝑢𝑢𝑢𝑢(𝑢) to be the set of neighbors pointed away from 𝑢, i.e.,  

𝑢𝑢𝑢𝑢(𝑢) =  {𝑢 ∈  𝑢| (𝑢,𝑢) ∈ 𝑢} 
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6.2 Node-based features 

6.2.a Degree  

For an undirected graph, the number of edges that connects a node with its 

neighbors is called Degree [44] of that node, denoted by  

𝑢𝑢𝑢 (𝑢)  = |𝑢(𝑢)| 

 For directed graphs, we consider In-degree and Out-degree denoted by 𝑢𝑢𝑢𝑢𝑢 

and 𝑢𝑢𝑢𝑢𝑢𝑢 respectively, where  

𝑢𝑢𝑢𝑢𝑢 (𝑢)  = |𝑢𝑢𝑢(𝑢)| 

and         𝑢𝑢𝑢𝑢𝑢𝑢 (𝑢)  = |𝑢𝑢𝑢𝑢(𝑢)| 

6.2.b Reciprocity 

For a directed graph with 𝑢,𝑢 as nodes, if 𝑢 has an edge to 𝑢, reciprocity is to 

identify if there was an edge from 𝑢 to 𝑢. The weights on such edges are used as one of 

the predictors, i.e., 

𝑢𝑢𝑢(𝑢,𝑢) = 𝑢(𝑢,𝑢) 

6.3 Neighborhood-based features 

6.3.a Common-Neighbors (CN) 

Common Neighbors between nodes 𝑢 and 𝑢 is the number of nodes that have a 

common edge with both nodes 𝑢 and 𝑢. As stated in [6,16,20,21,23], common neighbor 

is a state-of-the-art measure that can be applied to any network to understand the 

popularity of the pair of nodes. Common neighbors is given by the following formula. 

𝑢𝑢(𝑢,𝑢) = |𝑢(𝑢) ∩ 𝑢(𝑢)|, if the graph is undirected.  

   𝑢𝑢(𝑢,𝑢) = |(𝑢𝑢𝑢(𝑢) ∪ 𝑢𝑢𝑢𝑢(𝑢)) ∩ (𝑢𝑢𝑢(𝑢) ∪ 𝑢𝑢𝑢𝑢(𝑢))|, if the graph is 

directed. 
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6.3.b Jaccard similarity 

It is a measure mainly used to compute similarity and diversity of the two nodes. 

If 𝑢and 𝑢 are two nodes in a network, Jaccard similarity [6,16] is measured as the 

intersection of neighbors between u and v over union of their neighbors. Hence, it is 

given by the following formula for undirected graphs 

𝑢𝑢𝑢(𝑢,𝑢) =
|𝑢(𝑢) ∩ 𝑢(𝑢)|

|𝑢(𝑢) ∪ 𝑢(𝑢)|
 

and for directed graphs,  

𝑢𝑢𝑢(𝑢,𝑢) =
|(𝑢𝑢𝑢(𝑢) ∪ 𝑢𝑢𝑢𝑢(𝑢)) ∩ (𝑢𝑢𝑢(𝑢) ∪ 𝑢𝑢𝑢𝑢(𝑢))|

|(𝑢𝑢𝑢(𝑢) ∪ 𝑢𝑢𝑢𝑢(𝑢)) ∪ (𝑢𝑢𝑢(𝑢) ∪ 𝑢𝑢𝑢𝑢(𝑢))|
 

6.3.c Adamic-Adar similarity 

It is a similarity measure that weights common neighbors with few connections 

more heavily. It ensures to prioritize the least connected common neighbor. 

Mathematically, Adamic-Adar [4] is the sum of the inverse log of the count of neighbors 

of all the common neighbors between u and v. 

𝑢𝑢(𝑢,𝑢) = ∑

𝑢∈𝑢(𝑢)∩𝑢(𝑢)

1

𝑢𝑢𝑢|𝑢(𝑢)|
 

6.3.d Preferential Attachment score 

 The preferential attachment score is an aggregated neighborhood-size based 

feature. For this study, degree(s) are aggregated as preferential attachment score [16] and 

is given by  

  𝑢𝑢(𝑢,𝑢) = |𝑢(𝑢)| × |𝑢(𝑢)| for undirected graphs. 

  𝑢𝑢(𝑢,𝑢) = |𝑢𝑢𝑢𝑢(𝑢)| × |𝑢𝑢𝑢(𝑢)| for directed graphs. 
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6.3.e Local Clustering Coefficient 

Local Clustering coefficient [16] is the property of a node within the network. If 

𝑢 is a node, the number of triangles formed using its neighbors with respect to number of 

its neighbors is the local clustering coefficient. It is the probability that the neighbors of 

the node are connected.  

