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Abstract

Secure multiparty protocols are useful tools for parties wishing to jointly compute a 

function while keeping their input data secret. The millionaires’ problem is the first secure 

two-party computation problem, where the goal is to securely compare two private numbers 

without a trusted third-party. There have been several solutions to the problem, including 

Yao’s protocol [Yao, 1982] and Mix and Match [Jakobsson and Juels, 2000]. However, 

Yao’s Protocol is not secure in the malicious model and Mix and Match unnecessarily 

releases theoretically breakable encryptions of information about the data that is not needed 

for the comparison. In addition, neither protocol has any verification of the validity of the 

inputs before they are used. In this thesis, we introduce Variance, a privacy-preserving 

two-party protocol for solving the Yao’s millionaires’ problem in a Bitcoin setting, in which 

each party controls several Bitcoin accounts (public Bitcoin addresses) and they want to 

find out who owns more bitcoins without revealing (1) how many accounts they own and 

the balance of each account, (2) the addresses associated with their accounts, and (3) their 

total wealth of bitcoins while assuring the other party that they are not claiming more 

bitcoin than they possess. We utilize commitments, encryptions, zero knowledge proofs, 

and homomorphisms as the major computational tools to provide a solution to the problem, 

and subsequently prove that the solution is secure against active adversaries in the malicious 

model.
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Chapter 1

INTRODUCTION

1.1 Motivation

Secure multiparty computation is an essential and expanding field in cryptography [10].

The ability to run useful computations while maintaining privacy of data opens up oppor-

tunities to compute on private and distributed data. Most of the work in secure multiparty

computation is focused on encryption schemes. While encryption is usually sufficient, it

can eventually be decrypted, especially as technology improves or if the hard problems are

solved. To accommodate permanently relevant private data, a secure multiparty protocol

should adapt perfectly-hiding techniques to perfectly hide as much data as possible.

In Yao’s Millionaires’ Problem [25], two parties want to compare their wealth without

revealing how much money they have. Since its conception, it has been one of the ele-

mentary problems of secure computation, used to demonstrate how more generic secure

computational systems can be applied. Yao proposed a two-party protocol [25], utilizing

garbled logic gates to simulate a circuit. The main limitation of Yao’s protocol is that the

construction of the circuit can not be verified, which makes the protocol only secure in the

semi-honest model.

Later, Jakobsson and Juels [15] proposed a solution to the Millionaires’ Problem that is

secure in the malicious model. They designed the concept of Mix and Match tables, which

uses shuffled and encrypted truth tables to simulate logic gates and distributed Elgamal
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to compare two bits or numbers with a plaintext equality test to find a matching row and

retrieve the output. It then uses a verifiable mix network [16] to randomize the table so the

rows are not traceable so that one party can not infer associations between the values in the

different columns.

In this thesis, we introduce a solution to the Millionaires’ problem in the context of

Bitcoin [20]. In the Bitcoin cryptocurrency system, an account is presented as a public

address associated with a balance and users hold the associated private keys to their ac-

counts. To determine who owns more bitcoins, it is not sufficient to simply compare two

numbers. Owners of bitcoin usually store their holdings in multiple accounts. Due to the

nature of Bitcoin, any protocol involving a user’s accounts is required to preserve privacy.

This adds an extra layer of complexity to the comparison, as not only do the total assets

need to be secure, but the specific owned accounts and the number of accounts must also

be kept secret. Due to the nature of the Bitcoin’s blockchain, any information associating

accounts with owners can be used to determine private information about the owner in

the future, such as their current active accounts. Variance is a commitment-based protocol

employing zero knowledge proofs to run bit comparisons to solve the Millionaires’ Problem

in the context of Bitcoin.1

1.2 Challenges & Concerns

There are several challenges associated with creating a protocol that solves the Million-

aires’ Problem for Bitcoin. Since it is common for Bitcoin holders to keep their assets in

multiple accounts, these accounts have to be added for any real comparison to take place.

Any protocol which manages this sum would have to be privacy-preserving, which means

1Following convention, we refer to the protocol as ‘Bitcoin’ and the units of currency as ‘bitcoin’ or B.
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the total sum, the amounts in the accounts, and the public keys for the owned accounts must

be kept secret. The last requirement is called unlinkablity [5][4], meaning a party can not

be linked to their accounts and vice versa. However, even if another party can not figure

out the accounts through the protocol but can figure out the sums, they may be able to piece

together which accounts the party holds, though this is a hard problem.

Due to the sensitivity of some of the data, a commitment based scheme using per-

fectly hiding commitments would be preferable. Specifically, the owned accounts should

be impossible, or at least extremely difficult, to determine. Due to the nature Bitcoin’s

blockchain, if an adversary manages to associate an account with a party, then they may

be able to figure out other accounts associated with the party, even perhaps being able to

track owned accounts in the future [22]. It would be best to have as much data about the

sum as possible be perfectly hidden, so the protocol is not as dependant on the discrete log

problem. Even obscuring small details of the sum may the prevent discovery of claimed

accounts.

As the Bitcoin protocol is designed to be secure malicious users, any solution to this

problem should also be secure in the malicious model.

1.3 Limitations

A limitation of Variance can only solve the Millionaires’ Problem if the goal of each party

is to show that they have the most wealth. Accounts can easily be omitted by either party

to artificially reduce their apparent net worth, which could be used to avoid appearing to

have more bitcoins. This protocol can only work if the goal of each party is to prove they

have more Bitcoin with no ulterior motivations.

Another limitation is the issue of collusion, where a group of people pool their private
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keys to make a party appear to have more bitcoins than they actually have. There is

no known solution to this problem because either party could be colluding with account

holders outside the protocol.

Variance is also limited to accepting key schemes to which a Zero Knowledge Proof of

Knowledge of the secret is known. For example, to include accounts for which the secret

is only hidden behind a pay-to-pub-hash or pay-to-script-hash, a Zero Knowledge Proof of

Knowledge of the private key of the preimage of the hash is required. Even with this proof,

Provisions’s proof of assets could not include these accounts [5]. This is a major issue in

the context of the Millionaires’ Problem, as wealthy Bitcoin holders tend to keep many of

their assets (bitcoins) in non-spending accounts, where bitcoins is put in to an account and

not spent. In these cases, only the public address (the hash) is known. However, since one

of the common applications of solutions to the Millionaires’ Problem is to run auctions,

this solution still has many applications while without supporting non-spending accounts.

This problem can be solved if a Zero Knowledge Proof of Knowledge of the private key

associated with the public address, meaning the private key to the preimage of the hash,

can be created, but any such proof would likely be significantly less efficient than the proof

of knowledge for a discrete log public key.

1.4 Thesis Statement

The objective of this thesis is to answer the following question: How can two non-trusting

individuals determine in a privacy-preserving manner who owns more bitcoins?

More specifically, given two non-trusting parties (Bitcoin users) P1 and P2, each of

whom owns a private set of private keys associated with a subset of the accounts in the pub-

lic Bitcoin blockchain, the goal of this thesis is to propose a secure and privacy-preserving
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protocol for determining whose total assets of bitcoins is higher such that:

1. No account from the public Bitcoin blockchain can be linked back to either party.

2. Neither party can determine the other’s total Bitcoin assets or number of accounts.

3. The protocol is portable across multiple cryptosystems.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows:

1. Chapter 2 discusses the related literature over the past years in the fields related to

Bitcoin, Zero Knowledge Proofs, and Secure Multi-Party Computation.

2. Chapter 3 discusses the building blocks and preliminaries needed for this proposal.

3. Chapter 4 discusses our protocol and methodology for secure and privacy-preserving

comparison of Bitcoin assets.

4. Chapter 5 is an analysis of the security of the protocol.

5. Chapter 6 discusses the computational complexity of the protocol, as well as evalua-

tion of experiments.

6. Chapter 7 concludes the thesis and provides suggestions for future work.
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Chapter 2

LITERATURE REVIEW

2.1 Bitcoin

Bitcoin was introduced in 2008 and has become the first successful cryptocurrency [20].

Bitcoin is a pseudoanonymous system based on a blockchain system. It is pseudoanony-

mous because payments are associated with public addresses, which may not be associated

to you but are associated to each other [22]. In Bitcoin, an address is hash of a public key,

where the private key is held by the account holder. The public key does not appear on the

blockchain unless the account uses a transaction to send bitcoins to another account. When

a person is dealing with any kind of currency, they will often be required to prove they have

a certain amount of money, or at least show how much money they have. There have been

several methods of proving how much bitcoin a person holds. The most basic reasonable

approach that is widely used is a signature from a bitcoin wallet service. These signatures

are effective, as this confirms that the account owner does holds the account. In 2011, the

Bitcoin Exchange Mt. Gox wanted to prove that they had a large stockpile of Bitcoin. To

accomplish this, they executed one large transfer of B420k. Though this action did prove

they had B420k, it was certainly not optimal, as it revealed the size of Mt. Gox, the amount

of Bitcoin they control, and the addresses of their holdings. It also proved nothing about

the amount of Bitcoin they owed. This was hazardous, as knowledge of past addresses

may be able to be used to infer future owned accounts. [22]. These proofs of assets all are
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technically effective, but they do not meet the our goals because they reveal the accounts

held and how much money is in each account. Recall that our goal is to determine who has

more bitcoin without revealing the amount each party holds nor any information as to the

accounts.

