
CULTIVATING COMMUNITY INTERACTIONS IN

CITIZEN SCIENCE:

CONNECTING PEOPLE TO EACH OTHER AND THE

ENVIRONMENT

by

Bret Allen Finley

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

December 2017

c© 2017
Bret Allen Finley

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Bret Allen Finley

Thesis Title: Cultivating Community Interactions in Citizen Science: Connecting
People to Each Other and the Environment

Date of Final Oral Examination: 23rd October 2017

The following individuals read and discussed the thesis submitted by student Bret
Allen Finley, and they evaluated the presentation and response to questions during the
final oral examination. They found that the student passed the final oral examination.

Jerry Alan Fails, Ph.D. Chair, Supervisory Committee

Bogdan Dit, Ph.D. Member, Supervisory Committee

Maria Soledad Pera, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Jerry Alan Fails, Ph.D., Chair
of the Supervisory Committee. The thesis was approved by the Graduate College.

ACKNOWLEDGMENTS

This work would not have been possible without the thoughtful support of many

who took a personal interest in its completion. The author would like to thank his

parents, who have supported him every step of the way. The author would also like

to thank God, for the good mental and physical health required for finishing this

thesis. The author is also very grateful for the immense time and effort contributed

by Dr. Jerry Fails. His guidance and insight were a driving force in completing this

work. The author would also like to thank Boise State University and the faculty of

the Computer Science department for awarding an assistantship, without which this

work would not have been possible.

iv

ABSTRACT

Citizen science leverages a distributed user-base which participates in crowd-

sourced scientific inquiry. Geotagger is a citizen science project that allows people to

collaboratively investigate the natural world around them and share their findings.

Citizens are rarely compensated for their work and individual contributors can feel

isolated which leads to motivation problems. This thesis focuses on engaging citizen

scientists and motivating their contributions via social interaction and engagement.

As a part of this work, a number of social enhancements have been developed as

extensions to the existing Geotagger project. These enhancements and their effect

on social engagement were evaluated using in-field studies and design investigations

with children. In the studies, children engaged effectively with each other using the

social enhancements in Geotagger, and showed a preference for the application that

included these social enhancements.

v

TABLE OF CONTENTS

ABSTRACT . v

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xiv

1 Introduction . 1

1.1 Motivation . 1

1.2 Geotagger . 5

1.3 Thesis Statement . 7

2 Related Work . 8

2.1 Overview of Related Citizen Science Projects . 8

2.2 Previous Work on the Geotagger Project . 13

2.2.1 Backend Data Store . 14

2.2.2 REST API . 16

2.2.3 Web Portal . 19

2.2.4 Android Application . 21

2.2.5 iOS Application . 23

3 Description of Work . 25

vi

3.1 Influence of Previous Work . 26

3.1.1 Android Application . 26

3.1.2 MySQL Database . 34

3.2 Survey of Cross-Platform Frameworks . 35

3.2.1 Selected Frameworks . 37

3.3 Overview of Employed Software Technologies . 40

3.3.1 Ionic Framework and Cordova Runtime 41

3.3.2 SQLite . 44

3.3.3 Google Maps . 47

3.3.4 Socket.io . 49

3.4 Walkthrough of Social Enhancements . 51

3.4.1 Login View . 52

3.4.2 Adventure List View . 53

3.4.3 Adventure Detail View . 54

3.4.4 Tag Detail View . 62

3.4.5 Profile Detail View . 67

3.4.6 Tag Overview . 70

3.4.7 Aggregate Tag Map . 71

4 Evaluation . 74

4.1 Field Studies . 74

4.1.1 Method . 75

4.1.2 Study 0: Grove Plaza Pilot Study . 85

4.1.3 Study 1: Settler’s Park Study . 89

4.1.4 Results and Discussion . 100

vii

4.2 Investigations of Specific Social Enhancements 101

4.2.1 Method . 102

4.2.2 Investigation 1: Tag Cards and Comment Flow 107

4.2.3 Investigation 2: Practical Adventure Chat 114

4.2.4 Investigation 3: Adventure Chat Redesign 119

5 Future Work and Conclusions . 125

5.1 Future Work . 125

5.1.1 Design Team Iteration and Development 125

5.1.2 Application Look and Feel Refresh . 126

5.1.3 iOS Application Testing and Further Development 126

5.1.4 Performance Enhancements . 127

5.1.5 Automated Testing . 129

5.1.6 Additional Geotagger Features . 130

5.1.7 Source Code Maintenance . 135

5.2 Conclusions . 136

REFERENCES . 140

A Design Documents . 144

A.1 Project Structure . 144

A.2 Cache Schema . 147

A.2.1 Schema Overview . 147

A.2.2 Overview of Database Tables . 148

A.2.3 Changes From Android Application Cache Schema 154

A.3 Action Cache . 158

viii

A.3.1 Maintaining Synchronicity with Remote Data Store 159

A.3.2 Storing Actions . 161

A.3.3 Servicing Actions . 162

B Card Design Prototypes . 167

ix

LIST OF TABLES

3.1 Cross Platform Frameworks . 37

4.1 Treatment Survey . 80

4.2 Comparative Survey . 80

4.3 Treatment Counterbalance Scheme . 83

4.4 Participant Age Distribution . 93

4.5 Kidsteam Survey . 112

x

LIST OF FIGURES

2.1 REST API Request/Response . 18

2.2 Geotagger Web Interface . 21

2.3 Geotagger Android Application . 22

2.4 Geotagger iOS Application . 24

3.1 Android Data Flow . 28

3.2 Cross-Platform Data Flow . 29

3.3 Adventure List Views . 31

3.4 Tag List Views . 32

3.5 Comment Views . 33

3.6 Action Cache . 34

3.7 Ionic Application on Different Platforms . 42

3.8 Cordova Architecture . 43

3.9 Google Map View . 48

3.10 Socket.io Architecture . 50

3.11 Geotagger Login View . 52

3.12 Geotagger Register View . 53

3.13 Adventure List View . 54

3.14 Adventure Info Screen . 55

3.15 Adventure Tag Views . 57

3.16 The Tag Card . 58

xi

3.17 Adventure Maps . 60

3.18 Adventure Members . 61

3.19 Adventure Chat . 62

3.20 Adventure Chat Badge . 62

3.21 Tag Info . 64

3.22 Zoomed Image . 65

3.23 Tag Comments . 66

3.24 Tag Map . 67

3.25 Profile Info . 68

3.26 Profile Tags . 69

3.27 Profile Map . 70

3.28 Aggregate Tag List . 72

3.29 Aggregate Tag Map . 73

4.1 Original Smileyometer . 78

4.2 Improved Smileyometer . 79

4.3 Treatment Survey Median Response . 94

4.4 Treatment Survey Mean Response . 95

4.5 Sticky Notes Cooperative Inquiry . 105

4.6 Geotagger X Sticky Notes . 109

4.7 Geotagger Z Sticky Notes . 111

4.8 Adventure Chat Big Ideas . 117

4.9 Chat Redesign Big Ideas . 121

A.1 Cache Schema Diagram . 148

A.2 Reconcile Algorithm . 161

xii

B.1 Card Prototypes . 168

B.2 Additional Card Prototypes . 169

xiii

LIST OF ABBREVIATIONS

AJAX – Asynchronous JavaScript and XML

ADB – Android Device Bridge

API – Application Programming Interface

CHI – Computer Human Interaction

CLI – Command Line Commander

CRUD – Create Read Update Delete

CSS – Cascading Style Sheet

DDL – Data Definition Language

DML – Data Manipulation Language

DOM – Document Object Model

GIF – Graphics Interchange Format

GPS – Global Positioning System

HCI – Human Computer Interaction

HTML – HyperText Markup Language

HTTP – HyperText Transfer Protocol

HTTPS – HyperText Transfer Protocol Secure

IM – Instant Message

xiv

IRB – Institutional Review Board

JDK – Java Development Kit

JPG – Joint Photographic Experts Group

JS – JavaScript

JSON – JavaScript Object Notation

MVC – Model View Controller

NPM – Node Package Manager

ORM – Object Relational Mapper

PHP – PHP HyperText Preprocessor

PNG – Portable Network Graphics

RDBMS – Relational Database Management System

REST – Representational State Transfer

SASS – Syntactically Awesome Style Sheets

SCSS – Sassy Cascading Style Sheet

SDK – Software Development Kit

SQL – Structured Query Language

SMS – Short Message Service

SSL – Secure Sockets Layer

UI – User Interface

URL – Uniform Resource Locator

XML – Extensible Markup Language

xv

1

CHAPTER 1

INTRODUCTION

The aim of citizen science is to create a distributed community of data collectors and

scientists. Citizen science projects oftentimes do not include social features to connect

citizen scientists with one another. Those that do, do not make social interaction an

integral part of the project workflow. Furthermore, citizen science projects do not

usually provide a monetary incentive for contribution, so scientists must volunteer

their own time. This research investigates social enhancements to create connections

between citizen scientists, motivating further contribution. It builds on past citizen

science research, specifically, the Geotagger project by creating and evaluating a suite

of social enhancements. This chapter presents additional motivations for this work,

familiarizing the reader with the field of citizen science and the Geotagger project.

1.1 Motivation

Citizen science is a field of scientific inquiry where research is conducted and data is

collected by amateur or non-traditional scientists. The primary goal of citizen science

is to enlist groups of people to record observations concerning a specific subject. In

this way, citizen science seeks to connect people - who are sometimes distributed

around the world - with a similar interest to accomplish a larger goal. Most citizen

science projects do this by creating bite-sized, research-oriented tasks which users can

2

accomplish quickly and easily. This encourages frequent and regular contributions by

the user-base. Some projects even incorporate gamification elements like milestone

rewards, user leaderboards, and forum badges to entice users to contribute more

seriously.

Citizen science projects span many disciplines and interests, ranging from plants

and animals to cosmic bodies. For example, Project Budburst [1] is a citizen science

project which asks citizens to record observations concerning plant life found around

their community. In this way, Project Budburst seeks to create a digital ecological

record which educators and citizens the world over can download and use in their

projects. The Old Weather Project [4] tasks citizens with reading scans of ship logs

from old whaling vessels. The citizens then transcribe these documents digitally

and upload the transcript to the website. Having these logs in a digital format

makes them readily available to meteorologists and other researchers who have an

interest in historical weather patterns. In the eBird Project [2], citizens are asked to

observe bird life and record the time, place, and what species of bird was observed.

This comprehensive archive of observations allows ornithologists and bird enthusiasts

to gain a deeper understanding on migration and distribution patterns of different

species of birds. Galaxy Zoo [27] is a project which focuses on the identification and

classification of galaxies. Digitally classifying these galaxies allows scientists to sift

through the large amount of galactic data available to them.

Citizen science is inherently very distributed. Because of this, smart devices are

seeing increased use in this context as they are a good fit for the workflow of various

citizen science projects. Smart devices can be used to take pictures and upload them

to the Internet. They can send messages across the world in an instant and see daily

usage in social media and network applications. They can be used to record high

3

resolution video and audio, and can be used to share these artifacts with people around

the world on social networking platforms like Facebook, Instagram, and Twitter.

Smart devices have changed the nature of data recording, and in doing so, have made

some specialized field equipment unnecessary. Most smart devices come standard with

a high resolution camera with audio/video capabilities, this means that a considerable

amount of equipment relating to this kind of data capture is not needed. While special

equipment will still be required when the situation calls for it (ultra high resolution

images, satellite imaging, atmospheric readings, etc.), smart devices account for a

large number of citizen science use cases. Citizen science projects are starting to

find that mobile applications are not only a promising means to record data, but

also to share this data [36, 6]. Users can log findings directly on their mobile device,

and upload video, images, audio, and textual data from wherever they are. These

observations can be directly uploaded to remote servers provided the device has an

Internet connection. With all of these observations in a single place, one would

think that sharing these findings with the rest of the project community would be a

relatively simple task and a natural flow to support user community. However, many

citizen science projects [2, 4, 30] do not readily allow users to share and discuss their

findings, resulting in users contributing in isolation.

Few citizen science projects encourage sharing discoveries and interacting with

other project members as much as they do contributing to the project directly. The

eButterfly Project [3] encourages users to submit data concerning when and where

users observe various species of butterflies. However, this project has no way for

users to interact with one another and share the different species of butterflies they

have found. The Old Weather Project [4] deals with digitally transcribing scans of

weather logs found on antique whaling vessels. Users are free to look over documents

4

they transcribed, but are unable to view what other users have done. Many projects

include a forum system in one form or another, but do not allow users to engage

in one-on-one or small group discussions. Few projects seek to provide a sense of

community and promote user interaction, especially on an individual scale. Social

media websites like Facebook and Twitter enable users to communicate and interact

with each-other and small-groups of individuals. These sites allow users to connect

and engage in various discussions with other members. Users can gain a broad sense

of available discussions by filtering content, usually with a search bar. They are then

presented with an overview of related discussions and can choose to participate in

individual discussions that interest them. This research focused on bringing these

same principles to the world of citizen science, to give users a platform with which

they can communicate with other members and engage in discussions surrounding

the project at hand.

Contributors to citizen science projects are doing so on their own time. Very

rarely is any conventional incentive offered to compensate the users for their time.

Rather, project designers must leverage other motivations in order to motivate users

to contribute. Giving users a sense of place or purpose is one way to motivate them

[21]. It has been found that citizens will more readily contribute to projects if they

feel attached to that project in some way [15]. Whether it is the subject matter of the

project which interests them, or if they have friends or family who also contribute to

the project, users need to feel that the project is worth their time. This work builds on

this by putting emphasis on sharing discoveries and facilitating interactions between

members of the project community. This is accomplished by a number of social

features which built into the existing application in order to make these interactions

feel like an integral part of the project, and more specifically, the user’s workflow. A

5

principle goal of this project is to make these enhancements easily available to the

users. Interaction can be catalyzed by bringing presently available social features to

the forefront of the application. Other features include creating spaces in which users

may explore the project data in order to find other contributors with similar interests.

Over the course of this thesis, incorporating these features into the existing Geotagger

application increases both user interactions, as well as the user contribution rate.

1.2 Geotagger

Geotagger is a “collaborative participatory environmental inquiry system” [14]. Geo-

tagger is focused on developing software tools for children to encourage informal

scientific inquiry and environmental investigation. At its core, Geotagger is a citizen

science project with a focus on environmental observations called tags. Geotagger was

designed to interest children in the outside world around them, though individuals

of all ages can use Geotagger. The Geotagger system workflow is made up of several

key elements: tags, comments, adventures, and collections [12]. The main collective

unit of Geotagger is the adventure. A tag represents the basic interactive unit of

Geotagger. A tag is simply an environmental observation which can be described in

terms of a picture, a name, textual description, and geographic coordinates. Users

can share their thoughts about a singular tag by commenting on the tag. These

are visible to other users and help to generate a discussion about what the tag

represents. Adventures are groups of tags contributed by “members” of the adventure.

Adventures may have certain themes, or can represent a scientific outing by a research

team or class of students. Adventures consist of metadata, collections of tags, and

collections of users. Tag collections serve to organize various tags, allowing users

6

to create distinct areas for certain kinds of tags. User collections allow adventure

organizers to group users into different teams. These features combine to create an

environment that enables learning and collaboration within the context of the natural

world.

Geotagger was created with the intention of connecting children with nature.

This thesis research has broadened the focus of Geotagger to allow users to better

connect with each other, as well as the environment. This was accomplished by

adding social enhancements to the existing Geotagger platform which allows users

to more readily explore and collaborate with one another. Previously, the only

way for users to interact with one another is by sharing comments on tags. The

only way to view and respond to these comments was by viewing the comments

directly within the tag view. This work involved creating new and interesting ways

for users to engage with one-another within the Geotagger application itself. The

goal is to create micro-communities within the Geotagger application via small-scale,

individual interactions that users will have with one another. These interactions

come about by way of the social enhancements that have been added to Geotagger.

Making comments more visible in the tag list view allows users to quickly view and

make comments at a glance. Aggregating available tags into a global map-view was

originally proposed to give a novel and visual way for users to explore data which

other adventure members have submitted. However, this feature remains unfinished,

and exists primarily as a proof of concept. Additionally, a common chat-area for

each Adventure has been implemented. This gives members of a particular adventure

a dedicated space for conversation. These enhancements, have helped Geotagger to

build a sense of community to motivate new users to contribute more regularly and

achieve a common goal.

7

The Geotagger project consists of a variety of software technologies that provide

an online, collaborative space for scientific environmental inquiry. User generated

content, like tags, adventures, and comments are kept in a long term data store for

further analysis and retrieval. This creates a remote data repository, making Geo-

tagger data available to a multitude of users through a variety of in-house developed

mobile and web client applications. The REST API rounds out the suite of software,

providing the connective tissue between local clients and the remote data store.

1.3 Thesis Statement

This thesis work aims to bring community members together in order to cultivate

user interest and engagement in citizen science. This was realized by creating and

evaluating social enhancements to the Geotagger project. Making tag comments a

more integral part of the Geotagger user’s workflow allows users to more readily take

part in tag-related discussion. User interface improvements make it easier to learn

more about community members and the content they contribute to the Geotagger

project. The addition of an adventure chat screen, which provides a space within the

application to allow users to engage with one another and share their ideas. Finally,

creating geographical groupings for tag data grants users a novel means of visualizing

tags authored by the community, and how these tags relate to one another. These

enhancements facilitate social interactions and allow users to engage with one another

in meaningful ways.

8

CHAPTER 2

RELATED WORK

In order to situate the reader as to the relevance of this work, this chapter will focus

on the surveyal of previous work in the field of citizen science, as well as the Geotagger

project. Firstly, the reader will become familiar with the field of citizen science and the

relevancy of this work. Immediately following is a sample of several contemporary

citizen science projects in order to give broader understanding as to the practical

state of the field. Lastly, the user will be acquainted with various components of the

Geotagger ecosystem, and where this work fits in amongst them.

2.1 Overview of Related Citizen Science Projects

In the past, citizen science projects have utilized different technologies to facili-

tate data collection and recording. Mobile applications have become increasingly

attractive as the presence of smartphones and other “smart devices” have become

extremely prevalent [23]. In fact, smart devices have become so common that it

is an oddity to find an individual without one. Smart devices have been shown to

provide many of the same features and capabilities of more specialized devices which

have been traditionally used in the field. This research introduces a framework for

developing mobile-based citizen science applications with a focus on user-authored

data collection. Teacher highlights the advantages of using mobile applications for

9

data collection and inquiry [37]. The paper notes that smart-devices are becoming

increasingly ubiquitous. High-resolution displays, professional quality cameras, and

Internet connectivity have led to smartphones becoming an attractive alternative

to dedicated recording equipment. As smartphones mature, traditional recording

hardware is on the brink of obsolescence. Smartphones are increasingly capable of

accurately and effectively recording and uploading audio, visual, and place-based

observations. Teacher and Kim propose ways to design, develop and integrate mobile

applications into citizen science projects, in order to leverage the advantages afforded

by smart devices. However, they do not offer advice on how these applications can

develop and nurture a growing community around the project.

The Creek Watch tool is an example of a citizen science project which is bol-

stered by the presence of both online and mobile tools. Like Geotagger, Creek

Watch facilitates data recording and discovery. Kim [24] suggests that citizen science

projects can only succeed if the data they collect is actually used. The application

provides features for viewing the findings of other users of the project. The Creek

Watch tool represents a significant resource for local projects, for example, water

and trash management programs can utilize the data provided by the application in

day-to-day activities. Boston describes an online tool to be used in the collection

and dissemination of volunteer recorded observations [7]. The focus of this project

is Sligo Creek and the wildlife that live along its bank. Participants were especially

interested in the community involvement aspect of the project. Volunteers were able

to share their discoveries with fellow community members, which led to an added

layer of discovery and inquiry. This project noted the positive effects that direct

social interactions had on contributors, leading them to answer questions, comment

on other observations, and further provide a source of discussion and enthusiasm

10

for the project. Sullivan proposed the eBird Project [35]. This project uses a tool

that allows users to record bird sightings. The tool leverages a distributed citizen

science user base in order to facilitate the observation and collection of a wide variety

and high volume of data. These observations are archived and made available to

all users of the service, thereby facilitating inquiry and discovery. While many of

these tools are able to successfully utilize citizen scientists for data collection, none

of these projects made use of the full power of social and community interaction.

Rather, these projects are examples of user bases which are largely isolated from

one another. Geotagger seeks to cultivate real, meaningful, and organic interactions

between community members. These interactions help to cultivate excitement for the

project, as well as give participants a sense of purpose.

The lifeblood of any citizen science project are the citizens themselves. Citizen

sciences greatest strength is the ability to collect large amounts of data almost

effortlessly via a dedicated volunteer-base. These participant bases are not built

overnight and require a significant amount of thought and planning. Citizen scientists

often perform scientific activities on their own time and are not usually compensated

monetarily. Much research has been done on how citizen science projects can motivate

and engage user participation. In her dissertation, Curtis performed a case study in

which three separate citizen science projects were investigated concerning how they

sought to engage new volunteers and motivate existing volunteers [8]. This study

found that direct interaction with project researchers and scientists greatly reinforces

the resolve that participants have concerning the project. Being able to see and

directly interact with authority figures in the project greatly boosted morale and

gave the participants a sense of direction and importance. Creating an environment

in which users feel like they are learning and making a difference has been a big part of

11

engaging participants. Fischer looks at the advantages afforded by creating “cultures

of participation” in which learning and contribution are actively encouraged by both

participants and supervisors [16]. Project volunteers directly interact with their peers

as well as project coordinators, in an environment which encourages collaboration,

learning, inquiry, and discovery. Many “cultures of participation” or “affinity spaces”

can be observed in online culture. Gee discusses various “affinity spaces” which can

be found surrounding computer games. He studied how the users interact with one

another and discuss objectives of the game [19]. Users provided helpful advice for

difficult sections of the game, and challenged one another to play the game in new

and interesting ways. Community members contribute and interact with one another

on a voluntary basis. These communities have been shown to consist of thousands of

participants which make contributions over several years. This is a very desirable trait

that citizen science projects should seek to emulate. Raddick’s work also covered the

formation and further motivation of a prospective user base [31]. This paper attempts

to discover why citizen scientists are essentially spending their free time contributing

to a particular scientific pursuit. Unfortunately, this study did not draw any concrete

conclusions, rather it posits possible answers to the question. More often than not,

users contributed to the project because they were simply interested in it or they

thought the activities involved in the project were “fun”.

As with all citizen science projects, the overall health of the project relies almost

exclusively on the health of its user base. Motivating community contribution is

extremely important to develop a healthy community. Similarly important is being

able to motivate community interaction. These interactions run parallel to the overall

goals of the project, while not strictly contributing to the overall goal. Rather, these

community interactions are about the project and can help users learn and stimulate

12

enthusiasm about the project. Aristeidou models the growth of a newly created citizen

science project [5]. This project sought to stimulate community interaction through

the nQuire site, as well as launching its own social media campaigns. However, project

researchers noted a distinct subset of users did not feel a sense of community due to

the lack of a centralized goal. Tinati avoids this problem by incorporating community

interaction into the very foundation of the project [38]. This paper studies a citizen

science project know as EyeWire. The EyeWire project maps the structure of neurons

in the brain. Users are presented with a game screen and must select portions of a

cross-section which they believe to be a part of the current neuron string. Users

are furnished with a real-time chat that allows them to interact with the EyeWire

community. Mugar also describes different types of community interaction in his

paper [28]. Mugar enumerates various ways of learning. The most effective form

involves direct interaction with the project community at-large through forum posts,

social media, or direct messages to users. Newer users of the community are able to

learn from more experienced users, while more experienced users are able to discuss

more difficult problems with their peers. This approach leads to a more tight-knit

community which is more deeply invested in the goal of project and the community

built around it.

This paper is not a comprehensive survey of citizen science, however, these projects

have particularly interesting goals and act as examples of contemporary citizen science

projects. Researching citizen science projects provided the background and context

necessary to proceed with this work as a contribution to citizen science. Going

forward, this work researches the current state of the Geotagger project and its

technologies. Backend technologies (e.g., data store and the REST API) were directly

used by this work. Frontend technologies provided ideas and concepts that influenced

13

this new work.

2.2 Previous Work on the Geotagger Project

The mobile application implemented in this work is not the first technology developed

for the Geotagger Project. The Geotagger platform has been developed over the last

five years and includes software components that work together to provide collabora-

tive technologies for environmental inquiry. These technologies are designed to allow

users to create and experience observations with others who share a similar interest in

the environment and the world around them. The Geotagger project is comprised of a

number of individual programming projects. Together they have developed Geotagger

into an extensible and versatile cloud platform. The aim of these projects is to give

users the tools to create and share their own Geotagger findings, as well as view the

contributions of others. Geotagger is a remote application, therefore citizen scientists

can access Geotagger data from a variety of devices. The ecosystem includes various

clients that interact with the Geotagger platform to reach as many prospective users

as possible. The Geotagger platform consists of: a backend database, a REST API,

with user clients that include a web portal, an iOS mobile application, and an android

mobile application.