  𝑢(𝑢) =
2×|{𝑢1,𝑢2 ∈𝑢(𝑢)}|

|𝑢(𝑢)|×(|𝑢(𝑢)|−1)
  

Figure 10 shows an example for computing local clustering coefficient in a sample 

network. 

 
Figure 10. Graphical representation of local clustering coefficient. Image source: 

Santillán et al. [35]. 

6.4 Network-based features 

6.4.a PageRank 

PageRank [17,33,43] is an algorithm developed by Google to assign a rank on the 

websites for better search results. It works by counting the number and quality of links to 

that page. Its purpose is to measure the relative importance of a web page. For example, 

the higher the PageRank of pages pointing towards page 𝑢, higher is the importance 

(PageRank) of page 𝑢. This algorithm can be applied in a network to identify popular 

nodes. PageRank is represented by the formula: 
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   𝑢𝑢(𝑢) =
1−𝑢

|𝑢|
+  𝑢 ∑𝑢∈𝑢𝑢𝑢(𝑢)

𝑢𝑢(𝑢)

|𝑢𝑢𝑢𝑢(𝑢)|
  

where d is the dumping factor usually set to 0.85. 

Figure 11 shows an example of PageRank for all nodes in an example network. 

                      
Figure 11. An example of how PageRank is calculated. Image source: 

https://en.wikipedia.org/wiki/PageRank 

6.4.b Node2Vec 

 Network embedding is a technique for mapping each node of a graph in a 

geometric high dimensional space. Once the embedding is obtained for each entity, its 

geometric representation can be used as features in input to machine learning algorithms. 

Recently, several network embedding techniques have been defined, and all the proposed 

techniques can be categorized into three broad categories, namely (1) factorization based, 

(2) random walk based, and (3) deep learning based (see Goyal et al. [45] for a survey). 

The majority of these embedding techniques work for unlabeled graphs, while Lin et al. 

[50] propose an embedding model for knowledge graphs. This current study focuses on 

one embedding technique: Node2Vec (Grover and Leskovec [15]). We chose Node2Vec 

because it outperforms other embedding techniques such as LINE (Tang and Liu [47]), 
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Deepwalk (Perozzi et al. [46]), and Spectral Clustering (Tang et al. [48]) in the task of 

node Link Prediction. Node2Vec is an embedding technique based on random walks. It 

computes the embedding in two steps. First, the context of a node (or neighborhood at 

distance 𝑢) is approximated with biased random walks of length 𝑢 that provides a trade-

off between breadth-first and depth-first graph searches. Second, the values of the 

embedding features for the node are computed by maximizing the likelihood of 

generating the context by the given node. Node2Vec uses only the structure of the 

network and does not consider any node or edge label. 

As the node features are computed for each in pair (𝑢,𝑢), edge features can be 

learned with a choice of any below binary operator on those node features. For 𝑢 and 𝑢 

nodes, 𝑢𝑢(𝑢) and 𝑢𝑢(𝑢) are their respective Node2Vec features. 

a) Adamard: 
(𝑢𝑢(𝑢)+𝑢𝑢(𝑢))

2
 

b) Hadamard: (𝑢𝑢(𝑢) × 𝑢𝑢(𝑢)) 

c) Weighted-L1: |𝑢𝑢(𝑢) − 𝑢𝑢(𝑢)| 

d) Weighted-L2: : |𝑢𝑢(𝑢) − 𝑢𝑢(𝑢)|2 

The Hadamard was used in this study for learning edge features as it was shown 

to perform best by Grover and Leskovec [15]. Regarding the significance of weights on 

the edges, we used hits as weights on the network [20]. We used 40 dimensions with six 

walk-length, and variable 𝑢 set to 0.3 as parameters for the Node2Vec algorithm. 

6.5 Additional Wikipedia Page features 

As page content on Wikipedia can be retrieved either through parsing of web 

pages or from the dumps available through the Wikimedia Foundation, the following set 
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of additional features can be included in the dataset. However, for Facebook, as the data 

is anonymized, it is difficult to retrieve individual node properties like content from their 

wall posts, comments or any other information that can help to identify additional 

node/edge properties. 

