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ABSTRACT 

Environmental disturbances in semi-arid ecosystems have highlighted the need to 

monitor current and future vegetation conditions across the landscape. Imaging 

spectroscopy provide the necessary information to derive vegetation characteristics at 

high-spatial resolutions across large geographic areas. The work of this thesis is divided 

into two sections focused on using imaging spectroscopy to estimate and classify 

vegetation cover, and approximate aboveground biomass in a semi-arid ecosystem.  

The first half of this thesis assesses the ability of imaging spectroscopy to derive 

vegetation classes and their respective cover across large environmental gradients and 

ecotones often associated with semi-arid ecosystems. Optimal endmember selection and 

endmember bundling are coupled with classification and spectral unmixing techniques to 

derive vegetation species and abundances across Reynolds Creek Experimental 

Watershed (RCEW) in southwest Idaho at high spatial resolution (1 m). Results validated 

using field data indicated classification of aspen, Douglas fir, juniper, and riparian classes 

had an overall accuracy of 57.9% and a kappa coefficient of 0.43. Plant functional type 

classification, consisting of deciduous and evergreen trees, had an overall accuracy of 

84.4% and a kappa coefficient of 0.68. Shrub, grass, and soil cover were predicted with 

an overall accuracy of 67.4% and kappa coefficient of 0.53. I conclude that imaging 

spectroscopy can be used to map vegetation communities in semi-arid ecosystems across 

large environmental gradients at high-spatial resolution and with high accuracy.   
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The second half of this thesis focuses on monitoring the changes of aboveground 

biomass (AGB) from the 2015 Soda Fire, which burned portions of southwest Idaho and 

southeastern Oregon. Classifications derived in the first study are used to estimate AGB 

loss within a portion of RCEW, and these estimates are used to compare to gross 

estimates made over the full extent of the Soda Fire. I found that there was an AGB loss 

of 174M kg within RCEW and approximately 1.8B kg lost over the full extent of the 

Soda Fire. Additionally, a post-fire analysis was performed to provide insight into the 

amount of AGB that returned to both RCEW and the full extent of the Soda Fire. An 

estimated 2,100 – 208,000 kg of AGB had returned to the burned portion of RCEW one-

year post fire, and approximately 3.2M kg of AGB had returned over the full extent of the 

Soda Fire. These AGB loss and re-growth estimates can be used by researchers and 

practitioners to monitor carbon flux across the Soda Fire and as baseline data for 

wildfires in semi-arid ecosystems. 
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CHAPTER ONE: Introduction 

1. Importance of work 

Semi-arid ecosystems, defined by their scarcity of water, comprise over 40% (6B 

ha) of the world’s total land surface, support 33% of the world’s total population, and are 

important ecological and economic hotspots (Hassan, 2005). The Great Basin (GB), 

defined floristically as the extent of the sagebrush steppe, encompasses nearly 52M ha of 

the western United States (Figure 1-1) (Miller et al., 2013). Within the GB, elevation 

ranges from 400-3,000m, with average annual precipitation ranging from 150-300mm in 

lower elevation and 300-400mm in higher elevations (Miller et al., 2013). These large 

environmental gradients create transitions (ecotones) between different vegetation 

communities (biomes) across the landscape. A common ecotone within this landscape is 

the transition from the lower elevation sagebrush steppe to the higher elevation alpine 

forests. The sagebrush steppe is the most widespread biome in the USA, and has become 

the focus of current research as it supports many threatened species, contains important 

natural resources, and is vital to the country’s economy (USFWS, 2014). Observing the 

sagebrush steppe vegetation, how it changes and co-exists with other biomes, and 

defining the biome’s boundaries provides baseline information to monitor how the 

vegetation changes with time and disturbance. Furthermore, understanding fundamental 

changes in the sagebrush steppe can be used as an analog to understanding the rapid 

changes that are occurring in semi-arid ecosystems globally.   
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The spread of invasive grasses (Balch et al., 2012), expansion of woody trees 

(Romme et al., 2009), and an increase in drought severity (Yi et al., 2015), all influenced 

by current global climate changes, are connected to an increase in wildfire frequency, 

extent, and duration in the western USA. These environmental disturbances have led to 

both a fragmentation and loss of the native sagebrush steppe vegetation (Chambers et al., 

2007; Miller et al., 2011; Bukowski and Baker, 2013), which has decreased regional 

carbon storage (Reichstein et al., 2013). Efforts made by government agencies in the past 

to restore semi-arid ecosystems after a fire disturbance have been extensive (Pyke 2011; 

Pyke et al., 2013; Nelson et al., 2014; Knutson et al., 2014). Research shows that pre-fire 

vegetation composition correlates to the effectiveness of these methods (Everett and 

Sharrow, 1985; Kuenzi et al., 2008; Boyd and Davies, 2010; Miller et al., 2013). 

However, historically there has been a lack of detailed landscape vegetation data 

available in semi-arid ecosystems to effectively adapt restoration efforts to semi-arid 

environments (Knick et al., 2003; Kiesecker et al., 2009; Mckenny and Kiesecker, 2009; 

Davies et al., 2011; Sanez et al., 2013). This lack of pre-fire vegetation data has led to the 

use of potentially ineffective restoration techniques, such as aerial and drill seeding, of 

shrub communities in the GB (Rafferty and Young, 2002; Boyd and Davies, 2010; 

Knutson et al., 2014; Barbec et al., 2015). As the landscape continues to diminish from 

wildfires, monitoring current vegetation conditions at the landscape scale becomes vital 

to enact effective restoration efforts.  
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Figure 1-1: The extent of the Great Basin (GB) over the western United States. 

The GB is defined floristically as the extent of the sagebrush steppe.  

The increasing concern regarding the environmental disturbances affecting 

vegetation in the GB has led to new public policies, land management practices, and 

wildlife protection strategies that aim to preserve the degrading landscape. Secretarial 

Order 3336 (SO3336) was established by the Secretary of the Interior on January 5th 

2015. One of the goals of SO3335 is to advance technology to identify areas of high 

ecological and habitat value within the sagebrush steppe ecosystem. Furthermore, 

SO3336 aims to apply this knowledge to improve fire prevention methods, develop new 

long-term restoration techniques, and adapt management practices to improve land 

quality, reduce fuel loads, and protect wildlife. The goals of this policy stress the need to 

improve current vegetation classifications within the GB. In the past, landscape 

vegetation classifications in semi-arid ecosystems have been primarily produced using 
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medium to coarse-spatial resolution satellite imagery (30 m to 1 km spatial resolution). 

These data are often insufficient at capturing the heterogeneous vegetation patterns 

present, as sparse and fragmented shrub vegetation is masked by the large exposure of 

soil (Okin et al., 2001; Okin and Roberts, 2004). High spatial resolution vegetation 

classifications for semi-arid ecosystems are needed to improve our ability to monitor the 

changing vegetation conditions by providing insight into the landscape structure and 

functions necessary to establish restoration objectives at a range of different scales (Pyke, 

et al., 2015). In addition to improving post-fire restoration methods, high spatial 

resolution vegetation classifications will improve estimates of aboveground biomass 

(Eisfelder et al., 2012) and global carbon fluxes (Poulter et al., 2014). Specific to the GB, 

improving vegetation classification will support the objectives of SO3336, improve our 

ability to monitor degradation in the sagebrush steppe, and ultimately advance knowledge 

regarding the long-term sustainability of this ecosystem. 

2. The 2015 Soda Fire 

On August 10th, 2015, a lightning strike in Jordan Valley, Oregon, ignited the 

Soda Fire. The fire burned fairly continuous with a moderate to high burn severity across 

approximately 113,000 ha of sagebrush steppe landscape of government, state, and 

private lands in Oregon and Idaho before it was contained on August 23rd 2015. 

Restoration of the Soda Fire fell under SO3336 to fulfill the objective of rehabilitating 

degraded landscapes and mitigating the risk of future wildfires in the western United 

States. This fire is the first case study under SO3336 where post-fire effects threatening 

the degradation of the GB are identified to adapt and develop current methods to restore 

the landscape. Specific threats identified for the Soda Fire consist of expansion of 
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invasive species, habitat loss for threatened species, increased runoff leading to erosion 

and flooding, and loss of cultural resources. The SO3336 provided the funding to help 

target and eliminate these threats, and improve the sustainability of the GB. 

The cost associated with the Soda Fire restoration efforts are estimated to be over 

$60M spent on wide application of a combination of different restoration methods over 

the burned area (Fritz et al., 2015). These methods consisted of aerial treatments of 9,000 

ha of herbicide treatments, 25,000 ha of aerial seeding of shrubs, grasses and forbs, both 

native and introduced, 8,000 ha of drill seeding of native and introduced grasses, planting 

of approximately 1.35M sagebrush seedlings, and juniper removal in degraded areas 

unaffected by the fire for future fire repression (Fritz et al., 2015). Funding from the 

SO3336 also allowed the Bureau of Land Management (BLM) to develop new long-term 

ground monitoring protocols of the post-fire landscape. These protocols are being 

conducted to assess the effectiveness of the implemented restoration techniques. 

Assessment aims to determine if techniques are successful at minimizing threats to 

human life, property, and cultural resources, restoring habitats of threatened species, 

mitigating watershed responses and soil erosion, and reducing risk of future wildfires. 

Success of restoration methods developed for the Soda Fire will be important in helping 

fight the degradation of semi-arid ecosystems as wildfire frequency continues to increase 

in the GB.  

3. Reynolds Creek Experiment Watershed 

Reynolds Creek Experimental Watershed (RCEW) is located approximately 80 

km southwest of Boise, Idaho, in the Owyhee Mountains, encompassing approximately 

23,900 ha of semi-arid ecosystem. RCEW has an elevation gradient ranging from 900-
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2100 m (Seyfried et al., 2000), and mean annual precipitation that varies from 250-1100 

mm depending on elevation. Dominate shrub vegetation, primarily in the north, consists 

of Wyoming big sagebrush (Artemisia tridentate ssp.), low sagebrush (Artemisia 

arbuscula), and bitterbrush (Pushia tridentate), while dominate alpine vegetation in the 

south consists of quaking aspen (Populus termuloides) and Douglas fir (Psuedotsuga 

menziesii) (Seyfried et al., 2000). Juniper (Juniperus occidentalis) expansion has also 

been noted in the transitional zones of the watershed (Sankey at al., 2010). Supported by 

the USDA Agriculture Research Service Northwest Watershed Research Center, RCEW 

is a well-studied area by researchers across many fields (e.g., ecology, geomorphology, 

hydrology, geophysics, etc.) resulting in the availability of robust and diverse datasets. 

Recently, RCEW has become part of the National Science Foundation’s Critical Zone 

Observatory program (CZO, NSF EAR 1331872). 

In the summer of 2015, approximately 7,300 ha of the northern portion of RCEW 

(~1/3 of the total watershed) was burned during the Soda Fire. This area burned at a high 

burn severity, incinerating most all vegetation. A majority of this area was treated with 

restoration efforts as part of SO3336. Remote sensing and field data collected prior to the 

Soda Fire within the watershed serve as an opportunity to study ecosystem changes from 

the fire and the effectiveness of restoration techniques by providing detailed landscape 

information about the pre-fire vegetation conditions. Knowledge gained from restoration 

efforts in RCEW is beneficial for adapting future restoration efforts of other post-fire 

areas within the GB under the direction of SO3336, and will provide insight for 

restoration efforts in semi-arid ecosystems worldwide. 
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4. Thesis organization  

My thesis is divided into a background section defining imaging spectroscopy and 

spectral mixing, two self-contained manuscripts, and a conclusion section highlighting 

the major findings of this work. The first manuscript explores the use of imaging 

spectroscopy to classify vegetation across multiple biomes and ecotones within RCEW. 

Classifications are derived at very high spatial resolutions (1 m) and serve as a reference 

state of the current vegetation conditions present within RCEW. This information can be 

used in turn to track changes in vegetation compositions and well as paired with any 

number of other scientific studies (e.g. hydrologic modeling) in RCEW. The second 

manuscript is a case study focusing on the changes in aboveground biomass that occurred 

from the 2015 Soda Fire. This chapter provides gross estimates of the aboveground 

biomass lost within RCEW and over the full extent of the Soda Fire. Finally, an initial 

assessment of how much aboveground biomass has returned one-year following the 

wildfire both within RCEW and over the full extent of the Soda Fire is presented. 
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CHAPTER TWO: BACKGROUND 

Imaging spectroscopy  

Imaging spectroscopy, or hyperspectral imaging, is the use of hundreds of 

nanometer-sized channels to observe the spectral properties of objects from the visible to 

shortwave-infrared (400-2500 nm) portions of the electromagnetic spectrum (Figure 2-2). 

The high spectral resolution of hyperspectral sensors, such as NASA’s Airborne Visible/ 

Infrared Imaging Spectrometer- next generation (AVIRIS-ng), can be used to extract 

spectral information from an object that traditional broadband multispectral sensors, such 

as Landsat, cannot. Previous studies have determined the advantages of using 

hyperspectral imagery over multispectral imaging, which include the ability to map 

invasive vegetation species (Underwood et al., 2003; Lawrence et al., 2006), identify 

vegetation species (Ghiyamat et al., 2013; Ballanti et al., 2016), and estimate vegetation 

abundances (Roberts et al., 1993; Asner and Heidebrecht, 2002; Roth et al., 2015). 

Hyperspectral imagery’s ability to capture this detailed spectral information of vegetation 

is crucial in studying semi-arid ecosystems where the heterogeneity of the landscape, 

spectral similarity between vegetation species, and high soil albedo often mask the sparse 

vegetation in remote sensing data (Okin et al., 2001; Okin and Roberts, 2004).  
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Figure 2-1: Multispectral imagery (large dots) collects spectral information only at 

several locations across the electromagnetic spectrum. Hyperspectral imagery (small 

dots) collects spectral information at discrete intervals and is able to better capture 

spectral information of objects. 

