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ABSTRACT 

Gram-negative bacteria use N-acyl-homoserine lactone (AHL) autoinducer based 

signal system, known as quorum sensing (QS), to modulate the gene expression for such 

traits as biofilm formation, toxin production, and antibiotic resistance. Therefore, there is 

great potential in pursuing quorum sensing inhibition (QSI) as a means of achieving 

antivirulence. Pseudomonas aeruginosa, an opportunistic pathogen commonly found in 

healthcare-related infections, use two LuxI/R type systems to regulate AHL-based 

quorum sensing:  LasI/R and RhlI/R. LasI (initiator protein/signal synthase) and LasR 

(receptor) use 3-oxododecanoyl-L-homoserine lactone signal molecule while RhlI and 

RhlR use butanoyl-L-homoserine lactone autoinducer. Thus far, most of the studies have 

focused on inhibiting the Las system, in particular by using AHL signal analogs to 

interfere with signal-receptor binding. Recently, RhlI/R system has gained attention as 

potentially having greater effect in P. aeruginosa virulence. In this study, we have tested 

the effect of AHL analogs on RhlI, as product inhibitors with the goal of targeting both 

RhlI and RhlR for increased potency. Screening of compounds have revealed three 

variations to have the greatest effect on RhlI inhibition:  longer/bulkier acyl- chain, D-

stereocenter in the headgroup, and a less polar thiolactone head-group. Surprisingly, the 

addition of a carbonyl at the C3 position was found to activate the enzyme. Moreover, we 

measured kinetic constants of RhlI with various acyl-substrates and performed inhibition 

assays with inert acyl-substrate analogs to determine how RhlI activity changes to 

variations in the acyl-chain length. We found that the catalytic efficiency of acyl-
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substrate and inhibition potency of the corresponding inert acyl-substrate analogs surges 

with increase in the length of the acyl-chain. These patterns suggest that long acyl-chains 

most likely bind to an alternate binding site with marked increase in both kon and koff rate 

constants. Our findings with AHL derivatives provide a basis for rational design of 

quorum sensing inhibitors to better combat P. aeruginosa bacterial infections. 
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CHAPTER ONE: INTRODUCTION 

The Antibiotic Crisis 

The modern age of medicine was made possible, in large parts, by the discovery 

and the proliferation of antibiotics. However, mankind has been slowly disarmed by the 

rise and the spread of antibiotic resistant superbugs. In the U.S. alone, antibiotic-resistant 

bacteria are responsible for at least two million infections, resulting in 23,000 lives and 

cost $35 billion annually.1  In response to this rise in antibiotic resistance, the White 

House has named it a threat to national security.2  Despite efforts to curb the tide, both 

CDC and WHO warn of a post-antibiotic age.1, 3 

The rise of superbugs highlights a fundamental problem with antibiotics; the use 

of antibiotics is an all-or-nothing treatment in which all the drug-sensitive strains are 

eliminated while the resistant ones are untouched. This dichotomy places enormous 

selective pressure for resistant bacteria to propagate throughout the entire population. In a 

controlled environment, a strain of sensitive bacteria can be pressured to withstand ever-

increasing concentrations of antibiotics in less than two-weeks.4  Even in the real-world 

setting, resistance often develops within a few years of the release of a new antibiotic 

(Figure 1).5  Therefore, drug companies are shying away from continuing to put resources 

into R&D of a drug that could become irrelevant soon after its commercialization (Figure 

2).6, 7  The resulting decrease in supply combined with the increase in demand have led to 

the investigation of novel methods to fight bacteria, such as predatory bacteria, 

bacteriophage, antimicrobial peptides, gene-editing enzymes, and quorum sensing.8-13  Of 
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these alternatives, most follow the pattern of antibiotics in that they kill sensitive strains, 

leaving behind resistant strains to flourish; however, quorum sensing (QS) provide a 

unique means of avoiding the pitfalls of antibiotics by targeting virulence rather than the 

organism directly.14 

 
Figure 1.5 Timeline of the effective-lifetime of antibiotics. The labels above the 

timeline indicates the year different antibiotics were released, whereas the year resistance 

to each antibiotic was first observed is shown below the timeline. In many cases, 

resistance developed within a few years of deployment of new antibiotics. 
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Figure 2. Decrease in new antibiotic development. In the heydays of antibiotic 

development in the 1980’s, more than 3 new drugs were released annually; however, in 

recent years, that number has been reduced to just two new antibiotics in five years. 

Quorum Sensing 

Once known mainly for their single-cellular life, bacteria are now known to 

communicate via chemical signals to approximate multicellular behavior in a process 

termed quorum sensing.15  The concentration of the signal molecules, called 

autoinducers, correlate to the number of bacteria in the area. Therefore, by monitoring the 

concentrations of the autoinducers, bacteria can detect the concentration of local bacteria 

population.16, 17  Typically, when signal concentration is low, indicative of limited cell 

count, bacteria operate individually. However, once a certain concentration, or “quorum,” 

is reached, QS-controlled genes are turned on, activating group behaviors, which includes 

biofilm formation, virulence, antibiotic resistance, protease production, and 

siderophores.18  Therefore, theoretically, QS inhibitors could be used as combination drug 

with antibiotics since antibiotic resistance associated with QS inhibition (QSI) would be 
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reduced. Additionally, inhibiting quorum sensing should prevent virulent traits from 

emerging.19  Indeed, studies have shown QS-knockout strains to be incapable of colonial 

behaviors characteristic of pathogenicity.20  As an anti-virulence treatment, contrary to 

the lethal (to the bacteria) antibiotic therapy, QS inhibition (QSI) could potentially pave 

the path to an “evolution-proof” method of dealing with bacterial infections.19  It has 

been shown that QSI resistance does not lead to survival advantage. The study showed 

that since the majority of the population are unable to produce autoinducer signal 

molecules, the few resistant strains could not produce sufficient AHLs to reach “quorum” 

and induce QS-controlled gene expression; however, even if the resistance strains are 

able to express QS-controlled traits, many of which are group-beneficial, the benefits of 

those traits are shared with the inhibited strains, thus limiting any survival advantage QSI 

resistance could offer.19 

Quite contrary to the notion of being “simple” creatures, bacteria have complex 

communication system with different QS system for various types of bacteria. Gram-

negative bacteria have LuxI (initiator/synthase) and LuxR (receptor) type proteins 

responsible for the synthesis and the uptake of N-acyl-homoserine lactone (AHL/AI-1) 

autoinducers (Figure 3; Table 1). In this communication system, AHL synthases release 

AHL autoinducers and release them to the environment. The binding of the signal with 

the designated receptor protein starts the upregulation of QS-controlled genes such as 

increased AHL synthase activity, biofilm formation, toxin production, and antibiotic 

resistance. 

AHL synthases are bi-substrate enzymes that use S-adenosyl-L-methionine 

(SAM) and an acyl substrate (acyl-ACP or acyl-CoA) to synthesize AHL signal 
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molecule. Whereas SAM is a conserved substrate among various AHL synthases, 

preferential usage of an acyl substrate of certain acyl-chain moiety results in enzyme-

specific signal molecules, allowing each species to speak its own unique “language,” or 

differentiated AHLs (Figure 4).21  Many AHL synthases have been shown to discriminate 

against non-native acyl-chain and only use a specific acyl substrate to produce enzyme-

specific AHL signal, thus increasing the signal to noise ratio.22  Different receptor 

proteins likewise preferentially bind with their designated AHLs so that bacteria can 

conduct intra-specie communication without interference. 

 
 

Figure 3. The typical quorum sensing system found in Gram-negative bacteria. 

A LuxI-type signal synthase produces AHL signal molecules which then binds to LuxR-

type receptor proteins. The signal-receptor binding promotes the expression of QS-

controlled genes, which includes further activation of the synthase. 



6 

 

 

 
Figure 4. Species-specific signal molecules. The different “languages” used by 

each Gram-negative bacteria species are dependent on the variations in the acyl-chain 

which is derived from the acyl substrate. 

Table 1. Types of QS signal molecules 

Signal Type Organism Structure 

AI-1/AHL Gram-negative 

 

AIP Gram-positive 

Asp

Cys

Phe

S
C

Met

Ile

Thr

Ser

Tyr

O

 

AI-2 Universal 

OB
-

O

O

OH

OH

OH

CH3

OH
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Gram-positive bacteria, on the other hand, use short peptides, linear or cyclic, as 

QS signals (Table 1). As with Gram-negative QS system, the specificity comes from 

varying the signal molecules by modifying the peptide sequence and shape.23  

Synthesized in the cytoplasm and actively transported out of the cell, these autoinducer 

peptides (AIP) bind to membrane-bound histidine kinase, leading to a phosphorylation 

cascade, activating QS regulator proteins for gene expression.24 

In addition to the species-specific AHL/AI-1 and AIP based QS for interspecies-

communications, a universal signal-based QS system has also been discovered. This 

interspecies-communication QS is based on AI-2 signal molecule (Table 1). Like the 

AIP-based system, AI-2 binding event starts a phosphorylation cascade to regulate gene 

expression.25 

In light of the antibiotic crisis, of these three systems (AHL, AIP, AI-2), AHL-

based QS found in human-pathogen-causing Gram-negative bacteria is of great interest. 

Four-main principles of targeting AHL communication system have been proposed:  

synthase inhibition, receptor inhibition, quorum-quenching enzymes, and AHL-

sequestering antibodies.26-29  Most studies thus far have explored receptor inhibition; 

however, due to high affinity of native AHLs to AHL-receptor proteins, it is a difficult 

task to design a molecule that could out compete the binding of native autoinducer to 

LuxR-type proteins to disrupt QS.30-33   The progress towards developing synthase 

inhibitors, on the other hand, is hampered because most AHL synthases are yet to be 

characterized. Nevertheless, AHL synthase-knockout studies have led to elimination of 

virulence traits, supporting AHL synthase modulation as a means of QS control.34  
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Efforts toward understanding the mechanism of AHL synthesis are important to design 

potent and selective AHL synthase inhibitors. 

Proposed AHL synthase mechanism 

AHL synthases are bi-ter enzymes that catalyzes the conversion of S-adenosyl-L-

methionine (SAM) and acyl-acyl-carrier protein (acyl-ACP) or acyl-coenzyme A (acyl-

CoA) to AHL autoinducer, 5′-deoxy-5′-methylthioadenosine (MTA), and holo-ACP or 

free-CoA (Figure 5).35-38  During catalysis, nucleophilic attack from the amine group of 

SAM to the carbonyl carbon of acyl-ACP cleaves the thioester bond, thereby releasing 

holo-ACP and transferring the fatty acid tail to SAM in the acylation half-reaction. In the 

lactonization reaction, SAM undergoes intramolecular ring closure, forming the lactone 

head-group and producing MTA side product. 

 
Figure 5. The proposed mechanism of AHL-synthases. SAM is a conserved 

substrate amongst all AHL synthases. The variation comes from the R-group of the acyl 

substrate. 

As with any other enzyme, AHL synthases can be inhibited by interference in the 

substrate binding, the catalysis, or the product release steps. However, each approach has 

its corresponding challenges. To disrupt substrate binding, substrate analogs would be the 

ideal starting point, yet SAM and acyl-ACP are commonly used in human enzymes, 
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SAM as a common methyl donor and acyl-ACP as a key player in fatty-acid 

biosynthesis.39, 40  Therefore, SAM or acyl-ACP based design of inhibitors have the 

potential to target all SAM or acyl-ACP using enzymes, thereby increasing the risk of 

unwanted side-effects. Moreover, how an AHL synthase preferentially bind to its native 

substrate over similarly shaped analogs, such as acyl-ACPs of different chain length, is 

not well understood, which impedes the design of substrate analogs that would out-

compete the native substrates binding to the enzyme. Mechanism-based covalent 

inhibitors act by forming covalent bonds with certain active site residues; however, as 

most AHL synthases remain uncharacterized the active site residues to target remain 

unknown. 

As holo-ACP and MTA are both relevant in human biology, holo-ACP in fatty 

acid synthesis and MTA in polyamine synthesis, product inhibitors based on those 

compounds carry the dangers of serious side-effects.41, 42  AHL-based inhibitors, on the 

other hand, has qualities suitable for pharmaceutical uses; AHL-analogs would have the 

potential of targeting both the synthase and the receptor, be QS-specific, have favorable 

cell-membrane diffusion characteristics, and have long shelf-life.30, 31, 33  There have been 

no reports of AHL-based modulators tested on AHL-synthases; however, studies reveal 

their great effect on AHL receptors, both as agonists and antagonists.43-45 

RhlI, QS signal synthase in Pseudomonas aeruginosa 

Pseudomonas aeruginosa is a specie of common Gram-negative bacteria that can 

cause diseases in both animals and plants. It is categorized as opportunistic bacteria 

commonly associated with healthcare-associated infections, infecting 51,000 every year 

in American hospitals, killing 400.46  In humans, it can cause pneumonia, cystic fibrosis, 
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bacterial meningitis, septic shock, urinary tract infection, GI infection, and skin and soft 

tissue infections.6, 46, 47  P. aeruginosa infections are becoming harder to treat due their 

increasing resistance to antibiotics, so much so that the CDC labeled it as a “serious 

threat” in their report on “Antibiotic Resistance Threats in the United States, 2013.”46 

The virulence and antibiotic resistance in P. aeruginosa is controlled by its QS 

system comprised of AHL-quinolone system. Its AHL system is comprised of LasI/R and 

RhlI/R systems whereas the Pseudomonas quinolone signal (PQS) is under Pqs receptor 

(PqsR) control (Figure 6).48  The two AHL-based systems use very different signal 

molecules. LasI synthesizes 3-oxo-dodecanoyl-homoserine lactone (3OC12HSL) signal 

molecule, which binds with LasR to activate several QS-controlled genes, which includes 

the Rhl and Pqs system. The RhlI/R proteins, in contrast, use butanoyl-homoserine 

lactone (C4HSL) autoinducers as the signal molecule. Under normal conditions, LasI/R 

pair is thought to activate the Rhl and the Pqs system, though both the Rhl and the Pqs 

have been observed acting independent of the Las system under certain circumstances. 

Furthermore, Pqs generally activates Rhl whereas Rhl typically suppresses Pqs via 

mechanisms not completely understood. Studies have shown that inhibiting any of these 

three QS systems significantly reduces Pseudomonas aeruginosa virulence. Studies thus 

far have focused primarily on Las-system inhibition and Rhl-specific inhibitors have yet 

to be studied in great detail. However, Rhl-system inhibition merit further examination 

for Rhl knockout strains strain to display pathogenic phenotype.49, 50 
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Figure 6.48 QS system regulation in P. aeruginosa. LasI/R promotes both the Rhl 

and Pqs systems. Whereas Pqs induces Rhl activity, Rhl inhibits Pqs via unknown 

methods. 

AHL synthase Kinetics 

DCPIP Assay 

DCPIP colorimetric assay is a well-established assay used to determine AHL 

synthase activity by monitoring the enzyme-dependent rate of release of holo-ACP/CoA 

thiol product over time (Figure 7).51-53  DCPIP, in its oxidized form, is a blue compound 

that absorbs at 600 nm (ε600 = 21,000 M-1cm-1 = 2.1 x 10-2 µM-1 cm-1). The holo-ACP 

thiol released upon acylation of SAM reduces the DCPIP dye to a colorless form, 

DCPIPH2. By monitoring the change in the absorbance of DCPIP at 600 nm, the enzyme 

rate can be determined by the following equation: 
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𝐴𝑏𝑠600 = 𝜀600 𝑙 𝑐 = (2.1 × 10−2𝜇𝑀−1)(𝑐𝑚−1)(𝑐)             (1) 

𝑐 =
𝐴𝑏𝑠600

𝜀600∙𝑙
=

𝐴𝑏𝑠600

𝑙
(𝜀600

−1 ) =
𝐴𝑏𝑠600

𝑐𝑚

𝜇𝑀 𝐷𝐶𝑃𝐼𝑃∙𝑐𝑚

2.1×10−2 
               (2) 

𝑟𝑎𝑡𝑒 =  
𝑐

𝑡
= (

𝐴𝑏𝑠

𝜀∙𝑙
) 𝑡−1 = (

𝐴𝑏𝑠

𝑐𝑚
)(

𝜇𝑀 𝐷𝐶𝑃𝐼𝑃∙𝑐𝑚

2.1×10−2 
)(𝑠−1)(

2 𝜇𝑀 𝑡ℎ𝑖𝑜𝑙

1 𝜇𝑀 𝐷𝐶𝑃𝐼𝑃
)(

60 𝑠

1 𝑚𝑖𝑛
)         (3) 

 

 
Figure 7. DCPIP assay mechanism. DCPIP, in its oxidized form, is a blue 

compound that turns colorless upon reduction with two thiols released from acylation 

reaction in AHL synthesis. By monitoring the decrease of absorbance at 600 nm, AHL 

synthase rate can be determined. 

Enzyme Kinetics 

Initial rate of enzyme activity as a function of substrate concentration follows a 

hyperbolic curve (Figure 8). When the substrate is present in saturating concentrations, 

maximum initial rate is achieved, denoted by Vmax. The concentration of the substrate 

required to reach half-maximal velocity is termed Km. 

 

 O

S-ACP / CoAR
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H2N

ACP-SH / CoA-SH

DCPIP DCPIPH2
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DCPIP reduction 
monitored at 600 nm ACP-S-S-ACP
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Figure 8. The Substrate-Velocity Curve. This curve represents the relationship of 

enzyme rate as a function of substrate concentration. 

This plot, also called the substrate-velocity curve, is commonly analyzed using 

the Michaelis-Menten equation. In the simplest situation where one substrate is converted 

to one product, the reaction can be summarized as: 

𝐸 + 𝑆 ⇌ 𝐸𝑆
𝑣
→ 𝐸 + 𝑃            (4) 

where E is the enzyme, S the substrate, ES the enzyme-substrate complex (Michaelis 

complex), P the product, and v the reaction rate. The rate of the reaction (v) can be 

described with the equation: 

𝑉 =  
𝑉𝑚𝑎𝑥[𝑆]

[𝑆]+𝐾𝑚
          (5) 

where Vmax is the highest reaction rate that the enzyme can achieve at saturating substrate 

concentration, [S] the substrate concentration, and Km the substrate concentration 

required for half-maximal rate. The Vmax and Km of an enzyme can be determined by 

measuring the initial enzyme rate with various substrate concentrations and fitting the 

resulting plot with the Michaelis-Menten equation. For easier interpretation, this 

hyperbolic curve can be linearized by taking the inverse of both sides of the equation, 
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thereby converting the Michaelis-Menten equation to the double-reciprocal or 

Lineweaver-Burke equation (Figure 9): 

1

𝑉
=  

𝐾𝑚

𝑉𝑚𝑎𝑥
[𝑆] +

1

𝑉𝑚𝑎𝑥
         (6) 

where independent axis (x-axis) represents the substrate concentration and the dependent 

axis (y-axis), the inverse rate. In this form, a change in the Vmax would lead to a shift in 

the y-intercept (intercept-effect) and a change in the 
𝐾𝑚

𝑉𝑚𝑎𝑥
 (inverse of catalytic efficiency, 

kcat/Km) ratio would cause a change in the slope (slope-effect). 