6.5.a Categories’ similarity 

 Each Wikipedia page falls under a set of categories. As an example, the page 

‘Niagara Falls’ falls under the set of categories Waterfalls of Ontario, Block waterfalls, 

Waterfalls of New York, and so forth. Thus, pages with more categorical similarities may 

have some relatedness between them [18]. Let 𝑢 and 𝑢 be Wikipedia pages; we define 

𝑢𝑢𝑢(𝑢) as the set of categories of page 𝑢 and 𝑢𝑢𝑢𝑢𝑢(𝑢) as the set of pages that belong 

to category 𝑢. Then we defined categories’ similarity for a pair of pages 𝑢 and 𝑢 in terms 

of: 

a) the Jaccard similarity between the pages’ categories as 

𝑢𝑢𝑢𝑢𝑢𝑢(𝑢,𝑢) =
|𝑢𝑢𝑢(𝑢) ∩ 𝑢𝑢𝑢(𝑢)|

|𝑢𝑢𝑢(𝑢) ∪ 𝑢𝑢𝑢(𝑢)|
 

b) the Adamic-Adar similarity as 

𝑢𝑢𝑢𝑢𝑢(𝑢,𝑢) = ∑

𝑢∈𝑢𝑢𝑢(𝑢)∩𝑢𝑢𝑢(𝑢)

1

𝑢𝑢𝑢 |𝑢𝑢𝑢𝑢𝑢(𝑢)|
 

c) the Preferential Attachment score on pages’ categories as 

𝑢𝑢𝑢𝑢𝑢(𝑢,𝑢) = |𝑢𝑢𝑢(𝑢)| × |𝑢𝑢𝑢(𝑢)| 
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CHAPTER 7: EXPERIMENTS 

As explained in the framework for our approach, we distributed each of the 

datasets into three time periods. The time periods were set as follows:  

a) for Facebook, we set 𝑢𝑢 = September 2006, 𝑢𝑢 = January 2007, 𝑢𝑢 =  𝑢𝑢 = 

December 2008, and  𝑢𝑢 = January 2009; 

b) for Wikipedia, we set  𝑢𝑢 = February 2016, 𝑢𝑢 = March 2016, 𝑢𝑢 = April 2016, 𝑢𝑢 

= July 2016 and  𝑢𝑢 = August 2016.  

For each dataset, we selected all pairs of nodes I that showed Indirect 

Interaction(s) in the time interval [𝑢
𝑢

,𝑢𝑢). Then, for each pair  𝑢 = (𝑢,𝑢) ∈ 𝑢, we 

checked whether (𝑢,𝑢) continued to interact in the interval persistently. If not, we set 

𝑢𝑢 = 0, if yes, then 𝑢𝑢 was set to the time 𝑢 ∈ [𝑢
𝑢

,𝑢𝑢] when the persistent interaction 

stopped, and if the persistent interaction never stopped in the interval [𝑢
𝑢

,𝑢𝑢], we 

considered the instance 𝑢 to be censored. The number of instances of nodes with Indirect 

Interactions and the number of censored instances is reported for each dataset in Table 5. 

For Wikipedia, we filtered other types of tuples having prev or curr page title as 

Wikipedia’s main page from February 2016. This is because the Main page is a 

constantly changing Wikipedia article and the searches from or to this page represent 

noise in the dataset. We computed the set of predictors by considering the status of the 

network during the time interval [𝑢
𝑢

,𝑢𝑢). For Link Prediction ground truth, we 

considered new links formed in the time interval (𝑢
𝑢

,𝑢𝑢].  
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In all the datasets, we considered the class imbalance problem (i.e., we have more 

negative instances (instances that stopped interacting anytime 𝑢 ∈ [𝑢
𝑢

,𝑢𝑢] than positive 

instances (instances that did not stop interacting in the observational period); these are 

censored instances). We used a majority under sampling strategy for a similar problem 

[42]. For each dataset, we created a pool of sub-datasets. First, we created ten random 

samples of the majority class whose size is set to be the same as one of the minority class. 

Then, we added each of these samples to all the instances in the minority class and 

performed a five-fold cross-validation on each of those ten balanced datasets. We finally 

averaged the results obtained from all the five-fold cross-validated datasets. We used the 

same subsets of datasets across all the experiments. 

Table 5: Indirect Interactions 

Dataset Instances of Indirect Interactions Censored Instances 

Facebook 175,577 4,155 

Wikipedia 2.03M 190,124 

 

7.1 Predicting Duration of Indirect Interactions 

The first problem studied in this thesis was to estimate the duration of interactions 

in each of the datasets. This problem was addressed in two ways. First, the binary 

classification approach was used to determine whether or not they will continue to 

interact at time 𝑢𝑢. Second, the more fine-grained approach was used to estimate the 

duration of interactions using Survival Analysis and Regression. 

7.1.a Will the Indirect Interactions last or not? 

In this experiment, we consider our predictors as input to a binary classifier to 
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predict whether the Indirect Interactions would last or not. In this case, we considered 

censored instances as positive instances (i.e., to say that the interaction will last) and 

instances where the event occurred (i.e., they stopped interacting) as negative instances.  

 For each dataset, using all the listed predictors, five classification models are 

used to determine the best fit model in predicting whether or not they will continue to 

interact at time 𝑢𝑢. Table 6 below shows the results obtained using the following 

classifiers. 

