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ABSTRACT 

Shape memory alloys are a class of functional material which recover from large 

strains without permanent deformation. The strain is accommodated by the displacement 

of twin boundaries in the martensite phase. The shape memory alloy Ni-Mn-Ga is also 

ferromagnetic. Ni-Mn-Ga preferentially magnetizes along a certain crystallographic axis. 

This direction of easy magnetization changes across twin boundaries, such that the 

directions in neighboring twin domains are nearly perpendicular. 

The interaction of magnetic moments and interfaces including the crystal surface 

and twin boundary interfaces has a large role in the magnetization process of the material. 

The goal of this study is to characterize the relative influence of twin boundaries on the 

magnetization of the material, and the dependence of the magnetization on the twin 

domain microstructure. 

The torque on a single crystal specimen in a homogeneous external magnetic field 

was characterized with experimental methods. The torque is the negative first derivative 

of the magnetic energy as a function of angle between the specimen and magnetic field. 

The torque and magnetic energy strongly depends on the twin domain microstructure. For 

specimen with two twin boundaries at 3% strain in an external magnetic field of 50 mT, 

one twin microstructure required 1.7 times more torque to rotate than another twin 

microstructure. At fields above 100 mT, the torque was asymmetric depending on the 

direction the direction the sample was rotated. 
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Numerical micromagnetic simulations were performed to gain a qualitative 

understanding of the difference in magnetization and magnetic energy in different twin 

microstructures. At low fields, the continuity of magnetization across the twin boundary 

results in one twin microstructure having completely saturated twin domains, while the 

other microstructures contained 180° magnetic domains. At larger fields, the asymmetry 

in torque was due to the angle of the twin boundary with the crystal surface.  

Both the dependence on magnetization and torque asymmetry are due to the 

internal magnetic field at the twin boundary. The interaction of magnetic moments across 

the twin boundary drives the internal magnetic field and magnetization. The twin domain 

microstructure can be manipulated to drive the magnetization process in order to optimize 

the performance of the material in a device. The role of the internal magnetic field and 

specimen magnetization is discussed regarding a low power strain sensing measurement 

technique. 
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CHAPTER ONE: INTRODUCTION 

Magnetic energy is the driving force for twin boundary motion in magnetic shape 

memory alloys. The internal magnetic field due to material and twin boundary interfaces 

is, generally, vastly oversimplified or ignored in the analysis of magnetic energy. This 

research aims to characterize the influence of the internal magnetic field. The goal of this 

research is to investigate the influence of the internal magnetic field on the magnetic 

energy and magnetization of a single crystal of the magnetic shape memory alloy Ni-Mn-

Ga. The study characterizes the dependence of the magnetization and internal magnetic 

field on twin domain microstructure using experimental techniques and numerical 

simulations. 

Shape memory alloys (SMAs) are a class of functional materials which have large 

reversible strains. Thermally activated SMAs such as NiTi strain by deformation in the 

martensite phase. Recovery occurs by heating the martensite through the transformation 

temperature to the austenite phase. In the austenite phase, the material returns to its 

original shape it had prior to deformation. 

Chernenko et al. thought that, in ferromagnetic martensites, the thermoelastic 

strains of SMAs could be replicated with the application of a magnetic field [1]. In 1996, 

Ullakko et al. reported a magnetic field induced strain (MFIS) of 0.2% in a single crystal 

of off-stoichiometric Ni-Mn-Ga [2]. Murray et al. reported an increased MFIS of 6% in 

2000 [3], and MFIS was increased to 9.6% in 2002 by tuning the composition and 
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microstructural training [4,5]. Through the addition of a small fraction of cobalt and 

copper, Sozinov et al. reported MFIS of 12% in 2013 [6]. 

Actuation in magnetic shape memory alloys is not limited by kinetics of heat 

transfer as in thermally activated SMAs [7]; MFIS can occur at kHz frequencies [8-10]. 

The recoverable strain is two orders of magnitude larger than the largest strain of 

magnetostrictive materials, such as Terfenol-D, which strain at up to 0.24% [11]and 

piezoelectric materials which strain at 0.1% [12]. Fast actuation and large stroke alloy 

MSMAs the potential for application in actuators [2,4,13], sensors [14-16], and energy 

harvesting devices [15-17]. 

The martensite phase of MSMAs has an anisotropic crystallographic lattice with a 

magnetic moment tied strongly to one crystallographic direction termed the axis of easy 

magnetization. This crystallographic direction changes across twin boundaries. A 

magnetic field or mechanical stress energetically favors a certain twin domain. Twin 

boundaries move to increase the volume fraction of this twin domain. 

The magnetic and mechanical properties of Ni-Mn-Ga shape memory alloys are 

highly sensitive to twin microstructure. Single crystals of Ni-Mn-Ga with densely 

twinned microstructure achieve a long fatigue life but at limited stroke, while samples 

with coarsely twinned microstructures achieve near maximum stroke but have a short 

lifetime [18-21]. The twin microstructure also affects the twinning stress [22] as well as 

the critical field required to induce MFIS [23]. 

The magneto-mechanical response also depends on the specimen shape. Specimen 

with a large length to width ratio tend to bend when an external magnetic field is applied 

perpendicular to the sample length [24-26]. Bending was first reported in 2001 on a thin 
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film in an inhomogeneous magnetic field [26]. Zheng et al. reported bending in an 

oligocrystalline wire sample in a homogeneous field, and attributed the bending to 

magnetic field induced torque [25]. Kucza  et al. demonstrated the increase in bending 

strain with increasing length to width ratio in a single crystal [24]. The authors 

qualitatively explained the torque induced bending with the interplay between the 

magnetic energies which occur in a ferromagnetic material in a magnetic field. 

Just as the mechanical properties depend on the complex twin domain 

microstructure, the magneto-mechanics depend additionally on the complex magnetic 

microstructure. Magnetic energies have been used to describe the driving force for MFIS 

[4,27-29] and the magneto-mechanical response of Ni-Mn-Ga in a magnetic field and 

under mechanical stress [30-32]. The critical field required to induce twin boundary 

motion depends on the relative magnetic energies of neighboring twin domains. 

Analogously, the electromagnetic energy harvested depends on the change in magnetic 

energy as the twin boundaries move. 

Magnetic energy calculations are based on physical models representing the 

structure of twin boundaries and magnetic domains. The magnetic energies used in the 

analytical calculations vary; some only include Zeeman and magnetocrystalline 

anisotropy [4,28,33]  while others include these as well as the stray field energy 

[23,34,35] or exchange energy [36,37] but not both. The complexity of the magnetic 

structure in the physical models varies as well, some take into account magnetization 

rotation [4,38] and some include magnetic domains [38,39]. Models which include 

magnetic domains force domain wall continuity across a twin boundary [34,38,39]. This  

minimizes the divergence in magnetization and internal field (Section 2.1.4) at the twin 
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boundary, but the domain structure in real specimen may deviate from such a 

configuration when exposed to a magnetic field [40]. 

The interaction of magnetization, twin boundaries, and the specimen shape 

determine the behavior in a magnetic field. A detailed understanding of the magnetic 

energy is required in order to quantitatively predict magneto-mechanical properties. The 

magnetic energy is not adequately described by assuming homogeneous magnetization in 

twin domains, or continuous magnetic domain walls. A bending specimen presents a 

complex system with multiple twin boundaries which are not necessarily parallel. The 

angle between the axis of easy magnetization and magnetic field varies across the length 

of the sample. An understanding of the interaction between magnetic and twin domain 

structures would benefit analysis and design. 

This study aims to qualitatively describe the interaction of magnetic and twin 

domain structure and the effect on magnetic energy using both experimental methods and 

numerical micromagnetic simulations. This study investigates this interaction and the role 

of each type of magnetic energy as it relates to the torque in systematic experiments with 

a single crystal with defined twin boundary microstructures. The study shows that 

different twin domain microstructures magnetize differently. In a sample with two twin 

boundaries, equivalent strain and magnetic field, simulations showed that one 

microsctructure had fully saturated twin domains while the other contained 180° 

magnetic domains. I argue that designers should target a specific twin microstructure to 

optimize the performance of the material in a device. The twin domain microstructure is 

never accounted for in device design, but represents an important and easily manipulated 
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variable. Based on the results of these studies we interpret experiments in a setting 

relevant to sensing applications. 

As a result of this research, I will publish three first author papers and two papers 

on which I am a co-author. These results have been presented in a poster at the annual 

spring meeting of The Minerals, Metals and Materials Society in February 2017 and in a 

talk at the International Conference on Martensitic Transformations in July 2017. 
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CHAPTER TWO: BACKGROUND 

2.1 Magnetism 

Magnetic fields are created by moving charges. In the Bohr model of an atom, 

electrons orbit around the nucleus. The moving electrons create a magnetic field, which is 

quantified by their angular momentum and has a direction based on the sign of the 

electron spin. The local magnetic field is viewed as a magnetic moment with a magnitude 

described in terms of Bohr magnetons, which is the magnitude of the magnetic moment 

of a hydrogen atom. 

There exist four main classes of materials with respect to the spontaneous 

alignment of magnetic moments. Paramagnetic materials have a random alignment of 

magnetic moments and magnetize weakly in an external magnetic field. Diamagnetic 

materials have no magnetic moment. Here, a magnetic field evokes a magnetic field 

antiparallel to an external magnetic field due to eddy currents. Ferromagnetic materials 

have magnetic moments aligned mutually parallel, a result of an exchange interaction. 

Antiferromagnetic materials have neighboring magnetic moments which align 

antiparallel. An illustration of the spontaneous alignment of magnetic moments in 

paramagnetic, ferromagnetic and anti-ferromagnetic materials is given in Figure 2.1. 
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Figure 2.1 Spontaneous alignment of magnetic moments in paramagnetic, 

ferromagnetic, and anti-ferromagnetic materials. 

2.1.1 Exchange energy  

The exchange interaction is a quantum mechanical interaction which includes 

both the normal Coulomb interaction as well as the Pauli exclusion principle. The 

exchange interaction is described with the exchange integral, which gives information 

about the relative proximity of electrons to each other. The Hamiltonian operator for the 

exchange interaction in a two-electron system is given in Equation 1. 

𝐻̂𝑒𝑥 = −2𝐽𝑒𝑥𝑆̂1𝑆̂2 (2.1) 

Jex is the exchange integral; 𝑆̂1 and 𝑆̂2 are the spin operators for electrons 1 and 2. 

The spin can be positive or negative. Depending on the sign of the exchange integral, 

energy is minimized for either same or opposite spins. If the exchange integral is positive, 

energy is minimized for parallel spins. If the spins of neighboring electrons are parallel, 

the material is ferromagnetic. At some temperature, called the Curie temperature (TC), 

the energy is minimized by increasing the entropy of the system. The Curie temperature 

describes the transition from ordered magnetic moments to disordered magnetic 

moments, or the material transition to paramagnetism. 

In ferromagnetic materials, the exchange energy has a minimum when the 

moments align parallel. The exchange energy depends on the relative orientation between 

neighboring magnetic moments. The exchange energy in ferromagnetic materials is 

typically represented as an energy penalty when moments are not parallel. The exchange 



8 

 

 

energy, Eex, is given by an energy constant, Cex, calculated from the exchange integral 

(derived from quantum mechanics) multiplied by the square of the gradient of 

magnetization M integrated over the entire sample volume (V): 

𝐸𝑒𝑥 = 𝐶𝑒𝑥 ∫ |∇𝐌|2
𝑉

𝑑𝑉 (2.2) 

If moments are parallel, the gradient is zero and the exchange energy is minimal. 

If the gradient is non-zero, the deviation from parallel alignment increases the energy. 

The energy is minimized for parallel alignment and maximized for anti-parallel 

alignment. Equation (2.2) is computed over the entire sample volume to find the total 

exchange energy.  

The exchange energy works to keep magnetic moments aligned in parallel. This is 

sometimes referred to as exchange “stiffness”. Equation 2.2 is analogous to the energy of 

a spring, which is proportional to the square of the absolute deformation of the spring and 

the spring constant. The exchange energy constant Cex corresponds to the spring constant. 

A larger exchange energy constant means a “stiffer” spring, or stronger interaction 

between neighboring magnetic moments. 

Spin waves describe the time-dependent fluctuation in the direction of 

neighboring magnetic moments. Magnon is the term for a quantized spin wave. Magnons 

are analogous to phonons. Phonons are waves which describe fluctuation in the distance 

between atoms, magnons describe fluctuation in the orientation of magnetic moments. 

The probability distribution of magnons can be measured with neutron diffraction [41], 

from which a spin wave stiffness is derived. The spin wave stiffness can be used to 

calculate, experimentally, the exchange constant with Equation (2.3). 

𝐶𝑒𝑥 =
𝑊𝑆𝑁

2𝑉
 (2.3) 
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W is the spin wave stiffness, S is the magnitude of magnetic moments in Bohr 

magnetons, N is the number of magnetic moments per unit cell, and V is the volume of 

the unit cell.  

2.1.2 Magnetocrystalline anisotropy energy 

The crystallographic lattice of the material causes magnetic anisotropy. The 

magnetocrystalline anisotropy refers to the preference of alignment of magnetic moments 

in different crystallographic directions. The energy required to rotate the magnetic 

moment perpendicular to the axis of easy magnetization (AEM) is the magnetocrystalline 

anisotropy energy. When the magnetic moment lies in the AEM the energy is minimal. 

As the moment rotates away from the AEM the energy increases to a maximum 

perpendicular to the AEM.  

Uniaxial symmetry is the simplest case where a material has only one AEM. The 

energy has even symmetry and can be expressed as an expansion with the form 𝐸𝑎𝑛𝑖𝑠 =

𝐾0 + 𝐾1sin2𝜑 + 𝐾2sin4𝜑 + 𝐾3sin6𝜑. Typically, only K1 and K2 are needed to 

adequately describe the energy. The angle  is the angle between the magnetic moment 

and the axis of easy magnetization. In the case of cubic anisotropy each of the three 

principal directions, <100>, <110>, and <111> are AEMs with different anisotropy 

energy constants. 

The 10M modulated martensite phase of Ni-Mn-Ga has a nearly tetragonal lattice, 

and uniaxial magnetocrystalling anisotropy; the martensitic phase has one axis of easy 

magnetization coinciding with the crystallographic c-axis of the tetragonal lattice. The 

magnetocrystalline anisotropy energy constant (Ku) has been measured [42,43]; for 
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calculations, we use a value of 2.45 x 105 J/m3 [43]. The magnetocrystalline anisotropy 

energy is calculated as 

𝐸𝑎𝑛𝑖𝑠 = ∫ 𝐾𝑢sin2𝜑
𝑉

𝑑𝑉  (2.4) 

2.1.3 Zeeman (external field) energy 

In an external magnetic field, the minimum energy occurs when a magnetic 

moment is parallel to the external field. The Zeeman energy gives the energy of a 

magnetic moment in an external field 

𝐸𝑧 =  −𝜇0𝐌 ∙ 𝐇ext (2.5) 

M is the net magnetization of a specimen, 0 is the magnetic permeability of free 

space, and Hext is the external field. The Zeeman energy is often called external field 

energy. The dot product in Equation (2.5) is maximal when M∥Hext. Magnetic moments 

rotate to align in parallel to the magnetic field in order to minimize the Zeeman energy.  

2.1.4 Stray field (internal field) energy 

If moments align such that a specimen has a net magnetization, the specimen 

creates a magnetic field. The magnetic field can be visualized with filings as 

demonstrated in the experiments of Bitter [44]. The net magnetization also creates a 

magnetic field internal to the specimen, in the opposite direction of the net magnetization. 

The stray field energy associated with magnetic moments of a magnetized specimen in its 

own internal field is positive (Equation 2.6). 

𝐸s =
𝜇0

2
∫ |∇𝑈|2

𝑉
𝑑𝑉 (2.6) 

The stray field energy Es is the square of the gradient of the magnetic potential, U. 

The energy due to the internal field is analogous to the energy of an electric dipole in an 

electric field. The method for calculating this energy is to find the internal field, then 
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apply Equation (4.5) using Hint instead of Hext. Poisson’s equation in electrostatics relates 

the potential field with an electric charge density. Magnetostatics is an analogous 

situation where the magnetic potential U is related to an effective magnetic charge 

density 𝜌 by the Poisson relation given in Equation 4.7. 

 ∇2𝑈 = 𝜌  (2.7) 

The charge density 𝜌 is either a surface charge density due to a normal component 

of the magnetization at the surface or a volume charge density due to a divergence of 

magnetization in the bulk of the specimen. 

 Given the Maxwell relations 

𝐁 =  𝜇0(𝐌 + 𝐇)  (2.8) 

and 

∇ ∙ 𝐁 = 0  (2.9)  

then 

 ∇ ∙ 𝐇 = −∇ ∙ 𝐌 = −𝜌 (2.10) 

H is sum of the external and internal magnetic fields. The internal magnetic field 

is calculated by 

𝐇𝐢𝐧𝐭 = −∇𝑈  (2.11) 

where Hint is the internal field. This calculation is true because ∇  ×  𝐇𝐢𝐧𝐭 = 0. 

Hint results from a divergence of magnetization in the bulk of the crystal, or from a 

component of the magnetization normal to the crystal surface. 

Often, the internal field is described in terms of a demagnetizing field, which has 

a magnitude NdM, where M is the average magnetization and Nd is a geometry-dependent 

factor for each Cartesian coordinate such that  
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𝑁𝑥 + 𝑁𝑦 + 𝑁𝑧 = 1 (2.12) 

The factor Nd is largest for the direction normal to the specimen face with the 

largest area. This approach assumes a homogeneous magnetization. It captures the 

interaction of magnetization normal to the surface but ignores magnetization divergence 

in the bulk and magnetic domains.  

2.2 Micromagnetism 

2.2.1 Background 

Micromagnetism refers to the study of magnetism between the 1 nm and 1 m 

length scales. Below 1 nm, quantum mechanics solves for the fundamental magnetic 

properties of a material (exchange energy, Curie temperature) using interactions of 

electrons in overlapping wavefunctions of neighboring atoms. Above the length scale of 

micromagnetism, domain theory describes the structure and configuration of domains 

assuming homogeneous saturation of each domain. For most practical situations, it is 

impossible to find a closed form analytical expression for the magnetization of a material. 

Computational methods are carried out such that the continuum conditions of Maxwell’s 

equations are preserved across interfaces, or energy calculations are done over a vector 

matrix of magnetic moments. 

In micromagnetism, we assign a net magnetization vector to each mesoscopic 

volume element. We use relevant energy terms of mesoscopic magnetic vectors to find 

the free energy related to magnetization in a material. Micromagnetic principles are 

applied to ferromagnetic materials to find the internal magnetic structure of domains and 

domain walls. Energy minimization schemes are combined with dynamic magnetization 

behavior described with the Landau-Lifshitz-Gilbert equation to minimize the total free 
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energy. This gives the equilibrium structure of mesoscopic magnetic vectors in a 

specimen. 

In 1907 Weiss suggested the theory of domains we know today, where sections of 

material are homogeneously magnetized [45]. Weiss postulated neighboring magnetic 

moments were held in parallel by the "Weiss field". The origin of this field was explained 

by quantum mechanics with the exchange energy in 1926 [46,47]. 

In the 1930s, Sixtus demonstrated experimentally the nucleation of magnetic 

domains in nickel wires [48] and Bitter showed the geometry of magnetic structures on 

the surface of bulk cobalt [44]. Bitter mixed ferrite oxide powder into a colloidal 

suspension and poured the solution over the surface of cobalt. The stray field from 

neighboring magnetic domains forced the magnetic particles to form patterns displaying 

the domain structure (Figure 2.2). 

 
Figure 2.2 Ferrite oxide powder shows 180° magnetic domains through the 

interaction of the stray field with particles [44] 

2.2.2 Towards a mathematical description of micromagnetism 

In 1935, Landau and Lifshitz published the seminal paper laying the foundation 

for micromagnetic energy calculations [49]. The paper attempted to describe the 
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difference in magnetic permeability depending on the relative orientation of the external 

magnetic field and domain walls. The authors achieved a few milestones in the paper. 

They combined the exchange and magnetocrystalline anisotropy energies to describe the 

width and energy of a domain wall. In order to minimize the internal field energy, the 

authors constructed a domain configuration which included closure domains (Figure 2.3). 

Also, by combining the internal field energy with the domain wall energy, the authors 

derived an equilibrium size for magnetic domains. This allowed them to show the shape 

of domains is plate-like, rather than thread or needle-like as other researchers 

hypothesized [50,51]. Finally, the authors derived a time-dependent equation for 

magnetization, known as the Landau-Lifshitz equation. 

 
Figure 2.3 Landau and Lifshitz assumed a domain structure where domains 

were much larger than domain walls and closure domains preserved zero 

divergence of magnetization at the surface of the crystal [49] 

Landau and Lifshitz still failed to include the internal field energy in their 

calculations. They assumed that, by constructing an equilibrium magnetic domain 

structure, the stray field energy approached zero and could be ignored. The Stoner-

Wohlfarth model was proposed in 1948 [52]. The model assumed that all magnetic 

moments align in parallel, i.e. no closure domains exist. The model made it possible to 

analytically find an expression for the magnetization since the internal field energy can 

be calculated for a homogeneously magnetized particle. 
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The assumption of homogeneous magnetization made it possible to explicitly 

solve for the internal field energy by defining a geometry-dependent demagnetizing field. 

With an analytical expression, Stoner and Wohlfarth calculated the coercive field and the 

remanence of a magnetized particle [52] However, in 1938 Elmore experimentally 

showed the existence of domains on the surface of a particle in an external magnetic field 

thought large enough to saturate [53]. It turned out that the basic assumption of 

homogeneous magnetization is inherently false except for very small particles. The 

criteria for uniform magnetization and a closed form expression for magnetization was 

still elusive. 

Scientists create a physical model, such as the Stoner-Wohlfarth model, on which 

they base analytical expressions. The model assumes homogeneous magnetization, which 

restricts the magnetic microstructure available to the system, i.e. magnetic domains. 

Often, the assumptions of a physical model are not revisited to re-asses these restrictions 

indeed minimize the energy. This problem dates back to the seminal investigation of 

micromagnetic energy by Landau and Lifshitz [49]. The authors created a magnetic 

microstructure which included closure domains to minimize the internal field energy. 

Further calculations were done without considering this energy, although by calculating 

the time dependent magnetization the internal field energy would inherently increase. The 

Stoner-Wohlfarth model assumes a homogeneously magnetized particle, but this 

assumption is only valid in a very small range of particle sizes. 

The father of micromagnetism, William F. Brown, was critical of those 

approaches which assume a magnetic microstructure [54]. In 1957, Brown created the 

theory of nucleation fields and found a solution to the criteria for uniform magnetization 



16 

 

 

[55]. Brown analytically calculated the size range where a particle magnetizes 

homogeneously. Within short time, the few analytically accessible problems were solved. 

It was not until 1987 that computational methods were powerful enough to solve more 

complex micromagnetic problems [56]. 

2.2.3 Dynamic equation for time-dependent magnetization 

The Landau-Lifshitz equation [49] gives the time-dependent magnetization: 

𝑑𝐦

𝑑𝑡
= 𝛾0𝐦 × 𝓗 −

𝛼𝛾0

𝑀𝑠
𝐦 × (𝐦 × 𝓗) (2.13) 

The vectors m and 𝓗 are the magnetic moment and effective magnetic field, 

respectively. The constant α is the damping coefficient and 0 is the gyromagnetic ratio. 

The effective magnetic field is computed from the free energy functional (sum of all 

energy contributions) 

𝓗 =  −
𝛿𝐸

𝛿𝑀
=  

2𝐶𝑒𝑥

𝑀𝑠
2 |∇𝐌|2 −

2𝐾𝑢

𝑀𝑠
2 (𝑀2 + 𝑀3) + 𝜇0𝐇e − 𝜇0∇𝑈  (2.14) 

M2 and M3 are the components of the magnetic moment in the y and z directions, 

respectively, and Ms is the saturation magnetization. The above equations are given at a 

temperature of 0 K and for uniaxial magnetocrystalline anisotropy. For temperatures 

above absolute zero, a term representing thermal fluctuations could be added on the right 

side of Equation (2.14). This would account for thermal fluctuations in the direction of 

magnetic moments to the effective magnetic field. We assume here that the temperature 

is well below the Curie temperature such that the thermal energy does not significantly 

contribute to the orientation of magnetic moments. 

2.3 Micromagnetism of magnetic shape memory alloys 

Magnetic shape memory alloys present a unique situation for the applications of 

micromagnetics due to a combination of their magnetic properties. MSMAs such as Ni-



17 

 

 

Mn-Ga are magnetically soft with low coercivity (~5 mT) and large uniaxial 

magnetocrystalline anisotropy (K > 105 J/m3) [43]. MSMAs contain twin boundaries 

across which the AEM changes direction by approximately 90°. Thus, twin boundaries 

define 90° domain walls, which move when the material strains. 