 
Figure 9. Typical Lineweaver-Burk plot. Taking the inverse of the hyperbolic 

Michaelis-Menten plot linearizes the data. In the 1/V vs 1/[S] plot, the y-intercept 

corresponds to 1/Vmax, the x-intercept to -1/Km, and the slope to Km/Vmax. 

However, AHL synthases are bi-ter enzymes (2 substrates, 3 products). The order 

of substrate binding and product release (the kinetic mechanism) can follow one of three 

patterns (Figure 10). 1) Ordered sequential mechanism: substrates bind to the enzyme in a 

specific order before the products are released in a defined sequence. 2) Random 

sequential mechanism:  substrates all bind before the first product is released but the 

order of substrate addition or the product release, or both, is random. 3) Ping-pong 

sequential mechanism:  the first product is released before the second substrate binds 

with the enzyme. 
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Figure 10. Kinetic mechanism for bisubstrate enzyme. (a) Ordered sequential:  

substrate binding occurs before product release and follow definite order. (b) Random 

sequential:  substrate binding occurs before product release and follow random order. (c) 

Ping-pong:  first product release step occurs before the second substrate addition. 

Bi-substrate enzyme kinetics is represented by a more complicated Cleland 

equation as shown: 

𝑣 =
𝑉𝑚𝑎𝑥[𝐴][𝐵]

𝐾+𝐾𝑚
𝐵 [𝐴]+𝐾𝑚

𝐴 [𝐵]+[𝐴][𝐵] 
      (7) 

where Km
A is the Michaelis constant for substrate A at saturating concentrations of B, 

Km
B the Michaelis constant for substrate B at saturating concentrations of A, and K 

depends on the reaction type (sequential vs ping-pong). In a sequential mechanism, the 

Cleland equation becomes: 

𝑣 =
𝑉𝑚𝑎𝑥[𝐴][𝐵]

𝐾𝑖
𝐴𝐾𝑚

𝐵 +𝐾𝑚
𝐵 [𝐴]+𝐾𝑚

𝐴 [𝐵]+[𝐴][𝐵] 
      (8) 
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where the Ki
A is the dissociation constant for the EA complex in the absence of the 

second substrate, B. If the enzyme undergoes ping-pong mechanism, the K term drops 

and the Cleland equation becomes: 

𝑣 =
𝑉𝑚𝑎𝑥[𝐴][𝐵]

𝐾𝑚
𝐵 [𝐴]+𝐾𝑚

𝐴 [𝐵]+[𝐴][𝐵] 
       (9) 

The double reciprocal of the Cleland equation for sequential mechanism is: 

1

𝑉
=  

1

𝑉𝑚𝑎𝑥
[(1 +

𝐾𝑚
𝐵

[𝐵]
) +

1

[𝐴]
(𝐾𝑚

𝐴 + 𝐾𝑖
𝐴 ∙

𝐾𝑚
𝑏

[𝐵]
)]       (10) 

and for the ping-pong mechanism: 

1

𝑉
=  

1

𝑉𝑚𝑎𝑥
[(1 +

𝐾𝑚
𝐵

[𝐵]
) +

1

[𝐴]
(𝐾𝑚

𝐴)]        (11) 

at constant [B] and variable [A], the slope of sequential equation is: 

1

𝑉𝑚𝑎𝑥
(𝐾𝑚

𝐴 + 𝐾𝑖
𝐴 ∙

𝐾𝑚
𝑏

[𝐵]
)        (12) 

which indicates that the slope depends on the concentration of substrate B (slope-effect). 

For the ping-pong equation, the slope is: 

𝐾𝑚
𝐴

𝑉𝑚𝑎𝑥
         (13) 

indicating that the slope is independent of the substrate B concentration (no slope-effect). 

For both the sequential and the ping-pong mechanism equation, the intercept of this is: 

1

𝑉𝑚𝑎𝑥
(1 +

𝐾𝑚
𝐵

[𝐵]
)         (14) 

showing that the intercept always depends on B concentration (intercept-effect). This 

dependence on [B] indicates that saturation with A does not cut off the effect of adding 

more B. Therefore, at saturating A concentration, the addition of B always increases the 

rate (increases the apparent Vmax). 

 For sequential mechanism, since both the slope and the intercept are dependent 

on the fixed concentration of substrate B, the double reciprocal plot of 
1

V
vs 

1

[A]
 at various 
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fixed [B] would feature a set of lines intersecting in quadrant II (Figure 11 a). For ping-

pong mechanism, since only the intercept is affected by the concentration of B, the 

double reciprocal plot of 
1

V
vs 

1

[A]
 at various fixed [B] would feature a set of parallel lines 

(Figure 11 b). 

  
Figure 11. Double reciprocal plot of sequential vs ping-pong reaction 

mechanism. Enzyme reactions at various fixed B concentrations and varying A 

concentration are observed. (a) If A and B both bind before product release, sequential 

addition, both the slope and the intercept drop as [B] increases and the lines intersect in 

the second quadrant. (b) If the enzyme follows ping-pong mechanism, only the intercept 

decreases as [B] increases and the lines remain parallel.  

Work by Greenberg showed that RhlI is an ordered bi-ter enzyme with SAM 

binding first followed by C4-ACP binding and the ordered release of holo-ACP, C4-HSL, 

and MTA (Figure 12). Therefore, RhlI reaction will follow equations 11 and 13 and the 

double reciprocal plot of 
1

V
vs 

1

[SAM]
 at various fixed [C4-ACP] would show both slope 

and intercept-effects.  

 
Figure 12. Cleland diagram of RhlI catalyzed ordered bi-ter reaction. “E” 

denotes free RhlI enzyme while “A,” “B,” “P,” “Q,” and “R” represents SAM, C4-ACP, 

holo-ACP, C4-HSL, and MTA, respectively.  
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However, to simplify the equation, if one of the substrates were to be at saturating 

concentrations (e.g. [A]>>> [B], Km
A), any term not including the [A] term would drop 

out to form: 

𝑉 =
𝑉𝑚𝑎𝑥[𝐴][𝐵]

𝐾𝑚
𝐵 [𝐴]+[𝐴][𝐵] 

      (15) 

then the [A] term in the remaining equation would cancel out, simplifying the equation 

to: 

𝑉 =
𝑉𝑚𝑎𝑥[𝐵]

𝐾𝑚
𝐵 +[𝐵] 

      (16) 

which is mathematically identical to the Michaelis-Menten equation. Therefore, by 

keeping one substrate, “A”, at a saturating concentration and varying the concentration of 

the other substrate, “B”, the apparent Km, Vmax, and kcat values of the enzyme associated 

with “B” substrate can be determined, which will be referred to as “V vs [S]” kinetics. In 

this study, substrate “A” corresponds to SAM and substrate “B” corresponds to C4-ACP 

Enzyme Inhibition 

Inhibitors can decrease enzyme activity in one of three ways: competitive 

inhibition, uncompetitive inhibition, and mixed mode of inhibition (Figure 13). In 

competitive mode of inhibition, the inhibitor is competing with the substrate for the same 

enzyme form; in uncompetitive mode of inhibition, the inhibitor is not competing with 

the substrate and binds to a different enzyme form; and in mixed mode of inhibition, the 

inhibitor binds with both the same and different forms of the enzyme. 
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Figure 13. Modes of inhibition. (a) Competitive mode of inhibition:  the inhibitor 

competes with the substrate for the same enzyme form. (b) Uncompetitive mode of 

inhibition:  the inhibitor and the substrate bind to different enzyme form. (c) Mixed mode 

of inhibition:  the inhibitor binds to both the same and different enzyme forms. 

Noncompetitive inhibition is a special case of mixed mode when the Ki and Kii values are 

equal. 

The mode of inhibition can be determined by conducting the V vs [S] kinetics 

assay at different inhibitor concentration and the resulting rate curves will fit to the 

following form of the Michaelis-Menten equation: 

𝑉 =
𝑉𝑚𝑎𝑥

𝑎𝑝𝑝
[𝑆]

𝐾𝑚
𝑎𝑝𝑝

+[𝑆] 
       (17) 

If the inhibitor is targeting the same form of the enzyme to which the variable substrate 

binds, it would be inhibiting the enzyme competitively and mathematically, the 𝑉𝑚𝑎𝑥
𝑎𝑝𝑝

and 

the 𝐾𝑚
𝑎𝑝𝑝

 would be: 
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𝑉𝑚𝑎𝑥
𝑎𝑝𝑝

=  𝑉𝑚𝑎𝑥       (18) 

𝐾𝑚
𝑎𝑝𝑝

=  𝐾𝑚(1 +
[𝐼]

𝐾𝑖𝑠
)          (19) 

since 𝐾𝑚
𝑎𝑝𝑝

 changes while 𝑉𝑚𝑎𝑥
𝑎𝑝𝑝

 remains unaffected, according to the Lineweaver-Burk 

equation, the inhibition produces a slope-effect, denoted by Kis (binding affinity of the 

inhibitor to E form). Mechanistically, as substrate concentration increases, Le Chatlier’s 

principle predicts that the reaction would be pushed forward to form more EA complex, 

which would decrease the concentration of free enzyme, E. The decrease in E 

concentration would push the EI complex to revert to E + I. Therefore, the substrate can 

outcompete the inhibitor at high concentrations (closer to the y-axis of the double 

reciprocal plot) and reach Vmax (no intercept-effect). However, the interference in binding 

increases the concentration of substrate for half-maximal rate (Km), thus increasing the 

𝐾𝑚

𝑉𝑚𝑎𝑥
, or the slope (slope-effect). This inhibition pattern can be generalized to the 

following observation: if the inhibitor binds with the same form of the enzyme, “E,” as 

the variable substrate or binds with an enzyme form reversibly connected to “E” form, 

there is slope-effect. 

If the inhibitor is targeting a different form of the enzyme as the variable 

substrate, it would be inhibiting the enzyme uncompetitively and the 𝑉𝑚𝑎𝑥
𝑎𝑝𝑝

and the 𝐾𝑚
𝑎𝑝𝑝

 

would be: 

𝑉𝑚𝑎𝑥
𝑎𝑝𝑝

=  
𝑉𝑚𝑎𝑥

(1+
[𝐼]

𝐾𝑖𝑖
)
      (20) 

𝐾𝑚
𝑎𝑝𝑝

=  
𝐾𝑚

(1+
[𝐼]

𝐾𝑖𝑖
)
      (21) 

since 𝑉𝑚𝑎𝑥
𝑎𝑝𝑝

 changes, the Lineweaver-Burk equation dictates that this inhibition would 

cause an intercept-effect, denoted by Kii (binding affinity of the inhibitor to the ES form). 
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Moreover, as both the 𝐾𝑚
𝑎𝑝𝑝

 and the 𝑉𝑚𝑎𝑥
𝑎𝑝𝑝

 are changed by the same ratio, (1 +
[𝐼]

𝐾𝑖𝑖
), the 

slope, 
𝐾𝑚

𝑉𝑚𝑎𝑥
, remains the same. Mechanistically, since the inhibitor is binding to a 

different enzyme form than the substrate binding to, increasing the substrate 

concentration cannot overcome the inhibition; therefore, even at saturating substrate 

concentration (near y-axis), the apparent Vmax is lower than true Vmax (intercept-effect). 

As noted above, slope-effect is only observed if the inhibitor and the variable substrate 

are binding to the same enzyme form or reversibly connected enzyme forms; in 

uncompetitive inhibition, the inhibitor binds to a different form of the enzyme and no 

slope-effect is observed. This inhibition pattern can be generalized as: if the inhibitor and 

the variable substrate bind with different forms of the enzyme, there is intercept-effect. 

If the inhibitor is targeting both the same and a different form of the enzyme as 

the variable substrate, it would be inhibiting the enzyme via mixed model inhibition and 

the 𝑉𝑚𝑎𝑥
𝑎𝑝𝑝

and the 𝐾𝑚
𝑎𝑝𝑝

 would be: 

𝑉𝑚𝑎𝑥
𝑎𝑝𝑝

=  
𝑉𝑚𝑎𝑥

(1+
[𝐼]

𝐾𝑖𝑖
)
      (22) 

𝐾𝑚
𝑎𝑝𝑝

=  
𝐾𝑚(1+

[𝐼]

𝐾𝑖𝑠
)

(1+
[𝐼]

𝐾𝑖𝑖
)

     (23) 

since 𝐾𝑚
𝑎𝑝𝑝

 and 𝑉𝑚𝑎𝑥
𝑎𝑝𝑝

 change by differing ratios, the Lineweaver-Burk equation indicates 

that the inhibition would cause both slope and intercept-effects, denoted by having both 

Kis and Kii. In this case, since the inhibitor also binds with a different form of the enzyme, 

Vmax is affected and there is intercept-effect. Since the inhibitor and the substrate are 

binding to the same form of the enzyme, there is also slope-effect. In a special case of 

mixed model inhibition, in which the inhibitor binds to two different enzyme forms 
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equally well, the Kii value would equal Kis value and the 𝐾𝑚
𝑎𝑝𝑝

 value would be equal to 

the 𝐾𝑚 value and only the Vmax would be affected. 

Once the V vs [S] assays in varying [I] is conducted, the data can be fitted to all 

the models and the best fit can be determined by Akaike’s information criterion method 

(AIC), which compares the scatter about the fit and the degrees of freedom associated 

with each model and assay. In this model, the different inhibition models are listed in 

order of increasing complexity in the following manner: competitive, noncompetitive, 

uncompetitive, and mixed model. The AIC model compares two inhibition patterns at a 

time, the simpler model (fewer parameters) assigned “model 1” and the more complex 

model (more parameters) assigned “model 2,” with the following equation: 

∆𝐴𝐼𝐶 = 𝑁 ∙ 𝑙𝑛
𝑆𝑆2

𝑆𝑆1
+ 2∆𝐷𝐹 = 𝐴𝐼𝐶1 − 𝐴𝐼𝐶2    (24) 

in which SS1 and SS2 refers to sum of the square of the scatter about the fit in inhibition 

models 1 and 2 and ΔDF, the difference in the degrees of freedom due to the parameters 

associated with the inhibition models. The simpler model is expected to have bigger/more 

scatter and higher degree of freedom; therefore, the ln
𝑆𝑆2

𝑆𝑆1
 term is expected to be negative 

and the ∆𝐷𝐹 term, positive. If the ∆𝐴𝐼𝐶 is negative, it would indicate that the scatter in 

the simpler model 1 was greater than expected thus model 2 would be a better fit, and if 

the ∆𝐴𝐼𝐶 is positive, the opposite would be true and model 1 would be a better fit. The 

overall probability of one model being the better fit over the other is determined by the 

following equation: 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑒0.5∙∆𝐴𝐼𝐶

1+𝑒0.5∙∆𝐴𝐼𝐶     (25) 

By repeating the AIC comparison between each of the inhibition models, the best fit can 

be determined, thereby identifying the mode of inhibition. 
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Although assaying the enzyme with various fixed inhibitor concentration and 

variable substrate concentration is useful in determining the mode of inhibition and the 

binding affinity of the inhibitor to the enzyme, it is a laborious and time-consuming 

process. To quickly determine whether a compound is inhibiting, the enzyme is assayed 

at fixed substrate concentration and variable inhibitor concentration. The kinetics data 

from this test shows the potency of the inhibitor as the concentration of the inhibitor 

required to reduce the enzyme initial rate by half, or the IC50 value; however, the IC50 

value alone cannot be used to determine the mechanistic mode of inhibition or the 

binding affinity of the inhibitor for the enzyme.  The IC50 value can be calculated by the 

following equation: 

𝑉 =
𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛

(1+
[𝐼]ℎ

𝐼𝐶50ℎ)
      (26) 

in which Vmax and Vmin refers to the starting and the minimum activities, respectively; [I], 

the inhibitor concentration; and h, the hill constant (Figure 14).54 

 
Figure 14. Representative IC50 curve. The enzyme rate with no inhibitor is the 

baseline, denoted Vmax. The concentration of the inhibitor required to reach half Vmax rate 

is IC50. 
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Under competitive mode of inhibition, the Ki and the IC50 values are related by: 

𝐾𝑖 =
𝐼𝐶50

(1+
𝑆

𝐾𝑚
)
     (27) 

under uncompetitive mode: 

𝐾𝑖 =
𝐼𝐶50

(1+
𝐾𝑚

𝑆
)
     (28) 

and under noncompetitive mode: 

𝐾𝑖 = 𝐼𝐶50     (29) 

However, if a compound were to bind at an allosteric site and alter the enzyme 

structure to promote product release (increase kcat and maybe decrease Km) or substrate 

binding (decrease Km), the enzymatic rate would increase. If the enzyme is assayed with 

fixed concentration of the substrate and variable concentration of the agonist, EC50 is the 

concentration of the activator at which the enzyme rate is half way between the baseline 

and the maximum. and this agonistic effect would be modeled by the EC50 equation: 

𝑉 = 𝑉𝑚𝑖𝑛 +
[𝐴]ℎ∙(𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛)

([𝐴]ℎ+𝐸𝐶50ℎ)
    (30) 

where Vmin and Vmax refers to the starting and the maximum rates, respectively; [A], the 

activator concentration; and h, the hill constant (Figure 15).55 
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Figure 15. Representative EC50 curve. The enzyme rate with no activator is the 

baseline and the maximum enzyme rate reached with addition of the activator is denoted 

Vmax. The concentration of the activator required to reach halfway between the baseline 

and Vmax is EC50. 

Thesis objective 

The objective of this thesis is to determine how altering the acyl-chain, chirality, 

and the head-group polarity of native AHL signal molecule changes the activity of RhlI 

to determine the moieties of greatest important and understand the mechanism of their 

effect.  

The native AHL product, butanoyl-L-homoserine lactone, was used as the control. 

The L-homoserine lactone headgroup alteration was the focus of the first generation of 

AHL analogs (compounds 1-12; Table 2). Modifications to the lactone ring (compounds: 

2-4, 8-12), the chirality (compounds: 5, 12), and the tail-headgroup linkage (compounds: 

6, 7, 10-12). Variations in the acyl-chains were introduced in the next generation of AHL 

analogs (Table 3) which was combined with the lessons learned from the first generation 

of AHL derivative to target headgroup hydrophobicity with thiolactone, cyclopentyl, and 

non-lactone compounds (compounds 8, 43-64, 76, 77; 4, 65-68; 2-3, 9-11, 69-73; 76-77; 

Table 4, 5), D vs L headgroup chirality (compounds 5, 28-36; 12, 41-42; 56-64, 75, 77; 
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Table 4), sulfonamide linkage (compounds 6, 37-40; 12, 41-42; Table 4), and acyl-chain 

length and substitution at the C3 position (Compounds 13-55, 57-68, 70-73, 78-82; Table 

4, 5). The acyl-chain effects were further correlated by testing RhlI activity with acyl-

ACP substrates of varying acyl-chain moieties (compounds 83-87; Table 4; Figure 16) 

and testing the activity in the presence of alkyl-ACP (inactive acyl-ACP analogs; 

compounds 88-91; Table 6; Figure 16). Finally, the importance of the ACP moiety in 

binding was tested by observing RhlI activity in the presence of alkyl-CoAs (compounds 

92-94; Table 4; Figure 16). 

