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ABSTRACT 

Dryland ecosystems are globally distributed and occupy nearly half of Earth’s 

terrestrial surface. Drylands are particularly vulnerable to degradation and their 

restoration has become a global concern. Sagebrush-steppe ecosystems in the 

intermountain western United States have been subject to decades of active management 

efforts to address invasive species and restore plant communities, and can serve as a 

relevant case study to investigate dynamics between fire, invasive species, and 

management treatments in a representative dryland system. My objective was to 

determine the relative importance of fire history, management treatment history, abiotic, 

and biotic factors in relation to the abundance of key vegetative components in the 

Morley Nelson Snake River Birds of Prey National Conservation Area, a highly fire-

prone and endangered sagebrush-steppe ecosystem. The vegetative components of 

interest included the non-native annual grass cheatgrass (Bromus tectorum), the native 

perennial bunchgrass Sandberg bluegrass (Poa secunda), Wyoming big sagebrush 

(Artemisia tridentata ssp. wyomingensis), and biological soil crust. I performed 

multivariate model selection for each response variable in burned and unburned study 

areas.  

My results indicate that within both burned and unburned areas, B. tectorum 

abundance was negatively associated with P. secunda and biological soil crust, 

highlighting the potential of shallow-rooted perennial grasses and soil crust to limit the 

abundance of B. tectorum.  Post-fire management treatments were not included in best fit 
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models for B. tectorum abundance, confirming the findings of previous work on the 

limited success of post-fire treatments in warm and dry regions of the sagebrush-steppe 

ecosystem. A. tridentata ssp. wyomingensis exhibited a negative relationship with the 

distance to the nearest fire border in unburned areas, suggesting the role that fire edge 

effects may play in landscapes with unburned sagebrush.  P. secunda appears to tolerate 

some level of fire, withstanding up to two repeat fire events. Conversely, B. tectorum 

reaches its highest abundance after three or more fires. Repeat fire is a significant threat 

to Wyoming big sagebrush-communities, but our results suggest that burned landscapes 

that still contain P. secunda and biological soil crust offer opportunities to explore the 

dynamics between B. tectorum and P. secunda and the restoration potential of P. 

secunda. 
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INTRODUCTION 

Human activity has induced sweeping change to the structure, composition, and 

function of Earth’s terrestrial ecosystems (Vitousek et al., 1997) . The accelerating nature 

of these trends has prompted the emergence of global change research, which has 

enhanced our understanding of the factors driving these changes and their effects across 

regional and global scales (Vitousek, 1994). The prominent drivers of global change in 

terrestrial ecosystems include biological invasions, altered disturbance regimes, land use 

change, and climate change (Steffen et al., 2006). Earth’s terrestrial ecosystems are 

highly diverse however, and exhibit variability in their vulnerability to global change 

divers (Sala et al., 2000). 

Dryland ecosystems, which encompass arid and semi-arid deserts, shrub lands, 

savannas, and grasslands, comprise nearly half of Earth’s terrestrial surface and support 

the economic livelihoods of hundreds of millions of people (Reynolds et al., 2007). 

Dryland systems are vastly distributed and have been increasingly recognized for their 

roles in global net primary productivity and carbon dynamics (Poulter et al., 2014; Huang 

et al., 2016). As water-limited systems however, drylands are particularly vulnerable to 

global change drivers and resulting degradation (Sala et al., 2000; Svejcar and 

Kildisheva, 2017), which has motivated efforts to better understand dynamics within 

drylands systems and to devise strategies to prevent further losses (Huang et al., 2016; 
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Reynolds et al., 2007). In broader discussions of addressing degradation in dryland 

systems, scientists have proposed active management of the biotic components of dryland 

systems to enhance resilience to global change drivers and to prevent continued loss in 

ecological function and services (Aronson and Alexander, 2013; James et al., 2013; 

Maestre et al., 2016).  Due to the complexity of both the ecological and social dimensions 

of drylands systems however, restoration will invariably require place-based approaches 

(Franklin et al., 2016). The sagebrush-steppe ecosystem in the western United States is a 

dryland system that has been heavily impacted by non-native annual grasses and altered 

fire regimes.  It is also the subject of a large body of research on applied restoration. 

Thus, the sagebrush-steppe ecosystem provides an intriguing case study of the 

complexities involved in both management and restoration of dryland systems.  

The Sagebrush-Steppe Ecosystem 

The sagebrush-steppe is comprised of shrub and grass dominated communities 

that are broadly distributed across the interior western United States and Canada (Brooks 

and Chambers, 2011; West, 1983). Non-native annual grasses are of particular concern as 

they occupy significant portions of the sagebrush-steppe and both enhance and benefit 

from fire, leading to cycles of annual grass invasion and fire that have transformed 

diverse shrub dominated communities to invasive annual grass monocultures across a 

large portion of the sagebrush-steppe ecosystem (Balch et al., 2013; Whisenant, 1990). 

Fire and invasive annual grasses are key drivers of change in dryland systems across 

Earth’s terrestrial systems, and are the primary drivers of ecological degradation in the 

sagebrush-steppe ecosystem (Brooks et al., 2004; D’Antonio and Vitousek, 1992; Svejcar 
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and Kildisheva, 2017).  Fire, invasive species, and land conversion associated with 

human population growth have collectively destroyed roughly half of the sagebrush-

steppe ecosystem since Euro-American settlement of the West (Knapp, 1996). These 

trends, including their interactive and cumulative effects, pose significant threats to an 

already dwindling ecosystem (Chambers and Wisdom, 2009; Knick et al., 2003). 

The sagebrush-steppe ecosystem is the subject of a large body of applied research 

on active manipulation of biotic components, especially with regards to controlling 

invasive species and restoring native species in fire impacted areas (e.g., Baker, 2006; 

Davies et al., 2011; Svejcar et al., 2017). In addition, the sagebrush-steppe has been 

subject to a large-scale program of post-fire rehabilitation and restoration. The Bureau of 

Land Management has conducted extensive burned area recovery efforts through the use 

of post-fire treatments to prevent invasive weed dominance and to reestablish seeded 

species (Beyers, 2004). Over 5,000 seeding treatments have been implemented over 

millions of hectares of the sagebrush ecosystem in the last 75 years, potentially 

representing one of the largest vegetation manipulation efforts in the world (Pilliod et al., 

2017). A majority of these post-fire seeding treatments are implemented under a federal 

rehabilitation program, the Emergency Stabilization and Burned Area Rehabilitation 

(often referred to as ESR) program (GAO, 2003).  

There are two theoretical frameworks that have become integral to research and 

management in the sagebrush-steppe ecosystem. State and Transition (S&T) and 

Resistance and Resilience (R&R) have advanced our understanding of the effects of fire, 

invasive species, and livestock grazing on plant communities in the sagebrush-steppe. On 
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a fundamental level, S&T and R&R represent the kind of syntheses that scientists have 

identified are needed to understand the changes occurring in dryland systems across the 

Earth (Franklin et al., 2016; Maestre et al., 2016). A brief review of each of these 

frameworks will follow. 