Magnetic properties of MSMAs have been studied thoroughly. For Ni-Mn-Ga 

alloys, reported values for the magnetocrystalline anisotropy energy range from 0.9 x 105 

to 2.45 x 105 J/m3 at room temperature [57]. Heczko et al. reported the temperature 

dependence of the magnetic anisotropy of 10M Ni-Mn-Ga ranging from 1.5 x 105 J/m3 to 

2.65 x 105 J/ m3 for temperatures from 317 K to 130 K [58]. The authors found the 

anisotropy energy decreased steeply as the temperature approached the Austenite 

transformation temperature. The anisotropy energy increased as the temperature 

decreased; and additional inter-martensitic transformation occurred at 95 K. The value for 

the exchange energy has been theoretically studied [59]. Ghosh et al. showed the effect of 

Mn-Mn separation on the exchange constant. The magnetic moments switch between 

ferromagnetic and anti-ferromagnetic coupling over a small change in Mn-Mn distance. 

In fact, when excess Mn atoms occupy Ni or Ga sites, the excess Mn atoms couple anti-

ferromagnetically [60]. 

The exchange energy has also been investigated experimentally. Runov et al. 

found the exchange energy from neutron diffraction experiments [41]. The authors 

measured the distribution of magnons measured with neutron diffraction, from which 

they calculated the spin wave stiffness to be 100 meVÅ2. Lazpita et al. measured the 

magnetic ordering in off-stoichiometric Ni2MnGa [60]. They found that when increasing 

the Mn content, Mn atoms substituted on Ga or Ni sites and vacancies did not form. This 
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results in Mn atoms coupling anti-ferromagnetically which decreases the overall 

magnetization. The authors found the magnetization per formula unit for stoichiometric 

Ni2MnGa was 4.17 Bohr magnetons (B), which decreased for off-stoichiometric 

composition due to anti-ferromagnetic coupling between Mn atoms. The exchange 

energy calculated from Equation (2.3), 𝐶𝑒𝑥 =
𝑊𝑆𝑁

2𝑉
, where W is the exchange stiffness 

constant, S is the magnitude of the magnetic moment in Bohr magnetons, N is the number 

of Mn atoms per unit cell, and V is the volume of the unit cell, we find an exchange 

constant of Cex = 6 x 10-12 J/m [61]. Using the experimental values above, the width and 

energy of a 90° domain wall at a twin boundary have been calculated to be 12 nm and 

0.26 mJ/m2, respectively [36]. The large anisotropy energy and small exchange energy 

result in narrow domain walls. 

2.3.1 Analytical studies 

The first analytical studies in MSMAs investigated the magneto-mechanics in 

terms of classic magnetostriction [62]. Tickle et al. incorporated the Zeeman, anisotropy, 

stray field, and mechanical strain energy to predict the magnetostrain and domain 

structure under an external magnetic field and uniaxial compressive stress [31]. In fact, 

the ordinary magnetostriction in Ni-Mn-Ga is relatively small, approximately 5 x 10-5 

[63]. 

O’Handley analyzed a two-variant system where the discontinuous Zeeman and 

magnetocrystalline anisotropy energies across a twin boundary was the driving force for 

twin boundary motion and magnetostrain [29]. The model included an external stress 

term, and suggested that the field-induced strain increased linearly with external field in 

the absence of an external mechanical stress. In fact, MFIS occurs when a stress 
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generated by an external field overcomes a critical stress required for twin boundary 

motion. Müllner et al. compared the energy discontinuity with the work required to move 

a twinning dislocation in order to establish a value for the maximum possible stress (i.e. 

the magnetostress) from an external magnetic field [4]. The approaches of O’Handley 

[28] and Müllner et al. [4] yielded the same relation between external magnetic field and 

magnetostress. 

Chernenko et al. [64] developed a phenomenological model based on the model 

of L’vov [65] which included Zeeman, anisotropy, and magnetoelastic energies. The 

model analyzes the critical stress required to move a twin boundary as a statistical 

distribution of stress values. The results of the model and corresponding experiments 

showed the stress generated by an external magnetic field depends on the square of the 

magnetization component perpendicular to the axis of easy magnetization. 

Likhachev and Ullakko developed a model based on continuum thermodynamics, 

relating the stress with the change in magnetic energy with strain [66-68]. The authors 

compared their model results with experimental results for magnetization and magnetic 

field induced strain and found good agreement. Continuum thermodynamic models have 

been used to describe the magneto-mechanical response [29] in actuators and energy 

harvesters [39,69-72]. 

Paul et al. account for the exchange energy [36]. Paul et al. analyzed a single twin 

boundary in order to investigate the interaction of a Gaussian stress distribution at a twin 

boundary with the 90° domain wall [36,37]. The study showed that the magnetic domain 

wall motion precedes twin boundary motion. 
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The stray field energy was largely ignored in analytical models. If included, the 

magnetization was often considered to be homogeneous [23,34,35] . As experiments 

show, the stray field energy plays a large role in the magneto-mechanics of MSMAs. 

Heczko et al. showed that the external field required to move a twin boundary changes 

with the size of twin domains [23]. Heczko et al. went further in their analysis, 

considering the magnetization of neighboring twin domains as separate and dependent. 

Previous analysis by Heczko, which disregarded shape and size of twin domains, 

predicted the critical field for Type I twin boundaries, but not Type II twin boundaries, 

which require much lower fields to propagate. Instead of calculating the internal field 

energy based on the net magnetization of the entire sample, Heczko et al. found the 

internal field energy for each twin domain separately. Additionally, the authors calculated 

the effect of the stray field from each twin domain on the magnetization of neighboring 

twin domains. Heczko et al. predicted the increase in critical field required to move Type 

II twin boundaries as the size of the unfavorable twin domain decreased. 

2.3.2 Experimental studies 

Optical microscopy 

Optical techniques utilizing Nomarski contrast or the Kerr effect with magneto-

optical foil have been used to study in-situ twin domain formation and evolution. Sullivan 

et al. created contrast between magnetic domains using a Nomarski interferometer and 

magnetic colloids to study the in-situ domain evolution in a magnetic field [73]. Sullivan 

et al. used the same contrast method to visually verify the magnetic field induced 

martensite transformation [73]. The magnetic domain walls formed before the structural 

transition completed. The twin boundaries defined the magnetic structures; domain walls 
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zig-zagged through twin domains, following the axis of easy magnetization. The 

coercivity of the material was attributed to domain walls pinned at twin boundaries.  

Magneto optical foil (MOIF) has been used to study the domain structure and 

evolution under mechanical stress [40] and an external magnetic field [74]. Lai et al. 

showed that, while the twin domain with AEM parallel to an external field saturates, i.e. 

only one magnetic domain exists, the other twin domain still contains multiple magnetic 

domains and 180° domain walls (Figure 2.4). The lack of continuity of magnetic domain 

walls across the twin boundary causes magnetic moments aligning “head-to-head” or 

“tail-to-tail”, which results in a divergence of magnetization, which are associated with a 

large internal field energy due to a divergence of magnetization. 

 
Figure 2.4 Domain walls move in twin variants with AEM parallel to the 

magnetic field. Domain walls do not move in the variant with the AEM 

perpendicular to the magnetic field. The continuity of domain walls across the twin 

boundary is broken, which results in large stray field and internal field energy 

(volume magnetic charges due to magnetization divergence in the bulk) [74] 

An analogous study was done with MOIF and a mechanical stress [40]. Magnetic 

domain walls maintained continuity across a twin boundary. As the twin boundary moved 

under mechanical stress, the magnetic domain walls curved to maintain continuity across 
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the twin boundary (Figure 2.5). The curved domain wall resulted in a large stray field; the 

domains split into smaller domains to decrease the stray field energy. 

 
Figure 2.5 MOIF shows contrast between magnetic domains before 

mechanically-induced twin boundary motion (a,d) and after. Magnetic domain walls 

bend (b, e) to preserve continuity across the twin boundary when the twin boundary 

moves under mechanical stress. This also leads to magnetization divergence and a 

large stray field. To minimize the internal field energy, magnetic domains split into 

finer domains (c, f) [40,75] 

Magnetic force microscopy 

Magnetic force microscopy (MFM) is a scanning probe microscopy technique in 

which a magnetic tip moves at a constant height above the sample surface and reacts to 

the magnetic stray field of the sample. The technique is especially useful for 

characterizing thin films [61,76,77], but has also been used to characterize bulk 

micromagnetism [78,79]. 

Diestel et al. examined the twin and magnetic domain structure of a Ni-Mn-Ga 

thin film grown on an MgO substrate using MFM [61]. The authors applied 

micromagnetic analysis to derive the energy density of the film. They predicted the 

equilibrium spacing of magnetic domain walls to be proportional to the square root of the 
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film thickness, which correlated well with experimental findings (Figure 2.6). The 

equilibrium magnetic structure, with AEM both normal to and in the plane of the film, 

differed from a film grown on a Si substrate [77]. Golub et al. found a (220) texture and 

AEM at a 45° angle to film normal. The axis of easy magnetization found in a film grown 

on a Mo substrate [76] also occurred normal to and in the plane of the film.  

 
Figure 2.6 (a) Topography of the thin film from AFM and (b) magnetic domains 

from MFM are shown along with the proposed structure of twin and magnetic 

domains (c). The authors calculated for the equilibrium magnetic domain width as a 

function of film thickness; the results agreed with experimental data (d) [61]. 

Jakob et al. investigated the change in micromagnetic structure across the 

martensite transformation and Curie temperature in a thin film grown on an MgO 

substrate [78]. The authors noticed an abrupt decrease in the magnetic domain thickness 

when heating into the austenite phase. Within the austenite phase, further heating resulted 

in straightening of domain walls before reaching the Curie temperature. There was a 

hysteresis between the heating and cooling cycles in the temperature at which these 

transitions in domain patterns occurred. 

MFM has also been used to perform in-situ experiments in bulk samples. Pan and 

James investigated the magnetic domain structure as the specimen was cooled across the 

phase transition under an applied field[79]. Under no field, the specimen formed a fine 

twin structure with little surface relief when cooled into the martensite phase. In an 

external field greater than 2kOe, a completely different twin structure formed when 
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cooling, which did have surface relief and a “fir” type domain structure at twin boundary 

interfaces. 

Transmission electron microscopy 

Transmission electron microscopy has been used to study magnetic domains in 

Ni-Mn-Ga [80] including domains pinned at an anti-phase boundary in an external 

magnetic field [81] and through the martensite phase transformation [82]. Budruk et al. 

examine the structure of domains looking edge-on to the AEM [81]. The domains formed 

a maze-like structure without an external magnetic field. Under an external field, the 

domain walls lined up parallel to the field (Figure 7). Domain walls aligning parallel to 

the field decreased the Zeeman energy since the moments in the domain wall had a 

component parallel to the field. 

 
Figure 2.7 Transmission electron microscopy images of 180° domain walls 

viewed parallel to the AEM under external magnetic fields of -103 Oe (a), -201 Oe 

(b), and -480 Oe (c) [81] 

Budruk et al. also investigated domain wall pinning at twin boundaries and an 

anti-phase boundary (APB). At an external field of 300 Oe, 90° domain walls remained 

pinned at twin boundaries; above this field the domain wall started to disappear. This 

correlates with the findings of Paul et al., who predicted the domain wall motion would 

precede twin boundary motion. Budruk et al. showed a domain wall pinned at an APB 

was somewhat mobile at a field of 250 Oe.  
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2.3.3 Numerical Modeling 

Numerical micromagnetic modeling in Ni-Mn-Ga can, in general, be broken 

down into two groups: finite element modeling and phase-field modeling, which uses a 

finite-difference method for calculations. The finite element method solves for boundary 

conditions of magnetism laid out by Maxwell’s equations, and then solves for the 

continuum equations over a matrix of points, which are meshed together. Phase field 

modeling substitutes a boundary condition at an interface with a partial differential 

equation, creating a smooth change between discrete property values in each neighboring 

phase. The result is a phase field equation, which is used as an order parameter.  

Typically, numerical simulations were run over a sample size much smaller than 

those used in experiments in order to keep simulation time of dynamic changes to a 

reasonable duration. The difficulty of accurately describing experimental results with 

such a small simulated area has been noted [83], as well as the difficulty in coupling the 

dynamic changes of magnetic and mechanical microstructure [84]. Nevertheless, 

numerical simulations calculated energies using robust mathematical descriptions of 

magnetic energies, which are too complex for analytical methods. Numerical simulations 

provide insight into magnetic structure and resulting energies, which determine magneto-

mechanical properties. 

Numerical methods have been applied to investigate the coupling of magnetic and 

structural transition across the Austenite-martensite phase transition as well as the 

magnetic transition across the Curie temperature [85]. Jakob et al. simulated the changes 

in magnetic domain structure across the phase transition, which exhibited a sharp 

decrease in magnetic domain width in the austenite phase. Conti et al. simulated shape-
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memory polymer composites to investigate the influence of particle orientation and 

mechanical properties of the polymer on composite behavior [86]. The authors assumed 

the particles contained a single twin domain, and included the external field, internal 

field, anisotropy, and exchange energies. This is in stark contrast with numerical 

methods, none of which accounted for all four of these energy terms in calculations. 

Conti et al. concluded the particle shape and orientation, along with elasticity of the 

polymer play the most important roles in bulk properties. Conti et al. further developed 

the model to include inhomogeneous particles, i.e. polycrystals [87]. 

Although numerical methods greatly improved the ability to account for different 

energies, Conti et al. and Daniel et al. [85] simplified the model by assuming a 

homogeneous magnetization inside a twin domain, i.e. they disregarded 180° magnetic 

domains. A difficult task is incorporating the inhomogeneity of magnetization in a twin 

domain and across twin boundaries. Landis et al. showed that, if a model rigidly couples 

martensite strain to the magnetization, unrealistically small and high energy domain walls 

formed [88].  Luskin et al. created a model with finite-element methods which applied a 

strain gradient model to the material as well as a piecewise function to the discontinuity 

at the twin boundary [89]. It has been shown that, for certain limiting conditions, the free 

strain is effectively described using a strain gradient model [88]. Luskin et al. found that, 

for the approach including the discontinuity at the twin boundary, the error in energy 

minimization decreased as the mesh size decreased. Smaller mesh size means longer 

computation time. 

Phase field simulations use equations to solve for order parameters which 

describe a property in each phase. Continuous equations smooth transition in the values 
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of order parameters between phases (in this case, martensite variants).  Phase field 

models for magnetic shape memory alloys use two order parameters to describe the 

magnetization, those being the two angles necessary to describe the orientation of the 

magnetic vector in polar coordinates. Order parameters are also defined to describe the 

strain and twin domain evolution. Jin has used phase field simulations which include the 

exchange, anisotropy, internal field, external field, chemical, gradient, internal elastic and 

external elastic energies [90-93]. Jin changed model parameters in order to investigate the 

influence of twin boundary mobility [91] elastic interactions [93] and magnetostatic 

interactions [92] on the evolution of magnetic and twin domains structure. When the 

magnitude of the external field increased, the energetically unfavorable twin domain 

became more heterogeneously magnetized, resulting in larger internal fields. The twin 

boundary mobility influenced the evolution of magnetic domains in twin domains [92]. 

At high mobility, magnetic domain walls receded from the twin boundary as the 

energetically favored magnetic domain grew. Simulations took less time and strain 

increased, as well [91]. Small elastic strain energy at the twin boundary resulted in twin 

boundaries in the model bending away from {101) planes of martensite, which is not seen 

in experiments [93]. Zhang et al. applied phase field methods to investigate the stability 

of martensite and magnetic domain structure of a sample in an external field and under 

mechanical stress [94]. The model accounted for multiple twin domains and magnetic 

domains within twin boundaries. The energy minimization done by Zhang et al. resulted 

in uniformly magnetized twin domains with a fine twin structure. 

Khan et al. created a model which contained regions of material with different 

magnetic properties in order to model the change in axis of easy magnetization across a 
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twin boundary [95]. The authors applied the boundary condition from Poisson’s and 

Maxwell’s equations in a finite element scheme in order to show the effect of twin 

boundaries on the flux density through the material. Magnetic flux decreased as it passed 

through twin boundaries, which was due to the internal field created at the twin boundary 

interface. 

The results of Khan et al. depicted the influence of the twin domains on the 

internal field, much like the experimental results of Lai et al. [40] and Heczko et al. [75]. 

Heczko et al. [23] specifically showed the influence of the internal field on the critical 

field for twin boundary motion. As the strain decreased, the geometry of the twin 

domains changed such that the demagnetizing factor increased. The demagnetization 

factor increased the internal magnetic field, which increased the critical external magnetic 

field required to move the twin boundary by approximately 50% [23]. Haldar et al. 

iteratively calculated magnetization to correct for demagnetization [96]. The authors 

showed critical field increases due to demagnetization effects, and the critical magnetic 

field increased as the sample dimension parallel to the external field decreased. The 

authors also investigated the Maxwell stress in the specimen. The internal field resulted 

in varying magnetization across the sample, which gave rise to inhomogeneous Maxwell 

stress. Peng showed a similar effect with phase-field simulations [97]. As the width of a 

specimen decreased by two orders of magnitude the critical field increased by a factor of 

two and the field required to saturate the material increased by a factor of four[98].  

2.4 Heusler alloys 

In 1903, Friedrich Heusler discovered ferromagnetism in Cu2MnAl, despite none 

of the constituent elements are themselves ferromagnetic. Today, Heusler alloys are 
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defined as ferromagnetic materials which exhibit the L21-ordered face centered cubic 

phase. The L21 structure (space group 𝐹𝑚3̅𝑚) has a composition X2YZ where X and Y 

are typically transition metals. The Y component may be a rare-earth metal and the Z 

component is generally a non-metal or non-magnetic. 

In the Austenite phase below the Curie temperature, the ferromagnetic shape 

memory alloy with stoichiometric composition Ni2MnGa exhibits ferromagnetic behavior 

in the L21 structure. Although Ni is ferromagnetic, Mn contributes the strongest magnetic 

moment to Ni2MnGa [60]. The atomic positions of Ni, Mn, and Ga are given in Table 

2.1. Figure 2.8 shows the crystal structure for the Heusler phase of Ni2MnGa. 

Table 2.1 Crystallographic positions for Ni, Mn and Ga elements in the 

austenitic Heusler structure shown in Figure 8. 

 

 

 

 

 

 

 

 

 

 

Ni Mn Ga 

[ ¼ ¼ ¼ ] [ ½ 0 0 ] [ 0 0 0 ] 

[ ¾ ¼ ¼ ] [ 0 ½ 0 ] [ ½ ½ 0 ] 

[ ¼ ¾ ¼ ] [ 0 0 ½ ] [ ½ 0 ½ ] 

[ ¼ ¼ ¾ ] [ ½ ½ ½ ] [ 0 ½ ½ ] 

[ ¾ ¾ ¼ ]   

[ ¾ ¼ ¾ ]   

[ ¼ ¾ ¾ ]   

[ ¾ ¾ ¾ ]   
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Figure 2.8 Heusler phase of Ni-Mn-Ga. Ga atoms occupy corner and face centers 

(green), Mn atoms occupy edge sites (red), and Ni atoms (blue occupy each 

quadrant of the unit cell. 

2.4.1 Martensitic Structure 

The Martensitic transformation temperatures of Ni-Mn-Ga depend strongly on the 

composition of the alloy. Changing the atomic compositions of the elements by 5%, the 

austenite/martensite equilibrium temperature varies from 154 to 458 K [99]. Often, a 

composition is expressed in terms of the ratio of valence electrons per atom (e/a). For 

Ni2MnGa, a unit cell contains 8 Ni atoms with 10 valence electrons each, 4 Mn atoms 

with 7 valence electrons each, and 4 Ga atoms with 3 valence electrons each. Thus, for 

stoichiometric Ni2MnGa, the e/a ratio is 7.5. The ratio increases with increasing Ni 

content, or by substituting Mn for Ga. The martensite transformation and Curie 

temperatures are given as a function of e/a ratio in Figure 2.9 [100]. 
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Figure 2.9 Martensitic transformation temperature (Ms) and Curie temperature 

(TC) for the different Ni-Mn-Ga alloys as a function of electron concentration (e/a). 

Diamonds represent the Curie temperatures of all alloys. Circles refer to alloys with 

25 atomic % Mn, triangles to alloys with 21 atomic % Ga, and pluses to alloys with 

50 atomic % Ni. Uncertainty for each symbol is shown by horizontal limiting bar. 

[100] 

The most commonly reported martensite structures are the seven-layered 

monoclinic structure (14M), the five-layered monoclinic structure (10M) and the non-

modulated tetragonal structure (NM). The specimen used in all experiments had the 10M 

structure. Figure 2.10 shows room-temperature phases for alloys with different 

compositions taken from Jin et al. [101], along with solid lines indicating isotherms for 

the martensite start temperature, Ms [102].  

 
Figure 2.10 Martensite structure shown as a function of composition. Circles have 

10M strucutre, triangles are mixed 10M/14M, and squares are 14M. Solid lines 

indicate martensite transformation temperatures and the dashed line indicates 

compositions with 50 atomic % Ni. Compositions were taken from Jin et al. [101] 
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Ni-Mn-Ga magnetic shape memory alloys transform from cubic Austenite to 

martensite, at a temperature which is tuneable with composition [99]. The transformation 

may occur directly from austenite to NM martensite, from Austenite to 10M martensite, 

or sequentially from Austenite to 10M to 14M to NM [103]. The transformation also 

occurs when applying an external mechanical stress. Similar transformation sequences 

occur for the stress-induced phase transformation [104]. 

The monoclinic 10M crystal structure has a monoclinic angle of between 90.2 and 

90.5° and the lattice parameters a and b are almost equal. Because of the small deviation 

of the monoclinic angle from 90° and because of the small difference between a and b, 

the 10M crystal structure often is approximated as face-centered tetragonal; however, the 

actual crystal structure as defined by the International Union of Crystallography is 

monoclinic with space group I2/m. The monoclinicity as a function of martensite 

transformation temperature is given in Figure 2.11 [105]. 

 
Figure 2.11 Monoclinic distortion for alloys with 10M phase at 298 K as a 

function of martensitic transformation temperature. (a) Difference of parameters a 

and b and (b) deviation of the angle γ from 90° [105]. 
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2.4.2 Twinning and Deformation 

The transformation from the higher symmetry austenite phase to the lower 

symmetry martensite phase is a diffusionless transformation that occurs by shear 

distortion of the lattice [106].  The phenomenological theory of martensite 

transformations [107,108] describes a total shape change which is imposed on a volume 

element of austenite as an invariant plane strain P1:   

𝐏𝟏 = 𝐑𝐏𝟐𝐁 

where the Bain distortion B is a homogeneous distortion which transforms the austenite 

lattice to the martensite lattice. Generally, B does not have an invariant plane. P2, a lattice 

invariant shear, plastically deforms the lattice such that P2B produces an undistorted 

plane from the parent austenite. This undistorted plane must be rotated by R to become 

completely invariant after the total transformation RP2B.  

The lattice invariant shear, P2, may occur via slip or twinning [28]. Twinning is 

the operative mechanism in shape memory alloys. The martensite transformation results 

in a twinned microstructure. Twinning is described by elements K1, K2, 1, and 2, which 

are shown in Figure 11. K1 is the invariant plane, called the twinning plane. The shear 

direction or twinning direction is 1. The conjugate twinning plane K2 intersects K1 on a 

line perpendicular to the shear direction. K2 is also undistorted and makes an equal angle 

with K1 before and after the shear. The shear plane s contains 1 and the normal direction 

to K1. The direction 2 is the conjugate twinning direction and is defined by the 

intersection of K2 and s [109,110]. 
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Figure 2.12 Twinning elements: K1 is the invariant twinning plane with 1 the 

twinning direction parallel to K1., K2 is the conjugate twinning plane with 2 the 

conjugate twinning direction parallel to K2. The shear plane s contains the twinning 

directions and intersects the twinning planes. [110] 

The crystal lattice is not changed by the shear, giving the condition that either K1 

or 2 both have rational, small indices (Type I twin) or K2 and 1 both have rational, 

small indices (Type II twin) [110]. If all four elements are rational, the twin is compound. 

Type I twins are related by mirror symmetry with respect to K1. Type II twins are related 

by a rotation of  about 1. 