1. K-nearest neighbors with number of neighbors set as 5. 

2. Random Forests with 100 trees and criterion set as “entropy.” 

3. Linear-Support Vector Machine with a maximum of 100 iterations. 

4. Radial Basis Function (RBF) kernel of SVM. 

5. Linear model’s Logistic Regression. 

Table 6: Results from Classifiers - Facebook 

Classifier Accuracy AUROC MAP Precision 

(class1) 

Precision 

(class0) 

KNN 0.603 0.633 0.648 0.610 0.597 

Linear SVM 0.680 0.743 0.751 0.734 0.646 

Logistic Regression 0.677 0.737 0.746 0.715 0.651 

Random Forests 0.832 0.901 0.894 0.808 0.861 

SVM_RBF 0.500 0.505 0.598 0.541 0.468 

 

Considering AUROC as the best metric to evaluate the performance, the classifier 

with the best performance is Random Forests with an AUROC of 90%. By using the 



49 

 

 

 

same parameters on the classifiers for experiments on the Wikipedia dataset, Table 7 

shows the results obtained. 

Table 7: Results from Classifiers - Wikipedia 

Classifier Accuracy AUROC MAP Precision 

(class1) 

Precision 

(class0) 

KNN 0.668 0.720 0.732 0.671 0.664 

Linear SVM 0.631 0.689 0.693 0.674 0.605 

Logistic Regression 0.634 0.694 0.703 0.678 0.607 

Random Forests 0.712 0.783 0.785 0.730 0.697 

SVM_RBF 0.499 0.507 0.549 0.416 0.495 

 

The classifier with the best performance is Random Forests with an AUROC of 

78.3%. Tables 6 and 7 show results by using similar features in both datasets. However, 

by including additional categorical features on the Wikipedia Dataset, the following 

results are observed. 

Table 8: Results from Classifiers including Categorical Features - Wikipedia 

Classifier Accuracy AUROC MAP Precision 

(class1) 

Precision 

(class0) 

KNN 0.697 0.761 0.762 0.698 0.696 

Linear SVM 0.659 0.731 0.726 0.742 0.619 

Logistic Regression 0.670 0.730 0.732 0.692 0.663 

Random Forests 0.747 0.834 0.825 0.743 0.752 

SVM_RBF 0.499 0.505 0.481 0.433 0.498 
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The classifier with the best performance is Random Forests with an AUROC of 

83.4% and is higher than the previously achieved AUROC of 78.3%. From the results 

above, it is evident that inclusion of available categorical features improved the system’s 

performance. 

7.1.b Feature Importance 

Of all the predictors used for the approach, we measured the importance of each 

predictor to understand their contribution towards the performance of the approach. The 

following figures compare the ‘feature importance’ for each of the predictors. 

 
Figure 12. Feature importance for the Facebook dataset. 

 
Figure 13. Feature importance for the Wikipedia dataset. 

In each dataset’s feature importance, the predictor prefix ‘nv’ denotes the 

Node2Vec edge feature, and suffix ‘cc’ denotes Local Clustering Coefficient. For 

Facebook, while the pair of nodes 𝑢,𝑢 is denoted by user1 and user2, for Wikipedia, 
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they are denoted by prev and curr. Also, ‘CN’ denotes Common Neighbors, ‘PG’ denotes 

PageRank, ‘weight’ is the reciprocal edge weight and ‘recip’ is Reciprocity of the edge. 

As we can see in the figures, the highest important features vary for different datasets. 

There is no concrete notion as to which of these predictors are commonly important for 

any dataset. 

 
Figure 14. Feature importance for Wikipedia dataset (with Categorical features). 

Figure 14 shows the order of important features for the Wikipedia dataset 

including additional categorical features. It is evident that these additional features 

contribute comparatively higher towards better performance. 

7.1.c Comparison of Classification with Baselines 

Some of the important predictors that are capable of predicting independently are 

Hits, Jaccard similarity score, Adamic-Adar similarity score, Preferential Attachment 

score and Node2Vec features. As we had evaluated 40 Node2Vec features for each node, 

we calculated Cosine similarity of those node features to construct it in a single column. 

These predictors are scores evaluated on pairs (𝑢,𝑢) together. To effectively determine 

the performance of our proposed system, it was necessary to compare and understand if it 

could perform better than the baselines. We used the following features to compare: 

1. Jaccard similarity score 
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2. Adamic-Adar similarity score 

3. Preferential Attachment score 

4. Cosine similarity of Node2Vec node features. 

5. Hit counts 

Only the above-stated features were chosen as they determine the feature of 

(𝑢,𝑢) together in a network. Table 9 and 10 show baselines’ results for both the datasets. 

