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ABSTRACT 

Expansive soils present significant engineering challenges, with annual costs 

associated with repairing structures constructed over expansive soils estimated to run into 

several billion dollars. Volume changes in expansive soil deposits induced by fluctuations 

in the moisture content can result in severe damage to overlying structures. A flexible 

pavement section near the Western Border of Idaho has experienced recurrent damage 

due to volume changes in the underlying expansive soil layer; traditional stabilization 

methods have provided partial success over the years. The main objective of this research 

effort was to characterize the problematic soil layer contributing to the recurrent 

pavement damage and propose suitable rehabilitation alternatives. 

An extensive laboratory test matrix was carried out to characterize soil samples 

collected from underneath the problematic pavement section. Laboratory tests showed 

that the problematic expansive soil deposit was often at depths greater than 6 ft. (183 cm) 

from the pavement surface. Potential Vertical Rise (PVR) values calculated for ten 

boreholes strategically placed along the problematic pavement section closely matched 

with the surface roughness profile observed in the field. Liquidity Index (LI) calculations 

indicated that the active-zone extended to a depth of least 11 ft. (335 cm) from the 

pavement surface, and therefore, most of the heaving likely originates from soil layers as 

deep as 11 ft. (335 cm) from the pavement surface. Clay mineralogy tests indicated the 

presence of high amounts of Montmorillonite that can lead to significant volume changes. 

Moreover, high sulfate contents were detected in soil samples obtained from several of 
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the boreholes, indicating a potential for sulfate-induced heaving upon chemical 

stabilization using calcium-based stabilizers. Based on findings from the laboratory 

testing, it was concluded that chemical stabilization or shallow treatment alternatives are 

not likely to be successful in mitigating the recurrent differential heave problems. 

A mechanical stabilization approach using geocells was proposed as a likely 

rehabilitation alternative for this pavement section. By dissipating the heave-induced 

stresses over a wider area, this reinforcement configuration was hypothesized to 

significantly reduce the differential heave. Finite-element models of the pavement section 

comprising six alternative geocell-reinforced configurations were prepared using the 

commercially available package, ABAQUS®. Moisture swelling and suction properties 

for the expansive soil deposit were established in the laboratory and were used in the 

numerical model to simulate the swelling behavior. Results from the numerical modeling 

effort established that placing two layers of geocell within the unbound granular base 

layer led to the highest reduction (~60%) in the differential heave. Placing a single layer 

of geocell, on the other hand, reduced the differential heave magnitude by approximately 

50%. A single layer of geocell was therefore recommended for implementation to 

achieve the optimal balance between pavement performance and construction costs. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Expansive soil is a term describing soils that have a potential for swelling due to 

an increase in moisture content (Nelson and Miller, 1992). Wray (1995) defined an 

expansive soil as “a clay soil that has the ability to change in volume when the moisture 

content of the soil changes.” Expansive soils are commonly found throughout many 

regions of the world, particularly in arid and semiarid areas in Australia, Canada, China, 

India, Israel, South Africa, and the United States (Nelson and Miller, 1992). In these 

countries, the annual rainfall is less than the evaporation rate, so there is usually a 

moisture deficiency in the soil. There is an observed pattern of short periods of rainfall 

followed by long dry periods (drought) in semi-arid regions, which result in seasonal 

cycles of swelling and shrinkage (Nelson and Miller, 1992). These soils typically exhibit 

moderate to high plasticity, low to medium strength, and shrink-swell characteristics 

(Holtz and Gibbs, 1956; Aitchison, 1973; Chen, 1988). 

A study sponsored by the National Science Foundation (NSF) reported that the 

damage to structures, particularly to lightly loaded engineering structures, caused by 

expansive soils is more than any other natural disaster, including earthquakes and floods 

(Jones and Holtz, 1973). In the United States, the total annual cost of damage from these 

soils is $2.3 billion (Gromko, 1974). Petry and Armstrong (1989) noted that it was more 

economical to perform initial stabilization of these problematic soils before/during 

construction of the overlying structures rather than performing remedial treatments later 
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on with existing structures around. The problem of damage to structures constructed over 

expansive soil deposits is prevalent across the world. Pavements represent a common 

example of lightly-loaded structures that are adversely affected by underlying expansive 

soil deposits. 