Spectral mixing 

Spectral mixing is the processes of recording the combination of reflected 

radiation from multiple materials on Earth’s surface by an imaging spectrometer. There 

are two types of mixing that can affect radiation before it reaches the sensor: linear and 

nonlinear mixing. Linear mixing assumes incoming radiation from several materials 

remains separated until it reaches the sensor where it is then added together due to the 

lower spectral resolution of the sensor (Figure 2-1) (Campbell and Wynne, 2011). 

Nonlinear mixing occurs when reflected radiation from multiple materials interacts on the 

surface before being recorded by the sensor (Figure 2-1) (Campbell and Wynne, 2011). 

Nonlinear mixing is much more likely to occur due to the complex structure of Earth’s 

surface, especially in heterogeneous landscapes such as semi-arid ecosystems. However, 

decomposing this nonlinear spectral information into its respective parts is challenging 
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because it often requires detailed knowledge of the surface cover and the use of physics-

based models (Heylen et al., 2014). It has been found that the assumptions of linear 

mixing models are often sufficient to approximate the effects of spectral mixing (Qin and 

Gerstl, 2000; Keshava and Mustard, 2002; Bioucas-Dias et al., 2012). 

 

 
Figure 2-3: Linear spectral mixing (left) uses the assumption that the ground is 

divided into sections that are proportional to their contributing reflectance. 

Nonlinear spectral mixing (right) occurs when radiation interacts between objects at 

the surface before being reflected and recorded by the sensor. 

Image classification 

Image classification is the process of extracting information from an image by 

relating its spectral or spatial information to real-world physical classes. Spectral image 

classification compares the known unique spectral properties of a material, termed 

endmembers (EM), to a pixel spectrum and identifies that pixel as the EM that it most 

resembles. Previous studies have performed this type of image classification in semi-arid 

ecosystems to perform landcover classification (Roth et al., 2015), detect invasive species 

(Glenn et al., 2005), and calculate the burn extent of a wildfire (Eckmann et al., 2009). 

Image classification of spectral data can be divided into two methods: hard and soft 

image classification. Hard image classification is the process of assigning each pixel in a 

remotely sensed imaged to a single class or category (Figure 2-3). Hard image 
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classification is useful when the classes being classified are coarser than the spatial 

resolution of the imagery, or in areas where the occurrence of spectral mixing is low. Soft 

image classification is the process of deriving the abundance of one or more classes 

within a single image pixel (Figure 2-3). Soft image classification is useful in areas where 

the object being classified is finer than the spatial resolution of the image and in areas 

where the occurrence of spectral mixing is high. Numerous methods have been developed 

to perform both hard and soft image classification for a range of different sensors and 

ecosystems (Lu and Weng, 2007; Keshava and Mustard, 2002).  

 
Figure 2-3: Hard classification, depicted on the upper and lower right and left 

panels (pixels), produces a one class per-pixel output. Soft classification, depicted in 

the upper and lower middle panels (pixels), produces the abundances of the materials 

within a pixel. Image spectra are displayed in middle row: pure vegetation (left), pure 

soil (right), and a mixture of vegetation and soil (middle). 

One of the most common hard classification techniques is spectral angle mapper 

(SAM). SAM treats each spectrum as a vector in space, where the direction of the vector 

represents the shape of the spectral signature and length represents the recorded 

reflectance. SAM matches image spectra to EM to find the EM which best represents the 

Vegetation Soil
50% vegetation
50% soil

Hard 
classification

Soft 
classification

Hard 
classification
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recorded signature, defined as the EM that produces the smallest spectral angle when 

compared to the image spectrum (Equation 1) (Kruse et al., 1993). SAM has been 

effective in classifying and distinguishing between deciduous and evergreen vegetation in 

semi-arid ecosystems in past studies (Yang et al., 2009; Cho et al., 2010; George et al., 

2014). 

 

𝑆𝐴𝑀 = 𝑐𝑜𝑠−1 (
∑ 𝑝𝑖𝑒𝑖

𝑏
𝑖=1

(∑ 𝑝𝑖
2𝑏

𝑖=1 )
1/2

(∑ 𝑒𝑖
2𝑏

𝑖=1 )
1/2

) 

Equation 1: Spectral angle mapper (SAM), where p = pixel spectrum, e = endmember spectrum (EM), i = 

band number, and b = total number of bands. Pixel membership is assigned to the EM that produces the 

lowest value when compared to that pixel’s spectrum. 

 

Spectral mixture analysis is a soft image classification technique used to estimate 

the percent of an EM within a given spatial area (Equation 2 and Figure 2-4). This 

method uses a linear mixing model which assumes a unique EM within a pixel is isolated 

within an area and the size of this area controls the influence an EM has on the mixed 

spectrum (Settle and Drake, 1993; Bioucas-Dias et al., 2012). The recorded mixed 

spectrum is a combination of an EM and an error component, which is a representation of 

the naturally occurring spectral variations. Roberts et al. (1993) developed a method to 

alter the number of EM that could contribute to a single spectrum, giving the abundances 

of multiple materials in a single pixel, coined multiple endmember spectral mixture 

analysis (MESMA). This method compares each spectrum as a linear combination of 

different EM and an error term, and selects the model that minimizes the error to 

represent the mixed spectrum. MESMA allows the number of EM within a pixel can vary 
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on a per pixel basis, creating a flexible model that can capture complex landscape 

conditions.  

𝑆𝑖 = ∑ 𝑎𝑘𝑖𝑒𝑘 + 𝜀𝑖

𝑁

𝑘=1

 

Equation 2: Linear spectral mixture model. S = mixed spectrum at location i, a = abundance of endmember 

(EM) k at i, e = EM spectrum, N = total number of EM, and  = error at i. 

 

 

Figure 2-4: Multiple Endmember Spectral Mixture Analysis (MESMA) uses 

references endmembers (EM) (left) to describe the observed mixed spectral signature 

(right). Abundances a1 and a2 are solved for through an inverse method.  

EM for hard and soft image classification can be either derived from a reference 

spectral library or extracted from an image at locations where pixels are known to be 

homogeneous. Reference spectra often represent the purest reflectance of an EM without 

any interference from unwanted components, where image-derived EM represent the 

reflectance of an EM at a coarser scale, thus containing reflectance from other materials 

(i.e. library reflectance of a leaf vs. image reflectance of a canopy). Spectral properties of 

vegetation often vary across an image due to several factors including canopy structure, 

foliar chemistry, leaf size and orientation, and solar angle (Asner at al., 1998; Ollinger et 

al., 2002; Asner et al., 2009; Kokaly et al., 2009). Image derived EM are better at 

capturing this variability because the reflectance values extracted from the image are a 

function of all these variables (Drake et al, 1999; Bateson et al., 2000; Glenn et al., 2005; 

Keshava and Mustard, 2002). Bateson et al., 2000, developed a method to further reduce 

=a2a1 +
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errors in image classification caused by spectral variability by developing groups, or 

bundles, of EM all belonging to the same class that would effectively capture the 

interclass variability observed across an image. These EM bundles are used in place of a 

single pure EM for a class during hard and soft image classification to increase 

classification accuracy (Asner and Heidebrecht, 2002; Somers et al., 2011; Zare and Ho, 

2014; Dudley et al., 2015; Roth et al., 2015). 

In order to determine the effectiveness of an image classification, an accuracy 

assessment must be performed. Often, a confusion matrix is used for accuracy assessment 

by using known locations of each of the classes being classified to assess if the 

classification method accurately predicted these locations. A confusion matrix can also be 

used to calculate several metrics that determine the effectiveness of the classification 

method performed, such as overall accuracy, kappa coefficient, and user’s and producer’s 

accuracy. Table 2-1 gives an overview of each of these metrics that are used to assess 

both hard and soft classification accuracies. Commonly reported accuracy assessments 

for image classification are overall accuracy and kappa coefficient. These two metrics are 

highly correlated, where overall accuracy is a score of the total accuracy of all the classes 

classified and the kappa coefficient is a score of the overall accuracy which also 

accountants for classification that may have occurred by chance. Providing both these 

metrics is a more robust way to assess the effectiveness of an image classification. 

Producer’s and user’s accuracies are metrics that are provided for individual classes and 

provide information on where under- and over-classification is occurring. Producer’s 

accuracy informs the map producer on how well the classification technique worked and 

user’s accuracy informs the map user on the probability that any given location on the 
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map is correctly classified. For example, a high producer’s accuracy and low user’s 

accuracy for an individual class indicates that an overall over-classification for that class 

occurred, where a low producer’s accuracy and high user’s accuracy indicates an overall 

under-classification occurred for that class.  

 

Table 2-1: Image classification accuracy assessments metrics. 

Accuracy 

assessment metric 

Formula Description 

Overall accuracy  

(OA) 
𝑂𝐴 =

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

Overall accuracy of classification  

Kappa coefficient 

 (K) 
𝐾 =

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

1 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
 

Overall accuracy of classification with  

inclusion of correctly classifying by chance 

User’s accuracy  

(UA) 
𝑈𝐴 =  

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑎 𝑐𝑙𝑎𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑎 𝑐𝑙𝑎𝑠𝑠
 

How accurate is the map for a given class? 

Producer’s  

accuracy (PA) 
𝑃𝐴 =  

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑖𝑥𝑒𝑙𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑎 𝑐𝑙𝑎𝑠𝑠
 

How well did the classification method work? 
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CHAPTER THREE: HYPERSPECTRAL DERIVED VEGETATION SPECIES AND 

COVER ACROSS LANDSCAPE GRADIENTS IN A SEMI-ARID ECOSYSTEM 

USING MULTIPLE ENDMEMBER SPECTRAL MIXTURE ANALYSIS COUPLED 

WITH OPTIMAL ENDMEMBER BUNDLING 

1. Introduction  

The ability to determine vegetation species and cover across ecotones in semi-arid 

regions with large environmental gradients provides a reference state to track changes in 

the vegetation communities over time. Tracking these changes allow scientists and land 

managers to understand the vulnerability and flux of vegetation in semi-arid ecosystems 

caused by the increase in frequency of wildfires (Balch et al., 2012), droughts (Yi et al., 

2015), and the spread of invasive species (Chambers et al., 2007). Moreover, the change 

in vegetation composition caused by these environmental disturbances is correlated to the 

total carbon within the landscape (Miller et al., 2011); where the loss of the ecosystem’s 

native vegetation can lead to a decrease in carbon storage (Reichstein et al., 2013). This 

loss of carbon storage is vital at the global scale, where semi-arid ecosystems have a large 

impact on the interannual global carbon variability (Poulter et al., 2014). Mapping the 

current distribution of species within the different biomes of semi-arid ecosystems will 

improve current carbon estimates and provide information to better quantify the effects 

vegetation has on global carbon levels and climate change (Reichstein et al., 2013; 

Thomey et al., 2014; Scott et al., 2015). 
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Image spectroscopy (hyperspectral imagery) has been used to classify species of 

vegetation within a range of different biomes (e.g. Asner and Heidebrecht, 2002; Adam et 

al., 2010; George et al., 2014; Roth et al., 2015; Ballanti et al., 2016). The large 

environmental gradients (i.e. elevation) and variability in climate in mountainous semi-

arid ecosystems creates the necessary conditions for multiple biomes to exist within close 

proximity to each other (Reid, 2005; Dufour et al., 2006; Hofer et al., 2008). Wetter, 

higher elevation and riparian areas are populated with alpine and deciduous vegetation, 

respectively, while drier, lower elevation portions of the landscape are dominated by 

shrubland vegetation. There are many challenges associated with classifying vegetation 

species across these regions, as the physical properties of each vegetation community 

contributes a unique remote sensing phenomena. For example, in semi-arid regions there 

exist both densely populated regions with complex species interactions that are 

characterized by a high spectral variability and regions populated with sparse vegetation 

masked by soil albedo (Hall et al., 2008; Adam et al., 2010; Okin and Roberts, 2004).  

Hyperspectral imagery has been used in the past to overcome the challenges 

presented by remote sensing the unique physical properties of different vegetation 

communities. George et al. (2014) used hyperspectral imagery to classify vegetation 

species in mountainous regions. Madritch et al. (2014) incorporated multiple spectral 

properties of different aged aspen stands to account for the spectral variability observed 

between the stands. Other studies have used linear spectral unmixing models to estimates 

shrub abundance in sagebrush steppe ecosystems (Okin and Roberts, 2004; Thorp et al., 

2013; Roth et al., 2015). Most previous studies focused on classifying landscape scale 

vegetation have relied on medium to coarse spatial resolution imagery that often mask 
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any ecotones present (Thorp et al., 2013; George et al., 2014; Mitchell et al., 2015; Roth 

et al., 2015). The high spatial resolution (1 m) hyperspectral imagery necessary to 

classify biomes with high spectral diversity and strong spectral mixing, and capture the 

ecotones between them is rarely available at the landscape scale.  

The aim of this study is to develop and assess the capability to derive vegetation 

species and cover across ecotones and environmental gradients in a semi-arid ecosystem 

at a high spatial resolution (1 m). We hypothesize hyperspectral imagery, coupled with 

multiple endmember classification techniques, can accurately classify vegetation with 

contrasting spectral characteristics caused by the occurrence of ecotones and large 

environmental gradients present in semi-arid regions.  