State and Transition 

The State and Transition framework was proposed in the late 1980s to describe 

the “multi-equilibrial” nature of plant community dynamics in the sagebrush-steppe 

ecosystem (Westoby et al., 1989). Classic theories of ecological succession did not 

accurately portray the dynamics within sagebrush-steppe ecosystems, such as the 

observed non-linear changes in plant community composition and structure in response to 

disturbance and invasive weeds (Bestelmeyer et al., 2003). State and transition models 

were presented as a more accurate depiction of observed dynamics as they recognized the 

existence of multiple “states” that differed from climax communities in both their 

structure and composition (Westoby et al., 1989). “Transitions” were described as the 

mechanisms, such as land-use, disturbance, and climate, that alter biotic components and 

ecological processes to ultimately drive conversions to alternative “states” (Stringham et 

al., 2003). While “states” represent a proposed plant community that will not transition to 

an alternative state unless a certain boundary, often referred to as a threshold, is crossed 

(Stringham and Shaver, 2001). Thresholds represent factors that influence potential 

transitions between states such as management interventions, biotic interactions, and 

ecological processes (Stringham et al., 2003). Within a given state however, there exists a 

large potential for variation in species composition and community dynamics, which are 
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often referred to as “phases” (Stringham and Shaver, 2001). The S&T framework was 

embraced by the rangeland science community in the 1990s (Bestelmeyer et al., 2003) 

and became a key component of the Natural Resources Conservation Services Ecological 

Site Description (ESD) program (Stringham and Shaver, 2001). Within a given ESD, the 

possible states, phases, and potential transitions have been described for the dominant 

vegetation and soil types across the sagebrush-steppe. Importantly, each ESD identifies 

the historic plant community and contains additional information on soil conditions, 

climate, and management actions that may have particular influence on both states and 

potential transitions. 

Resistance and Resilience 

The R&R framework was originally informed by empirical testing of fire and 

invasive weed dynamics across the major climatic regimes and sagebrush plant 

community types in the sagebrush-steppe ecosystem (Brooks and Chambers, 2011; 

Chambers et al., 2014a, 2007). Within this framework, resistance is defined as the abiotic 

and biotic attributes of an ecosystem that limit growth of invading species (D’antonio and 

Thomsen, 2004) and resilience as the capacity of an ecosystem to maintain its structure 

and function when subjected to disturbance, most notably fire (Chambers et al., 2007). 

Resistance to invasion and resilience to fire are to be interpreted as innate characteristics 

of sagebrush-steppe plant communities (Pyke et al., 2015a). Areas of the sagebrush 

ecosystem are classified into low, moderate, and high resistance and resilience based 

primarily on temperature, precipitation, and soil moisture and soil temperature regimes 

(Chambers et al., 2014c). Researchers employing the framework have identified the key 
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biotic and abiotic determinants of resistance and resilience and have devised decision 

tools to support management actions across the sagebrush ecosystem (Pyke et al., 2015b). 

Both S&T and R&R classify the dominant communities in the sagebrush-steppe 

into units that are meaningful to both scientists and managers. In S&T, the main 

management units are ecological sites and within R&R, management units are defined by 

low, medium, and high resistance and resilience. Both frameworks are intended to not 

only aid managers in determining the characteristics of given management units, but to 

help inform decision making by providing guidance on the appropriateness of 

management interventions (Chambers et al., 2014c, Miller et al., 2011). Both frameworks 

acknowledge that certain ecological sites and resistance and resilience zones are at high 

risk to fire and annual grass dominance (Bestelmeyer et al., 2003; Chambers et al., 

2014a). In addition, researchers have acknowledged that both frameworks can help 

inform one another. For example, as inherent characteristics of given ecological sites, 

resistance and resilience can be used to determine how far a given state can be displaced 

from its equilibrium before transitioning to an alternative stable state (Stringham and 

Shaver, 2001). There are acknowledged limitations in the application of S&T and R&R 

however. One of the key gaps in the S&T framework are detailed descriptions of 

transitions and associated thresholds. Within ESDs for the various plant communities of 

the sagebrush-steppe, activities that can result in transitions such as overgrazing and 

wildfire are stated, but their attributes such as duration and intensity are not measured. In 

other words, these models have not quantified the processes underlying transitions 

(Bestelmeyer et al., 2003). Within the R&R framework, topographic and environmental 
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variability result in variability in the ecosystem attributes that influence site resistance to 

invasive annual grasses, which requires careful assessment of site conditions beyond the 

general categories of resistance and resilience (Miller et al., 2013).  

Wyoming Big Sagebrush Communities 

Wyoming big sagebrush communities are the most widespread plant community 

type in the sagebrush-steppe ecosystem and typically occupy regions with cool, wet 

winters, and dry, hot summers (Taylor et al., 2014). These climatic conditions are 

especially conducive to B. tectorum growth, survival, and reproduction (Bradford and 

Lauenroth, 2006; Bradley, 2009). B. tectorum invasion into Wyoming communities has 

been considerable and has led to shortened fire return intervals and a higher occurrence of 

large fire events (Balch et al., 2013; Brooks et al., 2004; Whisenant, 1990). Wyoming big 

sagebrush communities have lower overall productivity compared to other big sagebrush 

community types, which limits post-fire recovery (Beck et al., 2009; Shinneman and 

Baker, 2009; Shinneman and McIlroy, 2016). Thus, Wyoming big sagebrush exhibit 

inherently low resistance to invasive annual and grasses and low resilience to disturbance 

(Chambers et al., 2014a).  As a result, Wyoming big sagebrush communities are also 

highly vulnerable to conversion to annual invaded states (Chambers et al., 2014b). 

Both the Resistance and Resilience and State and Transition frameworks 

acknowledge the exceedingly difficult restoration context that low resistance and 

resilience Wyoming big sagebrush communities present. However, Wyoming big 

sagebrush landscapes vary widely in their degree of invasion, their disturbance history, 

and their management context. The Morley Nelson Snake River Birds of Prey National 
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Conservation Area (NCA) in southwestern Idaho is a low resistance and resilience 

landscape that has experienced high B. tectorum invasion, high fire activity, and in result, 

extensive conversion to invaded alternative states dominated by invasive annual grasses 

and forbs. It exhibits some of the highest fire frequencies recorded in the northern Great 

Basin and it has also been the site of over a hundred post-fire drill and aerial seedings 

since the mid 1950’s (Bukowski and Baker, 2013).  

The ecological site description for the dominant Wyoming big sagebrush 

community type in the NCA is “loamy 8-12 Wyoming big sagebrush/Bluebunch 

wheatgrass/Thurber’s needlegrass” (Fig. 1).  The historical reference state in the 

corresponding state and transition model identifies Wyoming big sagebrush as the 

dominant overstory and two deep-rooted perennial bunchgrasses as the dominant 

understory: Bluebunch wheatgrass (Pseudoroegneria spicata (Pursh) A. Löve) and 

Thurber’s needle grass (Achnatherum thurberianum (Piper) Barkworth). The model 

indicates that livestock grazing can reduce deep-rooted perennial bunchgrasses, resulting 

in a phase characterized by an increase Sandberg’s bluegrass (Poa secunda Presl), a 

shallow-rooted, native perennial bunchgrass.  If livestock grazing that occurs across 

seasons and results in heavy utilization of native perennial bunchgrasses and fire occur, 

an ecological threshold may be crossed and the reference state can be converted to an 

alternative invaded state characterized by P. secunda, B. tectorum, and other annual 

invasive species. Once in this alternative stable state, management interventions such as 

seeding treatments can potentially convert invaded states into alternative seeded states, 

but return to the original historical reference state is considered unlikely. The model 
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acknowledges the potential of a fourth alternative stable state that may arise if extreme 

erosion and loss of soil resources occur. Thus, in Wyoming big sagebrush communities 

that have experienced a high degree of fire and livestock grazing, B. tectorum and P. 

secunda can become key species. 