Provisions [5] has the most applicable Proof of Assets, which manages to keep the

accounts and the amount of bitcoin secret. It utilizes a series of commitments that are

verified and combined in such a way that only the balance of an owned account can be

added to the total sum commitment. This fulfills our goals of not revealing the owned

accounts or the total sum. However, according to the paper, it would take over 20GB and

an excessive amount of time to execute their proof over the entire blockchain. This makes

it applicable to the daily or periodic Proof of Solvency that exchanges may be expected

to execute, which is the purpose for which it was designed, but it may not be sufficiently

efficient for situations that call upon solutions to the Millionaire’s Problem. Their specific

methodology also stops them from using non-spending accounts and requires that the

commitment and key systems use the same cryptographic setting (key schemes can not

be mixed), which is less than optimal. We attempt to improve on their conceptual method

by making it portable (allows multiple cryptographic settings), more efficient, modular, and

more intuitive.

2.2 Secure Multiparty Computation (MPC)

Yao started the field of Secure Multiparty Computation by proposing the Millionaire’s

Problem [25]. There are several conceptual methods to accomplish secure multiparty

computations without revealing any of the party’s secret data, but the most general methods

involve simulating logic gates to simulate a circuit, like Yao [25] and Mix and Match by



8

Jakobson and Juels [15], because they can simulate any function using logic circuits, though

it may take an inordinately large amount of time.

There has been a significant amount of work in secure multiparty computations [1] [13] [9].

There are several important uses for MPCs. One important purpose is to facilitate cloud

computing without having to forgo privacy [19]. Another use is privacy preserving database

queries and data mining. [18][24]. To accommodate these schemes, MPC schemes are

being designed to be scalable. Though a Yao garbled circuit can execute any executable

function securely, it would be extremely inefficient to execute an entire program by running

expensive computations on every single basic binary operation. More efficient methods

have been designed, though they are still not very efficient for heavy computation on the

cloud, both in communication and computation. However, most or all of these schemes

rely on public key encryptions and the ability to decrypt in some form or changing the data

through homomorphism, which is incompatible with a commitment-based scheme. If the

owner of the commitment does not know how the commitment was altered, they no longer

have the knowledge required to open the commitment.

2.3 Zero Knowledge Proofs (ZKPs)

Zero Knowledge Proofs are designed to be used to allow users of protocols to prove that

they are following the protocol properly without revealing any of their secrets by proving

their inputs are correspond with a statement, thus allowing protocols to be run even with

malicious parties [5][15].They are also used to prove identity without having to show any

sensitive information [23][8]. Zero Knowledge Proofs’s were proposed by Goldwasser,

Micali, and Rackoff [12]. They introduced the concept of the interactive problem space

IP and the idea of measuring the amount of knowledge transferred in a proof, which they
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called knowledge complexity. They also proposed a the first zero knowledge proof. Later

Oded Goldreich, Silvio Micali, and Avi Wigderson [11] proved that all problems in NP

have associated zero knowledge proofs.

ZKP’s are often designed as Sigma protocols. A sigma protocol is a 3 step interactive

protocol. Sigma protocols were created by Schnorr [23] to accomidate Schnorr’s Protocol

as part of his Signature Protocol. Since then, they have become the mainstay of Zero

Knowledge Proof design, as they are relatively simple to prove security with simulators [6].

ZKP’s can easily be made non-interactive through the Fiat-Shamir heuristic [7].

Combining Zero Knowledge Proofs with logical compositions to prove complicated

statements can be more intuitive and efficient than a tailor-made proof. It can also be used

to make more generic and portable zero knowledge proof. The two major components

required to merge existing ZKP’s into more intricate proofs are an AND and an OR.

Zero Knowledge AND is trivial given knowledge of Zero Knowledge Proofs and Sigma

protocols. AND is generally not discussed due to its simplicity. This method also simplifies

the security proofs because the compositions are recursively proven secure if the basic

components are proven secure. There have been two functionally equivalent formulations

of Zero Knowledge OR, addition [3] and XOR [6][13]. To accomplish our goals, we apply

a generalization of the of XOR formulation.
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Chapter 3

BACKGROUND AND BUILDING BLOCKS

3.1 Public Parameters

We define two generators g and h such that no party knows the discrete log between g and

h. g and h are points on an elliptic curve, e.g. secp256k1 [2]). It should be noted that if

the cofactor of the curve is 1, then every point but the primitive point INF is a generator.

There is also a distributed Elgamal private key y, where all members of the protocol hold

a part of the key. Though we work with with Bitcoin public and private keys, we do not

perform any ECDSA signatures. Though we use elliptic curves, we employ the standard

notations for integer groups y = gx rather than the standard elliptic curve notation Y = xG

(g · h instead of G+H).

3.2 Elliptical Curve Exponential Elgamal Cryptosystem [17]

Elgamal is a semantically secure asymmetric cryptosystem based on the Elliptical Curve

Discrete Log Problem. It is noted for the ability to rerandomized and the ability to have a

distributed private key. The encryptions will be written as JmK = (gmyr, gr), with generator

g, public key y = gk where k is the private key. The calculations are executed on a specified

curve (e.g. secp256k1), which has an order q. Elgamal also supports scalar multiplication

of the ciphertext to be translated in to scalar addition of the plaintext. The main weakness
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of exponential elgamal in general is to properly decrypt to a specific message, the discrete

log has to be solved or the resulting point has to be recognized. This is not an issue for a

small message set.

3.3 Pedersen Commitments [21]

Pedersen Commitments are a perfectly hiding computationally binding commitment scheme

based on any system with an associated hard Discrete Log Problem. Commitments will be

written as C(m) = gmhα, where no party knows the discrete log between g and h When

referring to Pedersen commitments, or any other perfectly hiding commitment scheme, a

commitment is described as hiding a value. This is not exactly true, as a commitment could

hide any value, but finding a second such pairing of m′ and α′ is at least as hard as solving

ECDLP. So, when we say the commitment hides a value m, we mean that the owner knows

the values m and α that create that form commitment. In this thesis, we generally use the

elliptic curve secp256k1. We refer to m as the message and α as the ephemeral key, as α

strongly resembles the ephemeral key from Elgamal.

3.4 Zero Knowledge Proofs [12]

Zero Knowledge Proofs are proofs that reveal no information other than the fact that the

statement is true. Most Zero Knowledge Proofs are in the form of Sigma protocols, where

the Prover “commits” to a value or values, denoted by a, the Verifier challenges with a t-bit

value c, then the Prover sends a response z based on the initial commitment, the challenge,

and the secret. The Verifier uses the response on the common knowledge, c, and the a

values to confirm that the Prover must know the secret with a extremely low probability
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(2−t) of successful deceit. Schnorr’s Protocol (Protocol 3.1) is the standard basic example

of a Sigma Protocol.

The Zero Knowledge Proofs presented here are presented slightly differently from most

other works. When proving a Zero Knowledge Proof is truly Zero Knowledge, one of the

requirements is Special Soundness, which uses a simulator. In general, a simulator is used

to show that a protocol reveals no information by showing that valid transcripts can be

created only using the Verifier’s knowledge. In the context of Sigma Protocols, a simulator

simulates the actions of the Prover, designated Prover*, and uses pre-knowledge of the

Verifier’s challenge to forge an a and a z. Usually, simulators are only used when proving

the protocol is sound. However, due to the heavy use of Zero Knowledge OR (Protocol 3.2),

which utilizes simulators, the simulator will be presented with the protocol. By default,

when we refer to the protocol, we are referring to the main protocol, not the simulator. Due

to the length of some of the compound ZKPs we design, we will construct compound ZKPs

using a function call style notation (e.g. AND(Schnorr(y1,x1), Schnorr(y2,x2))).

3.4.1 Schnorr’s Protocol (Protocol 3.1)

This is the most common example of a zero knowledge protocol. The statement being

proved is “I know the discrete log of gx”. If both parties have gx and the Prover knows x, it

allows the Prover to prove that he knows x. Many zero knowledge proofs are heavily based

on this basic protocol. We call this protocol using Schnorr(y,x).

Commitment Value Proof (CVP) Protocol

This is a proof that a commitment hides a specific value. As a standalone proof, it appears

useless as one could simply open the commitment and get the same result. However, with

Zero Knowledge OR, it can be used for a simple set membership proof or to show that a
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commitment is equal to a value if certain conditions are met and something else of not.

This proof is simple for a homomorphic commitment scheme. We are specifically using

Pedersen commitments, so this protocol is simple. The function call notation of this proof

is CVP(C(m,α), m, α)), where m is the message and α is the ephemeral key. To execute,

run Schnorr(C(m,α) · g−m,α)

Schnorr’s Protocol [23]

Input: Public: The exponential y := gx

Private
(Prover):

x, the discrete log of y

Output: Public: Verification that the Prover knows x.

1. The Prover generates a random number r and calculates a := gr

2. The Prover sends a to the Verifier.

3. The Verifier generates a random challenge c and sends it to the Prover.

4. The Prover computes z := r + c · x.

5. The Prover sends z to the Verifier.

6. The Verifier accepts if gz = yc · a.

Schnorr’s Protocol’s Simulator

1. The Prover* uses the Verifier’s random number generator to generate the Verifier’s challenge c.

2. The Prover* randomly generates the response z.

3. The Prover* calculates a = gz · y−c.

4. Run the protocol from protocol step 2, skipping step 4, instead using the generated z.

Protocol 3.1: Schnorr’s Protocol
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3.4.2 Zero Knowledge OR (Protocol 3.2)

This is an essential for efficiently proving compound statements. The statement being

proved is “At least one of these statements is true.” It does not reveal which of the statements

is true. Zero Knowledge OR is essential if we wish our protocol to be modular. The main

conceptual point about this OR protocol is that it allows all but one of the challenges to be

predetermined by the Prover the others to be based on input from the Verifier without

revealing which is which, allowing the Prover to use the Honest Verifier Simulator to

create an acceptable transcript using the protocol’s associated simulator σi. It should

be noted that the initial communications a and responses z is not necessarily one value

if the associated protocol calls for more than one initial communication and response.

