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ABSTRACT 

In the mountainous landscapes of the western United States, water resources are 

dominated by snowpack. As temperatures rise in spring and summer, the melting snow 

produces an increase in river flow levels. Reservoirs are used during this increase to 

retain surplus water, which is released to supplement growing season water supply once 

the peak flows decrease to below water demands. Once there is no longer surplus natural 

flow of water, the water accounting changes – referred to as the day of allocation (DOA), 

and water previously retained within the reservoir is used to supplement the lower flow 

levels. The amount of water stored in the reservoir on the day of this accounting shift 

determines the water allocated to water right holders for the remainder of the water year. 

Predicting the day that allocated water will be determined is of special interest to both 

regulators and those that retain water rights per the Prior Appropriation Law. A method 

to forecast this day is developed using daily snow water equivalent data for the Boise, 

Payette, and Upper Snake Rivers in a multiple linear regression model. The melt rates of 

snowpack are typically comparable to using the maximum accumulation of that 

snowpack as predictor variables for day of allocation. Therefore, water users can be 

confident in predictions based on snowpack to determine what crops can be grown. The 

primary controls on these variances are water demand and volume of water accumulated. 
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CHAPTER ONE: INTRODUCTION 

Snowmelt-driven streamflow from mountainous regions is an essential resource 

for one-sixth of the human population (Barnett, Adam, & Lettenmaier, 2005). In these 

regions, seasonal water availability can be estimated based on the amount of snow 

accumulation in winter. Approximately 50-70% of the total water supply in the 

mountainous western United States comes from snow (Bales et al., 2006). Snow 

accumulates in the mountains throughout the cold season, which is typically considered 

to be November 1 to March 31 (Bohr and Aguado, 2001) in North America. During this 

time, the snowpack functions as a reservoir of water. As the temperatures rise, the spring 

and summer melt from the snowpack produces a temporary, predictable increase in river 

discharge within respective basins. The annual increase in river discharge has the 

potential to cause flooding (Perkins, Pagano, & Garen, 2009), but it is also a major 

resource for water storage in the upcoming dry season, when there is less natural supply 

and high demand due to irrigation. This project explores relationships between mountain 

snow and critical streamflows to provide information and tools to assist water resource 

management. 

The term “critical flow” refers to a streamflow rate that is significant to water 

resource management in a basin. Peak annual streamflow is a clear, definable flow of 

interest (Figure 1). Other relevant flows include low flow, surplus flow, and flood stage. 

For example, low flow would be associated with a river level that cannot sustain demand. 

There are also surplus flows, which indicates that there is more than enough water to 
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meet agricultural needs. Flood stage refers to a flow that is dangerously high and may 

cause damage. In addition to flow rates, the volumes, timing, and duration of flows are 

important. For example, when a flow occurs, the duration above that flow can be 

quantified. The volume above a threshold flow value indicates the volume that may be 

stored or attributed to flooding, depending on the flow of interest. In Idaho and much of 

the western US, critical flows in major river basins are maintained using reservoirs. 

Surplus water can be retained in a reservoir until the drier periods of summer. Water 

managers desire more aid in managing reservoirs in snow-dominated regions, especially 

with the unpredictability of shifting climates (Berghuijs, Woods, & Hrachowitz, 2014; 

Mote et al., 2003; Viviroli et al., 2011). 

In the Western United States, most water accounting is done by Prior 

Appropriation distribution. Most of the western US uses Prior Appropriation doctrine. 

Per prior appropriation doctrine, those that are first in time are first in right. Water claims 

that have been in existence longer are associated with higher priority than the more recent 

water claims. A water claim refers to the amount of space in a reservoir that a water user 

will receive during periods of restricted flow and high demand. While a reservoir is 

filling, water users can have their full right of water. Once the reservoir stops accruing 

water, those with water rights are assigned a given amount of water for the remainder of 

the growing season based on the total storage in the reservoir. 

Idaho uses Prior Appropriation as described in Idaho code section §42-602. Per 

the water law of Prior Appropriation, those who have the water first in time are first in 

right. Water right holders in Idaho have their water delivered per contracts they have with 

the federal government (Idaho code section §42-801). 
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A key flow unique to Idaho water management is the day of allocation (DOA) 

flow. The day of allocation is an annual occurrence in three of Idaho’s watersheds: 

Snake, Boise, and Payette. In these basins, spring snowmelt is captured and stored in 

reservoirs to be metered out for summer water rights. The day of allocation marks a date 

when changes occur in how water rights are managed, and is defined as when these three 

criteria are met: (1) natural flow is less than water demand at a point in the river 

downstream from most demand, (2) reservoir storage is at its maximum for the water 

year, and (3) water rights are at a maximum for an irrigation season. The natural water 

supply is the flow of a river that would occur without obstructions. Therefore, when 

reservoirs are upstream, the measured flow differs from the natural flow by an amount 

equal to the instantaneous rate of change in reservoir storage. The natural flow can be 

calculated by adding the change in storage to the measured flow downstream of a 

reservoir. 

Prior to the DOA, irrigation water demand downstream of a reservoir is less than 

the natural streamflow from meltwater into a reservoir. All water users can have their full 

water rights prior to this date. After the DOA, the water demand cannot be met by natural 

streamflow, and each spaceholder has a finite volume of reservoir water for the remainder 

of the growing season. Because of this, an early DOA creates a lower rate at which 

farmers use their stored water than in years with a later day of allocation. 

In the summer months, those with more recent water claims will have shorter 

availability of their full water right than those with older water claims. The water supply 

before day of allocation comes from the unregulated flow of the river. On the day of 

allocation, the amount of water that each spaceholder is allotted is determined for the 



4 

 

 

remainder of the growing season. When the day of allocation is later than average, water 

users can be less restrictive on the rate at which they use their supply of water, allowing 

greater crop possibilities. 

The day of allocation is important because it determines the restrictive time water 

users must use their water supply from the reservoir. Depending on the overall volume of 

water stored in the reservoir, the users may not obtain as much water during the melt 

season. In these cases, the growing season is not only restricted in time; the space of 

water allotted to water users is also limited. This reduces the amount of options that 

farmers have when planning out the growing season. 

The day of allocation impacts downstream water users. For example, growers 

may make decisions about what crop to plant based if the day of allocation will be early 

or late. Another possibility with a later day of allocation would be the planting of a 

second crop mid-summer, after the first has been harvested. Farmers are known to check 

first with water supply specialists before deciding what crops to plant and checking to see 

if a second crop is feasible. Predictions of the day of allocation would greatly benefit 

agriculture. The premise of this study is that because natural flow into reservoirs is a 

dominant determinant on of the day of allocation, and that natural flow is strongly related 

to properties of the mountain snowpack (Barnhart et al., 2016), there is likely a historical 

relationship between properties of mountain snow and the day of allocation. 

The freshwater resources that come from snowmelt are important for agriculture, 

human consumption, hydropower, and recreation. Restrictions are already placed on the 

water users every growing season (Idaho Department of Water Resources, “Analysis of 

the availability of water rights in the Stewart Decree”, unpublished report, 2015). As the 
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growing season progresses, water rights are cut to some extent for all users. In water 

shortage years, the cuts occur earlier, which restricts the type of crops that should be 

planted. In years with limited water supply, major restrictions must be placed on water 

usage. When water is more plentiful, the restrictive period is smaller. Therefore, crops 

that consume high amounts of water, such as potatoes, should be planted when the water 

forecasts are average or above average. This would avoid failed crops due to inadequate 

water supply. 

In the Western US, mountain snowpack water supply is monitored by the USDA 

NRCS SNOTEL network along with in situ snow surveys conducted by NRCS personnel. 

Streamflow is monitored by the USGS. Both databases provide consistent daily data. 

With long-term trends of snowpack and streamflow, relationships among snowpack, 

streamflow, and DOA are uncovered. Statistical relationships among snow magnitude, 

snow melting, flow levels, and important dates of water appropriation are assessed. 

Parameters of the snowpack – such as accumulation and melt patterns - are examined 

against respective flows and volumes to aid in predicting water supply in each water year, 

even before snow begins to melt. 

The timing and volume of streamflow is related to water management decisions. 

A water manager’s action to retain or release water in a reservoir will depend on the 

amount and timing of streamflow anticipated. Effects of this decision influence water 

users later in the year. Predicting the DOA based on hydrologic behaviors can help water 

managers to have more confidence in their decisions of what/when to plant. We will 

investigate the snow to streamflow relationships with respect to critical flow thresholds in 

watersheds. 
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The parameters of snowpack should be related to the volume of water supply later 

in the growing season. The maximum SWE of a snowpack indicates a volume of water 

available once the snow melts, which flows into streams and can be used for irrigation. If 

there is a greater volume of snow in the mountains, there will be adequate water supply 

for a longer period of the growing season. 

The three conditions required for the day of allocation to occur are monitored by 

the USBR (US Bureau of Reclamation) through the melt season. However, just using 

these parameters does not directly provide ways to predict the day of allocation earlier in 

the season. An earlier prediction would allow for water users and farmers to have more 

confidence in their early-season selection of crops. Of the three parameters that determine 

the day of allocation, two of them are dependent on the snowpack. Due to these 

relationships, we hypothesize that significant statistical relationships exist between 

mountain snow parameters and the day of allocation. 