The MySQL RDBMS was selected to provide long term data storage and relational

table operations for this project. The underlying database schema was designed to

provide a flexible and durable data storage strategy for use with the REST API and

primarily JavaScript-based clients. The RESTful API provides a secure data access

interface, that allows secure viewing and altering of user-generated Geotagger data.

This interface can be accessed with a wide range of clients, giving users the ability

14

to access Geotagger data from virtually anywhere in the world. In order to provide

useful functionality, this interface must connect to a long term data store. Here, the

system stores user-created data which can be retrieved and updated at a later time.

A web portal was developed with the intent of offering users access to the Geotagger

system from a standard web-browser. Due to the geographical nature of Geotagger,

this is perhaps not an ideal interaction when compared with a mobile client. It

does, however, allow for rapid browsing of others’ contributions which may not be

afforded on a mobile device. The Android mobile application provides a similar suite

of functionality to the web portal. It also allows the Geotagger project to target a

wider audience. The added mobility of the Android application allows users to create

tags as they discover them. Finally, the iOS application was meant to extend the

reach of the Geotagger project with Apple device users in mind.

A brief discussion of each component and its impact on the ecosystem as a whole

will now follow. It will contextualize this work relative to previous Geotagger projects.

This work represents a foray into this space. In the past, a number of projects served

to provide key pieces of infrastructure which allowed for the development of future

Geotagger applications which can take advantage of this infrastructure, this work in

particular.

2.2.1 Backend Data Store

As with all citizen science projects, the core of the project is the data collected by its

members. Geotagger is no exception. The database is the “heart” of the Geotagger

system, as it holds all of the pertinent data for the project. It is the very reason the

project exists. In order to consolidate this data, a centralized, remote data store is

required.

15

Riad Jeradeh [22] developed a backend data store using MySQL RDBMS. MySQL

provides a relational SQL implementation useful for storing structured and related

data. The Geotagger database follows the ACID principles (Atomicity Consistency

Isolation Durability) regarding database transactions and storage. It ensures that

stored data is consistent, durable, and non-volatile. It was created with the intention

of implementing a flexible, yet durable, schema specification that would allow for

storage of “diverse and large amounts of data”. In designing the database, Jeradah

recognized that the schema needed to be both flexible and extensible [22].

The intent of the Geotagger project is to make contribution and data analysis

available to members who utilize this data in a variety of ways. To create a flexible

schema, Jeradah added several columns to existing tables to allow for user-driven

extensions of the schema, without the need for additional tables [22]. Data privacy

features like access levels and user roles give adventure coordinators tools to manage

access to portions of data collected during an adventure. This function allows adven-

ture coordinators to partition members into separate groups to accomplish different

tasks. Furthermore, for the sake of posterity, records are never completely removed

from the database; rather a “deleted at” column is updated with a date and time

representing when the row was removed. This column serves to exclude “deleted”

rows from further querying and allows for continued storage.

The Geotagger project is meant to evolve and grow with the needs of its users. This

necessitates an extensible data store which can incorporate these changes. Custom tag

attributes allow for users to append extra data to the tag entity, so users can share

interesting data about their tag. Following this project, Geotagger was afforded

a versatile data store. As Geotagger is a collaborative project, it would not be

appropriate to simply store user-generated data in an inaccessible database. So arises

16

the need for an intuitive and comprehensive interface by which users may access this

data. A REST API was chosen to provide this functionality for the Geotagger project.

The aim of this project was to provide a robust, extensible schema and imple-

mentation which could provide data storage according to the needs of the Geotagger

project. With a working store, the Geotagger project was now in need of a means of

accessing this data. In order to retrieve Geotagger data, an API was required that

could be utilized by a variety of frontend clients, allowing Geotagger to engage a wide

range of users. The database and the API would work hand-in-hand to serve relevant

Geotagger data to interested clients while providing a much needed “collaboration”

element to the project.

2.2.2 REST API

A REST API allows for secure database querying and data transmission. With a

large number of clients wanting to access the data, it is not feasible to grant every

client direct access to the database system. Rather than allowing unfettered database

access to these anonymous clients, REST APIs grant authorized access to a subset

of the available data. The Geotagger REST API was developed by Andrew De

Stefano [10] and provides a unified data endpoint which can be used by present and

future Geotagger clients. All CRUD operations performed on Geotagger data is sent

through this interface, granting well-formed and legal requests and defending against

malformed and malicious requests. Authentication is handled with OAuth 2.0 tokens,

which must be sent with every information-sensitive API request. To retrieve the

data proper, Geotagger’s REST API works hand-in-hand with the MySQL database.

The HTTP data transmission protocol is used to make API requests, which supports

GET, POST, PUT, and DELETE methods. HTTP requests are deserialized into SQL

17

queries using an object relational mapper (ORM). The ORM returns a well-formatted

JSON response to the API endpoint, which in turn sends the data to the client. API

routes follow a semantic naming scheme that produces straightforward and meaningful

data interactions. Routes are authorized on a case-by-case basis, thus disallowing

access to data to which the user does not have rights. Finally, API responses are

returned in the JSON data format. Given the popularity and ubiquity of JSON,

this approach allows for a very diverse set of clients operating on a wide variety of

platforms.

This project was accomplished using the Symfony framework. Symfony is a server-

side MVC framework which ties URL routes to logic controllers. Procedures can be

defined to run each time a client requests a certain route. The ORM-based data

connector ensures that the API is oblivious of the store implementation and allows

developers to easily change the database vendor at a later date. Furthermore, this

project removes coupling between frontend clients and the data interface, thereby

allowing any kind of client that implements the HTTP standard. This is further

reinforced by JSON responses, a common data format which can be easily adapted

to a wide variety of clients.

A REST API defines a number of parameterized URL “routes” which allow for

explicit and semantic access to data. A URL with the form domain.com/user/19

could be used to request access to pertinent data regarding a user with the ID: “19”.

Since REST APIs commonly use HTTP as a transfer protocol, HTTP methods are

leveraged to grant even more meaning to API routes. For example, the request:

DELETE domain.com/user/19 deletes a user and would give a much different result

than the request: POST domain.com/user/19 which might creates a user. Figure 2.1

depicts an example of a GET method call and its response.

18

Figure 2.1: REST API Request/Response

The Geotagger REST API allows users to create, view, edit and remove Geotagger

content (e.g., tags, comments, adventures) while remaining ignorant of client archi-

tecture or platform. The REST API enables user authentication and authorization.

Authentication is required to ensure that any client making a request for Geotagger

data has created an account and is registered within the Geotagger system. Autho-

rization allows the project designer to hide certain details from users, while exposing

other details. Finally, the REST API is responsible for serializing and deserializing

data through the use of an ORM. Whenever a user creates an object through the API,

the API must serialize the data into a model object format which the API recognizes.

Once this is done, the object is given to the ORM which uses the structure and class

19

of the object to determine the database table and columns where the data should be

placed. Similarly, when the user requests data from the API, the ORM must retrieve

the data from the database. It then converts the retrieved data it into a model object

and serializes it into JSON format. This JSON data is finally attached to an HTTP

response. Geotagger is now equipped with a data storage mechanism, as well as a

means of accessing this data. Further Geotagger projects focused on providing users

with engaging tools through which they could contribute to and interact with the

Geotagger system.

2.2.3 Web Portal

Web portals represent an classic user interface which provides users with an abstracted

view of the data and functionalities available to them. In designing a web portal,

care must be taken in giving users interface elements and calls to action which

are intuitive and logical. A major strength of websites is that they allow users to

interface with a more powerful server without additional software. Alicina Mumar [29]

developed a web front-end, providing Geotagger users an intuitive way of interacting

with the REST API. This online presence acts as an informative brochure for the

uninitiated, and a system interface for members of the project. Users can log into

their Geotagger account granting access to the Geotagger ecosystem. This interface

allows for adventure, tag, and comment creation. The web front-end is compatible

with all modern browsers. The web front-end simply makes calls to the REST API

allowing for fast and secure data transfer. This client gives users the opportunity for

rich interactions using the Geotagger system without the need to download additional

software. Web pages provide a low barrier to entry for users and allow for quick

and easy access to a web application. The web portal provides an intuitive and

20

comprehensive interface for the Geotagger system, as the portal currently implements

a large amount of the Geotagger system’s available functionality.

This project uses the JQuery and Bootstrap libraries. JQuery is a popular

JavaScript library that provides a number of features for controlling the look and

feel of web applications. JQuery was instrumental in the user interface design as

this project made extensive use of JQuery interface elements and the animation API.

Interface colors denote different users and privileges. Scientists and citizens will see

different shades of blue, while administrators will see a black color scheme. JQuery

also has an API for changing the user interface dynamically, like UI element animation

and dynamic color pallets. AJAX requests enable loading of new content without the

need to refresh the page. Bootstrap’s primary feature is a CSS grid-system that

allows for precise placement of screen elements. Bootstrap is also used in creating

“responsive” interfaces, this allows clients to use the web application on almost any

screen size as Bootstrap will resize view elements automatically. Finally, SASS was

used to provide a modular, extensible stylesheet for customizing the look and feel of

the application. Figure 2.2 depicts the web portal displaying a user’s tag view.

Although the web portal is a fully-featured Geotagger client, it does not provide

the inherent convenience found in mobile applications. Laptops and desktop comput-

ers are inconvenient for field-related project use due to the device size. These devices

also lack a high-quality front-facing camera for capturing environmental observations.

Mobile web-portal clients are indeed more flexible, but access to native device features

like GPS and the camera can prove difficult to implement. Though the flexibility and

mobility of smartphone applications lend themselves well to the field-intensive nature

of the Geotagger project.

21

Figure 2.2: Geotagger Web Interface

2.2.4 Android Application

The Android platform is the most popular mobile device operating system. Therefore,

the Geotagger project made it a priority to build an Android application to reach

this growing userbase. The Android application provides a frontend environment

for querying and updating the REST API. Due to the popularity and flexibility of

Android, the Geotagger project wished to provide a user friendly, intuitive experience

to assist the capture of environmental data. Paul Cushman [9] created the Android

application, with a focus on offline functionality and local data caching. Because

of the Geotagger project’s subject matter, a mobile application is a fitting client; as

users move around the environment, capturing any features they find to be interesting.

Most modern smart-devices are equipped with hardware necessary to collect project

data. Users can directly contribute to the project from their device. Figure 2.3 depicts

a tag screen displaying some environmental data. The largest difference between the

22

Android application and the web frontend is the Android application’s offline-usage

functionality that is realized in the local caching scheme.

Figure 2.3: Geotagger Android Application

The action cache utilizes SQLite, a lightweight, local relational database system

intended for client-side or local application use. SQLite allows for storage and retrieval

of records without the need for an Internet connection. Research teams and other

scientific endeavors are not always guaranteed to have a strong network connection

in the field. It is with this in mind that the local cache was designed. While the

REST API requires an Internet connection to be used, the Android application caches

records retrieved from the REST API while the device is connected to the network.

In this way, when the device loses connection, it can still provide functionality to the

user (albeit a subset). When network connection is re-established, the application will

synchronize with the REST API and update the local SQLite cache in the process.

Furthermore, the caching scheme allows for “action caching”. That is, the user is

23

still able to make changes to cached data while offline. Actions for creating data,

updating data, and removing data are cached locally in queue-like fashion. Once

network connection is established, actions are serviced in order of arrival. The results

of these actions are then propagated throughout the local cache, thus ensuring data

consistency with the remote data store.

At the close of the project, the Android application implemented a large amount

of Geotagger functionality. While this application has room for improvement, it inter-

faced well with the second iteration of the Geotagger API and provides a novel means

of interacting with the Geotagger system. The work contained in this thesis built off

of the Android application by leveraging several features and design paradigms found

in this project.

2.2.5 iOS Application

While not as prevalent as the Android operating system, Apple devices are nonetheless

a very popular mobile platform. In terms of scope and intent, the iOS application

project is similar to the Android application. Developing a Geotagger client for iOS

could only serve to increase the potential userbase for the project. Travis Gantt

[18] developed a Geotagger iOS application. An effort was made to incorporate as

many features of the Geotagger project into the application as was feasible during

the project’s time frame. However, due to the increased difficulty of developing for

the platform, the iOS application is perhaps the least feature-complete Geotagger

client. While the application lacked several key elements at the time of the project’s

completion, nonetheless, the project serves as a proof-of-concept for a Geotagger

application in the iOS space, and has laid the groundwork, should development

continue at a later date.

24

Figure 2.4: Geotagger iOS Application

Difficulties experienced by this project were due to the “greenfield” nature of

the project, with little code brought over from the existing Android application.

The difference in platforms meant that little code could be shared between the two

projects. Additionally, Apple requires substantially more documentation and scrutiny

when it comes to developing iOS applications, which gives iOS developers a much

higher barrier to entry than that of the Android development environment.

This thesis work builds on the Geotagger iOS application by providing a cross-

platform codebase which may be deployed on a variety of platforms to instantly afford

the Geotagger project much greater reach than a single native application. This work

updates features found in both mobile applications and is responsible for adding a

suite of social enhancements targeted at engaging and motivating citizen scientists.

25

CHAPTER 3

DESCRIPTION OF WORK

The work implemented in this thesis builds on previous work; it improves, updates,

and enhances the Geotagger ecosystem. This chapter presents the influence of previ-

ous Geotagger software projects on this work and how this work differentiates itself

from past efforts. This work was implemented using web development technologies.

An effort was made to become acquainted with contemporary web technologies used in

developing modern web applications. This chapter will feature a discussion that will

cover the research process that led to the Ionic framework being selected. The Ionic

framework is a cross-platform library that allows a single codebase to be deployed

across multiple platforms. This chapter will also give an overview of additional

software libraries that were used and their significance to the project. Finally, this

chapter will conclude with a visual walkthrough of both versions of the application

implemented in this work. The first version was intended to instrument existing

Geotagger functionality. The second version builds on it by extending the application

with social enhancements discussed previously. Special attention will be given to

those aspects which serve to realize the proposed social enhancements of this work.

These enhancements have been enumerated and codified below. The remainder of

the chapter will use these codes when referring to a specific social enhancement.

• SE1 - Making comments more prevalent

26

• SE2 - Connecting people through their contributions

• SE3 - Creating a shared social space for adventures

• SE4 - Geographic overview of tags

3.1 Influence of Previous Work

This work takes inspiration from previous Geotagger projects. The most notable

inspirations originated in the Android application [9] and the MySQL data store

implementation [22]. The Android application provides the most obvious inspirations,

since that project and this work fill similar roles. The Android application made many

considerations based on the specificity of its platform. This work is concerned with a

broader range of devices. The MySQL database’s impact is not to be discounted. The

schema found in that project largely served as the blueprint by which the local SQLite

cache was built. Both projects served to provide critical insight into the design and

implementation of this application.

3.1.1 Android Application

The Geotagger Android application is the most fully-featured Geotagger client. It

was here that researchers first looked for design inspiration, specifically regarding

application data flow. The data flow structure determines how non-view portions

of the application are structured and how data is made available to the rest of the

application. At the source code level, both applications use very different methods

for designing and structuring the user interface and handling user-generated events.

Inspirations were taken from the user interface itself, but the ways that various

27

application frameworks express these views are very different. Finally, the Android

application provided the leading influence in the design of the action cache.

To overcome the limitations of a single platform code-base, a cross-platform mobile

application framework was chosen. The Ionic Framework contains tools to develop

and deploy a mobile application to a variety of mobile platforms. Ionic leverages web

technologies to create a web application development environment. The resulting

application is executable by the target platform. Research was conducted as to which

of the existing cross-platform frameworks would best suit this project. This research

is discussed in section 3.2. Additionally, other software used in the development of

this application can be found in section 3.2.

Application Data Flow

One of the most important aspects of this application is the way data is shared

between various modules. This flow would largely determine how the application’s

concerns were separated and how they communicate with each other. It is possible

to include the entire application in two separate files (for the view markup and the

programming logic). However, this architecture would be unwieldy and unmaintain-

able. Thus, the method in which data flowed through the Android application was

analyzed. Data flows from the user creating local data to a permanent store in the

cache or the API. Conversely, data may flow from the permanent store to be displayed

in the view. In the Android application, if the local model data changes, then view

activities (the controller in MVC) call the “Application” class to dispatch handler

functions based on the calling record’s type (e.g., tag, comment, adventure, etc.).

These handler functions are called “connectors”. Connectors provide an interface

between the application’s business logic and data stores. They include the local

28

SQLite cache and the remote API. Beyond this, cache and API handlers interact with

the stores directly. Connectors make specialized requests that format and serialize

the data in preparation for transmission to either the cache or the API. The API and

cache-specific handlers appear as mirror images of each other, as both are performing

very similar actions on different storage locations. Figure 3.1 shows the data flow in

the Android application.

Figure 3.1: Android Data Flow

The cross-platform application is broken up into a similar hierarchy of modules.

Controllers, provide logical hooks which can be referenced in the user interface.

Controllers also make data available to the user interface. If a controller needs to

make a data request such as reading or modifying data, then it does so with the

“data-handler” class of modules. The data handler provides an interface between

controllers (which are closely coupled to the views) and the storage locations. De-

pending on whether the data needs to be transmitted or requested from the cache or

API, the handler will make the appropriate call to corresponding module. Cache and

API modules operate very similarly. However, the cache contains an instance of the

“CacheDatabase” service, while the API module makes HTTP requests to the server

directly. One major difference between the two applications is that the Android

29

application defines distinct routines within the connectors for every type of model

object. In designing the caching mechanism, a more generalized approach was chosen

that would work with any model object. Model objects only require an analogous

cache table. In this application, object structure determines the structure of data

within the cache itself. In this way, data is simply objects that are deconstructed into

their properties, and placed in corresponding columns. Figure 3.2 depicts the flow of

data through the new Ionic application.

Figure 3.2: Cross-Platform Data Flow

User Interface Elements

The Android application provided many interesting insights as to what the appli-

cation’s user interface needed to accomplish. Having implemented a considerable

amount of the functionality of the Geotagger system, there were many views that

could be considered. The most notable inspirations were those found in the views

for: adventure list, tag list, tag detail, and the comment list. The tag and adventure

list views are very similar in nature. The list is easy to read as the user scans

their eyes down the page. Both lists contain “cards”, which are distinct, visually

30

self-contained objects, that usually have a square or rectangle-like shape. These cards

display pertinent information regarding their entity: name, time of creation, time of

last modification, and brief description of the entity. It helps to give a brief overview

of the data, so the user can decide if they would like to learn more by clicking or

pressing on the card. A comparison of these lists can be seen in figure 3.3. The tag

detail view is decidedly more complex and provides the user with information specific

to the selected tag.

The adventure list view within the Ionic application remains very similar to that of

the Android application. Adventure “cards” contain similar information, including:

the adventure’s title, the time at which it was created (in a relative format, contrasting

with the Android application’s absolute format), and the description of the adventure.

The tag list has undergone several changes. It was the subject of some of the largest

modifications when moving between the two versions of the application. The first

version of the application is more similar than the second version, so it will be

discussed here.

The tag list is another example of a similar user interface view between the two

applications. Both applications use lists to display the tag items. However, to produce

action buttons, the Android application requires the user to long-press the list item.

The analogous action in the Ionic application requires a left-swipe to slide the list item,

thus revealing the buttons. Both items show tag name, description, and creation date.

The Ionic application uniquely displays the location description. These similarities

can be seen in figure 3.4.

Both versions of the application display comments in a similar list view. Com-

ments contain: name of the authoring user, comment text, and time the comment

was created. The Ionic application makes two improvements. User profile images are

31

(a) Android (b) Ionic

Figure 3.3: Adventure List Views

placed to the left of the comment and give users a visual identifier that allows them

to easily associate users with comments. Additionally, comment images are much

more prominent in the Ionic application. The Android application displays images in

a small rectangular box on the side of the image, while the Ionic application utilizes

more screen area to display a larger preview of the image. This preview can be pressed

in order to bring up a full-size, zoom-able version of the image. Figure 3.5 highlights

this comparison.

Action Cache Design

The action cache provides facilities for caching a queue of data modification “actions”

which are resolved when the device is connected to the Internet. The Android applica-

32

(a) Android (b) Ionic

Figure 3.4: Tag List Views

tion accomplishes this by defining a SQLite table that is responsible for maintaining an

ordered list of unresolved actions. These actions are ordered by arrival time, where

the earliest arrivals will be resolved first. New Geotagger objects are immediately

stored in the local cache for further retrieval. These objects are given a negative ID

in order to differentiate them from objects which have been created with the API.

Once a record is ready to be resolved to the API, the resolver uses the ID stored

in the action table to directly address the corresponding record. This record holds

all of the pertinent data that must be transmitted to the API. Once this data is

retrieved, a specialized data handler is responsible for affecting the data remotely.

Each model entity has its own data handler. Once the data has been sent in the form

of an API request, the API will respond with an updated version of the record that is

33

(a) Android (b) Ionic

Figure 3.5: Comment Views

inserted into the local cache. The action resolver will read the “PostOperation” field

to determine a series of further actions that must be taken to ensure data consistency

throughout the cache. Finally, the action cache itself must be updated to reflect this

change, as there may be actions within the action table that depend upon the new

data.

The Ionic action cache improves on many of the ideas presented in the original

action cache, yet preserves the overall algorithm. Like the Android application, the

Ionic version utilizes a SQLite table to queue modification actions. The action table

maintains an ID reference to the corresponding data. Rather than storing an array

of “PostOperations”, this project favored a more normalized approach did not allow

composite data to be stored. Rather than create individual handler objects for each

34

type of model object, this approach created a series of callback functions that relied

on the “EntityType” field to specialize operations. These operations act much in

the same way as “PostOperations”, since they are responsible for calling functions

on either the cache or API services. Finally, “ParentID” and “ChildID” fields were

added to accommodate junction tables, which were not present in the previous version

of the Geotagger API. Unlike other tables, these do not contain a unique ID field. To

circumvent this shortcoming, the entire junction record is stored in the action table.

For example, the AdventureTag object connects a tag to an adventure collection.

In this case the “ParentID” refers to the parent of the relationship: the collection.

The “ChildID” refers to the child of the relationship: the tag. Figure 3.6 provides a

comparison of the action table schema.

(a) Android
(b) Ionic

Figure 3.6: Action Cache

3.1.2 MySQL Database

The primary inspiration taken from the MySQL database was its schema. The

structure of the remote data store is often mirrored in the HTTP responses returned

by the REST API. Because of this, model objects were designed to resemble the

structure of the MySQL database tables. This provides the advantage of easily

35

serializing and deserializing model objects. However, one serious disadvantage is that

all model objects must be normalized. Normalized model objects cannot have object

or array properties. This could have simplified processing data that contains child

records. Rather than place children in an array property, child objects are placed

into model objects of their own, using a referencing property (an integer that refers

to the parent’s own ID value) to associate parents and children. This design choice

has allowed for the database to be ignorant of data types when performing cache

operations. Model objects contain properties which correspond exactly to columns

found in the analogous cache table (e.g., TagID). Model objects feature a getTable

function which returns a string value representing the name of the corresponding

cache table. The CacheDatabase service uses this information to make decisions

about database queries (including select, insert, update, and delete) to determine the

destination table and the data being inserted. Hence, the model objects act as a

“blueprint” which informs the cache on how each model object should be handled

3.2 Survey of Cross-Platform Frameworks

Creating this application required selecting a build environment that would allow this

project to target a broad and potentially architecture-diverse user-base. Previous

development efforts focused on single platforms. This platform restriction inevitably

restricted the number of potential users as well. Therefore, a framework which would

allow developers to quickly and easily target multiple platform environments was vital

to the realization of the proposed social enhancements.

Because mobile application developers are accustomed to streamlined build en-

vironments, developing a cross-platform mobile application is an extremely common

36

software use-case. As such, there is an abundance of available frameworks to facilitate

such a task. And so, preceding any concrete code implementation, a survey of

available technologies would be conducted in order to find a framework that would

best suit the project’s needs. Table 3.1 gives a selected overview of several frameworks

surveyed during the course of research.

Web frameworks use existing technologies (HTML, CSS, and JS) to create a

“mobile-like” web page that will provide a native mobile application user experience.

These frameworks will oftentimes look to a third party library (e.g., Cordova) to

leverage various native device features like: camera, GPS, or local file access. “Native”

frameworks provide a lower level of abstraction concerning the hardware of the device.

Some native frameworks also leverage web technologies. These technologies are used

to create cross-platform user interfaces that are compiled into native device elements.