In the magnetic shape-memory alloy Ni-Mn-Ga, the NM phase has a tetragonal 

unit cell. All twinning elements are rational, and the NM phase has compound twins.  The 

10M phase has a monoclinic lattice, which results in several different twinning systems 

whereof two operate to produce MFIS [111]. The twinning elements for compound twins 

in the tetragonal lattice and for the Type I and II twins in the monoclinic lattice are given 

in Table 2.2 [111]. 
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Table 2.2 Twinning elements for compound twins in the tetragonal lattice and 

Type II twins in the monoclinic lattice of 10M Ni-Mn-Ga. For Type I twins, K2 and 

1 are irrational, while for Type II twins, K1 and 2 are irrational [111] 

 

Straka et al. reported an order of magnitude difference of twinning stress in a 

specimen with different twin boundary density [22]. The authors attributed the difference 

in twinning stress to the twin boundary structure. Kellis et al. measured the switching 

field (which is related to the twinning stress [64]) in single crystals polished along (100) 

faces, and showed two discrete ranges for the twinning stress [112]. The twin boundaries 

with lower twinning stress occurred at an 82-84° angle with the edge of the crystal, while 

the twin boundaries with larger stress occurred at nearly 90° angle with the edge. Sozinov 

et al. described the Type I and Type II twinning systems in a monoclinic lattice structure, 

and determined the twinning planes for Type I and Type II twin boundaries in the 10M 

phase of Ni-Mn-Ga [111]. The authors calculated the angle between the twin boundary 

and surface normal to be 4.12°. The twin boundary trace across a (100) surface of a 

specimen is 90°±4.12°. Straka et al. went further to describe the orientation of the Type II 

twin boundary across (100) type compound twins, and showed the angle of the twin 

boundary with the surface changes by approximately 12° across (100) twin boundaries 

Twinning element Tetragonal  Monoclinic Type I Monoclinic Type II 

K1 (011̅) (011̅) (0.1058̅̅ ̅̅ ̅̅ ̅̅ ̅̅  1 1̅) 

1 [011] Irrational [011] 

K2 (011) Irrational (011) 

2 [011̅] [011̅] [0.0924 1 1̅] 

s (100) (100) (1̅ 0.0462̅̅ ̅̅ ̅̅ ̅̅ ̅̅  0.0462̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 
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[113]. This results in the Type II twin boundaries zig-zagging across the surface of the 

sample. 

Type I twin boundaries, in general, require a larger critical stress to propagate 

than Type II twins [8,9,111-116]. Straka et al. measured the twinning stress for Type I 

and Type II twins in 10M Ni-Mn-Ga as a function of temperature [114]. The authors 

showed that, near the martnesite transformation temperature, Type I and Type II twin 

boundaries required the same stress to move, which was about 0.1 MPa. As the 

temperature decreased, the twinning stress for Type I twin boundaries increased linearly 

by approximately 0.04 MPa per degree K, while the twinning stress of Type II twin 

boundaries remained constant. This effect was seen in many different crystal 

compositions. Heczko et al. measured a constant twinning stress of Type II twin 

boundaries down to 1.7 K [116]. 

Type II twin boundaries also have higher mobility. Faran and Shilo optically 

measured the velocity of twin boundaries in response to different magnetic field 

magnitudes [8,9]. The authors found that, above the critical field required to move the 

twin boundary, the Type II twin boundary velocity increased more quickly with 

increasing driving force (magnetic field magnitude) compared with the Type I twin 

boundary. 
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CHAPTER THREE: SENSING STRAIN WITH NI-MN-GA 

This chapter is published in modified form by Elsevier in Sensors and Actuators A: 

Physical and should be referenced appropriately. 
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3.1 Abstract 

Deformation changes extensive magnetic properties in magnetic shape memory 

alloys, such as a resistive or piezoelectric strain gauge, without the constraint of operating 

the elastic region. This study investigates a strain measurement technique with potential 

to expand to strain measurement in three dimensions with one piece of material. A Ni-

Mn-Ga single crystal placed inside a doubly wound coil with a primary and a secondary 

winding was used as a strain sensor. An AC voltage excited the primary coil and the 

secondary voltage varied as the sample was strained from 0 to 5.2%. This method varies 

from other methods that utilize complex magnetic circuits, require high magnetic fields, 

or other sensing methods such as Hall probes. When the sensor element was tested 

statically by compressing the element manually against a bias magnetic field 

perpendicular to the load axis, the voltage output varied from 129.7 mV to 164.2 mV. 

The dynamic performance of the sensor was tested by cycling the element between 25 

and 100 Hz in compression against a bias magnetic field in a displacement controlled 

magneto-mechanical test system. The bias magnetic field was varied from 0.2 to 0.8 T 

(0.16 to 0.64 MA/m) while the cyclic displacement was varied from 0.5 to 4.5% strain. 

The voltage amplitude of the signal in the secondary coil increased with decreasing 

tensile strain. The full scale RMS voltage at a 200 m stroke increased from 53.0 mV to 

78.4 mV as the bias magnetic field decreased from 0.8T to 0.2 T. As the element was 

compressed, there was no difference in the voltage output of the sensor between the static 
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and dynamic tests. When the element expanded during unloading, the voltage output of 

the sensor from the static test matched the voltage output during compression. For the 

dynamic testing, the voltage output of the sensor exhibited a hysteresis from the loading 

voltage output, the hysteresis increased when the strain rate increased. 

3.2 Introduction 

The magnetization of magnetic shape-memory (MSM) alloy Ni-Mn-Ga changes 

linearly with strain which is useful for a strain sensor [1]. Current resistance and piezo-

electric strain gauges are limited to operating in the elastic strain range of the element – 

which is small – and the straining specimen works against the elastic modulus of the 

gauge. Inductive strain gauges such as linear variable differential transformers are bulky. 

MSM alloys reversibly deform under a very low stress [2], which provides opportunities 

for sensor applications [3]. Developments in MSM crystal growth using high purity 

elements produce oriented single crystals with high chemical homogeneity and twinning 

stress as low as 0.05 MPa [2,4], with reversible strains up to 7% [5] for 10M structure 

and 11% [6,7] for 14M structure. 

When cooled from high temperature, MSM alloys transform from cubic austenite 

to martensite. Ni-Mn-Ga martensite with 10M monoclinic structure is often approximated 

as tetragonal, with c < a. The martensitic transformation results in three martensite 

variants with different orientations of the crystallographic c direction, which is the 

direction of easy magnetization. Heczko recently reviewed the magneto-mechanics of 

MSM alloys of Ni-Mn-Ga [8]. In brief, under a mechanical stress or magnetic field, the 

variant with c most closely parallel to a compressive stress component or to the magnetic 

field direction grows at the expense of other variants. Variant growth or shrinkage 
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proceeds through the motion of twin boundaries. Twin boundary movement reorients the 

short crystallographic c direction of unfavorably oriented variants such that it aligns to 

the applied compressive stress or magnetic field. Twin boundaries move if the stress 

exceeds the twinning stress or the magnetic field exceeds the switching field. Low 

twinning stress and magneto crystalline coupling make Ni-Mn-Ga useful for actuating, 

sensing, and energy harvesting. 

When the direction of easy magnetization reorients there is an electromagnetic 

response. In energy harvesting or strain sensing the electromagnetic response is used 

when the crystal strains [1,9-14]. Müllner et al. measured the flux density parallel to an 

applied magnetic field and perpendicular to the direction of mechanical compressive 

strain with a Hall probe. They found a nearly linear relationship between the strain and 

flux density due to the change in magnetization of Ni-Mn-Ga. The authors proposed the 

use of the reverse magneto-plasticity effect for sensing applications [1]. 

Suorsa et al. found that the flux density as measured with a coil around the 

element has a linear relationship to strain at high applied fields (>40 kA/m), while at low 

fields (<40 kA/m) the relationship was non-linear [12]. The authors concluded that in 

low-field applications, such as sensing, a linear relationship is not valid. Sarawate et al. 

showed the magnitude of variation in flux density with strain changes with the magnitude 

of the external field [11]. Sarawate measured flux density changes due to dynamic strain 

up to 160 Hz at a bias field of 368 kA/m [13]; the flux density-strain relationship showed 

large hysteresis, which increased as the frequency increased. The authors attributed the 

hysteresis to a loss from the rotation of the magnetic moment. 
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The flux density and the magnetic permeability through the material change with 

the sample strain [15,16]. Suorsa et al. placed an MSM element between an iron yoke 

wrapped with two coils. The authors measured changes in inductance by applying a 180 

Hz AC voltage to the coils without a bias magnetic field. The test setup mechanically 

strained the element in the direction perpendicular to the axis of the coils and measured 

the change in mutual inductance of the coils. Tensile strain induced motion of twin 

boundaries and reoriented the c axes of unfavorably oriented variants parallel with the 

coils. A larger fraction of the element with easy magnetization parallel to the axis of the 

coils increased the inductance of the system. The measured inductance was larger than 

the calculated linear relationship but less than the calculated non-linear relationship. 

In our study, the sensor consisted of an MSM single crystal and two coils that 

were wound simultaneously. One coil was excited with an AC voltage, and the induced 

voltage in the second coil was measured. We compare the magnitude of the induced 

voltage to the strain of the sample for static tests and at a range of dynamic frequencies 

and motor strokes. The secondary coil output voltage decreases with increasing tensile 

strain of the MSM core over a range of cyclic loading frequencies and amplitudes. 

3.3 Experimental Setup 

A single crystal with a nominal composition of Ni51Mn27Ga22 (numbers indicate 

atomic percent) was grown with the Bridgman-Stockbarger technique using the crystal 

growth system developed by Kellis et al. [4]. After crystal growth, the composition along 

the crystal growth direction was measured every 2 mm by electron dispersive 

spectroscopy (EDS) using a Hitachi 3400S scanning electron microscope and an Oxford 

Instruments Energy+ EDS detector at a working distance of 10 mm and a 20 kV 
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accelerating voltage. The crystal structure and lattice constants were determined by X-ray 

diffraction using a Bruker D8 Discover X-ray diffractometer with a copper target 

operated at 40 kV and 40 mA. The X-ray beam was filtered to remove Cu Kβ 

wavelengths, collimated and passed through a circular aperture 1 mm in diameter. The 

intensity of the diffracted X-ray beam was measured with a HI-STAR area detector. A 

portion of the crystal with a 10M martensite structure and a composition of 

Ni51.1Mn25.6Ga23.4 was aligned and cut with a Princeton Scientific WS22 wire saw such 

that sample faces were parallel to {100}. These faces were then polished with 2000 grit 

SiC, followed by a sequence of diamond pastes to 1 µm, and finally 0.03 μm alumina 

slurry yielding a crystal of size 2.14 x 3.35 x 7.53 mm3
 (elongated, c parallel to the 

3.35mm edge). Prior to testing, the twinning stress was measured at 0.72 MPa (in 

compression) on a Zwick screw-driven test bench type 1445 and the magnetic switching 

field was measured at 0.3 T (0.24 MA/m) using a MicroSense Model 10 vibrating sample 

magnetometer. 

The dynamic performance of the sensor system (Ni-Mn-Ga crystal + doubly 

wound drive/pick-up coil) was measured by cycling the crystal in compression against a 

bias magnetic field perpendicular to the load axis. An instrumented Magneto-Mechanical 

Test Apparatus (MMTA), pictured in Figure 3.1, measured force and elongation of the 

Ni-Mn-Ga single crystal while it was cyclically deformed in a magnetic field. This 

system was described in detail by Lindquist and Müllner [17]. Its main components are: 

(a) A variable-field electromagnet with maximum field strength of 1.2 T (0.96 MA/m); 

(b) A voice coil motor with maximum actuation frequency of 800 Hz; (c) A linear-

variable differential transformer (LVDT) displacement transducer; (d) A sample 
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compression micrometer; (e) A 44 N piezoelectric dynamic load cell; (f) springs to tune 

the resonant frequency of the voice coil motor; (g) The Ni-Mn-Ga single crystal test 

sample. Analog signals for force and displacement were connected as inputs to a 

multiplexed four-channel 16 bit analog to digital converter (ADC). The current to the 

electromagnet was controlled with analog output from a 16 bit digital to analog converter 

(DAC) that was connected to the power supply remote control. The ADC inputs and 

DAC outputs were controlled by a dSpace Model ACE 1104 Power PC embedded 

controller that was plugged into a personal computer. The embedded controller was 

programmed from scripts written in MatLab along with a symbolic model for the ADC 

and DAC converters written in Simulink, an accessory software package from 

MathWorks. The dSpace system was designed to work with MatLab, which had a cross-

compiler/linker that downloaded the program to the dSpace controller card. The program 

controlled the test frequency and displacement. The test frequency and magnetic field 

was set by a MatLab script and the displacement amplitude was changed in dSpace while 

the voice coil motor ran. 

 
Figure 3.1 Magneto-Mechanical Test Apparatus (MMTA) with a variable-field 

electromagnet (a), voice coil motor (b), linear-variable differential transformer (c), 
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micrometer (d), piezoelectric force transducer (e), springs to tune the resonant 

frequency of the motor (f), and Ni-Mn-Ga specimen (g). 

A double coil of 1000 turns per coil was wound with two 43 AWG magnet wires. 

The double coil measured approximately 5 mm in inner diameter and 6 mm in length. 

Each coil had a resistance of approximately 180 Ω. One coil served as drive coil, the 

other as pick-up coil. A Hewlett-Packard 33120A waveform generator powered the drive 

coil with a sine wave at 4 kHz and 800 mV peak-to-peak amplitude. The amplitude was 

chosen such that the maximum electrical current would not melt the insulation on the 

wire. The coils were placed around the sample such that the axis of the coil was parallel 

to the direction of loading by the motor and perpendicular to the bias magnetic field 

(Figure 3.1). 

The pickup coil voltage was amplified by a factor of 5 with a tunable band-pass 

amplifier made by Alligator Technologies so that it matched the input range (+/- 1.25 V) 

of the analog to digital converter. The amplified pick-up coil voltage was connected to 

one channel of a 4-input analog to digital converter (Agilent U2542A) with 16 bit 

resolution. The other inputs of the U2542A measured the signals from the LVDT, the 

force transducer, and the drive coil voltage.  The U2542A captures 4 channels 

simultaneously at 500 kilo-samples per second or one sample every 2 µs. This yielded 

125 samples for each period of the 4 kHz sine wave. 

Prior to testing, the sample was compressed to 0% strain. The sample was glued 

to the load platen opposite the motor with cyanoacrylate adhesive such that the 3.35 mm 

dimension of the sample was parallel to the magnetic field. The dual-coil was placed 

around the sample parallel to the load axis. The perpendicular magnetic field was turned 

on to 0.8 T (0.64 MA/m) to fully elongate the sample, and then changed to the desired 
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field for the test. With the magnetic field on, the sample was compressed against the 

springs manually with a micrometer screw (details are given in [17]) while monitoring 

the LVDT signal. The compression was determined by subtracting the LVDT 

displacement (amount springs have compressed) from the displacement of the 

micrometer. 

Two types of tests were performed: static and cyclic. In static experiments, the 

sample was compressed manually in the axis of the coil with a micrometer and data was 

taken for every 30 μm of micrometer displacement at a 0.4 T bias magnetic field. In 

cyclic experiments, the sample was compressed manually by approximately 200 μm (to 

3.33% tensile strain) before actuating the motor. Once compressed, the motor was 

powered on to cyclically load the sample at the test frequency and amplitude. The sample 

was compressed in the axis of the coil by the voice-coil motor during the load portion of 

the cycle and it expanded due to the bias magnetic field during the unload portion of the 

cycle. Compressive loading by the motor occurred against the perpendicular bias 

magnetic field; upon mechanical unloading, the magnetic field elongated the sample. 

Simulink controlled the voice coil motor frequency and it used the LVDT signal as 

feedback to maintain the test amplitude (sometimes called displacement-controlled 

testing). 

The loading frequency of the voice-coil motor was set to 25, 50, 75, and 100 Hz 

against an perpendicular magnetic field was varied from 0.2 to 0.8 T (0.16 to 0.64 

MA/m) and at peak-to-peak stroke varying from 50 µm (0.67 % strain) to 350 µm (4.67 

% strain). The maximum strain was limited to 4.67% due to the clamping constraints 

exerted by the cyanoacrylate adhesive [18]. 
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The experimental data was post-processed with a MatLab program that converted 

the raw data into stress, strain, and voltages from the double coil. The force measured by 

the force transducer was normalized by the cross sectional area of the sample to compute 

the stress. The strain was calculated from the LVDT data, initial sample compression, and 

sample length. The strain and voltage data were post-processed further using software 

filters. 

In the program the LVDT data was first passed through a software filter: a 7th-

order low-pass Butterworth filter with a cutoff frequency of 12 kHz to suppress noise 

from the LVDT excitation frequency. The MatLab script applied a 3rd-order Butterworth 

band-pass filter with a bandwidth of 1 kHz centered at 4 kHz to the drive and pickup 

voltage signals. This filter extracted only the modulation of the 4 kHz carrier frequency 

by suppressing all other signal components in the voltage from the system. The running 

root-mean-square (RMS) amplitude was computed for the input and output voltage 

waveforms by finding the RMS for each period of the 4 kHz voltage. This yielded a 

voltage corresponding to the amplitude modulation of the excitation voltage with 4000 

points per second. 

The ratio of the output voltage to the input voltage was calculated in order to find 

the change in output RMS amplitude independent of changes in the input RMS 

amplitude. The script also computed the hysteresis in this relationship to quantify the 

relationship between the voltage and strain. 

The change in pickup voltage amplitude across the secondary coil was 

characterized as a function of input voltage frequency at a magnetic field of 0.8 T (Figure 

3.2). The output of the secondary coil was recorded for the fully compressed and fully 
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elongated sample for each voltage frequency. The elongated RMS voltage was subtracted 

from the compressed RMS voltage to find the voltage change for full strain of the sample. 

The pick-up voltage difference had a maximum at 4 kHz which was then used as drive 

frequency for all experiments. The pick-up coil voltage was also characterized as a 

function of the perpendicular applied magnetic field in order to select an optimal field of 

0.4 T for further testing. With these parameters, the sample was tested both statically over 

the full strain range of the mounted sample as well as dynamically at set values of 

frequency and strain. The results from these tests are presented in Section 3.3 and 

discussed in Section 3.4. 

 
Figure 3.2 Difference in RMS output voltage as a function of drive frequency for 

a fully compressed and fully elongated sample in an external field of 0.4 T. The 

RMS output voltage has a maximum at 4 kHz, which was chosen as drive frequency 

for all experiments. 

3.4 Results 

The sample was loaded mechanically with a compressive stress from the linear 

motor. It compressed due to the motor and expanded due to the bias magnetic field upon 

mechanical unloading. A running RMS was taken for each period of the 4 kHz excitation 

voltage, resulting in an RMS voltage signal with 4 kilo-samples per second. Figure 3.3 

contains 0.1 seconds of collected data, which corresponds to four hundred cycles of the 4 
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kHz excitation voltage. Figure 3.3a shows the RMS amplitude of raw output voltage data 

from the pickup coil collected using the U2542A before applying filters. The amplitude 

modulation is the response of the system (sample and noise) to the actuation of the 

sample. To extract the amplitude modulation from the coils and exclude any noise 

components, a time-averaging 3rd-order Butterworth band-pass filter with a bandwidth of 

1 kHz centered at 4 kHz was applied in software to the drive and pickup voltage signals. 

The RMS amplitude of the filtered voltage signal only contains frequency harmonics of 

the primary actuation frequency (Figure 3.3b). 

 
Figure 3.3 The root-mean-square of the raw voltage data from the pickup coil is 

shown (a) at a frequency of 50 Hz and stroke of 150 µm with an applied field of 

0.4T. Time is calculated by applying a sampling rate factor to the sample number. A 

band-pass filter was applied to let through only the 4 kHz excitation voltage and 

suppress all noise components. The resulting voltage waveform shows an amplitude 

modulation with only the harmonics present in the sample strain (b).  

The amount of strain on the sample modulated the amplitude of the 4 kHz sine 

wave in the pickup coil as well as in the drive coil (Figure 3.4a). The excitation voltage 

across the drive coil provided a changing flux within the pickup coil, which resulted in an 
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induced voltage across the pickup coil at the same frequency. The changing 

magnetization of the sample due to the reorienting of the easy axes of magnetization also 

resulted in a changing flux in the coil. This changing flux also modulated the input 

voltage independent of the modulation from the mutual inductance.   

The amplitude of the pickup coil was a function of the drive coil amplitude. 

Figure 4b shows the ratio of the pickup coil amplitude to the drive coil amplitude. The 

strain on the sample (Figure 3.4c) was calculated from the LVDT, initial compression, 

and sample length. The modulation of the amplitude (RMS ratio, Figure 3.4b) was in 

phase with the strain of the sample; the sample strain caused the changing output voltage 

relative to the input voltage (Figure 3.4d). 

 
Figure 3.4 The MatLab script applied a band-pass filter to both the input and 

output voltage data, and then calculated a running RMS for each voltage waveform 

(a). A ratio of the output RMS to input RMS is taken to account for the modulation 

of the input voltage waveform (b). The motor displacement was measured using the 

LVDT and the MatLab program applied a low-pass filter with a 12 kHz cutoff 

frequency to suppress noise from the excitation voltage of the LVDT. Strain was 

calculated using the filtered LVDT signal, initial position of the LVDT and initial 

strain of the sample (c). The RMS Ratio was plotted against the strain to analyze the 

voltage-strain relationship of the measurement coils (d). 
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Figure 3.5 shows the stress vs. strain curves at 50 Hz while varying the stroke of 

the motor at 0.4 T external magnetic field. The initial compressive displacement on the 

sample before turning the motor on was approximately 200 µm (3.33% tensile strain). 

The center point of oscillation stayed consistent while the magnetic field was held 

constant. 

 
Figure 3.5 Stress vs. Strain curves recorded at 50 Hz, with 0.4 T applied field and 

stroke varying from 50 to 350 µm. Each loop contains data of ten full loading cycles. 

The piezoelectric force transducer measures relative stress, not absolute stress. The 

relative stress from the transducer was shifted to the appropriate compressive stress 

by performing a manual test using the compression from the LVDT and spring 

constant of springs in Figure 1. 

The stress was calculated based on data from a piezoelectric force transducer. 

This device measures the relative force, not the absolute force. A stress strain curve was 

taken manually with an external field of 0.4 T; we determined the stress from the LVDT 

displacement and spring constant of springs on each side of the motor, and strain from the 

difference of the micrometer displacement and LVDT displacement. The stress data from 

the force transducer was shifted such that the data point at the maximum stress coincided 

with the stress at that strain value from the manual test. 
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3.5 Analysis of Results 

The ratio of the output to input amplitude varied with the strain on the sample 

(Figure 3.4d). The magnitude of this ratio with time (Figure 3.4b) was in phase with the 

strain of the sample (Figure 3.4c). With less strain, the volume fraction of twin variant 

with high magnetic susceptibility parallel to loading and the axis of the coil increased. 

Larger susceptibility and permeability of the sample in the axis of the coil resulted in 

greater mutual inductance between the drive and pickup coils and larger voltage 

amplitude on the pick-up coil at the same input voltage amplitude. There was a consistent 

dependence of the RMS voltage ratio on the strain of the sample (Figure 3.4d); the ratio 

at discrete strain values was consistent during many loading-unloading cycles of the 

sample. 

The magnetic field was varied from 0.8 T (0.64 MA/m) down to 0.2 T (0.16 

MA/m) in 0.1 T (0.08 MA/m) increments at 50 Hz and 150 µm amplitude (Figure 3.6a). 

Though 0.2 T was below the initially measured switching field, the sample fully 

recovered the mechanical stroke. Thus, repeated cycling trained the sample, which 

reduced the twinning stress and lowered the switching field below 0.2 T. The range of 

RMS ratio was greater for lower applied magnetic fields (Figure 3.6b). The perpendicular 

magnetic field applied to elongate the sample worked to demagnetize the sample 

perpendicular to the axis of the coil, which resulted in a lower net change in 

magnetization between variants [1]. A larger net change in magnetization yields the 

largest difference in voltage amplitude and better resolution of the sample strain.  
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Figure 3.6 RMS ratio vs. Strain was taken for magnetic fields from a maximum of 

0.8 T down to 0.2 T. The inset shows the ratio range (maximum – minimum). The full 

scale of the ratio decreases with increasing perpendicular field. 

A larger RMS ratio range gave a higher strain-sensing resolution, meaning that a 

small perpendicular field would be optimal because a lower field has larger change in the 

RMS voltage ratio. In order to keep a constant field throughout the remaining tests, we 

chose a perpendicular field of 0.4 T to stay well above the switching field. The magnetic 

field elongated the sample below the initial measured switching field because actuating 

the sample leads to magneto-mechanical training, effectively decreasing the twinning 

stress [18]. 

While varying the motor frequency at a constant applied magnetic field and cyclic 

stroke, the loading portion of the RMS voltage-strain relationship deviated from the 

unloading portion (Figure 3.7a). The integrated area of the curve, or hysteresis, increased 

as the frequency increased (Figure 3.7b). The hysteresis increased nearly linearly with 

increasing frequency; the hysteresis at 25 Hz slightly deviated from this relationship. The 

resonant frequency of the motor was close to 75 Hz; as the frequency deviated from 

resonance, the strain became less sinusoidal and multiple harmonics of the frequency 

were included. The higher harmonics increased the strain rate, resulting in larger 

hysteresis than would be expected for a sinusoid with only the fundamental harmonic. 

Using the data points from 50, 75, and 100 Hz, a linear fit extrapolated to zero hysteresis 
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occurs at -2 Hz. This verifies that close to static deformation, little or no hysteresis occurs 

in the loading and unloading curves as shown in the static test.  