This is the first study to test the effects of modified AHLs on AHL synthases. The 

work described in this thesis is the basis upon which future of rational inhibitor design 

can be based. 

Table 2. Structures of 1st generation AHL-based small molecules tested for 

RhlI inhibition. 
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Table 3. Variations in the acyl-chains for 2nd generation of AHL-based small 

molecules tested for RhlI inhibition. 

Acyl-chain library 
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Table 4. 2nd generation of AHL-based small molecules tested for RhlI 

inhibition.a 

L-HSL D-HSL LTL 

   

Compound R1 Compound R2 Compound R3 

1 a 5 a 8 a 
6 q 12 r 43 b 

13 b 28 b 44 c 
14 c 29 d 45 d 
15 d 30 v 46 f 
16 e 31 w 47 v 
17 f 32 x 48 z 
18 g 33 y 49 x 
19 h 34 i 50 aa 
20 i 35 j 51 ab 
21 j 36 l 52 ac 
22 k 41 s 53 i 
23 l 42 u 54 j 
24 m 75 ad 55 l 
25 n   76 ad 
26 o     

27 p DTL Cyclopentyl 
37 r 

  

38 s 
39 t 
40 u 
74 ad Compound R4 Compound R5 

  56 a 65 l 
  57 b 66 v 
  58 d 67 z 
  59 e 68 aa 
  60 f   
  61 i   
  62 j   
  63 k   
  64 l   
  77 ad   

a = letter notations for R-groups refer to structures listed in Table 3 
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Table 5. Nonlactone derivatives tested for RhlI inhibition 

 

Table 6. Acyl-ACP, alkyl-ACP, and alkyl-CoA derivatives 
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Figure 16. Structures of Acyl-ACP and CoA. (a) Apo-ACP is a relatively small 

protein made up of four helices. When apo-ACP is linked with a pantetheine linker, it is 

called holo-ACP. Acylated holo-ACPs are called acyl-ACPs. (b) Free coenzyme A 

consists of a nucleotide connected to the pantetheine linker. Acylated CoAs are called 

acyl-CoAs. 
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CHAPTER TWO: MATERIALS AND METHODS 

Materials and Equipment 

The following reagents were purchased from Sigma Aldrich:  (S)-(+)-α-

methoxyphenylacetic acid (MPA), 2-(N-morpholino)ethanesulfonic acid hydrate (MES), 

2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum’s acid), 2,6-dichloroindophenol (DCPIP), 

4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), ammonium sulfate, D-

homoserine lactone hydrochloride, DL-homocysteine thiolactone, 

ethylenediaminetetraacetic acid (EDTA), glycerol, L-homoserine lactone hydrochloride, 

magnesium sulfate anhydrous (MgSO4), maltose, N-(3-dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (EDC), N-hydroxysuccinimide, Nα-tosyl-L-lysine 

chloromethyl ketone hydrochloride (TLCK), phenylmethanesulfonyl fluoride (PMSF), 

protamine sulfate, S-(5′-adenosyl)-L-methionine chloride (SAM), sucrose, toluene, 

trichloroacetic acid, coenzyme A free acid (CoA-SH), butanoyl-coenzyme A (C4-CoA), 

hexanoyl-coenzyme A (C6-CoA), octanoyl-coenzyme A (C8-CoA), decanoyl-coenzyme 

A (C10-CoA), dodecanoyl-coenzyme A (C12-CoA), deoxyribonuclease I (DNase), 

ribonuclease A (RNase), lysozyme, ampicillin, kanamycin, chloramphenicol, kanamycin, 

spectinomycin, and streptomycin. Thermo Fisher Scientific supplied the following: 2-

propanol (IPA), acetonitrile, agar, ammonium acetate, bacterial protein extraction reagent 

(B-PER), chloroform, diethyl ether, dimethylformamide (DMF), dimethyl sulfoxide 

(DMSO), ethyl acetate, hydrochloric acid (HCl), imidazole, isopropyl β-D-1-

thiogalactopyranoside (IPTG), Lennox broth, manganese sulfate (MnSO4), methanol, 
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hexane, potassium carbonate, silica, sodium bicarbonate, tricine, and tris base. Butyric 

acid, hexanoic acid, octanoic acid, decanoic acid, dodecanoic acid, and trifluoroacetic 

acid (TFA) were obtained from Acros Organics. Alfa Aesar provided bromobutane, 

bromohexane, bromooctane, bromodecane, magnesium chloride (MgCl2), and triethyl 

amine. The 3kD and 10kD spin filter columns and celite were purchased from EMD. 

Amylose resin, ethanol, and 0.22 µm sample filters were provided by NEB, Ultra Pure, 

and Costar, respectively. Dr. Peter Tipton (University of Missouri, Columbia), Dr. E. 

Peter Greenberg (University of Washington), and Dr. Michael Burkart (University of 

California-San Diego) provided clones for purifying RhlI, apo-ACP, and Sfp, 

respectively. Sfp was purified by Levi Mitchell and Nhu Lam (Both from Nagarajan lab, 

Boise State University). Various AHL analogs were supplied by Dr. Helen Blackwell 

(University of Wisconsin, Madison; compounds 1, 3-9, 12-55, 65-73), Dr. Eric Brown 

(Boise State University; compounds 2, 10, 11), and Neil Rexrode (Nagarajan lab, Boise 

State University; compounds 34, 36). 

All UV-Vis spectrophotometric data was collected with Thermo Scientific 

Evolution 260 Bio UV-Vis spectrophotometer using Fisher 1 cm path length quartz 

cuvettes (14-385-928C). HPLC data was obtained with Thermo Scientific Dionex 

UltiMate 3000 UHPLC+ focused HPLC with Dionex UltiMate 3000 Automated Fraction 

Collector using Thermo Scientific Hypersil Gold C18 reverse-phase UHPLC column 

(25002-054630) or Thermo Scientific Hypersil Gold C18 reverse-phase preparative 

column (25005-159070). All mass spectrometry data was collected with Bruker maXis 

Quadrupole Time-of-Flight (QTOF) mass spectrometry and analyzed with the Bruker 



33 

 

 

Compass Data Analysis software. All the kinetics data were processed using GraphPad 

Prism 7. 

Methods 

HPLC Methods 

HPLC and the fraction collector was used to isolate and collect alkyl-CoA and to 

monitor the synthesis and purity of acyl-ACP synthesis. Solvent “A” consisted of 25 mM 

ammonium acetate pH 5 solution. Solvent “B” is acetonitrile (ACN) + 0.1% 

trifluoroacetic acid (TFA), and solvent “C” is H2O + 0.1% TFA. To isolated alkyl-CoA, 

the filtered sample was injected into a C18 reverse-phase preparatory column equilibrated 

with the initial solvent condition of 95.0% solvent A and 5.0% solvent B. The analyte 

was analyzed using a solvent gradient of 95.0% solvent A and 5.0% solvent B to 30.0% 

solvent A and 70.0% solvent B over 11 minutes at a flow rate of 3.0 mL/min (Table 7). 

To monitor acyl-ACP synthesis, the analyte sample was injected into a C18 reverse-phase 

UHPLC column equilibrated with 25.0% solvent B and 75.0% solvent C. The acyl-ACP 

peaks were separated from apo-ACP peak with a solvent gradient of 25.0% solvent B and 

75.0% solvent C to 75.0% solvent B and 25.0% solvent C over 10 minutes at a flow rate 

of 600 µL/min (Table 8). Due to the similar retention time for hexanoyl/hexyl-ACP and 

apo-ACP, a shallower gradient of 25.0% solvent B and 75.0% solvent C to 75.0% solvent 

B and 25.0% solvent C over 60 minutes at a flow rate of 200 µL/min was used (Table 9). 

The column and the sample loop were washed with methanol for 5 minutes between each 

run. 
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Table 7. Alkyl-CoA separation methoda 

Time (min) 
Flow 

(mL/min) 
%Ab %Bc 

-3.00 3.000 95.0 5.0 

  0.00d 3.000 95.0 5.0 

1.00 3.000 95.0 5.0 

11.00 3.000 30.0 70.0 

a = Preparatory column 

b = 25 mM ammonium acetate pH 5 

c = acetonitrile (ACN) + 0.1% trifluoroacetic acid (TFA) 

d = sample injection at Time 0.00 

 

Table 8. ACP separation methoda 

Time (min) 
Flow 

(mL/min) 
%Bb %Cc 

-3.00 0.600 25.0 75.0 

   0.00d 0.600 25.0 75.0 

10.00 0.600 75.0 25.0 

a = UHPLC column 

b = ACN + 0.1% TFA 

c = H2O + 0.1% TFA 

d = sample injection at Time 0.00 

 

Table 9. C6-ACP separation methoda 

 

 

RhlI Purification 

RhlI was purified via a previously described method with modifications.52  E. coli 

with RhlI plasmid was grown on an agar plate (20 g Lennox broth and 10 g agar per 1 L 

of medium) with ampicillin (100 µg/mL) for 12 hours at 37°C. A colony was isolated and 

was used to inoculate 25 mL of Lennox broth with ampicillin (100 µg/mL) and incubated 

Time (min) Flow 

(mL/min) 

%Bb %Cc 

-3.00 0.200 25.0 75.0 

   0.00d 0.200 25.0 75.0 

60.00 0.200 75.0 25.0 

a = UHPLC column 

b = ACN + 0.1% TFA 

c = H2O + 0.1% TFA 

d = sample injection at time 0.00 
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at 37°C with shaking (225 rpm) for 8-12 hours or until visible turbidity. The “mini-

growth” was then transferred over to 1 L of Lennox broth (20 g broth/L) with ampicillin 

(100 µg/mL). The broth was incubated with shaking (225 rpm) at 37°C. When the OD600 

value reached 0.6-0.8, IPTG was added to 0.5 mM final concentration to promote protein 

expression. The cell culture was incubated for 3 hours at room temperature. The growth 

media was then spun down at 5,000 x g at 4°C for 15 minutes to collect cell paste. The 

cell pellet was resuspended in “Buffer A,” which is composed of 200 mL of 50 mM Tris-

HCl, pH 7.5, containing 0.2 M NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA), 0.1 

mM phenylmethanesulfonyl fluoride (PMSF), 0.1 mM Nα-tosyl-L-lysine chloromethyl 

ketone hydrochloride (TLCK), 0.4 M sucrose, and 2.5% (v/v) glycerol. The resuspended 

mixture was then lysed via sonication at 15,000 psi. The lysate was spun down for 40 

minutes at 10,000 x g and at 4°C. Protamine sulfate was added to the supernatant to a 

final concentration of 6 mg/ g of cell pellet to cause nucleic acids to precipitate. The 

nucleic acid precipitates were removed via centrifugation for 20 minutes at 10,000 x g 

and at 4°C. The supernatant was then loaded onto an amylose column that has been 

equilibrated with 5x bed volume with buffer A. The column was washed with 5x bed 

volume with buffer A. RhlI was eluted out using buffer A with 10 mM maltose added. 

The presence and purity of RhlI was checked with SDS-PAGE gel electrophoresis. The 

protein sample was concentrated using 10 kD spin filter, the concentration checked via 

UV-Vis spectrophotometry (ε280= 107510 M-1cm-1), and stored in buffer A with 20% 

glycerol at -80 °C. 
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Apo-ACP Purification 

Apo-ACP was purified with a well-established method.22  E. coli DK574 with 

pjT94 was grown on an agar plate (20 g Lennox broth and 10 g agar per 1 L of medium) 

with kanamycin (25 µg/mL), streptomycin (50 µg /mL), spectinomycin (50 µg /mL), and 

chloramphenicol (25 µg /mL) for 12 hours at 37°C. An isolated colony was used to 

inoculate 25 mL of Lennox broth with kanamycin (25 µg/mL), streptomycin (50 µg 

/mL), spectinomycin (50 µg /mL), and chloramphenicol (25 µg /mL) and incubated at 

37°C with shaking (225 rpm) for 8-12 hours or until visible turbidity. The “mini-growth” 

was then transferred over to 1 L of Lennox broth (20 g broth/L) with kanamycin (25 

µg/mL), streptomycin (50 µg /mL), spectinomycin (50 µg /mL), and chloramphenicol (25 

µg /mL) and incubated at 37°C with stirring until OD600 value reached 0.6-0.8. IPTG was 

then added to a final concentration of 1 mM to promote protein expression. The cell 

culture was incubated at 37°C for a further 3 hours then collected via centrifugation at 

5,000 x g for 15 minutes. The cell paste was resuspended in 2 mL of B-PER reagent, 1 

mL of lysozyme (2 mg/mL) 20 μL each of DNase (1 mg/mL) and RNase (1 mg/mL) and 

25 μL of phenylmethylsulfonyl fluoride (13 mg/750 μL 2-propanol) to lyse the cells and 

their nucleic acids. The lysate mixture was incubated with gentle shaking at room 

temperature for 20 minutes. The lysate was spun down for 30 minutes at 20,000 x g and 

at 4°C. The supernatant was collected and was added MgCl2 and MnSO4 to final 

concentrations of 25 mM and 1.2 mM, respectively and incubated at 37°C for 4 hours. 

Extraneous proteins were precipitated by slow addition of 2-propanol to 50% initial 

volume while on ice. The precipitates were removed via centrifugation at 14,000 x g for 

30 minutes. The supernatant was stirred with 2 g of DE52 diaminoethyl cellulose resin 
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overnight at 4°C. The mixture was packed in to a column and washed with 10 x bed 

volume with 10 mM lithium 4-morpholineethane-sulfonate (MES) pH 6.1 and 0.25 mM 

LiCl. The protein was eluted out using 10 mM lithium MES pH 6.1 and 0.5 M LiCl. The 

presence and purity of apo-ACP was checked via Tris/Tricine SDS-PAGE gel 

electrophoresis. Apo-ACP samples were polled and the protein was precipitated with the 

addition of 0.02% (0.2 mg/mL) sodium deoxycholate and 5% (50 mg/mL) 

trichloroacetate (w/v). The mixture was incubated at 37°C with gentle shaking for 30 

minutes. The mixture was then spun at 21,000 x g for 30 minutes to collect ACP pellet. 

The ACP pellet was resuspended in 60 mL of 0.5 M Tris-HCl pH 8.0 and concentrated 

using 3 kD spin filter. The concentration was determined via UV-Vis spectrophotometry 

(ε280= 1490 M-1cm-1), and stored in 10 mM MES pH 6.1 + 20 % glycerol at -80 °C. 

Alkyl-CoA Synthesis 

To a solution of coenzyme A, free acid (CoA-SH; 50 mg, 65.1 µmol) and alkyl 

bromide (120.2 µmol) in 2mL of 1:1 water:DMF, potassium carbonate was added to pH 

8-9 (Figure 17). The reaction was stirred under nitrogen overnight and the completion of 

the reaction was tested by checking for the reduction of DCPIP by unreacted CoA-SH. 

The reaction mixture was diluted with water to a final volume of 5 mL and extracted with 

5 mL of diethyl ether. The aqueous mixture was filtered with 0.2 µm filter and the alkyl-

CoA was isolated and collected with semi-prep HPLC using the Alkyl-CoA separation 

method (Table 5). Organic solvent was removed via evaporation by a gentle stream of 

nitrogen through the product solution and the aqueous solution was lyophilized to yield 

alkyl-CoA powder. 
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Figure 17. Synthesis of alkyl-CoA. Alkyl bromide was reacted with free-CoA in 

basic solution to produce alkyl-CoA. 

92. Butyl-Coenzyme A. ESI-TOF:  expected m/z [M + H+] = 824.1851, 

observed [M + H+] = 824.1835. (Appendix Figures A14) 

93. Hexyl-Coenzyme A. ESI-TOF:  expected m/z [M + H+] = 852.2164, 

observed [M + H+] = 852.2147. (Appendix Figures A15) 

94. Octyl-Coenzyme A. ESI-TOF:  expected m/z [M + H+] = 880.2477, 

observed [M + H+] = 880.2444. (Appendix Figures A16) 

95. Decyl-Coenzyme A. ESI-TOF:  expected m/z [M + H+] = 908.2790, 

observed [M + H+] = 908.2733. (Appendix Figures A17) 

Alkyl-/Acyl-ACP synthesis 

Alkyl-/acyl-pantetheine was transferred from CoA to apo-ACP via 

phosphopanetheinyl transferase (Sfp) catalyzed reaction (Figure 18).22  The reaction 

mixture consisted of 50 mM Tris-HCl pH 6.8, 10 mM magnesium chloride, 600 µM apo-

ACP, 750 µM alkyl-/acyl-CoA, and 10 µM Sfp, with the CoA-substrate being the last to 

be added. Alkyl-/acyl-CoAs with aliphatic chains of 6 and fewer carbons were added all 

at once. Alkyl-/acyl-CoAs with aliphatic chains of 8 or more carbons were added in three 

equal portions every 15 minutes to prevent CoA precipitating and crashing out of the 

pridominantly aqueous reaction mixture. The reaction was incubated at 37 °C and 

checked via HPLC every 30 minutes for completion using ACP separation method (Table 

6). However, C6-ACP separation method was used to check hexyl- and hexanoyl-ACP 

synthesis since C6-ACP, C6-IACP, and apo-ACP have similar retention time (Table 7). 

For completion, reactions lasted 2 hours for C4-ACP and C4-IACP, between 4 and 5 
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hours for C6-ACP and C6-IACP, and 6 to 7 hours for C8- to C12-ACP and IACPs. Upon 

completion, ammonium sulfate was added to the reaction to 75% saturation and kept at 4 

°C for 1 hour to precipitate Sfp.56  The Sfp precipitates were pelleted by centrifugation at 

15,000 x g for 15 minutes. The supernatant was desalted and concentrated by 3 kD spin 

filter spun at 5,000 x g at 4 °C. The concentration was determined via UV-Vis 

spectrophotometry (ε280= 1490 M-1cm-1), and stored in 10 mM MES pH 6.1 + 20 % 

glycerol at -80 °C. 

 
Figure 18. Sfp catalyzed acyl-pantetheine transfer reaction. Sfp catalyzes the 

transfer of pantetheine linker from a CoA to apo-ACP to produce alkyl-/acyl-ACP. 