Background  

Spectral angle mapper (SAM) is a common image classification technique that 

has been used in conjunction with hyperspectral imagery to classify evergreen and 

deciduous forest (Cho et al., 2010), detect juniper expansion (Yang et al., 2009), and 

classify vegetation over hilly terrain (George et al., 2014). SAM compares image spectra 

with reference spectra, or endmembers (EM), by mapping each spectrum as a vector in a 

n-dimensional space and measuring the angle between the two vectors. SAM only 

compares the direction of the two vectors and is invariant to changes in spectral intensity 

between spectra with similar shapes (Ghiyamat et al., 2013). It has been noted that 

because of this, SAM is an effective method in classifying areas with variations in 

spectral albedo such as riparian zones, mixed forest, and dense canopies (Shrestha et al., 

2002; Dennison et al., 2004; Hestir et al., 2008).  
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Although SAM has been effective at classifying vegetation in areas where 

spectral signatures are well defined (i.e. tree canopies), it has limitations in areas of high 

spectral mixing (Shrestha et al., 2002; Dennison et al., 2004). Spectral mixing often 

occurs in heterogeneous areas where vegetation cover is low and image spectra are 

composed of multiple unique EM. Abundances of EM within a mixed spectrum can be 

derived through an inverse problem using a linear mixture model (LMM) (Bioucas-Dias 

et al., 2012). LMM have been shown to be sufficient at approximating vegetation cover 

from areas of high spectral mixing (Qin and Gerstl, 2000; Keshava and Mustard, 2002; 

Bioucas-Dias et al., 2012). By detecting the partial contribution of an EM within a mixed 

signal, LMM is able to determine vegetation abundance in low cover areas where soil 

exposure is high (e.g. sagebrush steppe). 

Often estimating the abundance of a single EM within a pixel is not sufficient to 

represent the heterogeneous landscapes of semi-arid ecosystems. Multiple endmember 

spectral mixture analysis (MESMA) is a LMM developed by Roberts et al., 1998 as an 

approach to deal with these complex systems by incorporating the option of multiple EM 

contributing to mixed spectra. MESMA has shown potential in estimating vegetation in 

shrubland biomes where sparse vegetation and the large exposure of soil often contribute 

to the occurrence of widespread spectral mixing (Okin et al., 2001; Asner and 

Heidebrecht, 2002; Thorp et al., 2013; Roth et al., 2015). Unlike SAM, MESMA is 

extremely sensitive to changes in spectral albedo of an EM because it assumes each EM 

is a pure representation of a given class. This causes the need of many EM to represent 

areas where the structure of an object's spectrum is fixed but the spectral intensity varies, 
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such as dense tree canopies (Dennison et al., 2004; Fan and Deng, 2014; Roth et al., 

2015).  

A standardized method to assess the accuracy of sub-pixel estimates produced by 

spectral unmixing techniques such as MESMA has not yet been established in the 

literature (Foody et al., 2005; Sliván-Cárdenas and Wang, 2008). Past studies have relied 

on techniques such as the use of fine spatial-scale imagery, vegetation indices, and 

statistical metrics (e.g. RMSE) to gauge the estimates produced from spectral unmixing 

(Thorp et al., 2013; Fan and Deng, 2014; Roth et al., 2015). Silván-Cárdenas and Wang 

(2008) developed a specialized confusion matrix that evaluates the performance of linear 

spectral unmixing techniques, termed sub-pixel confusion-uncertainty matrix (SCM). A 

SCM calculates the accuracy of sub-pixel estimates with the use of field measured class 

cover instead of determining if a location was correctly classified or not, as in a 

traditional confusion matrix. The method uses a composite operator, pnij, to calculate the 

SCM: 

 

𝑝𝑛𝑖𝑗 = {

𝑀𝐼𝑁(𝑐𝑛𝑖, 𝑓𝑛𝑗),                                            𝑖 = 𝑗

(𝑐𝑛𝑖 − 𝑝𝑛𝑖𝑖) × [
𝑓𝑛𝑗 − 𝑝𝑛𝑗𝑗

∑ (𝑓𝑛𝑗 − 𝑝𝑛𝑗𝑗)𝑘
𝑗=1

] ,                𝑖 ≠ 𝑗
 

Equation 3: Sub-pixel confusion-uncertainty matrix (SCM) 

 

where p is the specific cell in the SCM for pixel n, c is the class cover produced from the  

LMM for pixel n, f is the field measure class cover for pixel n, MIN is the minimum 

value between the derived and field cover, k is the total number of classes, and i and j 

represent the row and column of the SCM, respectively. Since the boundaries of the 

multiple classes present within a pixel are undefined in both the image and field data, the 
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SCM cannot determine where misclassification is occurring between classes. Instead, the 

SCM can be used to calculate standard accuracy metrics such as overall accuracy, kappa 

coefficient, producer’s accuracy (PA), and user’s accuracy (UA). SCM is an ideal method 

to assess spectral unmixing accuracies where there are sufficient field data available 

(Chen et al., 2010; Frazier and Wang, 2011). 

Classification accuracy with both SAM and MESMA are dependent on the 

optimal selection of EM that best represent the observed reflectance of an object within 

an image (Cho et al., 2010; Somers et al., 2011; Ghiyamat et al., 2013; Roth et al., 2015). 

Reflectance is a factor of physical properties such as leaf orientation, leaf chemical 

composition, canopy structure, solar angle, vegetation age, and soil and littler exposure 

and composition (Asner et al., 1998; Ollinger et al., 2002; Asner et al., 2009; Kokaly et 

al., 2009). These factors can cause reflectance from vegetation within the same class to 

vary across an image (Figure 3-1). The use of image-derived spectra for classification 

better captures the observed spectral variability when compared to EM derived from field 

spectrometers or reference libraries (Drake et al, 1999; Bateson et al., 2000; Keshava and 

Mustard, 2002). Classification accuracy can be further increased by using groups or 

bundles of EM to capture the inter-class variability caused by the reasons stated above 

(Bateson et al., 2000; Cho et al., 2010; Zare and Ho, 2014; Dudley et al., 2015). The 

combination of optimal EM selection and EM bundling can increase the accuracy of 

vegetation classification using both SAM and MESMA.  
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Methods 

Study Area  

This study was conducted in Reynolds Creek Experimental Watershed (RCEW), 

located in the Owyhee Mountains, ID (Figure 3-2). RCEW encompasses 23,900 ha of 

semi-arid ecosystem and has an elevation gradient of ranging from 900-2100 m (Seyfried 

et al., 2000). Annual mean precipitation ranges from 250-1100 mm in a linear trend with 

Figure 3-1: Spectral variation within each vegetation class extracted from multiple 

portions of the image and across RCEW. Aspen (top left), Riparian (top right), Douglas 

Fir (middle left), Juniper (middle right), and Shrub (bottom left). 
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elevation (Marks et al., 2007). RCEW can be divided into three major biomes defined by 

both sharp and gradual ecotones. Alpine vegetation dominates higher elevations in the 

southern portion of the watershed and consists primarily of quaking aspen (Populus 

termuloides), Douglas fir (Psuedotsuga menziesii), and western juniper (Juniperus 

occidentalis) (Seyfried et al., 2000). There is a gradual transition into the lower elevations 

in the northern portion of the watershed consisting primarily of Wyoming big sagebrush 

(Artemisia tridentate ssp. wyomingensis), low sagebrush (Artemisia arbuscula), 

rabbitbrush (Ericameria nauseosa) and bitterbrush (Pushia tridentate). This ecotone 

contains western juniper that is expanding downward in elevation into the lower elevation 

shrub communities. Several grass communities consisting of bluebunch wheatgrass 

(Pseudoroegneria spicata), needle and thread (Hesperostipa comata), western wheatgrass 

(Pascopyrum smithii), tapertip hawksbeard (Crepis acuminata), and yarrow (Achillea 

millefolium) also populate these areas (Pyke et al., 2015). The final biome within RCEW 

is defined as the riparian areas of the watershed. Common riparian vegetation in the 

region are black cottonwood (Populus trichocarpa), coyote willow (Salix exigua), and 

peachleaf willow (Salix amygdaloides) (National Research Council, 2002). Riparian 

regions transition gradually into alpine vegetation in the higher elevation areas; whereas 

the transition between riparian regions and shrublands is much sharper in the lower 

elevations. 
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Figure 3-2: Reynolds Creek Experimental Watershed (RCEW) location. Elevation 

displayed at a 1 m scale.  
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Data  

Field data and imagery were collected in 2014-2016 as part of a NASA Terrestrial 

Ecology (TE) project campaign (NASA Terrestrial Ecology NNX14AD81G). The 

objective of this study was to quantify vegetation characteristics in semi-arid ecosystems 

using remote sensing techniques, such as hyperspectral and full waveform lidar 

(NNX14AD81G; PIs: Glenn, Ustin, Mitchell, Flores). Locations for areas where each 

tree species (aspen, Douglas fir, juniper, and riparian) was the dominate cover were 

collected across the watershed using a Topcon HiPer V Real Time Kinematic (RTK) 

GPS. Shrub, grass and soil cover was measured at 48 plots (10*10 m) across RCEW for a 

range of elevation, cover, and species. A list of plot locations and characteristics is 

located in Appendix A. Sample Point photo analysis (Booth et al., 2006) was used to 

classify each plot using a series of 20 photos taken every 2 m across the plot. Dominant 

vegetation cover for the collected plots included: sagebrush, bitterbrush, rabbitbrush, 

mixed shrub, and grasses. 

Hyperspectral imagery were collected on June 11th 2015 using NASA’s Airborne 

Visible and Infrared Imaging Spectrometer Next Generation (AVIRIS-ng) sensor over 

380-2500 nm using 432 spectral bands with a bandwidth of about 5 nm. NASA’s 

AVIRIS-ng level two product, consisting of orthorectified surface reflectance 

atmospherically corrected with ATREM (Gao et al., 2009), was used for this study. A 

total of 15 AVIRIS-ng images were used to capture the full extent of RCEW. While 

maintaining a consistent spatial resolution during the data collection, approximately 17 

km2 (~6%) of the total watershed was not captured, resulting in several gaps between the 

images. The original pixel size of 1.5 m for each image was resampled down to 1 m using 
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a bilinear interpolation when the image was georegistered to 1 m lidar imagery. The error 

of this registration is about half a pixel or 0.5 m. Spectral bands were inspected for noise 

caused from atmospheric water absorption, and 59 of the original bands were removed. 

Endmember Derivation  

Individual 1 m pixels were delineated from the AVIRIS-ng imagery using a 

combination of field data from the NASA TE campaign and additional independent field 

locations for all species considered for this study: aspen, riparian, Douglas fir, juniper, 

shrubs (sagebrush, bitterbrush, and rabbitbrush), and grasses. Approximately 20% of the 

total field data for each class was randomly selected as training data for the classification, 

with the additional 80% used for validation. EM bundles were built from the extracted 

image spectra for each of the listed classes, and used to capture the spectral variability 

observed over the image. 

Open-source software Visualization and Image Processing for Environmental 

Research (VIPER, Version 2.0) was used to compile and build EM bundles from the 

extracted image spectra for each class to be used during the classification process. The 

VIPER toolbox calculates several statistical metrics including endmember average root 

mean square error (EAR) and minimum average spectral angle (MASA) to highlight 

inter-class spectrally variability and ultimately choose spectral bundles that best represent 

an entire class. EAR is the average RMSE produced by an EM when it is used to model 

all other EM of the same class, where the lowest EAR is a measure of which spectra can 

best represent that class. MASA, similar to EAR, uses each EM to model all other EM of 

the same class, but compares the spectral angle produced between the two spectra to find 

the EM that produces the lowest error.  
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Spectral libraries were reduced to a smaller subset from the original extracted 

spectra through an iterative process of taking the top spectra with the highest EAR and 

MASA results, running the classification process on several random validation plots, and 

removing spectra that performed poorly or were unused. This process was repeated until 

removing spectra decreased classification results. This procedure helped reduce 

computation time and the number of training samples used, and it maximized the number 

of validation samples. Table 3-1 shows the number of spectra per class that were 

delineated in the initial spectral library, the number of samples used in the final 

classification, and the number of samples used for classification validation. Field plots 

that did not have spectra used in the final spectral libraries were used to assess the 

classification accuracy. 

Table 3-1: The number of ground validation points (represented by 1 m pixels) 

used for endmember (EM) derivation and classification accuracy assessment per 

class. 

Class Image extracted  

EM 

EM used in final 

classification 

Validation samples Classification 

method 

Aspen 1004 3 4816 SAM 

Riparian 1316 5 3271 SAM 

Douglas Fir 90 3 3947 SAM 

Juniper 187 3 1409 SAM 

Sagebrush 141 5 2600 MESMA 

Bitterbrush 82 2 800 MESMA 

Grass 46 2 3400 MESMA 

Soil 100 3 3400 MESMA 

 

Classification 

Classification was performed using all the AVIRIS-ng bands after pre-processing 

(n=373) over the collected spectrum (380-2500 nm) with a combination of SAM and 

MESMA. SAM was used to classify tree vegetation within RCEW located in the riparian 

zones and higher elevations of the watershed in order to account the high spectral 
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diversity of these areas. A shrubland class, comprised of a mixture of shrubs, grass, litter, 

and soil, was incorporated for classification, and validation data, along with visual 

inspections, were used to ensure these areas were appropriately labeled. The maximum 

allowable spectral angle for SAM was set to 0.1 radians. A post classification 3x3-pixel 

moving average filter was performed in ENVI to enhance spatial consistency of the SAM 

results. SAM classification of aspen, riparian, Douglas fir, and juniper were masked out 

of the imagery before MESMA computation for the remaining classes. 