Few studies have investigated relationships between snow and water management 

dates. Specifically, relationships between day of allocation and snow parameters are of 

special interest in this study. The proposed parameters in this study are: maximum 

snowpack, relative April Melt, relative May melt, relative June melt, and the beginning 

date of snow melt, where relative melt is the cumulative daily melt in a month divided by 

the maximum amount of SWE at a station in a water year. Maximum snowpack is a 

volume parameter of the water available as mountain snowpack, and the melt parameters 

are investigated due to the melt dates and quantities’ shifting of the melt curve, which has 

a strong possibility of also shifting the hydrograph. The shifting of the hydrograph would 

then create a later day of allocation. 
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The objectives of this project include: 1) describing the relationships between 

SWE and river flows, 2) identifying relevant predictor variables for the day of allocation, 

and 3) building a multiple linear regression model based on these relevant predictor 

variables. The model can then be used in future scenarios to estimate the occurrence of 

the day of allocation. 

In this project, I assess the statistical relationships between mountain snow and 

properties of streamflow relevant to the day of allocation in three basins in Idaho. The 

goal of the project is to develop a predictive tool that uses snow data to estimate when the 

day of allocation will occur. I conduct a statistical analysis of snowpack and flow to 

determine the best parameters to predict the day of allocation. Following this, specific 

parameters are used to create a multiple linear regression model of snow accumulation 

and melt parameters to day of allocation. Finally, model verification will be performed to 

determine the amount of error associated with each model. 

To discern importance of SWE volume and melt patterns, the historical data of 

flows, SWE, and day of allocation are modeled to make a prediction of the day of 

allocation. Natural flows on the day of allocation indicate the water demand for each 

basin. Multiple linear regression techniques can weight parameters derived from the 

SNOTEL datasets to determine the strongest controls on the day of allocation within each 

basin. These controls include site locations, maximum accumulations, and melt relative to 

maximum accumulation. These models will weight parameters based on their error to 

create a model that best represents the relationships between the snowpack and the day of 

allocation. 

Specifically, the following questions are investigated: 
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1) How do patterns of snowpack affect natural flow levels? 

2) What specific parameters of snowpack affect the day of allocation? 

3) How does the accumulation and monthly melting of snowpacks affect the day of 

allocation?
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CHAPTER TWO: BACKGROUND 

2.1. SNOTEL Sites 

SWE (snow water equivalent) is the depth of water that snowpack will yield upon 

melt. The Natural Resources Conservation Service’s (NRCS) Snow Telemetry 

(SNOTEL) sites measure SWE, and the values are validated and recorded in an online 

database. SWE is calculated from values obtained with a snow pillow and pressure 

transducer. Values of SWE are logged daily and are publicly available through the 

NRCS. There are over 800 SNOTEL stations across the United States, primarily in the 

western regions at high elevations. The SNOTEL network has existed since the 1960s, 

and the number of sites continues to grow. Many key sites have a record of over 30 years. 

2.2. Streamflow 

There are multiple sources of streamflow data. The United States Geological 

Survey (USGS) has a network of over 27,000 operational sites throughout the United 

States recording daily values for surface water. The United States Bureau of Reclamation 

(USBR) also logs daily streamflow through their Hydromet network, which is focused on 

management of water in the Pacific Northwest. Both USGS and USBR streamflow data 

were used. All the streamflow data used in this analysis is unregulated flow, which is the 

flow that would occur naturally if there were no reservoirs in place. Therefore, the values 

used represent the amount of flow that would be going through a point if there were no 

reservoirs. The flows represent the natural hydrology of each watershed. 
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In addition to recording actual flow through a river, the USBR calculates and 

records the ‘unregulated’ flow in a river. The unregulated flow is calculated by adding 

the change in reservoir storage with the actual flow. This represents what the flow would 

be if there were no diversions or dams along the rivers. 

2.3. Snow to Streamflow Relationships 

The snowpack in the in mountainous regions functions as a temporary reservoir of 

water during the winter months. High elevation sites are the most useful SNOTEL 

stations for estimating summer streamflow. Even though lower elevation sites are more 

representative of basin area, they are associated with weaker relationships between 

precipitation to streamflow than the high elevation sites (Mote, 2006). This could be due 

to a multitude of reasons. When snow accumulates, low elevation sites are more 

susceptible to mid-winter melting due to temperature fluctuations (Nayak, Marks, 

Chandler, & Seyfried, 2010). The high-elevation sites are typically colder throughout the 

winter, which causes more precipitation to occur (Katzfey, 1995a, 1995b; Roe, 2005; 

Sinclair, 1994),  and these sites typically retain their snowpack until late spring. 

Therefore, the snowpack at high-elevation sites better represents the winter precipitation 

in a basin than the snowpack of low-elevation SNOTEL sites. 

Streamflow in the mountainous western United States predominantly occurs with 

the melting of the snowpack in the spring and summer months. Early season snowmelt is 

less rapid than late-season snowmelt due to increasing radiative forcing (Trujillo & 

Molotch, 2014) and increased vegetation activity (Jeton, Dettinger, & Smith, 1996) in the 

later period of melt. Another study found that earlier, slower snowmelt may result in 

decreased streamflow efficiency since more time allows for more evapotranspiration of 
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the snowpack (Barnhart et al., 2016). Therefore, we are incorporating timing and amount 

of melt to predict discharge thresholds. 

Models can be created using the snowpack and melt patterns to estimate 

streamflow (Leppi, DeLuca, Harrar, & Running, 2012; Luce & Holden, 2009; Stewart, 

2009; Stewart, Cayan, & Dettinger, 2005). When creating the model inputs, the first 

variable available in the season is maximum SWE, or maximum value of snowpack in the 

water year. Maximum SWE has been shown to better represent water availability than 

April 1 SWE (Bohr & Aguado, 2001). While April 1 SWE may show trends in regression 

analysis, many basins continue to accumulate snowpack after April 1, making the 

maximum SWE a better representation of water availability for predicting streamflow. 

The timing of melt in snow-dominated systems influence streamflow timing. 

Early season snowmelt is less rapid than late-season snowmelt due to increasing radiative 

forcing (Trujillo & Molotch, 2014) and increased vegetation activity (Jeton et al., 1996) 

in the later period of melt. Another study found that earlier, slower snowmelt may result 

in decreased streamflow efficiency since more time allows for more evapotranspiration of 

the snowpack (Barnhart et al., 2016). Therefore, we are evaluating how amount of SWE, 

melt progression, and start of melt can be used to predict discharge thresholds. 

Some things not really described here… snow albedo, dust and surface energy 

balance; the relationship between vegetation and snow, sublimation. 

2.4. Water Accounting 

Understanding the basics of water accounting is critical to knowing the 

importance of this study. The water accounting in the Western United States varies by 
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state and basin. While many basins in the West need reservoirs for a steady irrigation 

supply in growing season, 

Water rights accounting is the set of computational tools used by a watermaster to 

quantify natural flow availability and use, to track storage of use on a daily, after-the fact 

basis. In water accounting, there are two main types of flow: stored flow and natural 

flow. 

Stored flow is the water more than computed flow. This is water previously 

accrued in the reservoir that is released when the water demand is greater than the natural 

flow in the watershed. 

Natural flow is the water that would be flowing in a river system without reservoir 

operations and diversions. Therefore, natural flow represents the hydrologic behaviors of 

the watershed. All flows used for this study are natural flows within a certain watershed. 

Reach gain is another term commonly used by watermasters to describe natural 

flows. If a reach along a river is positive or negative, this indicates whether the specific 

section of the river is gaining or losing water. A gaining stream has a net inflow of water 

to the reach, and a losing stream as a net outflow of water to the reach. The method of 

calculating a reach gain is as follows: 

𝑅𝑒𝑎𝑐ℎ 𝐺𝑎𝑖𝑛 = 𝑂𝑢𝑡𝑓𝑙𝑜𝑤 − 𝐼𝑛𝑓𝑙𝑜𝑤 + 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠 + 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 + 

𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛  

Outflow is the river discharge at the end of the reach. Inflow is the river discharge 

at the beginning of the river reach. Diversions is the sum of canal and pump diversions 

from the river reach. Reservoir Change in Content is the daily increase (+) or decrease (-) 

in physical content of any reservoirs within the river reach. Reservoir Evaporation is the 
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calculated evaporative losses from the reservoir. Methods used to calculate the 

evaporation term vary with climate and basin. The evaporative losses in reservoirs and 

streams do not affect the timing of day of allocation (Lyle Swank, personal 

communication, 2016). 

Reservoir systems play a large role in regulating the variety of flows that can 

occur. Large amounts of excess water can be retained in reservoirs from snow ablation 

events. This excess water from the reservoir is available to supplement natural flow later 

in the growing season, when natural flow levels cannot sustain agriculture demand. 

Alternatively, during high flows, water can be retained to mitigate downstream flooding. 

Natural flow into a reservoir is seldom equal to regulated flow out of the 

reservoir. The flow out of a reservoir is regulated to fluctuate with downstream demand 

and water rights. Water managers use streamflow prediction to help anticipate and 

control river flows to meet certain water demands. There is no standardized method for 

the prediction of the water supply for basins in the semiarid mountain regions. 

Underestimated discharge leads to an increased risk of flooding; however, overestimating 

flow can further decrease water in a shortage year. Accurately predicting critical flows 

and water supply from snow melt is crucial to sustaining flows for those who depend on 

the consistency of the river.
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CHAPTER THREE: STUDY AREAS AND DATA SOURCES 

3.1. Boise River Basin 

The Boise River Basin has three reservoirs along the Boise River channel and a 

large amount of available data. The basin is in west-central Idaho, and it covers an area of 

2,680 square miles. Boise River Basin is classified as a semiarid mountainous watershed. 

Figure 2 is a map of this basin with a specified section of the Boise River, SNOTEL sites, 

and stream gauges used in this analysis. 

The three main dams in the Boise River Basin are Anderson Ranch, Arrowrock, 

and Lucky Peak. Anderson Ranch and Arrowrock are managed by the U.S. Bureau of 

Reclamation (USBR), and Lucky Peak is a U.S. Army Corps of Engineers facility. 