83-87. Butanoyl-, Hexanoyl-, Octanoyl-, Decanoyl-, and Dodecanoyl-ACP. Mass 

confirmed in previous work from Nagarajan laboratory.22 

88. Butyl-ACP. ESI-TOF: expected mass = 8904.6, observed mass = 8904.3. 

(Appendix Figures A10) 

89. Hexyl-ACP. ESI-TOF: expected mass = 8932.6, observed mass = 8932.4. 

(Appendix Figures A11) 

90. Octyl-ACP. ESI-TOF: expected mass = 8960.7, observed mass = 8960.4. 

(Appendix Figures A12) 

91. Decyl-ACP. ESI-TOF: expected mass = 8988.7, observed mass = 8988.4. 

(Appendix Figures A13) 

 

 



40 

 

 

Purification of D-homocysteine thiolactone 

Enantiomerically pure sample of D-homocysteine thiolactone was obtained using 

a published method with modification (Figure 19).57  A solution of DL-homocysteine 

thiolactone (768.15 mg; 5.0 mmole), triethylamine (N(Et)3; 1.2 mL), N- 

hydroxysuccinimide (690.5 mg; 6 mmole), S-(+)-2-methoxyphenylacetic acid (MPA; 1.0 

g; 6.0 mmole), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide HCl (EDC; 1.150 g; 

6 mmole) in 100 mL chloroform was stirred overnight at 4°C. This reaction resulted in 

the synthesis of L-homocysteine thiolactone-containing (3S,2′S)-3-(2′-methoxy-2′-

phenyl-)acetamido-2-thiophenone and D-homocysteine thiolactone-containing (3R,2′S)-

3-(2′-methoxy-2′-phenyl-)acetamido-2-thiophenone. The solution was then washed with 

water (50 mL), NaHCO3 (5%, 20 mL), HCl (2M, 20 mL), and brine (saturated, 40 mL). 

After drying with MgSO4, the solvent was removed under low pressure. The two 

diastereomers were separated by silica gel column chromatography using hexane-ethyl 

acetate solution (7:3). The more polar, D-thiolactone-containing isomers were isolated 

and refluxed in ethanol-4M HCl (2:1; 15 mL) solution overnight. Ethanol was removed 

with rotary evaporation. Water was added to the resulting solution to make it 10 mL and 

washed with toluene (10 mL x 3). The aqueous layer was isolated and the solvent was 

removed under high vacuum. The resulting D-thiolactone-HCl mixture was recrystallized 

with anhydrous 2-propanol. 
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Figure 19. Purification of pure D-homocysteine thiolactone. A racemic mixture 

was acylated with MPA in an EDC-coupled reaction to form diastereomers with distinct 

polarity. The two diastereomers separated via silica gel column chromatography. D-

Homocysteine thiolactone was obtained by removing the MPA by refluxing the 

compound in HCl. 

D-Homocysteine thiolactone HCl. (comparable to literature value57) m.p. 176-178°C 

[𝛼]𝐷
25 -36.3 (0.05 mg/mL in H2O). 1H NMR (600 MHz, D2O): δ 2.10 (1H, m, 4α-H), 2.62 

(1H, m, 4β-H), 3.33 (1H, m, 5α-H), 3.24 (1H, m, 5β-H), 4.29 (1H, s, 3-H). (Appendix 

Figure B1) 

Synthesis of N-acyl-D-homocysteine thiolactones 

The D-thiolactone head-group was acylated using a previously published protocol 

with modification (Figure 20).43  The thiolactone head-group (25 mg; 162.7 µmole) was 

stirred overnight (12 hours) at room temperature with DCC (33.6 mg; 162.7 µmole), N-

hydroxysuccinimide (18.7 mg; 162.7 µmole), triethylamine (50 µL) in acetonitrile (10 

mL) with the appropriate carboxylic acid (162.7 µmole: butyric acid: 14.9 µL; hexanoic 
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acid: 20.6 µL; octanoic acid: 25.8 µL; decanoic acid: 28 mg; dodecanoic acid: 32.6 mg). 

The resulting mixture was cooled to 4 °C for an hour and then filtered with celite to 

remove N,N′-dicyclohexylurea precipitate. The filtrate solution was washed with water, 

HCl (2M), NaHCO3 (saturated), and brine (saturated) (3x10 mL each). After drying with 

MgSO4, and removing the solvent under low pressure, the product was purified with a 

silica gel column using 7:3 hexane: ethyl acetate eluent. 

 
Figure 20. Acylation of D-thiolactone headgroup. D-thiolactone headgroup was 

acylated by a DCC-coupled reaction in acetonitrile. Urea byproduct was removed via 

filtration and excess carboxylic acid was removed via silica gel column chromatography. 

56. N-Butanoyl-D-homocysteine thiolactone. 1H NMR (600 MHz, CDCl3): δ 0.93 (3H, 

t, J = 7.3 Hz, CH3), 1.65 (2H, m, CH2), 1.90 (1H, m, -lac), 2.20, (2H, dt, J = 7.3, 3.9 Hz, 

CH2), 2.93 (1H, m, -lac), 3.23 (1H, ddd, J = 11.4, 4.5, 1.0 Hz, -lac), 3.33 (1H, ddd, J = 

11.7, 11.7, 5.1 Hz, -lac), 4.49 (1H, ddd, J = 12.9, 6.4, 6.4 Hz, -lac), 5.92 (1H, s, NH); 13C 

NMR (CDCl3, 600 MHz): δ 13.9, 19.2, 27.8, 32.4, 38.5, 59.7, 173.7, 205.8; ESI-TOF: 

expected m/z [M + H+] = 188.0734, observed [M + H+] = 188.0763. (Appendix Figures 

A1, B2-B6) 

57. N-Hexanoyl-D-homocysteine thiolactone. 1H NMR (600 MHz, CDCl3): δ 0.87 (3H, 

t, CH3), 1.29 (4H, m CH2), 1.64 (2H, m, CH2), 1.89 (1H, m, -lac), 2.22, (2H, dt, J = 7.5, 

3.5 Hz, CH2), 2.97 (1H, m, -lac), 3.24 (1H, ddd, J = 11.4, 6.9, 1.1 Hz, -lac), 3.34 (1H, 

ddd, J = 11.7, 11.7, 5.3 Hz, -lac), 4.48 (1H, ddd, J = 12.8, 6.4, 6.4 Hz, -lac), 5.83 (1H, s, 

NH); 13C NMR (CDCl3, 600 MHz): δ 13.9, 22.4, 25.2, 27.6, 31.4, 32.2,  36.4, 59.6, 



43 

 

 

173.7, 205.6; ESI-TOF: expected m/z [M + H+] = 216.1047, observed [M + H+] = 

216.1099. (Appendix Figures A2, B7-B9) 

58. N-Octanoyl-D-homocysteine thiolactone. 1H NMR (600 MHz, CDCl3): δ 0.86 (3H, 

t, J = 6.9 Hz, CH3), 1.26 (8H, m CH2), 1.62 (2H, m, CH2), 1.88 (1H, m, -lac), 2.22, (2H, 

dt, J = 7.5, 3.5 Hz, CH2), 2.96 (1H, m, -lac), 3.23 (1H, ddd, J = 11.3, 4.4, 0.9 Hz, -lac), 

3.34 (1H, ddd, J = 11.7, 11.7, 5.2 Hz, -lac), 4.48 (1H, ddd, J = 12.9, 6.4, 6.4 Hz, -lac), 

5.82 (1H, s, NH); 13C NMR (CDCl3, 600 MHz): δ 14.3, 22.8, 25.7, 27.8, 29.4, 29.9, 31.9, 

32.5, 36.7, 59.8, 173.9, 205.8; ESI-TOF: expected m/z [M + H+] = 244.1360, observed 

[M + H+] = 244.1405. (Appendix Figures A3, B10-B14) 

59. N-Decanoyl-D-homocysteine thiolactone. 1H NMR (600 MHz, CDCl3): δ 0.85 (3H, 

t, J = 6.9 Hz, CH3), 1.25 (12H, m CH2), 1.61 (2H, m, CH2), 1.87(1H, m, -lac), 2.21, (2H, 

dt, J = 7.4, 3.6 Hz, CH2), 2.95 (1H, m, -lac), 3.23 (1H, ddd, J = 11.4, 4.5, 1.1 Hz, -lac), 

3.34 (1H, ddd, J = 11.5, 11.5, 5.1 Hz, -lac), 4.48 (1H, ddd, J = 12.7, 6.3, 6.3 Hz, -lac), 

5.86 (1H, s, NH); 13C NMR (CDCl3, 600 MHz): δ 14.0, 22.6, 25.5, 27.6, 29.2, 29.3, 29.4, 

31.8, 32.2, 33.9, 36.4, 59.5, 173.6, 205.5; ESI-TOF: expected m/z [M + H+] = 272.1673, 

observed [M + H+] = 272.1720. (Appendix Figures A4, B15-B19) 

60. N-Dodecanoyl-D-homocysteine thiolactone. 1H NMR (600 MHz, CDCl3): δ 0.86 

(3H, t, J = 6.8 Hz, CH3), 1.25 (16H, m CH2), 1.62 (2H, m, CH2), 1.88(1H, m, -lac), 2.21, 

(2H, dt, J = 7.5, 3.4 Hz, CH2), 2.97 (1H, m, -lac), 3.23 (1H, ddd, J = 11.2, 4.4, 0.8 Hz, -

lac), 3.34 (1H, ddd, J = 11.7, 11.7, 5.3 Hz, -lac), 4.47 (1H, ddd, J = 12.8, 6.2, 6.2 Hz, -

lac), 5.81 (1H, s, NH); 13C NMR (CDCl3, 600 MHz): δ 14.1, 22.6, 24.9, 25.5, 27.6, 29.2, 

29.3, 29.4, 29.6, 31.9, 32.2, 33.9, 36.4, 59.6, 173.6, 205.5; ESI-TOF: expected m/z [M + 

H+] = 300.1986, observed [M + H+] = 300.2042. (Appendix Figures A5, B20-B24) 



44 

 

 

Synthesis of N-(3-Oxoacyl)-D-homocysteine thiolactones 

The synthesis of N-(3-oxoacyl)-D-homocysteine thiolactones has been developed 

previously (Figure 21).58  A solution of Meldrum’s acid (300.0 mg; 2.1 mmole), DCC 

(515.4 mg; 2.5 mmole), 4-(dimethylamino)pyridine (279.7 mg; 2.3 mmole), and the 

appropriate carboxylic acid (2.1 mmole:  butyric acid: 191.0 µL; hexanoic acid: 262.8 

µL; octanoic acid: 329.9 µL; decanoic acid: 358.6 mg) in dichloromethane (10 mL) was 

stirred at room temperature overnight. The resulting mixture was cooled to 4 °C for an 

hour and then filtered with celite to remove N,N′-dicyclohexylurea precipitate. The 

filtrate was washed with HCl (2M, 20 mL). After drying with MgSO4, the solvent was 

removed under low pressure. A solution of D-homocysteine thiolactone HCl (30.0 mg; 

0.2 mmole), triethylamine (35 µL) and the appropriate acylated Meldrum’s acid (0.2 

mmole) in acetonitrile (10 mL) was prepared. The solution was stirred at room 

temperature for 1 hour and then refluxed overnight. The solvent was removed under low 

pressure and the product was then dissolved in ethyl acetate (10 mL). The solution was 

washed with NaHCO3 (saturated), KHSO4 (1M), and brine (saturated) (10 mL x 3 each). 

After drying with MgSO4, and removing the solvent under low pressure, the product was 

purified with a silica gel column using 7:3 hexane: ethyl acetate eluent. 
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Figure 21. Synthesis and purification of 3oxoacyl-D-thiolactones. Carboxylic acid 

was attached to Meldrum’s acid via DCC-coupled reaction. The acylated Meldrum’s acid 

was reacted with thiolactone headgroup under heat. This reaction produced 3oxoacyl-

thiolactone product and small amounts of a side product, which was removed via silica 

gel column chromatography. 

61. N-(3-Oxohexanoyl)-D-homocysteine thiolactone. 1H NMR (600 MHz, CDCl3): δ 

0.91 (3H, t, J = 7.4 Hz, CH3), 1.61 (2H, m, CH2), 1.99 (1H, m, -lac), 2.49, (2H, t, J = 7.4 

Hz, CH2), 2.83 (1H, m, -lac), 3.24 (1H, ddd, J = 11.5, 6.9, 1.0 Hz, -lac), 3.33 (1H, ddd, J 

= 11.7, 11.7, 5.2 Hz, -lac), 3.43 (2H, s, CH2) 4.56 (1H, ddd, J = 12.9, 6.8, 6.8 Hz, -lac), 

7.43 (1H, s, NH); 13C NMR (CDCl3, 600 MHz): δ 13.7, 17.1, 27.7, 31.8, 46.0,  48.6, 59.5, 

166.4, 204.7, 206.6; ESI-TOF: expected m/z [M + H+] = 230.0845, observed [M + H+] = 

230.0896. (Appendix Figures A6, B25-B29) 

62. N-(3-Oxooctanyol)-D-homocysteine thiolactone. 1H NMR (600 MHz, CDCl3): δ 

0.86 (3H, t, J = 7.1 Hz, CH3), 1.26 (4H, m CH2), 1.56 (2H, m, CH2), 1.99 (1H, m, -lac), 

2.50, (2H, t, J =7.4 Hz, CH2), 2.82 (1H, m, -lac), 3.23 (1H, ddd, J = 11.4, 7.0, 1.1 Hz, -

lac), 3.33 (1H, ddd, J = 11.7, 11.7, 5.2 Hz, -lac), 3.43 (2H, s, CH2), 4.56 (1H, ddd, J = 

13.0, 6.6, 6.6 Hz, -lac), 7.45 (1H, s, NH); 13C NMR (CDCl3, 600 MHz): δ 14.0, 22.6, 

23.3, 27.7, 31.3, 31.7, 44.1,  48.6, 59.5, 166.4, 204.7, 206.7; ESI-TOF: expected m/z [M 

+ H+] = 244.1360, observed [M + H+] = 244.1433. (Appendix Figures A7, B30-B34) 
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63. N-(3-Oxodecanoyl)-D-homocysteine thiolactone. 1H NMR (600 MHz, CDCl3): δ 

0.84 (3H, t, J = 7.1 Hz, CH3), 1.24 (8H, m CH2), 1.55 (2H, m, CH2), 1.99 (1H, m, -lac), 

2.49, (2H, t, J = 7.4 Hz, CH2), 2.81 (1H, m, -lac), 3.23 (1H, ddd, J = 11.4, 7.1, 1.0 Hz, -

lac), 3.32 (1H, ddd, J = 11.8, 11.8, 5.3 Hz, -lac), 3.42 (2H, s, CH2), 4.56 (1H, ddd, J = 

12.9, 6.6, 6.6 Hz, -lac), 7.46 (1H, s, NH); 13C NMR (CDCl3, 600 MHz): δ 14.2, 22.8, 

23.6, 27.7, 29.14, 29.17, 31.7, 31.8, 44.0,  48.6, 59.4, 166.5, 204.7, 206.6; ESI-TOF: 

expected m/z [M + H+] = 286.1471, observed [M + H+] = 286.1472. (Appendix Figures 

A8, B35-B39) 

64. N-(3-Oxododecanoyl)-D-homocysteine thiolactone. 1H NMR (600 MHz, CDCl3): δ 

0.85 (3H, t, J = 7.1 Hz, CH3), 1.24 (12H, m CH2), 1.56 (2H, m, CH2), 1.99 (1H, m, -lac), 

2.50, (2H, t, J = 7.3 Hz, CH2), 2.83 (1H, m, -lac), 3.24 (1H, ddd, J = 11.2, 6.9, 1.0 Hz, -

lac), 3.33 (1H, ddd, J = 11.7, 11.7, 5.2 Hz, -lac), 3.43 (2H, s, CH2), 4.56 (1H, ddd, J = 

12.9, 6.7, 6.7 Hz, -lac), 7.45 (1H, s, NH); 13C NMR (CDCl3, 600 MHz): δ 14.3, 22.9, 

23.6, 27.7, 29.2, 29.4, 29.5, 29.6, 31.8, 32.1, 44.1,  48.5, 59.4, 166.4, 204.7, 206.7; ESI-

TOF: expected m/z [M + H+] = 314.1784, observed [M + H+] = 314.1791. (Appendix 

Figures A9, B40-B14) 

Mass Spectrometry 

Molecular mass of ACP derivatives was determined by high performance liquid 

chromatography mass spectrometry (HPLC-MS) using a high resolution Quadrupole 

Time of Flight (QTOF) instrument with electrospray ionization (ESI). The ESI source 

was operated at positive ion mode, the nebulizer pressure at 1.2 bar, nitrogen drying gas 

flow at 8 L/min, drying temperature at 200 °C, and the voltage of the capillary and the 

end-plate offset to 3000 V to -500 V. The mass range was set from 250 to 2900 m/z and 
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low concentration ESI tuning mix (Agilent Technologies, Santa Clara, California) was 

used to calibrate the instrument in the mass range. Ten microliters of samples were 

injected onto a Phenomenex Kinetex XB-C18 column (100 x 2.1 mm, 2.6μm) 

(Phenomenex Corporation, Torrance, California) at a flow rate of 0.3 mL/min followed 

by a simple linear gradient for sample desalting and separation. The initial eluent was 

98% mobile phase A (99.9% water, 0.1% formic acid) and 2% B (99.9% acetonitrile, 

0.1% formic acid) for 5 min and then mobile phase B was increased to 50% in 25 min. 

LC eluent was diverted to the waste during the first five minutes of the gradient to 

eliminate salts in the sample buffer. 

Small molecule samples were prepared in concentrations of 0.5 mg/mL in 

methanol. Molecular mass of AHL analogs were determined with the instrument 

described above with direct sample injection via ESI inlet. The ESI source was operated 

at positive ion mode, the nebulizer pressure at 0.4 bar, nitrogen drying gas flow at 4 

L/min, drying temperature at 200 °C, and the voltage of the capillary and the end-plate 

offset to 3000 V to -500 V. The mass range was set from 80 to 800 m/z and sodium 

formate was used to calibrate the instrument in this mass range. 

The collected data was analyzed with the Bruker Compass Data Analysis software 

and the observed m/z values were compared to the theoretical monoisotopic mass 

calculated by Bruker Compass IsotopePattern software. 

Kinetics Assays 

Determination of Background rate 

A colorimetric DCPIP indirect assay was used to determine RhlI activity.53  Assay 

mixtures composed of HEPES buffer (100 mM, pH 7.3), SAM (300 µM), butanoyl-ACP 
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(30 µM), DCPIP (30 µM), and sufficient nanopure water for a total volume of 100 µL 

were tested, with DCPIP being added the last. Upon the addition of DCPIP, the 

absorbance of the mixture was observed at 600 nm for 30 minutes. The background rate 

was calculated by DCPIP reduction (ε600=21,000 M-1cm-1; see Chapter 1, equations 1-3). 

The time range at which the background rate was 5% of the lowest enzyme rate observed 

was used as the incubation time. 

Determination of Kinetic Constants 

Butanoyl- (C4), hexanoyl- (C6), octanoyl- (C8), decanoyl- (C10), and 

dodecanoyl- (C12) ACPs were tested (compounds 83-87; chapter 1, Table 3). The 

reaction mixture was composed of RhlI (0.3 µM or 0.9 µM), DCPIP (300 µM), SAM 

(300 µM), HEPES buffer (100 mM, pH 7.3), varying concentrations of acyl-ACP (2-200 

µM), and nanopure water for a total of 100 µL reaction volume. The RhlI concentration 

was maintained at 0.3 µM when working with C4-ACP native substrate and kept to 0.9 

µM when non-native substrates were tested. All components, sans enzyme, were 

incubated together for 10 minutes prior to initiation by RhlI. The absorbance was 

monitored for 300 seconds at 600 nm. The decrease in DCPIP absorbance in the 100 to 

200 second range was converted to RhlI rate (equations 1-3, chapter 1) and fitted to 

Michaelis-Menten equation (equation 5, chapter 1) to determine the kinetic constants. 