The performance of a pavement system depends to a large extent on properties of 

the underlying soil layer. When the subgrade layer exhibits expansive nature, it affects 

the performance of the pavement structure and results in a shorter service life. Damages 

sustained by pavements due to the expansion of the underlying subgrade layer can be in 

the form of distortion and cracking in both flexible (asphalt) and rigid (concrete) 

pavements, as well as heave-related bumps; both of these lead to ride discomfort. Cracks 

developed in pavements further allow moisture intrusion into subsoils, which further 

weakens the underlying layers. Figure 1.1 shows photographs of pavement sections 

damaged due to volume change in underlying expansive soil deposits. Overall, the 

magnitude and extent of damages to pavement structures can be extensive, impairing the 

usefulness of the roads and practically making them uncomfortable for drivers; these 

pavements require frequent maintenance activities. 

 (a) (b) 
 

Figure 1.1 Photographs Showing Damage to Pavement Systems due to Volume 

Change in Underlying Expansive Soil Deposits (Manosuthikij, 2008) 
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Several rehabilitation approaches such as soil replacement, pre-wetting, moisture 

control, and lime stabilization have been implemented in the past by practitioners with 

varying degrees of success. These techniques suffer from certain limitations with respect 

to their applicability such as: (1) high cost for hauling suitable re-fill materials for soil 

replacement purposes (Snethen et al., 1975; Chen, 1988); (2) longer time periods required 

for pre-wetting highly plastic clays (Felt, 1953); (3) difficulties in constructing well-

performing moisture barriers (Snethen et al., 1975); and (4) pulverization and mixing 

problems in case of lime stabilization (Ramana Murty, 1998), etc. Moreover, 

implementation of these alternatives can prove to be particularly challenging at locations 

where the expansive soil deposits extend to significant depths below the pavement 

surface. In such scenarios, mechanical stabilization alternatives may need to be explored. 

Since the 1970s, geosynthetics have been increasingly used as construction 

materials in civil engineering projects such as roads, retaining walls, landfills, etc. 

Different types of geosynthetic products available in the market are: geogrids, 

geomembranes, geotextiles, geonets, geocomposites, and geocells (Koerner, 2005). 

Geosynthetics perform at least one of the following five functions: (1) separation, (2) 

reinforcement, (3) filtration, (4) drainage, and (5) containment (Kwon, 2007). The 

performance and design life of pavement structures can often be enhanced through 

geosynthetics reinforcement. Geocell, a special type of geosynthetics, is a three- 

dimensional (3D) honeycombed cellular structure that provides confinement to the 

compacted infill material. Published literature has focused on the use of geocells to 

increase bearing capacity and reduce settlement in foundations on soft soils (Dash et al., 

2001; Sitharam et al., 2005). Bathurst and Jarrett (1988) reported that geocell-reinforced 
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base layers exhibited higher load-carrying capacity when compared to soft peat 

subgrades. Similarly, Bortz (2015) reported that geocells can help reduce the thickness 

requirements for HMA and base layers constructed over weak subgrades. Recently, the 

Association of American Railroads (AARs) and the Transportation Technology Center 

Inc. (TTCI) observed that geocellular confinement systems were 14 times more effective 

compared to other geosynthetic types and eliminated the need for frequent ballast 

tamping and resurfacing activities. Figure 1.2 shows a schematic of track structure 

comprising a geocell (also known as geoweb) reinforced subballast layer (AAR/TTCI, 

2012). 

 
 

Figure 1.2 Schematic of Railroad Track Structure Comprising a Geocell-

Reinforced Subballast Layer (AAR/TTCI, 2012).  