MESMA was used to derive abundances of shrubs, grasses, and soil within the 

watershed where spectral mixing is occurring due to the small structure and low cover of 

these vegetation classes. The MESMA parameters of minimum and maximum allowable 

EM fraction, minimum and maximum allowable shade fraction, and maximum allowable 

RMSE were set 0.0, 1.0, 0.0, 0.8 and 0.025, respectively. These values were set based on 

performance from trial and error. Model complexity, defined by the allowable number of 

EMs per pixel, was set to three; this includes the combination of two class EM from the 

spectral library and a shade component, which was set to photometric (zero) for this 

study. A three-EM complexity approach was chosen because when given the option of 

modeling a pixel with two-EM, MESMA consistently chose this, which did not 

accurately represent the heterogeneity of the landscape observed in the field. The absence 

of either a grass or soil EM in the prediction of shrub abundance led to poor results in 

initial testing. Okin et al. (2001) noted similar results when trying to identify soil 

composition and abundance in semi-arid ecosystems using MESMA and did not include a 

vegetation or litter component in their models. A total of 56 models were used during the 

final unmixing process. 
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Accuracy Assessment  

Accuracy assessment for both classification methods were performed separately 

using field validation data (Table 3-1). SAM classification was evaluated using standard 

classification metrics: a confusion matrix, overall accuracy, kappa coefficient, PA, and 

UA. Because MESMA produces abundances of multiple classes in a single pixel, a 

traditional confusion matrix cannot be directly applied to assess the accuracy of the 

cover. In replacement, a SCM was used to assess the accuracy of the abundance derived 

from MESMA. The SCM was calculated for each plot (10*10 m), then resulting SCM 

were averaged to produce the final SCM (Chen et al., 2010). An overall accuracy, kappa 

coefficient, PA, and UA were produced from the final SCM for the shrub, grass, and soil 

cover.  

Results  

i. SAM 

SAM classification accuracy was validated on a species level as listed in Table 3-

2. Classification had an overall accuracy of 57.9% and a kappa coefficient of 0.43. 

Riparian, Douglas fir, and juniper classes showed high classification accuracies of 61.8%, 

67.8%, and 78.7%, respectively. The aspen class resulted in low accuracies and 

significant classification confusion with the riparian class. Therefore classification was 

recomputed into plant functional types (PFT) with a combined deciduous tree class 

(aspen and riparian) and combined evergreen tree class (Douglas fir and juniper) (Table 

3-3). A PFT classification groups vegetation with similar physical characteristics and are 

commonly used for ecosystem dynamics and hydrological modeling (Gerten et al., 2004). 

Overall accuracies for the PFT classification was 84.4% with a kappa coefficient of 0.68. 
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Deciduous and evergreen classes had accuracies of 88.3% and 77.5%, respectively. 

Figure 3-3 shows both the species and PFT vegetation classifications of RCEW. 

Table 3-2: Confusion matrix, overall accuracy, kappa coefficient, and user’s and 

producer’s accuracies for species classification produced using SAM. The confusion 

matrix is represented as the number of pixels used for accuracy assessment. 

               Ground Truth 

 Aspen Riparian Douglas Fir Juniper Total 

Aspen 2017 559 150 0 2726 

Riparian 2420 1838 364 56 4678 

Douglas Fir 106 508 2195 112 2921 

Juniper 7 0 49 726 782 

Unclassified 11 69 479 29 588 

Total 4561 2974 3237 923 11695 

 

 

Table 3-3: Confusion matrix, overall accuracy, kappa coefficient, and user’s and 

producer’s accuracies for plant functional type classification produced with SAM. 

The confusion matrix is represented as the number of pixels used for accuracy 

assessment. 

 Ground Truth  

 Deciduous Evergreen Total 

Deciduous 6652 557 7209 

Evergreen 825 3223 4048 

Unclassified 58 380 438 

Total 7535 4160 11695 

 

 

 

 

 

Overall Accuracy = 57.9%         Kappa coefficient = 0.43 

 Class Accuracy   Producer’s Accuracy User’s Accuracy 

Aspen 44.2% 44% 74% 

Riparian 61.8% 62% 39% 

Douglas Fir 67.8% 68% 75% 

Juniper 78.7% 79% 93% 

Overall Accuracy = 84.4%      Kappa coefficient = 0.68 

 Class Accuracy Producer’s Accuracy User’s Accuracy 

Deciduous 88.3% 88% 92% 

Evergreen 77.5% 77% 80% 
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Figure 3-3: Vegetation classification results from SAM in Reynolds Creek 

Experimental Watershed (RCEW). a) Tree species classification. b) Plant functional 

types. Note, the black stripes in both classifications are caused from missing data 

between flightlines and are labeled unclassified.  
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MESMA 

The final SCM for MESMA accuracies was produced using 44 field measured 

cover (Table 3-4). Overall accuracy derived from the final SCM for the MESMA shrub, 

grass and soil cover was 67.4%, with a kappa coefficient of 0.53. Both producer’s and 

user’s accuracy are listed in Table 3-4. Past studies have stated the inability of remote 

sensing imagery to predict shrub cover that comprised less than 30% of the landscape 

(Okin et al., 2001; Thorp et al., 2013). Therefore, the analysis was repeated to observe 

MESMA estimates in areas where shrub cover was greater than 20% (n= 24 plots). Note, 

20% was chosen due to the limited number of field plots in areas that had greater than 

30% shrub cover. The SCM for shrub cover >20% is shown in Table 3-5. Results indicate 

a slight improvement with an overall accuracy of 70.0% and a kappa coefficient of 0.55. 

Figure 3-4 shows abundancy maps for shrub, grass, and soil classes within RCEW.  

Table 3-4: Accuracy metrics derived from the sub-pixel confusion-uncertainty 

matrix (SCM) to assess abundances derived from MESMA. A total of 44 (10*10 m) 

plots were used for validation. 

Overall Accuracy = 67.4% Kappa Coefficient = 0.53 

 

 

 

 

 

Table 3-5: Accuracy metrics derived from the sub-pixel confusion-uncertainty 

matrix (SCM) to assess abundances derived from MESMA in areas where there was 

>20% shrub cover present. A total of 24 (10*10 m) plots were used for validation.  

Overall Accuracy = 70% Kappa Coefficient = 0.55 

 

 

 

 

 Producer’s Accuracy  User’s Accuracy  

Shrubs 98% 48% 

Grass 68% 80% 

Soil 48% 93% 

 Producer’s Accuracy  User’s Accuracy  

Shrubs 99% 59% 

Grass 79% 76% 

Soil 35% 99% 
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Figure 3-4: Abundancy map produced with multiple endmember spectral mixture 

analysis (MESMA) for Reynolds Creek Experimental Watershed (RCEW). a) shrub, 

b) grass, and c) soil. Note, the white stripes are caused from missing data between 

flightlines. 

Discussion  

i. Classification of Tree Species and PFT  

High spectral and spatial resolution classification of tree species in semi-arid 

ecosystems is effective but has limitations where there is a complex intergrowth of 

spectrally similar vegetation species. Past studies classifying deciduous and evergreen 

species in homogenous ecosystems using SAM had OA ranging from 54%-75% and 

kappa coefficients of 0.48-0.70 (Cho et al., 2010; George et al., 2014). The main source 

of classification error in this study was confusion between aspen and riparian areas. Two 

0 5 102.5

Kilometers

Percent Cover

100%0%

a) b) c) ¯



42 

 

factors are believed to contribute to this misclassification, which ultimately lowered the 

OA and kappa coefficient.  

The riparian areas within the study area are characterized by a large diversity of 

spectral reflectance. Vegetation species present within riparian zones are driven by the 

surrounding environmental conditions including elevation, precipitation, and soil 

composition (Patten, 1998; National Research Council, 2002; Richardson et al., 2007). 

Due to large environmental gradients observed within our study site, it is likely that the 

composition of vegetation species within riparian areas was also highly varied throughout 

the study area. Also, several areas along the riparian zones were found to have aspen 

stands growing mixed within the riparian vegetation during field observations. The 

presence of such a diverse composition of vegetation species will increase the spectral 

variability within the riparian zones (Adam et al., 2010; Rocchini et al., 2011).  

There was a large variation of reflectance between different aspen stands within 

the imagery. Past studies have noted that a variation in spectra between aspen stands of 

different ages is caused by variation in foliar chemistry (Madritch et al., 2014). This 

variation in aspen reflectance covered much of the same range in reflectance that was 

noted in the riparian spectra. The intermixture of aspen coupled with the high diversity of 

spectral reflectance within the aspen class resulted in too much spectral noise to 

accurately distinguish aspen stands in the study site.  

Douglas fir and juniper showed higher classification accuracies, likely since both 

species had distinguishable spectral signatures from each other and other broad leaf 

classes within the study area. These two evergreen species are structurally unique from 

each other, which furthers the ability to better classify them when compared to other 
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structurally similar deciduous trees. The detection of juniper is important in semi-arid 

ecosystems because there has been an increase in juniper expansion in shrubland areas, 

changing the fundamental vegetation composition of the area (Miller and Heyerdahl, 

2008). Providing an accurate estimate of where current juniper trees are located provides 

a baseline for studies investigating the phase of and changes in expansion over time.  

Classification accuracy improved after combining species into broader PFT 

classes. This increase in accuracy is attributed to the PFT’s ability to account for the 

spectral variations caused by the different physical properties between species observed 

across the landscape. Classification with PFT gives an insight into the spatial distribution 

of different ecosystem functions, which have important implications in ecosystem 

modeling (Bonan et al., 2002), vegetation monitoring (Pan et al., 2015), and carbon 

studies (Wu et al., 2016) in semi-arid ecosystems. 

Past studies have shown that the incorporation of structural information from lidar 

(Mitchell et al., 2015; Wang and Glennie, 2015; Glenn et al., 2016) and phenological 

information from an image time-series analysis (Dennison and Roberts, 2003; Guo et al., 

2003; Dudley et al., 2015) improves species classification accuracy. Although 

hyperspectral imagery can accurately classify species at the landscape scale, using only 

spectral information can become problematic in heterogeneous landscapes, especially 

when using image extracted EM from areas of mixed species. Finding pure pixels to use 

as EM within these heterogeneous regions can be challenging when accurate and 

extensive field data are not collected. The incorporation of auxiliary information, such as 

height, density, and phenological information, combined with the spectral data can lead 

to better species classification in semi-arid ecosystems.  
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Abundancy Estimates of Shrub, Grass, and Soil  

Shrub, grass, and soil cover predicted with MESMA resulted in accurate 

estimates. This supports the idea that high spatial (1 m) hyperspectral imagery can 

provide detailed estimates of shrubland vegetation at the landscape scale. Results 

improved slightly when including only areas with shrub cover >20%. This corroborates 

with previous studies that state low shrub cover in a landscape may not be measurable as 

they are easily masked by the reflectance of the surrounding soil and grasses (Okin et al., 

2001; Okin and Roberts, 2004). However, the high spatial AVIRIS-ng imagery accurately 

derived estimates for all cover that were present within the landscape. 

The largest discrepancy within the cover results was observed between the PA 

and UA of the shrub cover. The high PA and corresponding low UA indicates an overall 

over-classification of shrub cover within the study area. Although the SCM does not 

convey where misclassification occurs between classes like a traditional confusion 

matrix, the corresponding PA and UA derived from the SCM indicated that shrub and 

soil classes had the largest changes between the two accuracies. A high PA and low UA, 

and low PA and high UA for the shrub and soil classes, respectively, along with grass PA 

and UA staying relatively consistent, indicates there was confusion between the shrub 

and soil classes.  

This discovery is somewhat surprising, as pure spectra of shrubs and soil are 

fundamentally different. This likely indicates there was an EM derived from the image 

that was used during the MESMA process that was not a “pure” representation of a single 

class (i.e. a mixed EM of shrub and soil was chosen which then overclassified shrubs). 

Another likely explanation for this phenomenon could be that the exposure of pure soil 
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within the watershed is not common, as most of the bare ground contains some portion of 

litter or woody debris. The spectral reflectance from this material could have easily 

created spectral confusion between the two classes during the MESMA unmixing. 

Although shrub cover was over-estimated, abundances derived with AVIRIS-ng imagery 

still provide more detail than estimates made using traditional multispectral sensors and 

are sufficient when extracting vegetation information at the landscape scale.  

Additional distinction between sagebrush, bitterbrush, and rabbitbrush was also 

attempted during this study, but results were poor due to the spectral similarities and a 

limited number of field plots for bitterbrush and rabbitbrush dominated areas. Future 

research should have a sufficient abundance of field data for individual shrub species to 

establish unique EM for each species. Predicting shrub cover for all dominate species 

(sagebrush, bitterbrush, and rabbitbrush) as a single class was successful and the results 

can be used for monitoring fragmentation of shrub communities (Bukowski and Baker, 

2013), aboveground biomass estimation (Eisfelder et al., 2012), and habitat restoration 

(Pyke et al., 2015). The addition of structural and height lidar information in future 

studies could help distinguish between shrub species (sagebrush and bitterbrush), as 

bitterbrush is often denser and taller than sagebrush. These structural differences are not 

observable in the spectral response recorded during imaging spectroscopy.  

Spectral Variability  

The large number of AVIRIS-ng images used during this study is noteworthy. 

The 15 airborne images were collected over approximately two and a half hours to 

capture the full extent of the study area. It is likely that large changes in sun angles and 

illumination occurred during this timeframe. Hall et al. (2008) reported changes in 
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canopy reflectance due to solar illumination occurs during the sub-hourly scale, meaning 

variations in vegetation reflectance during the AVIRIS-ng collection were inevitable. 