Arrowrock and Anderson Ranch are storage reservoirs, and Lucky Peak was built for 

flood control. The U.S. Army Corps and the USBR cooperate to regulate the flow of the 

Boise River during flooding. Once flooding ends, flows from Lucky Peak are controlled 

by the watermaster and depend on irrigation demand. These dams are upstream from the 

Treasure Valley and they can be used to control how the water supply will be distributed 

over time. 

The SNOTEL sites used in the Boise River Basin are Atlanta Summit, Graham 

Guard, Jackson Peak, Mores Creek, Trinity Mountain, and Vienna Mine. Graham Guard 

is the lowest elevation site; snow melts sooner at this location than at the other SNOTEL 

sites in the basin. The names of the SNOTEL sites and stream gauges are listed with their 

respective elevation in Table 1. The maximum SWE values at these SNOTEL sites are a 
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major part of the analysis, so the lowest, highest, and average maximum SWE at each site 

are recorded in Table 2. 

Table 1 Boise River Basin sites in the analysis and the elevation of the gauges. 

The Lucky Peak streamflow gauge data is maintained by the USGS (site 13201500) 

and USBR, and the SNOTEL sites are maintained by the NRCS. 

 

Table 2 Summary statistics of historical maximum SWE values at each Boise 

River Basin SNOTEL site. The mean, maximum, and minimum of these maximum 

SWE values are in this table and represent the range of maximum SWE throughout 

the period of record for this study. Units are in inches. 

N = 31 

(years) 

Graham 

Guard  

Atlanta 

Summit  

Jackson 

Peak 

Mores 

Creek 

Trinity Mtn.  Vienna 

Mine 

Mean (µ) 13.2 30.1 28.2 30.8 38.2 34.2 

Min 5.7 17.8 16.1 14.9 20.7 19.1 

Max 19.9 46.8 43.5 47.2 71.5 58 

St. Dev (σ) 4.1 8.5 7.9 9.2 12.3 10.1 

 

While the actual flow coming from the reservoirs is regulated, there is data 

available for modeled unregulated flow through the USBR. Unregulated flow is the 

actual flow coming out of the reservoirs plus the change in storage of the upstream dams. 

This unregulated flow value shows what the flow would be if there were no dams or 

reservoirs upstream of Lucky Peak. 

Name Elevation [ft]

Stream Gauge Lucky Peak 3,055

Atlanta Summit 7,580

Vienna Mine 8,690

Mores Creek 6,100

Graham Guard 5,690

Jackson Peak 7,070

Trinity Mtn 7,770

SNOTEL Sites

Boise River Basin Sites
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The water rights begin to be cut following the day of allocation. In the Boise 

River Basin, the day of allocation must meet three criteria: the remaining natural flow at 

Middleton must be zero, the paper fill stops accruing, and the total storage of the 

reservoir system stops accruing. Following this point, water rights start being cut, and 

flow is supplemented by water stored in the reservoirs  

The flow at Middleton is used as a determining factor due to the agriculture 

demand and natural water supply to the river. Downstream from Middleton, the Boise 

River returns to net gains in flow. The agriculture demand downstream from Middleton is 

naturally sustainable, and the Bryan and Stewart decrees do not cover water claims 

downstream from Middleton. 

In the Boise River basin, there are 29 years of day of allocation data that overlap 

with SNOTEL and streamflow data. The years in the analysis are from 1986 to 2015. The 

current day of allocation methods were incorporated in 1986. The day of allocation on 

the Boise River has ranged from May 10 to July 17 over the years of the current 

operation method with a standard deviation of 17.3 days. The average day of allocation is 

June 20 for the period of record (Figure 3). 

3.2. Payette River Basin 

The Payette River Basin is in southwestern Idaho. The river is 62 miles long, and 

the drainage area is 3,240 square miles. The two main reservoirs along the Payette River 

are the Cascade and Deadwood. The Cascade Reservoir has a high capacity relative to the 

region. The entire Payette Reservoir system can hold over 800,000 acre-feet of water. 

The SNOTEL sites for the Payette River Basin include: Banner Summit, Big 

Creek Summit, Deadwood Summit, and Jackson Peak (Figure 4). Two of these stations 
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have intermittent data until water year 1990. The names of the SNOTEL sites and stream 

gauges are listed with their respective elevation in Table 3. The maximum SWE values at 

these SNOTEL sites are a major part of the analysis, so the lowest, highest, and average 

maximum SWE at each site are recorded in Table 4. 

The stream gauge for the Payette River Basin is located near Emmett, ID. Due to 

the upstream reservoirs from these sites on the Payette River, the USBR data must be 

used so that flows represent natural hydrology instead of regulated flows. The USBR data 

accounts for the change in storage within the reservoirs along the river, whereas the 

USGS gauge only records the actual flow level of the river. 

Table 3 Payette River Basin sites in the analysis and the elevation of the 

gauges. The Emmett streamflow gauge data is maintained by the USGS (site 

13249500) and USBR, and the SNOTEL sites are maintained by the NRCS. 

 

Table 4 Summary statistics of historical maximum SWE values at each 

Payette River Basin SNOTEL site. The mean, maximum, and minimum of these 

maximum SWE values are in this table and represent the range of maximum SWE 

throughout the period of record for this study. Units are in inches. 

N = 26 

(years) 

Banner 

Summit 

Big 

Creek 

Deadwood 

Summit 

Jackson Peak 

Mean (µ) 25.5 31.9 42.5 27.6 

Min 13.2 18.1 19.4 17.3 

Max 39.8 48.2 70.3 43.5 

Std. Dev. (σ) 7.2 8.9 13.2 7.9 

Name Elevation [ft]

Stream Gauge Emmett 2,626

Banner Summit 7,040

Deadwood Summit 6,860

Big Creek Summit 6,580

Jackson Peak 7,070

SNOTEL Sites

Payette River Basin Sites
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The day of allocation in the Payette river must meet the following criteria: 1) the 

natural flow minus diversions at Letha is zero, 2) total storage of the reservoir system 

stops accruing, and 3) paper fill stops accruing. The current method of determining the 

day of allocation is from 1993-2015. Therefore, there are 23 full water years of data for 

use in developing prediction methods of the day of allocation. The record of day of 

allocation in the Payette basin has varied from June 3 to July 31 with a standard deviation 

of 15.2 days using the current method of determination. The average date is July 10 over 

the entire record. 

3.3. Upper Snake River Basin 

The Upper Snake River Basin is primarily located in eastern Idaho, but it also 

includes parts of Wyoming, Utah, and Nevada. The basin covers 28,821 square miles, 

and the altitude of the mountain peaks range between 7,000 and 12,000 feet (Parr et al., 

1998). There are more than 30,000 stream miles. The region is semi-arid - like the Boise 

and Payette basins. The primary reservoir on the Snake River is American Falls, which is 

in Eastern Idaho. Other major reservoirs include Jackson Lake, Palisades, Grassy Lake, 

Island Park, and Lake Walcott. The total space available in the reservoir system is over 

4,000,000 acre-feet. 

The SNOTEL sites for the Upper Snake River Basin include: Grassy Lake, Lewis 

Lake Divide, Black Bear, Phillips Bench, and Two Ocean Plateau (Figure 5). These sites 

have a record that spans during the period of record for the current day of allocation 

criteria. The melt seasons are consistent for all SNOTEL sites. The names of the 

SNOTEL sites and stream gauges are listed with their respective elevation in Table 5. 
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The maximum SWE values at these SNOTEL sites are a major part of the analysis, so the 

lowest, highest, and average maximum SWE at each site are recorded in Table 6. 

Table 5 Snake River Basin sites in the analysis and the elevation of the gauges. 

The Heise streamflow gauge data is maintained by the USGS (site 13037500) and 

USBR, and the SNOTEL sites are maintained by the NRCS. 

 

Table 6 Summary statistics of historical maximum SWE values at each Snake 

River Basin SNOTEL site. The mean, maximum, and minimum of these maximum 

SWE values are in this table and represent the range of maximum SWE throughout 

the period of record for this study. Units are in inches. 

N = 36 

(years) 

Black 

Bear 

Two Ocean 

Plateau 

Phillips 

Bench 

Lewis Lake 

Divide 

Grassy 

Lake 

Mean (µ) 42.8 34.3 29.7 35.1 34.7 

Min 23.6 20.1 17.3 18.3 18.6 

Max 73.9 55.1 50.4 61.4 57.6 

Std. Dev. (σ) 14.7 12.0 11.1 13.5 11.7 

 

The stream gauge used in the Upper Snake Analysis is the modeled discharge of 

the Snake River at Heise. Due to upstream diversions, the gauge must be corrected to 

represent the natural flow of the basin. The site is corrected by the USBR’s Hydromet 

network (https://www.usbr.gov/gp/hydromet/). 

The day of allocation in the Upper Snake River Basin occurs when the following 

occur: 1) the natural flow at Milner Dam is zero, 2) total storage of the reservoir system 

Name Elevation [ft]

Stream Gauge Heise 5,015

Grassy Lake 7,265

Lewis Lake Divide 7,850

Black Bear 8,170

Phillips Bench 8,200

Two Ocean Plateau 9,240

Snake River Basin Sites

SNOTEL Sites
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stops accruing, and 3) paper fill stops accruing. There are 34 years where this operation 

has been in use; the record spans from 1982 to 2014, but years 1985 and 1989 are not 

valid for use with these criteria. The earliest day of allocation on record is April 25, and 

the latest is July 30. The average day of allocation on the Snake River is June 26, and the 

standard deviation is 21.1 days.
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CHAPTER FOUR: METHODS 

The overarching goal is to develop a statistical model that can be used to predict 

the day of allocation from information about the mountain snowpack. I use a multiple 

linear regression (MLR) approach to discover relationships between several explanatory 

variables and a response variable. To construct an MLR model it is necessary to identify 

statistically significant predictor variables. In the following sections I describe how I: 

1. Confirm that there is a relationship between snow and streamflow 

2. Identify predictor variables for the MLR to day of allocation 

3. Construct the MLR 

4. Cross-validate the MLR 

Several analyses are performed to meet and verify the overarching goals.  