However, in order to make native device calls, the developer must create software

hooks in the device’s native language. Web-based frameworks provide a uniform

and simplified development experience. Web-based frameworks can achieve nearly

total code reuse between platforms. Conversely, native-based frameworks are more

performant relying on native interface elements and device calls. Native frameworks

lack extra layers of abstraction needed by their web-based counterparts. This leads

to extra engineering effort, as each target platform must be accounted for when

accessing device features. Ultimately, each of these frameworks represents a significant

developer effort, backed by communities of passionate users.

In selecting the appropriate framework there were many factors to consider. A

platform was needed that was easy to use, well documented, and had good community

support. An active developer community could be used as a resource when problems

were encountered. Licensing fees were to be avoided, as there are very strong open

37

Table 3.1: Cross Platform Frameworks

Rank Framework Type Price Language GitHub Stars
1 Ionic Web Free HTML, CSS, JS 31102
2 Xamarin Native Free C#, .NET 804
3 Supersonic Web Free HTML, CSS, JS 153
4 Trigger.io Native $50/month HTML, CSS, JS N/A
5 Sencha Web $900/year HTML, CSS, JS N/A
6 Onsen UI Web Free HTML, CSS, JS 5267
7 React Native Native Free HTML, CSS, JS 52905
8 M Project Web Free HTML, CSS, JS 778

source options. Both Sencha and Trigger.io require expensive licensing fees and were

eliminated. OnsenUI has several very strong features, but is very similar to Ionic

without the active community of Ionic. At the time of this project’s creation, React

Native was still a beta product and was not selected. Finally the M Project has little

developer and community support and was not suitable to the needs of this project.

In narrowing down the list, the top three frameworks provided these qualifications.

3.2.1 Selected Frameworks

In order to select the framework which would best fit this project’s needs, a short

trial was conducted. This involved hands-on development with all three prospective

frameworks. This involved setting up each of the development environments and

creating a “Hello World” application that allowed each framework to be evaluated

in terms of setup difficulty, integration with other libraries, overall health of the

development community, and give experience diagnosing and repairing any errors

that arose.

38

Supersonic

Supersonic projects are “multi-page” applications, holding multiple screens in mem-

ory to allow for fast navigation. Most other web-based frameworks develop “single-

page” applications. Single page application consist of a single HTML page which

is injected with HTML “partials” whenever the user navigates to a new screen.

This can create opportunities for elusive bugs as elements must not be left in the

DOM when a new page is injected. Multi page applications also provide a greater

level of modularization than single page applications, as page logic and elements are

separated. Supersonic applications are written in HTML, CSS, and JS, which was

the preferred software stack for this work.

Supersonic provided a number of admirable qualities, but its community was

found to be not as active as that of Xamarin or Ionic. Examples were fairly difficult

to find, leaving doubt as to whether problems encountered during the development

process could be easily rectified. Additionally, several problems were encountered

setting up and installing the development environment. These difficulties prevented

the development of even a simple proof-of-concept application. Because of these

difficulties, Supersonic was not selected for this work.

Xamarin

Xamarin is an extremely well known and mature framework developed by the Xa-

marin group. Xamarin’s intent is to provide cross-platform APIs using XAML for

building uniform interfaces and C# based operating system hooks for integrating

native device features. Xamarin features APIs for Android, iOS, and Windows phone

platforms, seamless integration with a mature software toolchain (e.g., Visual Studio,

39

Xamarin Android player), and a robust user community. Xamarin seeks to provide a

native experience for application users with native interface elements and device calls.

Developing an application with Xamarin would undoubtedly yield a more performant

program than that of Ionic.

Although Xamarin presents a very robust and feature complete ecosystem of

technologies, there were a number of reasons why it was not selected for development

of this application. While versatile, the overall build system for Xamarin applica-

tions is very fragile. Several applications were built that tested camera and GPS

functionality, and it was fond that slight, seemingly inconsequential changes to the

application would break the build process entirely. Large changes would have to

be built incrementally until the problem was found. And although Xamarin does

have a large community, many of the best tutorials and resources are a part of

Xamarin University, a premium tutorial website. Furthermore, Xamarin applications

are built using XAML and C#. Development APIs are extensively documented, but

team development experience consisted mostly of HTML, CSS, and JS. One major

disadvantage of Xamarin is that user-provided examples are not easily accessed. In

this way, most Xamarin examples live in their own GitHub repositories, which require

building of their own. There are hundreds, if not thousands of Ionic examples hosted

on Codepen, which can be viewed and run instantly from within the browser. In the

end, the Ionic Framework includes a number of extremely valuable features, making

it suitable for this project’s needs.

Ionic

Ionic is a web-based cross-platform mobile application framework which leverages

AngularJS and Cordova. AngularJS is used to manage separating concerns in order

40

to modularize things like view definition, UI hooks, and data flow. Like Supersonic,

Ionic makes use of well known web technologies like NPM, HTML, CSS, JS, and

Gulp to build web applications which run locally on the mobile device. Due to Ionic’s

popularity, Ionic has an extremely active and helpful development community. This,

coupled with the feature allowing Ionic applications to be built directly in the browser

(provided that there are no device API calls), means that debugging errors is by far

the simplest in Ionic. Previous experience with AngularJS and Ionic also supported

the prospect of utilizing Ionic in this project. Furthermore, because Ionic leverages

Cordova for device API calls, Ionic is able to build executable binary files for a

wide variety of platforms, including iOS, Android, Windows phone, Blackberry, and

Ubuntu. This allows mobile applications to be built for a large number of devices.

Being able to target more devices broadens allows Geotagger to target and engage a

much larger audience to grow the Geotagger community.

While Ionic is an attractive web framework, it is not without its caveats. At the

time of development, Ionic was experiencing a major version re-write. The move from

version 1.X to 2.X was very tumultuous, leaving virtually no backwards compatible

code between the two versions. At the start of this project, version 2.X was still a

beta product. Application stability is of great importance in this work, so the more

mature version 1.x was chosen.

3.3 Overview of Employed Software Technologies

Due to the size and scope of the programming portion of this work, several third-

party technologies were employed to abstract and provide support for many different

features of this application. This section will discuss the main libraries that were

41

used in developing the Geotagger cross-platform mobile application. While not every

software library used during development will be covered, the reader should gain a

high-level understanding of the technology used in the application to grant further

context for the application’s operation.

3.3.1 Ionic Framework and Cordova Runtime

Ionic is a cross-platform mobile application framework. While some cross-platform

frameworks define their own MVC facilities for separating the various concerns of the

application, Ionic utilizes AngularJS to provide data-binding between view elements

and the main event loop. AngularJS creates programmatic hooks which can be refer-

enced in the user interface markup code. Ionic provides a large number of AngularJS

directives and services which can be used to develop a mobile-like user-experience

and affords the developer the simplicity of web technologies. Ionic directives include

pre-defined templates for standard mobile interface elements: cards, list views, modal

dialog windows, and buttons. Ionic services define ways for programmatically inter-

acting with view elements: dismissing a popup window from, scrolling the current

view to the bottom, enabling zoom functionality for images, and overriding the default

back button behavior. Web applications are rendered in a browser, this means that the

application developer need not be aware of the hardware specifics of target platform.

Because of this, the developer is able to deploy a single codebase to a variety of mobile

platforms. AngularJS and Ionic account for a large number of mobile use-cases on

their own, but they do not provide perhaps the most useful feature of a mobile

application: the ability to access device hardware. Figure 3.7 gives an example of an

Ionic application running on both iOS and Android platforms.

The Cordova project provides a JavaScript API for accessing commonly used

42

Figure 3.7: Ionic Application on Different Platforms

device features. In general, native device functions (image picker, camera, flash lens,

etc.) are accessed through a device specific interface provided by the vendor. These

interfaces are written in the native device language (e.g., Swift, Java, C#) and are

distinct from one another in both implementation and structure. The Apache Cordova

project provides a runtime environment which allows a single JavaScript API call to

be deployed to several different mobile platforms. Cordova is also responsible for

packaging the Ionic web application into an executable binary file that can run on

the smart device. Once this file has been generated, developers can easily upload it to

a popular “App Store” and distribute the application publicly. Cordova automatically

supports iOS, Android, Windows phone, Blackberry, Fire OS, and Ubuntu Mobile,

43

meaning that Geotagger can be deployed on any of these platforms at a later date.

This can potentially give way to a dramatic increase in the number of people the

project can reach. A number of features built into the Geotagger application would

have been impossible without Cordova: GPS locations, native navigation, photos

taken by the camera, as well as chosen from the file system, toast notifications, and

SQLite. Figure 3.8 illustrates the architecture of Cordova.

Figure 3.8: Cordova Architecture

In implementing Ionic and Cordova in the project, several considerations were

made in order to keep these elements as loosely coupled as possible. While Cordova

does provide a wealth of APIs from the start, there are a good number of “plugins”

which others have developed for the platform. In this way, one particular Cordova

API may prove to be more desirable than another. However, if this API is heavily

integrated into the application, then changing the API calls would have far-reaching

implications. The application was designed with a number of modules in mind, and

any plugin that accomplished a certain use case was placed in its own Angular service.

44

For example, image picker and camera APIs were placed in a single “ImageService”,

which was then referenced throughout the application. If at some point the camera

API needed to be replaced, then the implementation with the ImageService could

be changed, without modifying the publicly exposed functions on the service. This

process was repeated for other concerns such as logging, local database querying,

toast notifications, and geo-location services. Unfortunately, Ionic APIs must be

coupled more closely with the application. Ionic is more a framework upon which the

application is built and Cordova is a library. In any case, Ionic elements were made

to be more simple and reusable. Due to Angular’s concept of “directives”, Ionic

components could be broken up into their own components, which then could be

brought together to compose larger elements. This helped minimize code-repetition

and served to make the application’s source code more readable and maintainable.

3.3.2 SQLite

SQLite is a self-contained SQL engine for use with localized applications. It is

generally used when a network connection is not required, otherwise unavailable,

or where a more fully featured SQL implementation (e.g., MySQL) would create

unnecessary bulk for the project’s scope. The role of SQLite in this project was to

maintain a local store of data objects that could be queried for rapid user interface

displays, as well as offline application functionality. Data is stored as the user

navigates between views. When the user returns to a view, the application checks the

cache and immediately displays relevant data if it is found. This provides the user

with a fluid user experience, even if the connection to the remote database is lost.

SQLite maintains simple database text-files which are highly portable and allow

for a fast, transaction-based queries one might find in a heavier-weight implementa-

45

tion. Due to its small installation size, SQLite is oftentimes favored for embedded

applications where storage space is limited. For this project, SQLite took the shape

of a Cordova plugin, as most major vendors ship their devices with built-in SQLite

support. Cordova provides a transaction-based interface to the existing SQLite

software. While the Cordova SQLite implementation lacks several features found

in traditional SQLite (most notably foreign key support), the Cordova plugin has

the facilities needed by this application in order to implement an effective caching

solution.

The SQLite Cordova plugin provides the most crucial functionality of any third-

party software included in this project. Functions regarding SQLite database oper-

ations appear in a single file - the “CacheDatabase”. The CacheDatabase exposes

a public functions which are used to read and manipulate data in the cache. This

file contains both DDL and DML queries. It is responsible for creating database

tables, dropping tables, and reading data from those tables. In this way, whenever

the application is launched, the entry script runs an initialization function to start a

Cordova SQLite instance and readies it for further querying. SQLite provides long

term data storage on the device and serves two main functions for this project: record

caching and action caching. Record caching concerns itself with storing data retrieved

from the REST API. This is most useful in readily showing interesting data to the

user, as the cache is checked each time the controller makes a request for data. If

the cache contains relevant data, then it is given to the controller and immediately

displayed to the user. This gives the application a more fluid user experience as local

cache queries are oftentimes faster than an API request. Once the API returns the

requested data, this newly retrieved data must be compared and merged with data

taken from the cache. It is done to ensure that the local SQLite cache is as up-to-date

46

as possible. Additionally, record caching helps to reduce redundant API calls, as

resources (e.g., images) are checked and only requested from the API when they are

needed. Furthermore, record caching gives a rudimentary offline viewing experience.

If the user loses connection to the Internet, they are still able to view a subset of

the available data (i.e., data stored in the local cache). As the Geotagger project

largely deals with natural phenomena, members may oftentimes find themselves in

locations where a network connection is not available. By locally caching every record

the application retrieves, users are provided a useful, limited, experience even when

an Internet connection is not available. While record caching deals with storing

retrieved data locally, action caching, on the other hand, is more concerned with the

modification of the local data.

Action caching enables a mechanism for affecting immediate remote changes if

an Internet connection is available or as soon as one is established. Traditional web

applications require a constant Internet connection as they are usually interacted with

via an Internet browser. However, mobile applications are expected to give some kind

of user-experience, even when a network connection is not available. While record

caching affords the user the ability to view data they’ve already visited, there is

no way to update this data. Action caching provides a way to “cache actions” in

order that they may be resolved either immediately or at a later time. In this way,

every “action” that the user takes (e.g., update, add, or delete data) is “pushed”

onto the action cache and resolved as soon as the device detects an available network

connection. When a user makes an action, this action is reflected in the local cache

to allow the user to immediately view the changed data. A timestamp and reference

to this data is stored in the “action cache”. Once a connection is established, the

“ActionService” removes the action, reads the referenced data, and sends an HTTP

47

request to the API so that the change may be affected on the Geotagger server. Once

the API responds with the result of the change, the action cache uses the data to

synchronize the cache to any changes that took place on the server (e.g., replace the

new records old ID value with one assigned to it by the remote database). Indeed,

SQLite is an extremely important piece of the application structure which reduces

redundant data, allows for fluid online viewing, and affords users an application-like

offline experience that is missing in most traditional web applications.

3.3.3 Google Maps

Google Maps is a popular mapping API available to a number of clients. Google

Maps supports iOS, Android, and Web clients. Google Maps also provides a number

of location APIs that can be used for geocoding, location searching, or mapping street

directions between a series of points. Google Maps hooks into an existing application,

and upon instantiation, draws the map area. Google Maps was a natural fit for this

application as Geotagger data deals with “tagging” locations. Google Maps was used

to create a novel visualization for tag data, giving a different way to view this tags.

This is especially interesting when viewing a map with multiple tags, as users are

able to see tag locations in relation to one another.

Google Maps was selected for its staggering popularity, safe in the knowledge that

there would be abundant tutorials and examples should trouble arise. While Google

does provide a script file for use with the Google Maps API, an Angular plugin

wrapper called “ngMaps” was chosen. This allowed the current project to follow the

standard AngularJS dependency injection convention, making it easier to instantiate

Google Maps object instances and pass them throughout the application. Figure 3.9

gives an example of a Google Map screen.

48

Figure 3.9: Google Map View

A Google Maps window was implemented as an AngularJS “directive” to allow

for simple and efficient reuse throughout the application. A flexible directive was

created that could handle single locations and a list of locations. This directive could

easily be integrated into other areas of the application should the developer want to

incorporate further map views; as all that is needed is a list of latitude and longitude

locations to display. This interface provides an intuitive way to view tag location

data, since the user can simply look at the map view to determine the tag and their

own location relative to the tag. From here, users can press a button which opens

the native navigation application in order to safely travel from their current location

to a desired tag. Maps were also added to the adventure view to provide context to

the user about tags created by other members of that particular adventure. The goal

49

was to create an informative application that would feature intuitive interaction. As

most users will likely be familiar with geographical maps, using this feature should

be a simple and enjoyable experience.

3.3.4 Socket.io

Socket.io is a JavaScript library that allows for real time, bi-directional communica-

tion between clients. Socket.io passes “messages” between clients and server with

events which can be hooked-into to provide a wide range of contextual actions.

Current Geotagger software facilities were not suited to real-time communication

between devices. As a result, the Socket.io library was used to implement a real-time

messaging function for implementing the shared social space enhancement (SE3).

A server application is needed to implement Socket.io. The server defines the

transportation protocol with Websockets serving as the default. In the event that the

server does not support websockets, Socket.io is able to downgrade the connection

to a protocol the server supports. One of the greatest strengths of Socket.io is the

documentation and overall simplicity of use. The library is “event-based”. It simply

calls a number of events and provides “callback” routines to develop a minimally

functioning Socket.io application. The above technologies were incorporated into the

Geotagger application to realize functionality that has been present in other forms of

the Geotagger client. Socket.io was particularly leveraged in order to provide data

transmission of the new “adventure chat” feature. It allows members of the same

adventure to visit a shared space where they can communicate ideas and discuss the

adventure. Figure 3.10 depicts the Socket.io application architecture.

Traditionally, data sent between a Geotagger client and the Geotagger server has

strictly involved a client request, followed by the server’s response. This scheme

50

Figure 3.10: Socket.io Architecture

was unacceptable, as the vision for an adventure chat area would involve a real-time

chatting implementation that is similar to features found in major social networks.

Socket.io consists of two primary components: client and server. Both the client and

server listen for events caused by each other. The Socket.io server runs on a NodeJS

instance. Server developers can listen for different kinds of events which are triggered

by client messages and vice-versa. If the server receives a message relating to one

of its events, it will “emit” the message to all of the clients that are listening to the

same event. Figure 3.10 demonstrates the Socket.io server emitting an event.

Socket.io provides an intuitive API for developing a real-time chat application

which integrated easily into the existing codebase. This is a new feature to the

Geotagger project, so it was one of the final social enhancements to be implemented for

this work. It must work seamlessly with existing features. In order to continue using

AngularJS’s dependency injection system, Socket.io would have to be brought into

a service of its own. So, Socket.io was relegated to its own AngularJS service which

was responsible for maintaining a single Socket.io client object. Other controllers

that needed to send messages to the Socket.io server would need to refer to public

51

functions on this service if they wished to transmit data. However, due to AngularJS

services implementing the singleton pattern, creating and managing library instances

is handled within the framework itself. Incorporating this service into a controller

allows the developer to immediately reflect data updates in the view. This gives the

user interface a fluid, real-time feel that users of social media have come to expect.

Socket.io has given Geotagger the capabilities that it needs to provide an interactive

and hopefully inviting social space that will allow users to quickly and informatively

interact with one another.

3.4 Walkthrough of Social Enhancements

Development for the application took place in two stages. The first stage of devel-

opment was concerned with implementing the core Geotagger functionality. This

included the ability to log into the system and use the returned authentication token

to perform further actions with the Geotagger API. Special attention was paid toward

adding, updating, and deleting tags, adventures, and comments. These features would

be most heavily used during the evaluative portion of this work. The second stage

of development focused on implementing the proposed social enhancements. These

enhancements have been given an abbreviated code which will be referred to in the

remainder of the chapter.

• SE1 - Making comments more prevalent

• SE2 - Connecting people through their contributions

• SE3 - Creating a shared social space for adventures

• SE4 - Geographic overview of tags

52

The remainder of this section will walk the reader through the various screens in

the application. This will give context to the operation of these social enhancements

within the application. Two images will be shown for screens that differ between the

two applications.

3.4.1 Login View

It is common practice for the initial screen of the application to allow the user to

log into the system. Users enter the username and password they registered during

the sign-up process. If an incorrect username/password combination is entered, the

system will provide a “toast” popup informing the user and allowing them to try

again. Figure 3.11 depicts the login screen.

Figure 3.11: Geotagger Login View

53

Uninitiated users may register with the Geotagger system by pressing the “Regis-

ter” button. This will launch a “modal” form with the necessary fields for registering

a new account. Figure 3.12 shows the register view.

Figure 3.12: Geotagger Register View

3.4.2 Adventure List View

Upon successfully logging into the system, the user is greeted with a list of adventures

which they own or are a member. Each unit in the list is a “card” that represents an

adventure. These cards display: name of the adventure, description of the adventure,

and relative time at which the adventure was created. This view serves to centralize

a user’s activity, giving an overview of all of the adventures available to them.

Additionally, users may slide the cards to the left in order to access contextual “edit”

54

and “delete” actions for that particular adventure. Figure 3.13 shows the adventure

list view.

Figure 3.13: Adventure List View

3.4.3 Adventure Detail View

Pressing a finger (“tapping”) on one of the adventure cards will bring the user to a

detail view for that adventure. Detail views are divided into several different tabs,

each tab pertains to a different perspective of that adventure. Adventure detail

tabs include: “info”, “tags”, “map”, and “members”. The enhanced version of the

application also contains a “chat” tab.

55

Adventure Info

The info screen serves as an initial landing page for the adventure. The information

contained on this screen is identical to the information present on the card represen-

tation. The purpose of this screen is to orient users, acquaint them with the tabbed

layout and grant them context for a new set of screens. Figure 3.14 shows the info

screen.

Figure 3.14: Adventure Info Screen

Adventure Tags

The adventure tags screen shows all of the available tags for an adventure. This screen

is different between the two application versions. This screen represents enhancements

SE1 and SE2 as users are able to comment more effectively and directly navigate

56

to user profiles (figure 3.15). The screen on the left (dark blue trim) represents the

original development effort, while the screen on the right (light blue trim) represents

the enhanced application. Tag items on the left represent a “list-like” group, while

tag items on the right are more “card-like”. List items provide a more compact

representation, allowing more items to fit on one screen. The enhanced “card” design

opts for more screen space, affording additional functionality to users. This card

representation is the result of several design iterations. Earlier prototypes of these

iterations can be found in appendix B.

The list items of the original application have no visible action buttons. Users

may slide the list items to reveal “edit” and “delete” buttons. Beyond these actions

a user is only allowed to press on the “list” item. Upon pressing the list item, the

user is taken to the tag detail view. This is another tabbed view displaying different

aspects of the tag. This view will be discussed in further detail in section 3.4.4.

Tag cards supersede the need for a tag detail view, as all pertinent tag data is found

directly on the card (figure 3.16). Tag cards contain a row of action buttons which are

absent from the original application. Buttons included are: “comments”, “location”,

and “user”. These buttons allow users to view detailed information about the tag

without having to leave the tag list view.

The comment button is represented by the chat-bubble icon on the center-left of

the card and serves two primary purposes in making comments a more prevalent part

of the user workflow - the intent of SE1. Firstly, it informs the user about comment

activity on that particular card and allows users to see the number of comments on

a tag at a glance. Secondly, users are able to navigate to the tag comments view

with a single button press. This view is depicted in figure 3.23. These two features

serve to make comments more integrated and engaging to users. Users now have

57

(a) Original (b) Enhanced

Figure 3.15: Adventure Tag Views

an easier workflow for monitoring comment activity and adding comments. In the

original version, there is no indication of the number of comments on a tag. Rather,

a user must navigate to the tag’s comment screen and view the actual comments in

order to get a sense of comment activity. Adding a comment takes place in the same

screen in the enhanced version of the application to enable users to contribute more

efficiently.

The button in the center of the card is a “location” button. Pressing it opens

the map view for that tag. This view can be seen in figure 3.24. The tag map view

gives users a visual representation of a tag’s location, given that the tag has been

provided with latitude and longitude data. This view is implemented using Google

Maps, so the user is granted additional built-in functionality. This functionality will

58

be discussed in section 3.4.4.

The third button present on the tag card is the “user” button; it introduces the

functionality proposed by SE2. This button serves to tie authoring users more closely

to their contributions. Pressing this button will bring users to the author’s profile

detail view. This is another tabbed view which details a user’s registered information,

as well as work they contributed. The profile detail view is discussed further in section

3.4.5.

Figure 3.16: The Tag Card

Adventure Map

The map view contextualizes all tags contributed to the currently selected adventure.

Both versions of the application display markers relating to the adventure’s tags, as

long as the tag has latitude and longitude information. To bolster this geographical

representation, Google Maps provides several built-in map controls. The top left of

the map houses a toggle button which allows users to change between a more realistic

“Satellite” tile-set or a stylized “Map” tile-set. The square in the upper right corner

is a “fullscreen” button for the map view, while the “plus” and “minus” buttons in

the bottom right allow for manual zooming. Finally, the yellow character above the

59

“zoom” buttons allows users to drag this icon onto a city street in order to display

Google Map’s “Street View”. Figure 3.17 shows the adventure maps.

Each of the markers displayed on the map is a click-able button. Pressing on one

of these markers brings up a contextual “info window” which provides relevant tag

information. The original version of the application displays the name and description

of the tag. The “Directions” link which will launch the device’s native navigation

application in order to safely direct users to the tag. The enhanced application also

displays the tag name, description, image and a suite of action buttons. These buttons

perform identical operations to that of the buttons on the tag card with one exception.

The center “location” button has been replaced with a “navigation” button which

acts identically to the “Directions” link.

These additional action buttons facilitate enhancements SE1 and SE2, much the

same as the tag cards. The “comment” button takes users directly to the comment

screen for the selected tag, allowing them to quickly and efficiently continue to

contribute. The “profile” button serves to further tie users to their contributions,

even on the map screen. The included image also grants users greater geographical

context, especially when used with the satellite view where as large environmental

features may be seen from the default zoom level.