Table 9: Results for Baselines - Facebook 

Baselines AUROC MAP 

Hits 0.633 0.693 

Jaccard Similarity 0.707 0.701 

Adamic Adar Similarity 0.292 0.386 

Preferential Attachment 0.612 0.624 

Node2Vec 0.576 0.579 

 

Table 10: Results for Baselines - Wikipedia 

Baselines AUROC MAP 

Hits 0.455 0.459 

Jaccard Similarity 0.556 0.556 

Adamic Adar Similarity 0.573 0.611 

Preferential Attachment 0.572 0.591 

Node2Vec 0.583 0.570 

 

7.1.d How long will the Indirect Interaction last? 

Using Survival Analysis (see Chapter Four 2nd section) and Regression models 

(see Chapter Four 3rd section), it is possible to estimate the probability of “will they stop 
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interacting at time 𝑢𝑢.” We then used the predicted probability to calculate the Survival 

Function values. For each pair of nodes in the datasets, we calculated the expected value 

of survival probabilities, i.e., 𝑢(𝑢,𝑢). In Survival Analysis, we used the Accelerated 

Failure Time (AFT) model with five distributions, and three Regression models: 

1. For AFT: 

a. Weibull 

b. LogNormal 

c. Exponential 

d. Cox 

2. Regression: 

a. Ridge Regression 

b. Lasso Regression 

c. Support Vector Regression (SVR) using ‘rbf’ kernel 

As these datasets have censored information; classical AUROC is not suitable.  

To compare the performances of these two sets of algorithms, we considered two metrics 

that are commonly used to evaluate Survival Analysis models, namely c-index and Mean 

Absolute Error (MAE) [41]. The c-index is given by the formula:  

𝑢 − 𝑢𝑢𝑢𝑢𝑢 =  
1

𝑢𝑢𝑢𝑢
∑

𝑢:𝑢𝑢=1

∑

𝑢𝑢>𝑢𝑢

1(�̂�𝑢 > �̂�𝑢) 

where 𝑢𝑢𝑢𝑢 is the number of all pairs (𝑢𝑢,𝑢
𝑢

) such that 𝑢𝑢 = 1 (non-censored 

instances) and it holds that the time 𝑢 for the latter is greater than the former (i.e., 𝑢𝑢 >

𝑢𝑢), and �̂� is the estimated duration predicted by the model. The c-index measures the 

concordance probability between the actual observation times and the predicted values. It 
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is worth noting that the baseline value for the c-index of a random classifier is not 0.5, 

but it is 0.31 for Facebook and 0.22 for Wikipedia according to the distribution of 

observed times for events of interest in the datasets.  

The mean absolute error is defined as the average absolute difference between the 

predicted duration of the event and the actual one. It is calculated by using the formula: 

𝑢𝑢𝑢 =  
1

𝑢
∑

𝑢

𝑢=1

(𝑢𝑢|𝑢𝑢 − �̂�𝑢) 

where N is the number of non-censored instances, i.e., for which the event 

occurred. The results reported in this thesis for MAE are normalized.  

Also, we considered the Pearson Correlation Coefficient (PCC) between the 

actual time and the predicted time of event occurrence. Higher c-index and PCC, and 

lower MAE are desirable. Table 11 and 12 report the values for the above three metrics 

for Survival Analysis on both the datasets.  

Table 11: Results of Survival Analysis - Facebook 

Models c-index MAE Pearson CC 

Cox  0.498  0.250  0.459  

Weibull  0.499  0.350  0.460  

Exponential  0.499  0.350  0.460  

LogNormal  0.499  0.350  0.460  
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Table 12: Results of Survival Analysis - Wikipedia 

Models c-index MAE Pearson CC 

Cox  0.502  0.118  0.320  

Weibull  0.285  0.363  0.208  

Exponential  0.501  0.112  0.315  

LogNormal  0.501  0.142  0.198  

 

Table 13 and 14 show the results for c-index, MAE, and PCC metrics by using 

Regression Models on Facebook and Wikipedia datasets. 

Table 13: Results for Regression - Facebook 

Models c-index MAE Pearson CC 

Ridge Regression 0.497 0.384 0.409 

Lasso Regression 0.497 0.385 0.409 

SVR rbf 0.330 0.222 0.057 

 

Table 14: Results for Regression - Wikipedia 

Models c-index MAE Pearson CC 

Ridge Regression 0.501 0.094 0.910 

Lasso Regression 0.500 0.095 0.910 

SVR rbf 0.418 0.375 0.035 

 

By looking at these results, it is clear that for Facebook, Survival Analysis with 

the Cox Model performs better than Regression in predicting the duration of the 

Interaction. In fact, both the Cox model, and Ridge and Lasso Regression achieve the 

same value of c-index, but Cox has a lower MAE (0.25 versus 0.38) and a higher PCC 



56 

 

 

 

(0.46 versus 0.41). Even though SVR has the best MAE (0.22), its values for c-index and 

PCC are bad. In the case of Wikipedia, c-index was not able to differentiate between 

Survival Analysis and Regression, but according to MAE and PCC, Regression (either 

Ridge or Lasso) was the best with MAE of 0.09 and PCC of 0.91. In comparison, Cox 

achieves 0.11 for MAE and 0.32 for PCC. 