1) To describe the relationships between SWE from SNOTEL and flow from USGS, 

linear regressions are used. These methods will bring out how patterns of SWE are 

related to the streamflows.  

2) The next goal, identifying relevant predictor variables for the day of allocation, will 

be met by linear regressions of SWE variables and day of allocation.  

3) Once predictor variables are identified, the third goal, building a multiple linear 

regression model, can be done. The multiple linear regression model is done for all 

three of the basins.  

4) The verification for the models is done by checking the R2 values and using a 

jackknife RMSE analysis. 
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4.1. Confirm Relationships Among Snow, Streamflow, and DOA 

4.1.1. How can the day of allocation be described with flow? 

Flow verification is done several different ways. Water managers may know 

certain flow levels, such as low flow and flood stage. In this case, we use the knowledge 

of the water managers as a place to begin analysis. Water regulators may know the 

approximate flows during the day of allocation, but verifying these approximations with 

historical data ensures the best flow threshold value is used. Verification is done by 

plotting the flow values on the historical day of allocation(s) and finding the mean of 

those flows. The mean represents the flow demand over the reach. Flow verifications are 

performed on each of the basins, as water demand is different in the three areas. 

The flow values are further inspected by creating regressions with the date of 

indicative flow value to the actual day of allocation. The relationship and respective error 

between the day of allocation representative flow occurrence and the actual day of 

allocation are determined. With the average streamflow value, we find when the 

indicative day of allocation flow value occurred on each year. Using the dataset of flow 

value occurrences and actual day of allocation, a regression is created to determine how 

well the indicative flow value corresponds to the day of allocation. These regressions 

should be related due to the consistent yearly demand throughout the growing season. 

Given a strong relationship, the flow demand is verified as a constant from year to year, 

and day of allocation is easy to estimate when the streamflow recession is close to the 

mean demand. 

4.2. Identify Predictor Variables for the Day of Allocation 

In project design, I hypothesized that the day of allocation is related to: 
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1. The amount of snow in the basin draining to a river 

2. The date that net melting of snow begins 

3.  The rate that snow melts, or the duration of the ablation period 

The SNOTEL sites used in this study were selected for several reasons. Many the 

SNOTEL sites in this study are located at high elevations. When a SNOTEL site is 

located at a high elevation, the snow will be less likely to melt out mid-winter due to the 

colder average temperatures in high sites. High elevations are less influenced by climate 

variations and are more reliable for estimating water availability based on the snowpack 

(Nayak et al., 2010). According to another study, strong relationships with precipitation 

are found in areas of high elevation (Mote, 2006). 

4.2.1. How does the maximum SWE affect the day of allocation? 

The amount of snow in a basin is indicated by the maximum value of SWE that 

accumulated at SNOTEL stations (Figure 1). Historically, the USDA SNOTEL program 

identifies April 1 SWE as the indicator of summer water supply. However, maximum 

SWE has been shown to better represent water availability than April 1 SWE (Bohr & 

Aguado, 2001), and verification was done for the sites in this study. While April 1 SWE 

may show relationships, many basins continue to accumulate snowpack after April 1, 

making the maximum SWE a better representation of water availability from melt.  

4.2.2. How does the start of melt affect the day of allocation? 

Because the DOA is a date, it should be related with the date at which significant 

increases in water supply begins. In this study, we should be that date at which significant 

melt begins. The beginning of melt can be described as the date of 10% melt. Ten percent 

melt is used, rather than the day of maximum SWE, because melt combined with more 
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periods of accumulation typically occur until the snowpack has melted approximately ten 

percent (Ferguson, McNamara, Flores, & Marshall, 2017). Once ten percent melt occurs, 

the snow will melt rapidly until the site has no remaining snow. 

The start of melt is evaluated with respect to day of allocation due to the relation 

of ten percent melt to maximum discharge in the river in a basin. If the start of melt is 

related to this flow parameter, the possibility of the start of melt being related to the day 

of allocation is worth investigation. 

4.2.3. How do melt rates affect the day of allocation? 

The next potential variables in the day of allocation are the degree of melt of the 

snowpack. An earlier melt will lead to an earlier day of allocation, and a slower melt will 

extend the natural water supply to last later into the summer. The melting process is 

evaluated relative to the total amount of snowpack for the water year. The value 

calculated indicates snowpack melted and snowpack remaining during the melt season. 

The amount of melt that occurs over a certain time (a month in this study) is divided by 

the total amount of SWE in the season, forming a melt ratio for each SNOTEL site in 

each month. 

𝑀𝑒𝑙𝑡 𝑅𝑎𝑡𝑖𝑜 =  
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑆𝑊𝐸 𝑚𝑒𝑙𝑡𝑒𝑑 𝑖𝑛 𝑎 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆𝑊𝐸 𝑖𝑛 𝑤𝑎𝑡𝑒𝑟 𝑦𝑒𝑎𝑟
 

The melt ratio is the amount of SWE melted in each time frame divided by the 

maximum SWE accumulated for the year. In this study, the amount of SWE melted is 

calculated by using the SWE time derivative on a daily time step and adding the negative 

changes, or snow melt, over each month that relates to melt. Using the melt ratios on 

multiple sites and evaluating these values to the day of allocation with multiple linear 

regressions represents ablation in basins. 
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4.3. Construct Multiple Linear Regression Models 

4.3.1. Using a multiple linear regression model 

A model can be built using the SWE parameters that are related to the day of 

allocation. Multiple linear regression models are used to discover relationships between 

several explanatory variables and a response variable. Figure 6 shows how a multiple 

linear regression model uses multiple variables to obtain a prediction. 

To weight the terms going into the model, multiple linear regression with known 

explanatory variables are used. The number of inputs for each basin varies depending on 

each basin’s availability of SNOTEL sites with consistent, long-term datasets that match 

with the availability of day of allocation data. Terms that are not revealing useful 

information (such as months with no melt occurring or remaining) may be removed, and 

the model can be evaluated with the most useful terms possible. In some months, 

presence or absence of snow can be a better way to evaluate the term, so some are made 

into dummy variables with a 0 or 1 value (absence or presence, respectively). 

The models are created using the ‘fitlm’ function in Matlab (MATLAB Release 

2015a, The MathWorks, Inc., Natick, Massachusetts, United States.). Predictions can be 

generated by using the model from ‘fitlm’ with new inputs in the function ‘predict’. 

When using the ‘fitlm’ function, the variables for all years will be considered with the 

respective day of allocation dataset for those years. The output of the ‘fitlm’ function is a 

model where future SWE parameters can be used to predict another day of allocation 

when they are multiplied by the constants and added to the intercepts from the ‘fitlm’ 

model. The model created by a ‘fitlm’ function can be saved, and the ‘predict’ function 

can use the model and new parameters to generate predictions with Matlab. ‘Fitlm’ 
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outputs weights and error for each variable in the equation. The option in ‘predict’ must 

be ‘observation’ for parameter ‘Prediction’ due to the model using a new set of data to 

estimate the day of allocation. 

4.4. Verification of the Models 

To determine the error within the model, the datasets for each model can be 

validated by pulling five randomized years of data out of each basin’s dataset for model 

validation and using the remaining years of data to create a model. The five verification 

years of day of allocation are compared against the model’s predictive performance for 

the day of allocation. The RMSE for the model’s performance versus the actual day of 

allocation is recorded, and this process is repeated 1000 times for each of the 12 models. 

A histogram is created for the collection of RMSE values for every model. The mean, 

10th percentile, and 90th percentile of each model’s RMSE distribution is calculated. The 

verification models show the robustness of the original models calculated from the full 

datasets (Figure 7).
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CHAPTER FIVE: RESULTS 

Basic relationships of SWE to streamflow values are investigated, and several of 

the regressions revealed strong relationships (Appendix). Maximum SWE is related to 

runoff volumes and days above threshold flow levels for respective basins. Regressions 

between snow and streamflow seem to be stronger in higher elevation sites versus lower 

elevation sites, likely due to less fluctuation in SWE until spring at the higher elevations 

from cooler temperatures. 

Volume of SWE can be directly related to the runoff volumes in a year. The 

strong relationships of up to an R2 of 0.91 (adj = 0.88) can be attained by performing 

regressions between maximum SWE at SNOTEL sites to the volume of water through a 

point downstream in a river (Figure 8). Because of this, the maximum SWE can be used 

to predict the water supply volume. 

Maximum SWE also relates highly to the number of days above threshold flow 

values (R2 = 0.88, adj R2 = 0.85) (Figure 9). The threshold flow values are critical flows 

that a river may or may not exceed depending on how the snowpack melts. Based on 

these findings, the remainder of the study considers how day of allocation in three 

different watersheds can be predicted using maximum SWE and cumulative melt 

percentages of April, May, and June. 
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5.1. Flow and Day of Allocation Relationships 

5.1.1. Boise River Flows on the Day of Allocation 

When investigating critical flows in other basins for the day of allocation, using 

the flow values on the date helps approximate flow values indicative of the day of 

allocation for water managers. In the Boise River basin, the day of allocation is near the 

final occurrence of 4,000 cfs of unregulated flow at Lucky Peak (Figure 10). The 

indicative flow of 4,000 cfs follows the annual streamflow peak from snowpack in the 

years of 1986-2014 (29 years). This flow value represents the total amount of diversions 

of water rights between Lucky Peak and Middleton. There is a strong relationship 

between day of allocation and date of flow value for Boise River basin. For the Lucky 

Peak station, using the day when the flow goes below 4,000 cfs and plotting regressions 

with that date to the day of allocation shows a strong trend. The R2 value is 0.96. 