An additional biotic component that is critically important to the ecological 

integrity of the sagebrush-steppe, and drylands more broadly, are biological soil crusts 

(Belnap et al., 2001a). Biological soil crusts are a key component of the soil substrate and 

are a community of mosses, lichens, cyanobacteria and fungi that influence water 

filtration, nitrogen fixation, and plant germination and growth (Belnap et al., 2001b). 

There is some experimental evidence that biological soil crusts can limit the germination 

and growth of B. tectorum (Deines et al., 2007; Serpe et al., 2006). In addition, several 

observational studies have documented negative relationships between biological soil 

crust and B. tectorum abundance across the sagebrush ecosystem (Gelbard & Belnap, 

2003; Peterson, 2013; Reisner et al., 2013; Shinneman & Baker, 2009). Despite their 

importance, the state and transition model for the dominant Wyoming big sagebrush 

community type does not address how biological soil crusts are influenced by livestock 

grazing and fire, or how they may change between phases and states. 

Research Objectives 

Both State and Transition and Resistance and Resilience frameworks focus on the 

transformative effects of fire and invasive annual grasses in the sagebrush-steppe 

ecosystem, but the vast majority of applied research on plant community responses to fire 

evaluates the effects of single fire events (Condon et al., 2011; Knutson et al., 2014). The 
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effects of multiple fires on vegetation are less understood (Miller et al. 2013).  The fire 

and management history of the NCA offer the opportunity to investigate how frequent 

fire and management treatments may influence vegetation in degraded Wyoming big 

sagebrush steppe communities. The primary objective of this study is to determine if fire 

history and management treatments have influenced the key biotic components of a 

highly fire-prone Wyoming big sagebrush community. Fire and management history will 

be evaluated alongside additional abiotic, biotic, and spatial factors to determine their 

relative importance on B. tectorum, P. secunda, A. tridentata ssp. wyomingensis, and 

biological soil crust.  
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METHODS 

Study Site 

This study area is located within the 243,000 ha Morley Nelson Snake River Birds 

of Prey National Conservation Area (NCA) (43° N, 116°W) (Fig. 2). The NCA is located 

within the Snake River Plain ecoregion and receives approximately 200 mm of 

precipitation annually primarily between November and March (Fig. 3). The NCA is 

characterized by loess derived soils and has relatively flat topography with the exception 

of a few isolated buttes. The NCA is bordered by the Snake River canyon on its western 

and southern boundary, and agricultural and suburban areas on its northern boundary 

(Fig. 4).  The Bureau of Land Management manages the NCA under a multiple use 

framework, and permits grazing, recreation, wildlife viewing, and scientific research 

(Knick and Rotenberry, 1997). Because of its importance to nesting raptors, the NCA 

attracts diverse research on fire and fuel dynamics, wildlife population dynamics, 

restoration ecology, and human-wildlife interactions.  

Prior to European settlement, plant communities at the NCA consisted primarily 

of Wyoming big sagebrush, while winterfat (Krasheninnikovia lanata (Pursh) A. Meeuse 

& Smit) and salt desert shrub communities (Atriplex spp.) comprised a lesser component. 

The NCA experienced heavy and prolonged grazing by cattle and sheep during the early 

1900s (Yensen, 1982), leading to the depletion of the native herbaceous understory and 
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the spread of B. tectorum (USDI, 2008). The NCA has experienced a significant increase 

in fire size and fire frequency in the last century, with particularly large fire seasons in 

the early 1980s, 1995, and 1996 (USDI, 2008). The cumulative impacts of fire and annual 

grass invasion have converted over half of the NCA’s native shrub communities to non-

native communities dominated by B. tectorum and increasingly, by secondary weeds such 

as Russian thistle (Salsola kali L.) and annual mustards (Descurainia spp., Sisymbirum 

ssp) (USDI, 2008). The remaining Wyoming big sagebrush habitat is highly fragmented 

and at risk conversion to B. tectorum (Knick and Rotenberry, 1997). As a federally 

managed entity, the NCA has received nearly 100 post-fire seeding treatments since the 

late 1950s. Prior to 1990, these treatments consisted of plowing and seeding, but since the 

early 1990s, treatments have consisted of fall seedings with rangeland drills and/or fall or 

spring aerial seedings (USDI, 2008).  

Experimental Design 

This study utilized field data from a previously conducted study carried out by the 

U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center (USGS 

FRESC) (Shinneman et al., 2015). The USGS FRESC study utilized the USGS Land 

Treatment Digital Library (Pilliod and Welty, 2013) to create spatial layers of both fire 

and post-fire treatment history spanning 1957-2014. These layers were then used to 

stratify sampling locations across three categories of fire and treatment history: (1) 

previously burned areas that received BLM post-fire emergency stabilization and 

rehabilitation treatments with native and non-native species using aerial, drill, or both 

aerial and drill methods (i.e. treated), (2) previously burned areas from 1957-present with 
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no record of post-fire treatments (i.e. burned), (3) areas that have no record of fire from 

1957-2014 (i.e. unburned). Treated areas that burned multiple times were included only if 

they were treated after the most recent fire. The USGS established 98 field plots in 2012 

and conducted sampling  between May and August (Fig. 5). This study utilized field data 

collected in 2012, which was the first year of a three-year study.  The precipitation in 

2012 was most similar to the long-term average for the region (Fig. 3, Table 1). Field 

plots consisted of 98 randomly assigned 1-hectare plots across unburned, burned, and 

treated strata and thus captured differences in fire and treatment history. 

Within each 1-ha plot, nine, evenly spaced subplots were established 25 m apart. 

At each subplot center, a 1x1 m quadrat frame was placed and a nadir oriented photo was 

taken 2 m above each quadrat.  Photos were analyzed with SamplePoint software to 

derive percent canopy cover of all present species as well as the soil surface (litter, bare 

mineral soil, rock, and biological soil) for each subplot (Booth et al., 2006). Percent cover 

was averaged over the nine subplots, resulting in plot-level cover for individual species 

and the soil surface. Plot-level cover for plant functional groups was determined by 

combining the cover of all individual species in a given functional group, e.g., native 

perennial bunchgrasses, non-native seeded perennial bunchgrasses, etc. Plot-level canopy 

cover was used for both predictor and response variables.  

Predictor Variables 

A spatial layer of all fires from 1957-2014 compiled from the USGS Land 

Treatment Digital Library (LTDL) was used to derive several fire variables for each field 

plot. The LTDL contains digitized fire polygons and ancillary information such as fire 



14 

 

 

 

 

year, which was compiled into a spatial database in ArcGIS. If a fire record existed in 

LTDL, it was assumed that the entire polygon represented burned area. From 1957-2014, 

58% of the NCA has burned (Fig. 6). However, this burned area consists of a fire 

gradient of 1-8 fires (Fig. 7). This fire gradient layer was used to create a spatial layer of 

fire frequency categories (Fig. 8). In addition, a spatial layer of year since last fire was 

used to create spatial layer of fire recentness (Fig. 9).  Using these spatial layers, fire 

history variables were derived for each plot (Table 2). Roughly 20% of the NCA has 

received post-fire rehabilitation treatments in the form of drill or aerial seedings from 

1957-2014 (Fig. 10, Fig. 11). This layer was used to derive treatment type for each plot 

(Table 2). Several spatial variables including nearest fire border, nearest road, and nearest 

allotment boundary were derived for each field.  Using proximity tools in ArcGIS, the 

perpendicular distance in meters from the plot center to the nearest fire border, road, and 

allotment were determined (Table 2). Two key abiotic variables, mean elevation and soil 

type, were derived in ArcGIS (Table 2). Three native perennial plant functional groups 

were included as biotic predictor variables to evaluate the influence of present day-

vegetation on each response variable (Table 3, Table 4b). In addition, each response 

variable contained the other response variables as predictors, e.g. models for B. tectorum 

included P. secunda, A. tridentata ssp. wyomingensis, and biological soil crust as 

predictors. 