 
Figure 3.7 As the frequency increases, the slope of the linear fit increases by 15% 

while the voltage intercept decreases by less than 2%. The dependence of the slope on 

the magnetic field is consistent across all frequencies tested, with slope increasing with 

magnetic field. The slop of the fit for 100 Hz at 0.3 T decreases because the magnetic 

field does not accelerate the strain of the sample as quickly as the motor unloads the 

sample. 

The hysteresis also increased with increasing stroke. The static test is depicted by 

the dashed black line in Figure 3.8. The unloading curve for each stroke matches the 

static test relationship, but the loading curve deviates from the static test due to 

hysteresis. The hysteresis increased non-linearly with increasing stroke. The hysteresis at 

4.00% strain, or 300 μm, deviated from the otherwise systematic trend of the hysteresis. 

In this test, the sample reached the compressive limit of twinning strain, resulting in the 

deviation in the voltage-strain relationship at small strain values. This was seen in the 

stress-strain curves measured by the MMTA; a large increase in stress indicated that 

portion of the strain was due to compression of the springs and not the sample. 
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Figure 3.8 At a constant actuation frequency of 50 Hz and applied magnetic field 

of 0.4 T, the hysteresis in the RMS-strain relationship increases quadratically with 

increasing strain. 

Using Matlab, we fit a linear function to the logarithm of the integrated area vs. 

the logarithm of the stroke. The slope of the linear fit was 2.05, meaning the dependence 

of the hysteresis on stroke was quadratic. 

3.6 Discussion 

The results show a non-linear dependence of the voltage on the strain, with 

hysteresis between the loading and unloading curves. This is in contrast to Müllner et al. 

2003, where the static dependence of the flux density on the strain was linear and without 

hysteresis. 

Müllner et al. used an orthogonal magnetic field of 0.7 T, near the saturation field. 

The domains with axis of easy magnetization parallel to the field were saturated and 

those with axis of hard magnetization parallel to the magnetic field were nearly saturated. 

In this experiment, the alternating current carried by the drive coil resulted in a varying 

flux density, which reached a maximum of approximately 15 mT. Also, Müllner et al. 
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measured the flux density of two twin domains oriented in parallel. The flux density in 

the present experiment passed through domains oriented in series. Due to the continuity 

of flux density at domain boundaries, domains oriented in parallel have a different flux 

density response than those oriented in series [15,19]. 

The demagnetizing (internal) field may cause the non-linearity seen in the 

experiment. Consider an element with one twin boundary and two domains (Figure 3.9). 

The black line denotes the direction of the axis of easy magnetization in each domain. 

The axis of the coils lies in the x direction and the external magnetic field in the y 

direction. The external field magnetizes the A domain at an angle from the x direction, 

reducing the magnetization in the x direction. The magnitude of the RMS voltage of the 

pickup coil depends on the magnitude of magnetization in the x direction. At large 

strains, the A domain is small. The demagnetizing factor in the A domain is small, 

resulting in large and smaller magnetization in x. At small strains, the A domain is 

large (wide). The demagnetizing factor in the A domain is large, resulting in small and 

larger magnetization in x. Instead of a linear dependence of RMS amplitude on strain, the 

amplitude in domain A is larger at small strain and smaller at large strain due to changes 

in domain geometry and internal field magnitude. 
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Figure 3.9 A sample is depicted containing one twin boundary and two twin 

domains, A and B, with axis of easy magnetization in the x and y direction, 

respectively. The external magnetic field is parallel to the y direction, and the axis of 

the coils is parallel to the x direction. The external magnetic field causes the magnetic 

moments in domain A to rotate at an angle α away from the axis of easy 

magnetization. 

The loading portion of the dynamic tests matched that of the static test. The 

unloading portion, where the external field drove twin boundary motion, contained 

hysteresis. The hysteresis increased linearly with increasing frequency and quadratically 

with increasing stroke. The magnitude of the hysteresis was not only due to the velocity 

of twin boundary motion; the twin boundary velocity increases linearly with both 

frequency and stroke. The hysteresis depended on the distance through the material the 

twin boundary moved. 

Assuming exactly one twin boundary existed in the material, at the maximum 

stroke of 300 μm, the twin boundary moved approximately 5 mm. A frequency of 100 Hz 

and stroke of 300 μm resulted in a maximum twin boundary velocity of 1.6 m/s, 

assuming sinusoidal actuation. Most likely, multiple twin boundaries existed, which 

implies a smaller velocity. Reported values of twin boundary velocity vary from ~1 m/s 

[20,21] to 82.5 m/s [22]. If there was only one twin boundary and the twin boundary 

velocity in our experiment more closely matched those measured by Faran et al., the 

magnetic field-induced twin boundary motion may have been slower than the motor, 

resulting in inaccurate strain measurement. This was possible since the sample glued only 
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on one side and free on the other side such that upon mechanical unloading, the sample 

may have detached from the sample holder. If the twin boundary velocity closely 

matched that measured by Smith et al., the rate of twin boundary motion strained the 

material fast enough to match the motor actuation. If a large number of twin boundaries 

were present such as in densely twinned crystals, twin boundary velocities measured by 

Faran et al. and Smith et al. suffice to deform the sample at the speed of actuation. 

The strain-voltage hysteresis increases with increasing frequency and tends to 

zero as the frequency approaches zero. This means no hysteresis exists in a static 

application of the sensor, which agrees with the static test. The hysteresis occurs in the 

elongation/tensile portion of the stress-strain curve, which is the portion of the curve 

when the sample is being actuated magnetically. If the sample is glued or otherwise 

affixed to the deforming medium and no external field is needed, the hysteresis would 

possibly vanish. Thus, the hysteresis may indicate that the twin boundary velocity was 

not sufficient to deform the sample at the rate of mechanical unloading.  

This sensing method does not require a large external magnetic field to measure 

the magnetic properties as in other sensing methods of magnetic shape memory alloys. 

The measurement could be made in a small, low power configuration. Since a large net 

magnetic field is not required to measure the strain, strain sensing with this method can 

be done in all three dimensions at once. Twin domains with easy axis parallel to any 

orthogonal direction in Cartesian coordinates can exist. The magnetic properties of the 

sample will change in three dimensions depending on the three dimensional strain state. 

Using a dual coil setup around each principal axis of a parallelipedal sample, the same 

measurement can be done in three dimensions. Currently, it is not possible to measure 
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strain in three dimensions with one device. This material and configuration make this 

possible. 

The change in RMS voltage across the full strain range was approximately 10% 

of the largest voltage, and the configuration has not been fully optimized. The resistance 

of a traditional strain gauge is only a fraction of a percent. The drawback of this method 

is that the contribution of the internal field varies, and the configuration may need more 

calibration than other methods. 

3.7 Summary and Conclusion 

The amplitude of the voltage across the pickup coil decreased by 17.7% as the 

tensile strain increased by 5.2% during manual unloading. The hysteresis in the voltage-

strain relationship between the loading and unloading curves was minimal when the 

strain was varied manually. When the sample was actuated with the motor, the loading 

(compression) portion of the voltage-strain relationship matched closely the relationship 

of the static manual test. The unloading portion deviated from this relationship resulting 

in hysteresis. The hysteresis increased with increasing strain rate, either by increasing the 

frequency or stroke at which the motor operated. 

The strain sensing resolution is defined by the change in RMS ratio to the strain 

of the sample. The best resolution occurs when the change in voltage is the greatest. The 

excitation voltage frequency was optimized to maximize the voltage change. Tests 

showed that in order to fully maximize the voltage change, the smallest orthogonal 

magnetic field should be used. 

The strain sensing system (MSM element and dual-coil) did not require the use of 

a large permanent magnetic field, and instead utilized a varying AC voltage with 400 mV 
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amplitude. The proposed sensing system works best in an environment when the strain 

does not change rapidly, such as to decrease the hysteresis between loading and 

unloading curves. Also, the system would be optimized if the sample is physically 

adhered to the deforming substrate in question, thus not requiring an external magnetic 

field. 

The magnetic susceptibility varies in all three dimensions as a function of the 

three dimensional strain state. This strain measurement configuration could be expanded 

with a dual-coil in each dimension to measure strain in all three dimensions with one 

piece of material. 
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CHAPTER FOUR: MAGNETIC TORQUE IN SINGLE CRYSTAL NI-MN-GA 

This chapter is published by Springer in Shape Memory and Superelasticity and should 

be referenced appropriately. 
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4.1 Abstract 

Magnetic shape memory alloys deform in an external magnetic field in two 

distinct ways, namely axial straining – known as magnetic-field-induced strain – and 

bending. Here, we examine the magnetic torque that a magnetic field exerts on a long Ni-

Mn-Ga rod. A single crystal specimen of Ni-Mn-Ga was constrained with respect to 

bending and subjected to an external field. The torque required to rotate the specimen in 

the field was measured as a function of the orientation of the sample with the external 

field, strain, and the magnitude of the external field. The torque was analyzed based on 

the change in the free energy with the angle between the field and sample. The 

contributions of magnetocrystalline anisotropy and shape anisotropy to the Zeeman 

energy determine the net torque. The torque is large when magneotcrystalline and shape 

anisotropies act synergistically and small when these anisotropies act antagonistically. 

4.2 Introduction 

Magnetic shape memory alloys (MSMAs) change shape when exposed to a 

mechanical stress or a magnetic field [1]. The shape change results from a re-orientation 

of the unit cell via motion of twin boundaries. The most widely studied magnetic shape 

memory alloy, monocrystalline Ni-Mn-Ga, has a monoclinic martensite structure with 

10M lattice modulation. The lattice is often approximated as tetragonal with c < a. The 

maximum strain is 1-c/a, which is approximately 6%. At 0% strain the materials is a 

single domain with c parallel to the strain direction, and at 6% strain the materials is a 

single domain with c perpendicular to the strain direction. 

Martensitic Ni-Mn-Ga has uniaxial magnetic anisotropy with the axis of easy 

magnetization parallel to c, the short axis of the unit cell. The easy axis of magnetization 
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changes across a twin boundary. If an external magnetic field is not parallel to the easy 

axis of a domain, the magnetic field imposes a magnetostress in that domain [2]. If the 

magnetostress is larger than the twinning stress, the twin boundary will move. The twin 

domain with axis of easy magnetization most parallel to the external field grows. 

The magnetic-field-induced shape change of a MSM element enables contact-free 

actuation without moving parts. Since the sample length determines stroke, a long 

element maximizes the stroke and work output of the material. Long samples tend to 

bend when a uniform magnetic field is applied perpendicular to the long dimension [3-5]. 

When bent, MSM elements may contact guide walls which results in friction and a 

reduction of axial strain [3]. Though bending is a natural deformation mode of a long 

MSM element in a magnetic field, studies on the magneto-mechanical properties of 

magnetic shape memory alloys focus on magnetic-field-induced strain (MFIS) and often 

neglect magnetic-torque-induced bending (MTIB). 

MTIB was reported in a non-uniform magnetic field [6]. The authors noted that, 

even in a uniform field, the magnetic and shape anisotropies would lead to a torque on 

the sample. MTIB was reported in a uniform field for wires with sub-millimeter diameter 

by Zheng et al. [4] who attributed it to the difference in Zeeman energy depending on the 

orientation of the sample. Kucza et al. studied bending in single crystal beams with 1 

mm2 cross sectional area and various lengths, and found that the amount of bending 

depended on the beam’s aspect ratio, while the axial strain did not depend on the sample 

length [5]. The authors attributed the bending strain to torque introduced by the Zeeman, 

shape anisotropy, and magnetocrystalline anisotropy energies [4,5]. 
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In both studies, sample bending was attributed to differences in the magnetic 

energy depending on the orientation of the sample in the external magnetic field. The 

relative contributions of the energies to torque was qualitatively discussed [5] based on 

the sample behavior in different magnetic field strengths. MSM alloys may be used in 

various shapes, sizes, and magnetic field strengths. A quantitative understanding of the 

contributors to this torque is necessary to understand the response of actuating elements 

to a variable magnetic field. 

Several studies applied free energy functions to describe the driving force behind 

twin boundary motion [7-9] as well as the dependence of the critical field on the 

geometry of domains due to demagnetization [10]. The energy functions contain the 

contributions described above as well as external stress and magnetoelasticity. The 

studies quantitatively describe or analytically calculate the contribution of each energy 

term to the equilibrium of the twin domains, but do not consider the torque imposed on a 

sample by these energies. 

O’Handley et al. [11] calculated the torque on an unfavorably oriented domain in 

an external magnetic field in order to describe the driving force for twin boundary 

motion. The contributions of the external field and magnetocrystalline anisotropy to the 

torque on the unfavorable twin domain were related to the shear stress at the twin 

boundary. In their theoretical approach, these authors considered torque as it relates to 

twin boundary motion in a specimen which is constrained on its ends such that it can 

deform only by straining. They did not discuss the total torque on a specimen without 

these constraints, such as in the experiments in Refs. 4 and 5. Additionally, only one 
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orientation of the applied field with the specimen was considered in contrast with the 

rotating field in Refs. 4 and 5. 

This study examines experimentally the torque of a Ni-Mn-Ga specimen 

constrained with respect to bending strain in a magnetic field and explores the causes for 

this torque. The torque as a function of angle with the magnetic field was measured and 

compared to the same test using a soft magnetic material and a permanent magnet as 

references. We discuss the contributions of the torque in terms of the external field 

energy, magnetocrystalline anisotropy energy, and internal field energy. 

4.3 Experimental Procedure 

Single crystal specimen of Ni-Mn-Ga were grown with a modified Bridgeman-

Stockbarger technique [12]. Specimen were grown with a nominal composition of 

Ni50.5Mn27.75Ga21.75 (atomic percent); however, due to chemical segregation during 

growth there was a composition gradient across the crystal resulting in sections with 

different martensite structures at room temperature. Crystals were characterized in a 

Hitachi S3400 scanning electron microscope with energy dispersive x-ray spectroscopy 

(EDS, Oxford Instruments Energy+ detector) and a Bruker D8 X-ray diffractometer with 

a Cu Kα source. Samples were cut with a Princeton Scientific WS-22 wire saw with a 50 

μm diameter tungsten wire and polished using successively smaller grit SiC paper and 

then diamond slurries down to 1 μm diameter diamonds. The Ni-Mn-Ga sample tested 

had 10M structure with composition Ni51.1Mn25.7Ga23.2 (atomic percent, as 

determined with EDS with accuracy atomic percent) and measured 20.02 x 5.02 x 3.62 

mm3 fully extended in the longest dimension and compressed in the intermediate 

dimension. The sample was subjected to constant magnetic fields between 25 and 150 



67 

 

 

milli-Tesla (mT) in a Varian Associates V3603 electromagnet. Once the samples had 

reached an equilibrium angle with the external magnetic field, a torque was applied as 

described below and the angular deflection was measured. 

 
Figure 4.1 The magnetic samples (a) were placed in a round Teflon sample holder 

(b). The sample holder had a shoulder machined to press-fit into the inner bore of a 

non-magnetic ZrO2 ceramic bearing (c). A groove was machined at the circumference 

and a string (d) was wrapped around the sample holder in this groove. The string was 

connected to a spring force gauge (not shown) to apply a tangential force (torque) to 

the sample holder and sample. 

A sample holder made from Teflon contained a groove to accommodate the 

sample (Figure 4.1). The sample holder had a diameter of 25.4 mm on which the sample 

was laid and a shoulder with a smaller diameter of 9.53 mm which was press-fit into the 

inner bore of a ZrO2 non-magnetic bearing (Figure 4.2a). The bearing was placed in 

Styrofoam between the pole pieces of an electromagnet (Varian Associates V3603). The 

angle of the sample with the magnetic field  was measured by taking pictures using a 

Canon PowerShot A3000 digital camera and comparing the edge of the sample to a 

compass aligned in the field (Figure 4.2a) using the angle tool in ImageJ. We define 

Cartesian coordinates such that the x direction coincides with the long edge of the sample 

and the rotation axis constitutes the z direction. The angle  describes the deviation of the 

magnetic field direction from the x direction. When the magnetic field was parallel to the 

x direction  = 0°. The angular error was less than 0.5°. The sample holder had a groove 
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cut around the circumference where a string was wrapped around and extended to a 

spring force gauge (PCE Instruments) and pulley. The string transferred a displacement 

of the pulley to apply a tangential force to the sample holder and, thus, a torque to the 

sample. 

 
Figure 4.2 (a) A digital image was captured using a Canon PowerShot A3000 

digital camera. A compass was placed in between the poles of the electromagnet. The 

North-South pole aligned parallel to the magnetic field, and the East-West pole was 

perpendicular to the magnetic field. Using the angle tool in ImageJ, the angle  
between the poles of the compass and the x axis of the sample was measured. The 

magnetic field direction is the reference direction and  increases clock wise. (b) White 

lines highlight the kink between adjacent domains. Lines across the sample connect 

the kinks on the surfaces and indicate the location of twin boundaries. Thick white 

lines in each domain denote the direction of the easy axis of magnetization. 

Two spring force gauges from PCE Instruments were used alternatively, with 

maximum forces of 10 g (0.098 N) and 1 N and resolution of 0.001N and 0.01 N 

respectively.  For experiments with a magnetic field of 25 mT and for tests with a 

magnetic field of 50 mT and strain equal to or larger than 5%, the maximum force to 

fully rotate the sample was less than 0.098 N. For these experiments, we measured the 

torque with the 10 g force gauge. For all other experiments, we applied the 1 N force 

gauge. 
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The sample was tested with a constant twin structure throughout each experiment. 

The sample contained three twin domains with two twin boundaries, such that the center 

domain had the easy axis in the x direction. Figure 4.2b outlines the edges of the sample 

with light-colored lines, showing the kink between the domains. The approximate 

locations of the two twin boundaries between the domains are given by the lines running 

at a 45 degree angle to the sample edges. Twin boundaries intersect the location of the 

kinks on either side of the sample. The thick white lines in the domains give the 

directions of the c axis in each domain. The image in Figure 4.2b depicts a sample at 4% 

strain, which would correspond to the domain with c parallel to x making up one third of 

the sample. This is visually verified in Figure 4.2b. The resolution of the angle 

measurement in ImageJ was approximated by measuring the angle between the edges of 

the two domains, and comparing compared to the expected angle from lattice parameters. 

We set the strain on the sample and then placed it into the sample holder with the 

magnetic field turned off. Then we increased the field to the set point of interest. Once at 

the field set point, we measured the equilibrium angle of the sample with the magnetic 

field direction without applying a force to the string. Then, with the sample in a constant 

magnetic field, we increased the force on the spring gauge manually to apply torque to 

the sample holder. We took pictures to measure the resulting angle between the sample 

and the field at discrete force values. Upon exceeding the position of maximum torque, 

the mechanical loading system became unstable and the sample holder spun uncontrolled. 

Thus, no data was collected at angles greater than the angle of maximum torque. 

We performed experiments first with the fully extended sample (i.e. at 6% strain) 

at magnetic fields of 25, 50, 75, 100, 125, and 150 mT. Between the experiments at 
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different fields, we turned the field to zero, checked the sample strain and re-wound the 

string around the sample holder. We then compressed the sample to 5% strain and 

conducted experiments at multiple magnetic fields.  This process was repeated for 

multiple fields at integer values of strain (0-6%). At 100 mT, twin boundaries moved for 

strains lower than 3%, which changed the strain. Therefore, data below 3% strain at 100 

mT and fields higher than 100 mT was not measured. We assume that the repeated 

straining of the sample required to properly establish each strain state caused a softening 

of the material which resulted in reducing the switching field [13] to below 100 mT. This 

is known as training and often applied intentionally to reduce the twinning stress [14]. 

Additionally, the equilibrium angle as a function of strain at 50 mT external magnetic 

field was found in strain increments of 0.5%. 

4.4 Results 

The equilibrium angle eq (i.e. at zero torque) was measured as a function of strain 

at different magnetic fields (Figure 4.3). The amount of strain changed the equilibrium 

angle. At 0% strain (i.e. when the easy direction of magnetization was parallel to the 

longest axis of the sample), the equilibrium angle was 0°. With increasing strain, the 

equilibrium angle increased non-linearly and reached 90° when the sample was fully 

extended (i.e. at 6% strain). The equilibrium angle did not depend on the field strength 

except at 3% strain where the value for 100 mT deviated from those at 50 and 75 mT. 
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Figure 4.3 Equilibrium angle eq between the sample’s long axis and magnetic field 

as a function of strain at different magnetic fields. At 100 mT, twin boundaries moved 

for strains higher than 3% and so data past 3% was not obtained. The arrow shows 

the strain for the data point at 3% strain and 100 mT may have decreased, changing 

the equilibrium angle. Equation 7 is plotted as a dashed line. 

We derived the torque from the force measurements by multiplying them by the 

radius of the sample holder (Figure 4.1). Figure 4a shows the torque at 6% strain as a 

function of and different magnetic fields (Figure 4.4a). The tests started at or near -90 

degrees as this was the equilibrium angle for 6% strain independent of external field 

(Figure 4.3). The torque increased until the sample spun in the magnetic field to another 

equilibrium angle 180 degrees from the initial starting point. At low magnetic field 

(particularly at 25 mT) friction impeded the smooth motion of the sample holder and 

caused large jumps in angle. The torque required to rotate the sample increased with 

increasing magnetic field such that friction was negligible at fields of 50 mT and above. 

For example, the maximum torque measured at 25 mT was 0.19 mNm while the 

maximum torque at 150 mT was 5.9 mNm, an increase by a factor of 31. The torque as a 

function of external field at -75°, -60°, and -45° is given in Figure 4.4b. The method used 

to interpolate torque values at these discrete angles is given in Section 4.4. The torque 

needed to rotate the sample increases non-linearly with external field for each angle. 
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Figure 4.4 (a) Torque as a function of angle  between the sample’s long axis and 

magnetic field at 6% strain for different applied magnetic fields. (b) Interpolated 

torque values from empirically fit equations as a function of external field at -75°, -

60°, and -45°. 

Figure 4.5 shows the torque as a function of  at a magnetic field of 75 mT and 

different strains. The equilibrium angle shifted to larger values with increasing strain 

according to the results shown in Fig. 4.3. For each strain, the torque increased with 

increasing angle though with regressing slope. The slope of the torque vs. angle curves 

decreased with increasing strain such that the maximum torque at 0% strain was 10.1 

mNm and decreased to 1.72 mNm at 6% strain, a decrease by a factor of 5.87. 

 
Figure 4.5 Torque as a function of angle  between the sample’s long axis and 

magnetic field at 75 mT applied field for different values of strain. The maximum 

measured torque decreased by a factor of 6 from 0% to 6% strain. 
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4.5 Discussion 

The total magnetic energy of a specimen is the sum of the exchange energy (Eex), 

the magnetocrystalline anisotropy energy (Eanis), the energy of the magnetized sample in 

an external field, also known as the Zeeman energy (EZ), and the energy of the 

magnetized sample in its own internal field created by the net magnetization, often 

referred to as the shape anisotropy energy (Eint). The exchange energy causes the 

magnetic moments to align parallel (i.e. ferromagnetically). The magnetocrystalline 

anisotropy energy results from the symmetry of the crystal lattice and effectively keeps 

the magnetization vector parallel to the easy axis of magnetization. Ni-Mn-Ga with 10M 

martensite is uniaxially anisotropic and the crystallographic c direction is the direction of 

easy magnetization. The magnetocrystalline anisotropy energy depends on the angle 

between the magnetization vector and the c direction. The Zeeman energy is the dot 

product of the magnetization vector and external magnetic field vector. The magnetic 

poles of a magnetized specimen create an internal magnetic field, which opposes the 

external field and is a function of sample geometry. The total energy is given by 

𝐸total = 𝐸ex + 𝐸anis + 𝐸Z + 𝐸int (4.1) 

All energy terms are given as energy densities referring to the sample volume. 

The magnetic moments orient such as to minimize Etotal. The total magnetic energy is a 

function of the angle of the external magnetic field with the sample. The negative first 

derivative of the total magnetic energy with respect to the angle  between the field and 

sample (Figure 4.2a) gives the torque on the sample due to the magnetic energy: 

𝜃 = −𝑑𝐸total/𝑑𝛾 (4.2) 
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The equilibrium angle of the specimen in the external magnetic field is the angle 

at which the torque on the specimen is zero; it is the angle at which the magnetic energy 

is minimal. 

As stated by Liang et al [6] and Kucza et al. [5], the torque on a specimen is 

governed by the Zeeman, magnetocrystalline and shape anisotropy energies. The 

specimen had three domains and two twin boundaries. The axis of easy magnetization 

changed across each twin boundary, and each domain had a different shape anisotropy 

energy. As the strain of the sample changed so did the relative sizes of each domain. The 

shape anisotropy for each domain was different at each strain value resulting in the 

variation of the equilibrium angle in Figure 4.3. The equilibrium angle did not depend on 

the field strength except at 3% strain where the value for 100 mT deviated from those at 

50 and 75 mT. We assume that this deviation resulted from the small movements of twin 

boundaries (as described in the experimental section). Thus, the actual strain value of that 

sample was less (as indicated by the arrow in Figure 4.3). 