Each run was conducted in triplicates and the spread used to determine error with 

GraphPad Prism 7. 

IC50/EC50 determination 

Since AHLs are mostly hydrophobic, AHL derivatives were first dissolved in 

DMSO. The IC50 value of DMSO was determined to identify the appropriate volume of 
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DMSO to use. The reaction mixture was composed of RhlI (0.3 µM), DCPIP (300 µM), 

SAM (300 µM), C4-ACP (14 µM), HEPES buffer (100 mM, pH 7.3), varying 

concentrations of DMSO (10% – 25% total volume), and nanopure water for a total of 

100 µL reaction volume. All components, sans enzyme, were incubated together for 10 

minutes prior to initiation by RhlI. After enzyme addition, the absorbance was monitored 

for 300 seconds at 600 nm. The decrease in DCPIP absorbance in the 100 to 200 second 

range was converted to enzyme rate (equations 1-3, chapter 1) to determine the 

appropriate volume of DMSO to use for RhlI enzyme assay.  

The effects of various AHL analogs were tested by measuring their IC50 or EC50 

values via DCPIP colorimetric assay. The reaction mixture was composed of RhlI (0.3 

µM), DCPIP (300 µM), SAM (300 µM), C4-ACP (14 µM), HEPES buffer (100 mM, pH 

7.3), varying concentrations (0 -2 mM) of AHL analogs in DMSO (10% of total reaction 

volume as determined by above experiment; see Appendix Figure C17), and nanopure 

water for a total of 100 µL reaction volume. All components, sans enzyme, were 

incubated together for 10 minutes prior to initiation by RhlI. After enzyme addition, the 

absorbance was monitored for 300 seconds at 600 nm. The decrease in DCPIP 

absorbance in the 100 to 200 second range was converted to RhlI rate (equations 1-3, 

chapter 1) and fitted to IC50 or EC50 equations depending on the effect (equations 26 and 

30, chapter 1). Each run was conducted in triplicates and the spread used to determine 

error with GraphPad Prism 7. 

The effects of IACPs and ICoAs were tested by measuring their IC50 values via 

DCPIP colorimetric assay. The reaction mixture was composed of RhlI (0.3 µM), DCPIP 

(300 µM), SAM (300 µM), C4-ACP (14 µM), HEPES buffer (100 mM, pH 7.3), varying 
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concentrations (0 - 1 mM) of IACP or ICoA, and nanopure water for a total of 100 µL 

reaction volume. All components, sans enzyme, were incubated together for 10 minutes 

prior to initiation by RhlI. After enzyme addition, the absorbance was monitored for 300 

seconds at 600 nm. The decrease in DCPIP absorbance in the 100 to 200 second range 

was converted to RhlI rate (equations 1-3, chapter 1) and fitted to IC50 equation (equation 

26, chapter 1) with GraphPad Prism 7. 

Time-dependent IC50 test 

The inhibitory effects as a function of time was determined by incubating RhlI 

with varying concentration of an inhibitor for 0, 10, 30, and 60 minutes. The reaction 

mixture was composed of RhlI (0.3 µM), DCPIP (300 µM), SAM (300 µM), C4-ACP 

(14 µM), HEPES buffer (100 mM, pH 7.3), varying concentrations (10 µM -2 mM) of 

the inhibitor. All components, sans RhlI and the inhibitor, were incubated together for 10 

minutes prior to initiation by RhlI-inhibitor mixture. Upon reaction initiation, the 

absorbance was monitored for 300 seconds at 600 nm. The decrease in DCPIP 

absorbance in the 100 to 200 second range was converted to RhlI rate (equations 1-3, 

chapter 1) and fitted to IC50 or EC50 equations depending on the effect (equations 26 and 

30, chapter 1). Each run was conducted in triplicates and the spread used to determine 

error with GraphPad Prism 7. 

Mode of Inhibition tests 

The activity of RhlI as a function of C4-ACP concentration was determined under 

varying amounts of an inhibitor. The inhibitor concentration was determined from the 

IC50 test, choosing two concentrations below, two above and one run with zero inhibitor. 

Each reaction mixture contained RhlI (0.3 µM), DCPIP (300 µM), SAM (300 µM), 
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HEPES buffer (100 mM, pH 7.3), and varying concentrations of C4-ACP (2-20 µM) and 

of the inhibitor (0-400 µM). The concentration of C4-ACP was varied while the inhibitor 

concentration constant. All components, sans enzyme, were incubated together for 10 

minutes prior to initiation by RhlI. The absorbance was monitored for 300 seconds at 600 

nm. The decrease in DCPIP absorbance in the 100 to 200 second range was converted to 

RhlI rate (equations 1-3, chapter 1) and fitted to modified Michaelis-Menten equation 

using Vmax
app and Km

app to determine the apparent kinetic constants (equation 17, chapter 

1). After determining the mode of inhibition, the Vmax
app and Km

app values were used to 

calculate the inhibitor binding affinity, Ki, value (competitive mode of inhibition: 

equations 18, 19; uncompetitive mode of inhibition: equations 20, 21; and mixed or 

noncompetitive mode of inhibition: equations 22, 23; see chapter 1). Each data point was 

collected in single run and fitted to various inhibition models and the best model was 

determined by comparing each fit using Akaike’s method (AIC) (equations 24 and 25, 

chapter 1). 
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CHAPTER THREE: RESULTS AND DISCUSSION 

Enzyme Purification 

RhlI purification 

Four hours of growth was required for the RhlI-containing strains in 1 L medium 

to reach OD600 value between 0.6 and 0.8 for sufficient cell density. Physical lysis via 

sonication and the subsequent centrifugation resulted in clear dull-yellow lysate. The 

RhlI-containing plasmid also codes for maltose binding protein (MBP) for use with 

amylose affinity column. The RhlI and MBP pair has a combined molecular weight of 

65.5 kD, which was supported by the analysis of SDS-PAGE gel (Figure 22) 

 
Figure 22. SDS-PAGE gel of RhlI protein isolated using amylose 

chromatography. Lane 1: EZ prestained protein ladder; Lane 2: RhlI column load run-

through; Lane 3: load wash; Lanes 4-8: Buffer A (50 mM Tris-HCl, pH 7.5, 0.2 M NaCl, 

1 mM EDTA, 0.1 mM PMSF, 0.1 mM TLCK, 0.4 M sucrose, and 2.5% (v/v) glycerol) 

+10 mM maltose elution fractions 1-5. RhlI + MBP has a combined molecular weight of 

65.5 kD. The 100 kD ladder is the first one from the top, followed by 30 kD marker. The 

thick bands in between the 100 and 30 kD marker, much closer to the 100 kD marker, are 

presumed to be containing purified RhlI. 
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Apo-ACP Purification 

The cell culture reached optimal cell density indicated by OD600 = 0.6-0.8 within 

4 hours of growth. Chemical lysis via B-PER, DNase, RNase, Lysozyme, and PMSF 

followed by centrifugation was effective in producing clear dull-yellow lysate. Upon 

addition of MgCl2 and MnSO4 to activate ACP-hydrolase, co-coded with apo-ACP gene 

to convert holo-ACP to apo-ACP, the solution turned cloudy. A clear lysate was again 

achieved after precipitating ACP-hydrolase using 2-propanol followed by centrifugation. 

This solution was run through DE52 diaminoethyl cellulose anion exchange column for 

purification. SDS-PAGE gel confirmed the isolation of apo-ACP at ~9 kD (Figure 23). 

 
Figure 23.  SDS-PAGE gel of apo-ACP isolated with anion exchange 

chromatography. Lane 1:  EZ prestained protein ladder; Lane 2: Crude apo-ACP; Lane 

3:  load wash; Lanes 4-10: 10 mM lithium MES pH 6.1 + 0.5 M LiCl elution fractions 1, 

3, 5, 7, 9, 11. The second-from-the-bottom ladder corresponds to 10 kD. The protein 

bands aligned with the 10 kD marker are presumed to be apo-ACP (8.6 kD). 

Alkyl-CoA Synthesis 

In alkyl-CoA synthesis reaction, free-Coenzyme A (limiting reagent) is alkylated 

with alkyl-bromides. As described in Chapters 1 and 2, DCPIP turns colorless upon 

reaction with thiols. Therefore, upon adding a sample of the reaction mixture to an 

aliquot of DCPIP, if no color change is observed, it would indicate that free-CoA, a thiol, 
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was completely consumed and that the reaction went to completion. The alkyl-CoA 

(inactive-CoA; ICoA) was isolated via HPLC using the Alkyl-CoA separation method 

described in Chapter 2 and the fractions were collected using an automated fraction 

collector. Since the compounds are run through a reverse-phase column, compounds with 

longer alkyl-chain (more nonpolar) have longer retention time (RT) as compared to 

ICoAs with shorter, less hydrophobic, alkyl-chains (Figure 24). 

 
Figure 24. Elution time of various alkyl-CoAs. The reverse-phase preparatory 

column has higher affinity for more hydrophobic compounds, causing compounds with 

longer alkyl chain, thus greater hydrophobicity, to have greater retention time. 

Acyl/Alkyl-ACP Synthesis 

Phosphopantetheinyl transferase, or Sfp, catalyzes the transfer of acyl-/alkyl-

pantetheine from CoA nucleotide to ACP protein. Apo-ACP (limiting reagent) was 

reacted with acyl-/alkyl-CoA in the presence of Sfp. Due to precipitation of highly 

hydrophobic CoAs with acyl-/alkyl- chain of ten carbons or longer, C10-CoA and C12-

CoA were added to the reaction in portions over a 90-minute period to avoid having the 

CoA crash out of the predominantly aqueous solvent. The synthesis of acyl-/alkyl-ACPs 

were monitored by HPLC using the ACP separation method as described in Chapter 2. 

Using the standard ACP separation method, apo-ACP elutes out at 7.8 minutes. The 
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addition of pantetheine linker greatly reduces its overall hydrophobicity, causing holo- 

and butanoyl-ACPs to have shorter RT than apo-ACP whereas acyl/alkyl-ACPs with 

eight or longer carbon chain nonpolar enough to have longer RT than apo-ACP (Figure 

25a). Whereas apo-ACP elutes out at 7.8 minutes, butanoyl-, octanoyl-, decanoyl-, and 

dodecanoyl-ACPs elute out at 7.3, 8.0, 8.3, and 8.7 minutes, respectively. However, 

hexyl- and hexanoyl-ACPs have nearly identical RT as apo-ACP, necessitating 

separation using C6-ACP separation method with shallower solvent gradient (Figure 

25b). In this method, apo-ACP elution time is 34 minutes, compared with 33 minutes for 

hexanoyl-ACP. There is virtually no difference in the elution time between an acyl-ACP 

and its alkyl-ACP counterpart (e.g. both butanoyl-ACP and butyl-ACP elutes out at 7.3 

minutes). The reaction was deemed complete when the limiting reagent, apo-ACP, peak 

at 7.8 min was completely depleted, which occurred in 3 hours or less. However, the 

batch was deemed unusable if there was a significant peak present at 6.5 minutes, 

corresponding to holo-ACP contamination. The solution became cloudy when 

ammonium sulfate was added to precipitate Sfp. The precipitated transferase was then 

removed with centrifugation. The clear lysate was run through 3 kD spin filtration 

column to remove ammonium sulfate, CoA byproduct, and excess acyl-/alkyl-CoA. This 

filtration process was repeated until the peak at 280 nm (corresponding to ACP) was at 

least 10% greater than the peak at 260 nm (corresponding to CoA) as determined by the 

UV-vis spectrophotometer. 



56 

 

 

 
Figure 25. Elution time of various acyl-/alkyl-ACPs. The more hydrophobic 

compounds have higher affinity to the reverse-phase UHPLC column and have longer 

retention time. The addition of the pantetheine linker greatly reduces the hydrophobicity 

of ACP, (a) causing acyl-/alkyl-ACPs with four carbon chains or shorter to elute out 

before apo-ACP and those with chains of eight carbons or longer to elute out after apo-

ACP. (b) Hexanoyl-/hexyl-ACP has nearly identical retention time as apo-ACP thus 

requiring the solvent gradient to shift over a longer time-period at a lower flowrate. 

Small Molecule Synthesis 

D-Homocysteine Thiolactone (Figure 19, Chapter 2) 

Stereoisomerically pure D-homocysteine thiolactone was purified from a racemic 

mixture of DL-homocysteine thiolactone by acylating the thiolactone headgroup with S-

(+)-2-methoxyphenylacetic acid in a EDC-coupled reaction to produce two diastereomers 

with distinct differences in polarity that could be separated with column chromatography. 

The EDC-coupled reaction produced white crystalline product easily soluble in 

chloroform but not so much in the 7:3 hexane: ethyl acetate eluting solvent, thus the 
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diastereomer mixture was dissolved in minimal amount of chloroform and then loaded to 

the silica gel column. The separation of the diastereomers via silica gel column was 

confirmed with thin layer chromatography (TLC) with UV active silica with the 7:3 

hexane: ethyl acetate eluent. Because there is only a small difference in the polarities of 

the diastereomers, there were significant number of fractions with both products. The 

fractions with the both diastereomers were collected and run through the silica gel 

column again to fully isolate the desired product. In addition to comparing the polarity of 

the diastereomers via elution time, the purity of the diastereomers was further confirmed 

by comparing the melting point of each compound; (3S,2′S)-3-(2′-methoxy-2′-phenyl-

)acetamido-2-thiophenone (containing L-homocysteine thiolactone) had a melting point 

of 160-164°C (literature value: 161-163°C57) whereas (3R,2′S)-3-(2′-methoxy-2′-phenyl-

)acetamido-2-thiophenone (containing D-homocysteine thiolactone) had a melting point 

of 110-115°C (literature value: 109-111°C57). Once the D-homocysteine thiolactone 

head-group was isolated and recrystallized in 2-propanol, its stereo purity was confirmed 

by optical rotation measurement [𝛼]𝐷
25 -36.3 (0.05 mg/mL in H2O) (literature value: -

21.757). 

N-Acyl-D-Homocysteine Thiolactone (Figure 20, Chapter 2) 

The DCC-coupled reaction resulted in colorless mixture with white cloudy urea 

precipitate, which was easily removed via filtration with celite. Butyric acid was 

sufficiently polar to yield clean N-Butanoyl-D-homocysteine thiolactone through a series 

of aqueous washes with water, HCl (2M; 3x10 mL), NaHCO3 (saturated; 3x10 mL), and 

brine (saturated; 3x10 mL). However, carboxylic acids with tails of six carbons or longer 

were not polar enough to be removed by aqueous washes alone, requiring purification via 
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silica gel column chromatography. The polarity between the N-acyl-D-homocysteine 

thiolactones and their corresponding carboxylic acids were close enough that two runs 

through the column were required to obtain a pure product. 

N-(3-Oxoacyl)-D-Homocysteine Thiolactone (Figure 21, Chapter 2) 

Meldrum’s acid acylation reaction resulted in a colorless mixture with white 

cloudy urea precipitate, which was removed via celite filtration, which yielded a pale-

yellow flake-like product which was stored at -20 °C to protect the temperature sensitive 

Meldrum’s acid. Refluxing the acylated Meldrum’s acid with the D-homocysteine 

thiolactone head-group opened the Meldrum’s acid ring and attached the 3-oxoacyl tail to 

the headgroup. The polarity of the N-(3-Oxoacyl)-D-homocysteine thiolactones and their 

corresponding carboxylic acids were close enough that two runs through the silica gel 

column were required to obtain a pure product. 

Spectral Data 

See Appendix for all Mass Spectrometry (Appendix A), NMR (Appendix B), and 

UV-vis spectrophotometer (Appendix C) spectra. 

AHL Analog Kinetics 

Background rate 

As reported previously, non-specific reduction of DCPIP is a major limitation of 

the DCPIP colorimetric assay, which is compounded by significant levels of 

contamination in commercially available SAM-Cl.53  To circumvent the issue, the 

reaction mixture, except the enzyme, was incubated with DCPIP and the decrease in 

absorbance at 600 nm was observed. The rate of decrease of absorbance flattens around 

600 s (10 min) and the background rate in the 600-900 s range is equivalent of 0.013 
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µM/min, about 5% of the lowest enzyme rate observed in this project (Figure 26). 

Therefore, to minimize background rate interference, the reaction mixture was incubated 

with DCPIP for 10 min before initiation with the enzyme. 

 
Figure 26. DCPIP background rate progress curve. The 100 µL reaction mixture 

was composed of HEPES buffer (100 mM, pH 7.3), SAM (300 µM), butanoyl-ACP (30 

µM), DCPIP (30 µM), and water. The absorbance at 600 nm was observed for 1200 s (20 

min). The background rate flattens out at 600 s (10 min). 

The Effects of AHL analogs on RhlI enzymatic rate 

Previous studies have shown that RhlI activity is unaffected by butanoyl-

homoserine lactone (C4-HSL; compound 1), its native N-acyl-homoserine lactone (AHL) 

product.36  To explore the components of the AHL structure that could be modified to 

affect RhlI activity, the first set of AHL analogs were designed to test the effects of 

alterations to the headgroup on RhlI enzymatic rate (Figure 27). The L-homoserine 

lactone headgroup was modified in the lactone ring (compounds: 2-4, 8-12), the chirality 

(compounds: 5, 12), and the tail-headgroup linkage (compounds: 6, 7, 10-12). While 

most derivatives failed to effect RhlI, a change in the chirality and linkage (compounds 5 

and 12) in AHL inhibited RhlI. Although analog 8, the thiolactone derivative, did not 

inhibit RhlI, work from our collaborators have found thiolactone analogs to have 
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significant antagonistic and agonistic effects on QS receptor proteins; therefore, we were 

interested in exploring thiolactone analogs in an effort to discover compounds that could 

inhibit both RhlI (AHL synthase) and RhlR (AHL receptor) simultaneously.43  The initial 

study and previous findings prompted us to further expand the analog libraries with 

alterations to the headgroup stereocenter, sulfonamide linkage between the headgroup 

and the aliphatic chain, and thiolactone ring headgroup in the search for better RhlI 

inhibitors. (for kinetics data, see Appendix, Figure C1) 

 
1 
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No effect No effect No effect No effect 

 
5 

 
6 

 
7 

 
8 

IC50: 687.7 ± 90.7 µM No effect No effect No effect 

 
9 

 
10 

 
11 

 
12 

No effect No effect No effect IC50: 170.9 ± 98.0 µM 

Figure 27. Initial set of AHL-analogs and their effects. The initial rates of RhlI 

with 300 µM of SAM and 14 µM of C4-ACP in the presence of 0-20 mM of the AHL 

analogs were observed. Only the chiral and linkage changes (compounds 5 and 12) 

caused inhibition. (Appendix Figure C1) 

Acyl-L-homoserine lactone (L-HSL) 

In many QS receptor studies, modifications to the acyl-chain had significant 

antagonistic and agonistic effects on the receptor.43, 59  To determine whether the same is 

true for RhlI, the native headgroup, L-HSL, was acylated with various acyl, 3-oxoacyl, 

and 3-hydroxyacyl-chains (compounds 1,13-27; Figure 28).  Regardless of the 
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modification to the hydrocarbon chain, none of the sixteen analogs with the L-HSL 

headgroup moiety inhibited RhlI. (Appendix Figure C2) 
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No effect No effect No effect 
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No effect No effect  
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27 

No effect No effect No effect 

Figure 28. Effects of acyl-L-homoserine lactones, 3-oxoacyl- and 3-hydroxyacyl-

L-homoserine lactones on RhlI initial rate. The initial rates of RhlI in the presence of 

0-2 mM of acyl-L-homoserine lactones of various acyl-chain lengths were observed. 