Using Zero Knowledge Or encourages a modular design, so if the protocol needs to be

applied in another setting, the larger protocol can still be used as long as the component

protocols can be designed for the new setting. The strength of Zero Knowledge Or is

when there are a only few possible cases, as it can link them together without adding too

many exponentiations. Simulators tend to take more exponentiations than true proofs. The

function call notation for OR is as follows: OR((π1, condition1),...(πn, conditionn)) for

each ZKP πi in the OR. The condition is the requirement for running the true proof instead

of the simulator. Zero Knowledge OR appears in Hazay and Lindell’s book [13], but their

proof exists for two proofs that are the same relation. Our proof is a generalization of their

proof that covers many differing component protocols.

3.4.3 Zero Knowledge AND (Protocol 3.3)

The purpose of Zero Knowledge AND is to condense two Zero Knowledge Proofs in to one

Sigma Protocol. By using the same challenge for multiple different ZKP’s, it can be used
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in conjunction with Zero Knowledge OR to generate a statement like “Either (S1 AND S2)

OR S3”. The statement associated with Zero Knowledge AND would be of the form “All

of these statements are true.” This necessary for the modular design to function, as many

cases require multiple facts to be true. The function call notation is AND(π1, π2, ..., πn).

3.4.4 Protocol 3.4: Bit Verification

One essential Zero Knowledge Proof is the Bit Verification Proof, a proof that a com-

mitment hides a bit (Cb = gb · hγ). This is essential because the protocol uses bit-wise

comparisons. This will use Zero Knowledge OR, with the statement “This commitment

hides a 0 OR this commitment hides a 1.” Its function call notation is BV(Cb, b, γ), which

is calls the following construction: OR((CVP(Cb, 0, γ), b = 0),(CVP(Cb, 1, γ), b = 1))

3.4.5 Proof of Equal Discrete Logs (PEDL) [13] (Protocol 3.5)

As the name suggests, this is a proof where, given two bases g and h and two values y1 = gx

and y2 = hx, a Prover can prove knowledge of an x that fulfills this relation. It is important

to note that the simulator can still simulate a successful response when the discrete logs are

not equal. The statement being proven is “The discrete log of y1 base g and y2 base h are

equal and I know what it is.” The function call notation is PEDL(y1, y2, x).

Proving Encryption is a Rerandomization (PER)

The main purpose for the Proof of Equal Discrete Logs protocol in this thesis is to prove

proper rerandomization of an Elgamal Encryption. If a Prover takes an encryption e0 =

(gm · yα1 , gα1) and rerandomizes it using α2 to obtain e1 = (gm · yα1+α2 , gα1+α2) and

publishes the rerandomization, they can prove that e1 · e0
−1 = (yα2 , gα2) and use Proto-

col 3.5 to prove the two components are equal. The function call notation for this proof



16

is PER(e0, e1, α2), where α2 is the randomization factor, which calls PEDL as follows:

PEDL(e2(m) · e1
−1(m), e2(k) · e1

−1(k), α2)

3.5 Mix and Match Table

A Mix and Match table is an encrypted logic table. An equality test, like PET, is used to

determine which of the rows matches the inputs to retrieve outputs. Often, these tables are

used to simulate circuits. Between each use of a Mix and Match table, the table needs to

be shuffled and rerandomized using a Verifiable Mix Network.

3.5.1 Plaintext Equality Test [15]

This test can use any cryptoscheme that is homomorphic and can have a distributed key,

like Elgamal. For Elgamal, if you have two cyphertexts Jm1K and Jm2K, then all parties

take Jm1K · Jm2K
−1 = Jm1 −m2K. All parties then exponentiate their version with a

previously committed random value, then they are multiplied together. Then, the parties

jointly decrypt. If the encrypted value is a 1, then they are equal. If not, then it is a random

number and they are unequal.

1. Each party computes Jm1 −m2K = Jm1K · Jm2K
−1.

2. Each party commits a random value ri and published the commitment.

3. Each party calculates J(m1 −m2)riK = (Jm1 −m2K)
ri .

4. Each party exchanges their J(m1 −m2)riK to the other parties.

5. Each party runs a Zero Knowledge Proof to prove that the number hidden in the

commitment is equal to the number they used to exponentiate the encryption.
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6. The encryptions from each party multiplies all the encryptions together:∏n
i=1 J(m1 −m2)riK =

r
(m1 −m2)

∑n
i=1 ri

z
= J(m1 −m2)rK

7. The parties run a Distributed Decryption scheme on the resulting encryption. If the

number (m1 −m2)r = 1, then (m1 −m2) = 0, meaning m1 = m2. If (m1 −m2)r

equals anything else, then m1 6= m2 because (m1 −m2) 6= 0.
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Zero Knowledge OR Protocol

Input: Public: A list of statements S with each statement Si’s associated
zero knowledge protocol πi, the associated simulator σi, as
well as the inputs for each of the protocols.

Private
(Prover):

The information to genuinely prove at least one of the two
statements Si.

Output: Public: Verification that at least one of the statements is true.

1. For each j such that the Prover will not attempt to prove Sj : The Prover uses σj to
pregenerate the initial message aj , the sub-challenge cj , and the response zj .

2. For each i such that the Prover will to prove Si: The Prover uses πi to calculate the initial
message ai.

3. The Prover sends all the initial communications to the Verifier.

4. The Verifier randomly generates a challenge c and sends it to the Prover.

5. Take the XOR of all the simulated sub-challenges with the challenge c and call it ct.

6. For all but the last true proofs: Generate a random challenge ci and calculate ct = ct⊕ ci

7. For the last of the true proof: Set ci = ct

8. For each i where Si is a true proof, the Prover uses each ci with the associated πi to
calculate zi.

9. The Prover sends the list of responses and sub-challenges to the Verifier.

10. The Verifier accepts if all of the following are true:

(a) The XOR of all the sub-challenges is equal to c

(b) For each protocol πi: (ai, ci, zi) is a valid transcript for πi, given the protocol’s
public inputs.

Zero Knowledge OR Simulator

1. The Prover* pregenerates the Verifier’s challenge c

2. The Prover* runs protocol step 1 for each protocol πi except the last one, use σi to generate the
ai, ci, zi.

3. The Prover* calculates the last sub-challenge ci as c XORed with all the other sub-challenges
and uses the simulator σi to generate zi and calculate ai.

4. The Prover* and Verifier run the protocol from protocol step 3, skipping any step with true proofs.

Protocol 3.2: Zero Knowledge OR
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Zero Knowledge AND Protocol

Input: Public: The list of statements, and for each statement Si, the
associated protocols πi and the protocols inputs.

Private
(Prover):

The information to prove each statement Si.

Output: Public: Verification that both statements are true.

1. For each statement Si, the Prover uses πi to calculate the initial communications ai.

2. The Prover sends the list of initial communications to the Verifier.

3. The Verifier randomly generates a challenge c and sends it to the Prover.

4. For each statement Si, the Prover uses c with πi to calculate a response zi.

5. The Prover sends the list of responses to the Verifier.

6. The Verifier accepts if, for each statement Si, the transcript (ai, c, zi) is a valid transcript
for πi

Zero Knowledge AND Simulator

1. The Prover* uses the Verifier’s random number generator to generate his challenge c

2. For each statement Si, the Prover* uses the protocols’ associated simulators σi to generate zi and
calculates ai.

3. The Prover* and Verifier execute the protocol starting at protocol step 2, skipping step 4, instead
using the list of generated responses.

Protocol 3.3: Zero Knowledge AND
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Bit Verification Protocol

Input: Public: A commitment Cb = gbhγ

Private
(Prover):

Knowledge of b and γ

Output: Public: Verification that the commitment Cb hides either zero or
one.

1. The Prover and Verifier will prove the statement “Cb hides 0 OR Cb hides 1” by executing
Protocol 3.2 to perform a Zero Knowledge OR on the following two Zero Knowledge Protocols:

• CVP (Protocol 3.4.1) to prove Cb hides 0.

• CVP (Protocol 3.4.1) to prove Cb hides 1.

Bit Verification Simulator

1. The Prover* and Verifier run protocol step 1 except with Zero Knowledge Or’s Simulator instead
of Zero Knowledge Or Protocol.

Protocol 3.4: Bit Verification
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Proof of Equal Discrete Logs

Input: Public: The exponentials y1 := gx and y2 := hx

Private
(Prover):

x, the discrete log of y1 base g and y2 base h.

Output: Public: Verification that the Prover knows x and that it is
the discrete log of both y1 and y2 in their respective
bases.

1. The Prover generates a random number r and calculates a1 := gr and a2 := hr

2. The Prover sends a1 and a2 to the Verifier.

3. The Verifier generates a random challenge c and sends it to the Prover.

4. The Prover computes z := r + c · x.

5. The Prover sends z to the Verifier.

6. The Verifier accepts if gz = y1
c · a1 and hz = y2

c · a2.