The torque as a function of angle for external fields ranging from 25 mT to 150 

mT is plotted in Figure 4.4a. A sine function for each external field was empirically fit to 

the torque values. The values of torque for -75°, -60°, and -45° at each external field were 

interpolated from the fitting functions. These torque values are plotted in Figure 4.4b as a 

function of the magnetic field. The torque magnitude has a non-linear dependence on the 

external field magnitude. In order to find this dependence, a linear equation was fit to the 

logarithm of torque as a function of the logarithm of external field. The slope of the 

relationship for each angle was 1.88 ± 0.02. The power dependence of the torque on 

magnetic field is slightly less than quadratic. 
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The maximum torque measured on the sample changed by a factor of 5.87 

between single variant states. The major difference in these two cases is the shape 

anisotropy of the domain and resulting internal field. We can define the internal field 

with a demagnetization factor (Section 4.4.3). The larger the demagnetization factor, the 

larger the internal field. At 0% strain, the single domain has easy axis of magnetization 

parallel to the long dimension, which has a small demagnetization factor of about 0.093 

[15]. At 6% the easy axis is parallel to the sample dimension with a larger 

demagnetization factor of about 0.386 [15]. The ratio of large demagnetization to small 

demagnetization is 4.15. 

4.5.1 Zeeman Energy 

A magnetic material in an external magnetic field (Figure 4.6) has a net 

magnetization, M with magnitude M. The angle  is the angle between the longest axis of 

the sample (which is also the x direction) and the magnetic field, and α is the angle 

between the magnetization vector and the sample’s longest axis. 

 
Figure 4.6 A magnetic material subjected to an external magnetic field at an angle 

 to the sample edge experiences a magnetization M at an angle α to the sample edge. 

In a soft, magnetically anisotropic material, such as Ni-Mn-Ga, at low magnetic 

field the magnetic anisotropy energy holds the direction of magnetization nearly parallel 
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to the easy axis of magnetization. (Ni-Mn-Ga saturates at fields well below the external 

fields used in the experiment.) When saturated in the easy axis the Zeeman energy is  

𝐸Z = −𝜇0𝑀𝑠𝐻|cos(𝛾 − 𝛼)| (4.4) 

A soft magnet will magnetize in both directions in the easy axis. This means the 

Zeeman energy is always negative, hence the absolute value of the cosine function.  

Equation 4.4 has 2 energy minima at  = 0° and 180°. 

 
Figure 4.7 Specimen containing two domains, A and B, with easy axis of 

magnetization parallel to the x and y directions, respectively. As the strain is 

increased, the fraction of domain B increases and domain A shrinks. 

Consider a Ni-Mn-Ga sample with 2 domains, A and B, where the easy axis of 

magnetization of domains A and B are parallel to the x and y directions (Figure 4.7). The 

fraction of each domain, fA and fB, depends on the overall strain of the sample. Zero strain 

corresponds to only domain A, or fA = 1 and fB = 1 – fA = 0. Full strain (6% for 10M) 

corresponds to fB = 1 and fA = 0. For simplicity, we refer here to normalized strain 𝜖 = 

/max, such that 𝜖 =  𝑓𝐵.  Since the orientation of the easy axis of magnetization is 

different in each domain, the energy must be calculated for each domain individually. 

The total Zeeman energy for a specimen is:  

𝐸Z = −𝜇0𝑀𝑠𝐻[𝑓𝐵|sin(𝛾 − 𝛼)| + 𝑓𝐴|cos(𝛾 − 𝛼)|] (4.5) 

Assuming α is small, the torque due to Zeeman energy (for brevity Zeeman 

torque, Z) 



77 

 

 

𝜃Z = −
𝑑𝐸Z

𝑑𝛾
= 𝜇0𝑀𝑠𝐻[𝜖(sin 𝛾 + cos 𝛾) − sin 𝛾] (4.6) 

For the equilibrium angle, Equation 4.6 yields by setting Z = 0: 

𝛾 = arctan (𝜖 (1 − 𝜖)⁄ ) (4.7) 

Equation 4.7 is plotted in Figure 4.3. It accounts well for the equilibrium angle at 

small (i.e. compressed sample) and large (i.e. extended sample) strain but overestimates 

the equilibrium angle at intermediate strains. 

The magnitude of the Zeeman torque depends on the amount of strain on the 

sample. The zero of the torque (equilibrium angle) in Equation 4.7 also depends on strain. 

The Zeeman torque has a maximum of 𝜇0𝑀s𝐻 when 𝜖 = 0 or 1. For an external field of 

75 mT, the maximum torque density is 36 kNm/m3. 

4.5.2 Magnetocrystalline Anisotropy 

Consider a material with uniaxial magnetic anisotropy, i.e. it has an easy axis of 

magnetization. Magnetizing the sample in a direction not parallel to the easy axis is 

unfavorable and has a positive energy. The energy density is represented by the product 

of the anisotropy energy constant KU with the square of the sine of the angle α between 

the easy axis of magnetization and the direction of net magnetization (Figure 4.6): 

 𝐸anis = 𝐾𝑢sin2𝛼 (4.8) 

For martensitic Ni-Mn-Ga with 10M structure the anisotropy energy constant Ku 

is 2.45x105 J/m3 [16]. 

When a component of the magnetic field is perpendicular to the easy axis of 

magnetization, the magnetic moments rotate to reduce the angle to the magnetic field 

direction (Figure 4.6). The angle α varies with the magnitude and direction of the external 

magnetic field.  
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The magnetocrystalline anisotropy keeps the magnetic moment parallel to the 

easy axis. In an external field, the magnetization vector has an equilibrium position which 

is the angle α at which the total magnetic energy is minimal. The total magnetic energy is 

𝐸total = −𝜇0𝑀s𝐻 cos(𝛾 − 𝛼) + 𝐾𝑢sin2𝛼 (4.9) 

In order to find the equilibrium angle of the magnetization with the x axis α, we 

set the first derivative of Equation 4.9 with respect to α equal to zero and solve for α. 

With this angle we find the total magnetic energy density as a function of  for domains 

A (c // x) and B (c // y) [17]: 

𝐸MA =  −𝜇0𝑀s𝐻 cos 𝛾 +
1

4𝐾𝑢
(𝜇0𝑀s𝐻a)2sin2𝛾 (4.10A) 

𝐸MB =  −𝜇0𝑀s𝐻 sin 𝛾 +
1

4𝐾𝑢
(𝜇0𝑀s𝐻)2cos2𝛾  (4.10B) 

We find the torque density due for each domain A and B with Eqs. 4.2 and 4.10: 

𝜃MA = −𝜇0𝑀s𝐻 sin 𝛾 −
1

4𝐾𝑢
(𝜇0𝑀s𝐻)2 sin 2𝛾  (4.11A) 

𝜃MB = 𝜇0𝑀s𝐻 cos 𝛾 +
1

4𝐾𝑢
(𝜇0𝑀s𝐻)2sin 2𝛾  (4.11B) 

Equation 4.11 gives the torque density normalized by the sample volume for each 

domain. The relative size of each domain changes as the strain changes. In order to find 

the total torque density as a function of strain, the torque density in domain A is 

multiplied by the relative strain 1-ϵ = fA and the torque density in domain B is multiplied 

by ϵ = fB. The sum of the two torque densities results in the total torque due to the 

Zeeman and magnetocrystalline anisotropy energies as a function of the relative strain 

and : 

𝜃MT = (𝜇0𝑀s𝐻)[𝜖(sin 𝛾 + cos 𝛾) − sin 𝛾] +
1

4𝐾𝑢
(𝜇0𝑀s𝐻)2 sin 2𝛾 (2𝜖 − 1) (4.12) 
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The first term in Equation 4.12 is equivalent to the right side of Equation 4.6. The 

second term is the torque density due to magnetocrystalline anisotropy energy. The terms 

both contain a constant multiplied by a function of  and ϵ. For an external field of 75 mT 

and saturation magnetization 0.6 T, the constant in the Zeeman term has a value of 36 

kNm/m3 and the magnetocrystalline term has a value of 1.3 kNm/m3. The Zeeman term is 

more than an order of magnitude larger than the contribution of the magnetocrystalline 

anisotropy energy. 

The functions of strain and angle in each term have different characteristics. The 

angle  at which the Zeeman torque is zero and the energy is minimized changes 

continuously as the strain changes, going from 0° to 90° as the normalized strain goes 

from 0 to 1. The zero of the magnetocrystalline torque corresponding to the energy 

minimum is only either 0° or 90°. If ϵ < 0.5 the equilibrium angle is 0° and if ϵ > 0.5 the 

equilibrium angle is 0°. If the strain ϵ = 0.5 the magnetocrystalline torque is zero for all 

angles of . The torque contribution of the magnetocrystalline anisotropy energy does not 

have the same symmetry as the Zeeman energy, but is small and does not significantly 

contribute to the torque at the low fields in the experiments. The equilibrium angle is 

almost identical to Equation 4.7 and cannot be distinguished in Figure 3 from the solution 

which neglects the magnetocrystalline anisotropy energy (i.e. Equation 4.7). These two 

energies do not predict accurately the equilibrium angle for intermediate strain values.  

4.5.3 Internal Field 

The equations in Section 4.4.1 for the Zeeman energy assume that the magnetic 

field inside the material is the same as the external magnetic field. In fact, a magnetized 

body creates its own demagnetizing internal magnetic field in addition to the external 
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field. The demagnetizing field (internal field) is a function of the specimen geometry and 

the orientation in the external field. 

The effective magnetic field in the body is  

𝐻eff =  𝐻 − 𝑁𝑑𝑀 (13) 

where Nd is the geometric demagnetization factor and M the average magnetization of the 

sample. The sum of the Zeeman and internal field energies is  

𝐸net = −𝜇0 (𝐻 −
1

2
𝑁𝑑𝑀) ∙ 𝑀 (4.14) 

The summation of the interaction between magnetic moments counts each 

interaction twice; thus, a factor of ½ is included in the internal field energy term. The 

energy 𝐸net refers to the total magnetic field energy. In a non-spherical sample such as a 

bar, Nd is different for each direction.  

The shape anisotropy and internal field significantly affect the torque in the Ni-

Mn-Ga specimen. Figure 4.5 shows that the torque required to rotate the specimen 

decreases with increasing strain. As the strain increases, the domain with easy axis of 

magnetization parallel to the short dimension of the sample increases. The geometry of 

the domain with easy axis parallel to the long dimension changes such that the 

demagnetization factor in the easy axis increases as well. At 6% strain, the internal field 

is large due to large demagnetization factor, while at 0% strain the demagnetization factor 

and internal field are small. The maximum torque decreased by a factor of 5.87 between 

0% and 6% strain, while the relative demagnetization factor decreased by a factor of 4.15 

[15]. 

Ni-Mn-Ga has uniaxial anisotropy along the crystallographic c direction, which 

causes the magnetization vectors to align in that direction. We know the direction of 
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magnetization, however, for a twinned specimen (Figure 4.7) the c direction varies 

throughout the sample and the domain pattern changes with varying strain. The geometry 

of each domain changes with strain. The demagnetizing field is a function of the 

magnetization as well as the demagnetization factor; this means that Nd must be 

calculated for each twin domain at each strain value. Additionally, the susceptibility 

along the easy axis is very high and the magnetization saturates at a low field (~15 mT).  

Let us assume a single domain with easy axis of magnetization parallel to x 

(Figure 4.6) that saturates at an effective field of 15 mT. We represent the average 

magnetization as a function of the effective field with a piecewise function (Equation 

4.15) instead of a linear one. 

𝑀𝑎𝑣 = {
𝜒𝐻eff 0 ≤ 𝐻eff < 15 𝑚𝑇

𝑀s 𝐻eff ≥ 15 𝑚𝑇
} (4.15) 

The internal field energy does not significantly contribute to α at low external 

fields. We analyze the external and internal field energies separately. The energies in 

Equations 4.10 can be combined with the internal energy calculated from Equations 4.14 

and 4.15 to find the total energies of domains A and B: 

𝐸TA =  −𝜇0𝑀s𝐻 cos 𝛾 +
1

4𝐾𝑢
(𝜇0𝑀s𝐻)2sin2𝛾 +

1

2
𝐻𝑑

𝑥𝑀av (4.16A) 

𝐸TB =  −𝜇0𝑀s𝐻 sin 𝛾 +
1

4𝐾𝑢
(𝜇0𝑀s𝐻)2cos2𝛾 +

1

2
𝐻𝑑

𝑦
𝑀av  (4.16B) 

where Hd
x and Hd

y are the demagnetizing fields for the A domain in the x direction and 

the B domain in the y direction, respectively. The internal field energy in Equation 4.16 is 

not a continuous function of  if the magnetization saturates. The torque due to the 

internal field must be calculated for specific values of strain, , and H. Some values for 

the magnetotorque are given in Table 4.1 and discussed in Section 4.4.4. 
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Table 4.1  Torque contributions from the Zeeman energy, magnetocrystalline 

anisotropy energy, and shape anisotropy energy, as well as the measured torque. 

For relative strains of 𝝐 = 0, 0.5 and 1 the symbolic equation for each contribution is 

given along with the calculated maximum value, angle of maximum torque, and 

angle for which the torque vanishes. The angle refers to , which is the angle 

between the long axis of the sample and the magnetic field. The calculated values 

are given for an external field Ha = 75 mT, saturation magnetization Ms = 0.6 T, and 

magnetocrystalline anisotropy energy of Ku = 2.45 x 105 J/m3. The torque values 

given are normalized by the volume, and have the units kNm/m3 = kPa. 

 

 

4.5.4 Comparison of different energy contributions to magnetic torque 

Table 4.1 contains the torque contributions from the Zeeman energy, 

magnetocrystalline anisotropy energy, and shape anisotropy energy, as well as the 

measured torque in a Ni-Mn-Ga specimen. For relative strains of 𝜖 = 0, 0.5 and 1 the 

symbolic equation for each contribution is given along with the calculated maximum 

𝜖 Zeeman energy 

(kNm/m3) 

Magnetocrystalline 
anisotropy energy 

(kNm/m3) 

Shape anisotropy energy 

(kNm/m3) 

Experimental 

(kNm/m3) 

0 −𝜇0𝑀s𝐻a sin 𝛾 −1

4𝐾𝑢

(𝜇0𝑀s𝐻a)2 sin 2𝛾 
1

2
𝐻𝑑

𝑥𝑀s 
-80 57° 4° 

-36 90° 0° -1.3 45° 0° 11 90° 0° 

0.5 1

2
𝜇0𝑀s𝐻a(cos 𝛾

− sin 𝛾) 

0 1

4
𝑀s(𝐻𝑑

𝑥 + 𝐻𝑑
𝑦

) 
-23 67° 22° 

±18 0°, 
90° 

45° 0 none All 
angle
s 

±8 90°, 
0° 

45° 

1 𝜇0𝑀s𝐻a cos 𝛾 1

4𝐾𝑢

(𝜇0𝑀s𝐻a)2 sin 2𝛾 
1

2
𝐻𝑑

𝑦
𝑀s 

-13 133° 89° 

36 0° 90° 1.3 45° 90° -17 0° 90° 
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value, angle of maximum torque, and angle for which the torque vanishes. The angle 

refers to , which is the angle between the long axis of the sample and the magnetic field. 

The calculated values are given for an external field H = 75 mT, saturation magnetization 

Ms = 0.6 T, and magnetocrystalline anisotropy energy of Ku = 2.45 x 105 J/m3. The torque 

values given are normalized by the volume, and have the units kNm/m3 = kPa.  

The Zeeman energy from the external field contributes the most to the torque. At 

low fields such as the ones used in this experiment, the magnetocrystalline anisotropy 

energy is negligible. The magnitude of the shape anisotropy energy is much greater in the 

case for ε = 1 because domain A has its easy axis parallel to the direction with the largest 

demagnetization factor. Figure 5 shows that with increasing fraction of domain B, the 

torque required to rotate the specimen decreases. This is due to the larger demagnetizing 

field in the direction of easy magnetization in domain B. 

The sum of the magnitudes of the calculated torques does not match the measured 

torque. The case for ε = 0 has a measured torque larger than the combined magnitudes of 

the torque calculated. The sum of the calculated torques in the case where ε = 1 results in 

a torque of the opposite sign of the measured torque. 

The analysis used to calculate torque internal field energy is insufficient to use for 

a twinned sample of Ni-Mn-Ga because (i) Equation 4.14 assumes a homogeneous 

magnetization and (ii) the domains are not rectangular. Twin domains magnetize 

differently due to the difference in easy axis of magnetization. Additionally, material 

interfaces including twin boundaries, affect the magnetization. Also, no published values 

of demagnetization factor for the shape of the domains exist. We can apply 

demagnetization factors to single-domain states, at 0% and 6% strain, but not at 
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intermediate strains. Finally, we cannot assume that neighboring domains do not 

influence each other [10]. Thus, a quantitative analysis of the torque of twinned specimen 

requires numerical, micromagnetic calculations which are beyond the scope of this study. 

The sample had two twin boundaries and three domains (Figure 4.2b). The twin 

structure in the sample was B-A-B (using the domain nomenclature in Figure 4.6). The 

center domain (domain A) has c // x while the two outside domains have c // y. We also 

tested the sample with an opposite twin structure, A-B-A. At an equal magnetic field of 

75 mT and equal strain value of 2%, the B-A-B structure required 1.7 times more torque 

to rotate than the A-B-A structure. The only difference was the geometry of each domain, 

which resulted in different internal field magnitudes in the domains. 

The demagnetization factor does not provide sufficient information to describe the 

internal field in the sample. The above analysis assumes saturation of the magnetization 

and independent stray fields in each domain. Also, a sample with the same number of 

domains and overall strain can experience very different torques, even with relatively 

simple domain structures containing only two twin boundaries. We cannot account for 

the internal field with an experimentally derived parameter using these values. The 

evaluation of the internal field requires a micromagnetic analysis of specific twin 

microstructures which is beyond the scope of this study. 

4.6 Conclusion 

The magnetocrystalline anisotropy energy caused the magnetic moments to 

remain parallel to the axis of easy magnetization; the direction of magnetic moments was 

invariant. The Zeeman energy was a function of the angle between the sample and field, 

resulting in torque on the sample. While the change in Zeeman energy contributed the 
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most to the torque, the internal field energy drastically reduced the torque at large strain 

values. The change in maximum torque in Figure 4.5 as well as the deviation of 

equilibrium angle from that calculated in Equation 4.7 are due to the difference in 

internal field energy due to shape anisotropy. 

As the strain in the sample increased, the geometries of each domain changed 

such that the demagnetization factor in the direction of the easy axis increased. The 

increase in internal field effectively decreased the magnitude of the external field, which 

resulted in smaller total energy and less torque. When the magnetocrystalline and shape 

anisotropies worked synergistically (the easy axis was parallel to the long domain 

dimension) the sample experienced a large torque. When the magnetocrystalline and 

shape anisotropies worked antagonistically (the easy axis was parallel to the short sample 

dimension) the sample experienced smaller torque. 

Not only the sample geometry but the twin domain microstructure changes the 

contribution of the internal field to the magnetization and energetics of the sample. This 

in turn affects the magneto-mechanical properties. Sample geometry and twin domain 

structure can be manipulated in order to optimize the desired response of an MSMA 

sample. 
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4.9 Supplemental Materials 

A soft magnetic iron (VWR Scientific, composition Fe-98.8±0.1%, Mn-0.7±0.1% 

and Si-0.3±0.1% as measured with EDS) was machined into a bar with dimensions 19.98 

x 3.50 x 1.79 mm3. The soft magnetic iron had a magnetic susceptibility of 15 as 

measured with a vibrating sample magnetometer (VSM, DMS Model 10). An Alnico 8 

permanent bar magnet (Grainger) was also subjected to torque measurements.  

Figure S1 shows the torque as a function of the angle  for the Alnico 8 

permanent magnet (Figure 4.8a) and the soft magnetic iron (Figure 4.8b). The permanent 
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magnet came to an equilibrium angle (i.e. at zero torque) within a few degrees near 0°, 

i.e. when the longest dimension of the sample was parallel to the magnetic field. The 

permanent magnet rotated by 80° to 110° in  before spinning to a new equilibrium angle. 

The magnitude of the maximum torque increased nearly linearly with the magnitude of 

the external field. The torque increased linearly with the angle until close to 70° before 

leveling off. 

 
Figure 4.8 Torque in a field of 25, 50, and 100 mT as a function of angle  between 

the magnetic field and the direction of the long axis of the sample for (a) the Alnico 8 

permanent magnet and (b) the soft magnetic iron.  The permanent magnet (a) rotated 

by much more than the soft iron (b) because the permanent magnet had only one 

equilibrium angle at  = 0° while the soft iron had two equilibrium angles at  = 0° 

and 180°.  The main torque contributor in the permanent magnet is the Zeeman 

energy, while in the soft iron it is the shape anisotropy energy. 

The soft iron came to an equilibrium angle within a few degrees of 0° as well. The 

torque increased nearly linearly to around 30° to 50°, without leveling off before spinning 

to a new equilibrium position.  The magnitude of the torque increased with the external 

field with a power dependence between a linear and quadratic relation (Section 4.4.4).  

In the case of the permanent magnet, the magnet aligned with the field so the 

moments were parallel to the field. At 180° to the equilibrium position, the moments 

were aligned anti-parallel to the field, which is the angle of maximum energy and an 

unstable equilibrium. The permanent magnet had only one stable equilibrium position 
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determined by the Zeeman energy, the energy of a magnetized body in an external field. 

The soft magnetic material aligned such that the demagnetizing (internal) field was 

minimized. The magnetic moments aligned parallel to the field at any orientation. The 

soft iron had two stable equilibrium angles separated by 180°, where the magnetic field 

was parallel to the direction of smallest demagnetization factor (Section 4.4.3). 

The samples spun to the nearest equilibrium angle in the direction of the applied 

torque once the loading system became unstable. The equilibrium angles of the 

permanent magnet were separated by 360° as opposed to the soft iron which had 

equilibria separated by 180°. The permanent magnet rotated by approximately twice the 

angle  before the loading system became unstable.  

In the case of the Alnico 8 permanent magnet (Figure 4.8a) the magnetization 

direction is along the sample’s long axis (parallel to x) and α = 0°. Equation 4.3 then 

reduces to 

𝐸Z = −𝜇0𝑀𝐻 cos 𝛾 (4.17) 

The negative cosine function contains one minimum at 0°, giving one equilibrium 

angle between the permanent magnet and the magnetic field. In this case, the torque 

increases proportional to sin and to the magnetic field as found experimentally (Fig. 

4.8a). 

In a soft, magnetically isotropic material, such as the soft iron bar, the 

magnetization changes direction depending on the magnetic field direction. The magnetic 

hysteresis of a soft magnetic material is very small and, thus, the magnetization direction 

is nearly parallel to the magnetic field. In this case  =  and the Zeeman energy is 

 𝐸Z = −𝜇0𝑀𝐻.  (4.18) 
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At low fields (i.e. substantially below the saturation field) and for soft magnetic 

materials, the magnetization is linearly proportional to the external magnetic field: M = 

χH where χ is the magnetic susceptibility. For a soft, isotropic magnetic material χ does 

not depend on direction (χx = χy). Substituting the linear relationship between M and H in 

Equation 4.18 for the Zeeman energy gives 

 𝐸Z = −𝜇0𝜒𝐻2
.  (4.19) 

In the case for a soft isotropic material the Zeeman energy does not depend on 

orientation. Therefore, the Zeeman energy does not impose a torque. The torque 

measured for soft iron (Figure 4.8b) originates from the shape anisotropy (Section 4.4.3). 