Acyl-L-homoserine lactones with chains between 4 and 16 carbons long did not inhibit 

RhlI. (Appendix Figure C2) 

Acyl-D-homoserine lactone (D-HSL) 

While none of the eight acyl-L-HSLs (compounds: 1, 13-19) inhibited RhlI, two 

analogs out of seven acyl-D-HSLs were found to inhibit the enzyme: compounds 5, IC50: 

687.7 ± 90.7 µM, and compound 31, IC50: 20.2 ± 10.1 µM (Figure 29). Interestingly, 
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while compound 5 has a butanoyl tail, which is the native acyl-chain for the Rhl QS 

system, compound 31 has a phenylbutanoyl chain, which should be too large to bind to 

RhlI acyl-chain binding pocket. (Appendix Figure C3) 
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29 

IC50: 687.7 ± 90.7 µM No effect No effect 

 
30 

 
31 

 
32 

No effect IC50:  20.2 ± 10.1 µM No effect 

 
33   

No effect   

Figure 29. Effects of acyl-D-homoserine lactones. The initial rates of RhlI in the 

presence of 0-2 mM of acyl-D-homoserine lactones of various acyl-chain lengths were 

observed. Of these compounds, acyl-D-homoserine lactones with butanoyl and butyl-

phenyl chain (compounds 5 and 31) inhibited RhlI, with the longer/bulkier compound 31 

having lower IC50 value (20.2 ± 10.1 µM vs. 687.7 ± 90.7 µM). (Appendix Figure C3) 

3-oxoacyl-D-HSL 

However, the more interesting pattern emerges with 3-oxoacyl-D-HSL derivatives 

(Figure 30). While compound 35, medium chain-length analog (3-oxoC8-D-HSL), 

inhibited RhlI (IC50: 282.0 ± 34.1 µM), a shorter chain derivative, compound 34 (3-

oxoC6-D-HSL), activated RhlI (EC50:  224.4 ± 55 µM). This discovery of an activator, 

suggests that the small molecule modulators are perhaps binding to an allosteric or 

nonspecific binding site. The presence of a nonspecific binding site could explain how 

compound 31, with its large tail, binds with and inhibits RhlI. (Appendix Figure C4) 
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34 

 
35 

 
36 

EC50:  224.4 ± 55 µM IC50:  282.0 ± 34.1 µM No effect 

Figure 30. Effects of 3-oxoacyl-D-homoserine lactones. The initial rates of RhlI in 

the presence of 0-2 mM of 3-oxoacyl-D-homoserine lactones of various acyl-chain 

lengths were observed. Of these compounds, acyl-D-homoserine lactones with hexanoyl 

chain (compound 34) activated RhlI initial rate (EC50:  224.4 ± 55 µM) whereas the one 

with octanoyl chain (compound 35) inhibited RhlI (IC50: 282.0 ± 34.1 µM) and the one 

with dodecanoyl chain did not affect RhlI enzyme rate. (Appendix Figure C4) 

Acyl-sulfonamide-DL-HSL 

Unlike the pattern found with acyl-HSLs, RhlI inhibitors were found from both L 

and D sulfonamide derivatives (Figure 31). Compound 12, a sulfonamide-D-HSL analog, 

was found to be a more potent inhibitor than compound 37, a sulfonamide-L-HSL analog, 

with IC50 values of 170.9 ± 98.0 µM vs. 345.3 ± 79.3 µM, respectively. However, no 

other variations in the aliphatic chain with sulfonamide linkage was found to inhibit RhlI. 

(Appendix Figure C5) 
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41 

 
42 

IC50: 170.9 ± 98.0 µM No effect No effect 

Figure 31. Effects of L and D sulfonamides. The initial rates of RhlI in the presence 

of 0-2 mM of L and D sulfonamide-homoserine lactones of various chain lengths were 

observed. The compounds with the short chains, butylsulfonamide-L-homoserine lactone 

(compound 37) and propylsulfonamide-D-homoserine lactone (compound 12), inhibited 

RhlI with IC50 values of 345.3 ± 79.3 µM and 170.9 ± 98.0 µM, respectively. (Appendix 

Figure C5) 
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Acyl- and 3-oxoacyl-L-homocysteine thiolactone 

Although compound 8 did not inhibit RhlI, expansion of the hydrocarbon tail 

library yielded two inhibitors: compounds 46 and 55 with IC50 values of 387.3 ± 88.6 µM 

and 621.2 ± 49.5 µM, respectively (Figure 32). Again, contrary to initial expectations, it 

is the long-chain analogs that inhibit RhlI while the short-chain derivatives fail to effect 

RhlI activity. Furthermore, this is the first category of compounds with a L-stereocenter 

headgroup in which multiple inhibitors were discovered. (Appendix Figure C6) 
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No effect IC50: 387.3 ± 88.6 µM No effect 
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55 

No effect No effect IC50: 621.2 ± 49.5 µM 

Figure 32. Effects of acyl- and 3-oxoacyl-L-homocysteine thiolactones. The initial 

rates of RhlI in the presence of 0-2 mM of acyl- and 3-oxoacyl-L-homocysteine 

thiolactones of various acyl-chain lengths were observed. Of these compounds, only C12-

L-homocysteine thiolactone and 3-oxo-C12-L-homocysteine thiolactone (compounds 46 

and 55), the ones with the longest straight chain, inhibited RhlI. Of these two compounds, 

one with the acyl-chain had lower IC50 value than the one with the 3-oxoacyl-chain (IC50: 

387.3 ± 88.6 µM vs. 621.2 ± 49.5 µM). (Appendix Figure C6) 
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Acyl- and 3-oxoacyl-D-thiolactone 

Following the pattern found with L- and D-HSL derivatives, D-thiolactone 

analogs produced much more potent inhibitors than L-thiolactones (Figure 33). 

Compared with IC50 value of 387.3 ± 88.6 µM for compound 46 (C12-L-thiolactone), 

compound 60 (C12 D-thiolactone) had IC50 value of 11.4 ± 1.5 µM, a 34-fold decrease. 

And whereas compound 55 (3-oxoC12-L-thiolactone) had IC50 value of 621.2 ± 49.5 µM, 

compound 64 (3-oxoC12-D-thiolactone) was found to have a much lower IC50 value 

127.4 ± 70.2 µM, close to 5-fold decrease. However, the most interesting phenomena 

occurred with short and medium-chain derivatives. As seen with 3-oxoacyl-D-HSLs, 

which were found to be activating with a shorter chain and inhibiting with a longer chain, 

3-oxoC6, 3-oxoC8, and 3-oxoC10-D-thiolactones (compounds 61-63) activated while 3-

oxo C12-D-thiolactone (compound 64) inhibited RhlI. Interestingly, as the chain 

lengthened from 3-oxoC6 to 3-oxoC8 and 3-oxoC10, the activation potency increased 

indicated by EC50 values decreasing 1506 ± 109.9 µM, 854.5 ± 74.4 µM, and 57.1 ± 22.7 

µM. (Appendix Figure C7) 
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No effect IC50: 11.4 ± 1.5 µM EC50: 1506 ± 109.9 µM 
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64 

EC50: 854.5 ± 74.4 µM EC50: 57.1 ± 22.7 µM IC50: 127.4 ± 70.2 µM 
Figure 33. Effects of acyl- and 3-oxoacyl-D-homocysteine thiolactones. The initial 

rates of RhlI in the presence of 0-2 mM of acyl- and 3-oxoacyl-D-homocysteine 

thiolactones of various acyl-chain lengths were observed. Of these compounds, 

dodecanoyl-D-homocysteine thiolactone and 3-oxo-dodecanoyl-L-homocysteine 

thiolactone (compounds 60 and 64), the ones with the longest straight chain, inhibited 

RhlI. As with their L-counterpart, one with the acyl-chain had lower IC50 value than the 

one with the 3-oxoacyl-chain (IC50: 11.4 ± 1.5 µM vs. 127.4 ± 70.2 µM). The shorter-

chain 3-oxoacyl-D-homocysteine thiolactones (compounds 61-63) activated RhlI activity, 

with the EC50 values decreasing as the carbon chain lengthened. (Appendix Figure C7)  

Acyl-Cyclopentanamide 

Since thiolactone derivatives inhibited and activated RhlI to a greater degree than 

lactone analogs, the effects of cyclopentyl headgroup was tested to explore further 

increase in headgroup hydrophobicity (compounds 4, 65-68; Figure 34). However, no 

cyclopentyl derivatives effected RhlI activity. (Appendix Figure C8) 
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No effect No effect No effect 
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No effect No effect  

Figure 34. Effects of acyl-cyclopentanamide on RhlI activity. The initial rates of 

RhlI-catalyzed C4-HSL synthesis were similar with and without acyl-cyclopentanamides, 

suggesting no inhibitory effect of this class of molecules on RhlI activity. (Appendix 

Figure C8) 

Non-lactone derivatives 

While cyclopentyl derivatives tested the effects of nonpolar headgroups, various 

non-lactone analogs were designed to test headgroups of various configurations and 

hydrophilicity (compounds 2, 3, 9-11, 69-73; Figure 35). None of these non-lactone 

compounds inhibited RhlI. (Appendix Figure C9) 

  

N
H

O

H
N
H

OO

5

N
H

O

H

N
H

O

N
H

O

NO2



68 

 

 

 
2 

 
3 

 
9 

No effect No effect No effect 

 
10 

 
11 

 
69 

No effect No effect No effect 

 
70 

 
71 

 
72 

No effect No effect No effect 

 
73   

No effect   

Figure 35. Effects of non-lactone AHL analogs on RhlI activity. The initial rates of 

RhlI in the presence of 0-2 mM of various non-lactone AHL analogs were observed and 

none of them inhibited RhlI. (Appendix Figure C9) 

Headgroup vs Tail chain effects 

Thus far, only lactone and thiolactone derivatives modulated RhlI rate (activation 

and inhibition), and the variation in the acyl-chain enhanced the effect. To check if the 

inhibitory effects observed for lactone and thiolactone derivatives described above was 

caused by nonspecific binding of headgroup or fatty acid to the synthase enzyme, the 

initial rate of RhlI was observed in the presence of the headgroup (L-HSL, D-HSL, L-

thiolactone, and D-thiolactone; compounds 74-77), the fatty acid chain tail (butyric, 

hexanoic, octanoic, decanoic, and dodecanoic acid; compounds 78-82), or both (D-

thiolactone + dodecanoic acid, compounds 77 + 82, corresponding to compound 60; 

Figure 36). None of these kinetic assays resulted in the inhibition of RhlI, suggesting that 

both the headgroup and the aliphatic tail moieties must be covalently linked to each other 

to observe the inhibition/activation effects described above. (Appendix Figure C10) 
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Figure 36. Effects of headgroup and tail moieties in isolation on RhlI initial rate. 

the initial rates of RhlI in the presence of 0-2 mM of L and D homoserine lactone and 

homocysteine thiolactone headgroups and various carboxylic acid tail groups were 

observed. Furthermore, the initial rates of RhlI were observed in the presence of 0-2 mM 

of both compounds 77 and 82, which was analogous to compound 60 which did inhibit 

RhlI. None of these compounds inhibited RhlI, indicating that neither the acyl-chain nor 

the headgroup alone has sufficient binding affinity to RhlI to cause inhibition. (Appendix 

Figure C10) 

Determining the mode of inhibition  

As described in chapter 1, RhlI is an ordered bi-ter enzyme with C4-ACP binding 

second and C4-L-HSL released second (Figure 37). AHL analogs are expected to 

compete for C4-L-HSL binding site. As such, C4-ACP and AHL analogs bind to 

different RhlI forms (C4-ACP to EA form and analogs to ER form), which would cause 

intercept-effect in a double reciprocal plot (Chapter 1, p. 21). Furthermore, C4-ACP 

binding and C4-L-HSL release are separated by a product release step in both the forward 

and reverse directions; therefore, C4-ACP binding and AHL analog binding are 

irreversibly connected, which would be manifested by a lack of slope-effect in a double 
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reciprocal plot (Chapter 1, p. 20). Intercept-effect without slope-effect would produce a 

set of parallel lines, indicative of uncompetitive inhibition. 

 
Figure 37. Cleland diagram of RhlI catalyzed reaction. “E” denotes RhlI while 

“A,” “B,” “P,” “Q,” and “R” represents SAM, C4-ACP, holo-ACP, C4-L-HSL, and 

MTA, respectively.  

The Lineweaver-Burk plot of initial RhlI rate versus variable C4-ACP 

concentrations at various fixed C12-D-thiolactone (Figure 38a) or 3-oxoC12-D-

thiolactone (Figure 38b) concentrations show a set of parallel lines, indicative of 

uncompetitive-mode of inhibition which supports the initial expectation that AHL 

analogs are binding to C4-L-HSL binding site (ER enzyme conformation in Figure 31 

above). Further analysis using the Akaike’s method (AIC; see equations 24, 25), confirms 

that all the inhibition data is best fitted by uncompetitive inhibition model (Table 10). 

Moreover, as predicted by the trend in IC50 values, C12-D-thiolactone (Ki: 86.2 ± 9.6 

µM) has higher binding affinity than 3-oxoC12-D-thiolactone (Ki: 431.6 ± 30.8 µM) 

(Table 11). 
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Figure 38. Double Reciprocal Plot of RhlI activity with varying C4-ACP 

concentrations and various fixed AHL analog concentrations.  Double reciprocal of 

the initial rate of RhlI against C4-ACP concentration in the presence of various fixed 

concentrations of (a) compound 60 (C12-D-thiolactone) and (b) compound 64 (3-

oxoC12-D-thiolactone) was plotted. The fixed AHL analog concentrations were chosen 

to be 0, below the IC50 value, around the IC50 value, and two above the IC50 value. While 

keeping the AHL analog concentration fixed, C4-ACP concentration was varied from 2 

to 20 µM. The inverse of the initial rate was plotted against inverse of the C4-ACP 

concentration which revealed a set of parallel lines, indicative of uncompetitive mode of 

inhibition. 

Table 10. Determining best fit model for the mode of inhibition using AIC 

Analog Best fit Ua vs Cb U vs Mc U vs Nd 

60 Uncompetitive >99.99% U 78.81% U 95.84% U 

64 Uncompetitive >99.99% U 54.69% U 68.30% U 

a = Uncompetitive mode of inhibition 

b = Competitive mode of inhibition 

c = Mixed mode of inhibition 

d = Noncompetitive mode of inhibition 
 

Table 11. Effect of AHL analogs on RhlI initial enzyme rate with variable C4-

ACP concentration. 

Analog IC50 (µM) Ki (µM) Mode of Inhibition 

60 11.4 ± 1.5 86.2 ± 9.6 Uncompetitive 

64 127.4 ± 70.2 431.6 ± 30.8 Uncompetitive 
 

AHL analog Trends 

Chain length effect 

RhlI inhibition was primarily observed with D-HSL, L-thiolactone, and D-

thiolactone headgroups. With each headgroup, a short-chain derivative resulted in no or 
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weak inhibition while a long or bulky-chain analog displayed much more potent 

inhibitory effects (Table 12). Moreover, if the short-chain analog does inhibit, it achieves 

greater maximum inhibition (maximum % inhibition). This pattern of long-chain 

derivatives having lower IC50 is highly surprising. The acyl-chain moiety is expected to 

bind in the small acyl-chain binding pocket of RhlI, specific for a butanoyl chain of the 

C4-ACP native substrate, used by its native substrate/product. In the absence of the 

crystal structure of RhlI, this phenomenon can be explained by several hypotheses: (1) 

both the kon and koff values could be higher for longer chains or (2) the longer acyl-chains 

are binding to a nonspecific or an alternate acyl-chain binding site with higher affinity 

than the acyl-chain binding pocket. This acyl-chain length pattern of longer chains better 

inhibiting RhlI can be further studied by analyzing RhlI enzymatic rate with nonnative 

acyl-ACP substrates and the inhibition patterns of inhibitors of various hydrocarbon tail 

length. Acyl carrier protein (ACP) engulfs the acyl-chain until the proteins binds to the 

appropriate enzyme active site and then releases the acyl-chain. Therefore, any acyl-chain 

binding site must be specific and close to ACP binding site. Long-chain acyl-ACP 

substrates undergo RhlI catalysis with decreasing Km as the acyl-chain length is increased 

(see “Determining Kinetic Constants with various Acyl-ACPs” section below). Similar 

pattern (decrease in Ki and IC50 with increase in acyl-chain length) was observed with 

longer chain alkyl-ACPs and alkyl-CoAs, thus ruling out inhibition due to nonspecific 

binding for long-chain analogs. Therefore, the acyl-chain must bind at or somewhere 

close to the acyl-chain binding pocket in RhlI. 
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Table 12. Trends with variations in the acyl-chain length/size. 

Compound 
IC50 (µM) 

% Inhibition 
IC50 Trendsa 

 
5 

687.7 ± 90.7 
40% 

Weaker 
 
 
 
 
 

Stronger 
 

31 

20.2 ± 10.1 
25% 

 
43 

None 
0% 

No Inhibition 
 
 
 
 
 

Weak Inhibition  
46 

387.3 ± 88.6 
60% 

 
53 

None 
0% 

No Inhibition 
 
 
 
 
 

Weak Inhibition 
 

55 

621.2 ± 49.5 
60% 

 
56 

None 
0% 

No Inhibition 
 
 
 
 
 

Weak Inhibition  
60 

11.4 ± 1.5 
40% 

a = On a relative scale 

 

Acyl-chain vs 3-oxoacyl-chain effects 

A very interesting pattern develops with 3-oxoacyl-chain derivatives (Table 13). 