Therefore, the natural flow value of 4,000 cfs and the day of allocation are very closely 

related. 

5.1.2. Payette River flows on the Day of Allocation 

In the Payette River, the first instance below 2,000 cfs following the streamflow 

peak closely matched the occurrence of the day of allocation. This is different from the 

Boise River, where the closest instance was the final measurement of the indicative flow 

level. The relationship between the first occurrence of the indicative flow level and the 

day of allocation is the highest in the Payette Basin at R2 being 0.99 (Figure 11). This 

indicates that the relationship between streamflow magnitude and the day of allocation is 

strongest in the Payette. 
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5.1.3. Upper Snake River flows on the Day of Allocation 

The indicative flow for the Snake River is obtained by using the average flow that 

occurs on the day of allocation at Heise from 1982-2014 (33 years). The indicative flow 

on the day of allocation for the Snake River is 14,000 cfs of natural flow through Heise. 

Heise is approximately 150 miles from Milner Dam, where the flow must be zero when 

accounting for diversions between the two gauges. Therefore, this indicates that 14,000 

cfs of natural flow is typically used in diversions between Heise and Milner Dam. The 

relationship between the day of allocation and the days on which the indicative flow 

occurs is an adjusted R2 of 0.90 (Figure 12). Therefore, 90% of the variation in the day of 

allocation can be explained by the flow value of 14,000 cfs. 

5.2. Day of Allocation Predictor Variables 

The parameters of maximum SWE and monthly melt ratios were found to relate 

to the day of allocation (Correlations of SWE Parameters to Day of Allocation - 

Appendix A). The variables that had significant relationships with day of allocation were 

placed into the multiple linear regression models in order of data availability in the water 

year. However, the relationship between date of 10 percent melt and day of allocation is 

extremely weak (R2 of 0.02). This observation indicates that the timing of melt initiation 

and the day of allocation are not related. This may be attributed to the fact that the 

parameter of 10% melt date does not indicate the total volume of snow to be melted. 

Another factor could be that the day of allocation is more closely tied to how the 

streamflow decreases in mid-summer. 
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5.2.1. Progression through the melt season increases data availability 

As the melt season goes from maximum accumulation to the final melting period, 

predictions for the day of allocation can be made using the MLR model. Each basin has 

four models in this study. The first model only incorporates the maximum accumulation 

of SWE at each of the SNOTEL sites. Therefore, if a basin uses 5 SNOTEL sites, five 

variables will be used for the first model’s inputs. 

For Models 2-4 in each basin, the melt ratios are also inputs. Model 2 incorporates 

the melt ratios from April for each of the SNOTEL sites in addition to the maximum 

accumulation of SWE. Model 3 uses maximum accumulation, April melt ratios, and May 

melt ratios. Model 4 requires inputs from maximum accumulation, April melt ratios, May 

melt ratios, and June melt ratios. Therefore, using the example of 5 SNOTEL sites in a 

basin, Models 2, 3, and 4 will have a maximum of 10, 15, and 20 variables, respectively. 

5.2.2. Model exceptions and alterations 

Certain sites are not useful during specific time frames in regards to melt. Some 

sites are removed from the April melt ratio criteria because there is frequently still 

accumulation of SWE occurring in many high elevation sites, and the melt at the sites 

during April is not significant or close to a normal distribution. In addition, some sites 

always melt out by May, and the June melt ratios are always zero for the period of record. 

These terms are removed as well. 

Some parameters must be modified to be more useful. Some site/month 

combinations have nothing left to melt in approximately half of the years on record. 

Therefore, the presence or absence of melting is more important in determining the day of 

allocation than the actual quantity of melt. These parameters are made binary, with a zero 
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representing no melt and a one representing the occurrence of melt at a given site. Table 

7, Table 8, and Table 9 show which variables remain and which are changed for the MLR 

models. 

Table 7 In the Boise River Basin, four of the original terms are not included in 

the final MLR model, and four other terms are switched to dummy variables, which 

reveal either a presence or absence of melting of snow at the sites. 

 

Table 8 In the Payette, all the original terms are used. This is the only basin 

where no terms were deleted or made into dummy variables for the final MLR 

model. 

 

 

 

 

 

 



32 

 

 

Table 9 In the Snake, one variable was removed due to no snow presence in 

the period of record. Four variables are switched to dummy variables since the 

presence or absence of melting is more indicative than the actual melt ratios. 

 

5.3. Results of the Multiple Linear Regression Models 

The model results are in the format of an equation with error components. The 

tables for each model are presented in the following format in Statistics for Final Models 

(Appendix A): 

Table 10 The values in this table are multiplied by the respective maximum 

SWE values and added with the y-intercept to obtain a prediction for DOA. 

 Atlanta Graham Jackson Mores Trinity Vienna 

Max SWE 

multiplier 

.32 .70 .94 -.57 -.1 .70 
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Table 11 This table shows the output of the model from Matlab. In addition to 

the constants and y-intercept, the standard error, t-statistics, and p-values are also 

included for the input parameters. 

 

For the models (this one is Model 1 of Boise River), the day of allocation is 

calculated by multiplying the variables and the multipliers and adding the separate 

components together with the y-intercept. The output of each equation is the day of the 

calendar year. To calculate the prediction of DOA using this model, the equation used is 

below. Therefore, the six variables are all necessary for the calculation. A prediction 

cannot be made with this model if any one of the variables is not available. 
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𝐵𝑜𝑖𝑠𝑒 𝐷𝑎𝑦 𝑜𝑓 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

= 122.8 +  (. 32 ∗ (𝐴𝑡𝑙𝑎𝑛𝑡𝑎 𝑆𝑢𝑚𝑚𝑖𝑡 𝑀𝑎𝑥 𝑆𝑊𝐸))

+ (. 70 ∗ (𝐺𝑟𝑎ℎ𝑎𝑚 𝐺𝑢𝑎𝑟𝑑 𝑀𝑎𝑥 𝑆𝑊𝐸))

+ (. 94 ∗ (𝐽𝑎𝑐𝑘𝑠𝑜𝑛 𝑃𝑒𝑎𝑘 𝑀𝑎𝑥 𝑆𝑊𝐸))

+ (−.57 ∗ (𝑀𝑜𝑟𝑒𝑠 𝐶𝑟𝑒𝑒𝑘 𝑀𝑎𝑥 𝑆𝑊𝐸))

+ (−.1 ∗ (𝑇𝑟𝑖𝑛𝑖𝑡𝑦 𝑀𝑡𝑛 𝑀𝑎𝑥 𝑆𝑊𝐸)) + (.70

∗ (𝑉𝑖𝑒𝑛𝑛𝑎 𝑀𝑖𝑛𝑒 𝑀𝑎𝑥 𝑆𝑊𝐸)) 

While all the individual parameters are positively correlated with the DOA, two 

of the multipliers in this equation have negative values. Most of the regression models 

have negative constants for positive correlations. When variables are interacting, positive 

correlations can have negative constants. The negative constants can balance out some of 

the positive constants, and the balance can shift the prediction forward or backward 

depending on SWE distribution in the basins. 

Using this equation with historical maximum SWE for DOA predictions and 

plotting them next to actual DOA values is shown in Figure 13. Using Model 1 for the 

Boise River Basin DOA has an average deviation of 8.67 days from actual to prediction. 

Figure 14 shows box and whisker plots of how the prediction and actual DOA compare 

among the 4 models for the Boise River. 

5.3.1. Boise River Basin MLR 

When relating SWE to day of allocation, maximum SWE is the first available 

input for the model. Using the 6 SNOTEL sites selected, the maximum SWE accounts for 

0.50 of the variability in the day of allocation (cite table).  
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Table 12 Summary statistics of the 12 models presented in this study. There are 

4 models for each basin. Years of data vary based on availability of data at certain 

sites. 

Basin Model # Variables R2 Adjusted R2 N (years) RMSE (days) 

Boise 1 6 .61 .504 29 12.3 

Boise 2 9 .765 .647 28 10.6 

Boise 3 15 .948 .877 27 6.37 

Boise 4 20 .982 .921 27 5.1 

Payette 1 4 .684 .614 23 9.45 

Payette 2 8 .719 .558 23 10.1 

Payette 3 12 .931 .848 23 5.93 

Payette 4 16 .966 .874 23 5.41 

Snake 1 5 .719 .663 31 12.3 

Snake 2 10 .778 .667 31 12.2 

Snake 3 15 .891 .782 31 9.86 

Snake 4 19 .922 .787 31 9.74 

 

After the month of April, the April melt ratios can be calculated for the SNOTEL 

sites. Because half of the SNOTEL sites are still frequently accumulating SWE during the 

month of April, only three sites are fit for incorporating the April melt ratio into model 2 

of Boise, increasing the inputs to the model from six to nine – six maximum SWE values 

and three melt ratios for April. The adjusted R2 increases from 0.50 to 0.65 The addition 

of the April melt increases the predictive power of the model’s R2 by 0.15 for the day of 

allocation. 
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Incorporating the May melt ratios into the model brings the model inputs from 

nine to thirteen. May melt is valid at all SNOTEL sites, but Graham Guard is frequently 

melted out by May. Due to this trend, May melt for Graham Guard was made into a 

dummy variable, where the melt of any snow was 1 and the melt of no snow was 0. These 

additional six inputs increase the adjusted R2 of the model from 0.65 to 0.88. 

Graham Guard has no snow to melt in June, so the June melt for Graham Guard is 

removed. Atlanta Summit, Jackson Peak, and Mores Creek are far from a normal 

distribution in June, so they are made into binary variables. Trinity Mountain and Vienna 

Mine have standard melt ratio values. The melt ratios in June bring the model inputs to 

19, and the adjusted R2 for the model after June is 0.92. 