Adventure Members

The fourth adventure view displays the users that are a part of the currently selected

adventure. From here, users can be added or removed from the adventure. Adventure

coordinators can create “member collections” which group users by roles. Scientists

and adventure personnel can be grouped into one collection, while students or citizens

can be placed into another collection. As with other lists, items act as links to

60

(a) Original (b) Enhanced

Figure 3.17: Adventure Maps

further information about the item. Pressing on a member item takes the user to

the member’s profile detail view. In the enhanced application, this flow provides a

connection between users and the content they contribute (e.g., tags). This view will

be discussed further in section 3.4.5. Figure 3.18 shows the adventure member screen

for both applications.

Adventure Chat

The adventure chat embodies enhancement SE3 by creating a shared social space for

members of an adventure. The adventure chat represents an all new feature for the

Geotagger project. This tab acts as an instant-messaging system between members of

an adventure. Adventure chat areas are local to each adventure, so the conversation

61

Figure 3.18: Adventure Members

stays focused on the adventure at hand. In a similar fashion to popular SMS and

IM applications, user-sent messages appear on the right side of the screen (e.g., black

text with a gray background). Other messages are visible on the left side of the screen

(e.g., white text with a blue background). Each chat message is appended with the

authoring user’s username, profile image, and the time at which the message was

sent. To send a message, the user presses on the “input bar” at the bottom of the

screen and enters the text on the dynamic keyboard. Pressing the “paper airplane”

icon sends the message to the Socket.io server, which then “emits” the message to

the other clients that are members of this adventure. The chat window can be seen

in figure 3.19.

When a user is not currently on the chat screen, any chat messages received during

that time will increment a small badge icon on the “chat” tab. This enables users

62

Figure 3.19: Adventure Chat

to become aware that other users are contributing to the chat while they are away.

This badge serves a similar purpose to the badge seen on the “tag” card, giving users

further context as to the discussion happening around them. The chat badge is shown

in figure 3.20.

Figure 3.20: Adventure Chat Badge

3.4.4 Tag Detail View

The tag detail grants users detailed information concerning a selected tag. Users can

navigate to the tabbed view by pressing on a tag list item in the adventure tag view

63

(section 3.4.3). The enhanced application makes use of the comment and map views.

However, the tabbed version of this view is only available to the original version

of the application, since the enhanced version replaced this view with the tag card

representation. The tabbed view is comprised of three sub-views: “tag info”, “tag

comment”, and “tag map”.

Tag Info

This view grants the users some contextual information about the currently selected

tag. This view acts as a “landing page” after a user pressed a tag list item (figure 3.21).

Users can make edits to the tag with the “pencil” button in the upper-right corner.

Tag information is kept in a section below the action bar. Here the view displays:

the name of the tag, date it was authored, location description, and username of the

author. Farther below this is the tag’s description and image, if one exists. If a user

presses on the displayed image, a modal window showing a zoomed version of the

image will appear (figure 3.22).

Tag Comments

Users are able to view and add their own comments in the tag’s “comment” view.

Figure 3.23 shows the tag comment view for both applications. Note the presence

of a tab-bar at the bottom of the original version. The enhanced version appears

when the user presses the “chat-bubble” button on the tag card. Comments are the

primary form of interaction between Geotagger members. As such, it is important

that the process of adding a comment be simple and expedient. The “input bar” at

the bottom of the comment screen represents a further step toward expedience (SE1).

In the original application, users need to press the “plus” button in the upper-right

64

Figure 3.21: Tag Info

corner of the screen. This action produces a form used for adding comments. The

enhanced application streamlines this workflow as users can type a comment without

having to leave the screen. The “camera” icon allows users to add an image by

uploading one from the device or by taking a new photograph. A further enhancement

focused on implementing profile links for user profile images. User profile icons can

be found on the left side of each comment item; these icons provide a direct link to

the commenting user’s profile. This approach creates a stronger connection between

users and the content that they contribute (SE2), as users are able to further explore

user-created content within the profile view. The profile view is discussed in detail in

section 3.4.5.

65

Figure 3.22: Zoomed Image

Tag Map

The tag map displays tag’s geographical location according to the tag’s latitude and

longitude metadata. Similarly to the comment view, the tag map view is accessible

via the “location” button on the tag card, rather than through a tabbed interface.

The absence of a tab bar in figure 3.24 is noticeable. The tag map view also displays

the user’s location as a blue marker, as opposed to the orange tag marker. This screen

is very similar to the adventure map view of section 3.4.3, with a few exceptions.

The first difference is that the tag map only reveals the location of the currently

selected tag and the user’s current location. The tag map screen contains several

map controls not found on the adventure map screen. Both versions contain buttons

in the bottom-left of the screen to allow the user to rotate and enlarge the map.

66

(a) Original (b) Enhanced

Figure 3.23: Tag Comments

The enhanced version of the application also contains a “navigate” button located

under the Map/Satellite toggle button. It provides identical functionality to the

“Directions” link. Finally, when the user presses a “marker” icon, it invokes an “info

window” design similar to that of the original application, as opposed to the “card”

design found in the adventure map. When a user brings up the tag’s map, they

have navigated “into” the tag. Providing the user with the same functionality as the

adventure map cards would create the opportunity for confusing UI interactions. A

tag card existing within a tag card may be confusing to the user, since the tag map is

accessed from the tag card. Therefore, it was decided to maintain the original design;

providing user’s with on the the tag’s name, description, and a button for getting

directions to the tag.

67

(a) Original (b) Enhanced

Figure 3.24: Tag Map

3.4.5 Profile Detail View

The profile view is a means for users to become more familiar with one another, giving

a “face to the name” and helping to humanize contributors. This was the intent of

enhancement SE2. User accounts contain some interesting personal account data

designed to engage other users. This data includes a personalized “quote” and a

short “biography”. This was designed to give users a sense of personality and allow

for a degree of personal expression. This information is coupled with project data,

creating an association between the users themselves and their contributions to the

project. In developing the social enhancements, the profile screen was converted to a

tabbed layout, thus allowing visiting users to explore the user’s other contributions

to the project.

68

Profile Info

The profile “info” screen acts as the initial screen for the enhanced application.

This screen is reached by pressing the “user” button on the tag card (figure 3.16).

Figure 3.25 shows that in the original application the profile view is a single screen

that consists of the user’s: name, profile image, biography, and quote. This same

information remains unchanged in the enhanced version.

(a) Original (b) Enhanced

Figure 3.25: Profile Info

Profile Tags

The “profile tags” view serves to connect users to their contributions. In the original

application, there is no way for users to see the contributions of other’s. The aim of

this enhancement is to give users greater awareness of other members of the project,

69

and foster a growing community by creating personal connections between users. The

profile tag list contains identical functionality to that of the adventure tag list with

the exception that every tag seen here has been contributed by the same user. This

view allows visiting users to directly comment and get to a user’s tags (figure 3.26).

In hindsight, the “user” button may be somewhat redundant. This serves to create

a kind of rapport between users as they can see what kind of tags interest them.

Figure 3.26: Profile Tags

Profile Map

The profile map gives visiting users a visual representation of all of the tags found

in the profile tag list, shown in figure 3.27. This serves to implement enhancement

SE4 to contextualize the data from the previous screen and give a novel depiction of

a user’s contributed work. Controls present on this view are identical to those in the

70

tag map view, yet this map view has the return of the tag card info windows found

in the adventure map view (section 3.4.3). This allows users to make comments on a

user’s tag within the context of the tag’s location. In hindsight, the presence of the

“user” button is perhaps redundant.

Figure 3.27: Profile Map

3.4.6 Tag Overview

Though these views were not part of the evaluative study, they still represent a

step toward realizing the proposed social enhancements. A geographic overview of

a single tag is available in the tag detail view (figure 3.24) and an overview of tags

in an adventure are visible in the adventure tags view (figure 3.17). The aim of this

view was to further implement enhancement SE4 and provide an overview of all tags

71

that a user could view. The result is to further contextualize the available work and

provide the user with a novel domain-centric visualization.

This enhancement was not completed due to time constraints and difficulties

encountered during development. Much of the functionality for the enhancement

was implemented. However, due to performance problems with large sets of tags, the

enhancement did not appear in the user study. This tag overview contains two tabs:

the tag list and the tag map. The list displays the card representation of the tags,

allowing users to comment on and locate interesting tags quickly. The map view is

very similar to the adventure map view, displaying all of the tags from the list view

geographically.

Aggregate Tag List

The intent of the aggregate tag list is to gather tags from all adventures that a user has

membership and display them in a list form for rapid browsing. In previous versions

of the application, this tag list mirrored the content found in the user’s profile tag

list and displayed only tags that the user had created themselves. Figure 3.28 shows

the aggregated list. This list contains tags from several different authors. Note the

same card representation seen in other list views.

3.4.7 Aggregate Tag Map

The aggregate tag map gives users a geographic representation of all of the tags

available to them. These tags are displayed on a familiar Google Map that has the

same features as the tag map mentioned earlier. Tags are partitioned by assigning

different color markers depending on each tags’ adventure. Tags with similar color

72

Figure 3.28: Aggregate Tag List

markers are from the same adventure, allowing users to mentally group these tags.

Figure 3.29 shows the aggregated map.

This chapter has provided an overview of the engineering effort completed in this

thesis. Two working Geotagger applications were completed, one application with

and one without the social enhancements, studies were conducted to understand the

effectiveness of these social enhancements.

73

Figure 3.29: Aggregate Tag Map

74

CHAPTER 4

EVALUATION

Having introduced the social enhancements previously, this chapter will discuss the

means by which those enhancements were evaluated. The evaluative study took

place in two stages. The first stage was a comprehensive real-world use scenario

involving children at a local park. The second stage was a more focused study of select

enhancements involving the Kidsteam group. Approach, results, and limitations will

be discussed for each study in order to provide a comprehensive understanding of the

evaluation techniques and the resulting data.

4.1 Field Studies

The first step in evaluating the social enhancements was to design a study that would

effectively exercise and assess them. This design was passed on to the IRB in the

form of an expedited review application. This study was relatively non-invasive.

The primary evaluation method involved simply asking children a series of questions

concerning the application and surveying their responses. Once the application had

been accepted, a pilot study was then conducted. This pilot study did not produce

usable data, but allowed for changes to be made in the overall approach. After the

approach was modified the user study began in earnest, boosting the scale of the

pilot study in order to obtain more data. Unfortunately, the data gathered from the

75

initial user study was not as demonstrative as originally expected. This outcome

necessitated a second, more focused user study that would allow for a fine-grained

evaluation of select enhancements.

4.1.1 Method

Two study treatments were conducted, one for each version of the application. The

original application, not containing the new social enhancements was named “Geo-

tagger X”. The second iteration, this containing the social enhancements, was called

“Geotagger Z”. The user tasks in this study focused on the strengths of the Geotagger

project, to give a users a more clear idea of what it was like to contribute to the project.

In this way, tasks were created that emulated real-world usage of the application.

To find a suitable location for the study, a number of public, open locations were

investigated. Since this study involved surveying children, a space was selected that

would make parents and children as comfortable as possible. Furthermore, the study’s

goal was to observe application-based interaction, not than group-based interaction.

Thus children could not be grouped together, otherwise they would likely collaborate

outside of the application. To alleviate parental concern, study personnel would

accompany each child during the treatments. Study personnel offered guidance and

support where needed, but served a primarily observational role.

Once the tasks had been designed, a survey using a five-point Likert scale was

created to quantify the children’s thoughts. The version of the application and survey

given to the children would depend on the treatment scheme used in this study.

Study designers choose between a “within-subject” or “between-subject” study. Both

designs have their own strengths and weaknesses which needed to be weighed in order

to determine which design would be appropriate for this study.

76

Tasks

Study tasks involved children interacting with the Geotagger application in a real-

world use-case scenario. Allowing children to interact naturally with the application

provides a more realistic representation as to how users would operate the application

outside of the study. Each child was furnished with an Android device with the

treatment application pre-installed. As tags and comments are the main collaborative

unit of the Geotagger project, it was appropriate that they be placed at the focus of

the study.

In partitioning the treatments, two different adventures were created. This kept

the data organized, and allowed investigators to theme tags in order to make the treat-

ments more varied and interesting. Study personnel created a number of “starter”

tags for both of these adventures in order to orient them and gain familiarity with

tags. Starting tags gave children ideas and helped generate some initial discussions.

These tags were designed to be fairly obvious and easy to reach with children being

able to instantly recognize the location and make their way to it without outside

help. From here, children were able to explore the environment and create tags of

their own.

Study designers devised three main tasks that children were asked to complete

during each treatment: visit tags that others created, create tags, and leave comments

on tags. Tasks functioned as a series of suggestions in the event that the children

needed some guidance. Children were meant to feel like they were in control of what

they were doing without becoming overwhelmed. No quota or set of ordered steps

was provided, as the aim of the study was to foster open-ended interaction with the

application in order to make the collected data as natural as possible.

77

Evaluative Artifacts

In order to evaluate the children’s interaction with the application, a number of

evaluative artifacts would be required. Surveys are a very common evaluative artifact,

as they allow users to codify their thoughts on paper. These quantified and qualified

thoughts and experiences can be analyzed later by the research team in order to draw

conclusions. However, special care must be taken when the subjects of the study are

children. Children do not have the cognitive ability nor the reading comprehension of

adults, so special allowances must be made. Particular consideration must be given to

the wording of survey queries. Query text must be written in such a way that a child

can unambiguously understand the intent of the question. Ambiguous or advanced

wording can lead to the child becoming confused or misinterpreting the questions. A

flawed understanding of the question will lead to a flawed answer. Thought must also

be given to the exact domain of answers available to the children. A survey consisting

of only short answer “what do you think” type questions will likely be time consuming

and fatiguing to the children.

Read [33] outlines a series of methods known as the “Fun Toolkit”. The Fun

Toolkit contains three evaluative techniques for use in child-centered research projects:

smileyometer, again-again table, and the fun sorter. The smileyometer is a five point

Likert scale, where the numbers (one to five) have been replaced with smiley-faces

displaying increasing degrees of happiness. This work made use of the smileyometer,

while omitting the again-again table and the fun sorter, as these methods are primarily

focused on drawing conclusions from multiple treatments.

This study made use of an updated version of the smileyometer. In its initial form,

the smileyometer features a range of faces, starting at “awful” (a very unhappy face

78

representing a “1”) and ending at “brilliant” (a very happy face representing a “5”).

Hall [20] suggests that this particular ordering and representation of the smileyometer

can lead to a skewing of the data, as children are more likely to select a smiley face

over that of a frowning face. The original form of the smileyometer can be seen in

figure 4.1.

Figure 4.1: Original Smileyometer

To remedy this, Hall suggested a reworking of the smileyometer, in order to

modernize it and to achieve a more uniform distribution of responses across the scale.

Rather than start the scale at a decidedly negative emotion (awful), Hall started

the scale at a more ambivalent emotion (ok). Oftentimes, children did not display

strong negative emotion towards a poor user experience. In these cases, the center of

the scale was favored, even though the application was specifically designed to incur

negative responses. In this way, a middling emotion was chosen to be the negative

end of the range. Also note that all faces in the new smileyometer depict smiles. Hall

found that even with the same wording, children were not as likely to select an option

that was nonplussed or displayed a slight frown. Figure 4.2 shows the final version of

the new smileyometer.

In addition to the smileyometer, this study also made use of the “this-or-that”

evaluation technique. This-or-that is a pairwise comparison among several different

79

Figure 4.2: Improved Smileyometer

categories or queries. An example of a query could ask which option they favored

(e.g., which application was most fun) or which option they disliked (e.g., which

application was hard to use). This-or-that is useful for comparing two distinct entities

or features. Sim [34] notes that when compared with other evaluative techniques, like

the smileyometer, this-or-that lacks the ability to provide a nuanced or reasoned

response. For this reason, this-or-that was limited to strict comparisons, which were

backed by ancillary questions to provide triangulation for the children’s thoughts.

The above techniques were used to develop a treatment survey and a comparative

survey. Treatment surveys pertained to one version of the application. These surveys

consisted entirely of smileyometer questions and were administered following the

treatment. Treatment surveys were designed to be easily digested and completed

quickly. Smileyometer questions were designed to require little cognitive effort on the

child’s part to avoid fatigue. Table 4.1 shows each question from the treatment survey.

At the close of the study, the final comparative survey was administered. This survey

contained a mix of this-or-that, smileyometer, and qualitative questions. Comparative

survey questions may be found in table 4.2. Questions CS1 through CS4 were

this-or-that questions, simply asking children to compare their experience with both

versions of the application. Questions CS5, CS6, and CS8 were qualitative, allowing

children to expound on their feelings. Question CS7 consisted of a smileyometer,

asking children to gauge the amount of enjoyment they had during the study.

80

Table 4.1: Treatment Survey

Code Query
TS1 Do you think adding a tag was...
TS2 Do you think adding a comment was...
TS3 Do you think looking at what other people did with the app was...
TS4 Do you think looking at other people’s tags was...
TS5 Do you think looking at other people’s comments was...
TS6 Did you connect and interact with others using the app?
TS7 Did seeing their tags help you connect with the other kids using the

app?
TS8 Did seeing their comments help you connect with other kids using the

app?

Table 4.2: Comparative Survey

Code Query
CS1 Overall, which version of the app did you like better?
CS2 Which version of the app made it easier to see what other people were

contributing?
CS3 Which version of the app made it easier to add comments?
CS4 Which version of the app made it easier to explore tags?
CS5 What parts of the app helped you connect with others?
CS6 What parts of the app made it hard to connect with others?
CS7 How fun or boring was the app?
CS8 What made the app fun or boring?

Investigators provided assistance where needed, especially if a child required help

writing during the qualitative questions. Investigators also carefully read and ex-

plained the meaning of each question, in order to elicit an accurate response from the

child.

Experimental Design

With the artifacts and evaluation methods developed, researchers were still torn on

whether the treatments were to be administered in a between-subject or within-

81

subject fashion. A within-subject study would allow users to provide direct com-

parisons between the two applications. At the same time, a between-subject study

was likely to be more timely, and therefore make it more likely that a parent would

consent to their children participating in the study.

In an evaluative sense, the between-subject is perhaps the less-desirable of the two

options, yet it is not without benefits. Between-subject treatments would only require

the participant to interact with a single version of the application. This would make it

harder to collect interesting data, as the children could not compare their experiences

with the two applications. Rather comparisons would have to be drawn from the

disparate data. Furthermore, this variety of study would require an increased number

of participants in order to achieve the same treatment coverage as a within-subject

study. On the other hand, a between-subject study would likely allow for faster,

more iterative study sessions. Children would be exposed to only a single treatment,

lessening the likelihood that the child would become fatigued during the study. It

was estimated that a single treatment would require approximately 25 minutes, this

figure includes the time it takes to complete the tasks listed above, as well as the

surveys. This would be a more palatable request to parents passing through the area,

as they would be less likely to agree to a substantial time commitment off-hand.

The data extracted from this study was be primarily comparative, as the two ap-

plications in question needed to be contrasted in order to ascertain which application

allowed users to interact socially. A within-subject study would make the data easier

to reconcile to this conclusion, because users would be made aware of both versions of

the application. It would give more context to their thoughts. The limiting factor for

this type of study would be the amount of time required to administer each treatment

of the study. Surveys would be administered at the close of each treatment, in order

82

to solidify children’s thoughts before interacting with the next application. After the

second treatment survey, the comparative survey would be administered, asking the

children to compare and contrast the two applications, as well as what they thought

of the process overall. All of these artifacts and tasks would likely require forty-five to

sixty minutes. It would be a much less desirable request to parents in the area. Due to

the comparative nature of the study, investigators greatly preferred a within-subject

study over a between-subject study. To combat the lengthy study time, participants

were compensated monetarily for their time. An amount of $10.00 in the form of an

Amazon gift card was given to each child participant. Investigators felt that this was

a competitive offering for the time and amount of work required.

Within-subject studies are prone to incurring an “order bias”, whereby partici-

pants exhibit a preferential bias depending on which treatment was first administered.

To avoid this bias, treatments were administered to participants in a counter-balanced

fashion. So the mapping between adventures and applications versions would change

between treatments. Given two versions of the application and two adventures, there

are four pairings of application-to-adventure treatments. Each one is given a reference

code. Each pairing was visited session-by-session in a round robin fashion. The

first session utilized session “A”, the second session utilized “B”, and so on. Table

4.3 demonstrates this counterbalancing scheme. Please note that “application” is

shortened to “app” in the table.

Study Location

In choosing a location for the user study, a number of aspects had to be taken into

account to ensure that the environment was suitable for children. Firstly, the location

must be public or similarly trustworthy. Initially, the user study was meant to be con-

83

Table 4.3: Treatment Counterbalance Scheme

First Second
Session Code Adventure App Adventure App Count

A Find Z Create X 8
B Create X Find Z 7
C Find X Create Z 8
D Create Z Find X 7

ducted on Boise State University property, in the Human Computer Interaction Lab.

Boise State University is a trustworthy institution where parents would understand

that their children are safe. However, due to unforeseen complications, the study

would need to be opened up to additional participants. Certainly, the best place to

find willing participants would be in a public, outdoor setting, which could also serve

as the recruitment ground and environment for the study. Outdoor areas would need

to be open and public to guarantee parents that their children would be safe. Care

would be taken to ensure that “tagged” areas were safe, easily reachable, and highly

visible from multiple vantage points. Children would not be taken into enclosed

or obscured areas. Additionally, prospective locations should contain a number of

interesting environmental features to discover and explore. Though a soccer field

may be open and public, it provides few opportunities for creating interesting tags.

The initial location chosen for this study was the Grove Plaza. The Grove Plaza

contains many interesting cultural and historical locations which would make for

engaging adventures and tags. Additionally, the Grove Plaza is located near the

Boise State University campus, providing support in case difficulties were encountered

during the study. However, concerns were expressed that the Grove Plaza might be an

unsuitable location, as oftentimes visitors to the Grove Plaza do not expect to spend

an extended amount of time there. Alternate locations were surveyed, including

84

several public parks. Public parks featuring playgrounds were a particularly good fit

for these criteria. Several potential parks in the Boise area were surveyed, including

Settler’s Park, Story Park, Kleiner Park, and Ann Morrison Park

IRB Application

This study involves child subjects, therefore extra precautions and considerations

were needed to ensure IRB approval. The study was conducted in a public, open area

with many witnesses. Participating children were accompanied at all times by study

personnel. Study personnel were also instructed to help children where needed, but

to not direct the children in their tasks. The child was the driving force when moving

from location to location. Additionally, parents were encouraged to accompany the

children, if they felt their presence was required. Children would also be informed

that they were not obligated to participate in the study and encouraged to simply

tell an investigator or their parents if the they became uncomfortable at any time.

Children were free to opt-out of the study at any time and for any reason.

At the commencement of each session, the parent or parents were furnished with a

consent form detailing the expectations of the study. Consent forms contained sections

for the child’s name, age, and gender. In collecting data, the child’s name will be

omitted entirely, the remaining fields will only be utilized in gathering demographic

data. Once the parent gave consent for their children to participate, the children

were asked for verbal assent concerning their participation. If the child did not

wish to give their assent, then they would not be obligated to participate in the

study. Upon granting assent, the child would be given an Android device running

the treatment-specific version of the Geotagger application. User accounts have been

previously created and do not include any data relating to the child.

85

Furthermore, in an effort to attract potential participants, investigators offered

parents one $10.00 Amazon gift card for every child that agreed to and completed

the study. These gift cards were intended for the children, but were furnished to the

parents for safekeeping.

These provisions were submitted to the IRB in the form of an Expedited Review

application. The application was accepted and assigned the IRB Protocol Number:

131-SB17-101.

4.1.2 Study 0: Grove Plaza Pilot Study

An initial study was conducted in the Grove Plaza, in Boise, Idaho. The objective of

this study was to observe how participants interacted with each other, the application,

and study investigators. Data gathered from this study session was unusable, however

this study afforded investigators a clearer idea as to the difficulties that might be

encountered during a larger study.

Approach

Following the counterbalancing scheme seen in table 4.3, two adventures were created

in preparation for this study. The Grove Plaza is located in the center of the downtown

Boise area. As such, it is near interesting historic sites, as well as unusually shaped

buildings. This location would be the basis for two adventures: “Buildings of the

Grove Plaza” and “History in the Grove Plaza”. “Buildings of the Grove Plaza”

focused on large and unusual buildings in the downtown area. These tags asked

children to identify the uses of these buildings and the businesses housed in them.

“History in the Grove Plaza” explored local history and culture, as children were asked

to identify key points in Idaho’s history and what made these events significant.