Compared with their acyl-chain counterparts, 3-oxoacyl analogs have much less 

inhibitory characteristics, indicated by their significantly higher IC50 values (621.2 ± 49.5 

µM vs 387.3 ± 88.6 µM for compounds 55 and 46, respectively; and 127.4 ± 70.2 µM vs 

11.4 ± 1.5 µM for compounds 64 and 60, respectively). Furthermore, varying the chain 
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length significantly alters its behavior. As discussed above, shortening the chain seems to 

decrease the inhibitory characteristics of the analog. The decrease in the inhibitory 

characteristic due to having a carbonyl at the C3 position combined with the short-chain 

effect appears to have a synergistic result of activating RhlI activity. While 3-oxoC8-D-

HSL (compound 35) inhibited RhlI with IC50 value of 282.0 ± 34.1 µM, shortening the 3-

oxoacyl-chain to 3-oxoC6 chain (compound 34) caused the derivative to activate RhlI 

with EC50 value of 224.4 ± 55 µM. The same pattern holds true with 3-oxoacyl-D-

thiolactone analogs. While 3-oxoC12-D-thiolactone, the long-chain derivative, inhibited 

RhlI with IC50 value of 127.4 ± 70.2 µM, shorter chain analogs activated RhlI. However, 

until the long-chain effect caused 3-oxoC12-D-thiolactone (compound 64) to be an 

inhibitor, lengthening the chain from 3-oxoC6-D-thiolactone (compound 61) to 3-oxoC8-

D-thiolactone (compound 62) and then to 3-oxoC10-D-thiolactone (compound 63) 

heightened RhlI activation, shown by decreasing EC50 values of 1506 ± 109.9 µM, 854.5 

± 74.4 µM, and 57.1 ± 22.7 µM, respectively. Although the EC50 values decrease as the 

chain length increase, the maximum activation also decrease as the chain lengthens. 

Activation is usually indicative of a presence of an allosteric site. Moreover, if the 3-

oxoacyl-chains bind to and occupy the RhlI acyl-chain binding pocket, it is inconceivable 

that the acyl-chain from C4-ACP can also bind to the acyl-chain binding pocket, further 

supporting hypothesis 2. 
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Table 13. Patterns in varying effects of acyl- and 3-oxoacyl-chain derivatives.  

Compound 
IC50/EC50 (µM) 

% Inhibition/Activation 
IC50 and EC50 

Trendsa 

 
34 

EC50:  224.4 ± 55 
100% A 

Activation 
 
 
 
 
 

Inhibition  
35 

IC50:  282.0 ± 34.1 
60% I 

 
55 

IC50:  621.2 ± 49.5 
60% I 

Weaker 
Inhibition 

 
 
 

Stronger 
Inhibition  

46 

IC50:  387.3 ± 88.6 
60% I 

 
64 

IC50:  127.4 ± 70.2 
50% I 

Weaker 
Inhibition 

 
 
 

Stronger 
Inhibition  

60 

IC50:  11.4 ± 1.5 
30% I 

 
61 

EC50:  1506 ± 109.9 
100% A 

Weak Activation 
 
 
 
 
 
 
 

Strong Activation 
 
 
 
 

Inhibition 

 
62 

EC50:  854.5 ± 74.4 
60% A 

 
63 

EC50:  57.1 ± 22.7 
40% A 

 
64 

IC50:  127.4 ± 70.2 
50% I 

a = On a relative scale 
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Headgroup chirality effect 

The D-stereocenter derivatives were found to have much greater effect on RhlI 

enzymatic rate than their L-stereocenter counterparts (Table 14). While the native AHL 

product, C4-L-HSL, did not inhibit RhlI, change of the headgroup chirality to C4-D-HSL 

transformed it to a weak inhibitor. Whereas both C12-L-thiolactone (compound 60) and 

3-oxoC12-L-thiolactone (compound 64) both inhibited RhlI, the IC50 value dropped by 

34-fold and 5-fold, respectively for their corresponding D-stereocenter counter parts 

(compounds 46 vs 60 and 55 vs 64).  

 

Table 14. Effects of varying the headgroup chirality from L to D stereoisomer. 

Compound 
IC50 (µM) 

% Inhibition 
IC50 Trendsa 

 
1 

None 
0% 

No Inhibition 
 
 
 
 
 

Weak Inhibition  
5 

687.7 ± 90.7 
40% 

 
46 

387.3 ± 88.6 
60% 

Weaker 
Inhibition 

 
 
 

Stronger 
Inhibition  

60 

11.4 ± 1.5 
30% 

 
55 

621.2 ± 49.5 
60% 

Weaker 
Inhibition 

 
 
 

Stronger 
Inhibition  

64 

127.4 ± 70.2 
50% 

a = On a relative scale 
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Headgroup hydrophilicity effect 

Reducing the hydrophilicity of the headgroup by replacing homoserine lactone 

with homocysteine thiolactone head made a marked increase in the magnitude of the 

effect on RhlI inhibition and activation (Table 15). While no L-HSL derivatives inhibited 

RhlI, C12-L-thiolactone and 3-oxo-C12-L-thiolactone were shown to be inhibitors of the 

AHL synthase. With D-HSL derivatives, IC50 values ranged from 687.7 to 20.2 µM 

(compounds 5 and 31), which was significantly reduced to 127.4 to 11.4 µM (compounds 

64 and 60) by replacing D-HSL with a more hydrophobic D-thiolactone headgroup. 
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Table 15. The effect of headgroup hydrophobicity on RhlI inhibition. 

Compound 
IC50 (µM) 

% Inhibition 
IC50 Trendsa 

 
All 3-oxoacyl-/3-hydroxyacyl/acyl-L-HSL 

No effect 
0% 

No Inhibition 
 

 

 

Weaker 

Inhibition 

 

 

Stronger 
Inhibition 

 
55 

621.2 ± 49.5 
60% 

 
46 

387.3 ± 88.6 
60% 

 
5 

687.7 ± 90.7 
40% 

Weaker 
Inhibition 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stronger 
Inhibition 

 
35 

282.0 ± 34.1 
60% 

 
31 

20.2 ± 10.1 
25% 

 
64 

127.4 ± 70.2 
60% 

 
60 

11.4 ± 1.5 
60% 

a = On a relative scale 

 

Determining Kinetic Constants with various Acyl-ACPs 

To determine the effect of the acyl-chain variation on acyl-ACP substrate 

catalytic efficiencies, RhlI activity was assayed with butanoyl-ACP (compound 83; 

Chapter 1, Table 6), the native substrate, and then with four long-chain substrates: C6-

ACP, C8-ACP, C10-ACP, and C12-ACP (compounds 84-87). The reaction setup was 
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based on published reaction conditions for previous studies on RhlI with its native C4-

ACP substrate. The acyl-ACP was the variable substrate while SAM was kept to 300 µM 

(Figure 39). As expected, the highest initial enzyme rate was achieved with the native 

substrate, C4-ACP, with a kcat value of 3 ± 0.3 min-1. This was followed by kcat values of 

0.86 ± 0.03 min-1, 0.64 ± 0.02 min-1, 0.39 ± 0.01 min-1, and 0.61 ± 0.01 min-1 for C6-, C8-

, C10-, and C12-ACPs, respectively. The Km value for the native product was found to be 

7 ± 2 µM. Typically, non-native substrates have higher Km value than that of the native 

substrate.22  However, contrary to expectation, the Km value decreased as the acyl-chain 

lengthened: 1.2 ± 0.2 µM for C6-ACP, 0.21 ± 0.06 µM for C8-ACP, 0.16 ± 0.03 µM for 

C10-ACP, and 0.26 ± 0.05 µM for C12-ACP. Although both Km
 and kcat values both 

decreased, Km dropped more precipitously, causing the catalytic efficiency, determined 

by kcat/Km, to be much greater for the non-native substrate than that of the native 

substrate as summarized in Table 16 (Figure 40). 
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Figure 39. Substrate-velocity curves of RhlI with native and nonspecific acyl-

ACP substrates. RhlI initial rates as a function of acyl-ACP substrate concentration at 

fixed 300 µM SAM. (a) varying [C4-ACP] and 0.3 µM RhlI, (b) varying [C6-ACP] and 

0.9 µM RhlI, (c) varying [C8-ACP] and 0.9 µM RhlI, (d) varying [C10-ACP] and 0.9 µM 

RhlI, and (e) varying [C12-ACP] and 0.9 µM RhlI. As the acyl-chain length of acyl-ACP 

increases, Vmax is reached at lower acyl substrate concentrations, indicative of decreasing 

Km values. 
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Figure 40. Trends in kcat, Km, and kcat/Km values of RhlI with various acyl 

substrates. As the acyl-chain deviates further from the native substrate, both the (a) kcat 

and the (b) Km values decrease. However, Km drops much faster than kcat, which leads to 

(c) the catalytic efficiency, kcat/Km to, rise with longer acyl moiety. 

Table 16. RhlI initial enzyme rate with various acyl-ACP substrates 

Acyl-ACP 
[RhlI] 
(µM) 

kcat 
(min-1) 

Km 
(µM) 

kcat/Km 
(µM-1 min-1) 

kcat/Km 
(Relative)a 

C4-ACP 0.3 2.6 ± 0.3 7 ± 2 0.36 ± 0.01 100.0 

C6-ACP 0.9 0.86 ± 0.02 1.2 ± 0.2 0.719 ± 0.003 197.4 

C8-ACP 0.9 0.66 ± 0.02 0.40 ± 0.06 1.655 ± 0.006 454.1 

C10-ACP 0.9 0.378 ± 0.009 0.14 ± 0.04 2.71 ± 0.02 743.2 

C12-ACP 0.9 0.60 ± 0.01 0.26 ± 0.03 2.324 ± 0.006 637.6 

a = [(kcat/Km)/0.36] 
 

Crystal structures have shown many AHL synthases to have similar structure, all 

having specific ACP binding site, SAM binding site, and acyl-chain binding pocket.60-63  

The acyl-chain binding pocket is easily recognizable by its V-cleft shape, which has a 

definite spatial limitation to only accommodate acyl-chains of specific size. Moreover, 

previous studies from the Nagarajan laboratory have shown that variations in the acyl-

chain from the native substrate significantly reduce the enzymatic rate of AHL 

synthases.22, 60  This pattern of behavior allows the bacteria to discriminate against the 

synthesis of wrong signals, conserve resources, and increase the signal-to-noise ratio of 

its own signal molecules. Therefore, the higher catalytic efficiency non-native acyl 

substrate with RhlI poses a serious conundrum. One possible cause for this phenomenon 
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could be with the ACP protein. Pseudomonas aeruginosa genome codes for three 

different acyl carrier proteins: ACP1, ACPP, and ACP3.51  RhlI has been shown to react 

with C4-ACP1 and C4-ACPP substrates with comparable catalytic efficiency but with 

much greater catalytic efficiency than E. coli ACP-using substrate, which, in turn, has 

much higher catalytic efficiency than C4-ACP3. However, this work was conducted 

using E. coli ACP since P. aeruginosa ACPs and E. coli ACP share similar sequences 

and to provide a common reference point to compare various AHL synthases (Figure 41). 

Mair Churchill’s work with LasI (another AHL synthase found in P. aeruginosa) showed 

that when LasI is expressed in E. coli with access to E. coli ACP only, the amount of 

non-native AHL products is significantly higher than when LasI is expressed in P. 

aeruginosa (Figure 42).64  Additionally, alkyl-CoA inhibition test (see Alkyl-CoA 

inhibition section below) also seems to indicate that the ACP moiety plays an important 

role in binding with RhlI. Therefore, the pattern of higher catalytic efficiency with 

longer-chain acyl-ACP could be an artifact of using a non-native ACP and could be 

removed by using P. aeruginosa ACP. Nevertheless, regardless of the ACP-effect, that 

RhlI can accommodate long acyl-chain is surprising. As noted above, this phenomenon 

can be explained if longer acyl-chains have higher koff rate (hypothesis 1) or if RhlI has 

an allosteric site with equal or higher affinity for acyl-chains of various length than the 

acyl-chain binding pocket (hypothesis 2). Under hypothesis 1, the increasing catalytic 

efficiencies with longer acyl-chains could be due to higher kon rate while the decreasing 

kcat rate could be caused by higher koff value. If hypothesis 2 is correct, it is possible that 

the allosteric site promotes binding while the acyl-chain binding pocket promotes 

reaction catalysis, analogous to kinetic vs. thermodynamic controls of reaction. The 
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feasibility of these proposals was examined by analyzing the inhibition patterns of 

inhibitors of various hydrocarbon tail length. 

 
Figure 41. Alignment of amino acid sequence of P. aeruginosa ACP1, ACPP, 

ACP3, and E. coli ACP. The conserved residues are noted with an asterisk (*), mostly 

conserved residues with a colon (:), and semi-conserved residues with a period (.). 

 

 
Figure 42.64 Various AHL products of LasI. AHL profiles of (a) E. coli strain and (b) 

P. aeruginosa strain were determined by liquid chromatography-mass spectrometry (LC-

MS). With access to native P. aeruginosa ACP, 3-oxoC12 HSL is the major AHL 

product with limited amount of other AHLs. However, with E. coli ACP, there are 

significant amounts of non-native AHL formation, signifying that ACP plays a significant 

role in acyl-ACP specificity found in AHL synthases. 

Alkyl-ACP Inhibition 

The effect of hydrocarbon chain length was tested using alkyl-ACPs, also known 

as inert-ACP or IACP. The removal of the carbonyl group from acyl-ACP converts the 
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highly reactive thioester bond to relatively nonreactive thioether bond, making alkyl-

ACPs inactive analogs of acyl-ACP (Figure 43). The IC50 values of butyl-, hexyl-, octyl-, 

and decyl-ACPs (compounds 88-91; Chapter 1, Table 6) with RhlI were determined to be 

9.9 ± 4 µM, 0.74 ± 0.4 µM, 0.068 ± 0.02 µM, and 0.102 ± 0.04 µM, respectively (Table 

17; Figure 44). Although the IC50 values decrease as the alkyl chain lengthens, the 

maximum inhibition (indicated by %Rate) also decrease from 50% inhibition with C4-

IACP to 20% inhibition with all other IACPs (Table 17). This pattern of partial inhibition 

suggests the presence of less active form of enzyme, indicative of allosteric inhibition. 

 
Figure 43. Designing inactive acyl-ACP analog. (a) In acyl-ACP, the carbonyl 

group is a part of unstable thioester bond and creates a zone of electronegativity suitable 

for nucleophilic attack. However, (b) the removal of the carbonyl group in alkyl-ACP 

forms relatively stable thioether bond unfavorable to nucleophilic attack, thus forming 

inert-ACP (IACP) analog of the acyl substrate. 

Table 17. Effect of IACP on RhlI initial enzyme rate. 

IACP IC50 (µM) % Inhibition Ki (µM) 

C4-IACP 9.9 ± 4 50 15.9 ± 0.9 

C6-IACP 0.74 ± 0.4 20 10.6 ± 1.1 

C8-IACP 0.058 ± 0.02 20 6.5 ± 0.7 

C10-IACP 0.102 ± 0.04 20 4.8 ± 0.3 
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Figure 44. IC50 test of various IACPs. The initial rate of RhlI with 300 µM of SAM 

and 14 µM of C4-ACP in the presence of varying concentrations of (a) C4-, (b) C6-, (c) 

C8-, and (d) C10-IACPs were determined. Whereas C4-IACP, the native substrate 

analog, achieved the maximum inhibition (~50% inhibition compared to ~20% for all 

others), other IACPs reached minimum activity at much lower inhibitor concentration. 

Given that these four IACPs all inhibit RhlI, the mode of inhibition of these 

IACPs could shed light to how RhlI copes with longer acyl-chains. Competitive 

inhibition would definitively indicate that the IACPs are competing with butanoyl-ACP 

for the same binding site and that RhlI acyl-chain binding pocket can accommodate 

longer chains. On the contrary, uncompetitive mode of inhibition could be a result of the 

IACP binding after AHL departs from the active site (hypothesis 1) or it could signify 

that the IACP is not competing for the acyl-chain binding pocket and support the 

hypothesis of longer chains binding to nonspecific site. Similarly, noncompetitive 

inhibition could be a result of the inhibitor-free enzyme (EI) complex formed before 
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E∙SAM complex formation (hypothesis 1) or if the inhibitor binding to the hypothetical 

alternate/allosteric acyl-chain binding site (hypothesis 2). Plotting the double reciprocal 

(Lineweaver-Burk plot) of initial RhlI rate versus variable C4-ACP concentrations at 

various fixed IACP concentrations show a set of lines intersecting each other at the x-

axis, indicative of noncompetitive-mode of inhibition (Figure 45). Further analysis using 

the Akaike’s method (AIC; see equations 24, 25), confirms that all the inhibition data is 

best fitted by noncompetitive inhibition model (Table 16). This finding is especially 

surprising for C4 IACP, since its similarity with the native substrate, C4-ACP, led to the 

prediction that would competitively inhibit RhlI activity. As predicted by the IC50 values, 

Ki values decrease as the alkyl-chain lengthened (Table 18). If the inhibition is due to 

alkyl-ACP binding to free RhlI before SAM binding with RhlI, the drop in the overall 

inhibition with longer alkyl chains could be due to higher koff rate while the decrease in 

Ki (Ki = koff/kon) could be a result of long-chain ACPs having even higher kon rate. 

However, the noncompetitive mode of inhibition and the drop in both Ki and overall 

inhibition could be due to hydrocarbon chains binding with equal or higher affinity to an 

alternative acyl-chain binding sites than to the acyl-chain binding pocket. Although the 

alternative pocket is yet to be identified, inhibition data with IACPs and ICoAs (see 

“Alkyl-CoA Inhibition” section below) suggest that the acyl-chain binding pocket of the 

alternative binding site would most likely be close enough or overlap with the native 

acyl-chain pocket in RhlI. 
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Figure 45. Double Reciprocal Plot of RhlI activity with varying C4 -CP 

concentrations and various fixed IACP concentrations. Double reciprocal of initial 

rate of RhlI activity vs. C4-ACP concentration in the presence of various fixed 

concentrations of (a) C4-IACP, (b) C6-IACP, (c) C8-IACP, and (d) C10-IACP was 

plotted. The fixed IACP concentrations were chosen to be 0, below the IC50 value, around 

the IC50 value, and two above the IC50 value. While keeping the IACP concentration 

fixed, C4-ACP concentration was varied from 2 to 20 µM. The inverse of the initial rate 

was plotted against inverse of the C4-ACP concentration which revealed a set of lines 

intersecting near the x-axis, indicative of noncompetitive mode of inhibition. 

Table 18. Determining best fit model for the mode of inhibition using AIC 

Analog Mode Na
 vs Cb N vs Uc N vs Md 

C4-IACP Noncompetitive >99.99 N 99.99 N 67.00 N 

C6-IACP Noncompetitive 99.87 N 91.03 N 74.41 N 

C8-IACP Noncompetitive 99.87 N 82.48 N 75.70 N 

C10-IACP Noncompetitive >99.99 N 96.94 N 75.72 N 

a = Noncompetitive mode of inhibition 

b = Competitive mode of inhibition 

c = Uncompetitive mode of inhibition 

d = Mixed mode of inhibition 
 

A pure noncompetitive mode of inhibition could be a result of nonspecific, non-

mechanistic enzyme deactivation. To determine whether IACP inhibition is a specific 
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effect, RhlI was incubated with C4-IACP and C8-IACP for 0 to 60 min and the IC50 was 

taken at various time points. Preincubation of RhlI with IACP did not significantly alter 

the inhibitory effects of IACPs, indicating that the inhibition was due to specific binding 

of IACP to RhlI (Figure 46). 
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Figure 46. Time-dependency of IACP inhibition. RhlI was preincubated with 

varying concentrations of (a) C4- and (b) C8-IACPs for 0 to 60 minutes. The AHL 

synthase reaction was initiated by the addition of RhlI + IACP mixture to reaction 

mixtures consisting of 300 µM SAM and 14 µM C4-ACP. With both C4- and C8-IACP, 

the variations in RhlI activity remained under 5% as incubation time changed from 0 to 

60 minutes, eliminating the possibility of nonspecific, nonmechanistic inhibition of RhlI 

by IACPs. 