5.3.2. Payette River Basin MLR 

In the years of 1993-2015 (23 years), the Payette River has had its day of 

allocation between June 3 to July 31. When investigating the indicative flow of the day of 

allocation, the flows at Emmett are, on average, 2000 cfs. Of the natural flows considered 

in this study, the natural flow at Emmett had the lowest variance from the mean flow on 

the day of allocation and is therefore the most consistent. 

In the Payette River Basin, the maximum SWE has a 0.61 adjusted R2 with the 

day of allocation. This indicates the predictive power of the model is 0.61. All four of the 

SNOTEL sites are used for the maximum SWE values. 

The inclusion of April melt decreases the predictive power (adjusted R2 from 0.61 

to 0.56) among the variables, which contrasts from the Boise River, where the inclusion 

of April melt provides a significant increase in day of allocation explanation. This can be 

attributed to the higher elevation of the Payette Basin, where snow is still commonly 
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accruing during the month of April. However, the normality of the distribution of April 

melt ratios are not affected. Because of the normality of the data, the parameters remain 

in the model. Also, if the maximum SWE occurs during the months of April in the sites, 

the day of allocation prediction can be recalculated with just maximum SWE variables in 

Payette. 

The May melt in the Payette River basin increases the prediction ability of the day 

of allocation, moving the adjusted R2 from 0.56 to 0.85 (+0.29). There are twelve inputs 

into the equation for this relationship between snowpack and day of allocation. 

The June melt in the Payette River basin improves the model slightly. The 

adjusted R2 goes from 0.85 to 0.87 (+0.02). Though the addition of June melt may 

increase the confidence slightly, this slight increase requires 16 inputs into the model. 

Some of the streamflow data from the Emmett Gauge are incorrect. However, due 

to the questionable streamflow values being distant from the day of allocation, the 

analysis for the model is not affected. 

When predicting the day of allocation from max SWE and melt rates, the 

predictions are more refined than they would with just maximum SWE. While the R2 is 

0.97, the adjusted R2 of 0.87 is a more accurate representation of the prediction power of 

this model. Deadwood Summit and Big Creek are the most important in this model. 

When running statistics on melt as the season goes on, the May melt ratio provides the 

most information for when the day of allocation will occur. 

5.3.3. Upper Snake River Basin MLR 

When determining the day of allocation on the Snake river from SWE, the 

maximum SWE of the five SNOTEL sites are used. Using multiple linear regression of 



38 

 

 

maximum SWE values to day of allocation, an adjusted R2 of 0.66 is obtained, which is 

the strongest relationship among the three basins with using only maximum SWE (+0.16 

from Boise and +0.06 from Payette). 

Using the melt ratio from the month of April adds 5 inputs to the multiple linear 

regression model, bringing the total number of inputs to 10. The April melt ratios bring a 

slight increase in the adjusted R2 of the trend -  from 0.66 to 0.67. There is commonly 

SWE accumulation occurring during the month of April, so the melt of April is less 

indicative of how the snowpack melts in a season. However, the April melt ratios are 

normally distributed and remain as their ratios in the model as opposed to binary. 

The melt ratios for the month of May and the maximum SWE create an adjusted 

R2 of 0.78 with multiple linear regression. Lewis Lake Divide May Melt ratio is made 

binary, since the presence or absence of snow is more important than the melting of 

snow. There are 15 inputs for this model, and the adjusted R2 from the maximum SWE to 

day of allocation increases by 0.11 when the May melt ratios are incorporated into the 

model. 

June melt ratios bring the inputs of the model to 19. Black Bear’s June melt ratio 

is removed from the model due to the frequent absence of snow at this site during the 

month of June. Three sites are made to only consider presence/absence of snow, and one 

site utilizes the actual melt ratios. The adjusted R2 for the model is 0.79 The June melt 

ratios provide an overall increase in adjusted R2 of 0.01. Of the three basins, this is the 

lowest adjusted R2 with all the SWE data. 
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5.4. Day of Allocation Model Verification 

5.4.1. Boise verification 

See Figure 15 for the Boise River models’ RMSE distributions. The RMSE in the 

verification for Model 1 averages 13.2 days, with 6 and 20 days as the 10th and 90th 

percentiles. Model 2’s RMSE verification averages 11.8 days, with 10th and 90th 

percentiles of 4 and 19 days. There is a slight decrease in error between Model 1 and 

Model 2 for the Boise River Basin. 

The RMSE of the Model 3 verification averaged 10.7 with a 10th and 90th 

percentiles of 5 and 17 days, respectively. Factoring in Maximum SWE, April melt, and 

May melt gives the lowest RMSE distribution among the four Boise River basin models. 

The addition of the June melt ratios increases the predictive power of the model’s 

R2 by 0.04. The RMSE of the Model 4 verification averages 13.5 days, with 10th and 90th 

percentiles of 5 and 22 days. The final model in the Boise River basin gives the highest 

distribution of RMSE in the testing models. Therefore, the use of June melt ratios in 

predicting the day of allocation is not practical. June is also frequently when the day of 

allocation occurs, so other hydrograph indications such as streamflow recession may be 

more useful than June melt ratios. 

5.4.2. Payette verification 

See Figure 16 for the Payette models’ distributions. The verification of Model 1 

of the Payette River using RMSE provides a mean of 11.6 days and 10th and 90th 

percentiles of 5 and 21 days. Model 2 adds the relative melt during the month of April. 

This model’s RMSE distribution has a mean of 12.6 days and 10th and 90th percentile 

values of 4 and 23 days. The inclusion of the April melt increases the absolute error of 
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the model. Model 3 adds the May melt ratios to the list of inputs. The RMSE distribution 

from this model’s verification has a mean of 12.9 and 10th and 90th percentile of 7 and 31 

days. The error continues to increase with added terms in the Payette River regression 

models. Model 4 includes the June melt ratios in addition to the variables in Model 3. The 

mean RMSE of the verification models is 13.4 with 10th and 90th percentiles of 6 and 36. 

The error in Model 4 is the highest among all twelve of the models in this study. The 

predictive capability decreases with melt data in the Payette River basin model. 

5.4.3. Upper Snake verification 

See Figure 17 for the RMSE distribution of models for the Upper Snake River. 

The RMSE distribution from Model 1 verification has a mean of 11.7 days and 10th and 

90th percentiles of 5 and 19. The mean of Model 2’s RMSE verification distribution is 

12.6 days with 10th and 90th percentile values of 6 and 21 days. The distribution of RMSE 

for Model 3 verification averages 12.7 days with 10th and 90th percentiles of 6 and 20 

days. The distribution of Model 4’s RMSE has a mean of 12.9 days with 10th and 90th 

percentiles of 5 and 21 days. The distributions for all four of the models in the Upper 

Snake verification are comparable. Therefore, the addition of SNOTEL data past the peak 

amount of SWE does not add much predictive capability for the day of allocation. 
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Table 13 Results from the RMSE distribution analysis for verification of the 12 

separate models. This table shows how many years of consistent data are available 

for each basin, how many of those years are put into the model creation, and 5 years 

of data are used for verification for each model. This table also shows how many 

variables that potentially influence day of allocation are in each model. The average 

root mean square error values are shown for the verification of 1000 

model/verification scenarios with the 10th and 90th percentiles.  

 Boise (27 - 29 

years) 

Payette (23 years) Snake (31 years) 

Model 1  

(Max SWE) 

Mean RMSE  

(10th/90th percentiles) 

24 years -> model 

6 variables 

13.2 (6/20) days 

18 years -> model 

4 variables 

11.6 (5/21) days 

26 years -> model 

5 variables 

11.7 (5/19) days 

Model 2 

(Max SWE, April Melt) 

Mean RMSE  

(10th/90th percentiles) 

22 years -> model 

9 variables 

11.8 (4/19) days 

18 years -> model 

8 variables 

12.6 (4/23) days 

26 years -> model 

10 variables 

12.6 (6/21) days 

Model 3 

(Max SWE, April and May Melt) 

Mean RMSE 

(10th/90th percentiles) 

22 years -> model 

13 variables 

10.7 (5/17) days 

18 years -> model 

12 variables 

12.9 (7/31) days 

26 years -> model 

15 variables 

12.7 (6/20) days 

Model 4 

(Max SWE, April May and June 

Melt) 

Mean RMSE  

(10th/90th percentiles) 

24 years -> model 

18 variables 

13.5 (5/22) days 

18 years -> model 

16 variables 

13.4 (6/36) days 

26 years -> model 

19 variables 

12.9 (5/21) days 
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CHAPTER SIX: DISCUSSION 

6.1. Max SWE Controls Day of Allocation 

In all three of the basins, using just maximum SWE values from SNOTEL sites 

can obtain confidence comparable to or better than the model using the additional melt 

ratios. While melt ratios may be useful in some years, they cannot be heavily relied on. 

Maximum SWE is a strong indicator of the volume and threshold values, which are key 

factors in the day of allocation. 

The relationship between maximum SWE and day of allocation can be 

particularly useful for agriculture. The maximum SWE occurs at many SNOTEL sites 

near the time when farmers must make decisions on their crops for the rest of the growing 

season. If predictions made in March are comparable to those in mid-summer for day of 

allocation, decisions can be made with more confidence. 