86

Three tags were created for each adventure. These initial tags served as a starting

point for the children. The intent was to include several obvious locations, while

purposefully omitting others. This interested the children as they felt like they had

discovered the locations of the starting tags and then turned to explore new tags

on their own. The descriptions of each tag provided little information, instead they

acted as discussion starters with questions such as: “What would you want to go to

this building for?” and “What company is in this building and what do they do?”.

Children were expected to provide their own thoughts to these questions, as well as

pose some questions of their own. This would provide a foundation of discussion and

interaction within the application.

Investigators stationed themselves at the center of the plaza and made requests

passersby for participation in the study. Special attention was paid to groups con-

taining a legal guardian and three children. Few groups of people fit this description

and only a single group consented to the study. This group contained three children

between the ages of six and twelve years.

The children were each separated and accompanied by an investigator. The

children were given Android devices with the original version (Geotagger X) and were

asked to lead investigators through the plaza, while finding tags, adding comments,

and creating tags. Fifteen minutes was allotted for this treatment of the study. When

time expired, investigators led the children to a table and asked them to complete the

first treatment survey. Children completed the surveys in isolation from one another,

in order to avoid a cross-contamination of ideas. Once complete, investigators changed

the Geotagger application (Geotagger Z) and started the second adventure. The

children were given another fifteen minutes to explore this adventure. Help was

provided if the children became frustrated, needed assistance typing or thinking of

87

a word. At the close of the second fifteen minute period, the children were again

taken to a table and asked to complete the second treatment survey. Immediately

following the completion of the second survey, children were given the comparative

survey. The exit survey signaled the end of the treatment, so the legal guardians were

furnished with one $10.00 Amazon gift card for each child that completed the study

and thanked for their time.

Results and Discussion

Due to the size and scope of this session, the data acquired during this session was

mostly anecdotal in nature, relying upon investigators observations. This information

was used to make changes to the approach in the proceeding study. This study

provided a base for how children interacted with both versions of the Geotagger

application and gave investigators an idea as to how subsequent sessions might unfold.

Investigators noted that children seemed to enjoy themselves during both treat-

ments of the session and that finding other tags was a favored activity. Children were

especially excited at the prospect that the other children could see and respond to

their contributions. When the children were reunited at the close of the study phrases

like “Did you see my tag?” and “I saw your comment!” were exchanged between the

children.

Children were quick to comment on and discuss tags, though the discussion

sometimes took place outside of the application. In this study the participants were

siblings, so they were all very familiar and comfortable with each other. This is likely

the cause for some of this impromptu discussion, as children would sometimes walk

over to their sibling to discuss a tag or a comment. However, children became very

excited when they realized that others could view and comment on their tags.

88

Participants made little use of the profile pages. Even with the anonymized

usernames, children had little difficulty identifying which of their group-mates created

a particular tag. This was most likely due to the small group size and participant

familiarity with one another. Furthermore, time constraints led to children focusing

their time on finding tags created by others, leaving comments, and adding their

own tags, without room for organic exploration of the application. Map screens saw

limited use. Children seemed to focus primarily on just the adventure tags and tag

comments screens. These two views held the primary workflow for the study and the

brisk pace of the study did not incentivize navigation to other screens. In the case of

the enhanced application, the chat window was used only sparingly. Children were

highly receptive to the chat window, but this was not a part of the three primary

goals of the study and it was largely unused.

Limitations

This study was intended to function as a pilot study from which the approach could be

scaled. No generalized data was taken from this study as participants only consisted

of three children in total. A subsequent study with more participants was conducted

to provide more empirical results.

Difficulties were encountered when administering surveys. Members of the re-

search team were distributed throughout the Grove Plaza, yet the transition between

the study treatments had to be synchronized. During this session, treatments were

slightly staggered due to some miscommunication. Later sessions involved a single

investigator timing each session with a stopwatch, then informing other investigators

via text message.

89

Researchers found that the Grove Plaza was an inappropriate location to conduct

this study. The Grove Plaza was well populated, but groups of people containing

children were somewhat seldom. Furthermore, most visitors to the plaza only intended

to spend a limited amount of time there or were in transit to a different location. Many

people that were approached said that they did not have time to participate in the

study. In order to bring in more participants, it was decided that the study be moved

to a playground area in public park area. Visitors to playgrounds already have an

expectation that they will be spending an extended period of time there. Playgrounds

are usually very public and open, which allowed parents to watch their children at all

times during the study.

4.1.3 Study 1: Settler’s Park Study

In response to the difficulties encountered during the Grove Plaza study, a new study

was devised that allowed investigators to find prospective participants much more

quickly. Investigating local parks used the same criteria as before, yet with an

emphasis on network connectivity. A data plan was procured so that the devices

could connect to the Internet while at the park. Yet some parks experienced data

coverage issues, requiring the application to be tested on-site before the park was

considered a suitable location. Ann Morrison Park, in particular, had poor data

connection and was not considered for this study, though it successfully met all other

criteria.

Settler’s Park was eventually chosen as the replacement location, containing a

large play structure and water park area. This park was also very popular during the

late morning and early afternoon. This study took place during August, so children

were out of school for summer vacation. However, hot weather conditions drove

90

parents and children from the park as the afternoon progressed. Study activities

largely took place between 9:00 AM and 2:00 PM before the weather became too

uncomfortable.

Approach

Adventures centered around the playground and the park, tasking kids to rely on

their imagination. “Create Your Own Park” instructed children to visit existing

playground structures and “tag” other structures, detailing how they would change

or incorporate them into their own park. “Find and Imagine” involved the children

finding and creating tags with fantastical elements. Pirates, explorers, and castles

were the subjects of the adventure and children were tasked with filling in the blanks

to create their own fantastical scenarios. Three tags were created for each adventure.

These tags were very conspicuous and usually recognized almost immediately. Similar

prompts were provided for each tag and the children were invited to comment on a

prompt, if they felt they had an interesting answer.

In preparation for the larger study, a logging mechanism was added to both

versions of the application. This logging feature was created to monitor a users

activity with the application. The logging module was responsible for time-stamping

each action taken in the application. This included creation, updating, and deletion

of Geotagger entities (primarily tags and comments), as well as any textual data that

might help identify the specific record in the store. View changes were also logged

in an effort to track how much time users were spending on each view. Time-stamps

served to track user activity and action frequency. This data served to bolster the

data taken from the surveys and questionnaire.

91

Willing participants were difficult to find at first, as many children at the play-

ground were below the age of six years, or did not have siblings who could participate

in the study. Due to the lack of participants, an alternate means of proposition was

pursued. An advertisement was posted on “Nextdoor”, a neighborhood oriented social

media network. This advertisement informed homeowners of the time requirements

of the study, as well as the monetary incentive. A link was also provided to the IRB

approved consent form. This advertisement proved to be very effective at informing

potential participants, eschewing the need to further proposition park-goers.

Much of the approach for this section mirrored that of the previous study. Treat-

ments were allotted fifteen minutes each, allowing five minutes following each treat-

ment for the completion of the treatment survey. Five more minutes was allowed

to complete the final comparative survey. These artifacts remained unchanged from

the previous study, though an effort was made to streamline the treatments and the

surveys.

Results and Discussion

At the close of the study, researchers collected participant surveys and log files

generated by the application. Survey questions which involved Likert scales (e.g.,

smileyometer questions) were coded from one to five. One being the least favorable

answer and five being the most favorable. Anonymized surveys were cross-referenced

with consent forms in order to gather demographic data (e.g., age and gender).

Children’s names were not used in the analysis of this data.

A total of thirty children between the ages of five and twelve years participated

in this study. This study took place over the course of twelve sessions consisting of

groups of two or three children. Groups of two participants were considered in the

92

interest of time, though these sessions were greatly disfavored compared to sessions of

three children. Session treatments followed the round-robin counterbalancing scheme

described in table 4.3. Toward the close of the study, the round-robin scheme

was changed slightly, so that each treatment type received an even distribution of

participants. Table 4.4 details the coverage of each session type.

The first metric analyzed was children’s preference of one application over the

other application. These social enhancements were designed to encourage continued

contribution and make the overall user experience more enjoyable. Researchers ex-

pected children to greatly prefer the usage of Geotagger Z over Geotagger X. However,

the comparative survey showed children did not show strong feelings towards one

or the other. Ultimately, children’s preferences between the two applications were

extremely similar. Results taken from CS1 were largely inconclusive in demonstrating

which of the two applications the children favored. Of the thirty children surveyed,

9 preferred Geotagger X, 14 preferred Geotagger Z, and 7 children were undecided in

choosing between the two. Though children favored Geotagger Z over Geotagger X,

this is not by a very large margin. This information coupled with the proportionally

significant number of undecided answers (~23% of participants) indicates that chil-

dren likely had difficulties discerning between the two, or at the very least, felt the

applications were very similar.

Participant gender was greatly skewed towards males as this study consisted of 7

females and 23 males. Most of the children playing in and around the park were male

and this same bias was reflected in the participants generated from the Nextdoor

advertisement. Further studies should take care in creating a more balanced gender

distribution. However, this finding did not present an obvious correlation between

gender and application preference. Of the 7 girls surveyed, 4 stated that they preferred

93

the original application (Geotagger X) over that of the enhanced application. The

other 3 stating that they could not decide between the two.

Table 4.4: Participant Age Distribution

Age Count
5 2
6 3
7 6
8 3
9 7
10 3
11 5
12 1

The treatment surveys also showed fairly even or neutral feelings between the

applications. Researchers aggregated the smileyometer questions from the treatment

surveys. Figure 4.3 shows the median responses given by children in each of the

treatment surveys. Note that the x-axis represents each question in the treatment

survey. Responses between the two applications were extremely similar. Geotagger

Z had higher median answers for TS3 and TS5. Question TS5 in particular asks

about discovering other member’s comments, a question designed to evaluate the

effectiveness of SE1. This may be related to how accessing comments in the enhanced

application required less button presses than the original application. Geotagger X

was more favored in question TS7, which asked about exploring the tags of others.

This may be related to the more compact look of the tag list item in the original

application, allowing more tags to be visible on the screen. In any case, the differences

in the median responses for these questions was too minuscule to draw concrete

conclusions.

In addition to the median responses, mean responses were also calculated, though

94

Figure 4.3: Treatment Survey Median Response

the results were extremely similar to those found in the figure 4.3. Children’s re-

sponses were again extremely similar between the two applications. The mean graph

shown in figure 4.4 shows slight differences in the average response for each question,

yet these values are extremely close and do not vary greater than a value of 0.5.

Graphs for both mean and median responses show that TS6 and TS7 are the

questions which had the lowest responses. Both of these questions ask how children

felt they connected with one another. This lower average response is probably due

to the small session size; the largest of which was just three children. This aspect

combined with the relatively short amount of time children had to adjust to the

applications was likely the cause for the lower response rate in how children interacted

with one another.

95

Figure 4.4: Treatment Survey Mean Response

The concrete data collected from the study was unexpected and did not draw a

strong correlation between the presence of social enhancements and increased user

interaction. Participants did not show a strong preference toward one application

over the other, though the enhanced application garnered slightly more favorable

responses. Due to the unexpected data returned by this study, further investigations

were made to more directly target specific social enhancements in an attempt to study

their social effectiveness.

Limitations

This study experienced several issues that prevented the resulting data from being

strongly unbiased. Results collected from the data were unexpected and did not

96

provide a clear correlation between user preference and the introduction of social

enhancements. This problem may have been caused by the scope of this study,

which was too broad and tried to accomplish too much. Users were unrestricted in

their use of Geotagger, as social enhancements are interspersed throughout the whole

application. This made it difficult to pinpoint the effectiveness of any one social

enhancement, instead it relied on the enhancements as a whole. The abundance of

features and lack of time led to the full functionality of features not being exercised

properly. Logging systems were included in order to monitor user activity and identify

those enhancements which were most used. However, the breadth of the application,

combined with the limited time available to the study, made it difficult to delineate

the effectiveness of each enhancement.

Session size and user availability was of particular concern during this study. The

size of the session group would affect the number of tags and comments created during

the session. Time constraints and participant availability forced the research team to

accept groups when just two participants were available. Groups with two participants

created markedly less tags and comments, though the average number of comments

and tags created per user was comparable to groups of three. This provided fewer

opportunities for interaction between participants, rendering the social enhancements

ineffectual. Ideally, a user study would involve a group size closer to that of a

classroom in order to have more potential for user interaction. Likewise, groups of

three people were thought to be too small to foster social interaction between users.

Available resources made it impossible to increase the group size beyond this study.

In conclusion, the lack of variety of participants to interact with likely decreased the

amount of interaction between participants.

Environmental elements also posed a problem in conducting this study. The

97

geographical nature of Geotagger dictated that a user study take place outdoors.

This study was conducted during the first week of August at a particularly hot time

of the year for this area. Children and researchers often experienced fatigue as the

day progressed, especially during the later stages of the day. This variable may

have had an impact on how children interacted with the application or when it was

time to test the second application. Fatigue from the heat may have affected user

enthusiasm, causing them to participate less effectively than they would have in a

more comfortable climate.

Logging and data collection were implemented during a later stage of this project.

Effort was made to revise how activity was logged in order to provide finer grain

reporting on how users were interacting with the application. Unfortunately, this

added logging merely showed how much time users spent on each view. It was largely

unsupported by follow-up questions in the treatment and comparative surveys. Some

values taken from the logs showed a very large amount of time spent on certain screens

without creating further content. This was likely caused by the child locking the

device or simply walking around with that particular screen open. The comparative

survey was a source of problems, as “this-or-that” questions left little room for

little nuance or explanation. The comparative survey contained four such questions,

asking children which version of the application was preferred for different aspects

of the application. Additional or revised questions were needed to help reconcile

this data and the data collected from the questionnaire. This would have helped to

explain children’s reasoning as to why they preferred one aspect of an application

over another.

Participants in this study occupied an age range between ages of six and twelve

years. While many children in this day and age have been exposed to mobile tech-

98

nology at some point, it is likely that they do not have the expertise or the critical

skills needed to analyze the differences between the two applications. On the surface,

both applications appear to be very similar. This was likely exacerbated by the fact

that children were asked to perform identical tasks between the two applications. In

this way, the changes between the two applications may have been too nuanced for

the study age range. They may be more suitable for an older, more technologically

experienced user-base.

To facilitate interaction through the application, participants were divided amongst

investigative personnel. This was done to ensure the safety of participants, as well

as allow an opportunity for investigators to suggest areas of the park that were

not occupied by other study participants. Investigators attempted to ensure that

participants worked on their own, but the modest size of the park led to unavoidable

verbal interactions between participants. Investigators observed that children were

enthusiastic to talk with one another about their experience with the application.

These types of external interactions were to be avoided as the aim of this study was

to investigate the ways children interacted using the application. These external

collaborations may have effected the results of this study as children interacted

verbally, rather than using the application.

In designing this study, investigators worked to maximize the amount of time

children spent with each version of the application. Allowing for too much time might

have caused children to become disinterested in the application and led parents to

become frustrated with the protracted pace of the study. Ultimately, fifteen minutes

was allotted for each treatment, though this time may not have been sufficient to fully

exercise the functionality present in the application. Furthermore, participants were

administered treatments in quick succession, allowing them little time for reflection.

99

This lack of contemplation between both versions may have led to confusion during

the comparative survey (table 4.2).

Child participants require extra considerations compared to adult participants.

Children are cognitively and emotionally different from adults. Obtaining user feed-

back from children is more involved as these aspects must be taken into account.

Preceding this study, investigators researched methods by which children’s thoughts

and opinions could be accurately elicited. To that effect, this study made use of

the “smileyometer” and “this-or-that” survey techniques [32]. These techniques are

designed to provide children with a simple means for communicating ideas. Due

to the some of the nuanced changes in this application, a survey may have been

an inappropriate method in evaluating enhancement effectiveness. Children may

have had more to say than what was prompted in the survey. Surveys provided

the most efficient means of gather user data, which is a useful feature due to the

time sensitive nature of this study. Yet the rigidity of the questions leaves little

room for supplementary ideas. This study may have been improved with open-ended

evaluation techniques that allow for children to express their ideas more naturally.

The application developed in this work is by no means free of software defects. As

such, several bugs were encountered during the course of this study. Thankfully, these

defects were encountered only very occasionally, and were usually remedied by simply

restarting the application. A “panic” button was made available to researchers, in the

event that any serious difficulties were encountered. This button simply cleared the

local cache and restored the application to its initial state. This whole process would

take the investigator approximately fifteen seconds and having likely little impact on

the child’s interaction with the application. Faults were seldom encountered and no

fault was found to stop the session completely. Application difficulties likely had little

100

effect on survey results, but it is worth noting just the same.

Tags are usually furnished with a GPS coordinate consisting of a longitude value

and a latitude value. This allows other users to exactly pin-point the tag’s location

and make their way to it. When adding a tag, a user is able to automatically call the

GPS system which provides the user with their current coordinate location. However,

the remote location of this study interfered with the GPS found on the Android

devices. This issue caused automatically positioned tags to place map markers on the

nearest street addresses which could be as much as one hundred yards away, making

the adventure and tag map views wildly inaccurate. This difficulty was discovered

by researchers when creating the initial set of tags, a problem that was not present

during the Grove Plaza study (see section 4.1.2). To avoid confusing the participants,

researchers manually set each tag’s GPS location. However, this could not be done

for tags created by study participants, so participants were informed that tags placed

outside of the map were inaccurate. Fortunately, children exclusively added tags with

images. Due to the distinct appearance of structures within the park, children were

able to find other’s tags almost entirely without issue.

4.1.4 Results and Discussion

Results in this study were rather unexpected and did not serve to highlight the

strengths and impact of the proposed social enhancements. Participants in this study

were split in their preference of one application over the other. Though Geotagger

Z was somewhat preferred over Geotagger X, a large number of indecisive answers

likely show that children were confused, or could otherwise not readily distinguish the

applications. Limited treatment time led to tasks feeling rushed and a diminished

amount of social interaction taking place. The decision to study the application as

101

a whole weakened the correlation between user interaction and the presence of social

enhancements. This was only exacerbated by the fact that the largest group consisted

of three participants that created few opportunities for social interaction.

4.2 Investigations of Specific Social Enhancements

An additional round of investigations were conducted to research the social enhance-

ments in isolation. These investigations were conducted in response to the somewhat

confusing and muted results discovered in the initial study. These investigations were

designed to provide more focused results. The obscured results from the first study

were found to be caused by the unwieldy and sizable scope of the study. Further

inquiry provided a smaller, more concentrated view of individual enhancements,

contrasting with the initial study’s survey of the application as a whole. Third party

participants were not utilized for this investigation, rather members of the Kidsteam

design group participants for this study. This study took place in two stages, with

each stage focusing on a different social enhancement. These social enhancements

included:

• SE1 - Making comments more prevalent

• SE3 - Creating a shared social space for adventures

The inherent differences between these two enhancements called for different

approaches. In this way, specialized examinations were constructed in order to take

advantages of the strengths of each enhancement. Each inquiry was designed to

give participants a more precise set of tasks that would highlight differences between

the two versions of the application. Children could then evaluate these differences

102

on their own, then draw conclusions and make suggestions where needed. These

evaluations were captured by lab personnel and used to draw conclusions concerning

the effectiveness of these enhancements.

4.2.1 Method

This investigation did not fit as neatly into two distinct treatments as did the previous

study. Application enhancements were studied on a case-by-case basis using multiple

treatments where required. Tasks did not focus on real-world use cases for the

application. This investigation focused on children directly interacting with the social

enhancements. They provided feedback on features they liked or disliked, as well as

other ideas they had for the application. Evaluative artifacts took on a very different

form due to the size of the participant group. This study took place in the Human

Computer Interaction lab located at Boise State University. Parents were initially

invited to the lab space and laboratory personnel were on-hand to ensure parents of

their children’s safety. Furthermore, an amended application was submitted to the

IRB reflecting the changes to personnel and environment.

Kidsteam Design Group

The Kidsteam design group is an intergenerational technology design team that uses

cooperative inquiry to elicit new and innovative ways of creating and interacting with

technology. Kidsteam personnel work closely with children to research, model, and

implement technologies targeted at child users. Children are often marginalized when

it comes to providing informative feedback, yet they can offer a unique point of view

which may not be immediately obvious to adult users [11]. This unique perspective

can give rise to interesting and effective user interfaces which would otherwise not

103

be possible. Participatory design techniques provide a means for children to express

their thoughts. Oftentimes these techniques involve hands-on design work consisting

of art and craft activities with illustrative group discussions [13]. These techniques are

designed to allow children to express ideas other than verbally, as children may not

be well spoken at such a young age. Techniques include: Bags of Stuff, Sticky Notes,

Journals, Mixing Ideas, and Layered Elaboration. These techniques are designed to

create avenues of idea elaboration between the different age demographics present in

the group. Many of these techniques are employed directly in investigations involving

the Kidsteam group.

Tasks

A major shortcoming of the previous study is that it tried to evaluate all of the

social enhancements at once. The social enhancements implemented during this work

are found throughout the entirety of the application. With limited time for each

treatment, there was not enough data taken from the study to draw concrete conclu-

sions on any one enhancement’s effectiveness. This investigation instead focused on

individual social enhancements. Feedback was taken from children who were directly

interacting with a small number of systems in the application. In this way, children

were instructed to only utilize very specific aspects of the Geotagger application.

This focus would allow researchers to directly draw conclusions concerning these

enhancements, providing a clearer, albeit smaller, picture of how these enhancements

affected user interaction and discussion. This would not provide a mirror to real-world

usage of the application, yet it would provide targeted insight into how children viewed

and interacted with the application.

104

Evaluative Artifacts

Evaluative artifacts took on a very different form for this investigation. Previously,

surveys were used to gather data from children in an effort to solidify their thoughts

about the application. These surveys attempted to gather children’s thoughts about

multiple aspects of the application, where as this study focused few aspects to achieve

a finer grain of detail. This fine-grained look would be better suited toward a more

expressive and creative form of evaluation. Surveys were also better suited to large

groups of participants where statistically significant data could be taken from these

surveys. However, due to the small group size, data taken from this study could not

be generalized to other children. Nevertheless descriptive information could still be

drawn from this study.

In order to effectively leverage the Kidsteam design group, a different evaluation

technique was required. Knudzton [25] noted the importance of “cooperative inquiry

activities” that allow children to come up with ideas and solidify thoughts as a group.

These cooperative activities can take many different forms to serve many different

purposes. This includes critiquing existing software and using three-dimensional

objects to prototype new or future software. Whatever the activity, these methods

are usually very hands-on and require creative thinking. As the Geotagger application

was already in a finished state prior to this study, an evaluation method was chosen

that would allow children to focus on specific aspects of the existing application. This

study employed cooperative inquiry techniques known as “sticky notes”, “big paper”,

and “big ideas”.

Sticky notes [13, 26] is an evaluation technique that provides an avenue for children

to share their thoughts through creative and physical means. Children are paired with

105

team members and are supplied with “sticky notes” and a pen or pencil. Ideas are

recorded on sticky notes as the children interact with the technology. It is important to

note that each note represents a single idea, so multiple ideas should not be combined

on one note. This approach enables the notes to be collected and arranged on a

whiteboard to be categorized. These ideas are then grouped by subject matter using

a marker. This process allows researchers to draw common themes and insight from

the exercise. Figure 4.5 gives an example of a completed sticky note exercise.

Figure 4.5: Sticky Notes Cooperative Inquiry

The big paper [17, 39] evaluation technique gives children the opportunity to build

a low-tech prototype from the ground up. Children are divided into small groups and

given a large piece of paper and colored markers. They are then supplied with a

limited amount of time and an objective to redesign some technology in any way they

see fit. Children then create a mock drawing of their version of the technology. Once

106

time is called, the groups come together to discuss their creations. This technique is

low-cost and requires very few supplies, yet it has the potential for generating rich

intra-group discussion during the activity and inter-group discussion following the

activity.

Big ideas [26, 13] is an evaluation technique that allows children time to verbally

share their ideas with the rest of the group. Big ideas often takes place at the end of

an activity and provides an opportunity for retrospective on what was accomplished

during the activity. Oftentimes these ideas are recorded on a whiteboard or other

large, centralized surface that is easily read by all participants. Children can monitor

the recording of their ideas and make corrections where needed. Once complete,

investigators note commonalities or similar themes that occur between various obser-

vations. Big ideas can show where development effort needs to be targeted or where

further testing and analysis may be required.

Study Location

Evaluative portions of these investigations took place in the Human Computer Inter-

action lab at Boise State University. The initial session of Kidsteam allowed parents

to become better acquainted with the lab environment and lab personnel that would

be interacting with their children during the design sessions. The HCI lab is equipped

with computers and other tools used in learning and technology design. Additionally,

the HCI lab is an open space with many windows providing an unobstructed view of

lab activity. Children were safe at all times and were asked to inform personnel if

they ever became uncomfortable.