Therefore, geocells represent an economical alternative solution for pavements 

and railroads. The use of geocells as a remedial measure to rehabilitate pavement sections 

constructed over expansive soil deposits has not been explored in the past. 

1.2 Background and Problem Statement 

Volumetric changes induced in expansive soils upon fluctuations in the moisture 

content lead to the development of cracks in overlying lightly loaded structures such as 

pavements. Both flexible and rigid pavements built over expansive soil layers can 
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undergo significant cracking due to the heaving caused by expansive soil deposits. One 

approach to mitigate this problem involves preventing the access of moisture to the 

expansive soil deposits. Jayatilaka and Lytton (1997) reported that vertical moisture 

barriers with impermeable geomembranes could reduce the moisture variation in 

expansive subgrade and restrain pavement roughness. Vertical moisture barriers 

minimize moisture variations by isolating the soil from climatic changes. In wet seasons, 

moisture barriers prevent access to water, whereas, in dry seasons, the moisture barriers 

prevent excessive drying of the subgrade soil, especially under pavement shoulders and 

thus reduce the chances of longitudinal shrinkage cracking (Steinberg, 1992). The main 

drawback of this approach lies in the high expense and complex construction methods. 

Another widely used approach involves chemical stabilization of expansive soils using 

Calcium-based stabilizers like lime and cement. However, this stabilization technique 

may not be applicable for soil layers exhibiting high sulfate contents due to the formation 

of high-swelling minerals like Ettringite and Thaumasite. When the problematic soil layer 

deposits are located at depths greater than 3 ft. (~91 cm) from the pavement surface, 

traditional shallow stabilization treatments or soil removal and soil replacement may not 

be feasible. Therefore, remedial measures that can mechanically dissipate the stresses 

generated due to volume changes in the underlying expansive soil deposits may be more 

appropriate. 

A problematic section of U.S. highway 95 along the Idaho-Oregon border 

experiencing recurrent differential heaving and pavement damage was selected for 

detailed investigation in this research effort. Although the recurrent pavement distresses 

have been attributed to volume changes in the underlying expansive soil deposits, prior 
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stabilization and remediation approaches have achieved only partial success. 

Accordingly, this research study focused on identifying the primary mechanisms 

contributing to the recurrent pavement damage and proposing adequate remedial 

approaches. 

1.3 Research Hypothesis and Objectives 

The research questions needed to be answered were: 

1. For the problematic flexible pavement section, where is the problematic 

soil layer located (with respect to the pavement surface)? 

2. Is it possible to remediate the problem of recurrent pavement damage 

through conventional soil stabilization approaches? 

3. If conventional stabilization approaches are not feasible, can geosynthetic 

reinforcement of the pavement help mitigate the differential heaving problem? 

4. If geosynthetic reinforcement is an option, where should it be placed 

within the pavement structure for optimum performance? 

The primary research hypothesis associated with research question numbers (3) 

and (4) listed above is “Geosynthetics can be effectively used as remedial measures to 

mitigate the problem of differential heave in pavement sections constructed over 

expansive soil deposits.” 

The following research tasks were completed in an effort to answer the research 

questions 

1. Establish the physical, mineralogical, and chemical characteristics of soil 

samples collected from underneath the problematic pavement section through the 

completion of an extensive laboratory test matrix. 
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2. Numerical modeling of pavement sections incorporating geocell-

reinforced to select evaluate its effectiveness as a candidate remedial measure to mitigate 

the differential heave problem in flexible pavement sections constructed  over expansive 

soil deposits. 

1.4 Outline of the Thesis Document 

This Master’s thesis document comprises five chapters. 

Chapter 2 presents a review of published literature on expansive soil behavior and 

different factors influencing the expansive behavior of soils. Identification and 

characterization of expansive soils and various remedial measures to mitigate damage to 

structures overlying expansive soil deposits are also discussed in this chapter. 