Data Analysis 

Multiple linear regression was used to evaluate the relative importance of biotic, 

abiotic, disturbance, and management factors in relation to the abundance of each of the 
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four response variables: B. tectorum (BRTE), P. secunda (POSE), A. tridentata ssp. 

wyomingensis (ARTRW), and biological soil crust (BSC).  Each response variable 

consisted of plot level percent canopy cover that was log transformed to improve 

normality and meet model assumptions. Separate submodels for each response variable 

were developed for unburned and burned plots (Table 5). For each of the four response 

variables in both burned and unburned submodels, model selection was employed using a 

forward stepwise approach based on corrected Aikikie Information Criteria (AICc) 

(Mazerolle, 2011).  Factors were added iteratively and AICc was calculated and 

compared until the addition of factors no longer reduced AICc values. Interactions 

between predictors were not included in model selection. Final models represent the most 

parsimonious models with significant main effects. If the final model contained multiple 

factors, each factor was dropped individually to assess its relative importance based on 

the observed change in AICc value. Factors were considered to have high, moderate, or 

low importance if the change in AICc was greater than 10, between 10 and 2, or less than 

2 (Bansal and Sheley, 2016). All analysis was performed using R computer software (R 

Core Team, 2014). 
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RESULTS 

Unburned 

B. tectorum 

In unburned areas, the best fit model contained several biotic factors as well as 

one spatial factor (Table 6). Cover of B. tectorum decreased with increasing cover of P. 

secunda, native shrubs, and biological soil crust and with increasing distance from the 

nearest allotment boundary. Removal of P. secunda and biological soil crust from the 

best fit model resulted in a larger change in AICc compared to the removal of native 

shrubs and nearest allotment, indicating stronger relationships between B. tectorum and 

P. secunda and B. tectorum and biological soil crust. Other spatial factors such as nearest 

road and nearest fire border were not present in the final best fit model. With an adjusted 

R2 of .78, the best fit model in unburned areas explained a relatively large proportion of 

the variability in B. tectorum cover within unburned plots. 

P. secunda 

In unburned areas, the best fit model for P. secunda displayed a strong, negative 

relationship with BRTE cover (Table 6). Additional spatial, biotic, and abiotic factors 

were not included in the best fit model. The best fit model explained 61% of the 

variability in P. secunda cover within unburned plots.  
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Biological soil crust 

In unburned areas, the best fit model for biological soil crust contained cover of A. 

tridentata ssp. wyomingensis and distance to the nearest allotment boundary and 

displayed positive relationships with both (Table 6). Biological soil crust cover increased 

with increasing Wyoming big sagebrush cover and as the distance to the nearest 

allotment boundary increased. The best fit model did not contain other biotic, abiotic, and 

spatial factors. Roughly 50% of the variability in biological soil crust within field plots 

was explained by Wyoming big sagebrush cover and proximity to allotment boundaries.  

A. tridentata ssp. wyomingensis 

In unburned areas, the best fit model for A. tridentata ssp. wyomingensis 

contained the distance to the nearest fire border and cover of B. tectorum (Table 6). 

Cover of A. tridentata ssp. wyomingensis increased as the distance away from the nearest 

fire border increased and as the cover of B. tectorum decreased. Removal of these two 

predictors resulted in smaller relative change in AICc scores.  The best fit model 

explained 27% of the variability of A. tridentata ssp. wyomingensis cover within 

unburned plots.   

Burned 

B. tectorum 

In burned areas, the best fit model contained only a subset of the originally 

hypothesized relevant factors (Table 6). As in unburned areas, B. tectorum exhibited 

strong, negative relationships with P. secunda and biological soil crust, with these two 

factors alone explaining 70% of the variability in BRTE cover. Other factors such as fire 
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history and management treatments were not included in the best fit model. Figures 12-15 

display the cover each response variable in relation to fire and treatment history.  Cover 

of B. tectorum was similar between burned and untreated and burned and treated plots, 

although burned plots displayed greater cover than unburned plots (Fig. 12a).  Cover of 

B. tectorum was similar in plots that burned one or two times, but cover of B. tectorum in 

plots that burned three to five times since 1957 were dominated by B. tectorum (Fig 13a). 

B. tectorum cover did not differ across categories of fire recentness (Fig 14a), or across 

treatment categories (Fig 15a).  

P. secunda 

In burned areas, the best fit model contained only a subset of the originally 

hypothesized relevant factors (Table 6). As in unburned plots, P. secunda  negative 

relationship with B. tectorum cover, but categories of times burned were also included in 

the best fit model. These two factors explained 64% of the variability in P. secunda cover 

in burned plots. Cover of P. secunda did not differ greatly across unburned, burned and 

untreated, and burned and treated plots (Fig 12b). However, cover of P. secunda did 

differ across categories of times burned, with plots that burned three to five times 

containing much less P. secunda cover compared to plots that burned once or twice (Fig 

13b).  Within treated areas, P. secunda cover was lowest in areas that received drill 

seeding treatments and a combination of drill and aerial treatments (Fig. 15b).  

A. tridentata ssp. wyomingensis 

Model selection did not produce a best fit model for A. tridentata ssp. 

wyomingensis in burned plots, likely due to the low or absent A. tridentata ssp. 
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wyomingensis cover in burned plots (Fig. 12c). A. tridentata ssp. wyomingensis cover was 

very low or absent in plots regardless of number of times burned (Fig. 13c), or years 

since the last fire (Fig 14c).  

Biological soil crust 

In burned areas, the best fit model for biological soil crust contained non-

sagebrush native shrubs and B. tectorum (Table 6). As in unburned plots, biological soil 

crust displayed a positive relationship with native shrubs in burned plots. In addition, 

biological soil crust displayed a negative relationship with B. tectorum. The best fit 

model for biological soil crust in burned areas explained slightly more of the variability 

in biological soil rust cover (68%) than in unburned areas. In general, biological soil crust 

cover was lower in burned plots than in unburned plots (Fig. 12d), but there were  no 

strong distinctions in biological soil crust cover across categories of times burned (Fig. 

13d), fire recentness (Fig. 14d), or across management treatments (Fig. 14d). 
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DISCUSSION 

Relative Importance of Fire, Management Treatments, Spatial, and Biotic Factors 

This study assessed the relative importance of fire and management treatments in 

Wyoming big sagebrush landscapes. Factors related to each of these processes were 

included in model selection for each response variable, but proved to be unimportant in 

most cases for explaining percent canopy cover of each response variable. Rather, present 

day vegetative components explained most of the variation in the abundance of our 

chosen response variables.  

Influences on the Abundance of B. tectorum 

In the best-fit model for B. tectorum in burned plots, fire recentness, fire 

frequency, and management treatments were not present in the final best fit model.  There 

were minimal differences in the cover of B. tectorum across categories of fire frequency 

(Fig. 13a), fire recentness (Fig. 13b), and management treatments (Fig. 13c).  Reducing 

the abundance of invasive annual grasses is a primary objective of post-fire rehabilitation, 

but the majority of post-fire management efforts have had little to no impact on invasive 

abundance (Pyke et al., 2013), particularly in Wyoming big sagebrush communities in 

warmer and drier portions of the sagebrush-steppe ecosystem (Knutson et al., 2014).  