Practical portions of this study took place in the Grove Plaza in Boise, Idaho. As

previously noted, the Grove Plaza provides many opportunities to create interesting

107

tags and explore local culture. Due to the colder fall weather, parents were informed

in advance of outdoor activities to provide their children with warm clothing. During

the activities, children were paired with lab personnel and supervised at all times.

IRB Application

A new application was submitted to the Institutional Review Board in preparation

for Kidsteam design sessions. All investigators that worked directly with children

are recorded as personnel on the IRB approved application. This application was

accepted and assigned the IRB Protocol Number: 131-SB17-027.

4.2.2 Investigation 1: Tag Cards and Comment Flow

The objective of this aspect study was to identify effective and ineffective UI elements

for comments and tag cards. Attention was paid to how users created comments with

the application and what sort of tag-related discussion this caused. This investigation

also focused on how users navigated between tags and how tag information was

organized, as well as study the effect of user interface choices that attempted to

make comments more prevalent (SE1). This investigation required that children be

exposed to both versions of the application so they could make comparisons between.

The study took place in two stages with evaluations following each stage.

Approach

To prepare for this study, two adventures were created which would be used in concert

with the two different application versions. The “Buildings of the Grove Plaza” and

“History in the Grove Plaza” adventures were reused, as they already contained

a number of interesting tags. Tags were left mostly unchanged, except for a few

108

minor updates that were made to the tag descriptions to allow for further discussion.

Creating tags was not the focus of this study, so study activities hinged on participants

discussing the provided tags.

Prior to any study activities taking place, children were oriented as to the first

version of the application (Geotagger X). A short demonstration was given as to how

tags operated and how the children could leave comments on tags. Children were

then instructed to focus on leaving comments on the provided tags, responding to

prompts given in the tag description, as well as comments left by their peers. As

before, children were paired with lab personnel to facilitate interaction exclusively

through the application. The participants were then lead outside and the practical

portion of the study began in earnest.

Children led lab personnel between tags in a fashion similar to the previous study.

Investigators provided support to children when prompted, but served to primarily

observe and write down the child’s thoughts. These thoughts were recorded on colored

“sticky notes”, where the color of each note corresponded to a different child. These

thoughts were collected and divided into three categories: Likes, Dislikes, and

Design Ideas. After collecting the initial thoughts recorded by researchers, the

children were asked to record their own ideas fill in any gaps. These were further

grouped by the subject of the thought, allowing researchers to better organize the

participant’s opinions.

This process was repeated for the enhanced application: Geotagger Z. To diversify

their experience with the application, children were supplied with a different adven-

ture with which to find tags. As in the first adventure, sticky notes were recorded

and categorized by investigators at the close of the adventure.

109

Results and Discussion

Due to time constraints, this study took place over two sessions of the Kidsteam

design group. Both sessions consisted of five children and allotted approximately

twenty minutes for each adventure. The amount of time it took to conduct the

adventures, evaluate the sticky notes, and reflect in journals was too much for a

single Kidsteam session. Thus, adventures took place on two different days during

the same week. Figure 4.6 depicts the results of the sticky notes session for the first

adventure.

Figure 4.6: Geotagger X Sticky Notes

Geotagger X was the subject of the first adventure, “Buildings of the Grove Plaza”.

After collecting notes from Kidsteam members, investigators noted several similarities

between them. Children especially liked exploring the environment for tags as did

the participants of the previous study found in section 4.1). The Kidsteam group also

110

liked the idea of tags and being able to post comments about “fun things” and attach

images to them. However, children wanted to extend this function with additional

media types that could also be attached to tags. Also, participants felt that adding

a comment was frustrating, because it was too easy to cancel the comment and lose

your work. Furthermore, they wanted to be able to add a comment which consisted

only of an image without the need for a textual comment.

This was Kidsteam’s first experience with the Geotagger application and many

of the sticky notes fall within Design Ideas and Dislikes. Children had many new

extensions that they wanted to see added to the application and were quick to

point out any frustrations they felt. Following this investigation, a second adventure

was created with the express purpose of testing Geotagger Z in a similar manner.

Geotagger Z was tested with the “History in the Grove Plaza” adventure and sticky

notes were once again collected (figure 4.7).

Anecdotally, one can immediately see that Geotagger Z has a higher concentration

of sticky notes in the Likes category. Several children liked the flow of adding a

comment, saying that they liked how “you don’t go into the tag”. Many children

were able to easily identify the difference in flow when it came to adding a comment.

The goal of SE1 is making comments more prevalent. A further “like” was the slight

UI change to comment cards in Geotagger Z which removed the slide function in

favor of an explicit options “chevron”. Members also liked being able to immediately

bring up a larger version of a tag image by pressing on the image present on the

card. Note that Geotagger X required the user to navigate to the tag-detail view

first. However, participants noted the small size of the comment input bar made it

difficult to spell-check comments, as you could not see the entire comment at once.

Some verbiage when editing a comment was also found to be unclear. “Update”

111

Figure 4.7: Geotagger Z Sticky Notes

was thought to be a confusing word. This issue coupled with a small input box

made editing comments a frustrating experience to some members. Many Design

Ideas were holdovers from the previous adventure, as image comments and additional

media types made a repeat appearance.

At the close of the second treatment, children were administered a survey that

asked them to compare the two applications. This survey was meant to provide an

informal evaluation of the applications. Of the five children surveyed, one child had

not been exposed to the Geotagger Z version of the application. So they could not

make accurate comparisons between the two versions. Table 4.5 lists the questions

found in the survey.

Many of these questions were meant to mirror the questions found in the compar-

ative survey for the initial study (see table 4.2). However, extra steps were taken to

112

Table 4.5: Kidsteam Survey

Code Query
KS1 Overall, which version of the app did you like better?
KS2 Which list of tags did you like better?
KS3 Which version of the app made it easier to get to comments?
KS4 Which version of the app made it easier to add comments?
KS5 What worked and what didn’t work about the first app?
KS6 What worked and what didn’t work about the second app?
KS7 Which list of tags did you like better and why?
KS8 How fun or boring was the app?
KS9 What made the app fun or boring?

ensure that the intent of these questions were clear to the children. Questions KS1

through KS4 were, once again, “this-or-that” questions. In addition, children were

provided with full color printouts of each view that the question referred to, which

gave children an unambiguous context for each question. Questions KS5, KS6, KS7

and KS9 were qualitative, and meant to provide a space for children to list any other

thoughts they had about the applications. Question KS8 is the sole smileyometer

question, a hold-over from the previous survey.

Compared to previous surveys in this study, the results taken from this survey

were much more demonstrative. Although these responses may not be generalized,

they still provide compelling outcomes on a much smaller scale. Firstly, every child

surveyed selected Geotagger Z as their preferred application in KS1, as well as KS3.

Children enjoyed using the enhanced application more than the original application.

They felt that the enhanced application made it easier to get to tag comments (e.g.,

part of the enhancement proposed in SE3). Investigators noted that several children

identified the number of button presses as the cause for preferring Geotagger Z.

Geotagger Z requires a single button press to navigate to comments, while Geotagger

X requires several button presses. One child also commented that “the second one

113

(Z) was really much faster than the first one (X)”.

Questions KS2 and KS4 saw 3 out of 5 children preferring Geotagger Z over

Geotagger X. These questions were a little more indecisive, yet comments by par-

ticipants reveal some interesting insights. Several children mentioned off-hand that

they liked the smaller tag list item than the larger tag list card. This allowed for

more tags to be visible on-screen at any one time in Geotagger Z. It was easier to

get an informed interview of the adventure for this tag list, because list items require

less screen space than cards. One participant mentioned that they liked how “tags

and photos of places” were arranged for Geotagger X. Regarding comments, children

mentioned that writing a comment in Geotagger Z was a little difficult, because the

input box was smaller and more difficult to proofread. Geotagger X has a larger input

box, but the proximity of this box to the “cancel” button caused problems for several

participants. However, several children clearly indicated that it was “easier to add

comments” with Geotagger Z.

Questions KS5 and KS6 served to fill in gaps and triangulate responses to other

questions. They allowed children to express further thoughts that had not been

covered elsewhere. One child liked how “you don’t have to open the tag to read

about it” and noted that “you have to go through three screens to comment (on

version X)”. Other participants said that Geotagger Z was “easier” and “faster” to

comment.

This investigation was able to show that the Kidsteam design group preferred the

enhanced Geotagger Z application to the original Geotagger X application. Geotagger

Z received more favorable responses from the “sticky notes” session and the survey.

Though only five children participated in this activity, this fine-grain look at tags and

comments was able to focus children’s attention and garner more interesting results.

114

This investigation spent twenty minutes on finding tags and creating comments alone,

whereas the initial study spent fifteen minutes per application, and utilized both

applications in the same day. This investigation focused on quality discussion around

a small subset of Geotagger features over the course of two sessions. Narrowing

the overall scope served to allow children to concentrate on just two main aspects.

The focus led to children having more concrete, well formed thoughts as to their

interactions with the application. The intention of this investigation was to take a

closer look at the effect of more prevalent comments (SE1) on children’s thoughts

on the application. While this investigation was not able to measure the effect of

the enhancement directly, participants were able to pinpoint this enhancement as a

reason for preferring the enhanced application’s comment-adding workflow over that

of the original version. It was obvious that making comments more prevalent led to

richer, more empowering application usage.

Limitations

The more focused, smaller scale of this investigation meant that results found during

these sessions could not be generalized to other children in the same demographic.

With a population of five, the results found here could only be used in a descriptive

way, having no empirical value.

4.2.3 Investigation 2: Practical Adventure Chat

The previous investigation utilized past adventures in order to provide a real-world

experience of the Geotagger application. Due to time constraints, the previous

study focused very little on the adventure chat, opting instead to focus on tags

and comments. This investigation focused on communicating almost exclusively

115

through comments and sought to garner feedback from children on which application

provided a better, more social user experience. Creating a shared social space for

adventure members was a part of SE2 and this investigation ssought to provide a

more focused look on how children interact with this space. This investigation largely

mirrored the workflow of the previous study (section 4.1), but distinguished itself in

the evaluation portion. This investigation would require somewhat more creativity

in order to effectively exercise and accurately reflect the usefulness of the adventure

chat.

Approach

The adventure chat functionality is an all new feature to the Geotagger project. As

such, there is no analogous functionality present in the original application (Geotagger

X). The previous investigation furnished children with both versions of the application

to allow children to draw comparisons between the two. This investigative technique

would be inappropriate for this aspect. Children were furnished only with Geotagger

Z, since it is the only version of the application that contained the adventure chat.

Playing once again to the strengths of the Geotagger project, this investigation

revolved around a Geotagger adventure. Though only a single adventure was needed,

care was taken to ensure that this adventure was easily distinguished from the other

adventures. If a similar adventure was created, children may become bored dealing

with the same tags and themes from previous Kidsteam sessions. This adventure,

entitled “Signs of Fall”, focused on environmental features that indicated the arrival

of the autumn season. Previous Kidsteam sessions focused on finding tags and

commenting on them. Instead, this adventure focused on children creating their own

tags and discussing the adventure as a whole using the shared chat area. Children

116

were given the task of collectively creating several different tags which indicated the

changing of the season. Investigators added some initial tags which covered the most

obvious indicators (e.g., leaves changing color). This incentivized the children to

communicate with one another using the adventure chat function.

Unlike the previous investigation, children were furnished with Geotagger accounts

which contained their first name. This was done to allow children to better identify

their peers who created interesting tags. Though profile images were not provided,

children were able to identify the author of a tag by pressing the “user profile” button

located on the tag card. Children were again paired with investigators to ensure

child safety and provide support in case the children encountered difficulties with the

application. Approximately thirty minutes was allotted for the children to navigate

the Grove Plaza and create their own tags. During this time, children led investigators

around the immediate area, while discussing with investigators and peers using the

adventure chat function. Investigators helped guide discussion using devices of their

own and pointing out duplicate tags when they arose.

Results and Discussion

Children seemed to respond very well to this investigation’s activity. Child interest

was held well throughout the activity and a good amount of discussion occurred in

the chat screen. To evaluate these interactions, children’s “big ideas” were written

on a whiteboard. Each child was given an opportunity to express aspects they liked

and disliked about the chat feature. Figure 4.8 shows the resulting ideas,

In the twenty minutes allotted for this investigation, children created a total of 23

tags and sent 19 messages. Initial tags centered on fairly overt signs of Fall weather.

Topics such as dead or colored leaves were the main subjects. Then, toward the close

117

Figure 4.8: Adventure Chat Big Ideas

of the study, the idea of Fall weather became more abstract and children started

creating tags which did not have to do with natural features. Objects like Autumn

sales, dates on signs, and Fall icons such as pumpkins became subjects for tags. Chat

messages largely consisted of children discussing their ideas for further tags. Messages

like “I am going to take pictures of fall weather”, “We have added backpacks”, and

“We are making a tag about closing patios” alerted other participants of potential

tag conflicts. Due to the coupling of tags and chat, children made considerable use of

the chat badge, which alerts users (not currently in the chat) to the presence of new

chat messages. Investigators observed multiple instances where children were looking

at the tags list, then the chat badge popped up. At that time they would navigate

to the chat to read the new messages.

Participants were very excited about the idea of the adventure chat, so ideas taken

from this activity were generally focused on extending the existing functionality of the

118

adventure chat. During this investigation, the chat only supported the transmission

of text-based messages. Children were especially excited at the prospect of sending

pictures in the chat. One key advantage of the chat function is that messages arrived

in real-time. This contrasts with the comments which require manually sending

HTTP requests in order to refresh the view using the “pull-to-refresh” function. Par-

ticipants experienced some difficulty with the minimum length requirement imposed

when sending a message. Chat messages can be no shorter than five characters, yet

some participants were frustrated with this limitation and wanted to send messages

of any length.

Participants also wanted to see an aggregation of a users chat messages when

pressing on a chat message. At the time of this investigation, pressing on a chat

message would bring the user to the author’s profile page which displays the tags.

This was done to create a connection between users and their contributions (SE2).

However, these contributions need not be limited to tags only, as comments and

messages represent legitimate contributions to the project. Future features could

provide aggregations of different types of contributions and make them available on

demand.

A particular highlight of this investigation was tag creation. The previous investi-

gation tasked children with finding existing tags and had little emphasis on creating

tags. This investigation focused on collaborative tag creation, which the participants

highly enjoyed. Children especially liked finding new locations for potential tags

and finding tags that others had created. Due to the influx of child-created tags,

children were observed making greater use of the profile button located on the tag

card. Previously, all tags added to the adventure were created by a single investigator,

but this investigation added an extra dimension to tag exploration by allowing others

119

to contribute tags.

Overall, children enjoyed this investigation, but deficiencies in the chat feature led

to some children focusing exclusively on tag creation. This investigation found that

the adventure chat function proposed in SE2 is an interesting and useful functionality.

While children did not make constant use of this function during the investigation,

enriching discussion still took place in the limited amount of time the function was

used. This function is relatively untried when compared to other Geotagger facilities

and bears much room for improvement as a result. In an effort to address these

shortcomings, a third and final investigation was designed to strengthen the chat

feature.

Limitations

The real-time chat functionality is the least mature feature of the Geotagger sys-

tem. As such, children encountered multiple difficulties in its operation during this

investigation. One child in particular was unable to utilize the chat at all, while other

children mentioned that these difficulties resulted in them moving away from the chat

screen in favor of the more reliable comment feature.

4.2.4 Investigation 3: Adventure Chat Redesign

This investigation focused on redesigning and reworking elements present in the

adventure chat. The adventure chat feature was meant to provide a shared social

space and a forum for discussion centering around each adventure. The previous

investigation also dealt with a practical use-case of the chat feature. This investigation

showed that the adventure chat did indeed provide the features needed for adventure-

related and meta-tag discussion. However, this investigation also pointed out several

120

shortcomings of the adventure chat in its current implementation. It indicated that

the adventure chat yet lacks functionality required for it to be considered an effective

part of the Geotagger system. This outcome spurred the decision to conduct a

secondary investigation into the adventure chat. In order to address the issues of

the previous investigation, a collaborative redesign of adventure chat visuals and

functionality was conducted.

Approach

The Kidsteam group was tasked with overhauling and redesigning user interface

elements and chat functionality. Previous investigations conducted a practical assess-

ment of specific Geotagger views and functions. This investigation was not concerned

with real-world usage. It was concerned with creating new technology, rather than

critiquing existing technology. The cooperative inquiry technique “big paper” was

utilized in collecting children’s ideas and identifying common themes.

Implementing the big paper technique, children were divided into three groups of

two members each. Each group was accompanied by an investigator whose role was to

keep the group on topic and give direction when needed. Groups were supplied with

large canvas-sized pieces of paper and colored markers. Children were then tasked

with completely redesigning the user interface for the adventure chat. This included

the addition of any extra functionality that the children desired. Paper and markers

were used to create a mock representation of the adventure chat. Groups were given

thirty minutes to complete their drawings and were asked to present their work to

the rest of Kidsteam.

121

Results and Discussion

Each group presented their mock-up and the main points from each mock-up were

recorded on a whiteboard. Each team was assigned a different marker color (e.g.,

orange, green, and blue) in order to keep ideas separate. Investigators spent time

focusing on each idea, confirming the intent of the idea before moving to the next

one. Figure 4.9 displays the result of this activity.

Figure 4.9: Chat Redesign Big Ideas

While collating these ideas, researchers noted several common themes. These

themes are made up of several disparate ideas contributed by all three groups. These

themes helped to categorize participants needs and were used to identify the under-

lying intention of each feature within the theme. The “Big Ideas” on the whiteboard

did not just represent simple feature requests, but represented a need for: additional

interface feedback, enhancement of existing communication, additional forms of com-

122

munication, and personal expression through interface customization. Further details

are below.

• Informative feedback - More information as to what is happening within the

chat.

• Communication enhancement - Additional features for chat messages.

• Further channels of communication - Multi-media gives way to richer, more

diverse expression.

• Interface customization - Personalization of interface elements as a means of

self-expression.

Participants came up with several ideas that centered around informative feedback.

It is the idea that user interface elements provide additional information as to events

and developments within the adventure chat. The blue team developed the idea

to specify different message background colors for users. During the investigation,

message backgrounds consisted of blue (for other users’ messages) and gray (for

current users’ messages). These colors helped differentiate between messages that

the user authored and messages that other users authored. However, message color

does not differentiate between other messages. Allowing users to assign this color

themselves would provide more feedback as to which users authored a particular

message. The green team added to this idea by indicating that a user should be

able to specify the bubble color themselves, lending itself to an extra dimension of

customization. The blue team was interested in a mechanism that would inform

authors when users read their messages. This might take the form of a confetti

explosion or some other creative visual that would provide additional feedback as to

123

who is reading messages and of what information they are aware. A somewhat similar

idea taken from both orange and blue teams is to have a list of users who are currently

viewing the adventure chat. This feature would afford the user greater awareness as

to who they could address in chat messages. Finally, the orange team felt that the

adventure chat needed different “types” of bubbles. These types of bubbles might

include a thought bubble for idea messages, an assertive bubble for direct commands

or assertions, and an inquisitive bubble for questions. These types of bubbles inform

other users as to the intent of the message, allowing users to glean information about

the message before they have even read them.

The adventure chat implemented in this work allowed users to only send messages

to all members of an adventure. This restriction was meant to create a space of

community for users to share their ideas. However, several participants of this

investigation expressed an interest in sending messages to a subset of recipients or

even a single recipient. Different types of messages were also considered. The type

of message would be represented in the “bubble” interface element, providing users a

quick overview as to the intent of the message. In reality, this feature describes the

semantics of a message, a function not currently present in the adventure chat.

Perhaps the most common feature type was the addition of further channels

of communication. The implementation phase for this chat feature was primarily

concerned with creating a minimum viable product that would allow users to com-

municate in real-time. Certainly, simple, text-based messages were by far the most

straightforward way to realize this functionality. As a result, children were keen to

introduce different types of media into the adventure chat that would serve to create

richer interactions with other users. “Emojis”, a small, character-sized image used to

express thoughts or emotion, were a particular favorite suggested by all three teams.

124

Emojis could add a playful element to communication and allow users to express

themselves in non-conventional and creative ways. In addition, children requested

increased media support beyond that of text. Suggested formats included audio

with voice recording though the application, video, still image (e.g., PNG, JPG), and

animated image (GIF). These additional media types enhance communication directly

by extending the domain of expression that is available to the user. The blue team

devised another extension with the concept of drawing a message. The user would be

provided with some kind of canvas to allow them to select different colors and draw

images with their finger. This idea grants yet another medium of communication,

allowing users to express their thoughts in a way which is not covered by other forms

of expression discussed in this section.

Finally, many participants expressed a desire for user interface customization

features. Ideas included changing message font colors, font size and family, as well as

creating a personalized “emoji” that would be associated with a specific user account.

These features would allow users to express themselves and grant a sense of ownership

to their user account.

Though the adventure chat proved to be a worthwhile feature, it is a very new

feature that requires more development. Kidsteam members designed a number of

improvements that should be considered when development resumes on the Geotagger

application. This work laid a solid foundation for the current state of the adventure

chat. The adventure chat represents a beneficial addition to the Geotagger system

as it was able to facilitate project discussion between adventure members. Kidsteam

used this chat feature in a previous investigation to communicate with one another

about an adventure. However, participants were able to identify several shortcomings

of the feature, as well as suggest many worthwhile extensions for future improvement.

125

CHAPTER 5

FUTURE WORK AND CONCLUSIONS

The closing chapter will contain future improvements for this work and final thoughts.

Each enumerated feature would be a welcome asset upon implementation. This

document closes with conclusions drawn from this work and how they affect citizen

science and the Geotagger project.

5.1 Future Work

The development undertaken during this work represents a sizable engineering effort.

Even so, further work is required to polish and complete some of the functionality

required for a fully-featured Geotagger client. Though this application implements

a considerable amount of Geotagger functionality, choices were made to focus more

closely on certain aspects. These neglected aspects would benefit from further work

and provide the Geotagger application with novel, useful, and interesting functional-

ity.

5.1.1 Design Team Iteration and Development

Design teams are a part of the iterative development process whereby an application is

improved by continuous design, development, and revision. In the past, the Geotagger

project has leveraged design teams in order to improve the user interface and various

126

features of the system. This work made limited use of a design team, and would

likely benefit greatly from continued iterative design sessions. It would benefit future

researchers to incorporate this feedback into forthcoming features, as well as provide

a retrospective on previous features and design. Focusing on engaging outside users

will grant a different perspective and invariably improve aspects that are currently

inadequate, while reinforcing those aspects which are found to be worthwhile.

5.1.2 Application Look and Feel Refresh

During the course of the application’s development, only cursory attention was paid to

the application’s look and feel. Most of the development effort was spent in ensuring

that the desired application functionality was implemented in a timely manner, in

preparation for the user study. Going forward, greater emphasis should be placed

on the look and feel of user interface elements of the application. Potential changes

include: updating to the overall color scheme of the application, reworking font size

and style, widget placement and sizing, as well as including an application icon and

splashscreen. All of these improvements would serve to give the application a more

complete feel. They would go hand-in-hand with design team integration. Designers

could work closely with children to ensure that the user interface reflects their needs.

As noted previously, children had difficulty understanding certain prompts and but-

tons. Further effort put into revitalizing the application’s interface would certainly

improve overall usability.

5.1.3 iOS Application Testing and Further Development

This project was primarily concerned with the development of the Android version

of the application. Developers were able to build and deploy an iOS version of the

127

application, however this version was not the focus of the project. Android devices

were more common and more economical to acquire for the user study, so Android

became the target platform. At the time of development, no effort was made to

create an Apple Developer account - which is required to test and develop for the

iOS platform. Additionally, most of the user interface elements were created for the

Android user experience. In actuality, there are many subtle interface queues which

serve to differentiate the two platforms. Care should be taken to provide iOS users

with an interface that is familiar to them. Ultimately, the development team would

like to make the Geotagger application publicly available on both major platforms,

yet further development would be required to realize this goal for the iOS version.

Due to the difficulties experienced by previous attempts at developing a Geotagger

iOS application, such a project would likely be a significant undertaking.

5.1.4 Performance Enhancements

Emphasis was placed on creating a fully-featured, functioning software product which

could be utilized during the user study. Compromises were made relating to the appli-

cation’s overall performance. While care was taken to ensure that these performance

shortcomings did not interfere with user interaction, improving upon these weaknesses

would greatly add to the application’s usability.