Additionally, illumination of vegetation was affected by shading caused by topographic 

features and surrounding vegetation. These shading factors would have also varied in 

intensity throughout the duration of the image collection. These factors likely influenced 

the effectiveness of the EM bundles, as EM selected in one image may not have been 

fully representative of the same vegetation species in a different image of the watershed. 

These issues are unavoidable when analyzing hyperspectral imagery at the landscape 

scale. However, EM extraction from multiple images for a single class should be 

sufficient to capture the spectral variability present. 

Conclusion  

We found that high spatial resolution hyperspectral imagery has the capacity to 

accurately classify vegetation across the environmental gradients and ecotones observed 

in RCEW. The use of high spatial resolution hyperspectral imagery improves vegetation 

estimates and provides detailed insight into the distribution and boundaries of ecotones 

within the ecosystem that are not obtainable with spaceborne multispectral imagery. The 

separation of ecotones showed high success because each biome has unique spectral 

properties that were highlighted in the imagery. Detecting these ecotones is an important 

step in monitoring global vegetation change in semi-arid ecosystems that occur across 

portions of the world including the western United States, southern Australia, central 

Asia, and South Africa.  
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Individual species classification within each of the semi-arid biomes was more 

challenging. Each biome showed high spectral variability both within and between 

vegetation classes. If extensive and accurate field data are not collected, this variability 

can be difficult to capture when using image derived endmembers for classification. The 

selection of appropriate endmembers used to represent each vegetation class dictates the 

overall accuracy of the classification. Previous studies classifying individual species 

focused on smaller portions of the landscape (Mollot et al., 2007; Cho et al., 2010; 

Ballanti et al., 2016). By moving to a landscape-scale vegetation classification, a sacrifice 

is made to the scale at which species can be represented, as collecting extensive field data 

on all species present within each biome is both time-consuming and expensive.  

The upcoming launch of NASA’s spaceborne Hyperspectral Infrared Imager 

(HyspIRI) will be the first readily available global hyperspectral imager and will provide 

data to continuously monitor vegetation across landscape gradients and ecotones. 

HyspIRI will have a coarser spatial resolution (60 m) but will have repeat scans of an 

area with a temporal resolution of 19 days. The multi-temporal hyperspectral HyspIRI 

imagery will provide additional phenological information that could be used to 

distinguish between different deciduous species. Previous studies have found the 

potential use HyspIRI imagery to estimate shrub cover (Mitchell et al., 2015), 

discriminate rangeland grasses (Sibanda et al., 2016), and classify vegetation across 

biomes (Lee et al., 2015). As we move towards using this coarser spatial resolution (60 

m) hyperspectral imagery to classify vegetation, the use of spectral unmixing techniques 

will be necessary to accurately estimating vegetation abundances in semi-arid 

ecosystems, as the occurrence of spectral mixing at this scale will be unavoidable. 
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Even at these coarser spatial resolutions, these hyperspectral data will provide us 

with improved estimates of semi-arid vegetation that cannot be resolved with current 

spaceborne multispectral sensors. Understanding the challenges and limitations 

associated with vegetation classification using hyperspectral imagery across large 

environmental gradients and ecotones in semi-arid ecosystems is vital to improve future 

vegetation estimates and monitor global carbon trends.  
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CHAPTER FOUR: MONITORING CHANGES IN ABOVEGROUND BIOMASS 

FROM THE 2015 SODA FIRE  

1. Introduction  

Wildfires in semi-arid ecosystems have increased in frequency, extent, and severity 

over the last several decades (Balch et al., 2012; Brooks et al., 2004). The source of these 

changes is thought to be caused by an increase in drought severity (Yi et al., 2015) and 

spread of invasive species sparked by current climate change (Brooks et al., 2004; 

Chambers et al., 2007). Additionally, natural fire cycles have become shorter in duration 

as a result of anthropogenic causes (Syphard et al., 2009). This increase in fire frequency 

has changed the composition of native vegetation communities causing a decrease in 

carbon storage (Bukowski and Baker, 2013; Reichstein et al., 2013) and an increase in 

post-fire soil erosion (Pierson and Williams, 2016). As wildfire frequency, extent, and 

severity increase, monitoring the resulting carbon flux becomes a critical issue in 

understanding the long-term effects on semi-arid ecosystems.  

As interest and efforts to monitor carbon flux in post-fire landscapes continue to 

grow, the issue of scale quickly becomes an important one. Traditional efforts to monitor 

carbon within a landscape rely on ground crews that gauge the carbon content of streams 

(Moody et al., 2013), hillslopes (Benavides-Solorio and Macdonald, 2005), and soil (Ravi 

et al., 2007). Although these efforts provide accurate and detailed insights of the carbon 

flux within different earth processes, they are limited to small portions of the landscape. 

Remote sensing offers a unique contribution to understand carbon flux, as airborne and 
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spaceborne platforms are able to provide landscape coverage. Remote sensing has been 

widely used to study fire frequency, extent, and severity (Lentile et al., 2006; Keeley, 

2009; Eckmann et al., 2009), as well as to monitor vegetation composition and its 

relationships to biomass and carbon (Eisfelder et al., 2012; Scott et al., 2015; Glenn et al., 

2016). Shifting efforts to monitor the health and sustainability of semi-arid ecosystems at 

the landscape scale using remote sensing will improve fire-driven carbon-flux estimates 

and their impact on semi-arid ecosystems.  

Landsat has been widely used in semi-arid regions to study the effects of fire; 

specifically, vegetation indices (VI) (both single date and over time) have been used to 

quantify fire extent (Lentile et al., 2006; Schepers et al., 2014) and burn severity (Keeley 

2009; Hardtke et al., 2014). In multi-temporal image analysis, rapid changes in spectral 

reflectance between pre- and post-fire images are represented with VI that are in turn 

used to estimate the burn extent and severity (using the amount of vegetation lost as a 

proxy). Due to the large soil exposure and sparse vegetation in semi-arid ecosystems, 

traditional indices such as the Normalized Burn Ratio may not be as effective at 

calculating burn extent in these ecosystems (Norton et al., 2009). Specialized VI, such as 

the Modified Soil Adjusted Vegetation Index (MSAVI) (Equation 4-1) (Qi et al., 1994), 

have been developed to help mask the effects of soil and highlight vegetation and thus 

used to measure burn extent and severity (Rogan and Yool, 2001; Epting et al., 2005; 

Schepers et al., 2014).  

On January 5th, 2015, the United States Secretary of Interior signed Secretarial 

Order 3336 (SO3336) which was implemented to reduce and prevent wildfires in the 

western United States, as well as restore sagebrush ecosystems to their natural state. 
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Specific goals of SO3336 included advancing technology to identify critical areas within 

the sagebrush steppe, reduce the spread of invasive species, and establish procedures to 

assess post-fire restoration efforts. The order’s mention of utilizing technology to 

improve current understanding of the state of the sagebrush steppe highlights the 

importance of using remote sensing to monitor both the pre- and post-fire landscapes. 

The protocols and data established using remote sensing instruments under SO3336 will 

provide valuable information about the effects of fire and carbon flux in semi-arid 

regions. 

On August 10th, 2015, the Soda Fire began in Jordan Valley, Oregon, where it 

burned over 100,000 ha in Oregon and Idaho. Immediately following the Soda Fire, the 

BLM developed an emergency stabilization and rehabilitation document that detailed a 

plan to implement a series of restoration efforts over the burned area. Specific objectives 

of these restoration efforts coincide with those of SO3336 and include restoring 

vegetation composition to its natural habitat, minimizing the spread of invasive species, 

and reducing degradation of the post-fire landscape. The motivation and funding for these 

objectives were provided by SO3336, and hence, the Soda Fire became the order’s first 

case study.  

The goal of this study is to provide gross estimates of aboveground biomass 

(AGB) lost during the 2015 Soda Fire within a portion of Reynolds Creek Experimental 

Watershed (RCEW) in Southwest Idaho, and relate these estimates to AGB lost over the 

full extent of the Soda Fire. Additionally, this study provides initial estimates of the 

spatial distribution of the pre-fire AGB and estimates of post-fire recovery one-year 

following the fire for RCEW and the full extent of the Soda Fire. The results of this study 
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offer baseline monitoring information that can be used to further the objectives 

established by SO3336 and improve our understanding of how wildfire affects carbon 

flux in the sagebrush steppe at both fine scales (RCEW) and coarser landscape scales 

(Soda Fire).  

Methods 

i. Study Area  

The study area is Reynolds Creek Experimental Watershed (RCEW), located in 

southwest Idaho in the Owyhee Mountains and the greater Soda Fire burn extent, which 

covers portions of Idaho and Oregon (Figure 4-1). Elevation of the RCEW ranges from 

900-2100 m with a yearly average precipitation ranging from 250-1100 mm. 

Environmental conditions within this area have been closely monitored by the United 

States Department of Agriculture, Agriculture Research service (USDA ARS) since the 

1960’s (https://www.ars.usda.gov). The RCEW was established as a Critical Zone 

Observatory (CZO) in 2014 with an overall goal to monitor soil carbon within semi-arid 

ecosystems, and specifically to understand the factors affecting carbon storage and how 

this storage varies across the landscape (Lohse et al., 2013). The northern portion of the 

watershed (7,384 ha) was burned during the 2015 Soda Fire (Figure 4-1). Since then, 

current research within RCEW has focused on studying the post-fire effects in semi-arid 

ecosystems. Specific objectives of these studies include quantifying the amount of carbon 

present in post-fire erosional events. This objective of quantifying carbon and its 

relationship to AGB along with an extensive history of data collection across the 

watershed prior to the wildfire makes RCEW an ideal study area.  

https://www.ars.usda.gov/
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In this study, we use the burned area within RCEW (~7,400 ha, Figure 4-1) to estimate 

the amount of AGB that was lost within the watershed. We then extend these estimates to 

make predictions on the overall total AGB lost to the larger Soda Fire (~113,000 ha, 

Figure 4-1). A workflow of the methods used during this study is displayed in Figure 4-2.  
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Figure 4-1: Location of Reynolds Creek Experimental Watershed (RCEW) (right) 

and the Soda Fire burn extent and severity calculated by taking the difference 

between pre- and post-fire MSAVI (left). Background imagery is National 

Agriculture Imagery Program (NAIP). 
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Figure 4-2: Workflow of methods to estimate pre- and post-fire aboveground 

biomass (AGB). 

Multi-Temporal Burn Extent and Severity  

We used the Modified Soil Adjusted Vegetation Index (MSAVI, equation 4-1) to 

calculate the total burn extent of the Soda Fire. Higher differences in MSAVI represent a 

greater change in vegetation composition and are used as a proxy for burn severity 

(Epting et al., 2005; Schepers et al., 2014). In this study, burn severity is compared to 

each pre-fire vegetation class to justify the assumption of total vegetation loss within 

RCEW during the Soda Fire.  

 

𝑀𝑆𝐴𝑉𝐼 =
2 ∗ 𝑁𝐼𝑅 + 1 − √(2 ∗ 𝑁𝐼𝑅 + 1)2 − 8 ∗ (𝑁𝐼𝑅 − 𝑅𝐸𝐷)  

2
 

 

Equation 4: Modified Soil Adjusted Vegetation Index (MSAVI). NIR = near infrared (~1000 nm), RED = 

red (~700 nm). 
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Pre-fire data were collected with Landsat 8 imagery from path 42 row 30 on July 

29th, 2015, 12 days prior to the start of the fire. The Landsat imagery was preprocessed to 

top of the atmosphere reflectance in Exelis Visual Information Solutions (ENVI) version 

5.2.1.  Due to cloud coverage proceeding the Soda Fire, there were no usable Landsat 

images covering the burned portion of the study area. However, the EO-1 Advanced 

Land Imager (ALI) collected an image on August 19th, 2015, and captured the post-fire 

area. ALI is a multispectral sensor that was developed to mimic Landsat’s spatial and 

spectral resolutions and to be used in replacement for missing temporal data (Lencioni 

and Hearn, 1997). ALI data were preprocessed in ENVI in the same fashion as the 

Landsat imagery. 

MSAVI was calculated on both the Landsat and ALI imagery within ENVI using 

the spectral math tool. The difference between the pre- and post-fire MSAVI images was 

used to calculate the burn extent and burn severity of the Soda Fire based on the amount 

of change in green vegetation between pre- and post-fire scenes. (Figure 4-1). Burn 

severity was then classified into low, medium, and high burn severity, where a larger 

change in vegetation correlated to a higher burn severity.  

Pre-fire AGB, RCEW Subset 

Classification:  

Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-ng, or 

AVIRIS) was collected prior to the Soda Fire on June 11th, 2015 at 1 m spatial resolution.  

AVIRIS is a hyperspectral sensor that records spectral data from 380-2500 nm at 432 

unique values, each approximately 5 nm apart. Imagery was orthorectified, 

atmospherically corrected, and inspected for noisy bands.  
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AVIRIS imagery was used to classify vegetation species within RCEW as part of 

Chapter 3. Vegetation classification of RCEW was divided into two parts due to the 

complex environmental gradients that span the watershed; species of trees and percent 

cover of shrubs, grasses, and soil. Dominate tree vegetation that was classified within the 

watershed consisted of aspen (Populus termuloides), Douglas fir (Psuedotsuga 

menziesii), juniper (Juniperus occidentalis), and riparian areas (Populus trichocarpa, 

Salix exigua, and Salix amygdaloides). Classification had an overall accuracy of 51.2% 

and a kappa coefficient of 0.38 (Figure 4-3, Table 4-1). 