Rather, biotic factors were found in the best-fit models for B. tectorum in burned and 

unburned plots. In the best-fit model for B. tectorum in both burned and unburned plots, 
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P. secunda and biological soil crust displayed strong, negative relationships with the 

cover of B. tectorm. P. secunda is the most common native perennial bunchgrass present 

within the NCA (Quinney, 1999), and other studies have observed high relative 

abundance of P. secunda in degraded Wyoming big sagebrush communities (Davies et 

al., 2015; Davies and Svejcar, 2008).  There is ample evidence that native perennial 

bunchgrasses contribute to site resistance to invasive annual grasses by limiting both the 

amount of space and resources available to B. tectorum (Chambers et al., 2007; Chambers 

et al., 2014a).  Reisner et al. (2013) demonstrated however, that sites with deep-rooted 

perennial bunchgrasses that contained P. secunda and biological soil crust in interspaces 

exhibited particularly high resistance to invasive grasses.  Historic overgrazing at the 

NCA has depleted much of the deep-rooted perennial bunchgrass community however 

(Quinney, 1999; Yensen, 1982). Our results suggest that both P. secunda and biological 

soil continue to be important influences on B. tectorum even within highly altered 

Wyoming big sagebrush communities. From this data alone it is difficult to discern which 

mechanisms may underlie the negative relationship between P. secunda and B. tectorum, 

but our results suggest that P. secunda can persist in highly invaded environments, while 

there is growing evidence that P. secunda can limit B. tectorum under certain conditions. 

B. tectorum and P. secunda Dynamics 

The competitive abilities of B. tectorum compared to native perennial bunch 

grasses in the seedling stage are well established; B. tectorum displays fast root growth 

(Arredondo et al., 1998) and can rapidly consume soil moisture and outcompete native 

perennial grass seedlings (Kulmatiski et al., 2006a, Mangla et al., 2011; Schantz et al., 
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2015).  Recent research on trait differences in P. secunda populations from invaded areas 

versus non-invaded areas indicate that P. secunda from invaded areas may possess traits 

that enable growth and reproduction even under competitive pressure from B. tectorum. 

Populations of P. secunda from invaded areas exhibit earlier timing of flowering and 

reproduction and appear to maintain root growth rates in the presence of B. tectorum 

(Baughman et al., 2016; Goergen et al., 2011; Johnson et al., 2015; Monaco et al., 2005). 

Researchers have suggested that these traits are the result of local adaptation of P. 

secunda to high competitive pressure (Goergen et al., 2011; Kulpa and Leger, 2013).  

Perhaps one of P. secunda’s most important traits is that it engages in several 

reproductive modes including outcrossing, selfing, and apomixis (Kellog, 1987). 

However, it is thought that reproduction via apomixis is common, resulting in high levels 

of apomictic seed production in native populations (Kelley et al., 2009). Reproduction via 

apomixis entails asexual production of seeds, and permits species to reproduce even at 

low density, which may explain how P. secunda can persist in invaded environments like 

the NCA. Collectively, these traits explain how P. secunda can co-exist with B. tectorum, 

but other studies have noted that dense populations of P. secunda may limit B. tectorum 

germination and growth and even exclude B. tectorum (Bates and Davies, 2014; Davies 

et al. 2012). Our results indicate that burned study plots that contained 30% cover of P. 

secunda contained very little to no B. tectorum. Chambers et al., (2014b) found that 20% 

total cover of P. secunda and deep-rooted perennial bunchgrasses was necessary to limit 

B. tectorum in a similar Wyoming big sagebrush site, suggesting that P. secunda may 
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need to maintain even higher density to exclude B. tectorum if other perennial bunchgrass 

species are absent.  

Over the course of this study, we observed sites within the NCA that were 

dominated by P. secunda, suggesting that P. secunda can become a cover type under 

certain conditions.  Davies et al. (2012) described a P. secunda phase in a Wyoming big 

sagebrush landscape with a similar disturbance history to the NCA.  They described two 

phases, one dominated by Poa secunda and one dominated by B. tectorum and observed 

that the B. tectorum phase was replaced by P. secunda over a seven year period that 

experienced one fire. The authors suggested that post-fire herbicide treatments may have 

reduced B. tectorum growth, opening a window for an increase in P. secunda. Longer-

term observations, like the aforementioned study by Davies et al. (2012), allows 

researchers to describe changes in abundance over time and to identify causal factors. In 

our study, we are unable to offer insights on temporal dynamics between B. tectorum and 

P. secunda, however our results suggest that very high abundances of P. secunda can 

exclude B. tectorum at smaller spatial scales. Although we are unable to describe the 

dynamics and longevity of existing populations of P. secunda at the NCA, our results do 

shed light on how P. secunda responds to repeat fire.  

Fire and Disturbance Effects on B. tectorum and P. secunda 

The best fit model for P. secunda in burned areas contained categories of fire 

frequency as a predictor. Plots that burned one or times did not differ greatly in P. 

secunda abundance, but plots that burned 3-5 times from 1957-2014 contained 

significantly less P. secunda. The S&T model acknowledges that fire is a key factor 
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driving the transition from State 1 to State 2 (T1), but it does not quantify this threshold 

(Fig. 1).  These results suggest however that three fires can remove P. secunda from 

burned areas. Though it is unclear what may explain this dynamic, it is possible that the 

combination of repeated disturbance and high competitive pressure from B. tectorum 

overwhelms the ability of P. secunda to maintain growth and reprod These results 

suggest however that three fires can reduce or remove populations of P. secunda. Though 

it is unclear what may explain this dynamic, it is possible that the combination of 

repeated disturbance and high competitive pressure can negatively impact populations of 

P. secunda over time. Though P. secunda possesses traits that allow established 

populations to persist in invaded environments, B. tectorum can rapidly deplete soil 

moisture following fire and negatively impact the soil water status and productivity of 

established perennial species (Melgoza et al., 1990). Thus, the influence of repeated fire 

and high competition may overwhelm the ability of P. secunda to maintain growth and 

reproduction.  Although fire frequency was not a significant factor in the best fit model 

for B. tectorum, the range in B. tectorum cover in plots that experienced 1-2 fires versus 

plots that burned 3 or more times was far greater (Fig. 13a). In plots that burned three or 

more times, B. tectorum was greater than 60% in all sampled plots. These results indicate 

that three or more fires are likely to result in high B. tectorum dominance, whereas 1 or 2 

fires can result in a range in both B. tectorum and P. secunda abundance. Thus, our 

results for offer insights into transitions as well as the resulting states in fire-prone 

Wyoming big sagebrush communities and indicate that P. secunda and biological soil 
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crust are key biotic factors in alternative states, suggesting a more nuanced interpretation 

of State 2 within the S&T model. 

An intriguing trend was the lower cover of P. secunda in plots that received drill 

seeding treatments (Fig. 15b).  P. secunda was less abundant in plots that were drill 

seeded versus plots that were aerially treated or untreated following fire. Rangeland drills 

have been used extensively for post-fire rehabilitation in the sagebrush-steppe for 

decades (James and Svejcar, 2010). Conventional rangeland drills employ rotating disks 

to till the soil surface.  The disturbance associated with tilling increases resource 

availability and can favor the establishment of species that respond quickly to higher 

resource availability such as B. tectorum (Beckstead and Augspurger, 2004; Doerr et al., 

1984; Kulmatiski et al., 2006b). Tilling can also bury the seeds of B. tectorum further 

favoring its establishment.  One study noted that B. tectorum seeds sown at 9mm 

exhibited 100x greater emergence compared to those sown on bare soil (Chambers and 

MacMahon, 1994), indicating that even minimal soil disturbance can enhance B. 

tectorum establishment.  Rangeland drills can also damage residual native species and/or 

fail to establish seeded species, enhancing resources and space and resulting in greater 

post-treatment establishment of B. tectorum (Kulpa et al., 2012; Ratzlaff and Anderson, 

1995).  Ott et al., (2016) found that residual populations of P. secunda were damaged by 

conventional rangeland drills compared to minimum till drills, which suggests that under 

certain conditions, rangeland drills can negatively impact residual native species. 