Proof of Equal Discrete Logs Simulator

1. The Prover* uses the Verifier’s random number generator to generate the Verifier’s challenge c.

2. The Prover* randomly generates the response z.

3. The Prover* calculates a1 := gz · y1−c and a2 := hz · y2−c

4. Run the protocol from step 2, skipping step 4, instead using the generated z.

Protocol 3.5: Proof of Equal Discrete Logs
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Chapter 4

VARIANCE PROTOCOL

4.1 Solution Overview

Our solution to this problem is a three step scheme based on perfectly hiding commitments.

1. ZK-OR Proof of Assets: First, a Prover has to make a verified commitment of a sum

of their accounts. To accomplish this, we create commitments related to each account

in the blockchain or anonymity set. They are individually verified and added up to

the sum of the owned accounts.

2. Bit Conversion: Once the commitment of the assets is complete, then it needs to be

converted to commitments of bits so that a bitwise comparison can be accomplished.

The Prover will create a series of bit commitments and prove that when put together

that they are equal two the sum of assets commitment.

3. Zero Knowledge Comparison: We employ Mix and Match to select a table to which

each party proves their data is consistent.

4.2 ZK-OR Proof of Assets

To accomplish a Proof of Assets, we will use the conceptual approach used by Provisions’s

Proof of Assets, where a commitment is made for each individual account based on own-
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ZK-OR Proof of Assets Protocol

Input: Public: Generator g, Distributed Public Key h, The list of
accounts L, where each account is a pair (yi, Bi).

Private
(Prover):

A set of owned private keys xi ∈ Zq such that gxi =
yi for account i.

Output: Public: A verified commitment of the sum of the Prover’s
claimed accounts Csum

1. For each account (yi, Bi) in list of accounts L:

(a) If the prover owns the account, owning the account meaning he has knowledge of
xi, and wishes to claim it then the Prover creates a commitment CB̂i

:= gBihγi .
Else, the Prover creates a commitment CB̂i

:= g0hγi

(b) The Verifier requires the Prover to prove the following statement: “Either the
commitment CB̂i

hides Bi AND the Prover knows the secret key xi OR the
commitment CB̂i

hides 0.” To accomplish this, the Prover and Verifier execute
Protocol 3.2 to perform Zero Knowledge OR on the following two Zero Knowledge
Protocols, creating the Account Verification Proof:

• The statement “The commitment CB̂i
hides Bi AND the Prover knows the

secret key xi” is proven by using Protocol 3.3 to perform Zero Knowledge
AND on the following two protocols:

– CVP (Protocol 3.4.1) to prove CB̂i
hides Bi.

– Schnorr’s Protocol (Protocol 3.1) to prove that the Prover knows the
private key xi associated with yi. (Can be substituted for the appropriate
key proof when applicable).

• CVP (Protocol 3.4.1) to prove CB̂i
hides 0.

2. Now, the Verifier has a list of |L| length of commitments of B̂i, each of which either
holds a 0 or the balance of account i, and it has been verified that if it holds the balance,
then the Prover knows the private key.

Using the additive homomorphism of Pedersen Commitments:

Csum :=
n∏
i=1

CB̂i
=

n∏
i=1

gB̂ihγi = g
∑n

i=1 B̂ihΓ, where Γ :=
n∑
i=1

γi. (4.1)

Protocol 4.1: ZK-OR Proof of Assets
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ership of the account and then homomorphically add them together to get a sum. Our

protocol has the advantage of greater flexibility and efficiency compared to Provisions’s

Proof of Assets.

To verify the individual accounts, this thesis applies Protocol 3.2 (OR) and Protocol 3.3

(AND) to prove the statement to be true: “(Either the amount hidden in this commitment

is equal to the balance of the account AND I know the secret key for the account) OR

the amount hidden in this commitment is equal to 0.” To accomplish this, we specifically

construct the Zero Knowledge Proof using Pedersen Commitments and Elgamal keys, so

the Zero Knowledge Proof will prove the following statement:

“(Either I know the ephemeral key γi for the Pedersen Commitment Cb̂i , assuming

b̂i = bi (Assuming Cb̂i) = gbihγi) AND I know the private key xi for the public key

yi = gxi) OR I know the ephemeral key γi for the commitment Cb̂i , assuming b̂i = 0

(Assuming Cb̂i = g0hγi)”. We call the following proof Account Verification Proof.

OR((AND(Schnorr(yi, xi), CVP(Cb̂i , bi, γi)), x is known), (CVP(Cb̂i , 0, γi)), x is not known))

The commitments and the key can be based on different schemes as long as zero knowledge

proofs can be created to prove the individual statements. For example, the public key can be

RSA if you have a zero knowledge proof of knowledge of an RSA public key. The public

key can also use a different curve and generators than the commitments. In Variance, we

specifically work with a discrete log based public keys and Pedersen commitments. To

accomplish this, we shall make the statement to prove more specific: “Either the amount

hidden in this commitment is equal to the balance of the account (Protocol 3.4.1) AND

I know the discrete log of the public key (Protocol 3.1) OR the amount hidden in this

commitment is equal to 0 (Protocol 3.4.1).”

Using Protocol 4.1, the values are proven to be correct, which means that if CB̂i
holds

a non-zero value, then the party has to hold the associated private key. Both parties end up
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with a commitment of the sum of the other party’s claimed accounts:

Csum =
∏

owned

CBi
=

n∏
i=1

CB̂i
(4.2)

Each party also knows their ephemeral key for their Csum.

Γ :=
n∑
i=1

γi (4.3)

The two parties will execute this protocol in an interweaved manner, meaning each of

the parties perform each step as both Prover and Verifier before continuing to the next step.

4.3 Conversion to Bits

To compare the sums, the two parties need to convert their sums in to a binary represen-

tation. Each party commits each individual bit in the bitwise representation of their sum.

Normally, we would have to prove that each commitment hides a bit, but that fact is a

side effect of Protocol Then, we raise each commitment by 2j , where j is the bit position.

This shifts the bit to the appropriate bit position. The Verifier then uses the homomorphic

addition property of Pedersen Commitments by multiplying these shifted bit commitments

together. This product equals the Csum from the previous section. This is accomplished in

Protocol 4.2. The two parties will execute this protocol in an interweaved manner, meaning

each of the parties perform each step as both Prover and Verifier before continuing to the

next step.

These should be equal if the commitments are set up properly because
∑n−1

i=0 ηi · 2i = Γ.

Now, we have a bit representation of both party’s sums, which will be compared in the Zero

Knowledge Comparison Protocol.
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Bit Conversion Protocol

Input: Public: Generator g, Distributed Public Key h, commitment
of the sum Csum

Private
(Prover):

The number hidden in Csum, including a bitwise rep-
resentation, where the ith bit is bi and sum is equal
to
∑n

i=0 bi · 2i.
Output: Public: A verified bitwise representation of the sum.

1. The parties agree on a number of bits n with which to represent their numbers, creating
an implicit upper bound of 2n − 1.

2. The Prover will create a Pedersen commitment for each bit except the least significant
bit.

(a) Generate a random ephemeral key ηi

(b) Generate commitment C(bi) = gbihηi

3. The Prover will create a Pedersen commitment for the least significant bit.

(a) Let Γ be the ephemeral key, or random number, from the commitment Csum

(b) Calculate number η0 = Γ−
∑n−1

i=1 2i · ηi so that Γ =
∑n−1

i=0 2i · ηi
(c) Generate commitment Cb0 = gb0hη0

4. Prover sends commitments to Verifier.

5. The Prover and Verifier confirm that the each commitment is a bit by executing the Bit
Verification Protocol (Protocol 3.4).

6. The Verifier uses the additive homomorphism of Pedersen Commitments and accepts if∏n−1
i=0 (Cbi)2i = Csum, assuming the Bit Verification Protocol’s succeed.

Protocol 4.2: Bit Conversion

On the last commitment in the protocol (Step 3), we construct the commitment using the

specific method because the other party can get that commitment from the more significant

bit commitments and the sum commitment easily and it saves time by not requiring a Zero

Knowledge Proof that two commitments are equal.
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Table 4.1: Conceptual Model.

J<K

0 0 J<
4
K

0 1 J<
4
K

1 0 J<
4
K

1 1 J<
4
K

J=K

0 0 J0K
0 1 J<

2
K

1 0 J>
2
K

1 1 J0K

J>K

0 0 J>
4
K

0 1 J>
4
K

1 0 J>
4
K

1 1 J>
4
K

—–>

J=K

0 0 J0K
0 1 J<

2
K

1 0 J>
2
K

1 1 J0K

J<K

0 0 J<
4
K

0 1 J<
4
K

1 0 J<
4
K

1 1 J<
4
K

J>K

0 0 J>
4
K

0 1 J>
4
K

1 0 J>
4
K

1 1 J>
4
K

4.4 Zero Knowledge Comparison Protocol

To perform the comparison, we will execute the Zero Knowledge Comparison Protocol: We

also accomplish this with Zero Knowledge Proofs and homomorphism as the computational

tools.

To accomplish this, we use a feature that is common in Elliptical Curve groups, includ-

ing secp256k1, the order of the group is prime. That means that in exponential elgamal on

this curve, you can encrypt fractions with denominators less than or equal to the order. This

means if we let “less than” = −1, “equal” = 0, and “greater than” = 1, we can construct

the two tables illustrated in Table 4.1. The first column of the inner tables correspond with

the bit of party 1 and second column similarly corresponds with party 2. We call the table

associated with 0 the Equals table, the table associated with −1 the Less Than table, and

the table associated with 1 the Greater Than table.

The actual model that would be implemented in the form of a true Mix and Match table
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is illustrated in Table 4.2.