We decompose the components of the external field and magnetization into the x 

and y components. The components of the external field are  

𝐻𝑥 = 𝐻 cos 𝛾 (4.20A) 

𝐻𝑦 = 𝐻 sin 𝛾 (4.20B) 

The magnetization M in Equation 4.18 is the effective magnetization; using 𝑀 =

𝜒𝐻𝑒𝑓𝑓 (i.e. substantially below saturation), the effective magnetic field is: 

𝐻eff = 𝐻
(1 + 𝑁𝑑𝜒)⁄  (4.21) 

The x and y components of the magnetization are  

𝑀𝑥 = 𝜒𝐻𝑥
1 + 𝑁𝑑

𝑥𝜒
⁄  (4.22A) 

𝑀𝑦 =
𝜒𝐻𝑦

1 + 𝑁𝑑
𝑦

𝜒
⁄  (4.22B) 

Nd
x and Nd

y refer to the demagnetization factors in the x and y dimensions of the 

sample. The dot product in Equation 4.19 becomes  

𝐸net = −𝜇0 [(𝐻𝑥𝑀𝑥 + 𝐻𝑦𝑀𝑦) −
1

2
(𝑁𝑑

𝑥𝑀𝑥
2 + 𝑁𝑑

𝑦
𝑀𝑦

2)]  (4.23) 
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To find the total magnetic field energy for the soft iron bar, we combine 

Equations 4.20, 4.21, and 4.22; we obtain the net energy due to external and internal 

fields 

𝐸net = −𝜇0 {𝜒𝐻2 (
cos2𝛾

1+𝑁𝑑
𝑥𝜒

+
sin2𝛾

1+𝑁𝑑
𝑦

𝜒
) −

1

2
𝜒2𝐻2 [𝑁𝑑

𝑥 (
cos 𝛾

1+𝑁𝑑
𝑥𝜒

)
2

+ 𝑁𝑑
𝑦

(
sin 𝛾

1+𝑁𝑑
𝑦

𝜒
)

2

]} (4.24) 

Using Equation 4.2 to find the torque due to the magnetic field energy, we find  

𝜃net = 𝜇0𝜒𝐻2 sin 2𝛾 [
1

1+𝑁𝑑
𝑦

𝜒
−

1

1+𝑁𝑑
𝑥𝜒

−
𝜒𝑁𝑑

𝑦

2(1+𝑁𝑑
𝑦

𝜒)
2 +

𝜒𝑁𝑑
𝑥

2(1+𝑁𝑑
𝑥𝜒)

2] (4.25) 

The torque due to net magnetic field energy has zeros at  = 0° and 90° and a 

maximum at  = 45°. The torque zeros at  = 0° and 90° correspond to one energy 

maximum and one energy minimum. If 𝑁𝑑
𝑥 < 𝑁𝑑

𝑦
,  = 0° corresponds to an energy 

minimum and is the equilibrium angle. This is the case for the current specimen, the 

longer x dimension results in a smaller demagnetization factor and internal field with the 

field parallel to that direction. The difference in demagnetization factors (shape 

anisotropy) is the driving force of the torque in the soft magnetic iron (if the 

demagnetization factors are equal, Equation 4.25 is zero). If 𝑁𝑑
𝑥 > 𝑁𝑑

𝑦
,  = 90° 

corresponds to an energy minimum. 

The symmetry (or period) of Equation 4.25 matches the symmetry of the 

measured torque. Equation 4.25 has a period half that of Equation 4.4, which describes 

the energy in the permanent magnet. The soft iron rotates by approximately half the angle 

of the permanent magnet in accordance with this analysis. The magnitude of the torque 

described by Equation 4.25 varies with the square of the external field H. In order to 

determine the relationship between torque and external field of the experimental data, we 

found the slope of the relationship of log𝜃net vs. log H. The slope for the experimental 
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data varied from 1.4 to 1.3 as  varied from 0° to 45°, thus, the field dependence of the 

torque is less than quadratic. Equation 4.25 assumes a homogeneous magnetization and 

neglects effects of a magnetic domain structure. 

The anisotropic shape of the sample causes a different internal field depending on 

the orientation of the sample in the magnetic field. Shape anisotropy results in a torque on 

the soft iron of the same order of magnitude as the torque measured in the other samples. 
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5.1 Abstract 

Magnetic shape memory alloys experience magnetic-field-induced torque due to 

magnetocrystalline anisotropy and shape anisotropy. In a homogeneous magnetic field, 

torque results in bending of long samples. This study investigates the torque on a single 

crystal of Ni-Mn-Ga magnetic shape memory alloy constrained with respect to bending in 

an external magnetic field. The dependence of the torque on external magnetic field 

magnitude, strain, and twin boundary structure was studied experimentally and with 

computer simulations. With increasing magnetic field, the torque increased until it 

reached a maximum near 700 mT. Above 200 mT, the torque was not symmetric about 

the equilibrium orientation for a sample with one twin boundary. The torque on two 

specimen with equal strain but different twin boundary structures varied systematically 

with the spatial arrangement of crystallographic twins. Numerical simulations show that 

twin boundaries suppress the formation of 180° domains if the direction of easy 

magnetization between two twin boundaries is parallel to a free surface and the magnetic 

field is perpendicular to that surface. For a particular twin microstructure, the torque 

decreases with increasing strain by a factor of six due to the mutual compensation of 

magnetocrystalline and shape anisotropy. When free rotation is suppressed such as in 

transducers of magneto-mechanical actuators, magnetic-field-induced torque creates 

strong bending forces which may cause friction and failure under cyclic loading. 

5.2 Introduction 

As all magnets do, magnetic shape memory alloy (MSMA) samples experience a 

torque when exposed to a magnetic field that is not parallel to the magnetization of the 

sample. Although very basic, this torque has been neglected in almost the entire literature 
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on the magneto-mechanics of MSMAs as exemplified in a recent review [1]. Zheng et al. 

[2] demonstrated magnetic-torque-induced bending (MTIB) of MSMA wires and Kucza 

et al. [3] discovered a shape effect according to which long samples (i.e. samples with a 

large length-to-width aspect ratio) deform in a magnetic field mostly by bending (i.e. 

MTIB) while short samples (i.e. samples with a small aspect ratio) deform axially by 

magnetic-field-induced straining (MFIS). 

MFIS proceeds by deformation twinning in the low temperature martensite phase. 

Twin boundaries move if the stress induced by an external magnetic field exceeds a 

critical stress referred to as the twinning stress. Twin boundary motion reorients the 

anisotropic unit cell. As the twin boundary moves through the material, one twin domain 

grows and the other shrinks, which results in a macroscopic shape change. The driving 

force for twin boundary motion in an external field has been analytically described as the 

change in magnetic energy over a finite distance the twin boundary moves [4-6]. The 

authors applied micromagnetic principles in their energy calculations. In analytical 

methods, many times only the external field and magnetocrystalline anisotropy energies 

are accounted for [5,7,8]. Typically, authors assume that a twin domain is 

homogeneously magnetized [5,9,10], which ignores the potential for 180° domain walls 

to form. Other models, which include 180° magnetic domains, fix domain fractions such 

that the 180° magnetic domain wall maintains continuity across the twin boundary 

[11,12]. 

These models differ from experimental findings of Lai et al. who described that 

180° domains existed in the twin domain with axis of easy magnetization perpendicular 

to the external field [13]. The 180° domain walls did not maintain continuity at a twin 
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boundary. Analytical calculations were based on a physical model of the magnetic 

structure in the material. The assumptions taken to create the physical model restricted 

the energy landscape the model can access. The validity of the physical model was not re-

assessed once the energy minimization was completed. The complexity of magnetic and 

mechanical microstructures made it nearly impossible to create a reasonable model to 

describe the material. In the case of a bending sample [2,3,14], the axis of easy 

magnetization is not simply parallel to or perpendicular to the magnetic field. 

Additionally, the twin structure changes depending on the amount of bending, and twin 

boundaries may not be parallel. 

Magnetic field induced bending in magnetic shape memory alloys was reported 

on a thin film and attributed to a magnetic field gradient in an inhomogeneous field [14]. 

The authors noted that, even in a homogeneous field, the magnetocrystalline and shape 

anisotropy result in a torque on the specimen. Zheng et al. first reported on bending in a 

homogeneous magnetic field [2]. The authors rotated an oligocrystalline wire in a 

homogeneous field; the wire not only experienced axial strain but also magnetic-torque-

induced bending. The driving force for bending was attributed to magnetic torque; twin 

boundary motion accommodated bending. Kucza et al. further studied MTIB in a 

homogeneous field by rotating single crystal specimen with varying aspect ratio in an 

external magnetic field [3]. The bending strain increased with increasing aspect ratio, 

while the axial strain stayed consistent. The authors qualitatively described the torque 

magnitude in terms of the Zeeman, magneto crystalline and shape anisotropy energies. 

The authors discussed the influence of magnetic energies on the dependence of bending 

on the external magnetic field and sample geometry [3]. However, a bending specimen 
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presents an exceptionally difficult system to analyze quantitatively. Many twin 

boundaries exist, and the angle of the magnetic field with respect to the axis of easy 

magnetization varies across the length of the specimen.  

Characterization of torque gives the ability to directly probe the energetics of a 

sample in a magnetic field [15]. In a previous study we investigated the torque on a Ni-

Mn-Ga single crystal specimen constrained with respect to bending in an external 

magnetic field. The torque magnitude varied by nearly a factor of 6 depending on the 

strain of the specimen, i.e. the twin domain fraction present in the specimen. We 

attempted to describe the torque with the change in magnetic energy as a function of the 

angle between the specimen and magnetic field. The magnetic energy was described 

assuming homogeneous magnetization in twin domains, but the torque could not be 

adequately described with the external field, demagnetizing field, and anisotropy energies 

but requires numerical, micromagnetic calculations, which is the objective of the present 

study. 

5.3 Micromagnetism 

Micromagnetism is the numerical study of the energy contributions to the 

equilibrium magnetic structure of a material on a mesoscopic length scale. In other 

words, we seek the distribution of magnetic moments that minimizes the total energy 

with a resolution in the range of nanometers to micrometers. We consider the following 

energies. (1) The exchange energy is the product of the exchange constant Cex, with the 

square of the gradient of the magnetization, M, integrated over the sample volume (V): 

𝐸ex = 𝐶𝑒𝑥 ∫ |∇𝐌|2
𝑉

𝑑𝑉 (5.1)  
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(2) The magnetocrystalline anisotropy energy: Ni-Mn-Ga is uniaxial anisotropic 

with the anisotropy energy constant Ku : 

𝐸anis = ∫ 𝐾𝑢sin2𝛼
𝑉

𝑑𝑉 (5.2) 

(3) The external field energy is the dot product of the external field vector H with 

the magnetization vector M. The external field energy is often referred to as the Zeeman 

energy: 

𝐸Z = −𝜇0 ∫ 𝐌 ∙ 𝐇ext𝑉
𝑑𝑉 (5.3) 

The constant 0 is the magnetic permeability of free space.  

(4) The internal field energy is the energy of the magnetic moments in the field 

created internally by the net magnetization in a magnetized specimen. The internal field 

is calculated using Poisson’s equation, where the effective magnetic charge density  is 

found from the Laplacian of the magnetic potential U, expressed as ∆𝑈 = 𝜌. The internal 

magnetic field, analogous to the electric field created by an electric potential, is given as 

𝐇int = ∇𝑈. The internal field energy is 

𝐸int =
𝜇0

2
∫ |∇𝑈|2

𝑉
𝑑𝑉 (5.4) 

The effective magnetic field, H, at a point in a specimen is given as the first 

derivative of the energy with respect to magnetization:  

 =  −
𝛿𝐸

𝛿𝑀
=  

2𝐶𝑒𝑥

𝑀𝑠
2 |∇𝐌|2 −

2𝐾𝑢

𝑀𝑠
2 (𝑀2 + 𝑀3) + 𝜇0𝐇ext − 𝜇0∇𝑈 (5.5) 

The effective field is the driving force for a change in magnetization which results 

in lower energy. Equation (5.5) assumes uniaxial magnetocrystalline anisotropy, where 

M2 and M3 are the magnetization components in Cartesian coordinates orthogonal to the 

axis of easy magnetization. Ms is the saturation magnetization. The relaxation process of 
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the magnetization distribution in a ferromagnetic material is described by the Landau-

Lifshitz equation [16] 

𝑑𝐦

𝑑𝑡
= 𝛾0𝐦 × 𝐇 −

𝛼𝛾0

𝑀𝑠
𝐦 × (𝐦 × 𝐇) (5.6) 

The constants α and 0 are the damping and gyromagnetic terms, respectively. 

5.4 Experimental Procedure 

Single crystal specimen of Ni-Mn-Ga were grown with a modified Bridgeman-

Stockbarger technique with an apparatus described in Ref. [17]. Specimen were grown 

with a nominal composition of Ni50.5Mn27.75Ga21.75 (atomic percent); however, due to 

chemical segregation during growth there was a composition gradient across the crystal 

resulting in sections with different martensite structures at room temperature. Crystals 

were characterized in a Hitachi S3400 scanning electron microscope with energy 

dispersive x-ray spectroscopy (EDS, Oxford Instruments Energy+
 detector) and a Bruker 

D8 X-ray diffractometer with a Cu Kα source. Samples were cut with a Princeton 

Scientific WS-22 wire saw with a 50 μm diameter tungsten wire and polished using 

successively smaller grit SiC paper and then diamond slurries down to 1 μm diameter 

diamonds. The Ni-Mn-Ga sample tested had 10M structure with composition 

Ni51.1Mn25.7Ga23.2 (atomic percent, as determined with EDS with accuracy atomic 

percent) and measured 16.46 x 5.02 x 3.62 mm3 fully extended in the longest dimension 

and compressed in the intermediate dimension. The sample was subjected to constant 

magnetic fields µ0H from 50 to 1500 mT in a Varian Associates V3603 electromagnet. 

Once the samples had reached an equilibrium angle with the external magnetic field, a 

torque was applied as described below and the angular deflection was measured.  
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A cylindrical sample holder made from Teflon contained a groove to 

accommodate the sample (Figure 5.1). The sample holder had a diameter of 25.4 mm on 

which the sample was laid and a shaft with a smaller diameter of 9.53 mm which was 

press-fit into the inner bore of two ZrO2 non-magnetic bearings and an E-5 optical 

encoder kit from US Digital with 5000 counts per revolution (Figure 5.1a). The ceramic 

bearings were placed in machined nylon between the pole pieces of an electromagnet 

(Varian Associates V3603). The optical encoder was fixed to the nylon with nylon 

screws.  

 
Figure 5.1 The platform of the experimental apparatus was made from a nylon 

block which was press fit in between the pole pieces of the electromagnet. (a) Two 

ceramic bearings were press fit into the nylon block. The inner diameters of the 

bearings guided the shaft of the Teflon sample holder into the optical encoder wheel, 

which was attached with a set screw. The Ni-Mn-Ga sample was laid in a groove on 

the sample holder. A groove was cut around the circumference of the sample holder, 

into which a string was tied and wrapped to apply the torque. (b) The initial angle,  
of the sample to the external magnetic field was determined by comparing the edge 

of the sample to the angle of a compass deflected by the magnetic field. 

The sample was placed in the sample holder and the magnetic field turned on to a 

set value. The sample turned to an equilibrium angle (eq), this initial angle was measured 

by taking pictures using a Canon PowerShot A3000 digital camera and comparing the 

edge of the sample to a compass aligned in the field (Figure 5.1b) using the angle tool in 
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ImageJ. We defined Cartesian coordinates on the sample such that the x direction 

coincided with the long edge of the sample and the rotation axis constituted the z 

direction. The sign of the coordinates was chosen such that the trace of the twin boundary 

plane (when moved through the coordinate origin) bisected the first quadrant of the x-y 

plane (Figure 5.2). The angle  described the deviation of the magnetic field direction 

from the x direction. When the magnetic field was parallel to the x direction  = 0°. The 

angle  was positive when the sample was rotated clockwise or conversely a positive  

refers to a counter clockwise rotation of the magnetic field with respect to the sample 

coordinate system. The angular error was less than 0.5°. 

 
Figure 5.2 A sample containing two twin boundaries may have either 

microstructure, denoted by "ABA" (a) or "BAB" (b). The axis of easy magnetization 

is parallel and perpendicular to the lateral surface in twin domains A and B, 

respectively. 

The sample holder had a groove cut around the circumference where a string was 

wrapped around and extended to a spring force gauge (PCE Instruments) and pulley. The 

string transferred a displacement of the pulley to apply a tangential force to the sample 

holder and, thus, a torque to the sample. We manually recorded angle measurements with 

the optical encoder at regular intervals of applied torque. The optical encoder counts were 

compared to the measurement at eq to calculate the total angle. 
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The sample was tested with microstructures containing different numbers of twin 

boundaries. The sample was manipulated manually to create the twin domain structure, 

which was characterized with optical images. We define the fully compressed state, i.e. 

when the crystallographic c direction is parallel to x in the entire sample, as the reference 

state with zero strain. When fully extended, i.e. when the crystallographic c direction is 

parallel to y in the entire sample, the sample had a strain of 6%. Since the sample edge 

kinks by approximately 3.5° across the twin boundary, the strain could not be measured 

with a micrometer. The strain was found by determining the relative position of the twin 

boundary in the sample from a high resolution optical image in ImageJ. In the cases 

where the sample contained one twin boundary, the sample was placed on a glass slide 

and cast in a two-part polyamine epoxy. This constrained the sample, which froze twin 

boundaries, making it possible to test the sample at external magnetic fields greater than 

the switching field. Samples with two twin boundaries were tested without polyamine 

epoxy. 

The sample was tested with one twin boundary at strains of 2.27%, 3%, and 

3.92%. In the case where the sample contained two twin boundaries, two twin 

microstructures were tested, shown in Figure 2. One twin microstructure (Figure 5.2a) 

referred to as ABA had three twin domains where the central twin domain had c parallel 

to y and the other two domains had c parallel to x. The second microstructure, BAB, had 

the twin domain pattern reversed (Figure 5.2b). For this case, the sample was tested at a 

field of 75 mT at strain values of 2%, 3%, and 4%. Samples containing two twin 

boundaries had parallel faces on the ends, allowing strain measurement with a 

micrometer screw. 
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Experimental results are reported in terms of specific torque (Nm/m3). We 

directly compare experimental and numerical results where the sample sizes vary. 

5.5 Micromagnetic Simulation 

We simulated the magnetization of the sample in the external magnetic field with 

code, which applies micromagnetic principles to find the equilibrium magnetic 

microstructure. The code solves the Landau-Lifshitz equation with the Gauss-Seidel 

projection method [18,19]. Detailed descriptions of the code may be found in Refs 18 and 

19. 

In the simulations, the spatial density of magnetic moments needed to be high 

enough in order to effectively capture the rotation of magnetic moments across Bloch 

walls between 180° magnetic domains, which are tens of nanometers wide in Ni-Mn-Ga 

[20]. Computation time increased significantly with increased number of magnetic 

moments, prohibiting the simulation of a sample with the same spatial dimensions (mm2) 

as the sample used in the experiment. The parameters used in the micromagnetic 

simulation were as follows: 

The real space dimensions of the simulated sample were 4 orders of magnitude 

smaller than the sample used in experiments. At 3% strain, the experimental specimen 

had dimensions 16.00 x 5.20 x 3.60 mm3, and for simulations at 3% strain the specimen 

had dimensions 1.6 x 0.52 x 0.36 µm3. The simulation contained 384 magnetization 

vectors in the x dimension and 192 moments in the y dimension, resulting in magnetic 

moments spaced every 4.17 nm in the x dimension and every 2.83 nm in the y dimension. 
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The magnetic energy constants (magnetocrystalline anisotropy energy, exchange 

interaction energy, and saturation magnetization) are listed in Table 5.1. 

Table 5.1 Numeric values of magnetic energy constants for 10M Ni-Mn-Ga for 

micromagnetic simulations 

Twin boundaries were defined such that the angle of the twin boundary crossed 

the sample at 45° in real space, consistent with the {101) type major twin boundaries seen 

in 10M Ni-Mn-Ga. The magnetocrystalline anisotropy energy and effective field due to 

the magnetocrystalline anisotropy energy were defined according to an axis of easy 

magnetization in different directions for neighboring twin domains. The A domain had 

the axis of easy magnetization in the x direction, while the B domain had the axis of easy 

magnetization in the y direction. The twin boundary constituted an abrupt change in the 

axis of easy magnetization. 

Micromagnetic simulations were conducted at a constant external magnetic field 

and variable angle, , with respect to the sample. The discrete angles at which the code 

ran was changed depending on the twin domain structure in order to allow the code to 

find the same energy minima across multiple angle sweeps. An external magnetic field of 

75 mT was applied to specimen with one, two, and 5 twin boundaries. The simulations 

ran for a fixed real time interval of 0.2 ns, during which 20,000 iterations of the 

minimization scheme ran. The equilibrium microstructure of magnetic moments was 

Energy Term Value Reference 

Saturation magnetization 

(Ms) 

0.61 Tesla [31] 

Exchange interaction energy 

(Cex) 

6 x 10-12 J/m [32] 

Magnetocrystalline 

anisotropy energy (Ku) 

2.45 x 105 J/m3 [33] 
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recorded along with the energy components described in Section 5.2. This allowed us to 

view not only how each energy component changed as a function of angle, but also how 

the magnetic domain structure evolved. 

The initial magnetic state of the sample was defined such that the component of 

the magnetic vector in each spatial dimension was equal. The normalized x, y, and z 

components of the magnetic vector each had an initial magnitude of 1
√3

⁄ , giving a total 

normalized magnetic vector magnitude of 1. 

The two twin microstructures (Figure 5.2) which were experimentally tested with 

results were tested in the numerical simulations. All simulations, with one or two twin 

boundaries, had the twin boundaries oriented as in Figure 5.2. Coordinates and sense of 

rotation were as given in Section 5.3 (Figure 5.2). For the ABA twin domain structure, 

the angle was swept in a loop from -= 0° to 80° and back to 0°. This sweep was 

considered one loop. When then back sweep did not show the same results as the forward 

sweep, a second loop was run with a narrower angle range around the angle for which the 

energy showed a minimum. This procedure was repeated until the back sweep coincided 

with the forward sweep. 

5.6 Experimental Results 

The torque as a function of was tested for two different twin microstructures 

when the sample contained two twin boundaries. The equilibrium angle eq depended 

equally on strain for the two twin microstructures (Figure 5.3a) while the maximum 

torque as a function of strain varied significantly (Figure 5.3b). At 2% strain and 50 mT, 

the BAB microstructure required 70% greater torque to rotate the sample than the ABA 

microstructure. This was the strain at which the greatest difference in torque occurred 
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between the two microstructures. Away from 2%, the torque of the BAB and ABA 

microstructures were closer in magnitude. When the sample contained a single twin 

boundary, the equilibrium angle followed the same trend as the sample with two twin 

boundaries. The torque at 2% strain was larger than for the two twin boundary conditions. 

At larger strain, the single twin boundary condition resulted in smaller torque, close to 

that of the ABA microstructure. 

 
Figure 5.3 Experimental results for the maximum specific torque as a function of 

strain for a single twin as well as ABA and BAB twin microstructures at an external 

field of 50 mT (a). The equilibrium angle is shown as a function of sample strain (b). 

Results for the ABA and BAB microstructures are denoted with blue stars and open 

green circles, respectively. Results for samples with a single twin boundary are shown 

in solid maroon squares. 

At low fields (i.e. <100 mT), the torque required to rotate the sample away from 

the equilibrium angle was symmetric about the equilibrium angle (Figure 5.4a). At larger 

fields, the torque required to rotate the sample in the clockwise direction did not follow a 

monotonic relationship. At fields larger than 250 mT, the torque first increased, reached a 
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local maximum, and then decreased above approximately 15° away from eq. When the 

torque passed the local maximum, the sample spun to a new location further from eq with 

a similar torque value. At larger angle, the torque increased progressively. Upon 

decreasing the torque, the angle decreased until the torque reached a local minimum 

value. Upon further reduction of the angle, the sample spun back closer to eq at a similar 

torque value (Figure 5.4b). The hysteresis shown in Figure 4b results from the 

experiment being torque-controlled. The torque-angle dependence between the two 

experimentally accessible branches is schematically indicated with the dotted black line. 

Thus, the angle exhibits a bifurcation. The angle is given in terms of Δ, to plot the 

curves for different magnetic fields into one graph. This was not possible for plotting  

because the equilibrium angle changed as a function of external magnetic field (Figure 

5.5a). The dashed lines in Figure 5.5a indicate the fields for which data was plotted in 

Figure 5.4a. 
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Figure 5.4 Experimental data for the normalized torque as a function of the 

change in  from the equilibrium angle for a sample with one twin boundary at 2% 

strain (a). Data is given for 100 mT, 200 mT, 500 mT, 1000 mT, and 1500 mT in both 

the positive and negative g directions. Positive  is in the clockwise direction, and 

negative  is the counterclockwise direction. For magnetic fields above 200 mT, the 

torque decreased after ~15° rotation in the clockwise direction. The sample holder 

spun to a new angle, hence the abrupt jump in angle. The decrease in torque is shown 

in (b) for 500 mT. The jumps in angle represent show the bifurcation, since the 

stimulus to the sample was torque and there are multiple possible angles at the same 

torque. The dotted black line approximates the torque in the intermediate angle 

range. The sample for 2% strain is shown, containing the location of the twin 

boundary (dashed blue line) at the equilibrium angle at a magnetic field of 50 mT(c). 

At 2% strain and magnetic fields larger than 250 mT the torque decreased with 

increasing magnetic field. The slope of the energy as a function of decreased, but never 

reached zero. There was no additional equilibrium angle. At 4% strain and fields greater 

than or equal to 250 mT, the sample experienced four equilibrium angles instead of two 

(which were 180 ° apart). The first equilibrium angle eq1 occurred in the same direction 

(negative ) as the equilibrium angle at 2% and 3% strain. The other equilibrium angle 

eq2 occurred in the opposite direction (positive ). The two unique equilibrium angles as 
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a function of external magnetic field are given in Figure 5.5a. Each equilibrium angle had 

a similar dependence on the external magnetic field; they increased sharply up to 300-400 

mT where the magnitude of the equilibrium angle reached a maximum at -55 ° (eq1) and 

+55 ° (eq2). Above 55 mT, the equilibrium angles were nearly constant up to 1500 mT. 