However, site conditions such as elevation and precipitation likely influence outcomes 

associated with rangeland drills.  Rangeland drill treatments are more likely to be 
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successful and minimize invasive species in sites with greater moisture availability 

(Knutson et al., 2014). Given the potential for negative outcomes in certain contexts, 

researchers have recently recommended the cautious use of rangeland drills in low 

resistance and resilience areas where residual native species and biological soil crust 

remain intact after fire, or in areas where post-fire erosion potential is high (Germino, 

2016). Despite the widespread use of rangeland drills, there are few studies that have 

assessed the direct and indirect effects of rangeland drills on residual vegetation, soils, 

and biological soil crust across environmental gradients in the sagebrush-steppe 

ecosystem (Miller et al., 2013). Though our results are observational in nature, the lower 

abundance of P. secunda in drill-seeded areas suggests that past use of conventional 

rangeland drills may have reduced P. secunda populations in drill seeded portions of the 

NCA. However, it is likely that drill-seeding interacts with climatic conditions and 

grazing to influence seeding outcomes, which limits our ability to interpret our results.  

Influences on the Abundance of Biological Soil Crust 

The best-fit model for biological soil crust in burned areas did not contain fire or 

management factors. A complicating factor is that biological soil crust communities may 

take 125 years to recover from disturbances associated with historic overgrazing (Belnap 

et al., 2001b).  Since livestock grazing has persisted over time at the NCA, it is likely that 

fire and management treatments included in this study (since the late 1950s) are not the 

primary influences on biological soil crust cover at the NCA. Furthermore, determining 

the effects of grazing on biological soil crusts has proven difficult across the sagebrush-

steppe due to not only the high prevalence of grazing, but to the potentially long-lasting 



27 

 

 

 

 

legacy of grazing disturbance (Jones and Carter, 2016). Livestock grazing has occurred 

virtually across the entire sagebrush-steppe ecosystem (West, 1999), which also makes it 

difficult to disentangle the effects of fire separate from the effects of grazing (Condon, 

2016). We did include distance to the nearest allotment as a potential proxy for the 

influence of grazing, where further distances from allotment boundaries may correlate to 

less grazing use. The distance to the nearest allotment boundary was found in the best fit 

model for B. tectorum in unburned plots, where B. tectorum and distance to the nearest 

allotment displayed a negative relationship. Thus, as distance to the nearest allotment 

boundary increases, the abundance of B. tectorum tends to decrease at the NCA.  

Whether or not this is due to directly to livestock use is unclear however.  Allotment 

boundaries are often aligned with roads and fence-lines, and there is clear evidence that 

disturbance associated with spatial boundaries such as roads and powerlines can increase 

B. tectorum abundance and damage biological soil crusts (Bradley and Mustard, 2006; 

Gelbard and Belnap, 2003). However the legacy of historic overgrazing at the NCA 

complicates the ability to draw inferences on the interaction between spatial factors and 

species abundances.  

P. secunda and Restoration 

P. secunda is one of the most important native bunchgrasses in the sagebrush-

steppe ecosystem, but it is often a minor component of post-fire rehabilitation seed mixes 

because it produces less biomass for livestock grazing compared to deep-rooted perennial 

bunchgrasses (Pilliod et al., 2017). However, there has been growing interest in 

developing native plant materials that can establish and persist in drier and more variable 
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sites (Shaw and Jensen, 2014). Similarly, researchers have suggested that species that are 

more tolerant of fire and competitive pressure (such as P. secunda) may be more 

appropriate choices for restoration in areas that are disturbance-prone (Leger and 

Baughman, 2015; Uselman et al., 2014). The State and Transition model for the 

Wyoming big sagebrush communities at the NCA cautions that once the reference state 

crosses a threshold to an invaded state, a return to the historic reference state is unlikely, 

even with active restoration.  However, there is growing interest in the role that P. 

secunda could play in restoring native species to degraded landscapes. There is limited 

research on best practices for targeted restoration in native microsites, but at least one 

study suggests that native sites that dominated by early-season grasses may be suitable 

for plantings of sagebrush seedlings, potentially because they exert less competitive 

pressure on sagebrush seedling establishment and growth (McAdoo et al., 2013). A 

closely related question is whether or not land management agencies should establish 

more P. secunda in post-fire contexts. The use of P. secunda cultivars in post-fire 

rehabilitation increased at the NCA and across the sagebrush-steppe starting in the early 

2000s (Pilliod et al., 2017), but only a handful of treatments at the NCA have included P. 

secunda in drill mixes and none of our treated plots were located in those treatments. P. 

secunda is almost exclusively included as a minor component in post-fire rehabilitation 

seed mixes (Pilliod et al., 2017), and there has been limited experimentation seeding 

application rates of P. secunda in restoration contexts. Though there are presently 

opportunities to leverage populations of P. secunda to restore native species, we lack a 

complete understanding of dynamics between P. secunda and B. tectorum over time and 
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in variable conditions. We recommend research to investigate longer-term dynamics 

between P. secunda and B. tectorum in landscapes where they co-occur.  

Resistance and Resilience Looking Forward 

The R&R framework recommends prioritizing restoration investments in 

landscapes where success is more likely (Chambers et al., 2014c).  If this were strictly 

followed, landscapes like the NCA would likely not be considered ideal sites for 

restoration investments because of the high interannual variability in precipitation and the 

oftentimes inadequate levels of precipitation needed for seeded species establishment 

(Brabec et al., 2015; Ott et al., 2016).  If we ignore areas like the NCA, however, we risk 

ongoing degradation that may impact the sagebrush-steppe ecosystem more broadly.  

Low resistance and resilience areas like the NCA can serve as fire ignition sites, placing 

adjacent higher elevation areas at greater risk of fire and invasion (Balch et al., 2013). 

Projected climate change may also increase the risk of invasion and fire into adjacent 

landscapes, resulting in greater potential synergy between invasive annual grasses and 

fire activity across elevation gradients in the sagebrush-steppe ecosystem (Abatzoglou 

and Kolden, 2011; Barbero et al., 2015; Compagnoni and Adler, 2014). Thus, decreasing 

our investments in invasive species control and restoration in areas like the NCA may 

have implications for the ecological integrity of the sagebrush-steppe ecosystem as a 

whole. However, establishing seeded species and meeting restoration objectives will 

continue to be a challenging endeavor in landscapes with limited and variable 

precipitation (Hardegree et al., 2016; James et al., 2011). Our results suggest that 

populations of P. secunda can persist in otherwise degraded Wyoming big sagebrush 
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landscapes, and may provide managers with leverage to enhance the restoration of native 

species restoration. The S&T and R&R frameworks provide an important foundation for 

understanding the challenges to restoration in low resistance and resilience areas like the 

NCA, but establishing seeded species and controlling invasive species in areas like the 

NCA should continue to be a priority of the research and management community 

(Chambers et al., 2009; Svejcar et al., 2017). 
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CONCLUSION 