Table 4.2: Actual Model

Input 0 0 0 1 1 0 1 1
J−1K J−1

4
K J−1

4
K J−1

4
K J−1

4
K

J0K J0K J−1
2
K J1

2
K J0K

J1K J1
4
K J1

4
K J1

4
K J1

4
K

Since the feedback (current state of the comparison) at the first bit is equal, there is no

reason to shuffle the table before the first comparison, which will save a little time. The

selected row begins as the Equals table or J0K. After the first bit of the comparison, the

feedback is calculated homomorphically based on each party’s bit and the selected table.

For each commitment in the list of commitments, starting with most significant:

1. Take the table from the selected row.

2. Each party creates 2 encryptions based the rows of the selected table.

• For each row in the selected table, if the bit on the party’s column is equal to

the bit from their bit commitment, rerandomize the resulting encryption.

3. Each party sends the rerandomized encryptions to the other party.

4. Prove that the encryptions are valid using the Bit Table Verification Proof (equa-

tion 4.4):

• BTVP(x1, x2, y1, y2, i), where x1 and x2 correspond with the rows on the se-

lected table that would match 0 and y1 and y2 correspond to the rows that match

1 on the party’s column.
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5. Multiply all the encryptions (P1’s and P2’s) together to homomorphically obtain the

feedback.

6. Shuffle the table using the method from Mix and Match.

7. Use PET to determine which row from the shuffled outer table corresponds with the

feedback. The row that the feedback matches with is the new selected row.

Bit Table Verification Proof

The Zero Knowledge Proof for each possibility will be structurally the same. The general

ZKP for the party’s encryption corresponding to the bit commitment Cbi hiding a specific

bit b is as follows:

p1(x1, x2, i, b) =AND(CVP(Cbi , b, ηi), PER(rowx1 , e0, α1), PER(rowx2 , e1, α2) )

We compose two instances of p1 with Zero Knowledge OR to create the Bit Table

Verification Proof (BTVP) to prove that one of the two possible cases is true (b = 0 OR

b = 1):

BTVP(x1, x2, y1, y2, i) = OR((p1(x1, x2, i, 0), bi = 0), (p1(y1, y2, i, 1), bi = 1)) (4.4)

After the comparison protocol has been successfully concluded, the two parties take the

resulting feedback and run a verified distributed decrypt on the feedback. If the result

is −1, P2 has the larger amount of bitcoins. If the result is 0, they have equal bitcoins.

Otherwise, P1 has more bitcoins. The protocol then concludes.

It should be noted that once the feedback (the product of the encryptions) stops match-

ing J0K, then all subsequent bits remain perfectly-hidden and can not be determined even

with infinite computational power, assuming truly random numbers were used.
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Chapter 5

SECURITY ANALYSIS

5.1 Zero Knowledge Proofs

We begin our proof of Variance’s security with proofs that the sigma protocols are zero

knowledge protocols, as it is a prerequisite to the majority of the requirements of security.

To prove that a sigma protocol is an Honest Verifier Zero Knowledge Proof (HVZKP),

the protocol must satisfy the following three properties [13]:

1. Completeness: Does a honest Prover with proper inputs pass every time? If proper

inputs result in the Verifier accepting, it is complete. Completeness is usually simple,

simply following the steps of the protocol assuming both parties are honest.

2. Special Soundness: Is the secret present? Given one initial communication and two

challenges, can the secret be extracted? The extractor (Verifier*) takes the role of

the Verifier and has the ability to rewind the Prover while maintaining knowledge of

the Prover’s previous communication, thus allowing the Verifier* to send the second

challenge and get second response. The Verifier* then can extract the information

from the transcripts. If a protocol is specially sound, then the probability of a Prover

successfully cheating is 2−t, where t is the number of bits in the challenge.

3. Honest Verifier Zero Knowledge: Could the Verfier have created the transcript on

their own? Does there exist an algorithm (simulator) in the semi-honest model that
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can create a proof transcript that is impossible to distinguish from a proper transcript?

The simulator (Prover*) takes over the role of the Prover and knows the challenge

beforehand. If the Prover* can create a valid transcript using only the inputs of the

Verifier, then the protocol reveals nothing to an honest Verifier.

Once a Sigma Protocol is proven to be a Honest Verifier Zero Knowledge Proof, it

can be converted to a malicious Zero Knowledge Proof by either using a perfectly hiding

commitment of the challenge before the initial communication [13], or by using the Fiat-

Shamir random oracle heuristic [7] to eliminate the Verifier’s input by making the protocol

non-interactive.

We will only prove completeness and special soundness in this section for each of the

sigma protocols, as we have already proven Honest Verifier Zero Knowledge by providing

the honest simulators with the protocols in Chapter 3.

5.1.1 Schnorr’s Protocol

The proof for Schnorr’s protocol is relatively simple, so we will begin with it to demonstrate

the structure of the proof.

Completeness:

To prove completeness, we will assume an honest Prover. If the Prover knows x such that

y = gx:

1. The Prover randomly generates r and calculates gr and sends it to the Verifier.

2. The Verifier sends a random t-bit challenge c to the Prover.

3. The Prover calculates z = r + c · x
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Schnorr’s Protocol Extractor

1. The Prover and Verifier* run Protocol 3.1 from the beginning to end, resulting in the
transcript (a, c1, z1)

2. The Verifier* rewinds the Prover to Step 3 of the protocol and sends a second challenge
c2.

3. The protocol resumes to completion, resulting in the transcript (a, c2, z2)

4. If both transcripts are valid, the Verifier* calculates z1−z2
c1−c2 = (r+c1·x)−(r+c2·x)

c1−c2 =
c1·x−c2·x
c1−c2 = (c1−c2)·x

c1−c2 = x; otherwise, the extractor fails.

Protocol 5.1: Schnorr’s Protocol Extractor

4. The Prover sends z to the Verifier.

5. The Verifier calculates gz and a · yc. Because the Prover is honest, gz = gr+cx =

gr · gxc = a · yc. Since gz = a · yc, the Verifier accepts.

Special Soundness:

To prove that the protocol is specially sound, we provide the extractor, Protocol 5.1. Since

the extractor can extract the secret x, the protocol is specially sound.

5.1.2 Equal Discrete Log Proof

The proof for the Equal Discrete Log Proof is very similar to Schnorr, as the protocol is

based on Schnorr’s Protocol.
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Completeness

To prove completeness, we will assume an honest Prover. If the Prover knows x such that

yg = gx and yh = hx:

1. The Prover randomly generates r and calculates ag = gr and ah = hr and sends it to

the Verifier.

2. The Verifier sends a challenge c to the Prover.

3. The Prover uses x to calculate z = r + c · x

4. The Prover sends z to the Verifier.

5. The Verifier calculates gz, which is equal to gr+cx = gr · (gx)c = a · ygc.

6. The Verifier calculates hz, which is equal to hr+cx = hr · (hx)c = a · yhc.

Since gz = a · ygc and hz = a · yhc, the Verifier accepts.

Special Soundness

To prove that EDLP is specially sound, we provide an extractor (Protocol 5.2). Since the

extractor can extract the secret x, the protocol is specially sound.

5.1.3 Zero Knowledge AND

The proof for the Zero Knowledge AND Protocol’s proof requires that all the protocols

are Zero Knowledge Protocols in the form of Sigma Protocols. The proof relies on each

component protocol’s completeness, extractor, and simulator.
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Equal Discrete Log Proof Protocol Extractor

1. The Prover and Verifier* run Protocol 3.5 from the beginning to end, resulting in the
transcript ((ag, ah), c1, z1)

2. The Verifier* rewinds the Prover to Step 3 of the protocol and sends a second challenge
c2.

3. The protocol resumes to completion, resulting in a second transcript ((ag, ah), c2, z2)

4. If both transcripts are valid, the Verifier* calculates z1−z2
c1−c2 = (r+c1·x)−(r+c2·x)

c1−c2 =
c1·x−c2·x
c1−c2 = (c1−c2)·x

c1−c2 = x; otherwise, the extractor fails.

Protocol 5.2: Equal Discrete Log Proof Protocol Extractor

Completeness

The Prover starts with all the inputs required to properly execute all component protocols.

1. The Prover runs each component protocol’s initial communication step to acquire a

list of initial communications.

2. The Prover sends the list of initial communications to the Verifier.

3. The Verifier sends a challenge c to the Prover.

4. The Prover uses the component protocols to calculate a list of responses.

5. The Prover sends the list of responses to the Verifier.

6. For each component protocol πi, the Verifier uses the respective initial communi-

cation and response with the challenge on πi. Since the component protocols are

complete, the Verifier accepts each transcript.
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Zero Knowledge AND Extractor

1. Run Protocol 3.3 to completion, getting the Verifier*’s first challenge (c1) as well as a
list of transcripts (T1)

2. The Verifier* rewinds the Prover to Step 3 of the protocol and sends a second challenge
c2.

3. The protocol resumes to completion, resulting in a second list of transcripts (T2).

4. If any of the transcripts are invalid with their respective protocol, the extractor aborts and
fails.

5. For each component protocol πi, select the associated transcripts T1(i) and T2(i). The
Verifier* uses the protocol πi’s extractor with the transcripts T1(i) and T2(i) to obtain
the secret associated with πi.

Protocol 5.3: Zero Knowledge AND Extractor

Special Soundness

We assume that each component protocol is specially sound and has an extractor. Zero

Knowledge AND’s extractor is provided as Protocol 5.3 to prove that this composition is

specially sound.

5.1.4 Zero Knowledge OR

This proof resembles the Zero Knowledge AND proof, but is a bit more complicated.