In addition to the vegetation classification stated above, shrub (Artemisia 

tridentate ssp. Wyomingensis, Artemisia arbuscular, Ericameria nauseosa, and Pushia 

tridentate), grass (Pseudoroegneria spicata, Hesperostipa comate, and Pascopyrum 

smithii, Crepis acuminate), and soil cover within individual pixels was measured using 

AVIRIS imagery (Figure 4-3). Abundancy estimates were quantified for these classes 

because they were often characterized by sparse cover that is masked during traditional 

classification techniques. Cover was derived with a linear spectral unmixing model using 

the VIPER toolbox (Version 2.0; Roberts et al., 2016). Overall accuracy, kappa 

coefficient, and user and producer accuracies are shown in Table 4-1.  

Vegetation classifications of RCEW were subset to the burned portions of RCEW 

using the Soda Fire burn extent produced from the Landsat imagery.  

Allometry: 

A series of allometric equations (Table 4-2) were used to estimate the AGB from 

the vegetation classifications (Jenkins et al., 2003). These allometric equations were 

established by relating field measured vegetation characteristics, such as diameter at 
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breast height (dbh), to destructive samples of AGB for different species of vegetation. 

Allometry has been used in past studies as a means to provide gross estimates of AGB 

(Lu 2006; Cleary et al., 2008; Eisfelder et al., 2012).  To calculate AGB for tree species, 

allometric equations require a diameter at breast height (dbh) for individual trees. Since 

field data of trees within the burned area were not measured prior to the wildfire, average 

dbh for individual tree species were calculated using United States Department of 

Agriculture Forest Service’s Forest Inventory and Analysis (FIA) data 

(http://apps.fs.fed.us/fiadb-downloads/datamart.html). FIA data consists of thousands of 

measurements of individual species across Idaho. A summary of the data, along with 

average dbh for each tree species used are listed in Table 4-3.  

AGB was calculated for each tree class and then scaled up using the total number 

of pixels for the appropriate classification. Because the allometric equations predict the 

AGB for individual trees and that trees present were likely larger than the 1 m pixel size of 

the classification, the use of a 1 m pixel size would severely overestimate AGB. Therefore, 

to account for this in the allometric equations, estimates were calculated in a 2x2 pixel area.  

The total number of pixels for each class, excluding shrub and grass, were reduced by a 

factor of four during this process. A 2x2 pixel area was chosen to represent an average 

crown diameter between aspen, Douglas Fir, riparian, and juniper classes based on field 

observations and FIA data. The burn severity map created using the multi-temporal image 

analysis was compared to the pre-fire vegetation classification map which showed that a 

majority of each class was located in the highest burn severity portion of the fire.  From 

this observation, it was assumed that all vegetation for the aspen, Douglas Fir, riparian, and 

juniper classes was consumed within RCEW.  
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Shrub and grass AGB were estimated using two allometric equations relating 

percent cover to AGB (Table 4-2) (Mitchell et al., 2017; Dancy et al., 1986). The percent 

cover for shrub and grass (0 - 100%) from each pixel of the abundancy map was used for 

these equations. Shrubs are the dominate landcover class for this area and are therefore an 

important contribution to the total AGB. Shrub and grasses were primarily located in the 

moderate to low burn severity portions of the fire within RCEW although field 

observations showed that these regions also had complete consumption of the vegetation 

that was present. This is likely due to the fact that the burn severity estimates are 

primarily used for forested ecosystems and often misrepresent shrub ecosystems (Miller 

and Thode, 2007). Using this knowledge along with the field observations, shrub and 

grass AGB estimates were also made with the assumption that all pre-fire vegetation was 

consumed during the fire. 
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Figure 4-3: Reynolds Creek Experimental Watershed vegetation classification. 

Tree species classification (left), shrub cover (middle), and grass cover (right). 

Shrubland class (left) consists of a combination of shrub (middle) and grass (right) 

cover. Classification accuracy is listed in Table 4-3. Note, black (left) and white 

(middle and right) strips are caused by missing data between flightlines that occurred 

during image acquisition. 

 

Table 4-1: Vegetation classification accuracy of Reynolds Creek Experimental 

Watershed (RCEW).  

Tree classification Abundancy maps 

Overall Accuracy = 51.2% Overall Accuracy = 67.4% 

Kappa coefficient = 0.38 Kappa coefficient = 0.53 

           Class Accuracy  

Riparian 56.2%  Producer’s Accuracy       User’s Accuracy 

Douglas Fir 55.6% Shrubs 98% 48% 

Juniper 51.5% Grass 68% 80% 

Shrubland 78.8%    
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Table 4-2: Allometric equations used to derive aboveground biomass (AGB). 

Allometric equations for Aspen, Douglas Fir, Juniper, and Riparian relate diameter 

at breast height (dbh), measured in cm, to AGB, while shrub and grass allometry 

relate percent cover per one m2 to AGB.  

Vegetation type Allometric equation Source 

Aspen AGB(kg) = e(-2.2094 + 2.3867*ln(dbh(cm)) Jenkins et al., 2003 

Douglas Fir AGB(kg) = e(-2.2304 + 2.4435*ln(dbh(cm)) Jenkins et al., 2003 

Juniper AGB(kg) = e(-0.7152+ 1.7029*ln(dbh(cm)) Jenkins et al., 2003 

Riparian AGB(kg) = e(-2.2094 + 2.3867*ln(dbh(cm)) Jenkins et al., 2003 

Shrub AGB(g)/m2 = e(7.7226 + 1.208*ln(cover))/1000 Mitchell et al., 2017 

Grass AGB(kg)/m2 = (e((64.1 + cover)/19.4))/10000 Dancy et al., 1986 

 

Table 4-3: Summary of the Forest Inventory and Analysis (FIA) data used to 

derive average diameter at breast height (dbh) used in allometric equations to 

estimate aboveground biomass 

Vegetation type Number of samples Average dbh (cm) 

Aspen 6,047 15 

Douglas Fir 50,077 32 

Juniper 1,230 27 

Riparian 266 37 

 

Pre-fire AGB, Soda Fire Full Extent  

Due to the lack of a pre-fire hyperspectral classification over the entire extent of 

the Soda Fire, Landsat 8 imagery was used to estimate AGB for the full extent of the 

Soda Fire. The total abundance of photosynthetic vegetation (PV) was derived from the 

Landsat imagery using a linear spectral unmixing model (Roberts et al., 1998; Asner and 

Heidebrecht, 2002; Keshava and Mustard 2002). Gross estimates of total AGB were 

derived from these abundances using the allometric equation relating shrub cover with 

AGB (Table 4-2). This equation was chosen because shrub cover was the dominate 

landcover class of the burned area. No other vegetation classes were considered in the 

estimate of AGB loss. 



70 

 

Landsat 8 imagery from path 42 row 30 was collected on June 11th, 2015, and pre-

processed to top of the atmosphere reflectance in the same process as previously stated. 

Landsat AGB estimates within RCEW were resampled to 1 m and compared to the total 

AGB estimates made using the AVIRIS imagery and allometry. Ultimately, abundances 

and shrub allometry, with the assumption that all vegetation was lost during the wildfire, 

were used to provide gross estimates of the total AGB lost over the full extent of the Soda 

Fire.  

Spatial Distribution of Pre-Fire AGB, RCEW Subset  

A spatial analysis was performed to relate landscape characteristics to vegetation 

classes and their associated AGB values within the burned area of RCEW. Motivation 

behind this analysis was to relate AGB loss to landscape parameters that may be correlated 

with post-fire erosion and vegetation regrowth. A 1 m digital elevation model (DEM) from 

lidar was used to derive slope degree and aspect. Analysis was performed in ArcMap 

(version 10.3.1). Relationships for pre-fire vegetation classes within RCEW are presented 

as the percent of each vegetation class as it relates to a specific landscape characteristic. 

Post-fire AGB, RCEW Subset 

a) Field data:  

A field campaign was performed during May 9-12th, 2016, approximately one 

year following the Soda Fire. This time of the year was chosen to capture the peak 

greenness of the area. Field plots 1*1 m in size were randomly selected on the basis that 

they were in a slope of less than 15 degrees and were within 0.5 km distance from an 

accessible road. A total of 17 locations were selected across the burned area (Figure 4-4). 

Samples of the vegetation present were harvested within each plot to obtain an estimate 
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of the AGB present. The location of the center of each 1*1 m sample was recorded using 

a Topcon Hiper V Real Time Kinematic (RTK) GPS unit. Samples were dried and 

weighed to measure AGB (Appendix B).  

Additionally, terrestrial lidar was collected at the same locations with a 10*10 m 

plot design using a Riegl VZ 1000 terrestrial laser scanner (TLS). A large amount of 

wind caused the grasses to sway during TLS data collection and resulted in noisy data. 

Therefore, this data was not used for the final analysis but data and results are listed in 

Appendix B.  

Interpolation:  

Field measured samples were used to interpolate AGB across the burned area 

within RCEW using an ordinary kriging approach. Kriging can be broken down into a 

three-step process: 1) a semivariogram is used to describe the spatial variations observed 

within a dataset as they relate to distance between samples; 2) a modeled semivariogram 

is used to approximate the actual dataset in order to describe these spatial variations with 

a mathematical function; 3) weights used to interpolate an unknown location are 

determined using the modeled semivariogram (O’Sullivan and Unwin, 2003). An 

ordinary kriging approach was selected because of its capacity to accurately interpolate 

surfaces using the underlying relationships that exist between spatial variation of the 

target variable and the distance between samples (O’Sullivan and Unwin, 2003).  

Kriging were performed in ArcMap (version 10.3.1) using the geostatistical 

analyst toolbox extension. The geostatistical analyst toolbox calculates the 

semivariogram, uses this to fit a modeled variogram to the dataset, and then performs the 
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interpolation across the desired area while simultaneously performing a cross-validation 

using the ground samples to assess the accuracy.  

Post-fire AGB, Soda Fire Full Extent: 

The abundance of PV and allometry were used to provide gross estimates of one-

year post-fire AGB regrowth for the extent of the Soda Fire. The allometric equation 

relating grass cover to AGB was used for this analysis. Grass allometry was chosen 

because it was the dominate vegetation observed during the post-fire field campaign. 

Landsat 8 imagery from path 42 row 30 was collected on May 28th, 2016 and was 

preprocessed in the same manner as previously stated. This image was chosen because it 

was cloud free and close to the field campaign. Landsat derived AGB estimates in RCEW 

were compared to the field AGB estimates within RCEW resulting from the kriging 

interpolation, and then were used for gross estimates of the full Soda Fire. 
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Figure 4-4: Locations of field samples collected in RCEW 1-year following the 2015 

Soda Fire. Terrestrial lidar was also collected at each of the sample locations. 

Results  

i. AGB Loss from Soda Fire, RCEW Subset and Soda Fire Full Extent  

Total AGB lost within RCEW using the allometric equations indicated 

approximately 174M kg burned during the Soda Fire (Figure 4-5). Riparian areas had the 

highest contribution, 71%, of AGB loss, with shrubs, Douglas fir, aspen, juniper, and 

grass contributing 25%, 3%, 1%, ~0%, and ~0%, respectively (Figure 4-6).  Landsat 

derived AGB loss for RCEW using the PV cover and shrub allometry resampled to 1 m 

produced significantly lower estimates of approximately 112M kg (Figure 4-5). Landsat 

derived estimates for the entire extent of the Soda Fire indicated approximately 1.8B kg 

of AGB lost during the fire.  
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Spatial Distribution of Pre-fire AGB, RCEW Subset   

Results of the spatial distribution of the pre-fire vegetation within RCEW are 

listed in Tables 4-4 – 4-6. Approximately 70% of the vegetation present within RCEW 

before the occurrence of the Soda Fire occured on slopes less than 20°, with the majority 

vegetation concentrated on slopes between 10-20° (Table 4-4). All vegetation classes had 

their highest abundance on slopes less than 20°.  

Northeast facing slopes had the highest percent of vegetation present before the 

fire with 23%, followed by east, southeast, and north facing slopes, 22%, 15%, and 13%, 

respectively (Table 4-5). Aspen and riparian had highest concentrations on northeast 

facing slopes, while all other vegetation classes were primarily on east facing slopes.  

One-Year Post-Fire AGB, RCEW Subset and Soda Fire Extent 

Total estimates for one-year post-fire regrowth within RCEW produced using the 

field kriging was approximately 2,100 kg. The resulting map along with its associated 

standard error is shown in Figure 4-7. Kriging had a root mean square error of 34 g and 

an average standard error of 28 g. 

Landsat derived estimates using the spectral unmixed PV and grass allometry 

resampled to 1m produced larger estimates of 208,000 kg of AGB regrowth within 

RCEW. Landsat estimates of total regrowth for the entire Soda Fire indicated 

approximately 3.2M kg of AGB.  
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Figure 4-5: Total aboveground biomass lost from the 2015 Soda Fire within the 

Reynolds Creek Experimental Watershed (RCEW) subset. Both AVIRIS and 

Landsat resampled to 1 m. 

 

   
Figure 4-6: Percentage of each vegetation class contributing to the total 

aboveground biomass loss within the Reynolds Creek Experimental Watershed 

(RCEW) subset.  
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Figure 4-7: Post-fire aboveground biomass (AGB) regrowth within Reynolds 

Creek Experimental Watershed one-year following the 2015 Soda Fire interpolated 

with ordinary kriging (left) and its associated error (right). 

Table 4-4: The percent of each vegetation class with respect to slope angle in the 

burned portion of RCEW. 