Alkyl-CoA Inhibition 

To differentiate the contribution of the hydrocarbon tail and the ACP moieties in 

binding affinity with RhlI, inhibition of enzyme activity with butyl-, hexyl-, and octyl-

CoAs (C4-, C6-, and C8-ICoAs; compounds 92-94, respectively; Chapter 1, Table 3) 

were investigated in greater detail. RhlI initial rate was observed at a fixed C4-ACP 

concentration and variable ICoA concentrations (Figure 47). The IC50 values of the 

ICoAs were calculated from the data (Table 19). The IC50 values of ICoAs are about one 

hundred times greater than the IC50 values of corresponding IACPs:  72.7 ± 13 vs 0.74 ± 

0.4 µM for C6-ICoA and C6-IACP, respectively; and 5.1 ± 0.8 vs 0.058 ± 0.02 µM for 

C8-ICoA and C8-IACP, respectively. However, the sub-10 µM IC50 values for ICoAs 



89 

 

 

and IACPs are significantly lower than most of the IC50’s obtained with AHL analogs and 

no inhibition achieved with fatty acid tail alone, suggesting that ACP-pantetheine (holo-

ACP) moieties contribute significantly to the potency of the binding affinity. (Appendix 

Figure C15) 

 
Figure 47. IC50 test of various ICoAs. The initial rate of RhlI with 300 µM of SAM 

and 14 µM of C4-ACP in the presence of varying concentrations of (a) C6- and (b) C8- 

ICoAs were determined.  

 

Table 19. Effect of ICoA on RhlI initial enzyme rate with fixed C4 -ACP 

concentration. 

ICoA IC50 (µM) 

C4-ICoA None up to 1 mM 

C6-ICoA 72.7 ± 13 

C8-ICoA 5.1 ± 0.8 

 

Conclusion 

This project represents the first effort to use AHL-based small molecules as 

modulators of AHL-synthases. 

We hypothesize that acyl-homoserine lactone based inhibitors would be quorum 

sensing-specific inhibitors binding to both acyl-chain binding pocket and SAM binding 

site. By varying headgroup polarity and chirality along with acyl-chain size and 
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substitution, we have identified key characteristics to improve inhibition and activation 

(Figure 48). A long or bulky acyl-chain with headgroup of increased hydrophobicity and 

D-stereocenter is required to inhibit RhlI. A slightly more hydrophobic headgroup with 

D-stereocenter acylated with 3-oxoacyl-chain of medium-long length (6-10 carbons long) 

yielded the best activators of RhlI. We also found that the fatty acid tail group and the 

headgroup cannot independently inhibit RhlI activity. Second generation of AHL-based 

modulators of RhlI activity could include bicyclic headgroups with various substitutions 

to better fine-tune the levels of hydrophobicity and probe yet-to-be-identified 

characteristics of the headgroup binding sites. 

 
Figure 48. Moieties of interest for improved AHL-based RhlI modulators. 

Inhibitors (a): hydrophobic headgroup with D-stereocenter acylated with long chain; 

Activators (b): long 3-oxoacyl-chain attached to hydrophobic headgroup with D-

stereocenter. 

The discovery of AHL-based small molecule inhibitors of RhlI is promising. 

Since antibiotic resistance is often a QS-controlled phenotype, QS inhibitor with limited 

potency could be used as a combination drug to reduce antibiotic resistance to further the 
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usability of currently available drugs. Furthermore, if AHL analogs could target both RhlI 

and RhlR, its inhibition potency could be significantly heightened to make it a viable QS 

inhibitor. Therefore, despite the failure of the current library of AHL analogs to inhibit 

RhlI with sub-micromolar IC50, AHL-based modulators of quorum sensing merit further 

research. 

However, focusing strictly on AHL synthase inhibition, AHL-analogs were 

heavily outcompeted. Although targeting acyl-chain and SAM binding sites with AHL 

analogs allow for QS-specific modulation, fatty-acid, IACP, and ICoA inhibition data 

suggest that much greater binding energy is associated with the pantetheine and ACP 

binding sites (Figure 49). To maximize both specificity and potency, the next generation 

of AHL synthase inhibitors could be designed to target SAM binding site with ACP or 

pantetheine binding sites. 

 
Figure 49. Specificity vs. Potency in targeting RhlI. Acyl-ACP and SAM are 

commonly used substrates in human enzymes; therefore, (a) by targeting both acyl-chain 

binding pocket and SAM binding site, AHL-synthase-specific inhibitor could be 

designed. However, this study has demonstrated that (b) the pantetheine and ACP binding 

sites need to be targeted for more potent inhibition of RhlI. 
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We proposed two hypotheses to explain the trends we see with aliphatic-chain 

length and RhlI activity. As the acyl-chain length increases, the IC50, Ki, and percent 

inhibition all decrease for AHL-based RhlI inhibitors while Km and kcat decreases for 

corresponding acyl-ACP substrates. The decrease in Km was much steeper than the 

decrease in kcat for longer-chain acyl-ACP substrates, leading to an increase in catalytic 

efficiencies for longer-chain non-native substrates relative to C4-ACP. In addition, as the 

alkyl-chain length increases, inhibition increase as observed by significant decreases in 

IC50 and Ki values for the longer-chain analogs; however, the percent inhibition also 

decreased. This acyl-chain pattern could be due to higher koff rate and even higher kon rate 

for longer-chain compounds binding to RhlI. Higher koff rate would cause less potent 

effect (lower overall inhibition) while higher kon rate would cause the Ki value to 

decrease, indicative of higher binding affinity. However, this trend could be caused by 

the presence of an alternative acyl-chain binding site (or allosteric site). That all the 

inhibitors discovered in this study were partial inhibitors suggests allosteric inhibition. 

This proposal of a possible alternate acyl-chain binding site is further supported by the 

presence of activators. If the 3-oxoacyl-chains of the activators were to bind with the 

acyl-chain binding pocket, as indicated by hypothesis 1, it would inhibit C4-ACP 

binding; however, under hypothesis 2, the 3-oxoacyl-chains would bind with the alternate 

site. The binding could cause changes to RhlI tertiary structure and form a structural 

configuration more favorable for catalysis to occur. Furthermore, hypothesis 2 raises 

another question: how could long-chain derivates binding to one allosteric site cause both 

activating and inhibiting behaviors?  We hypothesize that these effects could be due to 

either a) the carbonyl at the C3 position alters the mode of binding for activators 
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compared with inhibitors; or (b) there could be more than one allosteric site, one for 

inhibition and another for activation. Co-crystal structures of activators and inhibitors 

complexed with RhlI should provide light on some of these unanswered questions. 

Although we have not found a submicromolar inhibitor for AHL synthase in this thesis 

yet, our research efforts on AHL derivatives as potential quorum sensing modulators 

should open new doors to develop quorum sensing specific inhibitors for pathogenic 

bacteria. In conclusion, the combination of scarcity of antibacterials in the drug pipeline, 

increasing resistance to antibiotics, and favorable pharmaceutical qualities of AHL 

derivatives as novel antivirulent molecules merit further research in this area. 
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Mass Spectra 

 
Figure A1. Mass Spectrum of Compound 56 

C8H13NO2S 

Expected m/z [M + H+]: 188.0734, observed: 188.0763; relative mass error: 15.28 ppm; 

Expected m/z [M + Na+]: 210.0554, observed: 210.0589; relative mass error: 16.81 ppm 

 
Figure A2. Mass Spectrum of Compound 57 

C10H17NO2S 

Expected m/z [M + H+]: 216.1047, observed: 216.1099; relative mass error: 23.94 ppm; 

Expected m/z [M + Na+]: 238.0867, observed: 238.0942; relative mass error: 31.63 ppm 
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Figure A3. Mass spectrum of Compound 58 

C12H21NO2S 

Expected m/z [M + H+]: 244.1360, observed: 244.1405; relative mass error: 18.32 ppm; 

Expected m/z [M + Na+]: 266.1180, observed: 266.1232; relative mass error: 19.66 ppm; 

Expected m/z [M + K+]: 282.0919, observed: 282.0962; relative mass error: 15.21 ppm 

 
Figure A4. Mass Spectrum of Compound 59 

C14H25NO2S 

Expected m/z [M + H+]: 272.1673, observed: 272.1720; relative mass error: 17.17 ppm; 

Expected m/z [M + Na+]: 294.1493, observed: 294.1555; relative mass error: 21.18 ppm; 

Expected m/z [M + K+]: 310.1291, observed: 310.1291; relative mass error: 19.00 ppm 



102 

 

 

 
Figure A5. Mass Spectrum of Compound 60 

C16H29NO2S 

Expected m/z [M + H+]: 300.1986, observed: 300.2042; relative mass error: 18.56 ppm; 

Expected m/z [M + Na+]: 322.1806, observed: 322.1872; relative mass error: 20.58 ppm; 

Expected m/z [M + K+]: 338.1545, observed: 338.1605; relative mass error: 17.72 ppm 

  
Figure A6. Mass Spectrum of Compound 61 

C10H15NO3S 

Expected m/z [M + H+]: 230.0845, observed: 230.0896; relative mass error: 21.99 ppm; 

Expected m/z [M + Na+]: 252.0665, observed: 252.0729; relative mass error: 25.46 ppm; 

Expected m/z [M + K+]: 268.0404, observed: 268.0452; relative mass error: 17.83 ppm 
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Figure A7. Mass Spectrum of Compound 62 

C12H19NO3S 

Expected m/z [M + H+]: 258.1158, observed: 258.1162; relative mass error: 1.39 ppm; 

Expected m/z [M + Na+]: 280.0978, observed: 280.1008; relative mass error: 10.77 ppm; 

Expected m/z [M + K+]: 296.0717, observed: 296.0723; relative mass error: 1.95 ppm 

 
Figure A8. Mass Spectrum of Compound 63 

C14H23NO3S 

Expected m/z [M + H+]: 286.1471, observed: 286.1472; relative mass error: 0.21 ppm; 

Expected m/z [M + Na+]: 308.1291, observed: 308.1320; relative mass error: 9.46 ppm; 

Expected m/z [M + K+]: 324.1030, observed: 324.1035; relative mass error: 1.47 ppm 
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Figure A9. Mass Spectrum of Compound 64 

C16H27NO3S 

Expected m/z [M + H+]: 314.1784, observed: 314.1791; relative mass error: 2.10 ppm; 

Expected m/z [M + Na+]: 336.1604, observed: 336.1633; relative mass error: 8.68 ppm; 

Expected m/z [M + K+]: 352.1343, observed: 352.1354; relative mass error: 3.06 ppm 

 
Figure A10. Mass Spectrum of Compound 88 

Expected m/z [M + 5H+]: 1781.9, observed: 1781.7; 

Expected m/z [M + 6H+]: 1485.1, observed: 1484.9; 

Expected m/z [M + 7H+]: 1273.1, observed: 1273.1; 

Expected m/z [M + 8H+]: 1114.1, observed: 1113.9; 

Expected m/z [M + 9H+]: 990.4, observed: 990.3; 

Expected m/z [M + 10H+]: 891.5, observed: 891.4 
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Figure A11. Mass Spectrum of Compound 89 

Expected m/z [M + 5H+]: 1787.5, observed: 1787.5; 

Expected m/z [M + 6H+]: 1489.8, observed: 1489.6; 

Expected m/z [M + 7H+]: 1277.1, observed: 1277.1; 

Expected m/z [M + 8H+]: 1117.6, observed: 1117.6; 

Expected m/z [M + 9H+]: 993.5, observed: 993.5; 

Expected m/z [M + 10H+]: 894.3, observed: 894.2 

 
Figure A12. Mass Spectrum of Compound 90 

Expected m/z [M + 5H+]: 1793.1, observed: 1792.9; 

Expected m/z [M + 6H+]: 1494.5, observed: 1494.2; 

Expected m/z [M + 7H+]: 1281.1, observed: 1281.1; 

Expected m/z [M + 8H+]: 1121.1, observed: 1120.9; 

Expected m/z [M + 9H+]: 996.6, observed: 996.5; 

Expected m/z [M + 10H+]: 897.1, observed: 897.0 
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Figure A13. Mass Spectrum of Compound 91 

Expected m/z [M + 5H+]: 1798.7, observed: 1798.5; 

Expected m/z [M + 6H+]: 1499.1, observed: 1499.1; 

Expected m/z [M + 7H+]: 1285.1, observed: 1285.1; 

Expected m/z [M + 8H+]: 1124.6, observed: 1124.6; 

Expected m/z [M + 9H+]: 999.8, observed: 999.7; 

Expected m/z [M + 10H+]: 899.9, observed: 899.8 

 
Figure A14. Mass Spectrum of Compound 92 

C25H44N7O16P3S 

Expected m/z [M + H+]: 824.1851, observed: 824.1835; relative mass error: -1.92 ppm; 

Expected m/z [M + Na+]: 846.1670, observed: 846.1657; relative mass error: -1.57 ppm; 

Expected m/z [M + 2Na+ - H+]: 868.1490, observed: 868.1472; relative mass error: -2.04 

ppm 
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Figure A15. Mass Spectrum of Compound 93 

C27H48N7O16P3S 

Expected m/z [M + H+]: 852.2164, observed: 852.2147; relative mass error: -1.98 ppm; 

Expected m/z [M + Na+]: 874.1983, observed: 874.1953; relative mass error: -3.47 ppm; 

Expected m/z [M + 2H+]: 426.6118, observed: 426.6105; relative mass error: -3.12 ppm 

 
Figure A16. Mass Spectrum of Compound 94 

C29H52N7O16P3S 

Expected m/z [M + H+]: 880.2477, observed: 880.2444; relative mass error: -3.73 ppm; 

Expected m/z [M + K+]: 918.2036, observed: 918.1978; relative mass error: -6.28 ppm; 

Expected m/z [M + 2H+]: 440.6275, observed: 440.6259; relative mass error: -3.59 ppm 
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Figure A17. Mass Spectrum of Compound 95 

C31H56N7O16P3S 

Expected m/z [M + H+]: 908.2790, observed: 9083.2733; relative mass error: -6.26 ppm; 

Expected m/z [M + 2H+]: 454.6431, observed: 454.6401; relative mass error: -6.67 ppm; 

Expected m/z [M + H+ + Na+]: 465.6345, observed: 465.6300; relative mass error: -9.62 

ppm 
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NMR spectra 

 
Figure B1. D-homocysteine thiolactone 1H NMR 

 
Figure B2. Compound 56 1H NMR 
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Figure B3. Compound 56 COSY NMR 

 
Figure B4. Compound 56 HSQC NMR 
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Figure B5. Compound 56 HMBC NMR 

 
Figure B6. Compound 56 13C NMR 
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Figure B7. Compound 57 1H NMR 

 
Figure B8. Compound 57 COZY NMR 
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Figure B9. Compound 57 13C NMR 

 
Figure B10. Compound 58 1H NMR 
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Figure B11. Compound 58 COSY NMR 

 
Figure B12. Compound 58 HSQC NMR 
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Figure B13. Compound 58 HMBC NMR 

 
Figure B14. Compound 58 13C NMR 
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Figure B15. Compound 59 1H NMR 

 
Figure B16. Compound 59 COSY NMR 
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Figure B17. Compound 59 HSQC NMR 

 
Figure B18. Compound 59 HMBC NMR 
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Figure B19. Compound 59 13C NMR 

 
Figure B20. Compound 60 1H NMR 
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Figure B21. Compound 60 COSY NMR 

 
Figure B22. Compound 60 HSQC NMR 
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Figure B23. Compound 60 HMBC NMR 

 
Figure B24. Compound 60 13C NMR 
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Figure B25. Compound 61 1H NMR 

 
Figure B26. Compound 61 COSY NMR 
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Figure B27. Compound 61 HSQC NMR 

 
Figure B28. Compound 61 HMBC NMR 

 
Figure B29. Compound 61 13C NMR 
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Figure B30. Compound 62 1H NMR 

 
Figure B31. Compound 62 COSY NMR 
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Figure B32. Compound 62 HSQC NMR 

 
Figure B33. Compound 62 HMBC NMR 

 
Figure B34. Compound 62 13C NMR 
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Figure B35. Compound 63 1H NMR 

 
Figure B36. Compound 63 COSY NMR 
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Figure B37. Compound 63 HSQC NMR 

 
Figure B38. Compound 63 HMBC NMR 

 
Figure B39. Compound 64 13C NMR 
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Figure B40. Compound 64 1H NMR 

 
Figure B41. Compound 64 COSY NMR 
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Figure B42. Compound 64 HSQC NMR 

 
Figure B43. Compound 64 HMBC NMR 

 
Figure B44. Compound 64 13C NMR  
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UV-Vis Spectra 

 
Figure C1. IC50 of First generation of AHL analogs. 

(Corresponds to Figure 27, Chapter 3) 
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Figure C2. IC50 of L-HSL derivatives. 

(Corresponds to Figure 28, Chapter 3) 
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Figure C3. IC50 of acyl-D-HSL analogs. 

(Corresponds to Figure 29, Chapter 3) 

 
Figure C4. IC50 and EC50 of 3-oxoacyl-D-HSL analogs. 

(Corresponds to Figure 30, Chapter 3) 
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Figure C5. IC50 of DL-sulfonamide analog. 

(Corresponds to Figure 31, Chapter 3) 
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Figure C6. IC50 of acyl- and 3-oxoacyl-L-homocysteine thiolactones. 

(Corresponds to Figure 32, Chapter 3) 
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Figure C7. IC50 and EC50 of acyl- and 3oxoacyl-D-homocysteine thiolactones. 

(Corresponds to Figure 33, Chapter 3) 

 
Figure C8. IC50 of cyclopentyl derivatives. 

(Corresponds to Figure 34, Chapter 3) 
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Figure C9. IC50 of non-lactone AHL analogs. 

(Corresponds to Figure 35, Chapter 3) 



138 

 

 

 
Figure C10. IC50 of headgroup and tail moieties.  

(Corresponds to Figure 36, Chapter 3) 
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Figure C11. Substrate-velocity curve of RhlI with various acyl-ACP substrates. 

 

 
Figure C12. IC50 of various alkyl-ACPs. 

(a) C4-IACP, (b) C6-IACP, (c) C8-IACP, (d) C10-IACP 
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Figure C13. RhlI Inhibition assays with various alkyl-ACPs. 

(a) C4-IACP, (b) C6-IACP, (c) C8-IACP, (d) C10-IACP 

 
Figure C14. Double reciprocal plot for RhlI inhibition with various alkyl-ACPs. 

(a) C4-IACP, (b) C6-IACP, (c) C8-IACP, (d) C10-IACP 
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Figure C15. IC50 of IACPs at different time points 

C4-IACP and (b) C8-IACP 

 
Figure C16. IC50 of ICoA derivatives. 

 
Figure C17. DMSO Inhibition 

RhlI activity was not inhibited up to 10% DMSO (by volume) 