Like Zero Knowledge AND, the Zero Knowledge OR Protocol’s proof requires that all

the component protocols are Zero Knowledge Protocols in the form of Sigma Protocols.

This means that the component protocols are complete and have simulators and extractors.
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Completeness

The Prover starts with the inputs to properly prove at least one of the component protocols.

1. The Prover splits the list of protocols in to two sub-lists: protocols to be run properly

(P ) and protocols to be simulated (S). The Prover simulates if he does not have the

proper inputs.

2. For each protocol πj in the list S, the Prover generates a sub-challenge cj . The Prover

then use the associated simulator σj to randomly generate the responses zj and the

calculate the initial communication aj .

3. For each protocol πi in the list P , they run the protocol πi to calculate the initial

communication.

4. The Prover sends the list of initial communications to the Verifier.

5. The Verifier sends a challenge c to the Prover.

6. The Prover XORs each sub-challenge cj together, then XORs that number with the

Verifier’s challenge c, which will be called the total sub-challenge (ct).

7. For all but one of the protocols πi in P , the Prover randomly generates a sub-

challenge ci and XORs that challenge in to ct, creating a new ct.

8. For the remaining protocol πi in P , set ci equal to the resulting ct.

9. For each protocol πi in P , use the protocol πi to calculate the response with the

associated sub-challenge ci.

10. The Prover sends the list of responses and the list of sub-challenges to the Verifier.
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11. The Verifier takes the XOR of all of the sub-challenges, and sees that the result is

equal to c.

12. The Verifier goes through each protocol πi:

(a) If the Prover used the protocol’s simulator σi, then the Verifier will accept, as

the simulator is assumed to be valid.

(b) If the Prover used the proper protocol, then the Verifier will accept, as the

protocol is complete and the Prover used proper inputs.

Therefore, Zero Knowledge OR is complete.

Special Soundness

We assume that each component protocol is specially sound and has an extractor. Each tran-

script from the component protocols contains the initial communication, the sub-challenge,

and the response (ai,ci,zi) from that protocol. The extractor is provided as Protocol 5.4.

Since the extractor extracts the used secrets, Zero Knowledge OR is specially sound.

5.2 Security Definition

In the following, we define the security goals of Variance:

Definition 1. A privacy-preserving bitcoin asset comparison protocol is a protocol that

fulfills the following criteria:

1. Correctness. If P1 and P2 are honest, then the comparison is always accurate.

2. Privacy. A dishonest party (or an eavesdropper) cannot learn any information about

the other party’s list of selected accounts or their total sum.
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Zero Knowledge OR Extractor

1. Run Protocol 3.2 to completion, getting the Verifier*’s first challenge (c1) as well as a
list of transcripts (T1).

2. The Verifier* rewinds the Prover to Step 4 of the protocol and the Verifier* sends a second
challenge c2.

3. The protocol resumes to completion, resulting in a second list of transcripts (T2).

4. The Verifier* verifies both lists of transcripts are valid, as well as the sub-challenges. If
any of the transcripts are invalid, the extractor fails and aborts.

5. For each component protocol πi, select the corresponding transcripts T1(i) and T2(i). If
the sub-challenges from T1(i) and T2(i) are not equal, then the Verifier* will run πi’s
extractor, using the transcripts T1(i) and T2(i) to extract the Prover’s secret associated
with the protocol.

Protocol 5.4: Zero Knowledge OR Extractor

3. Ownership. Each party is assured that the other is cannot include any bitcoins

that they do not own in the concealed sum such that the probability of a dishonest

party successfully cheating in the construction of the concealed sum is extremely low

(< 2−30).

4. Sound Comparison. Assuming the concealed sum is accurate, the probability of a

dishonest party successfully cheating in the comparison is extremely low (< 2−30).

5.3 Security Proofs

We will now prove the following theorem:

Theorem 5.3.1. Variance is a privacy-preserving bitcoin asset comparison protocol.
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To prove this theorem, we will prove that each of the statements in Definition 1 applies

to Variance. We will also provide a supplementary proof of security as provided by Hazay

and Lindell [14] called Proof by Simulation, which is also a proof of the security definition.

5.3.1 Basic Component Proofs

Lemma 1. Variance is correct.

Proof: This proof relies on the three different phases of the protocol all being correct:

ZK-OR Proof of Assets

If the commitments are designed according to the protocol, then the homomorphisms allow

the Proof of Assets produce the appropriate sum. Also, the Account Verification Proof is a

Zero Knowledge Protocol, thus it is also complete. Each party will accept the other party’s

proofs, allowing the protocol continue to the next step with the appropriate committed

sums.

Bit Conversion

If the bit commitments are designed according to the protocol, then the product of the

shifted bit commitments
∏n−1

i=0 Cbi
2i is equal to the original sum commitment, thus the bit

commitments are accepted if they are proven to be bits. This is the case because
∑n−1

i=0 ηi ·

2i = Γ. Since the commitments hide a bitwise representation of the sum S,
∑n−1

i=0 bi · 2i =

S, thus
∏n−1

i=0 Cbi
2i =

∏n−1
i=0 (gbi · hηi)2i

= g
∑n−1

i=0 bi·2
i · h

∑n−1
i=0 ηi·2

i
= gS · hΓ = Csum. The

Bit Verification Proof is a Zero Knowledge Proof, therefore it is complete. Therefore, the

parties will accept the each other’s proofs, agreeing that the other party’s bit commitments

hide a bitwise representation of the sum, thus allowing the protocol to continue.
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Zero Knowledge Comparison

First, the Mix and Match protocol, including PET, is complete, as proven by Jakobsson and

Juels [15]. Next, the parties rerandomize the correct encryptions based on their current bit

and the logic of the table. Recall that the encryptions are additive elgamal and homomor-

phically add the messages when multiplied. We will now the feedback will be correct in

every case.

• On the Equals (J0K) table:

1. P1’s bit is 0, P2’s bit is 0, J0K ·
q
−1

2

y
· J0K ·

q
1
2

y
= J0K. The bits are equal, so

the feedback should match the Equals table. This is the result of the homomor-

phism.

2. P1’s bit is 0, P2’s bit is 1, J0K ·
q
−1

2

y
·
q
−1

2

y
· J0K = J−1K. P1’s bit is less than

P2’s, so the feedback should match the Less Than table. This is the result of the

homomorphism.

3. P1’s bit is 1, P2’s bit is 0,
q

1
2

y
· J0K · J0K ·

q
1
2

y
= J1K. P1’s bit is greater than

P2’s bit, so the feedback should match the Greater Than table. This is the result

of the homomorphism.

4. P1’s bit is 1, P2’s bit is 1,
q

1
2

y
· J0K ·

q
−1

2

y
· J0K = J0K. The bits are equal, so

the feedback should match the Equals table. This is the result of the homomor-

phism.

• On the Less Than (J−1K) table, if any group of 4 encryptions, which are all
q
−1

4

y

are rerandomized and homomorphically added, the result will be J−1K, which leads

back to the Less Than table after the shuffle, as intended.
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• On the Greater Than (J1K) table, if any group of 4 encryptions, which are all
q

1
4

y
are

rerandomized and homomorphically added, the result will be J1K, which leads back

to the Greater Than table after the shuffle, as intended.

Also, BTVP is a Zero Knowledge Proof, so it is complete, so the parties will accept the

other’s proofs. They then run a distributed decrypt on the last feedback, which returns the

relation between P1 and P2. Therefore, Variance is correct. �

Lemma 2. Variance maintains privacy.

Proof: This claim contains two parts. Proof that the accounts are private and proof that

the sum is private.

Proof of Private Accounts

ZK-OR Proof of Assets is the only part of the protocol which handles the individual

accounts. As long as the sum is not released by any of the other steps, those steps are

not relevant to this proof.

ZK-OR Proof of Assets uses perfectly-hiding commitments, which are verified using

the Account Verification Proof. This proof is a Zero Knowledge Proof, so it is Zero

Knowledge and has a simulator. Due to the nature of the proof, it is impossible to determine

whether the account is claimed or not if the sum is not revealed, since it it possible to have

two equal transcripts, one in which the account claimed and one in which the account is not

claimed. The perfectly-hiding commitments reveal nothing about the balance due to their

perfectly-hiding nature.
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Proof of Private Sum

ZK-OR Proof of Assets does not reveal the accounts, so the only other component is the

homomorphic addition of the commitments, which is also perfectly-hiding.

The Bit Conversion protocol is based on perfectly hiding commitments and homomor-

phic operations. There exists message-key pairs for a bit in the sum for bitwise commitment

to hide a 1 or a 0, thus there is no way to differentiate between them. This leaves the Bit

Verification Proof, which is a Zero Knowledge Proof, thus it is Zero Knowledge and has a

simulator. Therefore, the Bit Conversion protocol is privacy-preserving.

This leaves the Comparison Protocol. The shuffle and PET is privacy-preserving un-

der the ECDLP, as proven by Jakobsson and Juels in their paper [15]. This leaves the

encryptions and the proof. The encryptions are semantically secure, so their contents are

protected by ECDLP. BTVP is a Zero Knowledge Proof, and thus is Zero Knowledge has a

simulator. However, many of the bits lose their perfect-hiding during this phase. If ECDLP

gets solved, all bits up to and including the first different bit from the most significant bit

can be revealed, as the parties’ encryptions become trivial to open and can be matched to

the owner’ bit on the equals table. All of the less significant bits remain perfectly-hidden,

as the less than and greater than tables both have identical encryptions on all the rows, thus

the decryptions reveal nothing about the claimed bits. Therefore, the more significant bits

of the sum up to and including the first differing bit are kept private under ECDLP, while

the remaining less significant bits remain perfectly hidden, thus are private.