7.1.e Comparison of Survival Analysis and Regression with Baselines 

Table 15 and 16 show the c-index, MAE, and PCC regarding the baselines. In this 

case, we are using the values of the baselines to approximate the Duration of Interaction. 

Table 15: Results for Baselines - Facebook 

Baselines c-index MAE Pearson CC 

Hits 0.213 0.162 0.28 

Jaccard Similarity 0.500 0.339 0.323 

Adamic Adar Similarity 0.500 0.292 0.355 

Preferential Attachment 0.496 0.345 0.076 

Node2Vec 0.496 0.340 0.146 

Our Approach 0.502  0.118  0.320  

 

Table 16: Results for Baselines - Wikipedia 

Baselines c-index MAE Pearson CC 

Hits 0.507 0.418 0.133 

Jaccard Similarity 0.531 0.410 0.083 

Adamic Adar Similarity 0.544 0.415 0.146 

Preferential Attachment 0.534 0.418 0.066 

Node2Vec 0.544 0.412 0.055 
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Our Approach 0.501(-1) 0.094(+1) 0.910 

Again, the c-index results proved not to be a good measure to compare our 

approaches with the baselines because their values were all comparable. Overall, by 

considering the values from all the metrics, our approach is better than the baselines for 

both the datasets. For Facebook, our best MAE and PCC obtained with Survival Analysis 

are better than all the baselines except for Hits that beat us regarding MAE. However, 

hits achieve very low values for c-index and PCC in comparison to our approach. For 

Wikipedia, our results obtained with Regression are always better than the baselines 

according to MAE and PCC and comparable with respect to the c-index. 

7.2 Link Prediction 

On Wikipedia, the problem was predicting whether or not there should be a 

hyperlink placed from page 𝑢 to page 𝑢. We considered the hyperlinks present in type 

“link” of the August 2016 Clickstream dataset as ground truth. For Facebook, the 

problem was predicting whether or not two nodes 𝑢 and 𝑢 should become friends. As the 

ground truth for Facebook, we used the links formed in January 2009. In this experiment, 

we first trained the model (Binary Classification, Survival Analysis, or Regression) to 

predict when (or “if” for Binary Classification) the Indirect Interaction would stop and 

then measured the AUROC between these predicted times
 
and the class values (1 if the 

link has been created, 0 otherwise). For the case of classification, we considered the 

predicted probability as having a link in the future. 

The following tables show the AUROC values for Binary Classification, Survival 

Analysis, and Regression. As we can see in Table 17 and 18, by using the information on 

whether the interaction will last or not, achieved a good AUROC of 0.8 with linear SVM 
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for the Facebook dataset. Unfortunately, this was not sufficient for the Wikipedia dataset 

where this approach was not working the same (AUROC of 0.5 with SVM by using RBF 

kernel). Instead, as Tables 19, 20 and 21, 22 show, if we were using a more fine-grained 

approach (Survival Analysis or Regression), i.e., predicting how long the interaction will 

last, we could improve the previous results and achieve an AUROC of 0.854 on the 

Facebook dataset with Survival Analysis (Exponential algorithm) and 0.769 on the 

Wikipedia dataset with Regression (either Lasso or Ridge Regression algorithm). 

7.2.a Classification approach 

To maintain consistency in the analyses, similar classifiers as that of the first 

problem were used on both datasets. However, the classes were changed. For these 

experiments, any candidate pair from 𝑢𝑢 who existed as a link in network snapshot at 

time 𝑢𝑢 belonged to the positives class. All the other pairs that did not have a link at time 

𝑢𝑢 belonged to the negatives class. We used the same subset of datasets for all the 

experiments. We trained the model on predicting the duration of Interaction and tested for 

Link Prediction. Table 16 and 17 below shows the results obtained for different 

classifiers on Facebook and Wikipedia datasets. 

Table 17: Results from Classifiers - Facebook 

Classifier Accuracy AUROC 

KNN 0.535 0.634 

Linear SVM 0.621 0.800 

Logistic Regression 0.592 0.793 

Random Forests 0.469 0.770 

SVM rbf 0.939 0.497 
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Considering AUROC as the best metric to evaluate the performance, as the 

dataset is skewed, the classifier with the best performance is “Linear SVM” for the 

Facebook dataset. 

Table 18: Results from Classifiers - Wikipedia 

Classifier Accuracy AUROC 

KNN 0.457 0.451 

Linear SVM 0.461 0.476 

Logistic Regression 0.494 0.486 

Random Forests 0.440 0.438 

SVM rbf 0.441 0.500 

 

The classifier with the best performance is “SVM rbf” for the Wikipedia dataset. 