Each equilibrium angle had two-fold rotation symmetry about the sample rotation axis, 

but the equilibrium angles did not exhibit four-fold rotational symmetry. 

 
Figure 5.5 Experimental results for the equilibrium angle as a function of external 

magnetic field for a sample with one twin boundary at 2% strain (a) and 4% strain 

(b). Dashed lines indicate the equilibrium angles for the fields plotted in Figure 5.4a. 

At fields 250 mT and larger, two unique equilibrium angles existed for the sample at 

4% strain. 

5.7 Simulation Results 

5.7.1 Two Twin Boundaries 

Figure 5.6 shows the numerical results for the ABA twin domain structure with 

3% strain. The energy as a function of for the converging third loop is shown in Figure 
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5.6a. The micromagnetic code calculated the exchange energy, magnetocrystalline 

anisotropy energy, stray field energy, and Zeeman energy. The variation in these 

individual energies (referred to their respective minimum values) are given as a function 

of  in Figure 5.6b. The change in energy was plotted in order to view each energy on the 

same scale. The sum of anisotropy energy, exchange energy, and stray field energy is 

almost constant. The largest change in energy contribution came from the Zeeman 

energy. The change in Zeeman energy (blue solid circles in Figure 5.6b) very closely 

matched the total energy variation (Figure 5.6a).  

 
Figure 5.6 Simulation results for the magnetic energy as a function of angle is 

given for the ABA twin structure at a strain of 3%. The total energy is given as a 

function of - (a) and separated in its contributions in (b) as a difference to its 

respective minimum value. The equilibrium magnetic domain structure is shown for 

- = 30 ° (c) and - = 80 ° (d). 

The smallest and largest total energy occurred at  = -30° and  = -80°. The 

magnetic domain structure for these two field directions are shown in Figures 5.6c and 

5.6d. The gray arrows indicate the average direction of magnetic moments in each 

domain. As - increased, the blue magnetic domains grew domains grew to decrease the 

stray field energy in the A twin domains. As the blue domains grew, so did the green 
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domain adjacent to it in the B twin domain, which increased the Zeeman energy. The 

central green domain shrank as  approached 90°.  

The total area of the blue and green domains as a function of is given in Figure 

5.7a. As the area of the domains decreased, the stray field energy increased (Figure 5.6b). 

The stray field energy and area of demagnetizing magnetic domains were directly related. 

The magnitude of the net magnetization is given in Figure 5.7b. The net magnetization 

was correlated inversely to the Zeeman energy in Figure 5.6b. As the net magnetization 

increased, the Zeeman energy decreased. 

 
Figure 5.7 Simulation results for the ABA twin microstructure giving the total 

area of the blue and green magnetic domains (a) and the net magnetization (b) plotted 

against -. 

Figure 5.8a gives the change in energy as a function of  for the ABA and BAB 

microstructures. Again, the energies are plotted as differences to their respected minima 

to more easily compare the different energy contributions. The BAB microstructure 
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resulted in a smaller total energy. The energy increased more quickly away from the 

minimum energy for the BAB microstructure. The simulation shows a larger torque for 

the BAB microstructure than for the ABA microstructure, as seen also in experiments. A 

quadratic function was fit to the energy values as a function of . The second derivative 

gives the slope of the torque as a function of , and is constant. This is similar to 

experimental data, which shows a constant slope of the torque near the equilibrium angle 

(Figure 5.4a). Experimental and simulation results for the slope of the torque for ABA, 

BAB and single twin microstructures are given in Table 5.2 for 75 mT and 3% strain. 

While the values are about a factor of 50 different between the experimental and 

simulated results, both show the same dependence of the torque on the twin 

microstructure. The difference in absolute values stems from the much smaller volume 

covered with the simulation. 
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Figure 5.8 Simulated results for the change in total energy with respect to the 

minimum energy is given as a function of - for the ABA and BAB microstructures 

(a) along with the equilibrium magnetic domain structure at an angle of = 30° (b). 

The ABA microstructure (top) has 180° magnetic domains in both twin domains, 

while the BAB microstructure (bottom) has fully saturated domains. The simulated 

samples are both at 3% strain with an external magnetic field of 75 mT. 

The equilibrium magnetic structures for the ABA and BAB twin microstructures 

at 75 mT and  = -30° are given in Figures 5.6c and 5.8b. The ABA microstructures 

contained 180° magnetic domain walls in both A and B twin domains, while the twin 

domains in the BAB microstructure were fully saturated. The BAB microstructure had a 

smaller total energy (5 kJ/m3 compared to 20 kJ/m3 for ABA), and the energy increased 

more quickly with changes in . Thus, the BAB microstructure required a larger torque to  

rotate. 
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Table 5.2 Derivative of the specific torque as a function of near the 

equilibrium angle. The experimental results showed nearly linear (constant slope) 

increase in torque close to the equilibrium angle. A quadratic function was fit to the 

simulated energy. The second derivative of the quadratic function is a constant 

which gives the rate of change of the torque with increasing  

 

5.7.2 Single Twin Boundary 

The magnitude of the total energy (Figure 5.9a) and calculated torque were both 

close to and less than the energy and torque of the ABA microstructure at 3% strain and 

75 mT external field. The magnetization of domain A, with axis of easy magnetization 

parallel to the long dimension of the sample, was normal to a small surface area. The 

magnetization in this domain created a small stray field and saturated at low fields 

(Figure 5.9b). The magnetization of the B domain was normal to a larger surface area. 

This domain did not saturate due to the larger stray field. Magnetic domains were present 

in domain B. The B domain magnetized such that there was no magnetization divergence 

at the twin boundary; no magnetic domains intersected the twin boundary since domain A 

was saturated. 

Twin boundary structure  

(3% strain, 75 mT) 

Derivative of specific 

torque: Simulation 

(Nm/m3/°) 

Derivative of specific torque: 

Experimental Results 

(Nm/m3/°) 

One twin boundary 4.00 218 

Two twin boundaries – ABA 4.86 235 

Two twin boundaries – BAB 8.79 300 
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Figure 5.9 The total energy is given as a function of - (a) along with the 

equilibrium magnetic structure at the lowest energy for a sample at 3% strain and 75 

mT with one twin boundary (a). The magnetic domain structure at - =  20° (b) shows 

a fully saturated  A twin domain while the B twin domain has two demagnetizing 180° 

magnetic domains which extend from lateral surface to lateral surface without 

intersecting the twin boundary. To avoid intersecting the twin boundary, the 

outermost left 180° magnetic domain curves to the right. 

At large fields, the torque was asymmetric about the equilibrium angle (Figure 

5.4a). We calculated the energy for ranging from -90° to +90° (Figure 5.10a) for a 

sample at 2% strain with one twin boundary in an external magnetic field of 500 mT. The 

results of the simulation showed a decrease in the torque in the positive  direction, as 

seen also in the experiment. The simulated data showed another energy minimum, which 

was not seen in experiments at 2% strain. The simulated results overestimate the decrease 

in energy in the positive  direction. 

The change in magnetization perpendicular to the twin boundary was nearly 

symmetric about = 0° (Figure 5.10b). The magnitude of the change in each direction 

was similar, but larger when the external magnetic field was perpendicular to the twin 

boundary (= -45°) than parallel to the twin boundary (= +45°). In contrast, the 

divergence of the magnetization was not symmetric about = 0°. The divergence, which 

causes the stray field, was maximum when the field was parallel to the twin boundary, 

and had a local minimum when nearly perpendicular to the twin boundary. 
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The change in each energy term as a function of  is given in Figure 5.10d. The 

total stray field energy was comparable in both directions, though slightly larger in the 

positive direction. The Zeeman energy was comparable, though slightly less in the 

positive  direction. The magnetocrystalline anisotropy energy has two parabolas, with 

the parabola in the positive  direction having a higher minimum energy. The minimum 

magnetocrystalline anisotropy energy occurs near the simulated equilibrium angle. 
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Figure 5.10 Simulated results for the energy as a function of  at 2% strain and 500 

mT for a sample with one twin boundary (a). The arrows mark the bifurcation of the 

stable position under torque as displayed in Figrue 4b. The change in magnetization 

normal to the twin boundary (b) and the divergence of the magnetization normal to 

the twin boundary (c) are given as a function of . The change in energy from the 

minimum for each individual energy component is given as a function of  (d). 

5.8 Discussion 

The main experimental and numerical results are: (1) The magnetic torque on a 

Ni-Mn-Ga single crystal with equal fractions of A and B twin domains varies strongly 
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with the twin microstructure; for example, a single crystal with a BAB microstructure 

experiences a much higher torque compared to a single crystal with an ABA 

microstructure. (2) The magnetic torque is asymmetric with respect to the direction of 

rotation; for example, a crystal with a single twin boundary experiences a monotonically 

increasing torque when turned in one direction and a bifurcated torque when turned in the 

other direction. We argue here that both effects have the same origin, namely the 

emergence of finite divergence of the magnetization at twin boundaries. 

The three dimensional, macroscopic sample measured 16.46 x 5.02 x 3.62 mm3. 

The simulated specimen measured 1.6 x 0.52 x 0.36 µm3. The simulated magnetization 

was found over a two dimensional matrix of magnetization vectors. The difference in 

sample size and dimensionality of the simulation resulted in a calculated torque, which 

was a factor of 50 less than the experimentally measured torque. Nevertheless, as 

discussed below, we believe the simulation gives valuable qualitative insight into the 

magnetization of the three dimensional sample used in experiments. 

While the matrix of magnetization vectors was two dimensional, the 

magnetization vectors were free to rotate in all three dimensions. They had x, y and z 

components, i.e. the magnetization vectors were unconstrained from rotating 

perpendicular to the plane of the simulated specimen if a driving force existed. The 

external magnetic field only occurred in the x-y plane, which also contained the direction 

of easy magnetization. The driving force due to the Zeeman and magnetocrystalline 

anisotropy energies would cause the specimen to magnetize only in the x-y plane. The 

integral to compute the stray field energy is carried out in all three spatial dimensions.  

The stray field could, potentially, provide a driving force for magnetization perpendicular 
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to the plane. With only one vector in the z dimension, the exchange energy is not 

calculated based on any nearest neighbor in the z direction. The simulation assumes the 

exchange energy is minimized in the z direction. Further, the initial orientation of the 

magnetization vector prior to the first iteration step was [111], i.e. it had a finite z 

component. In the equilibrium magnetic structure, the z component had disappeared. 

Thus, the magnetocrystalline anisotropy suffices to force the magnetization vectors 

parallel to the x-y plane. 

The difference between the simulation and experiment derive from the scale of 

sample and the assumption that the magnetization vector is invariant in the z sample 

dimension. The assumption of the simulation with only one magnetization vector in the z 

direction is that vector represents the magnetization throughout the thickness in z. 

Saturation of the A twin domains indicate that the assumption that the magnetization is 

homogeneous in z is valid for these twin domains. For B twin domains with 180° 

magnetic domains, the simulation assumes that magnetic domain walls extend straight 

through the sample. In fact, experiments show that magnetic domains form a maze-like 

structure when viewed parallel to the direction of easy magnetization [21-25]. Confining 

the magnetic domain walls in the z sample dimension inhibits the relaxation of stray field 

energy minimization through the formation of 180° magnetic domains perpendicular to 

the z axis. 

The simulation did find equilibrium magnetic domain sizes comparable to 

reported values. The magnetic domain size depends on the sample dimensions [16]. The 

magnetic domains in the simulation were on the order of 100 nm in width. This is much 

smaller than in bulk samples, with magnetic domain width typically on the order of 100 



120 

 

 

µm [21,22,25]. In smaller specimen, such as those used for investigation in transmission 

electron microscopes, the magnetic domain widths are closer to 100 nm seen in the 

simulation [24]. For thin films, Chernenko et al. [26] found that the domain size is 

proportional to the film thickness. Thus, the domain size of this study is reasonable 

compared with results reported in the literature. Also, the 180° magnetic domain walls of 

this study are approximately four magnetic vectors wide in the x direction, corresponding 

to a width of 16.6 nm. This compares well to the analytical value of 15.5 nm calculated 

from Ref. [16]. The simulation finds sizes of magnetic domains and magnetic domain 

wall width which correspond well with experiments and the analytical solution, 

respectively. 

The small simulated sample dimensions cause discrepancy between simulated and 

experimental torque. Small closure domains form at the intersection of magnetic domain 

walls and the crystal surface (Figure 5.6cd, 5.9b). In a small sample, these closure 

domains represent a much larger fraction of the sample volume than in the larger 

experimental sample. Also, the sample in experiments would have tens or hundreds of 

magnetic domain walls, while only a few existed in the simulation. This means that, if 

one magnetic domain wall bends near the twin boundary, as seen in Figures 5.8b and 

5.9b, this contributes a much larger increase in total domain wall energy than in a sample 

with many magnetic domain walls. 

In the simulation, the small specimen size and assumption that magnetization is 

invariant through the z dimension of the sample results in a system which is more 

confined in terms of the magnetic structures which can form. However, the assumption 

that magnetization is homogeneous through the z dimension of the sample is valid for a 
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homogeneously magnetized twin domain, and only plays a role when twin domains 

contain 180° magnetic domains. The suppression of 180° magnetic domains 

perpendicular to the z direction leads to quantitative deviations; the qualitative 

conclusions are sound. 

The derivative of the torque found from numerical simulations is approximately a 

factor of 50 less than the torque measured on a bulk single crystal specimen. We attribute 

this discrepancy to the difference in sample size, where the simulated sample is 4 orders 

of magnitude smaller in each dimension. The simulated results do show the same trend in 

maximum torque seen in experiments. At 3% strain, the BAB microstructure required the 

largest torque to rotate, the sample with a single twin boundary required the least, and the 

ABA microstructure required slightly more than the single twin and substantially less 

than the BAB microstructure. The numerical simulations provide a qualitative basis to 

analyze the results in terms of the magnetization of the twin domains. 

The magnetization of twin domains is driven by the external field, but depends on 

the twin boundaries and crystal surface. The interfaces at the twin boundaries and crystal 

surfaces create a stray field if there is a divergence of magnetization. At crystal surfaces, 

any normal component of magnetization at the surface results in stray field energy. At the 

twin boundary, the stray field vanishes if the component of magnetization normal to the 

interface is constant across the interface. A discontinuity of the normal component of the 

magnetization increases the stray field energy. 

 In the BAB microstructure, the twin domains saturate fully while at the same 

angle and field magnitude the ABA microstructure does not. In the BAB microstructure, 

any 180° magnetic domain wall must pass through all three twin domains in order to 
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maintain continuity across the twin boundaries because 180° boundaries in the A twin 

domain are parallel to the lateral crystal surfaces and span from one twin boundary to the 

other. If continuity is not maintained, the divergence of magnetization creates a large 

stray field energy. Therefore, the formation of 180° magnetic domains would result in a 

relatively large volume of demagnetizing magnetic domains and, thus, an increase in 

Zeeman energy. In contrast, in the ABA microstructure, the 180° magnetic domain 

boundaries are perpendicular to the lateral surfaces. Therefore, these domain boundaries 

can extend from surface to surface without interacting with the twin boundaries in the B 

twin domain. The central B twin domain formed magnetic domains while not impacting 

the magnetic domain structure of the A twin domains. The blue magnetic domains in the 

A domains impact the magnetic domain structure in the intermediate B domain. The blue 

magnetic domains are positioned at the lateral surface of the A twin domain such that the 

enforced green magnetic domains in the B twin are minimal, and only one magnetic 

domain wall forms.  For the ABA microstructure, the magnetic domains have more 

freedom to minimize the total energy compared to the BAB microstructure. 

Consequently, the total energy rises more quickly with deviation from the equilibrium 

orientation and the torque is larger for the BAB microstructure than for the ABA 

microstructure. 

Simulation results revealed the interaction of the twin domain boundary with 180° 

magnetic domain walls when magnetic domain walls do not intersect the twin boundary. 

In the AB twin microstructure, the B twin domain has two green magnetic domains and 

four 180° magnetic domain walls (Figure 5.9b). The three 180° magnetic domain walls 

on the right are straight; they are perpendicular to the lateral surfaces and extend through 
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the width of the B twin domain in a straight line. The leftmost green domain is curved. It 

is thin on the top such that it does not intersect the twin boundary, and gets wider toward 

the bottom where the twin boundary angles away from the 180° magnetic domain wall. 

The green domain in the ABA twin microstructure has a similar shape (Figure 5.6c). Both 

180° magnetic domain walls curve such that the green magnetic domain shifts further 

away from the twin boundary near the top and bottom lateral surfaces. This constitutes a 

second, long range interaction between twin boundaries and magnetic domain boundaries 

in addition to the continuity requirement discussed above. 

Besides the twin boundaries, the surfaces also add to the difference in magnetic 

domain structures. The direction of easy magnetization stands perpendicular to the lateral 

surfaces for the B twin domains and perpendicular to the end faces for the A twin 

domains. At 3% strain, the B domain has direction of easy magnetization normal to half 

of the lateral surfaces. In the ABA microstructure, the A domains have direction of easy 

magnetization normal to both end faces while the BAB microstructure the A domain does 

not interact with the crystal surface.  The BAB microstructure has magnetization normal 

only to half of the lateral surfaces; the ABA microstructure has magnetization normal to 

half the lateral surfaces plus the end faces. If the twin domains are individually saturated 

(such as in Figure 5.8b for the BAB twin microstructure) and for an aspect ratio of 3:1, 

the BAB microstructure has magnetization normal to 3/8 the perimeter sample surface 

while the ABA microstructure has magnetization normal to 5/8 of the perimeter sample 

surface. Therefore, the free surfaces create an additional driving force for the formation 

of magnetic domains which is 67% larger for ABA microstructure compared with the 

BAB microstructure. 
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In the sample with the AB microstructure (single twin boundary), twin domain A 

saturates at low magnetic fields due to the small stray field. When saturated, the 

magnetization of the A domain is perpendicular to a small surface area, which results in 

small internal field. The B domain has 180° magnetic domains since the direction of easy 

magnetization is perpendicular to a larger surface area. The saturation of domain A forces 

the portion of domain B with direction of easy magnetization normal to the twin 

boundary to have no magnetic domain walls. This is the yellow area of the B domain 

under the twin boundary in Figure 9b. This minimizes the divergence of magnetization at 

the twin boundary which minimizes the stray field energy. With decreasing strain, the 

volume fraction of the B domain decreases. The volume of the B domain forced to have 

no domain walls by the twin boundary (yellow area under the twin boundary) stays 

constant. Thus, as the strain decreases, the net magnetization of B increases. The net 

magnetization of the B domain is inversely proportional to the strain. As evidenced by 

the sample with two twin boundaries, larger net magnetization results in larger torque. In 

experiments, at 3% strain and above, the torque required to rotate the specimen with one 

twin boundary is smaller than for with the sample with the BAB microstructure. In 

contrast at 2% strain, the torque for the AB microstructure is similar to the BAB 

microstructure. The twin boundary causes a higher net magnetization of the B domain at 

2% strain than at 3% strain; and this higher net magnetization results in a higher torque. 

At 200 mT and above, the experimental torque is asymmetric about the 

equilibrium angle. The torque rises monotonically in the negative  direction but goes 

through two inflections in the positive  direction (Figure 5.4a). For magnetic fields 

larger than 500 mT, the torque goes through a local maximum and then through a local 
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minimum. This causes a bifurcation in the torque-controlled experiment (Figure 5.4b). 

The simulated results for a sample with one twin boundary at 2% strain in an external 

field of 500 mT shows a decrease in energy in the positive direction (Figure 5.10). The 

total energy forms a biased double well with a lower minimum in the negative and a 

higher minimum in the positive  direction. This double well potential corresponds to the 

experimental results of the sample with one twin boundary and 4% strain. In contrast, the 

experimental behavior of the sample with 2% strain corresponds to a potential as 

indicated by the black dotted line in Figure 5.10a. Thus, the calculations overestimate the 

energy depression in the positive direction. 

The angular width of the bifurcation decreases with increasing external magnetic 

field above 500 mT. The equilibrium angle depends on the external magnetic field, and 

decreases in magnitude above 500 mT as well. The jump in angle in the clockwise 

direction is roughly twice the equilibrium angle. Considering the energy double well as 

the sum of two parabolas with minima in positive and negative , the width of bifurcation 

depends on the position of the minimum in the positive  direction. As the external 

magnetic field increases, the position of the minimum increases. As the external field 

increases above saturation, the torque due to Zeeman energy goes to zero as the 

magnetization and magnetic field are parallel. The magnetocrystalline anisotropy and 

stray field energies increase toward a constant relationship with , where the stray field 

depends on sin() and the magnetocrystalline anisotropy energy depends on sin(2). The 

increase of two energies and decrease of the other leads to the dependence of the angle 

jump on magnetic field magnitude, but more simulations are required to fully understand 

the contributions. 
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The equilibrium angle always occurs such that the component of the magnetic 

field perpendicular to the twin boundary is larger than the component parallel to the twin 

boundary. The change in magnetization perpendicular to the twin boundary is similar in 

the positive and negative  directions (Figure 5.10b). The divergence of the 

magnetization perpendicular to the twin boundary is almost a factor 4 less when the 

magnetic field is perpendicular to the twin boundary than when it is parallel to the 

boundary (Figure 5.10c). Although the change in magnetization is similar for each case, 

the field parallel to the twin boundary (positive ) creates a larger magnetization 

divergence and larger stray field energy than the field perpendicular to the twin boundary 

(negative ). The smaller divergence in the positive  direction contributes to the 

asymmetry of the double well. 

The divergence in magnetization at the twin boundary results in effective positive 

magnetic charges at the twin boundary interface. These charges have a magnetic field 

which works to rotate the heads of the magnetic vectors away from the twin boundary. 

This increase in rotation results in larger magnetocrystalline anisotropy energy. This is 

why the magnetocrystalline anisotropy energy has a higher local minimum energy in the 

positive  direction (Figure 5.10d). The rotation of the magnetization also rotates the 

magnetic vectors more parallel to the external magnetic field. Figure 5.10d shows the 

Zeeman energy is slightly less in the positive than in the negative  direction. While the 

change in total stray field slightly increases in the positive  direction, the divergence at 

the twin boundary results in a larger total increase in the magnetocrystalline anisotropy 

energy. If the divergence in magnetization was equal for both positive and negative , the 

sample at 2% strain would have two unique equilibrium angles. The angle of the twin 
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boundary and difference in magnetization divergence for perpendicular or parallel 

orientation of the external magnetic field is the reason for the single equilibrium angle. 

These results have direct implications on the design of actuators. For example, the 

BAB microstructure has the lowest total energy and largest torque for 3% strain and 

above. This suggests a twin domain microstructure might form which minimizes energy 

and maximizes torque. In linear actuators, torque leads to friction and loss of work output 

[27,28] and potentially to wear and fatigue [29]. The sample with a single twin domain 

had the largest torque at 2% sample strain, but the least torque at 3% strain. In an 

application where torque must be minimized, a single twin boundary is better at high 

sample strains. If possible, an actuator designer should target the ABA microstructure to 

minimize torque in a sample with an unconstrained end. 

The magnetization in the A domain saturates at low fields. This makes the 

magnetization in the long dimension of the sample predictable. The twin domains in the 

BAB microstructure area saturates for low fields due to the stray field. A two-

dimensional strain sensor would benefit from this microstructure. For sensing 

applications which sense with the magnetic flux, many twin boundaries will decrease the 

flux through the material [30]. The BAB microstructure, containing only two twin 

boundaries, is completely saturated for low fields due to the stray field. Targeting a 

microstructure which saturates at low fields but contains few twin boundaries would 

benefit sensing applications which sense with magnetic flux. 

Kucza et al. proposed a microstructure in a bending sample with two twin 

domains and non-parallel twin boundaries [3]. Twin boundaries between the same two 

domains and non-parallel twin boundaries would result in large magnetization divergence 
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at the boundary more parallel to the external field. It is possible that, small twin domains 

with direction of easy magnetization perpendicular to the field would form in order to 

minimize the stray field energy at the expense of increased Zeeman energy. This adds 

another variable to the complexity of modeling these actuators. 

5.9 Conclusions 

The magnetization of and, hence, torque on a single crystal Ni-Mn-Ga sample in a 

magnetic field and constrained with respect to bending depends on the strain and twin 

boundary structure. The twin boundary structure changed the torque by a factor of up to 

1.7 for samples with equivalent strain and in the same external magnetic field. The results 

of numerical micromagnetic simulations qualitatively matched experimental results. 

Simulations predicted larger torque in the twin structure which showed larger torque in 

experiments. The simulations further revealed the microstructure with larger torque had 

smaller total energy, which suggests a twin structure may form in an unconstrained 

sample which minimizes energy but maximizes torque. 

 Micromagnetic simulations showed that the twin boundary interface forces 

homogeneous magnetization in twin domains when the magnetization impinged on the 

twin boundary. In cases where the axis of easy magnetization was normal to the surface 

of the specimen, the twin domain split into multiple 180° magnetic domains. If the axis of 

easy magnetization was parallel to the lateral surface, the twin domain did not split into 

180° magnetic domains if the neighboring twin domain was homogeneously magnetized.  