Therefore the sum and the accounts are private, therefore Variance maintains pri-

vacy. �
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Argument for Strong Account Privacy

We designed the protocol in such a way some of the sum remains perfectly hidden after the

comparison, specifically from the most significant bits up to and including the first differing

bit. In the event that ECDLP becomes solved, we would like to explore what can be kept

secret. Though ECDLP being broken means the bulk of the information about the sum is

revealed, the lack of information about the less significant bits actually makes deducing

the accounts much harder. This is because every account commitment has two possible

message-key combinations: (balance and key1) and (0 and key2). If the entire sum were

to be revealed, that means that the adversary knows the sum and can easily figure out the

associated key using the sum and Csum. That means that, if there are 10 million accounts,

there is a linear system of equations with 20 million variables that is tractable and has a

polynomial runtime (O(n3)), so the accounts would be revealed. Since the sum is not fully

revealed, this attack on the accounts are much harder, if not impossible, in most cases.

Lemma 3. Variance ensures ownership.

Proof: ZK-OR Proof of Assets uses homomorphisms, which do not make it easier

to cheat on the sum commitments. The Account Verification Proof is a Zero Knowledge

Proof, so it is specially sound, so it protects against cheating with a probability of success-

fully cheating at 2−t for each account, where t is the number of bits in the challenge. Since

we use perfectly-hiding commitments, they are only computationally binding. This means

that they are bound by ECDLP. As long as the discrete log is not solved, the commitment

is bound. Therefore, each party’s sum is bound to only use accounts to which that party

holds the key with a very high probability by ECDLP.

Therefore, Variance ensures ownership. �

Lemma 4. Variance’s comparison is a sound comparison.
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Proof: This proof consists of two parts: Bit Conversion and ZK Comparison.

Bit Conversion uses homomorphisms, which do not reveal anything the original com-

mitments have not already revealed. The Bit Verification proof is a Zero Knowledge Proof,

thus it is specially sound (meaning the probability of cheating on any bit is 2−t, where t is

the number of challenge bits). The last thing is to prove that the bitwise construction itself

is sound. Recall that the homomorphism we use is
∏n

i C(bi,ηi)
2i . This operation bitshifts

the message. If one of the bits is invalid, then the ephemeral key on the least significant bit

does not result in equality, as the message is different and requires a total ephemeral key

that is different from Γ. Since this key is not known, the cheating party has no way to prove

with probability greater than 2−t that the final bit in the number is a bit because they do not

know the appropriate ephemeral key unless they have broken the discrete log. Therefore,

the Bit Conversion is sound under ECDLP.

Mix and Max is sound, as is PET. BTVP is a Zero Knowledge Proof and thus is specially

sound, thus successfully cheating on the rerandomization is extremely improbable, 2−t.

The homomorphisms on the encryptions are perfectly binding, as encryptions are perfectly

binding. The bit commitment is bound with ECDLP.

Variance’s comparison is sound under ECDLP. �

5.3.2 Proof by Simulation

Simulator Proof: To ensure privacy, we first present simulator protocols for each of the

main components of the protocol, then we present an overarching simulator to show se-

curity for the entire protocol by sequential composition. The parties are symmetric, so

the simulator can simulate the view of either party. It should be noted that if an internal

simulator (a simulator that the Simulator has called and is running) aborts, the main simu-

lation also aborts. The Simulator S interacts with the Adversary A. Since S is a simulator,
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their commitments and encryptions are simply random numbers, and thus will be called

“pseudo.”

Ideal Model

First, we describe the actions of the trusted third party (TTP) in the Ideal Model.

1. Each party gives the TTP their list of private account keys.

2. The TTP finds each of the associated public keys and creates a sum for each party.

3. The TTP returns the relation between P1’s sum and P2’s sum.

ZK-Proof of Assets Simulator

Public Inputs: The set of accounts, where each account is a pair (public key, balance)

Public Outputs: A’s total sum commitment, S’s total sum pseudo commitment,A’s list

of account commitments, S’s list of account pseudo commitments.

Extracted Data: A’s list of used private keys and the message-key pairs for all of A’s

commitments.

The Simulator is as follows:

1. For each account in the set of accounts:

(a) S generates a random group element as its account pseudo commitment and

sends it to A.

(b) S receives a group element from A (A’s account commitment)

(c) S runs the Account Verification Proofs with A. The proofs can be run in any

order.
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• S, acting as the Prover, runs the Account Verification Proof’s simulator

with A. If A accepts, continue.

• S, acting as the Verifier, runs the Account Verification Proof’s extractor

with A. If the extractor succeeds, the values γi, b̂i, and x̂i. If x̂i 6= 0, then

x̂i = xi, and xi is recorded as one of A’s used private keys.

• If the extractor fails, S sends abort to the TTP and sends the failed chal-

lenge to A.

2. S homomorphically addsA’s account commitments to obtainA’s sum commitment.

S also sums A’s b̂i values to obtain the claimed assets and sums γi values to obtain

Γi.

3. S homomorphically adds their account pseudo commitments to obtain S’s sum pseudo

commitment. IfA accepts the homomorphic combination, then S continues. Else, S

aborts.

Bit Conversion Simulator

Public Inputs: A’s commitment, S’s pseudo commitment, and the number of agreed bits n

Public Outputs: A’s list of verified bit commitments and S’s list of verified bit pseudo

commitments.

Extracted Data: The contents of all ofA’s commitments, including the bits, the original

hidden amount, and all of the random keys.

The Simulator is as follows:

1. S randomly generates n− 1 group representing the all but the least significant bit. S

calculates the last element to correspond with the homomorphic relation prescribed

in the protocol.
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2. S sends the list of n group elements (bit pseudo commitments) to A.

3. S attempts to receive n group elements from A. If he sends anything other than n

group elements, S aborts.

4. For each index i from 0 to n− 1:

(a) Run Bit Verification Proofs. These proofs can be run in either order.

• S, acting as the Prover, runs the Bit Verification simulator with A on S’s

ith bit pseudo commitment. If A rejects the simulation, S aborts.

• S, acting as the Verifier, runs the Bit Verification extractor with A on their

ith bit commitment to extractA’s ith bit key pair for their bit commitment.

If the extractor fails, S sends the failed challenge and aborts.

5. S homomorphically combines A’s bit commitments as prescribed in the protocol. If

the product is equal to A’s total commitment, S tells A to continue.

6. S homomorphically combines its own bit commitments as prescribed by the protocol.

If A does not tell S to continue, S aborts.

Zero Knowledge Comparison

Public Inputs: A’s bit commitments and S’s bit pseudo commitments, as well as the initial

unshuffled tables, as well as S and A’s public keys.

Public Outputs: The result of the comparison.

Optional Simulator Data (from calling a simulator): The result of the comparison m

and A’s private key x.

Extracted Data: The contents of all of A’s bit commitments, including the bits and all

of the random keys, as well as the rerandomization values α and A’s private key x.
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The Simulator is as follows:

1. Build the initial table (unshuffled). Select the “Equals” table

2. For each bit i starting from most significant:

(a) S randomly generates two pairs of group elements and sends them to A.

(b) S attempts to receive two pairs of group elements. If any other data is sent, S

aborts. Else, S continues.

(c) Run Bit Table Verification Proof: The order of the proofs is irrelevant.

• S, acting as the Prover, uses BTVP’s simulator with A using S’s ith bit

commitment, the two random pairs, and the selected table as inputs. If A

accepts, S continues. Else, S aborts.

• S, acting as the Verifier, uses BTVP’s extractor withA, using theA’s ith bit

commitment, the A’s group element pairs, and the selected table as inputs.

If successful, S extracts the bits and the rerandomization exponents and

continues. Else, S aborts.

(d) Homomorphically combine all four pairs as exponential Elgamal encryptions,

called feedback.

(e) Run Mix and Match’s Verifiable Mix Network’s simulator to replace the exist-

ing tables with random group elements and ensure A shuffles properly.

(f) Simulate PET with the feedback to select a single random row. The table in that

row is the new selected table.

3. If the result of the comparison is unknown, give the extracted bits to the TTP to get

the appropriate result.
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4. Take the last feedback (R1, R2), where R1 is the ephemeral public key.

5. S simulates a distributed decryption such that the result is m. S also extracts A’s

private key. If the simulation is successful, S continues.

Variance Simulator

Public Inputs: List of accounts, as well as S and A’s public keys.

Public Outputs: The result of the comparison.

Extracted Data: A’s private key, claimed accounts, total assets, and all random keys

from the commitments.

The Simulator is as follows:

1. S runs the Proof of Assets simulator with A, using the list of accounts. If the

simulation is successful, S extracts the list of A’s used private account keys. The

simulator outputs A’s sum commitment and S’s sum pseudo commitment as public

information.

2. S uses the TTP with A’s used private account keys to determine the proper compar-

ison result.

3. S runs the Bit Conversion Simulator with A, using A’s sum commitment and S’s

sum pseudo commitment. The simulator outputsA’s list of bit commitments and S’s

list of bit pseudo commitments.

4. S runs the Zero Knowledge Comparison Simulator with A, using A’s list of bit

commitments and S’s list of bit pseudo commitments.