The scientific community has elevated degradation in drylands ecosystems to an 

issue of societal concern (Svejcar and Kildisheva, 2017).  The sagebrush-steppe 

ecosystem is reflective of the key processes impacting dryland systems including altered 

disturbance regimes, invasive species, and habitat degradation.  Scientists have 

encouraged those involved in drylands restoration to identify and enhance biotic 

components that are important for ecological integrity (Bestelmeyer et al., 2015; Franklin 

et al., 2016; Maestre et al., 2016).  In the sagebrush-steppe ecosystem, researchers have 

stressed the importance of native perennial bunchgrasses for limiting invasive annual 

grasses (Briske et al., 2015; Chambers et al., 2007, 2014a, 2014b; Davies et al., 2011; 

Reisner et al., 2013).  Though it has received less research and management attention 

over the years, P. secunda is an important native perennial bunchgrass in degraded 

environments and merits more research to understand its potential role in maintaining and 

enhancing ecological integrity in landscapes that are prone to invasive annual grasses and 

fire.  
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Table 1. 2012 monthly precipitation (mm) for the BOP NCA compared to the 100-year monthly average (1910-2010).  A 

positive difference value indicates months where 2012 precipitation was above the 100-year monthly average, and a negative 

difference indicates months where 2012 precipitation was below the 100-year monthly average.  Data derived from PRISM 

climate group, Oregon State University. 

 

Monthly Precipitation 

 

Jan 

 

Feb 

 

Mar 

 

Apr 

 

May 

 

Jun 

 

Jul 

 

Aug 

 

Sep 

 

Oct 

 

Nov 

 

Dec 

Yearly 

Total 

2012 (mm) 45.68 6.74 34.85 22.66 13.18 1.75 3.45 0.97 0.79 19.02 9.89 7.41 166.39 

100-year Average (mm) 24.76 17.42 19.85 21.31 24.31 19.67 5.31 5.88 10.40 16.08 24.75 21.01 210.75 

Difference (mm) 20.92 -10.68 15 1.35 -11.13 -17.92 -1.86 -4.91 -9.61 -2.94 -14.86 -13.6 -44.36 
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Table 2. Predictor variables used in model selection.  

Category Variable Variable Type Categories/Range 

Fire History Times burned Continuous 1, 2, 3+ (fires) *3+ refers to 3-5 fires 

 Times burned Categorical 1, 2, 3+ (fires) *3+ refers to 3-5 fires 

 Fire recentness Continuous 0-57 (years) 

 Fire recentness Categorical 0-10, 11-20, >21 (years)  

Management Treatment Type Categorical Aerial, Aerial & Ground, Ground 

Spatial Nearest fire  Continuous 25-3305 (m) 

 Nearest road Continuous 163-1914 (m) 

 Nearest allotment  Continuous 376-7496 (m) 

Abiotic Elevation Continuous Ranges form 870-1100 (m) 

 Soil Type Categorical Calcerous, Claypan, Loamy, Sandy/Stony 

Biotic Native Perennial Bunchgrass (minus P. secunda) Continuous Cover ranges from 0-10% 

 Native Shrub (minus A. tridentata ssp.  Wyomingensis)  Continuous Cover ranges from 0-20% 

 Non-Native Seeded Perennial Bunchgrass  Continuous Cover ranges from 0-15% 
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Table 3. Species included in biotic predictor variables.  

Native Perennial Bunchgrass 
Native Shrub 

(Non-Sagebrush) 

Non-Native Seeded 

Perennial Bunchgrass 

Big squirreltail 

(Elymus multisetus) 

Bud sagebrush 

(Picrothamnus desertorum) 

Crested Wheatgrass 

(Agropyron cristatum) 

Indian ricegrass 

(Achnatherum hymenoides) 

Winterfat 

(Krascheninnikovia lanata) 

Russian wildrye 

(Psathyrostachys junceus) 

Thurber’s needlegrass 

(Achnatherum thurberianum) 

Rubber (gray) rabbitbrush  

(Ericameria nauseosa) 
 

Thickspike wheatgrass 

(Elymus lanceolatus) 

Silver sagebrush  

(Artemisia cana) 
 

Needle and thread grass 

(Hesperostipa comata) 

Fourwing saltbush 

(Atriplex canescens) 
 

Basin wildrye 

(Leymus cinereus) 

Shadscale saltbush 

(Atriplex confertifolia) 
 

Bluebunch wheatgrass 

(Pseudoroegneria spicata) 

Yellow rabbitbrush 

(Chrysothamnus viscidiflorus) 
 

Squirreltail 

(Elymus elymoides) 

Greasewood 

(Sarcobatus vermiculatus) 
 

 

Spiny hopsage 

 (Grayia spinosa ) 
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Table 4. Minimum, median, and maximum % cover values for biotic response and predictor variables. Unburned n=39, 

Burned n=59, Treated n=30. 

Response Variables 

 BRTE POSE ARTRW BSC 

Plot Type Min. Med. Max. Min. Med. Max. Min. Med. Max. Min. Med. Max 

Unburned 0.00 27.89 96.30 0.00 14.06 43.05 0.00 11.66 46.87 0.00 4.461 18.40 

Burned 0.00 55.60 94.29 0.00 11.80 51.30 0.00 1.10 22.46 0.00 1.79 12.06 

Treated 0.00 57.64 93.65 0.00 9.61 38.82 0.00 1.01 17.39 0.00 2.20 12.76 

  

Predictor Variables 

 Native PG Native Shrub Non-Native Seeded PG  

Plot Type Min. Med. Min. Min. Min. Max. Min. Med. Max.    

Unburned 0.00 0.32 0.00 0.00 0.00 46.87 0.00 3.43 21.13    

Burned 0.00 0.60 0.00 0.00 0.00 22.79 0.00 0.73 6.17    

Treated 0.00 0.48 0.00 0.00 0.00 18.28 0.00 0.78 5.14    
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Table 5. Sample size and predictors used in unburned and burned submodels. Abiotic and spatial factors were identical 

for each submodel type. Unburned submodels did not contain fire and management predictors while burned submodels 

contained both fire and management factors as predictors.   

  

 

 

Predictor Variables 
 

Submodel  

 

Sample Size 

 

Biotic 

 

Abiotic 

 

Spatial 

 

Fire 

 

Management 

 

Unburned  

 

n=39 

 

Native perennial bunchgrass, 

Native non-sagebrush shrub, 

Non-native seeded perennial 

bunchgrass 

 

Mean elevation, 

Soil type 

 

Nearest fire, road, 

allotment 

 

- 

 

- 

 

Burned 

 

 

 

n=59 

 

Native perennial bunchgrass, 

Native non-sagebrush shrub, 

Non-native seeded perennial 

bunchgrass 

 

Mean elevation, 

Soil type 

 

Nearest fire, road, 

allotment 

 

Times Burned, 

Fire Recentness 

(continuous and 

categorical) 

 

Treatment type 
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Table 6. Multiple Linear Regression Model Results. Model terms in italics represent <2 change in AICc when removed; 

model terms in bold represent >10 change in AICc when removed. BRTE: Bromus tectorum, POSE: Poa secunda, ARTRW: 

Artemisia tridentata ssp. wyomingensis, BSC: biological soil crust, Native Shrub: all non-ARTRW native shrub species.  Model 

terms with a negative relationship are denoted with (-), positively related terms have no symbol following.  