The low values were probably because of validation made with August 2016 dataset 

which is four months away from the time period 𝑢𝑢. 

7.2.b Survival Analysis and Regression 

Similarly, for the problem of Survival Analysis, we determined the positives and 

negatives class. We used the results obtained from Survival Analysis of the first problem 

and calculated the probability of expected value, i.e., 
𝑢(𝑢,𝑢)

|𝑢−1|
 where 𝑢(𝑢,𝑢) is the expected 

value of the survival probabilities for each pair. While Survival Analysis predicts 

probabilities for each period, Ridge Regression determines a single estimated duration of 

time. For Regression models, we took the probability of those predicted times, i.e., 

𝑢𝑢𝑢𝑢(𝑢,𝑢)

|𝑢−1|
 where 𝑢𝑢𝑢𝑢(𝑢,𝑢) is the probability from Regression Model. We used 

AUROC and Mean-Average Precision metrics to evaluate if those values could determine 
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which class these pairs belong to. Table 19, 20 and 21, 22 shows the results for Survival 

Analysis and Regression for each of the datasets. 

Table 19: Results from Survival Analysis - Facebook 

Model AUROC 

Cox 0.812 

Weibull 0.822 

Exponential 0.854 

LogNormal 0.836 

 

Table 20: Results from Survival Analysis - Wikipedia 

Model AUROC 

Cox 0.519 

Weibull 0.517 

Exponential 0.518 

LogNormal 0.528 

 

Table 21: Results from Regression models - Facebook 

Model AUROC 

Ridge Regression 0.779 

Lasso Regression 0.790 

SVR rbf 0.538 
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Table 22: Results from Regression models - Wikipedia 

Regression model AUROC 

Ridge Regression 0.768 

Lasso Regression 0.769 

SVR rbf 0.499 

 

To determine whether or not Regression was the best algorithm for the Link 

Prediction problem on Wikipedia’s dataset, we experimented on a classical approach by 

training the class of links on both the dataset’s best performing approach. Based on the 

following results, we determined that the Regression Model performed better. For 

Facebook, though AUROC showed satisfactory results, the values for the MAP are way 

too low. The reason for these numbers is that the datasets are very largely skewed 

towards the negative class. 

7.2.c Comparison of both approaches 

Table 23: Comparison of Approaches - Facebook 

Model AUROC 

Classification (Linear SVM) 0.80 

Survival Analysis (Exponential) 0.854 

Regression(Lasso) 0.790 

 

Table 24: Comparison of Approaches - Wikipedia 

Model AUROC 

Classification (SVM rbf) 0.500 

Survival Analysis (LogNormal) 0.528 

Regression(Lasso) 0.769 
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Table 23 and Table 24 shows the best of three approaches and Survival Analysis 

is proven to perform better than other approaches for the Link Prediction problem on 

Facebook and Wikipedia datasets. Hence, it is proved that when using a more fine-

grained approach (Survival Analysis or Regression), i.e., predicting how long the 

interaction will last, we can achieve an AUROC of 0.854 on Facebook datasets with 

Survival Analysis (Exponential algorithm), and 0.769 on Wikipedia datasets with 

Regression (either Lasso or Ridge Regression).  

Table 25: Traditional Link Prediction Approach- Wikipedia 

Model AUROC 

KNN 0.679 

Logistic Regression 0.675 

Linear SVM 0.634 

Random Forests 0.437 

SVM rbf 0.503 

 

Table 26: Traditional Link Prediction Approach- Facebook 

Model AUROC 

KNN 0.634 

Logistic Regression 0.800 

Linear SVM 0.497 

Random Forests 0.793 

SVM rbf 0.770 

 

Another experiment was performed for comparison purposes. We used all the 
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predictors computed with a snapshot of the network during the time interval [𝑢𝑢,𝑢𝑢) as 

input to the binary classifier to directly predict whether or not there would be a link 

during the time interval (𝑢𝑢,𝑢𝑢]. Results are reported in Table 25 and 26. As we can see, 

if we skip the approach of predicting the Duration of Interaction (i.e., using a model 

based only on network properties), it performs with an AUROC of 0.80 and 0.68 on 

Facebook and Wikipedia datasets respectively for the Link Prediction problem, which is 

lower than what we could achieve with our best approach that considers the predicted 

Duration of Interaction. 

7.2.d Comparison with baselines 

For the problem of predicting the duration of interaction, the baselines gave the 

following results. 