Infinite Scroll Content Loading Scheme

The developed application contains a number of “list” views. These list views serve

to display a compact representation of aggregated data. Currently, there are six main

list views in the application: general tag list view, profile tag list view, adventure list,

comment view, adventure member view, and tag list within an adventure. During

128

development, testing, and ultimately the user study, none of these views contained

a cumbersome amount of content. Loading pages was relatively expedient. Data

loaded as it was introduced to the application, lending itself to a more responsive user

experience. However, these trials were conducted with a limited number of users. If

an adventure were to contain a large number of concurrent users, tag and comment

views would likely experience performance issues. The API specification defines route

parameters which can be used to limit the amount of data being returned. This

can be used to “paginate” results in a similar fashion to a Google search results

page. This way the application would not have to load the entirety of the available

data to result in increasing performance. Instead of presenting the data as discrete

pages (in the case of Google), most modern mobile applications will instead choose

to implement “infinite scrolling”. Infinite scrolling happens when a user scrolls to the

bottom of the current “page” of content. When the device detects that the user has

reached the bottom, the application will automatically make a request for more data

to present the next page. This allows users to scroll “infinitely”, reading new content

without having to change pages. Ionic provides simple hooks for implementing this

functionality. Data is currently loaded into the application by requesting all available

data. As data is pulled into the application, a merge is conducted between the data

returned by the cache and the data returned by the API. Changing the amount of

data loaded from each data source would affect this merge. Due to this complexity,

adding infinite scrolling functionality would be a fairly involved addition.

Local Cache Tuning

In its final form, the local cache is functional for the purposes of this project. Yet

problems may be encountered when scaling this project for wider use. As of now, the

129

cache lacks several key features that would serve to tune its performance.

The local cache currently lacks database indexes. When searching for data the

DBMS performs a linear search on the table in question. This is acceptable for

tables with few columns. However, as a table continues to grow, this operation can

become quite costly. Indexes prevent linear table scans by providing a secondary

means of traversing table entries. Choosing clever columns to place in an index can

lead to drastically improved query performance, thus leading to improved application

performance. This change could improve search performance, but more can be done

to ensure that only pertinent data is being stored within the cache.

Data that has been inserted within the local cache will continue to exist until one

of two actions occurs: the entity is deleted (e.g., deleting a tag) or if the user logs out

of the application. This situation can lead to stale or unused data taking up space in

the cache. Creating a scheme for cache eviction would ensure that only relevant data

stays in the cache. This is especially important if a user is a member of many different

adventures that possess their own tags and comments. Caching chat messages further

compounds this issue as chat threads can quickly grow, especially in adventures with

many users. This cache eviction scheme could take the form of a limited cache that

evicts the least recently used data in favor of new data. However, this could result

in a high number of write statements as the cache fills, possibly requiring some kind

of “batch” eviction. Clearly, more and effort time needs to be spent in designing an

appropriate eviction scheme that would allow the application to scale reliably.

5.1.5 Automated Testing

Testing was a major concern in this application’s development. In the weeks preceding

the user study, group trials were conducted in an effort to eliminate the most pressing

130

deficiencies. During development, testing primarily consisted of localized beta tests

and end-to-end tests. However, no effort was made to integrate automated or unit

testing into the project. The development team had relatively little experience in

creating unit tests for a GUI application. Engineering effort was instead directed

toward designing and developing individual application features and localized testing

of these features. This paradigm allowed for expedited prototyping and testing of

features, at the risk of more error-prone code. Indeed, further code refactoring will

be a difficult process, as all changes will need to be tested completely to ensure that

no faults were introduced. This process could be obviated through the introduction of

automated unit tests. With automated tests, refactoring and other code changes could

be tested efficiently without the need for full end-to-end testing. However, integrating

a suitable testing framework into the project at this late stage would certainly be a

difficult undertaking. Yet future peace of mind and easing of development difficulties

afforded by such tests would justify the investment of time and effort.

5.1.6 Additional Geotagger Features

On the whole, the social features developed for this work are fairly complete and

representative of the abilities of the Geotagger system. However, certain features

were disregarded because they were either deemed to have lower research potential

for the user study or these features are not fully realized within the Geotagger system.

Going forward, an effort should be made to integrate these features into the API and

database backend prior to their addition to the mobile client.

131

Custom Tag Attributes

Custom tag attributes were introduced during the design and implementation of

the MySQL data store. Custom attributes allow for users to easily add their own

attributes to the tag entity. This feature is primarily aimed at scientist users who

may need to extend tags with additional information in order to provide a complete

picture of the data being collected. This was not implemented as the standard fields

found on a tag proved sufficient for the work accomplished in this thesis. Future work

incorporating this functionality should devise a novel way for custom attributes to

be displayed in the user interface. Special attention should be given to displaying

these attributes on tag cards, giving users a concise, yet complete, representation of

the tag. Lengthy lists of custom tag attributes could exist in some kind of popup or

popover menu with visual context of the attributes.

User Roles and Collection Visibility

At present, user roles are largely unused in the Geotagger application. Visibility and

user roles were statically assigned in an attempt to simplify that particular aspect

of application development. For the purposes of testing and field research, tags and

adventures were made available to all members. While this simplified development,

it robs the application of a powerful feature. One that should certainly be present at

the time of a full release. The database and API backend fully support the use of user

roles and collection visibility, yet the documentation surrounding these features can

be improved. Future emphasis should also be placed on more completely explaining

the implications of these aspects to allow for easier development. Documentation

should include a clear definition of each user role and visibility option, detailing their

132

use and effect.

Thought should be given to creating different views of the application that will

only be accessible to adventure coordinators. A kind of administration panel may

be helpful in setting up user groups, permissions, tag visibility, as well as moving

tags between collections. This could be particularly useful in a classroom setting here

a teacher may have to manage a group of children. Quickly and easily navigating

between the various collections and groups available in the application would greatly

ease a busy teacher’s workflow.

Groups

As a Geotagger feature, groups have yet to be implemented in any form. On the

surface, groups appear to be similar to adventure member collections that are an

existing feature. Adventure member collections serve to divide members based on

their “role”. That is, scientist members may occupy one collection, while citizen

members occupy a different collection. It is possible the types of tags between the

two collections have different intentions. Groups, on the other hand, provide a way

to group users within collections. This can be useful in a classroom setting where a

teacher needs to separate children into different teams. These different teams might

have separate objectives. One team might be tasked with finding tags around a

body of water, while another team finds tags in a wooded area. Groups represent

another tool that can be used by adventure coordinators to further organize and create

interesting scenarios for adventures. Once groups are implemented in the system’s

backend, the user interface should keep groups separate from member collections.

These two concepts are easily confused and steps should be taken to alleviate this

confusion.

133

Friends

Although a simple concept, friends can prove to be difficult to implement. Geotagger

has the concept of users, but currently there is no backend support for relationships

between these users. Adding the a friends feature would further connect users to

one another, thereby motivating collaboration. Tags and comments which have been

authored by “friends” could have a different look or a visual affordance that would

inform the user that this content has been contributed by a friend. Fischer [15] shows

that users are more likely to continually contribute to a citizen science project if they

feel that they have some kind of “stake” in the project. The friends system would

make strides in providing further opportunities to grant users a stake in the Geotagger

project.

Activity Page

An activity page would give an overview of relevant Geotagger activity to the currently

logged-in user. This could include tags and comments posted by friends, as well as

other users which are members of any of the user’s adventures. This page would

largely act as a sort of “news feed” common in social networks like Facebook and

Twitter. Giving users a synopsis of user activity in the Geotagger project would

show them, at a glance, what people are doing, seeing, and going. This page could

also include buttons to add a tag of their own, reply to comments, or view other

locations that a user may have been. An activity page would serve to give users a

sense of “community”. Fischer [15] shows that users greatly value feeling a sense of

belonging and community. This activity page would afford users instant context as

to what has been happening in the project during their absence. This page could

134

aid users in feeling that they are a part of a larger community, all of whom share an

interest in the natural world around them.

Enhanced Chat Features

At the time of this writing, the adventure chat functionality is somewhat limited.

The adventure chat provides a real-time instant messaging experience, but users are

limited to sending only text-based messages. It is not uncommon for modern instant

messaging applications to allow users to send a variety of media to other recipients.

For example, Facebook Messenger allows users to send animated images, video, and

even money. Slack, another popular messaging system, allows for the transmission of

zipped archive files, source code snippets, and video. While it is not expected that

Geotagger account for all of these features, extending the text-based functionality

would give users tools for novel and more meaningful interactions. Adding the ability

to send images would allow users to share things that they see in nature without

the need to create a different tag. Images could also help users provide others with

illustrations of where they are. Sending locations would help users communicate

their current location or the location of an interesting landmark. Additionally, a user

could send an “inline tag” which could combine these elements and create a compact

tag representation within chat. A further feature could include a button that would

allow the authoring user to automatically create a tag from the inline one present in

the chat. These features would serve to give users interesting interactions with the

Geotagger project, thus making their conversations more environmentally-focused

than what can be accomplished with simple text-based messaging.

135

5.1.7 Source Code Maintenance

Over the course of the coding portion of this work, maintaining clean and readable

source code was not the frontal concern. While the code is modularized and contains

external documentation, these artifacts can be improved. Improving documentation

and overall readability of this project would allow future developers to more easily

begin work contributing to this codebase.

Improved Documentation

The Geotagger mobile application leverages a documentation library called “ngDocs”.

This library operates similarly to other documentation libraries like JavaDoc and

Doxygen. These libraries express documentation as annotations that describe how

classes, methods, and properties are used. These documentation utilities then compile

the provided source code, stripping away the annotations and building a deployable

static website which may be further referenced by developers. In its current iteration,

the documentation for this project is fairly complete, however certain processes (e.g.,

adding a table to the local cache) are abstracted from the new developer. This would

likely not require a significant amount of work on its own. It would also be useful

to bring in an inexperienced developer, in order to see how newcomers to the project

interact with the documentation and what questions that they might raise.

Implement CSS Preprocessor

CSS is a styling language commonly used in web application development. CSS

“styles” are applied directly in the web browser client. At its core, the Geotagger

mobile application is a web application. All of the styling, component coloring, and

136

layout is accomplished via CSS. CSS defines a number of very powerful features that

developers can leverage to style their application. However, as a web application

grows, so does the size of its stylesheet. CSS stylesheets simply define a series of

rules which are applied to the various elements in the page. Growing stylesheets can

cause problems when targeting specific view elements, and can lead to inconsistent

styling. This means that the process of updating and maintaining large stylesheets

can become a challenging task in its own right.

CSS preprocessors like Sass and Less provide a way to combine standard CSS

rules with control flow constructs such as variables, condition blocks, and subroutines.

Rather than manually setting a background color or font family, these can be easily

assigned with a variable. Subroutines, commonly called “mixins”, can be used when

a large block of styling must be repeated for different rules. Once these constructs

are added to the CSS code, the preprocessor is run and the code is “compiled” to a

standard CSS file that can be interpreted by the browser. All of these features lend

themselves well toward cleaning up the CSS rules and making the style hierarchy

more readable.

5.2 Conclusions

Citizen science strives to create tight-knit communities of individuals who share a

common interest in scientific inquiry. This thesis set about designing, implement-

ing, and evaluating four social enhancements with the intent of strengthening the

collaborative aspect of the Geotagger project. Over the course of this thesis, a new,

cross-platform mobile client was created to allow a wide variety of users to interface

with the Geotagger project. This thesis proposed a set of social enhancements

137

designed to impact the way users interact with the project and with each other.

• SE1 - Making comments more prevalent

• SE2 - Connecting people through their contributions

• SE3 - Creating a shared social space for adventures

• SE4 - Geographic overview of tags

An evaluative study was conducted to investigate the social impact of these

enhancements. The first study was a practical, real-world scenario intended to

exercise all four social enhancements in a natural setting. However, due to a large

number of variables and the sizable scope of the study, data taken from this study

was unexpectedly ambiguous. It did not draw strong parallels between increased

social interaction and the presence of social enhancements. Further investigations

were created to provide small-scale, focused research of at the individual impact

of a selection of social enhancements. The initial study took a holistic approach to

assessing the impact of these enhancements. This led to the results being inconclusive

and difficult to understand. Additional investigations were designed to understand

the potential nuance present in participant feedback.

These investigations could not focus on every social enhancement, but a selection

of enhancements was made to provide a deeper understanding of the impact of these

enhancements. SE1 was the subject of the first investigation. It dealt with adding

comments to existing tags. Special attention was given to observe how users navigated

to tag comments and how they created tag comments. This study sought to measure

the impact of more prevalent comments (SE1). This investigation utilized sticky

notes to gather participant feedback and draw commonalities between responses.

138

Children preferred the enhanced Geotagger Z to original Geotagger X, citing the

ease of navigation to the comments screen. Children felt that the flow in Geotagger

Z “easier” and “faster” than the analogous flow of Geotagger X.

The second investigation targeted the adventure chat function. This was an all new

feature to the Geotagger project and received little attention in the initial study. This

feature seeks to create a shared social space for adventure members where discussion

about adventures and tags can take place (SE3). Although technical difficulties were

encountered during this investigation, children were still able to make considerable use

of the adventure chat. Here, children discussed creating tags about “signs of Fall”, in

which duplicate tags had to be avoided. Children participants frequently mentioned

tags they were making or what might make for a good tag subject. Several children

encountered difficulties in using the chat. Participants’ big ideas were recorded on

a whiteboard. These big ideas indicated that the adventure chat was an important

feature, yet lacked significant core functionality that would allow for it to reach its

potential of driving social interaction. A third investigation was designed to further

investigate the adventure chat, this time focusing on features that would improve the

user experience using the adventure chat.

The final investigation tasked Kidsteam members with completely redesigning the

adventure chat function. Supplied with large pieces of paper and colored markers,

these children set about designing new user interface elements and functionality for

the adventure chat. Once they presented their designs to the rest of the group, big

ideas were again recorded on the whiteboard. Investigators identified four primary

themes in the children’s designs: informative feedback, communication enhancement,

additional ways to communicate, and interface customization. The children wanted

more informative feedback to tell them what was happening and what other users were

139

doing in the adventure chat. Visual feedback for when a message is read, different

background colors for messages to differentiate message authors, and a list of members

currently viewing the chat give users greater context as to the state of the adventure

chat. Communication enhancement ideas included semantic bubble types to increase

the methods that users can communicate with the existing chat functionality. The

design team also wanted additional ways to talk to each other, including multi-media

support, canvas messages, and emoji support. Finally, they wanted to be able to

customize parts of the application. Different font sizes, styles, and user interface

colors would help to give children a sense of ownership in the application.

Due to their smaller size, these investigations did not provide generalizable data,

but were able to provide descriptions as to how and why enhancements were success-

ful or unsuccessful. These investigations showed that children were able to utilize

the enhancements to effectively socialize. Study participants noted a difference in

interaction when comparing the two applications, favoring the enhanced application

Geotagger Z. While this document may be at an end, work on the Geotagger project

is far from finished. Many more features may be added to the mobile application to

ensure rich interactions with the Geotagger project. This thesis has shown that these

social enhancements have a direct impact on how users interact with the application

and each other.

140

REFERENCES

[1] Bud Burst. http://budburst.org/, 2017. [Online; accessed 14-February-2017].

[2] eBird. http://ebird.org/content/ebird/, 2017. [Online; accessed 14-
February-2017].

[3] eButterfly. http://www.e-butterfly.org/, 2017. [Online; accessed 14-
February-2017].

[4] Old Weather. https://www.oldweather.org/, 2017. [Online; accessed 14-
February-2017].

[5] Maria Aristeidou, Eileen Scanlon, and Mike Sharples. Weather-it: Evolution
of an Online Community for Citizen Inquiry. In Proceedings of the 15th In-
ternational Conference on Knowledge Technologies and Data-driven Business,
i-KNOW ’15, pages 13:1–13:8, New York, NY, USA, 2015. ACM.

[6] Frederic Bartumeus, Aitana Oltra, John Palmer, and Joan Garriga. Mosquito
Alert. http://www.mosquitoalert.com/en/, 2017. [Online; accessed 14-
February-2017].

[7] Carol Boston, Marshini Chetty, and Jennifer Preece. Understanding and Sup-
porting Community Exploration of Local Green Spaces through Technology.

[8] Vickie Curtis. Online citizen science projects: an exploration of motivation,
contribution and participation. PhD thesis, The Open University, February 2015.

[9] Paul Cushman. Geotagger Caching. Master’s thesis, Montclair State University,
Montclair, New Jersey, 2015.

[10] Andrew DeStefano. Geotagger: A Multi-Platform Citizen Science Application.
Master’s thesis, Montclair State University, Montclair, New Jersey, 2016.

[11] Allison Druin. Cooperative Inquiry: Developing New Technologies for Children
with Children. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’99, pages 592–599, New York, NY, USA, 1999. ACM.

141

[12] Jerry Fails, Katherine Herbert, Elizabeth Hill, Andrew DeStefano, Brandon
Hesse, Paul Cushman, Travis Gant, Syed Shah, Aliet Abreu-Cruz, Nikita Pan-
chariya, and Varsha Nimbagal. Geotagger: A collaborative environmental in-
quiry platform. In 2015 International Conference on Collaboration Technologies
and Systems (CTS), pages 383–390, June 2015.

[13] Jerry Alan Fails, Mona Leigh Guha, and Allison Druin. Methods and Techniques
for Involving Children in the Design of New Technology for Children. Now
Publishers Inc., Hanover, MA, USA, 2013.

[14] Jerry Alan Fails, Katherine G. Herbert, Emily Hill, Christopher Loeschorn,
Spencer Kordecki, David Dymko, Andrew DeStefano, and Zill Christian. Geo-
Tagger: A Collaborative and Participatory Environmental Inquiry System. In
Proceedings of the Companion Publication of the 17th ACM Conference on
Computer Supported Cooperative Work & Social Computing, CSCW Companion
’14, pages 157–160, New York, NY, USA, 2014. ACM.

[15] Gerhard Fischer. End User Development and Meta-Design: Foundations for
Cultures of Participation. Journal of Organizational and End User Computing
(JOEUC), 22(1):52–82, 2010.

[16] Gerhard Fischer. Understanding, Fostering, and Supporting Cultures of Partic-
ipation. interactions, 18(3):42–53, May 2011.

[17] Elizabeth Foss, Mona Leigh Guha, Panagis Papadatos, Tamara Clegg, Jason
Yip, and Greg Walsh. Cooperative Inquiry Extended: Creating Technology with
Middle School Students with Learning Differences. Journal of Special Education
Technology, 28(3):33–46, September 2013.

[18] Travis Gant. Developing and Deploying a Mobile Application Platform to
Facilitate Environmental Research and Education. Master’s thesis, Montclair
State University, Montclair, New Jersey, 2014.

[19] James P. Gee. Semiotic social spaces and affinity spaces. January 2005.

[20] Lynne Hall, Colette Hume, and Sarah Tazzyman. Five Degrees of Happiness:
Effective Smiley Face Likert Scales for Evaluating with Children. In Proceedings
of the The 15th International Conference on Interaction Design and Children,
IDC ’16, pages 311–321, New York, NY, USA, 2016. ACM.

[21] Benjamin K. Haywood. A Sense of Place in Public Participation in Scientific
Research. Science Education, 98(1):64–83, January 2014.

142

[22] Riad Jeradeh. Integrating Scientific Data Analysis Methodologies into a Citizen
Science Mobile Platform. Master’s thesis, Montclair State University, Montclair,
New Jersey, 2016.

[23] Sunyoung Kim, Jennifer Mankoff, and Eric Paulos. Sensr: Evaluating a Flexible
Framework for Authoring Mobile Data-collection Tools for Citizen Science. In
Proceedings of the 2013 Conference on Computer Supported Cooperative Work,
CSCW ’13, pages 1453–1462, New York, NY, USA, 2013. ACM.

[24] Sunyoung Kim, Christine Robson, Thomas Zimmerman, Jeffrey Pierce, and
Eben M. Haber. Creek Watch: Pairing Usefulness and Usability for Successful
Citizen Science. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’11, pages 2125–2134, New York, NY, USA, 2011.
ACM.

[25] Kendra Knudtzon, Allison Druin, Nancy Kaplan, Kathryn Summers, Yoram
Chisik, Rahul Kulkarni, Stuart Moulthrop, Holly Weeks, and Ben Bederson.
Starting an Intergenerational Technology Design Team: A Case Study. In
Proceedings of the 2003 Conference on Interaction Design and Children, IDC
’03, pages 51–58, New York, NY, USA, 2003. ACM.

[26] Mona Leigh Guha, Allison Druin, and Jerry Fails. Cooperative Inquiry revisited:
Reflections of the past and guidelines for the future of intergenerational co-design.
International Journal of Child-Computer Interaction, 1:14–23, January 2013.

[27] Karen Masters. Galaxy Zoo. https://www.galaxyzoo.org/, 2017. [Online;
accessed 14-February-2017].

[28] Gabriel Mugar, Carsten sterlund, Corey Brian Jackson, and Kevin Crowston.
Being Present in Online Communities: Learning in Citizen Science. In Proceed-
ings of the 7th International Conference on Communities and Technologies, C&T
’15, pages 129–138, New York, NY, USA, 2015. ACM.

[29] Alicina Mumar. A Dynamic and Interactive Citizen Science Client. Master’s
thesis, Montclair State University, Montclair, New Jersey, 2016.

[30] Max Nanis, Ginger Tsueng, and Andrew Su. Mark2cure. http://mark2cure.

org, 2017. [Online; accessed 14-February-2017].

[31] Jordan Raddick, Georgia Bracey, Pamela L. Gay, Chris J. Lintott, Phil Murray,
Kevin Schawinski, Alexander S. Szalay, and Jan Vandenberg. Galaxy Zoo:
Exploring the Motivations of Citizen Science Volunteers. Astronomy Education
Review, 9(1), December 2010. arXiv: 0909.2925.

143

[32] Janet C. Read. Evaluating Artefacts with Children: Age and Technology Effects
in the Reporting of Expected and Experienced Fun. In Proceedings of the 14th
ACM International Conference on Multimodal Interaction, ICMI ’12, pages 241–
248, New York, NY, USA, 2012. ACM.

[33] Janet C. Read and Stuart MacFarlane. Using the Fun Toolkit and Other Survey
Methods to Gather Opinions in Child Computer Interaction. In Proceedings of
the 2006 Conference on Interaction Design and Children, IDC ’06, pages 81–88,
New York, NY, USA, 2006. ACM.

[34] Gavin Sim and Matthew Horton. Investigating Children’s Opinions of Games:
Fun Toolkit vs. This or That. In Proceedings of the 11th International Conference
on Interaction Design and Children, IDC ’12, pages 70–77, New York, NY, USA,
2012. ACM.

[35] Brian L. Sullivan, Christopher L. Wood, Marshall J. Iliff, Rick E. Bonney, Daniel
Fink, and Steve Kelling. eBird: A citizen-based bird observation network in the
biological sciences. Biological Conservation, 142(10):2282–2292, October 2009.

[36] Jan Sveide, Alexandre Antonelli, Edler Daniel, and Johannes Klein. BioNote -
Identify the World’s Species, Together. http://bionote.xyz/, 2017. [Online;
accessed 14-February-2017].

[37] Amber G. F. Teacher, David J. Griffiths, David J. Hodgson, and Richard Inger.
Smartphones in ecology and evolution: a guide for the app-rehensive. Ecology
and Evolution, 3(16):5268–5278, December 2013.

[38] Ramine Tinati, Markus Luczak-Roesch, Elena Simperl, Nigel Shadbolt, and
Wendy Hall. ’/Command’ and Conquer: Analysing Discussion in a Citizen
Science Game. In Proceedings of the ACM Web Science Conference, WebSci
’15, pages 26:1–26:10, New York, NY, USA, 2015. ACM.

[39] Greg Walsh, Alison Druin, Mona Leigh Guha, Elizabeth Foss, Evan Golub,
Leshell Hatley, Elizabeth Bonsignore, and Sonia Franckel. Layered Elaboration:
A New Technique for Co-design with Children. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’10, pages 1237–1240,
New York, NY, USA, 2010. ACM.

144

APPENDIX A

DESIGN DOCUMENTS

A.1 Project Structure

Due to the overall size of the application codebase, a robust project file structure

was required to keep code as modular and understandable as possible. The Angular

framework was used to separate the concerns of this application. The modules of this

project fall into one of three Angular entities:

• Directives - HTML elements which act as a container for other HTML elements.

• Controllers - JavaScript functions which are visible to the view (HTML) and

provide hooks for UI interaction.

• Services - JavaScript modules which define reusable functions and properties.

Code entities are divided into directories based on their role in the application.

Views and controllers have a one to one relationship, a single controller is attached

to a single view, both of which have similar names. Directives are found in the same

directory as their functionality, in general, and can apply to the whole application.