Although a homogenously magnetized domain is not energetically favorable according to 

the external field energy, the twin boundary interface forced this magnetic domain 

structure to avoid magnetization divergence at the interface. The divergence of 
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magnetization at the twin boundary interface is maximum when the magnetic field is 

parallel to the twin boundary. The equilibrium angle always occurred such that the 

magnetic field made an angle less than 45° with the normal to the twin boundary. This 

was the case for samples containing one or two twin boundaries. 

This study demonstrates a large dependence of the torque and magnetic energies 

on the twin microstructure. Thus, the design of MSMA-based actuators and sensors must 

include design of the twin microstructure and a strategy to maintain this twin 

microstructure over the duration of the operation of the device. 
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CHAPTER SIX: DISCUSSION 

The relationship between the twin boundary interfaces and the crystal surface 

drive the magnetization and subsequent magneto-mechanical response of magnetic shape 

memory alloys. The relative orientation of the twin boundary with the axis of easy 

magnetization (AEM) and the surface allows or forbids magnetic domains and domain 

walls to maintain continuity across twin boundaries. Continuity of magnetic domains 

results in small stray field energy at twin boundary interfaces. In contrast, any 

discontinuity of the magnetic domains causes a large contribution to the stray field 

energy. The combination of the magnetocrystalline anisotropy energy and stray field 

energy determines the component of the magnetization normal to the crystal surface. The 

component of magnetization normal to the crystal surface contributes to the stray field 

energy as does magnetization divergence in the crystal. Depending on the twin 

microstructure and on the geometry, one or the other effect dominates. 

Consider for example the difference in ABA and BAB twin microstructures, 

discussed in Chapter 5. We assume a length to width aspect ratio of 3:1. At 3% strain, the 

BAB microstructure has the AEM normal to half of the lateral crystal surfaces, while the 

ABA microstructure has AEM normal to half of the lateral crystal surfaces and to the 

entire crystal end faces. The ABA microstructure has AEM normal to 67% more surface 

area than the BAB microstructure. Therefore, the surfaces in the ABA microstructure 

provide a larger stray field energy to drive the twin domains to demagnetize. The larger 

stray field energy causes the ABA microstructure to split into 180° magnetic domains. In 
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the BAB microstructure, the interaction of the magnetization with the surface does not 

produce a large enough stray field to drive demagnetization in the BAB microstructure. 

Therefore, the BAB twin microstructure does not develop 180° magnetic domains. 

The surface drives the demagnetization of twin domains to decrease the stay field 

energy. In both twin microstructures, discontinuous 180° magnetic domains do not form 

such as to demagnetize one domain, but increase the stray field energy at the twin 

boundary. As the angle between magnetic field and long axis of the sample increases, the 

external magnetic field becomes more parallel to the direction of easy magnetization in 

the B twin domain. As the angle increases, in the ABA twin microstructure, 180° 

magnetic domains grow to decrease the stray field energy the surfaces cause in the A 

twin domain. The magnetic domain walls maintain continuity, which causes the 

demagnetizing domain in the neighboring B twin domain to grow as well. The 

demagnetizing domain in twin domain A grows, even though this corresponds with 

demagnetizing magnetic domain growth in the B twin domain. The demagnetizing green 

domain increases the Zeeman energy. The increase in Zeeman energy is energetically 

favorable compared with the case where the blue and yellow magnetic domains intersect 

at the twin boundary, which would result in diverging magnetization and large stray field 

energy at the twin boundary. 

In the case of the BAB microstructure, if one 180° magnetic domain wall forms in 

twin domain A, the twin domain configuration would force the magnetic domain walls to 

maintain continuity across both twin boundaries and span all three twin domains (Figure 

6.1). If a small blue domain nucleates to demagnetize the A twin domain, the domain 

boundary continuity would force a large green domain to nucleate in the right B twin 
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domain. Due to the magnetic domain continuity across the twin boundaries, the A twin 

domains are not able to form small, demagnetizing magnetic domains without greatly 

increasing the area of demagnetizing magnetic domains in the B twin domain. The 

nucleation of one magnetic domain wall would lead to a large area of demagnetizing 

magnetic domains in the B twin domain. Thus, the twin domains remain magnetically 

saturated. This occurs instead of only the central A twin domain demagnetizing, which 

would result in magnetization divergence and a large stray field at the twin boundaries. 

The twin domains do not have the freedom to demagnetize with small 180° magnetic 

domains due to the stray field energy, which causes a large increase in energy away from 

the equilibrium angle. Therefore, the BAB microstructure required larger torque to rotate 

than the ABA microstructure. The magnetization and occurrence of 180° magnetic 

domains is driven by both the stray field at the surface and at the twin boundaries. 

 
Figure 6.1  A schematic of magnetic domain nucleation in the BAB twin 

microstructure with a continuous magnetic domain wall. If a small demagnetizing 

magnetic domain nucleates in the left B twin domain, 180° magnetic domain with 

large area must also nucleate in the A domain and in the right B twin domain. 

In the torque experiments, the equilibrium angle always occurs such that the 

directions of the magnetic field and of the twin boundary normal included an acute angle. 

The sample microstructure is constrained but the sample is free to rotate in the magnetic 

field. Although the angle of the magnetic field is measured relative to the sample edge, 

the important relationship is the field to the twin boundary. At = 0°, the field has a 45° 
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angle with the twin boundary. The equilibrium angle occurs such that the angle between 

the field and twin boundary is between 45° and 90°. The angle eq depends on the 

orientation of the twin boundary to the external magnetic field. The geometry of the 

sample and the strain determine the magnitude of the equilibrium angle, but the twin 

boundaries determine whether the equilibrium angle occurs in the positive or negative  

direction. 

Simulations reveal the dependence of the local stray field on the angle between 

the external magnetic field and twin boundary. The AEM changes orientation across the 

twin boundary. The change in magnetization perpendicular to the twin boundary for a 

sample at 2% strain containing one twin boundary in an external magnetic field of 500 

mT is given in Figure 6.2a. The magnetic field is perpendicular to the twin boundary at  

= -45° and parallel to the twin boundary at = +45°. The change in magnetization is 

nearly symmetric about = 0°. However, the divergence of magnetization is asymmetric 

about = 0° (Figure 6.2b). The divergence is maximum near = +45°, which is when the 

magnetic field is parallel to the twin boundary. The divergence has an absolute minimum 

near -45°, the perpendicular orientation. The change in magnetization and divergence at 

the twin boundary at = 0° is zero because the sample was nearly saturated at that angle. 

At a smaller magnetic field where the sample was less saturated, there would still be a 

finite difference in magnetization direction and divergence in magnetization at = 0°. 

Color plots and magnetization vectors across the twin boundary are given for the 

external magnetic field nearly parallel to the twin boundary (+40°, Figure 6.3a) and 

nearly perpendicular to the twin boundary (-40°, Figure 6.3b). The red boxes denote the 

areas that the magnetic vectors depict. The magnetic vectors line up head to tail for the 
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perpendicular orientation, but slightly head to head for the parallel orientation. Head to 

head orientation results in a divergence of magnetization across the twin boundary. The 

divergence in magnetization creates effective “magnetic charges” at the twin boundary, 

which have a magnetic field (stray field) that points in the opposite direction of the 

magnetization. The stray field works to rotate the magnetic moments away from the 

charges, decreasing the magnetization divergence. This rotation also increases the 

magnetocrystalline anisotropy energy and decreases the Zeeman energy since the 

magnetic vectors rotate more parallel to the external magnetic field. The increase in the 

total stray field energy due to magnetic charges at the twin boundary is relatively small, 

but the stray field affects both the Zeeman and magnetocrystalline anisotropy energies as 

well. Therefore, the sample energy is strongly asymmetric about the angle = 0°. 

 
Figure 6.2 The change in perpendicular magnetization (a) at the twin boundary 

and the divergence of the magnetization (b) are given as a function of gamma. The 

units of magnetization are the normalized magnitude of the magnetic vector. The 

simulation was done for a sample at 2% strain containing one twin boundary in an 

external magnetic field of 500 mT. While the change in magnetization perpendicular 
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to the twin boundary is nearly symmetric about = 0°, the divergence has an absolute 

minimum near = -45° and a maximum near = +45°. 

 
Figure 6.3 Simulation results for the magnetization of a sample with one twin 

boundary at 2% strain in an external magnetic field of 500 mT is given for  = +40° 

(a) and  = -40° (b). For  = +40°, the external magnetic field is nearly parallel to the 

twin boundary and the divergence of the magnetization at the twin boundary is close 

to a maximum (Figure 6.2b). At  = -40° the external magnetic field is nearly 

perpendicular to the external magnetic field and the divergence of mangetization is 

nearly zero. For both angles, the direction of magnetic vectors across the twin 

boundary are shown in a location denoted by the red box in the color plot. 

In the case of a single twin boundary, the A twin domain saturates at low fields, 

while the B domain contains 180° magnetic domains (Figure 6.4). The B domain has 

direction of easy magnetization perpendicular to half of the lateral surface area, while the 

A domain has direction of easy magnetization perpendicular only to one edge. The 

interaction of the magnetization in the B domain with the surface causes a larger stray 

 



138 

 

 

field if the B domain has a net magnetization. At 3% strain, the B domain has direction of 

easy magnetization perpendicular to three times the surface area as the A domain, and 

therefore the driving force to demagnetize is larger. The B domain tends to demagnetize 

since the direction of easy magnetization in the B domain is normal to a large lateral 

surface area. At large strains, the B twin domain has the freedom to demagnetize while 

not increasing the energy in neighboring twin domains, which decreases the energy and 

torque at large strains. In experiments, the torque required to rotate a sample with one 

twin boundary and strains larger than 3% was comparable to the ABA twin 

microstructure which has lower torque than the BAB domain and less surface area with 

AEM perpendicular to it. 

The continuity of magnetization across the twin boundary forces a certain portion 

of domain B to contain no 180° magnetic domain walls due to the saturation of twin 

domain A. This driving force for no domain walls counteracts the driving force of the 

surface to create 180° magnetic domain walls in twin domain B, which demagnetizes to 

decrease the stray field energy. As the strain decreases, the total volume of the B domain 

decreases. The volume of the B domain forced by the twin boundary and saturated A twin 

domain to have no magnetic domain walls stays the same. Thus, the fraction of domain B 

forced to have no domain walls increases with decreasing strain. At 1% strain or less, the 

B twin domain would be fully saturated because in this case there is no sliver that spans 

from lateral surface to lateral surface without containing a twin boundary. Therefore, at 

strains of 1% or less both twin domains are saturated; the torque should be comparable to 

the BAB microstructure. 
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Figure 6.4 A sample containing one twin boundary at 3% strain in an external 

field of 75 mT at an angle of  = -30° 

At larger strains, the magnetization saturates at larger fields because of the large 

driving force to create green 180° magnetic domains in the B twin domain. From the 

simulation results for the ABA and BAB microstructures, larger torque is required to 

rotate the sample when the twin domains are saturated. As the strain decreases, the 

sample saturates more quickly. This explains why the torque increases more quickly with 

increasing field as strain decreases (Figure 6.5).  

 
Figure 6.5 The maximum torque as a function of external magnetic field for a 

sample with one twin boundary at 3 different strains. 

One might infer that the torque increases to the same level as the sample saturates; 

however, this was not seen in experiments. The largest torque occurs for an external 

magnetic field of approximately 700 mT, which is very close to the field needed to 

saturate the crystal perpendicular to the AEM. The maximum torque at 700 mT increases 
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with decreasing strain. As the field increases above the saturation field, the torque 

decreases slightly. We analyze the contribution of each energy term to the torque above 

magnetic saturation to understand why the torque does not tend toward the same value for 

different strains, and why the torque decreases above saturation. 

Above the saturation field, we assume the net magnetization is constant and 

parallel to the external magnetic field. If M and the angle between M and He are 

constant, then the Zeeman energy does not change as  changes and does not contribute 

to torque above saturation. At low fields, the Zeeman energy changes the most and 

contributes the most to the torque on the specimen. As the field increases close to the 

saturation field, the torque due to Zeeman energy decreases until it reaches the minimum 

at the saturation field. This applies to all strain values. 

To understand the dependence of the decrease in torque on the strain, we 

investigate the interaction of the stray field and the magnetocrystalline anisotropy. In 

Chapter 4, the dependence of the torque on strain was attributed to the interaction of these 

two driving forces and the relationship between the AEM and crystal surface. This 

interaction changes drastically if the magnetic moments are parallel to the field and not 

the AEM. 

If the crystal is homogeneously magnetized, we can calculate the stray field 

energy in terms of the geometry-dependent demagnetization factor. The demagnetization 

factor is small in the long dimension of the crystal and large in the short dimension. The 

energy is smallest when the field and magnetization are parallel to the direction with the 

small demagnetizing factor (i.e. at  = 0 and 180°). The stray field energy depends on  as 
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a -cosine function. The torque on the sample due to the stray field energy depends on 

following a sine function. 

Using the convention for strain in Chapter 4, the volume fraction of domain B is 

proportional to E = /max and the volume fraction of domain A is proportional to 1-E. 

The magnetocrystalline anisotropy energy for the entire crystal is given by 

Eanis = 𝐾𝑢(𝐸cos2𝛾 + (1 − 𝐸)sin2𝛾) (6.1) 

The torque due to the magnetocrystalline anisotropy energy is  

θanis = 𝐾𝑢(2 sin 2𝛾 − 4𝐸 sin 2𝛾)  (6.2) 

The torque due to mangetocrystalline anisotropy energy has a sine dependence on 

 as well, but with half the period. The torque decreases with sample strain. At 2% strain 

(E = 1/3), the torque due to magnetocrystalline anisotropy and stray field energy act 

synergistically, while at 4% strain (E = 2/3) the two act antagonistically. i.e. the two 

driving forces work against each other. At 3% strain (E = ½), the torque due to 

magnetocrystalline anisotropy is zero. At 3% strain, the torque on the sample is solely 

due to the shape anisotropy, which changes the stray field energy as a function of . 

At 3% strain and above saturation, the torque is solely due to the shape anisotropy 

and difference in stray field for different orientations of the sample in the external 

magnetic field. At smaller strains, the magnetocrystalline and shape anisotropy energies 

act synergistically as both are proportional to plus sine, leading to larger torque than for 

3% strain. At larger strains, the torque due to magnetocrystalline anisotropy is 

proportional to negative sine while the shape anisotropy is still proportional to plus 

sine. The two energies act antagonistically, leading to a smaller torque than for 3% 
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strain. This explains why the torque does not tend toward the same value above saturation 

for different sample strains. 

The torque required to rotate the sample decreases above saturation. For 2% 

strain, this decrease is only 6% of the maximum torque (near 700 mT), while at 4% strain 

the decrease is over 25% of the maximum torque (near 700 mT). Some of the decrease in 

torque is attributed to the decrease in torque due to Zeeman energy above saturation. 

Analyzing the energy contributions above saturation does not explain the dependence of 

the decrease in torque above saturation on the strain. We must know how the energies 

depend on  approaching saturation to relate to the dependence above saturation. More 

simulations must be performed, as analytical solutions are not available since we cannot 

assume a linear relationship between  and the orientation of the magnetic vectors in the 

sample. 

6.1 Strain Sensing 

The sample in the torque experiments has a constrained twin microstructure and 

strain, but rotates freely in the magnetic field. The freedom to rotate allows the sample to 

take an angle which enables the magnetic domain walls to maintain continuity across 

twin boundaries. This is not the case during the strain sensing experiments. Here, the 

sample is not free to rotate, and has a changing twin domain microstructure. The 

magnetic energy is not minimized by sample rotation, and, therefore, there occurs large 

magnetization divergence at twin boundaries which results in larger stray field energy. 

In the strain sensing experiments, the RMS amplitude of the voltage on the 

measurement coil increases non-linearly with decreasing strain. The time-varying 

magnetic flux through the coil creates a proportional voltage. The magnetic flux is the 
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sum of the magnetic field and magnetization. The magnitude of the change in field and 

magnetization determine the amplitude of the output voltage. If the twin domains are 

magnetically saturated, the magnetization changes linearly with strain. The sample strain 

also affects the magnetic field through the sample, since the voltage depends non-linearly 

on strain. 

Dynamic magneto-mechanical testing results in many twin boundaries [117]. 

Simulations shows that, for a sample with many twin boundaries, the twin domains 

saturate. If twin domains are saturated), a value for the stray field can be approximated by 

the geometry-dependent demagnetization factor. The stray field increases with increasing 

demagnetization factor. 

The change of magnetization (which changes the internal magnetic field) in the 

axis of the coil, which is the x direction, affects the voltage. The voltage of the pickup 

coil varies with the volume fraction of the A twin domain. As the sample strain 

decreases, the width of A twin domains increases. With increasing width, the 

demagnetization factor in the x direction in these domains decreases. Figure 6.6 gives the 

demagnetization factor in the x direction of the A twin domain [118], assuming the 

sample contains one twin boundary and rectangular twin domains. As the volume fraction 

of the A twin domain increases, the stray field decreases. The stray field works to 

decrease the flux in the coil. As the strain decreases, the flux increases with the 

magnetization of the A domain and because of the smaller stray field. The increase in 

flux gives a larger voltage amplitude in the pickup coil at smaller strains. The 

experiments show a non-linear increase in voltage with decreasing strain, which is caused 

by the increase in flux with decreasing strain. 
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Figure 6.6 The demagnetizing factor for twin domain A in a single twin boundary 

specimen is given as a function of sample strain. At 0% strain, the sample contains 

only twin domain A, and at 6% strain twin domain A does not exist. The 

demagnetizing factor and stray field increase with increasing strain. The 

demagnetizing factor was calculated based on the continuous function given by 

Equation 1 in Ref. 118. 

The dynamic voltage across the drive coil produces a magnetic field of 

approximately 15 mT in the center of the coil. This voltage works to change the 

magnetization of the sample to produce a voltage in the pickup coil. If the sample 

contains many small twin domains, the stray field energy forces the A twin domains into 

saturation in a direction determined by the twin boundary. The 15 mT external field does 

not reverse the direction of magnetization, because the internal field is too large to 

overcome at this small field. The change in magnetization is small and varies the voltage 

only to a small extent. The ideal sensor produces a large change in voltage with a small 

strain change. The voltage signal is proportional to the change in magnetization. A large 

change in magnetization occurs if the sample contains mobile 180° magnetic domain 

walls. The ABA microstructure has large twin domains with mobile 180° magnetic 

domain walls. In a sample containing large twin domains with mobile 180° domain walls, 

the small external field moves 180° domain walls. This magnetizes the sample in the 

positive and negative direction in the axis of the coil. The large change in magnetization 

produces a large voltage signal, which increases the resolution of the strain sensor. 
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The stray field energy leads to a reduction in the voltage change and therefore 

reduces the strain sensing capability of the material if the sample contains many twin 

domains. The change in RMS amplitude of the pickup coil and strain sensing resolution 

increases with a coarse twin domain microstructure compared with a fine twin 

microstructure. In practice, the sample does not require an external magnetic field to 

elongate, and the twin domains with AEM in the axis of the coil is not forced into 

saturation. The strain sensing resolution is drastically different than in the experiments 

outlined in Chapter 3. 
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CHAPTER SEVEN: CONCLUSIONS AND OUTLOOK 

The goal of this study was to characterize the influence of the internal magnetic 

field on the magnetization in single crystals of Ni-Mn-Ga martensite. The torque was 

measured as a function of external magnetic field, sample strain, and twin domain 

microstructure. The torque is the change in total magnetic energy as a function of the 

change in angle between the sample and external field. Micromagnetic simulation were 

performed to gain a qualitative understanding of the dependence of the energy and torque 

on the twin microstructure. The continuity of magnetization at twin boundaries to reduce 

stray field energy resulted in a strong dependence of the net magnetization and total 

energy on the twin domain microstructure. This qualitative understanding was applied to 

the strain sensing application to better understand the magnetic response from the sample 

and suggest improvements based on twin microstructure. 

Torque experiments demonstrated a strong dependence of the twin microstructure 

on the torque and magnetic energy on samples with the same strain and external magnetic 

field. Micromagnetic simulations revealed the internal magnetic field distribution and the 

relationship between twin boundaries and sample surface, which leads to different 

magnetization response depending on the formation of 180° magnetic domains and 

relative orientation of the field with twin boundaries. In a sample with two twin 

boundaries, one microstructure resulted in completely saturated twin domains and the 

other contained 180° magnetic domains and a larger total energy. Therefore, we must 
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consider the twin microstructure when implementing magnetic shape memory elements 

into applications. 

For instance, strain sensing applications use the magnetic response to detect the 

strain of the sample. In a sample with a fine twin microstructure all A twin domains 

which do not interact with the crystal ends saturate. The strain sensing method in the 

experiments reported in Chapter 5 have better resolution if a large change in 

magnetization occurs under a small alternating magnetic field. This happens only if the A 

twin domain had mobile 180° magnetic domain walls. The magnetic domain walls move 

to magnetize the A twin domains in different directions, resulting in a large change in 

magnetization. An actual application of this strain sensing measurement method does not 

require an orthogonal bias field to extend the sample. If the sample contains 180° 

magnetic domain walls and the voltage response would offer much better sensing 

resolution. 

The twin domain microstructure could be manipulated such that the magnetization 

response is optimized for a given application. In linear actuators where torque and 

bending inhibits strain and leads to shorter lifetime, a microstructure should be targeted 

which reduces torque. In a bending actuator, such as a flap or valve, a twin microstructure 

which promotes bending is optimal. A twin microstructure forced into saturation is 

beneficial in an application which requires large flux or magnetic saturation such as 

energy harvesting. Constraints which keep the twin microstructure over the lifetime of 

the element must be included in system design. 

The experiments and micromagnetic simulations reveal the strong dependence of 

magnetic energy on twin microstructure and provide a starting point to understand which 
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twin microstructures lead to optimal performance in a certain application. The 

experiments and simulations all contained one twin boundary, or multiple parallel twin 

boundaries. Studies should be carried out on specimen which contain non-parallel twin 

boundaries, as this will create a large divergence in magnetization at one twin boundary 

as exemplified in a wedge twin shown in Figure 7.1. Here, the left twin boundary has a 

low magnetic stray field energy since the magnetic moments meet head to tail on it. In 

contrast the right twin boundary has a high stray field energy since magnetic moments 

meet tail to tail on it (creating magnetic charges as indicated with negative symbols.) 

Such twin microstructures were produced by Straka et al. [22,119]. Possibly, a twin 

microstructure could be developed which manipulates the magnetization divergence and 

internal field energy such as to impose internal constraints on twin boundary motion and 

torque. 

 
Figure 7.1 A sample containing two non-parallel twin boundaries would have a 

large divergence in magnetization at one twin boundary, depicted by negative signs 

on the right twin boundary. 

The simulations for different twin microstructures were done at an external field 

of 75 mT. It would be most helpful to continue simulations in arrangements relevant for 

actuators, i.e. above the twinning stress. This would be the most helpful for future 

actuator design, and decrease the simulation time. Multiple angle sweeps would not be 

needed when the external field provides a large enough driving force for the 
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magnetization to reach equilibrium in 20,000 iterations of the energy minimization 

scheme. It may also be helpful to simulate a larger sample size to gain an understanding 

of the difference in magnetization with increased sample size. This is important because 

the torque in simulation and experiments were different by a factor of 50. We must know 

the origin of the differences in order to make assumptions when comparing simulations to 

macroscopic sample sizes. 

The simulation does not currently account for interactions between defects or 

elastic strain fields and magnetic vectors near twin boundaries. Integrating defects would 

require knowing the local changes in the exchange and magnetocrystalline anisotropy 

energy constants near the twin boundary due to local differences in order and symmetry. 

This would require first-principles calculations for these energy constants, which is 

beyond the scope of this study. These interactions may become substantial in cases with 

more complex twin microstructures or intersecting twin boundaries which have high 

defect content and complex magnetic domain microstructures. 

The twin boundaries in this study had large spacing; they were millimeters apart 

in experiments and on the order of one micrometer apart in simulations. The non-

modulated phase of Ni-Mn-Ga with small amounts of cobalt and copper has shown MFIS 

[6], and forms nano-twins on the scale of nanometers and hierarchical microstructures 

[120-123]. This presents a unique situation to analyze, since the twin domain 

microstructure has many closely spaced changes in direction of easy magnetization and 

large defect content. The small scale of twinning means it is accessible to micromagnetic 

simulations. 
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Muntifering et al. [120-123] characterized the defect content of intra-variant 

boundaries in non-modulated martensite. These experimental results can be used to 

calculate changes in exchange and magnetocrystalline anisotropy energy constants. We 

may use this information to simulate the magnetic energetics of nano-twinned and 

hierarchical twinned microstructures in non-modulated martensite. This would give an 

understanding of magnetization processes with closely spaced changes in direction of 

easy magnetization and large defect content. Such a study may reveal the role magnetism 

plays in the formation and detwinning process of hierarchically twinning martensite. 
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