Submodel Response Variable Best Fit Model Adjusted R2 AICc K 

Unburned BRTE POSE (-), BSC (-), ARTRW (-), 

Nearest allotment (-) 

.78 -113.9 5 

 POSE  BRTE (-) .61 -237.3 2 

 BSC  BRTE (-), ARTRW  .49 -221.4 3 

 ARTRW  Nearest fire, BRTE (-) .27 -68.2 3 

Burned BRTE  POSE (-), BSC (-) .70 -170.0 3 

 POSE  BRTE (-), Times burned categories .64 -239.0 5 

 BSC  Native Shrub, BRTE (-) .65 -402.4 3 

 ARTW  no model - - - 
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FIGURES 

 

Figure 1. Natural Resource Conservation Service ecological site and state and 

transition model for the Wyoming big sagebrush communities found at the NCA 

(NRCS, n.d.).  
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Figure 2. Study site. The Morley Nelson Snake River Birds of Prey National 

Conservation Area (NCA) is located in southwestern Idaho and resides on the western 

portion of the Snake River Plain ecoregion. 
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Figure 3. Monthly precipitation (mm) in 2012. 
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Figure 4. Study site in relation to southwestern Idaho’s urban, suburban, and 

agricultural areas.  The Snake River forms much of the southern boundary of the 

NCA.  Irrigated agriculture borders the southern and southeastern boundary, as well 

as the northeastern boundary.  Base imagery acquired from the US Department of 

Agriculture’s National Agriculture Imagery Program. 
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Figure 5. 2012 field plot locations within the NCA, (n=98).  
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Figure 6. Burn history of the NCA from 1957-2014. Nearly 60% of the NCA burned within this timeframe.  This figure 

depicts areas that have burned one to multiple times within this time frame.  
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Figure 7. Fire gradient at the NCA from 1957-2014. The western and southwestern portion of the NCA have experienced 

especially high fire activity. 
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Figure 8. Fire frequency categories at the NCA. 
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Figure 9. Categories of years since the last fire at the NCA.  Most of the burned area was burned between 11-20 years ago, 

while fires in the last decade make up the next largest category.   
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Figure 10. All post-fire seeding treatments conducted at the NCA from 1957-2014. The shaded areas represent Bureau of 

Land Management drill and/or aerial seeding treatments. 
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Figure 11. Burned and Treated versus Burned and Untreated areas of the NCA from 1957-2014. 
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Figure 12. General fire and treatment history (1957-2014) for each response variable. 

Unburned= unburned; Burned=burned and untreated, Treated= burned and treated. Median 

represented by solid, middle line. Upper and lower whiskers extend to the largest and smallest 

values that are no further than 1.5 * inter-quartile range. Outliers beyond that range have been 

removed.  

 

 

a) b) 

c) d) 
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Figure 13. Categories of times burned (1957-2014) for each response variable. 

Unburned=unburned; 1=burned once; 2=burned twice; 3+=burned three to five times. Median 

represented by solid, middle line. Upper and lower whiskers extend to the largest and smallest 

values that are no further than 1.5 * inter-quartile range. Outliers beyond that range have been 

removed.  

 

a) b) 

c) d) 
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Figure 14.  Categories of years since last fire (1957-2014) for each response variable. Median 

represented by solid, middle line. Upper and lower whiskers extend to the largest and smallest 

values that are no further than 1.5 * inter-quartile range. Outliers beyond that range have been 

removed.  

 

a) b) 

c) d) 
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Figure 15. Treatment type (1957-2014) for each response variable. Burned & Untreated included as a reference. Median 

represented by solid, middle line. Upper and lower whiskers extend to the largest and smallest values that are no further than 

1.5 * inter-quartile range. Outliers beyond that range have been removed.  

a) b) 

c) d) 
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APPENDIX A 

2013 Results 
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Introduction 

Although data from 2013 was available, only 2012 was included in the primary 

analysis.  The same model selection on response variables in unburned and burned plots 

was conducted on plots that were sampled in 2013 (n=105).  In general, the models 

produced by the AICc model selection had less predictive power than the models 

produced in 2012.  The adjusted R2 values for 2013 models were relatively low compared 

to the 2012 models, indicating that terms present in the best fit models exhibited weaker 

relationships with respective response variables.  It is unclear why the fit of 2013 models 

was poorer compared to 2012 models, but one possible explanation is that growing 

season precipitation in 2013 was lower than in 2012 (particularly in February and 

March), which resulted in less herbaceous cover of B. tectorum and P. secunda (see 

Appendix B). Lower median values and range in canopy cover of herbaceous species 

may have explain the poorer fit of models. Although 2013 models were less predictive 

than 2012 models, the terms included in the best fit models for 2013 were similar to 

2012, particularly with regards to B. tectorum and P. secunda in burned areas.  P. 

secunda was found in the best-fit model for B. tectorum in burned and unburned plots. So 

although the abundances of herbaceous components were less in 2013 compared to 2012, 

the relationships remained the same.  
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2013 Model Selection Results 

Figure A1. Multiple Linear Regression Model Results. Model terms in italics 

represent <2 change in AICc when removed; model terms in bold represent >10 

change in AICc when removed. BRTE: Bromus tectorum, POSE: Poa secunda, Model 

terms with a negative relationship are denoted with (-), positively related terms have 

no symbol following. 

Submodel Response Variable Best Fit Model Adjusted R2 AICc K 

Unburned BRTE POSE (-), Nearest 

allotment (-), Nearest 

fire border (-),       

Native shrub (-) 

.50 -96.9 5 

 POSE  BRTE (-), Nearest road 

(-) 
.16 -137.4 3 

 BSC  BRTE (-) .15 -228.6 2 

 ARTRW  BRTE (-) .10 -56.4 2 

Burned BRTE  POSE (-), Times 

burned categories 
.38 -145.8 5 

 POSE  BRTE (-), Times burned 

categories 
.29 -279.1 5 

 BSC  Native perennial grass, 

Nearest fire border 
.13 -499.5 3 

 ARTW  no model - - - 
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APPENDIX B 

Interannual Variability in Precipitation and Abundance of Herbaceous Vegetation 
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Introduction 

There were 57 plots that were sampled in 2012, 2013, and 2014.  2012 was 

selected for analysis because the amount and timing of precipitation most resembled the 

100-year precipitation average.  2013 was much drier in February and March, whereas 

2014 exhibited the driest growing season from February to April. The variability in 

precipitation, particularly during the growing season, appears to have influenced 

herbaceous cover in resampled plots. B. tectorum exhibited a 56% decline in canopy 

cover from 2012-2014, whereas P. secunda exhibited a nearly 40% decline in canopy 

cover in resampled plots. 

 

Differences in Precipitation and Percent Canopy Cover 2012-2014 

 

Figure B1. Monthly precipitation for 2012, 2013, and 2014 compared to the 100-

year average precipitation.  
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Table B1. Average percent canopy cover of response variables in resampled 

plots (n=57), including the change in percent canopy cover between 2012 and 2014. 

 
2012 2013 2014 

Percent Change 

(2012-2014) 

BRTE 38.4 33.3 16.6 -56.6 

POSE 14.7 10.5 8.9 -39.4 

BSC 3.0 3.2 3.6 19.5 

ARTRW 7.8 8.7 6.5 -16.1 

 

 

Figure B2. Average percent canopy cover of the major species and functional 

groups within plots were repeatedly sampled from 2012-2014 (n=57).  Species and 

functional group acronyms: BRTE=Bromus tectorum, POSE=Poa secunda, 

ARTRW=Artemisia tridentata ssp. wyomingensis, AF=total annual exotic forb, 

BSC=biological soil crust, NS=total native shrub (non-sagebrush), EPG=total exotic 

perennial grass, NPG=total native perennial grass (non-P. secunda). 
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