The maximum SWE is strongly related to total volume of water through a channel 

in a water year, especially in the basins with higher elevations. The day of allocation 

considers more than the total volume; it also considers the rate at which the snowpack 

melts. Therefore, incorporating the rate at which the snowpack is melting increases the R2 

for all basins analyzed. However, the RMSE verification shows that the addition of the 

melt ratios increases the amount of error within the models. This indicates that the 

models may have high R2 values, but they may, in most cases, be overfit and less useful 

than the models that just use maximum SWE values. 
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6.2. Day of Allocation can be Predicted by Natural Flow Levels 

For all three basins, there are flow levels indicative of the day of allocation 

(adjusted R2 above 0.90). The weakest relationship was in the Snake River, with an 

adjusted R2 of 0.90. This may be attributed to the vast size of the Snake River, and the 

Heise gauge used is approximately 150 miles upstream from Milner Dam, the gauge at 

which the day of allocation has specific criteria. The Boise and Payette indicative flows 

to day of allocation have adjusted R2 values of 0.96 and 0.99, respectively. On the Boise 

River, the distance from Lucky Peak to Middleton is approximately 40 miles; on the 

Payette River, the distance from Emmett to Letha is close to 10 miles. These relationships 

could be attributed to the distance between the 2 measured sites – from gauge to gauge, 

where losses or gains can occur through evaporation or groundwater movement. The 

river with the largest amount of distance between the two gauges also has the highest 

error in indicative flow to day of allocation. Though the definition of the day of 

allocation does not explicitly define an upstream flow, the upstream flows are directly 

related to the criteria of the day of allocation. 

6.3. Melt Rates Can Aid in Predictions 

The day of allocation in water accounting has many factors. While the volume of 

SWE accumulated is important, the timing of melt can also be an important indicator of 

when the day of allocation will occur. However, the melt ratios of each site can be 

dependent on the maximum accumulation of SWE, since a deeper snowpack may be 

melting for a longer period than a shallower covering of snow. 

The month on which the melt is most critical to the day of allocation varies 

depending on of the basin. The Boise River is primarily affected during the month of 
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April. The SNOTEL sites in the Boise River basin are lower than the SNOTEL sites in 

the Payette and the Upper Snake. In the Payette and Snake River basins, the April melt 

lowers the R2 of the model. Therefore, removing the melt ratios for the month of April is 

necessary for several SNOTEL sites. Some sites of April melt are not highly related to 

streamflow because of the frequent accumulation of snow into the month of April (Ron 

Abramovich, personal communication, 2016), and melt is limited until the month of May. 

The Snake River basin has a more gradual increase in adjusted R2 in MLR Models 

1-4 than the Boise and the Payette. While the Snake River has strong relationships in 

regards to maximum SWE to day of allocation, May and June melt only increase the R2 

by small increments (0.01, 0.11, and 0.01 as opposed to 0.25 for April in Boise and 0.29 

for May in Payette). In this way, there is not a ‘key month’ of melt; rather, much of the 

variation that can be accounted for in the Snake River’s day of allocation is in the 

maximum accumulation of SWE. 

Even though the addition of melt ratios increases the R2 of the basin’s models, the 

RMSE verification does not always agree with conclusions made solely on adjusted R2 

values. The RMSE values are absolute, while the adjusted R2 values are relative, and the 

verification statistics are stronger than the models’ statistics. 

Due to the dependence of melt on total SWE accumulation, melt does not create a 

more robust model when terms are added with maximum SWE for a multiple linear 

regression model. However, maximum SWE is strongly related to total water supply 

volume, which is a significant contributor of the day of allocation and overall water 

supply for the growing season. Day of allocation is more of a function of the volume of 

water in the snowpack than how the snowpack melts, unlike the peak streamflow 



45 

 

 

(Ferguson et al., 2017). More seasonal data does not necessarily indicate a better 

prediction, which is good news for water users. Many water users are deciding on their 

seasonal crops in the month of March. March SWE is a good indicator of maximum 

SWE. Therefore, water users can have high confidence using March SWE to decide on 

which crops to grow. 

6.4. Long term Trends for the Day of Allocation 

Long-term climate shifting is evident in some of the data. The Boise analysis 

verifies the findings of the studies indicating that lower elevation sites have lower 

relationships to precipitation and are more susceptible to shifting of climate (Mote, 2006; 

Nayak et al., 2010). The use of this method in watersheds with low-elevation SNOTEL 

data may not yield relationships as strong as an analysis on a higher-elevation watershed. 

Graham Guard is the lowest elevation site in the Boise River Basin. There is a decrease in 

snowpack with time at this station with a p-value of .14. Therefore, there is moderate 

confidence in the trend of decreasing snowpack at Graham Guard. The p-values for other 

snowpack trends of sites in this study are much higher than that, and therefore have 

weaker trends for climate shift verification within the dataset. 

In addition to trends of SWE to day of allocation, day of allocation also has trends 

over time. While the amount of error is high (p > 0.4 for all basins), two of the three of 

the watersheds indicate a day of allocation shift by three days earlier per decade. The 

Boise basin was the only watershed that did not have this trend; it indicated a slight 

positive (toward a later date) trend. This rate may also change over time, but the trend 

implies an average shift of a day of allocation 10 days earlier over a record of ~ 30 years. 

Further analysis may be done on the day of allocation dataset, where the years are 



46 

 

 

separated by low and high water supply. SWE and water shortages were briefly 

investigated. Figure 18 show how annual water supply is tied to maximum SWE values 

and day of allocation. The trend of increasing dryness in dry years (Luce & Holden, 

2009) may also have an impact on the day of allocation. In addition, Figure 19 shows 

how the first 10 and last 10 years of the day of allocations in each basin vary. The Boise 

River shows little change, but the Payette and Snake Rivers show and earlier shift in the 

day of allocation. 

6.5. Start of Melt Not Related to Day of Allocation 

The start of melt, which is defined in this study as when 10% of the snowpack is 

melted, was found to not be an indicator of the day of allocation. The result was initially 

surprising, since the peak flows were found to be strongly related to 10% melt. However, 

because the day of allocation is dependent on total amount of water available in a water 

year, the start of melt may be negligible. The day of allocation in the basins occurs when 

the streamflow is in its summer recession, which occurs after the bulk of volume of the 

melted snowpack has passed through. The years with more snowpack see later meltout 

dates, and therefore, later day of allocations. This is because deep snow will take a longer 

time to melt than shallow depths of snow. Deeper snow also provides a larger amount of 

total water, which also contributes to a later day of allocation. The depth of snowpack is 

also related to the duration of natural flow being above a specific threshold. A deeper 

snowpack will provide more days above a threshold (such as water demand), regardless 

of when 10% of the snowpack was melted. 
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6.6. Model Assumptions and Weaknesses 

The analysis contains multiple assumptions for its use. First, the model assumes 

that the SNOTEL sites being used will not see a major snowpack decline soon. The only 

SNOTEL site with a significant decline in its snow accumulation is Graham Guard 

(Boise River Basin), which is the lowest site in the analyses. 

Several of the drainage areas have burned during the analysis period. In these 

cases, we will assume the changes in ablation will show up in the results of the analysis 

of a faster melting period. The faster melt of burned areas can be attributed to an increase 

in inception due to less tree cover (Anderson, McNamara, Marshall, & Flores, 2013). 

The use of the daily data available also has limitations. Some of the daily data is 

estimated or provisional, meaning that there is a possibility for error in the readings. To 

minimize any errors within the data, checking for obvious erroneous values is necessary. 

Any years with extensive missing data between peak SWE and day of allocation will be 

removed. 

The inputs necessary for current year predictions are daily SWE values. While 

there are many factors that contribute to streamflow, creating a model that uses only 

SNOTEL data to make predictions is simplistic. The models’ limitations do not factor in 

rain, temperature, or prior soil moisture. 

Rain creates complications for watersheds that have a larger rain to snow ratio. If 

a watershed relies mostly on snowpack for its water supply, the prediction methods used 

in this study will have more power. The Boise watershed, due to its lower elevation, has 

weaker regressions than the Snake and Payette River basins. 
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Temperature is a factor that influences snow, so while temperature is not directly 

factored into the equations used, the melting of snow accounts for temperature changes. 

This is important in the day of allocation predictions with melt ratios. Rain-on-snow 

events tend to produce higher peak discharges, but the error in simply using snow data is 

factored into the statistical analyses. 

Demand is assumed constant in the model. While demand can change over time, 

and it is likely to increase, a major change in demand would require new parameters of 

allocating water. However, the current systems of calculating the day of allocation have 

remained constant for over 20 years. 

6.7. The Improvement Problem 

While the models presented are an improvement to current methods being used, 

they have their limitations. The methods used in the past were approximations based on 

streamflow values. While a streamflow is in recession, the watermasters have a good 

approximation of what the flows at a particular stream gauge have been near the DOA. 

With the ability to use SWE to determine a reasonable range of DOA, farmers can make 

informed decisions much earlier in the season. In a year with surplus water, a farmer may 

confidently plant crops that need more water to grow. In years with shortages, farmers 

can opt to plant crops that don’t need much water to grow. In addition, if there is enough 

surplus water, some farmers may decide to plant both early and mid-summer, giving 

them as much as twice the amount. Knowing the DOA earlier can help farmers make 

these decisions, and farmers can let their buyers know what to expect. 

However, the models presented are based on statistics, and a lot of variation still 

exists among the predictions. For example, many of the predictions generated have 50% 
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confidence intervals of about 20 days, or almost month. The primary concern with this is 

that there may not be enough precision and accuracy. However, with a range of 20 days, 

potential outliers of DOA can be detected early in the season. Early DOA is the primary 

concern since an early DOA will result in water shortages throughout the summer, 

especially in the later summer during the lowest natural flows. This can potentially lead 

to crop failures for the farmers. With predictions that detect the current range, these 

problems can be mitigated. 

In addition, the degrees of freedom decrease as more variables are introduced. 