Table 27: Baselines - Facebook 

Baselines AUROC 

Hits 0.565 

Jaccard Similarity 0.645 

Adamic Adar Similarity 0.206 

Preferential Attachment score 0.578 

Node2Vec 0.527 

Our Approach 0.854 

 

From tables 27 and 28 for Facebook and Wikipedia respectively, it is observed that 

our proposed system outperforms baselines for Link Prediction problem as well. 
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Table 28: Baselines - Wikipedia 

Baseline AUROC 

Hits 0.445 

Jaccard Similarity 0.555 

Adamic Adar Similarity 0.573 

Preferential Attachment score 0.572 

Node2Vec 0.583 

Our Approach 0.769 

 

7.3 Comparison with Paranjape et al. [12] 

This study used Persistent Indirect Interactions as a base for predicting links on 

Wikipedia. Related work close to our approach was conducted by Paranjape et al. [12]. 

They designed an unsupervised algorithm that will prioritize and predict top K links that 

should be added to each page. We created a Supervised version of their efficient 

algorithm 𝑢3 and passed our Wikipedia dataset as input with K value equal to the number 

of Positives in our dataset. We validated the resulted estimates against our Positives and 

Negatives. Their other algorithms  𝑢1 and  𝑢2 gave similar results. Table 29 summarizes 

our results: 

Table 29: Comparison with Paranjape et al. - Wikipedia 

Algorithm AUROC 

𝑢3 (Predicting Duration of Interaction) 0.5 

Thesis (Predicting Duration of Interaction) 0.783 

𝑢3 (Link Prediction) 0.5 

Thesis (Link Prediction) 0.769 
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From the above table, it is clear that our system performed better than an existing 

approach for both Predicting Duration of Interaction and Link Prediction on Wikipedia’s 

dataset. 

7.4 Summary 

Based on all the experiments, the current thesis’ results show that Survival 

Analysis works best on Facebook datasets, whereas Regression Model performs the best 

on Wikipedia datasets. The experiments showed maximum improvement for predicting 

the Duration of Interaction and achieved an AUROC of 85.4% on Facebook and 77% on 

Wikipedia datasets for the Link Prediction problem. Also, by including other Available 

Categorical features on Wikipedia datasets, the models performed better than that without 

inclusion of those features. We also observed that if we do not consider the predicted 

interactivity, a model based only on network properties performed with 80% and 68% 

AUROC on Facebook and Wikipedia datasets, respectively, on the Link Prediction 

problem which is lower than what was achieved by considering predicted interactivity.  
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CHAPTER 8: CONCLUSION AND FUTURE WORK 

8.1 Conclusion 

In this thesis, we proposed a novel approach to predict links between a pair of 

nodes that show Indirect Interactions. We addressed the problem in two steps. First, we 

focused on the problem of predicting how long two nodes would interact in a network by 

identifying potential pairs of nodes (𝑢,𝑢) that are not connected, yet show some Indirect 

Interactions. Second, once the Duration of Interaction was estimated, we leveraged this 

information for the Link Prediction problem. 

We proposed two supervised learning approaches to predict Duration of 

Interaction. Given a set of network-based predictors, the basic approach consisted of 

learning a Binary Classifier to predict whether or not an observed Indirect Interaction 

would continue in the future. The second and more fine-grained approach consisted of 

estimating how long the interaction would last by modeling the problem via Survival 

Analysis or as a Regression task. 

Experiments were conducted on the longitudinal Facebook network and wall 

interactions, and Wikipedia Clickstream datasets to test our approach to the Link 

Prediction problem. The experimental results for the Survival Analysis on Facebook 

datasets and Regression model on Wikipedia datasets showed maximum improvement for 

predicting the Duration of Interaction (MAE 0.25 and PCC 0.46 on Facebook and MAE 

0.09 and PCC 0.91 on Wikipedia) and achieved an AUROC of 0.85 on Facebook and 

0.77 on Wikipedia for Link Prediction. We also observed that if we do not consider the 
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predicted Duration of Interaction, a model based only on network properties performed 

with 0.80 and 0.68 AUROC on Facebook and Wikipedia datasets respectively on the 

Link Prediction problem, which is lower than what was achieved by considering 

predicted Duration of Interaction. 

8.2 Future Work 

As there is always a scope for improvement, more predictor variables can be 

included in the approach. Page similarities determine which pages are closely related [7, 

26, 27], though it need not be the only main feature to predict connections; along with 

other features, it can help to achieve good results. One of the measures to calculate page 

content similarity is Latent Dirchlet allocation (LDA) which can be used by learning on 

corpora of Wikipedia network. It uses words in the document to identify topics and how 

much the contents of the document relate to the topics. 

Various datasets can be used to apply our approach. For example, the Amazon co-

purchased network can also be applied to stock markets to identify a pair of stocks that 

follow similar trends and this information can be helpful to invest smartly. In cyber 

security, this approach can be applied to identify differently behaving user accounts that 

tend to violate the security standards. Also, as the proposed system is independent of the 

language of the content, it can be applied to various language versions of Wikipedia [13] 

as well. 
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