                 Slope (degree) 

Vegetation class 0-10       10-20      20-30     30-40     40-50    50-60 

Aspen 27 38 27 7 1 0 

Douglas Fir 51 30 14 4 1 0 

Juniper 28 45 24 3 0 0 

Riparian 25 34 31 9 1 0 

Shrubs 27 43 21 4 4 1 

RCEW 27 43 24 5 1 0 

 

Table 4-5: The percent of each vegetation class present within the burned 

portion of RCEW, with respect to slope aspect. 
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Slope aspect            N           NE             E             SE           S           SW         W       NW 

Aspen 16 29 24 13 8 3 2 5 

Douglas Fir 12 17 20 18 13 8 6 6 

Juniper 9 17 24 20 10 5 4 11 

Riparian 18 31 21 11 8 4 2 5 

Shrubs 12 20 21 14 10 9 7 7 
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Discussion  

i. AGB Loss 

We estimate that approximately 174M kg of AGB was lost within RCEW during 

the 2015 Soda Fire. This loss includes aspen, Douglas fir, juniper, riparian, shrub, and 

grass classes. There are several possible errors associated with this estimate, including the 

assumptions of an average tree crown area of 4 m and the complete consumption of all 

vegetation during the wildfire. It is noted that there exist trees within RCEW that are both 

smaller and larger than the 2x2 m area used for estimation and that the burn extent may 

have been patchy in areas leaving some vegetation unburned. Although these 

assumptions may have been violated in some areas of RCEW, they applied to a majority 

of the landscape and any resulting errors are minimal. 

Although shrub communities were the largest landcover class, riparian 

communities contributed the largest loss in biomass within RCEW. The abundancy of 

water within these regions provides the necessary resources for the occurrence of high-

density vegetation, where shrub-dominated areas are often characterized with low AGB. 

Landsat derived estimates of AGB within RCEW (112M kg) were underestimated when 

compared to those made with the AVIRIS imagery (174M kg). Landsat derived AGB was 

likely underestimated because estimates were calculated only using the shrub allometry 

and the high AGB concentrated within the riparian areas were not accurately represented 

using this method. This generalization of the landscape’s vegetation can only provide us 

with gross estimates AGB. Future research might consider using a land classification, 

such as LANDFIRE, in conjunction with the allometry to improve estimates of total AGB 

loss from the 2015 Soda Fire.  
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The loss of the two highest contributors to AGB, riparian and shrubs, within 

RCEW each propose unique challenges to the post-fire landscape. The highest 

concentration of AGB was located in the channeled riparian areas, where water 

accumulation and runoff are highest. Previous studies have found that precipitation and 

runoff are the highest contributors to post-fire erosion of sediment due to reduced 

infiltration rates and higher flow velocities (Benavides-Solorio and MacDonald, 2005; 

Moody and Martin, 2009; Moody et al., 2013). Additionally, post-fire sediment within 

RCEW located on steeper slopes (>20˚) resulting from the pre-fire vegetation located in 

these areas (~30%) will likely be transported into the channeled areas through runoff or 

mass wasting events. It is hypothesized that post-fire soil carbon within the eroded 

sediment will be highest in these channeled regions, and this carbon will be quickly 

transported out of the system further reducing the total carbon of the post-fire landscape. 

Quantifying the abundance of carbon present in post-fire erosional events is vital in 

monitoring fire driven carbon fluxes in semi-arid ecosystems, although there has been a 

lack of effort in measuring these events in past studies. Together with vegetation biomass 

loss, the carbon loss from erosion will improve watershed-scale estimates of the total 

carbon budget.  

Shrubs did not have the highest contribution to AGB but they were the largest 

geographic landcover type in RCEW and over the full extent of the Soda Fire. The large 

loss of shrub cover over RCEW, and likely over the full extent of the Soda Fire, has 

important implications to the ecosystem balance within semi-arid regions, as shrubs drive 

many of the landscape processes (Pyke et al., 2015). For example, shrub canopy cover 

increases rainfall interception, which mitigates the potential for precipitation-caused 
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erosion (Pierson and Williams, 2016). Sediment erosion caused by runoff is also 

increased in post-fire shrub landscapes due to increased connectivity of the post-fire 

landscape (Lavee et al, 1995; Pierson and Williams, 2016). The loss of shrub cover 

across the landscape will increase erosion rates leading to a loss of soil, and will create 

conditions that progress the spread of invasive annual grasses. Growth of invasive grasses 

such as cheatgrass (Bromus tectorum) and goatgrass (Aegilops spp.) was observed within 

RCEW during the post-fire data collection, where the area had received restoration 

treatments including aerial and drill seeding, and the application of herbicide.  

The spatial analysis indicated approximately 58% of all pre-fire vegetation within 

the RCEW subset was located on north, northeast, and east facing slopes. Previous 

studies have found that erosion rates, specifically post-fire erosion, are highest on these 

slope aspects (Moody et al., 2013). This indicates that the post-fire carbon present on 

these slope aspects will be lost during erosional events more quickly than other slope 

aspects within RCEW. Since over half of the vegetation consumed during the fire was 

present on these slope aspects where erosional rates are highest, sediment eroded from 

these areas will likely have high concentrations of carbon which will be transported either 

within or out of the system.  

AGB Regrowth 

We estimate that approximately 2,100 – 208,000 kg of AGB had returned within 

RCEW one-year following the fire. The large range observed between the field sampled 

AGB interpolation and Landsat derived estimates is likely a factor of the small sample 

size of the field plots (n=17). The heterogeneous regrowth of the AGB within RCEW was 

not fully captured by the field samples which limited the capabilities of the kriging 
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interpolation. It was estimated that approximately 3.2M kg of AGB returned over the full 

extent of the Soda Fire in one-year post-fire or only ~ 0.2% of the total pre-fire AGB.  

The AGB re-growth shortly following the Soda Fire (~1 year) consisted primarily 

of grass communities within RCEW. Although cover across the landscape may be high in 

certain areas, the fundamental composition of AGB and storage of carbon has changed. 

This composition change has different meanings when related to scale. For example, at 

the landscape scale the widespread "greenness" from the establishment of post-fire grass 

communities could be misrepresented as a large abundance or even possible increase in 

carbon, even though grasses have significantly lower amounts of AGB than shrubs and 

trees. The lack of AGB becomes increasingly apparent at smaller scales of the landscape. 

The absence of shrub communities not only lowers the total amount of carbon within the 

landscape, it also stresses wildlife within the area where shrubs are the main source of 

food and shelter (Reichstein et al., 2013; Hassan, 2005). 

Pre-fire vegetation and environmental characteristics control post-fire vegetation 

growth, and hence the return of carbon (Kuenzi et al., 2008; Boyd and Davies, 2010; 

Miller et al., 2013). The abundance of water associated with riparian areas provides the 

necessary resources needed to reestablish vegetation, and therefore carbon, quickly in the 

post-fire landscape. The extreme loss of carbon within these areas is not as severe as the 

loss of carbon in shrub dominated areas because of the quick resilience of this landscape. 

Previous studies have noted that the reestablishment of shrub cover, specifically 

sagebrush, varies depending on post-fire landscape and weather conditions, but average 

recovery time can take 9-50 years following a wildfire (Miller et al., 2013). The increase 

in fire return intervals and the spread of fire inducing grasses within shrub dominated 
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areas makes this reestablishment of shrub AGB challenging (Chambers et al., 2007; 

Balch et al., 2013). Even with the quick return interval of carbon in the riparian areas, the 

loss of shrub biomass, ~ 25% of the total AGB in RCEW, has large impacts in semi-arid 

ecosystems. Without the dominate shrub cover across the landscape, the post-fire region 

will have an overall lower energy balance (Prater and DeLucia, 2006), be more 

susceptible to the spread of invasive grasses (Chambers et al., 2007), and may not be able 

to support native wildlife (Aldridge et al., 2008).  

Conclusion  

The gross estimations of the loss and gain of AGB produced in this study is useful 

for current research conducted in RCEW that is focused on studying post-fire carbon 

flux. Remote sensing estimations of AGB offers insight to processes at the landscape 

scale that cannot be efficiently achieved by ground surveys. As fire extent, severity, and 

frequency continue to increase in semi-arid ecosystems, monitoring post-fire soil organic 

carbon transportation will become an important step in understanding global carbon 

trends.  

The estimates produced in this study are also be useful in advancing the goals 

outlined in SO3336, which calls for long-term monitoring of the recovery of the burned 

areas in semi-arid ecosystems. This is one of the few studies that has detailed pre-fire 

vegetation data available at a very fine spatial scale (Kiesecker et al., 2009; Davies et al., 

2011; Sanez et al., 2013). The estimates of the AGB burned from different vegetation 

groups and the AGB returning shortly after the fire provides researchers with baseline 

information on pre- and post-fire landscape conditions and helps gauge if restoration 

efforts are effective. Repeat imagery acquired from satellite sensors such as Landsat may 
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be used to further measure vegetation growth over the burn extent of the Soda Fire. As 

shrub communities begin to reestablish, there should be an observed decrease in the rapid 

greenness appearing in the spring months caused by shrub vegetation replacing the 

widespread grass communities currently present. The availability of this imagery data 

along with the continuation of long-term ground monitoring of post-fire recovery efforts 

will provide new insight to help improve strategies to reduce the degrading conditions of 

semi-arid ecosystems.  

References 

Aldridge, C. L., Nielsen, S. E., Beyer, H. L., Boyce, M. S., Connelly, J. W., Knick, S. T., 

& Schroeder, M. A. (2008). Range-wide patterns of greater sage-grouse 

persistence. Diversity and Distributions,14(6), 983-994. doi:10.1111/j.1472-

4642.2008.00502.x 

Asner, G. P., & Heidebrecht, K. B. (2002). Spectral unmixing of vegetation, soil and dry 

carbon cover in arid regions: Comparing multispectral and hyperspectral 

observations. International Journal of Remote Sensing, 23(19), 3939-3958. 

doi:10.1080/01431160110115960 

Benavides-Solorio, J. D., & Macdonald, L. H. (2005). Measurement and prediction of 

post-fire erosion at the hillslope scale, Colorado Front Range. International 

Journal of Wildland Fire,14(4), 457. doi:10.1071/wf05042 

Balch, J. K., Bradley, B. A., Dantonio, C. M., & Gómez-Dans, J. (2012). Introduced 

annual grass increases regional fire activity across the arid western USA (1980-

2009). Global Change Biology, 19(1), 173-183. doi:10.1111/gcb.12046 

Boyd, C. S., & Davies, K. W. (2010). Shrub Microsite Influences Post-Fire Perennial 

Grass Establishment. Rangeland Ecology & Management, 63(2), 248-252. 

doi:10.2111/rem-d-09-00025.1 

Brooks, M. L., Dantonio, C. M., Richardson, D. M., Grace, J. B., Keeley, J. E., Ditomaso, 

J. M., & Pyke, D. (2004). Effects of Invasive Alien Plants on Fire 



83 

 

Regimes. BioScience,54(7), 677. doi:10.1641/0006-

3568(2004)054[0677:eoiapo]2.0.co;2 

Bukowski, B. E., & Baker, W. L. (2013). Historical fire regimes, reconstructed from 

land-survey data, led to complexity and fluctuation in sagebrush landscapes. 

Ecological Applications, 23(3), 546-564. doi:10.1890/12-0844.1 

Chambers, J. C., Roundy, B. A., Blank, R. R., Meyer, S. E., & Whittaker, A. (2007). 

What Makes Great Basin Sagebrush Ecosystems Invasible Bybromus Tectorum? 

Ecological Monographs, 77(1), 117-145. doi:10.1890/05-1991 

Cleary, M., Pendall, E., & Ewers, B. (2008). Testing sagebrush allometric relationships 

across three fire chronosequences in Wyoming, USA. Journal of Arid 

Environments,72(4), 285-301. doi:10.1016/j.jaridenv.2007.07.013 

Dancy, K. J., Webster, R., & Abel, N. O. J. (1986). Estimating and mapping grass cover 

and biomass from low-level photographic sampling. International Journal of 

Remote Sensing, 7(12), 1679-1704. 

Davies, K. W., Boyd, C. S., Beck, J. L., Bates, J. D., Svejcar, T. J., & Gregg, M. A. 

(2011). Saving the sagebrush sea: An ecosystem conservation plan for big 

sagebrush plant communities. Biological Conservation, 144(11), 2573-2584. 

doi:10.1016/j.biocon.2011.07.016 

Eckmann, T. C., Roberts, D. A., & Still, C. J. (2009). Estimating subpixel fire sizes and 

temperatures from ASTER using multiple endmember spectral mixture 

analysis. International Journal of Remote Sensing,30(22), 5851-5864. 

doi:10.1080/01431160902748531 

Eisfelder, C., Kuenzer, C., & Dech, S. (2012). Derivation of biomass information for 

semi-arid areas using remote-sensing data. International Journal of Remote 

Sensing, 33(9), 2937-2984. doi:10.1080/01431161.2011.620034 

Epting, J., Verbyla, D., & Sorbel, B. (2005). Evaluation of remotely sensed indices for 

assessing burn severity in interior Alaska using Landsat TM and ETM. Remote 

Sensing of Environment,96(3-4), 328-339. doi:10.1016/j.rse.2005.03.002 



84 

 

Glenn, N. F., Neuenschwander, A., Vierling, L. A., Spaete, L., Li, A., Shinneman, D. J., 

& Mcilroy, S. K. (2016). Landsat 8 and ICESat-2: Performance and potential 

synergies for quantifying dryland ecosystem vegetation cover and biomass. 

Remote Sensing of Environment, 185, 233-242. doi:10.1016/j.rse.2016.02.039 

Hardtke, L. A., Blanco, P. D., Valle, H. F., Metternicht, G. I., & Sione, W. F. (2015). 

Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS 

time-series imagery. International Journal of Applied Earth Observation and 

Geoinformation, 38, 25-35. doi:10.1016/j.jag.2014.11.011 

Hassan, R. (2005). Ecosystems and human well-being. Washington, D.C.: Island Press. 

Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. (2003). National-scale 

biomass estimators for United States tree species. Forest Science, 49(1), 12-35. 

Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: a brief review and 

suggested usage. International Journal of Wildland Fire,18(1), 116. 

doi:10.1071/wf07049 

Keshava, N., & Mustard, J. (2002). Spectral unmixing. IEEE Signal Processing 

Magazine, 19(1), 44-57. doi:10.1109/79.974727 

Kiesecker, J. M., Copeland, H., Pocewicz, A., Nibbelink, N., Mckenney, B., Dahlke, J., 

& Stroud, D. (2009). A Framework for Implementing Biodiversity Offsets: 

Selecting Sites and Determining Scale. BioScience, 59(1), 77-84. 

doi:10.1525/bio.2009.59.1.11 

Kuenzi, A. M., Fulé, P. Z., & Sieg, C. H. (2008). Effects of fire severity and pre-fire 

stand treatment on plant community recovery after a large wildfire. Forest 

Ecology and Management, 255(3-4), 855-865. doi:10.1016/j.foreco.2007.10.001 

Lavee, H., Kutiel, P., Segev, M., & Benyamini, Y. (1995). Effect of surface roughness on 

runoff and erosion in a mediterranean ecosystem: the role of fire. 

Geomorphology, 11(3), 227-234. doi:10.1016/0169-555x(94)00059-z 

Lencioni, D. E., & Hearn, D. R. (1997). New Millennium EO-1 Advanced Land Imager. 

In International Symposium on Spectral Sensing Research. 13-19. 



85 

 

Lentile, L. B., Holden, Z. A., Smith, A. M., Falkowski, M. J., Hudak, A. T., Morgan, P., 

& Benson, N. C. (2006). Remote sensing techniques to assess active fire 

characteristics and post-fire effects. International Journal of Wildland Fire,15(3), 

319. doi:10.1071/wf05097 

Lohse, KA, M Seyfried, A Flores, S Benner, N Glenn. (2013): Reynolds Creek Carbon 

Critical Zone Observatory. NSF Proposal. 

Lu, D. (2006). The potential and challenge of remote sensing‐based biomass 

estimation. International Journal of Remote Sensing,27(7), 1297-1328. 

doi:10.1080/01431160500486732 

Miller, R. F., Chambers, J. C., Pyke, D. A., Pierson, F. B., & Williams, C. J. (2013). A 

review of fire effects on vegetation and soils in the Great Basin Region: response 

and ecological site characteristics. doi:10.2737/rmrs-gtr-308 

Miller, J. D., & Thode, A. E. (2007). Quantifying burn severity in a heterogeneous 

landscape with a relative version of the delta Normalized Burn Ratio (dNBR). 

Remote Sensing of Environment, 109(1), 66-80. doi:10.1016/j.rse.2006.12.006 

Mitchell, J., Poley, A., Maloney, M., Ilangakoon, N., Dashti, H., Qi, Y., Ustin, S., Glann, 

N. (2017). Toward regional shrub biomass and uncertainty mapping in the 

western US using airborne lidar and imaging spectroscopy , SilviLaser 2017, 

Blacksburg, VA. 

Moody, J. A., & Martin, D. A. (2009). Synthesis of sediment yields after wildland fire in 

different rainfall regimes in the western United States. International Journal of 

Wildland Fire,18(1), 96. doi:10.1071/wf07162 

Moody, J. A., Shakesby, R. A., Robichaud, P. R., Cannon, S. H., & Martin, D. A. (2013). 

Current research issues related to post-wildfire runoff and erosion 

processes. Earth-Science Reviews,122, 10-37. 

doi:10.1016/j.earscirev.2013.03.004 

Norton, J., Glenn, N., Germino, M., Weber, K., & Seefeldt, S. (2009). Relative suitability 

of indices derived from Landsat ETM and SPOT 5 for detecting fire severity in 



86 

 

sagebrush steppe. International Journal of Applied Earth Observation and 

Geoinformation,11(5), 360-367. doi:10.1016/j.jag.2009.06.005 

O'sullivan, D., & Unwin, D. (2014). Geographic information analysis. John Wiley & 

Sons. 

Pierson, F. B., & Williams, C. J. (2016). Ecohydrologic impacts of rangeland fire on 

runoff and erosion: A literature synthesis. 

Prater, M. R., & Delucia, E. H. (2006). Non-native grasses alter evapotranspiration and 

energy balance in Great Basin sagebrush communities. Agricultural and Forest 

Meteorology,139(1-2), 154-163. doi:10.1016/j.agrformet.2006.08.014 

Pyke, D. A., Chambers, J. C., Pellant, M., Knick, S. T., Miller, R. F., Beck, J. L., & 

Mciver, J. D. (2015). Restoration handbook for sagebrush steppe ecosystems with 

emphasis on greater sage-grouse habitat—Part 1. Concepts for understanding and 

applying restoration. Circular. doi:10.3133/cir1416 

Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified 

soil adjusted vegetation index. Remote sensing of environment, 48(2), 119-126. 

Ravi, S., Dodorico, P., Zobeck, T. M., Over, T. M., & Collins, S. L. (2007). Feedbacks 

between fires and wind erosion in heterogeneous arid lands. Journal of 

Geophysical Research: Biogeosciences,112(G4). doi:10.1029/2007jg000474 

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., & 

Wattenbach, M. (2013). Climate extremes and the carbon cycle. Nature, 

500(7462), 287-295. doi:10.1038/nature12350 

Roberts, D., Gardner, M., Church, R., Ustin, S., Scheer, G., & Green, R. (1998). Mapping 

Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral 

Mixture Models. Remote Sensing of Environment, 65(3), 267-279. 

doi:10.1016/s0034-4257(98)00037-6 

Rogan, J., & Yool, S. R. (2001). Mapping fire-induced vegetation depletion in the 

Peloncillo Mountains, Arizona and New Mexico. International Journal of Remote 

Sensing,22(16), 3101-3121. doi:10.1080/01431160152558279 



87 

 

Saenz, S., Walschburger, T., González, J. C., León, J., Mckenney, B., & Kiesecker, J. 

(2013). Development by Design in Colombia: Making Mitigation Decisions 

Consistent with Conservation Outcomes. PLoS ONE, 8(12). 

doi:10.1371/journal.pone.0081831 

Schepers, L., Haest, B., Veraverbeke, S., Spanhove, T., Borre, J. V., & Goossens, R. 

(2014). Burned Area Detection and Burn Severity Assessment of a Heathland Fire 

in Belgium Using Airborne Imaging Spectroscopy (APEX). Remote Sensing,6(3), 

1803-1826. doi:10.3390/rs6031803 

Scott, R. L., Biederman, J. A., Hamerlynck, E. P., & Barron-Gafford, G. A. (2015). The 

carbon balance pivot point of southwestern U.S. semiarid ecosystems: Insights 

from the 21st century drought. Journal of Geophysical Research: Biogeosciences, 

120(12), 2612-2624. doi:10.1002/2015jg003181 

Syphard, A. D., Radeloff, V. C., Hawbaker, T. J., & Stewart, S. I. (2009). Conservation 

Threats Due to Human-Caused Increases in Fire Frequency in Mediterranean-

Climate Ecosystems. Conservation Biology, 23(3), 758-769. doi:10.1111/j.1523-

1739.2009.01223.x 

Yi, C., Pendall, E., & Ciais, P. (2015). Focus on extreme events and the carbon cycle. 

Environmental Research Letters, 10(7), 070201. doi:10.1088/1748-

9326/10/7/070201 



88 

 

CHAPTER FIVE: CONCLUSION  

This thesis was focused on deriving high spatial resolution vegetation cover and 

aboveground biomass in a semi-arid ecosystem. The two studies conducted within this 

thesis use remote sensing to capture this information at a landscape scale. Currently high 

resolution (1 m) hyperspectral data is rare which has hindered the development of new 

strategies to preserve semi-arid ecosystems in the Western United States. As data become 

more widely available from future satellite missions, such as NASA’s hyperspectral sensor 

HyspIRI, scientist and government officials can improve current conservation and 

restoration methods to ensure the long-term preservation of these ecosystems.  

The first manuscript provided a detailed assessment of the ability of high spatial 

resolution hyperspectral imagery to classify vegetation across large environmental 

gradients and ecotones. The study site was Reynolds Creek Experimental Watershed 

(RCEW) in southwest Idaho and consisted of 23,900 ha of semi-arid ecosystem. The 

resulting products from this study include: a 1 m classification of vegetation species 

(Aspen, Douglas Fir, Juniper, and Riparian), a 1 m classification of plant functional types 

(deciduous, evergreen, and shrublands), and 1 m abundancy maps of shrub, grass, and soil 

cover. The accuracy of each of these products was assessed and reported using in-situ 

vegetation data collected across the watershed.  

The second manuscript focused on using the classification produced in the first 

study to provide detailed estimates of aboveground biomass (AGB) loss within RCEW 

from the 2015 Soda Fire and relate this information to develop estimates of AGB loss over 
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the full extent of the Soda Fire derived from Landsat imagery. AGB estimates showed 

approximately 174M kg was lost within RCEW and 1.8B kg was lost over the full extent 

of the Soda Fire. This study also provided rough estimates of the amount of AGB that 

returned to the burned landscape one-year following the fire. Analysis showed 

approximately 208,000 kg of AGB had returned within RCEW and 3.2M kg over the full 

Soda Fire extent.  

Future research to continue the work from this thesis could focus on the effects of 

the 2015 Soda Fire and monitoring vegetation recovery in subsequent years. Estimates of 

vegetation composition and AGB produced in this work can be used as baseline 

information that can be used to estimate carbon post-fire abundances, assess restoration 

efforts, and track vegetation recovery rates. Specific scientific questions of interest to 

future researchers may include quantifying the amount of soil carbon present within post-

fire erosional events, monitoring how vegetation composition changes with areas that 

received different restoration treatments compared to the pre-fire vegetation conditions, 

and monitoring the recovery rates of AGB and carbon across the entire burned landscape.  

These questions will help fill a knowledge gap that exists in post-fire recovery and 

carbon flux that larger studies, such as those being conducted by the Critical Zone 

Observatory and under Secretarial Order 3336, are focused on. As semi-arid ecosystems 

continue to degrade, monitoring vegetation health will be vital in long-term preservation 

of the landscape.  
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A. Reynolds Creek Experimental Watershed field plots.  

Plot Year Dominant  

vegetation 

      Shrub cover     Grass cover    Soil cover 

1 2014 Bitterbrush 47 37 16 

2 2014 Bitterbrush 78 21 1 
3 2014 Bitterbrush 30 65 5 
4 2014 Bitterbrush 43 49 8 
5 2014 Bitterbrush 60 34 6 
6 2014 Bitterbrush 64 35 1 
7 2014 Bitterbrush 64 35 1 
8 2014 Bitterbrush 59 40 1 
9 2014 Bitterbrush 35 30 35 

10 2014 Bitterbrush 36 35 29 

11 2014 Sagebrush 45 34 21 
12 2014 Sagebrush 37 33 30 
13 2014 Sagebrush 36 36 28 
14 2014 Sagebrush 46 33 21 
15 2014 Sagebrush 40 18 42 
16 2014 Sagebrush 31 42 27 
17 2014 Sagebrush 33 2 65 
18 2014 Sagebrush 61 9 30 
19 2014 Sagebrush 48 11 41 
20 2014 Sagebrush 75 5 20 
21 2014 Rabbitbrush 71 8 21 
22 2014 Mixed 5 60 35 
23 2014 Mixed 62 36 2 
24 2014 Grass 34 3 63 

25 2015 Sagebrush 27 34 39 
26 2015 Sagebrush 13 17 70 
27 2015 Sagebrush 18 58 24 
28 2015 Sagebrush 64 24 12 
29 2015 Sagebrush 28 18 54 
30 2015 Sagebrush 77 0 23 
31 2015 Sagebrush 88 4 8 
32 2015 Sagebrush 33 57 10 
33 2015 Sagebrush 62 29 9 
34 2015 Sagebrush 79 20 1 
35 2015 Sagebrush 55 32 13 
36 2015 Sagebrush 49 46 5 
37 2015 Sagebrush 66 1 33 
38 2015 Sagebrush 53 23 24 
39 2015 Sagebrush 59 29 12 
Plot Year Dominant 

vegetation 

   Shrub cover       Grass cover     Soil cover 

40 2015 Sagebrush 48 35 17 
41 2015 Sagebrush 32 34 34 

42 2015 Sagebrush 23 43 34 

43 2015 Rabbitbrush 43 47 10 
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44 2015 Mixed 36 47 17 
45 2015 Mixed 26 45 29 
46 2015 Mixed 27 72 1 
47 2015 Mixed 58 42 0 
48 2015 Grass 36 61 3 
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B. One-year post-fire aboveground biomass within a subset of Reynolds 

Creek Experimental Watershed derived with terrestrial lidar scanning. 

 

Plot number Field sampled 

 dry weight (g) 

TLS AGB (g) Aerial seeded  Drill Seeded 

1 59.59 NA Yes Yes 

2 49.58 NA Yes Yes 

3 88.18 150,500 Yes Yes 

4 85.69 106,196 Yes Yes 

5 51.19 NA Yes Yes 

6 212.49 22,268 Yes No 

7 124.5 30,988 Yes No 

8 102.94 33,828 Yes No 

9 56.9 61,036 Yes No 

10 89.53 105,976 Yes Yes 

11 135.21 54,496 Yes No 

12 130.69 68,728 Yes Yes 

13 85.99 NA Yes No 

14 64.88 121,984 Yes No 

15 29.66 126,688 Yes No 

16 39.24 128,316 Yes No 

17 122.75 101,816 Yes No 