Element directives abstract other HTML elements and require an HTML template

file. These can be found in the “templates” directory. Services may also be used

anywhere, yet they are subdivided based on which part of the application concerns

145

them. Services comprise the majority of the application and can provide a wide

range of reusable functionality. Please note that all code is contained in the “www”

directory of the repository. Cordova pulls source-code directly from this directory to

compile the application into an executable binary. The project structure can be seen

in the itemized list below.

• css/ - Contains Cascading Style Sheet files.

• img/ - Contains local image resources.

• js/ - Contains the majority of the JavaScript source code.

– controllers/

∗ adventure/ - Contains tabbed adventure controllers.

∗ profile/ - Contains tabbed profile controllers.

∗ tag/ - Contains tag comment and map controllers.

– directives/ - Contains template directives.

– services/

∗ api/ - Handles requests to remote API endpoints.

∗ cache/ - Defines cache schema and handles local cache requests.

∗ constants/ - Defines configurable constants.

∗ data-handlers/ - Handles requests between controllers and API/cache

endpoints.

∗ models/ - Object classes that make up the application’s data model.

∗ requests/ - Hooks for use when the application makes a “request” to

modify remote data.

146

∗ account-srvc.js - Handles user sessions and action permissions.

∗ action-srvc.js - The action cache.

∗ geo-logger-srvc.js - Provides logging capabilities.

∗ geocode-srvc.js - Provides geo-location and geo-coding functions.

∗ image-srvc.js - Handles requests for image resources, both local and

remote.

∗ network-srvc.js - Provides hooks for network events.

∗ notify-srvc.js - Provides hooks for changes in the underlying data

model.

∗ utility-srvc.js - Provides general utility functions.

– app.js - Angular application entry point.

– config.js - Configuration script for setting default Ionic options.

– routes.js - Angular UI Router route definition file.

• lib/ - External library directory.

• templates/ - Directive template directory.

• views/ - Contains HTML frontend view definitions.

– adventure/ - Contains tabbed adventure views.

– partials/ - Contains all partial views (e.g., modals, popups, actionsheets,

etc.).

– profile/ - Contains tabbed profile views.

– tag/ - Contains comment and map views for tags.

147

– index.html - Sole HTML page responsible for bootstrapping the applica-

tion.

A.2 Cache Schema

In designing a database schema for the local cache, a schema was needed that would

be flexible enough to deal with the dynamic nature of JavaScript objects and work in

concert with data retrieved from the existing remote database. Much of the structure

for the local cache was taken directly from Cushman’s thesis [9] on the topic. However,

a number of changes were necessary to the existing schema to reflect the differing

application domain.

A.2.1 Schema Overview

Several other caching solutions were considered, such as MongoDB and CouchDB/PouchDB.

However, the data contained in this application was too relational to be easily stored

with a NoSQL database, thus spurring the decision to use SQLite. Schema tables

were designed so that each represents a single type of data entity. This model was

passed between various modules in the application. Unlike the Android and remote

databases, tables are normalized so that each column refers to a single point of data.

This design makes the data more structured but less flexible, while it disallows the

application from taking full advantage of JavaScript objects. To circumvent this

shortcoming, CRUD operations are handled by an ORM module which maps table

columns to object properties. Figure A.1 gives a relational overview of the cache

schema.

148

Figure A.1: Cache Schema Diagram

A.2.2 Overview of Database Tables

All tables present in the schema have an “ID” field which is used to insert new

elements into tables. This value is created locally by SQLite, as opposed to local ID

fields on tables (e.g., DocumentID) which are inserted into the table directly from

the API.

Adventure Table

The adventure table holds records relating to Geotagger Adventures. An adventure

is a grouping of users and tags where tags contributed by members can be seen and

149

responded to by all other members of the adventure. This table structure is described

below.

• AdventureID: INTEGER - A primary key value used to uniquely identify adven-

tures.

• OwnerID: INTEGER - A reference column used to relate an adventure to its

creating user.

• Name: TEXT - The name or title given to the adventure.

• Description: TEXT - Text describing the adventure, its aim, location, etc.

• AccessLevel: TEXT - Visibility level of this adventure (e.g., protected or private).

• RoomID: INTEGER - Unique room key used for joining socket.io rooms.

• Created: INTEGER - Millisecond value representing when this record was created.

• Updated: INTEGER - Millisecond value representing when this record was last

modified.

Collection Tables

The collection tables are junction tables and their children which are used to relate en-

tities to collections. AdventureMemberCollection and AdventureTagCollection make

up the collection tables, while AdventureMember and AdventureTag represent the

junction tables.

Collection tables represent a collection of entities (e.g., users and tags) which can

be grouped together at the adventure level. This provides adventure coordinators

150

with fine-grain control over what tags are available to the various members of the

adventure. Collection tables take the following form.

• CollectionID: INTEGER - A primary key value used to uniquely identify collec-

tions.

• AdventureID: INTEGER - A reference column used to relate this collection to its

parent adventure.

• Name: TEXT - A name or title given to the collection.

• AccessLevel: TEXT - Visibility level of this adventure (e.g., protected or private).

Junction tables are used to map between the collections and the individual entity

rows that are a part of the collections. In this way, a many-to-many relationship is

achieved. Here multiple collections may contain multiple entities, likewise multiple

entities may be a part of multiple collections. Junction tables take the following form.

• CollectionID: INTEGER - A reference column used to relate this mapping to the

parent collection.

• EntityID: INTEGER - A reference column used to relate this mapping to the child

entity (e.g., UserID, TagID).

Comment Table

The comment table represents records pertaining to responses left on tags. These

comments consist of textual data, as well as optional image data.

• CommentID: INTEGER - A primary key value used to uniquely identify com-

ments.

151

• TagID: INTEGER - A reference column used to relate this comment to its parent

tag.

• OwnerID: INTEGER - A reference column used to relate a comment to its creating

user.

• ImageID: INTEGER - A reference column relating a comment to image data found

in the Document table (optional field).

• Body: TEXT - The textual body of the comment.

• Created: INTEGER - Millisecond value representing when this record was created.

• Updated: INTEGER - Millisecond value representing when this record was last

modified.

Document Table

The document table represents all of the local “document” resources available to

the application. This may include profile pictures, tag images, and comment images.

Users are able to upload their own images via the application. A record of every image

is kept in this table. This avoids storing multiple copies of the same image, thereby

improving application speed and reducing network load. Table fields are described

below.

• DocumentID: INTEGER - A primary key value used to identify documents.

• Name: TEXT - A local file path pointing to the image file’s location on disk.

152

Message Table

The message table was introduced with the real-time chat feature. Chat messages

retrieved from the API, as well as messages created via the application are recorded

here. Message table fields are described in the following list.

• MessageID: INTEGER - A primary key value used to uniquely identify messages.

• RoomID: INTEGER - The room to which this message record belongs.

• OwnerID: INTEGER - A reference column used to relate a message to its creating

user.

• Body: TEXT - The textual body of the message.

• Created: INTEGER - Millisecond value representing when this record was created.

Tag Table

Tags represent an interesting landmark or environmental feature. Tags contain an

image to visually identify the feature, as well as latitude and longitude coordinates

so that other users may also find the feature. Tag table columns are described below.

• TagID: INTEGER - A primary key value used to uniquely identify tags.

• OwnerID: INTEGER - A reference column used to relate a tag to its creating

user.

• Name: TEXT - The name or title given to the tag.

• Description: TEXT - Text describing the tag’s location, interesting features, etc.

153

• ImageID: INTEGER - A reference column relating a tag to image data found in

the Document table.

• Location: TEXT - A textual representation of a tag’s location (e.g., Boise, Idaho).

• Latitude: DOUBLE - Latitude coordinate value between -90 and 90 degrees.

• Longitude: DOUBLE - Longitude coordinate value between -180 and 180 degrees.

• NumberOfComments: INTEGER - The number of comments responding to this

particular tag.

• Created: INTEGER - Millisecond value representing when this record was created.

• Updated: INTEGER - Millisecond value representing when this record was last

modified.

User Table

The user table stores metadata for user accounts. Some of these fields are made

available through the application to enable further exploration of that data, as well

as the contributors of the data.

• UserID: INTEGER - A primary key value used to uniquely identify users.

• Username: TEXT - An identifying name for this user.

• Email: TEXT - Email address used in registering.

• ImageID: INTEGER - A reference column relating a user record to image data

representing the user’s profile picture (optional field).

154

• Location: TEXT - A textual representation of the user’s location (e.g., Boise,

Idaho).

• Biography: TEXT - A short biography describing the user’s background and

interests.

• Quote: TEXT - A quote which the user found particularly inspirational.

• Role: TEXT - The user group that this record falls into (e.g., role-scientist,

role-citizen).

• Created: INTEGER - Millisecond value representing when this record was created.

• Updated: INTEGER - Millisecond value representing when this record was last

modified.

A.2.3 Changes From Android Application Cache Schema

The Android application made frequent use of SQLite foreign keys to ensure data

consistency and referential integrity. Unfortunately, the capabilities of this particular

implementation of SQLite did not allow for foreign key functionality. Even with

the usage of foreign keys, the order in which data enters the application is not

guaranteed. Therefore, foreign keys were removed to make the data more flexible.

Yet this approach came with the added complexity of ensuring data at the application

level.

With the absence of foreign keys, facilities were added to manually ensure data

consistency throughout the application. When a parent record is removed from the

cache, any child records from other tables relying on that record have to be removed

themselves. For instance, if a tag was removed from the local cache, the cache would

155

also have to remove any comment records with a TagID field corresponding to the

removed tag. Data consistency problems arise when a record is modified by a user.

In this way, much of this functionality was consigned to the action cache which would

be able to update ancillary cache records when needed.

Another change from the Android schema is the addition of a RoomID column

on the Adventure table. In implementing the social enhancements outlined in the

proposal for this thesis, a social space was created for adventure members to discuss

the adventure itself. This took the form a “chat” tab which includes a real-time chat

feature. A JavaScript library called “socket.io” was used to implement this feature.

Socket.io uses the concept of “rooms” to organize the messages being sent to the

socket.io server.

Users can enter any number of rooms in order to receive messages sent in that

room. Each adventure acts as its own “room”. Retroactive changes were made to

both the remote and local databases to accommodate this feature, ensuring that every

row in the adventure table would be given its own room. A room is a unique identifier

which allows the socket.io client to connect to the server as soon as the adventure is

entered. While the user is present in that adventure, they will receive any messages

sent within that adventure’s room. The number of received messages will display on

the badge icon on the “chat” tab.

One of the planned social enhancements called for making tag comments more

prevalent. The previous version of the application required users to navigate to the

tag’s detail view, then the comment view. This enhancement allowed users to view

comments on tags with a single button press. A secondary goal was to provide the

user with added context as to the activity on each tag. A user could see which tags

had more comments by looking at the tag list view, rather than navigating to the

156

comments each time. Even displaying the comments with a single button press could

be a tedious process as the user could find themselves frequently opening the tag

comments.

To provide the user with instantaneous information about comment activity, a

small badge icon was added to the “comment” button. This badge tracks the number

of comments relating to that tag. This enhancement was integrated into the card

representation so that users could scroll through available tags, aware of the number

of comments on each tag. To achieve this result, a new field was added to all tag

related API responses. When the API receives a request for a list of tags, the number

of comments that reference those tags is calculated and returned with the rest of the

HTTP response. A new field called “NumberOfComments” was added to the local

cache database. Rather than having to make an API call each time, a previously

accurate representation of the number of comments on a tag is stored. This is updated

each time the page is refreshed.

The final change from the Android application was to the action cache. While the

application developed in this thesis relies on the same principles of the action cache

designed by Cushman [9], there were significant changes in the implementation of the

action cache. The previous action cache implemented the following fields.

• CacheTime: DATETIME - Time of cache, used in ordering records.

• ActionString: TEXT - Action to perform on the database.

• ActionHandler: TEXT - Identifies a handler to perform the action.

• Url: TEXT - A remote resource location to which the data should be sent.

• PostActions: TEXT - Further actions to be performed following the action.

157

The algorithm for registering and resolving applications has been overhauled. As

before, actions are serviced in the order that they are inserted in the action cache.

Though the data required to service and propagate these changes to the API has

changed. The action schema is as follows:

• Operation: TEXT - The type of operation performed by this action (e.g., Post,

Put, or Del).

• EntityType: TEXT - The type of object being operated on (e.g., Tag, Comment,

Adventure).

• EntityID: INTEGER - Row identifier for the object being operated on.

• ParentID: INTEGER - Used in place of EntityID for referring to junction records

(e.g., AdventureTag, AdventureMember).

• ChildID: INTEGER - Used in place of EntityID and in conjunction with ParentID.

• Created: INTEGER - Millisecond value representing when the row was inserted

into the action cache.

Note that there are similarities between the two implementations as both keep

track of the type of action being propagated and the time at which the action

was registered. This work’s implementation removes URL strings as API routes

could change, leading to unresolved action records being invalidated. Additionally,

“handlers” have been replaced by local resolver functions in the ActionService. The

ActionService will resolve any data inconsistencies that might arise when side-effecting

data in the local cache, thereby removing the need for the PostActions. More

information about how actions are handled and resolved can be found in section

A.3.

158

A.3 Action Cache

The scheme for the action cache was originally taken from Cushman’s work on the

Geotagger Android application [9]. The local cache allows for rudimentary data

retrieval and modification in the event that the mobile device loses a data collection.

This is a feasible use scenario, especially in the case of scientific or field research

teams where a network connection is not always available. While the device is

connected to the network, all data brought in from the REST API is stored in the local

SQLite database. As changes are made to the in-memory data model, they are also

propagated to both the local cache and the API. When the device is disconnected

from the Internet, these modifications are queued in the action cache until a data

connection is restored. This is vital to maintaining consistency with the remote data

store.

When the device is offline, users are able to view and update cached data, though

they will not be able to load views that they have not visited. Actions are enqueued

as they are created via the user interface. Newly created records are given negative

ID values. Assigning a positive, auto-incrementing identifier value could conflict with

a preexisting, unrelated record. As such, ID values of increasing negativity are used

to denote records which do not exist in the remote data store. Once a network

connection has been established, actions stored in the action table will be resolved

in a “first-in, first-out” fashion. As actions are resolved, data returned by the API

response propagates through all tables in the cache, including the action table. Once

an action is resolved, its row is removed from the action table and the servicing routine

continues to the next row until the table is empty.

159

A.3.1 Maintaining Synchronicity with Remote Data Store

In order to provide a consistent offline experience, data must be cached and kept

up-to-date as it is returned by the API. It would be wasteful to simply overwrite all

similar records in the local cache. Instead the results of the API call must be merged

with that of the equivalent cache call. This merge algorithm abides by the following

rules:

1. Unmodified, up-to-date local data should not be overwritten.

2. API data that has no equivalent in the cache result should be inserted freshly

into the cache.

3. API data that differs from its cache equivalent should overwrite its analogue.

4. Once all data in the API resolved has been resolved, data in the cache result

which has no analogue in the API should be removed from the local cache.

Listing A.2 depicts a simplified version of the algorithm as it is implemented in

both versions of the application. The algorithm takes the shape of a subroutine called:

reconcile. This function “reconciles” the results of the cache to that of the remote

API. The reconcile function takes a number of arguments:

• cache - An array of objects which represents the results of a local cache query.

• api - An array of objects which represents the results of a REST API response.

• addHandler - A function handle used to create new records and update existing

records within the local cache.

160

• delHandler - A function handle used to delete existing records from the local

cache.

For simplicity, results from both the cache and the API are stored in JavaScript

objects, using the record IDs as object keys. In JavaScript, objects function similarly

to hash tables or associative arrays in other languages. Properties may be appended

or removed from objects dynamically and are accessed via standard dot notation (e.g.,

object.property) or with a string via bracket notation (e.g., object[‘property’]).

Once results have been placed in objects, the contents of the API results are iterated

and compared with the analogous results from the cache. If the API item does not

exist in the cache, then it must be inserted. If it does exist in the cache, then it must

be compared with the similar item and overwrite the cache item when the objects are

not equal. Whether or not the API item is equal to the cache item, the corresponding

cache item is “deleted” from the cache result object, because the cache result object

keeps an account of objects from the cache which have been serviced. Once all of the

API items have been serviced, the remaining items of the cache result are checked.

If there are no more remaining items in the cache results array, then all cache items

have been accounted. Remaining items in the cache results array are obsolete as they

no longer exist in the remote store. This is feasible if a record is removed from the

API and the change has not been reflected in the local cache (e.g., manually deleted

from the database or removed via a separate REST client). In this case, the record

must be deleted from the cache.

Negative IDs must be separated during this comparison. While it is unlikely that

records with negative IDs will be merged (this merge only takes place when there is a

network connection and actions are resolved as soon as a network is established), there

161

reconcile(cache,api,addHandler,delHandler) {

var cheRes = {}; // cache result

var apiRes = {}; // api result

cache.forEach(function(item) {

cheRes[item[item.getIDField()]] = item;

});

api.forEach(function(item) {

apiRes[item[item.getIDField()]] = item;

});

for(var apiProp in apiRes) {

if(cheRes[apiProp] != null) {

if(!compareObjs(cheRes[apiProp],apiRes[apiProp]))

addHandler(apiRes[apiProp]);

delete cheRes[apiProp];

} else

addHandler(apiRes[apiProp]);

}

for(var cheProp in cheRes)

delHandler(cheRes[cheProp]);

}

Figure A.2: Reconcile Algorithm

is still a possibility that a negative ID record may be present, due to the asynchronous

nature of API requests and responses.

A.3.2 Storing Actions

The local cache allows for offline viewing of Geotagger data. Further facilities are

required to allow the user to modify this data while the device is offline. When the

user modifies local data this is referred to as an “action”. Actions are stored to

the action table of the local cache regardless of the presence of a data connection.

This ensures a uniform flow of data, allowing for easier code comprehension and

maintenance.

162

Each action is divided into one of three types: post, put, and del. These actions

correspond to the public functions on the ActionService module: create, update, and

remove. Retrieval actions do not side-affect cache data, so they do not need to be a

part of the action cache. “Create” actions immediately affect the cache, inserting a

new element into the database. In order to separate local records (e.g., those that

have not been sent to the API yet), the newly inserted record is given a negative

ID. Negative IDs start at negative one (-1). Negative IDs are local to tables (e.g.,

there may exist a comment with an ID of -1 and a tag of ID -1). Each time a new

record is inserted, the lowest ID is found, decremented, then given to the new record

at time of insertion. Once the record is inserted, a corresponding record is added to

the action cache. Here, the record’s negative ID, its table name, the type of action

(post), and the time of insertion is recorded. Updates are fairly simple: the updated

record immediately overwrites the old record. Subsequent local queries will refer to

the updated record. Updates are recorded by inserting the entity’s ID (this can be

negative in the event that an unresolved record is updated), the entity’s table name,

the operation on the entity (put) and the time at which the entity was updated.

Deleted records work in a similar fashion: the entity is immediately removed from

the local cache, then the entity’s ID, table name, and action type (del) are placed in

the action cache. Once an action is stored, if a data connection is available, then the

action service can immediately begin resolving the stored actions.

A.3.3 Servicing Actions

Whenever a user creates, updates, or deletes record, the corresponding action function

is called to affect the cache and queue the action. Once that function has returned,

a call is made to the start function. The start function commences the servicing

163

routine and resolves the first action in the queue. Once the action has been serviced

it will continue until there are no more actions in the queue. The servicing routine

begins by “popping” the action table and removing the first (oldest) element. The

“Operation” field is read to determine the next steps to take. In the case of either

“post” or “put”, the servicing routine proceeds as normal. The order of operations

for “del” actions is explained later in this section. Using the operation type, the

servicing routine indexes into one of three map objects (one for each action type).

Each action map contains a number of properties which correspond to entities existing

within the database (e.g., comment, tag, adventure). The servicing routine takes the

“EntityType” field and uses it to index into this second level of maps. This second

level returns three functions: affect, proceed, and rectify. Affect provides the proper

call to the API which will finally persist the data. Proceed determines whether or

not the “rectify” step is necessary. Rectify performs a series of operations in order to

maintain the referential integrity of the cache (which does not utilize foreign keys).

Below is the resolutio9n algorithm followed by the servicing routine.

1. Enqueue - Pushes the action onto the action cache, so it is ready for servicing.

2. Execute - Entry function that starts servicing actions.

3. Proceed - A boolean operation that determines whether or not the “affect” and

“rectify” need to execute. Usually this function returns a boolean “false” value

in the case that there are no further records referring to this record.

4. Get - Retrieve the referenced record from the cache so that it may be serialized

into an HTTP request.

164

5. Affect - This function persists the change to remote data store via the REST

API.

6. Rectify - Function that ensures data consistency by updating any records which

depend on the updated record.

7. Dequeue - Remove the action completely from the action cache.

8. Notify - Observer pattern function which serves to provide a hook to view

controllers watching particular data models. It notifies any observers that the

data has changed and the view should be updated.

9. ContinueActions - Check for further records and return to “Execute” if needed.

This is not a complete walkthrough of the action cache procedure. The dequeue

function is not a conditional operation. Actions will be removed from the action cache

even if an error is encountered. Furthermore, the rectify routine may affect the action

cache itself. For example, adding a tag and then updating the same tag will result in

the update action referring to a negative ID. Once the “post” operation for the tag

has been resolved, the rectify routine must pass through the action cache and update

the EntityID reference for the “put” operation.

Finally, the notify operation is required due to asynchronous HTTP requests and

responses. If the user adds a tag in the adventure tag view, the data in the view

model will reflect the state of the tag at the time of creation. This includes the tag’s

negative ID value. Adding comments or making changes to the tag will use the tag’s

current ID value in order to link the record to these actions. If the user remains on the

tag-list view, then the in-memory tag ID will continue to be negative, even after the

cache has been “rectified” with the new ID. The NotifyService provides a push-based,

165

observer pattern allowing the ActionService to notify observing controllers that a view

element has been updated. In this way, the underlying data model for view elements

may change, even though it might not affect a visual change.

Deletion actions perform somewhat differently from other actions. These actions

must be immediately “rectified” within the cache, because the record itself should

no longer exist in the cache. It would have been possible to mirror the remote

store’s schema, adding a “deleted at” field. However, the development team chose the

simplicity of removing the deleted record. Furthermore, all that is needed to “affect”

a delete action on the server is the unique identifier for the deleted record. There

is no need to maintain the corresponding record in the local cache. From here, the

delete operations have a very similar flow to that of the other actions. The flow is

described below.

1. Rectify - Since deleted records must be removed immediately, all children

and other references must be immediately updated as if the change has been

persisted remotely.

2. Execute - Once the change has been persisted, further steps may now be taken

to fully resolve the delete action.

3. Proceed - Determines whether or not the delete action needs to be “affected”

on the remote store.

4. Affect - Removes the corresponding record from the remote store.

5. Dequeue - As with other actions, the delete action must be removed from the

cache.

6. ContinueActions - Continue execution, if further actions remain in the cache.

166

This algorithm does not include the notify notify step, because Angular provides

an API for removing visual elements from the user interface. When a data model

entity is deleted, then the visual representation of that entity is deleted as well. For

this application it fell to the controller to persist the removal of both the user interface

element and the corresponding model entity. These changes are affected as soon as

the user presses the “delete” button. This gives the interface a more fluid feel and

grants the illusion that the entity was immediately removed. For this reason, the

controller does not need a hook to know when the deletion action was persisted.

167

APPENDIX B

CARD DESIGN PROTOTYPES

The “tag card” representation was largely responsible for implementing SE1 and SE2

throughout several views in the resulting application. This appendix will illustrate

a sampling of the prototype designs proposed by researchers. These prototypes were

sketched on pieces of paper and not implemented in the application. This allowed

for faster iteration on these designs and the ability to express features that would

otherwise require significant engineering effort.

Figure B.1 depicts a sample of earlier card prototypes. Initial prototypes utilized

the “item” representation found in Geotagger X. The original goal was to add buttons

to this more compact design to realize the social enhancements. Researchers found

that this compact design made it difficult to accommodate all of the pertinent tag

data. Later iterations would prefer a more spacious layout. The right side of the

figure depicts larger cards that allow for more tag-related information and larger

button targets.

Figure B.2 displays later examples of card prototype iterations. These iterations

focused on more liberal use of screen space, using a large tag image to capture

the user’s attention. Since tags represent a physical landmark, making the image

a relatively large part of the card would give the user a better connection to the

place that tag is representing. Though this would eventually take less screen space,

168

Figure B.1: Card Prototypes

and instead allow the user to expand the image by pressing on the smaller image.

This idea of on-demand expansion was also used in displaying the tag’s description.

Researchers wanted to place the entire tag description on the card, to prevent the

user from navigating away from the tag list. An shortened description appeared on

each card which could be expanded by pressing a button located on the card.

169

Figure B.2: Additional Card Prototypes