This may be the reason that the confidence intervals do not decrease by much, if at all, 

when going from Model 1 to Model 4. The wide confidence intervals, especially in the 

Payette models, may be due to the degrees of freedom rather than the actual predictive 

power of the model. In this case, the addition of more years of data to the models may be 

necessary. The parameters with the highest amount of predictive capability can also be 

considered, leaving some of the other parameters out in order to increase the degrees of 

freedom and therefore potentially decrease the width of confidence intervals. 

The metrics selected as predictor variables were limited to information about 

SWE. The focused parameters were maximum accumulation, start of melt (10% of 

maximum SWE melted out), and monthly melt of April, May, and June. Most of these 

factors were found to influence DOA, apart from the start of melt (Correlations of SWE 

Parameters to Day of Allocation - Appendix A). 

Further investigation of soil moisture and spring precipitation as rain may bring 

more precise and accurate predictions. The main component of summer water availability 
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is the SWE accumulation, but future studies may find that parameters other than SWE 

create more robust predictions. 
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CHAPTER SEVEN: CONCLUSIONS 

Despite its seemingly complicated nature, the day of allocation can be related to 

flows and SWE parameters. Important flows can be attributed to timing in relation to 

water accounting and allocation. The flows indicative of the day of allocation will differ 

depending on the size and water demand of a watershed. 

The day of allocation is controlled by the water demand (which can be treated as 

a constant from year to year) and maximum SWE. While melt may seem important, the 

timing of melt does not improve the predictive capability of the model, based on the 

RMSE verification. A basin with more snowpack will melt out later than a basin with 

lower amounts of SWE, so the melt rates are dependent on the maximum SWE at the 

SNOTEL sites. SWE indicates a volume of water available, which is strongly related to 

the amount of water available from snowpack. Therefore, estimating the day of allocation 

based on SWE values prior to melt provides just as much confidence as the SWE values 

during melt. This is beneficial for farmers, who typically make decisions on which crops 

to plant when the snowpack is close to maximum values for the season. 

The trend present in two of the three basins is the shift of the average day of 

allocation by one day earlier every three years. Because of the variability in the day of 

allocation dates, the R2 values are small, and the p-values are greater than 0.4 for the 

basins. With more years of data, trends may be investigated further. Also, day of 

allocation trends in the Boise River Basin may become more apparent with a longer 

period of record. 
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Figure 1 Variables considered in this study. The orange lines represent the 

snowpack, and the blue lines represent the streamflow. 

 
Figure 2 Map of the Boise River Basin with specified river reach, gauges, and 

SNOTEL sites used in this study 
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Figure 3 Historical day of allocation for the basins. The implementation of the 

use of this system was started in the 1980s, but the Payette River did not begin using 

the day of allocation system until the 1990s. While the range of historical day of 

allocation varies for each basin, relative timing to average values are similar across 

the three basins, which are located relatively close to each other. 
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Figure 4 Map of the Payette River Basin with specified river reach, gauges, and 

SNOTEL sites used in this study. 
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Figure 5 Map of the Snake River Basin with specified river reach, gauges, and 

SNOTEL sites used in this study 

 
Figure 6 Multiple linear regression takes several variables into account, 

weights them by calculating beta values for future y predictions. 
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Figure 7 The process of validating the models is done by using a bootstrap 

method of withholding 5 years from each dataset for verification. Using this method, 

there is no overlap in error calculation and model building. 
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Figure 8 Maximum SWE values correspond to the volume of natural flow 

through the Boise River. This reveals that the values of maximum SWE can help 

estimate the volume of runoff and therefore the summer water availability for water 

users and regulators. 
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Figure 9 Maximum SWE values relate to a duration above specific flow 

thresholds. The maximum SWE and flow thresholds are shown for the Boise River. 
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Figure 10 Specific flows during recession on the Boise River correspond to the 

day of allocation. The R2 is 0.96. The trendline is the blue line, and the black lines 

are confidence intervals of 95%. 
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Figure 11 Specific flows during recession on the Payette River correspond to the 

day of allocation. The R2 is 0.99. The trendline is the blue line, and the black lines are 

confidence intervals of 95%. 
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Figure 12 Specific flows during recession on the Upper Snake River correspond 

to the day of allocation. The R2 is 0.90. The trendline is the blue line, and the black 

lines are confidence intervals of 95%. 
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Figure 13 Model 1 for the Boise River Basin is used to generate predictions for 

past years. The blue circles represent predictions, and the red circles represent the 

actual DOA. The average deviation from actual DOA for Model 1 is 8.67 days. 
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Figure 14 The absolute value of the models’ predictions and the actual DOA for 

the respective years are determined for the Boise River Basin models. With an 

increase in information, the differences between the actual and predicted DOA 

decrease. However, further verification is needed since the data used was used to build 

the models. 



64 

 

 

 
Figure 15 RMSE bootstrap verification for the 4 models on the Boise River. 

Models 1 and 3 perform the best, but the data for Model 3 is not ready until after the 

month of May, when day of allocations begin to occur in the period of record. 
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Figure 16 RMSE bootstrap verification for the 4 models on the Payette River. 

Model 1 shows the least amount of spread of distribution of RMSE. The distribution 

of error in Model 1 is the smallest, even though the other 3 models use more 

information based on how the snowpack melts. 
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Figure 17 RMSE bootstrap verification for the 4 models on the Snake River. The 

distribution of Model 1 is the tightest, with more smaller error values. The 

distribution gets more error with the additional data of Models 2, 3, and 4. 
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Figure 18 Maximum SWE at Atlanta Summit and day of allocation in a given 

year with water shortages represented in blue and surplus in green. Not only can 

maximum SWE values help determine when the day of allocation will be, but they 

can also help determine if there will be a water shortage. 
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Figure 19 Box and whisker plots for the first 10 and last 10 years of day of 

allocation data for the three basins. The Boise River Basin shows no trend of earlier 

or later day of allocation. However, both the Payette and Snake River basins show 

trends moving toward an earlier day of allocation. ‘1’ on the x-axis refers to the first 

10 years of data, and ‘2’ on the x-axis refers to the last 10 years of data. 
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Correlations of SWE Parameters to Day of Allocation 
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Statistics for Final Models 

 

Table A.14 Constants for Model 1 of the Boise River 

Boise 1 Atlanta Graham Jackson Mores Trinity Vienna 

Max 

SWE 

.32 .70 .94 -.57 -.1 .70 

 

Table A.15 Constants for Model 2 of the Boise River 

Boise 2 Atlanta Graham Jackson Mores Trinity Vienna 

Max 

SWE 

.08 1.4 1.9 -1.4 -.11 .13 

April 

Melt 

43.5 12.8 -101.5 N/A N/A N/A 
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Table A.16 Constants for Model 3 of the Boise River 

Boise 3 Atlanta Graham Jackson Mores Trinity Vienna 

Max 

SWE 

.14 1.4 .09 -.43 1.1 -1.2 

April 

Melt 

10.3 3.4 -63.5 N/A N/A N/A 

May Melt 14.8 -6.9 -29.6 9.1 -10.7 -29.6 
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Table A.17 Constants for Model 4 of the Boise River 

Boise 4 Atlanta Graham Jackson Mores Trinity Vienna 

Max 

SWE 

-.3 1.1 -.1 -.2 1.0 -1.1 

April 

Melt 

29.3 -9.1 17.6 N/A N/A N/A 

May Melt 19.8 -12.7 43.5 27.1 -50.6 -15.7 

June Melt 10.7 N/A 66.8 7.1 -65.1 45.1 

 



80 

 

 

Table A.18 Constants for Model 1 of the Payette River 

Payette 1 Banner Big Creek Deadwood Jackson 

Max SWE -.55 .99 .98 -.70 
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Table A.19 Constants for Model 2 of the Payette River 

Payette 2 Banner Big Creek Deadwood Jackson 

Max SWE -.44 .78 .94 -.83 

April Melt -24.4 -32.0 4.9 28.4 
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Table A.20 Constants for Model 3 of the Payette River 

Payette 3 Banner Big Creek Deadwood Jackson 

Max SWE -.24 .65 .08 .01 

April Melt 43.7 12.1 -51.3 -42.1 

May Melt 11.3 38.0 -58.8 -33.8 
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Table A.21 Constants for Model 4 of the Payette River 

Payette 4 Banner Big Creek Deadwood Jackson 

Max SWE -.3 1.2 -.2 .1 

April Melt 100.0 -71.6 -160.0 72.0 

May Melt 66.3 -46.7 -33.5 -38.7 

June Melt 73.0 -115.1 27.4 7.3 
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Table A.22 Constants for Model 1 of the Snake River 

Snake 1 Black Bear Grassy Lake 2 Ocean 

Pl. 

Phillips Lewis 

Max SWE -.33 1.6 2.1 1.0 -2.0 
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Table A.23 Constants for Model 2 of the Snake River 

Snake 2 Black Bear Grassy Lake 2 Ocean 

Pl. 

Phillips Lewis 

Max SWE -.73 3.0 .31 1.20 -1.7 

April Melt 4.7 -74 -77 -10 135 
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Table A.24 Constants for Model 3 of the Snake River 

Snake 3 Black Bear Grassy Lake 2 Ocean 

Pl. 

Phillips Lewis 

Max SWE -.59 2.02 .69 .47 -1.2 

April Melt -2.2 -28.1 -58.3 -9.5 74.0 

May Melt -49.7 5.7 -6.5 .44 8.7 
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Table A.25 Constants for Model 4 of the Snake River 

Snake 4 Black Bear Grassy Lake 2 Ocean 

Pl. 

Phillips Lewis 

Max SWE -.57 2.5 -.7 -.2 -.8 

April Melt 65.4 -8.0 -18.1 -9.4 -61.5 

May Melt -36.9 40.4 .001 -2.7 -60.3 

June Melt N/A -16.1 12.9 -28.8 4.4 

 

 