5. If all of the simulators succeed. S sends a continue to the TTP. Else, S sends an abort

to the TTP.
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5.4 Potential Security Threat & Solutions

The use of Zero Knowledge OR could result in a significant attack on the security of the

algorithm through analysis of the timings of responses. If the simulator takes a significantly

different amount of time than the standard protocol, then an opponent may deduce which

provers were utilized in an asymmetric Zero Knowledge OR, like the Account Verification

Proof, which, if he is correct, reveals which of the side of a Zero Knowledge OR is true,

which would reveal whether or not an account is claimed. This threat can easily be miti-

gated by adding having the protocol utilize waits so that each step takes the same amount of

time. Since, given simulators and provers use approximately the same resources throughout

the entire execution, this can also be mostly mitigated by the use of the Fiat-Shamir Random

Oracle heuristic [7] to make the zero knowledge proofs non-interactive. It may still be

necessary release each proof after a constant amount of time regardless.
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Chapter 6

EXPERIMENTAL EVALUATION AND PERFORMANCE

ANALYSIS

6.1 The Setting

We implemented Variance to measure the performance of the algorithm. We utilize Bouncy

Castle to handle the elliptic curve operations. We created our implementation in Java. We

implemented our own Zero Knowledge Proof interface for this system. Our ZKProver

interface includes a parallel-prove, where two parties act as both prover and verifier simul-

taneously on the same protocol using their own data. Zero Knowledge AND and OR are

implemented by providing a list of protocols. All Zero Knowledge Proofs are performed

with a pre-committed challenge to ensure security against a malicious verifier. Though

many parts of this protocol are easily parallelizable with threads, each party uses a single

threaded program to better establish a benchmark. As a rule, inputs for the Zero Knowledge

Proofs were created as needed and discarded when no longer needed to allow the program

to maintain a reasonably sized heap and a small footprint on RAM. The challenges used

have 255 bits.
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6.1.1 Proof of Assets

Since we are solving the same problem as Provisions’s Proof of Assets, we will be com-

paring our performance to the Provisions algorithm. Since we do not have access to

Provisions’s source code, we implemented the protocol using ZKProver. This allowed

us to run both protocols implemented using the same general methods and running them

under the same conditions. All experiments are done assuming secp256k1 public keys,

though Variance can handle other key types.

Computational Complexity

Every account requires one run of the Zero Knowledge Proof and one homomorphic addi-

tion for each account. Each individual homomorphic addition is a simple point addition,

which is independent of the number of accounts, so the individual homomorphic additions

are O(1). The instances of the Zero Knowledge Proof are independent of each other and

the execution of the proof is independent of the number of accounts, so each individual

Zero Knowledge Proofs are O(1). Thus with respect to the number of accounts (na), the

computational complexity of the Proof of Assets is O(na). This analysis is also supported

by the experiments, which show a linear growth as the number of accounts increase.

Theoretical Comparison

To compare the theoretical difference between Variance’s Proof of Assets and Provision’s

Proof of Assets, we will be looking at three important and potentially expensive compo-

nents: Exponentiations, Communications, and Random Numbers generated. We will be

conducting a basic count of each for proving that the commitments are consistent with one

account. We count any exponentiation where the exponent is a random number that can be
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up to 256 bits. We count communications if they require a transfer of 256 bits. It should

be noted that Bouncy Castle has a compressed point format which converts an elliptical

curve point in to an approximately 256 bit representation. We count random numbers if

they generate up to 256 bits.

Exps Comms RNGs

Variance 15 13 8

Provisions 27 17 13

Exps Comms RNGs

Variance 16 13 8

Provisions 27 17 13

Variance’s Proof of Assets theoretically requires less resources in every major respect

than Provisions’s Proof of Assets. This implies that Variance’s Proof of Assets will run

faster and with a smaller proof size than Provisions. There is an asymmetry between

whether the account is claimed or not. We discuss the ramifications of this in the Secu-

rity Analysis section on Timing Analysis, as well as a solution. Our experiment did not

implement any solution to this issue.

It should also be noted that both Proofs of Assets are Embarrassingly Parallel, which

means that the tasks can easily be parallelized without having to compensate for data

interdependencies. If each party were to execute a properly threaded version of the im-

plementation on n cores, the execution time could be expected to decrease by a factor of

1
n

.

Experimental Results

We executed this protocol on a list of single-key accounts using secp256k1 curve.

To properly compare the results of Variance to the results from Provisions, we ensured

that they were optimized in the same way and were operating on the same system by

implementing both protocols using the same scheme. To mirror the Prosivions experiment
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Figure 6.1: Comparison of runtimes of proofs of assets up to 500,000 accounts.
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Figure 6.2: Comparison of runtimes of proofs of assets up to 10,000,000 accounts.
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Figure 6.3: Comparison of transcripts sizes of proofs of assets up to 10,000,000 accounts.

for comparison, we include Figure 6.1. It should be noted that our implementation of

Provisions’s protocol was faster than the implementation used in their paper. It presents

the data up to an account space of up to 500,000. It clearly demonstrates a linear trend.

Figure 6.2 illustrates an account space of 10,000,000 to show the linear trend continues.

This shows that it is reasonable to run Variance 8 hours overnight on the entire blockchain,

whereas Provisions’s proof would require over 12 hours. This is a non-threaded edition of

the protocol, which is embarrassingly parallel, so the time could easily be reduced by a

factor of 1
n

, where n = MIN(Party 1’s cores, Party 2’s cores)

We will now compare the size of the proofs by measuring the Verifier’s transcript. The

data is charted on Figure 6.3. We observe that Variance’s transcripts are 1.3 times smaller

than Provisions’s transcripts, which saves on records space.

These performance improvements, compounded with the increased flexibility of the

Variance Proof of Assets, emphasize the superiority of Variance Proof of Assets com-
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pared to Provisions’s.

6.1.2 Bit Conversion and Comparison

Computational Complexity

This portion of the protocol consists of two loops with the number of bits in the comparison

(nb) iterations. The contents of the first loop consists of creating a bit commitment, a point

addition, and a Bit Verification Protocol. These are constant time operations, therefore the

contents of the loop is O(1). That means the loop as a whole is O(nb).

The second loop consists of 2 encryptions, 2 elgamal rerandomizations, a large zero

knowledge proof, and a mix and match iteration, which includes a shuffle and a PET.

According to Jakkobson and Juels [15], one mix and match iteration is constant time with

respect to everything but the size of the table, which is constant, and the number of parties,

of which there are two. All the other components are also constant time with respect to

number of bits in the comparison, therefore the computational complexity the inside of the

loop is O(1). This puts the second loop at O(nb).

Experimental Results

We ran the comparison protocol at 20 bits and it executed in 1.647 seconds. This amount

of time is negligible compared to the Proof of Assets.
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Chapter 7

CONCLUSION

7.1 Summary

In this thesis, we design a two-party protocol that allows two parties to determine who owns

more bitcoin without revealing which accounts are owned or anything about the total sum

except the relation between the two sums.

The tools used in this protocol allow for an efficient modular design. This modular

design allowed for a more intuitive design that is also more efficient, direct, and flexible.

The ability to handle accounts secured in a different setting, including multisig accounts,

could be very useful for making a usable protocol. The experiments showed our modular

design for the Proof of Assets was about 1.5 times more efficient in runtime than the less

flexible design from Provisions. Being able to use Zero Knowledge Proofs in this modular

design also is more consistent with the object-oriented paradigm.

This technique can be applied to real world problems in Bitcoin, such as auctions and

credit checks. Unlike most of the literature, this thesis explores not only the verifying power

of Zero Knowledge Proofs, but their ability to be a fundamental computational component

of a protocol.
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7.2 Looking Ahead

There are several further experimental tests and improvements that could improve this

protocol.

7.2.1 Proof of Assets

It would be interesting to have an experiment involving multisig accounts, which have

multiple keys. These accounts would be harder to work with, as proving ownership of the

account involves more proofs of keys. Some accounts with n keys allow transfers if the

party holds k keys, i.e. a 3 key account that requires 2 keys for a transaction. To prove

ownership of such an account, it would require
(
n
k

)
components to the Zero Knowledge

Proof, which can get very expensive. For example, the proof for owning 2 of 3 keys would

be “(I own key 1 AND I own key 2) OR (I own key 1 AND I own key 3) OR (I own key

2 AND I own key 3)”. This proof has 6 “I know the key” proofs, which is manageable. If

n = 10 and k = 5, the number of individual proofs would be 252, which is still manageable,

but slow. These larger proofs are rare, but they are also very expensive.

It would also be interesting to see the performance of proof of knowledge of the private

key of the preimage of the hash in this protocol. This would allow the protocol to include

non-spending accounts in the sum. Such a proof would likely be expensive, but would

allow for a complete sum.

Parallelizing the implementation of the protocol using threads would be good to demon-

strate the scalability with cores. It would also be interesting to attempt to implement this

protocol for use on a GPU. Use of CUDA could allow these proofs to be executed in large

batches, which would improve the efficiency significantly.
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7.2.2 Zero Knowledge Comparison

It would be good for the novelty of the protocol to find a way to replace the PET in the

comparison. Though it functions properly, it does not fit the theme that the only interactions

are Zero Knowledge Proofs or simple data transfers.

Further work could involve refining the comparison to increase efficiency and com-

paring its multi-party computational efficiency to Mix and Match. Specifically, if the

comparison in the Zero Knowledge Proof was converted to be non-interactive with the

Fiat-Shamir heuristic [7]. With a brief examination at the problem, PET appears more

efficient than our Zero Knowledge Comparison for two parties. However, PET increases

in complexity with the number of parties, but a random oracle Zero Knowledge Proof

remains constant, which means that if the comparison has a large number of verifiers, our

Zero Knowledge Comparison may become more efficient than PET.
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