Chapter 3 presents a detailed background of the problematic pavement section 

investigated in this research effort. This is followed by a discussion of the laboratory test 

matrix developed for extensive characterization of soil samples collected from 

underneath the problematic pavement section. Findings from the laboratory testing effort 

are then presented, and inferences are drawn concerning the primary mechanisms 

contributing to the recurrent pavement damage. Finally, underlying principles of potential 

remedial measures to adequately address the source of the problem are discussed. 

Results from laboratory test to establish material properties as inputs for the 

numerical model are presented. Chapter 4 presents details of the numerical modeling 

effort undertaken during this research effort. Finally, results from the numerical models 

are discussed and inferences are drawn concerning the effectiveness of geocell 

reinforcement as potential rehabilitation measures for pavements experiencing expansive 

soil-related differential heaving.  
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Finally, summary and conclusions from this research study, the significance of the 

findings from laboratory and numerical modeling efforts, and future research needs are 

addressed in Chapter 5.  
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CHAPTER 2: REVIEW OF PUBLISHED LITERATURE 

2.1 Introduction 

In recent years, several research studies have been conducted to study the swell- 

shrink behavior of expansive soils. Several alternatives have been developed by 

researchers and implemented to control the swell-shrink behavior of these soils. The 

swelling potential of the expansive soil primarily depends on important soil properties, 

environmental factors such as susceptibility to fluctuations in moisture contents, and 

stress and surcharge conditions. Each year, expansive soils cause damage to houses, 

buildings, roads, pipelines, and other pavement structures. This is more than twice the 

damage from floods, hurricanes, tornadoes, and earthquakes combined (Jones and Holtz, 

1973). This chapter presents a literature review on expansive soil behaviors and different 

factors influencing the expansive behavior of soils. Towards the end of the chapter, 

detailed review of several remediation strategies for pavement damage occurring due to 

expansive soils has also been presented. 

2.2 Factors Influencing the Expansive Behavior of Soils 

The factors affecting the shrink-swell potential of soil can be categorized into 

three different groups: soil characteristics such as clay mineral, plasticity, soil suction, 

and dry densities; environmental factors such as climate, groundwater, vegetation, and 

drainages; and the state of stress (Nelson and Miller, 1992). These intrinsic properties 

contribute to swelling and shrinkage with a change in moisture content in the ambient 
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environment and can be used to determine the behavioral characteristics of expansive 

soils. Brief discussions of these factors are presented in the following subsections. 

2.2.1 Clay Mineral 

The magnitude of swelling potential is a function of the amount and type of clay 

mineral present in the soil (Johnson et al., 1975). Clay mineral types that are commonly 

responsible for volume changes are Smectite, Vermiculites, and some mixed layers of 

these minerals. Montmorillonite, which falls in the Smectite group of minerals is highly 

expansive in nature. Kaolinite, on the other hand, is significantly less expansive in nature 

but can cause volume change when mineral particle sizes are less than few tenths of a 

micron (Nelson and Miller, 1992). Johnson et al. (1975) showed that mineralogical 

composition along with environment is responsible for swelling potential of the soil. 

2.2.2 Soil Fabric 

Clays tend to exhibit higher swelling potential when flocculated; however, the 

swelling potential reduces when particle arrangements are altered to disperse upon 

compaction (Johnson et al., 1975; Nelson and Miller, 1992). Fabric and structure are 

altered by compaction at high moisture content or remolding. Remolding suppresses the 

structural strength and the strong connections between soil particles that were a result of 

long and complicated natural events. Thus remolded soil samples swell freely compared 

to undisturbed soils. Higher the dry density, larger is swelling potential of the soil. This is 

mainly due to closer particle spacing corresponding to soils compacted to higher 

densities, which results in greater particle contact and, thereby, leads to significant 

volume changes (Johnson et al., 1975; Chen, 1988; Nelson and Miller, 1992). 
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2.2.3 Surcharge Loads 

Using surcharge or external load can reduce the amount of swelling by balancing 

inter-particle repulsive forces. Confining pressure has a significant influence on the 

swelling potential of clays. Greater the confining pressure, smaller will be the vertical 

deformation. Overburden pressures exerted due to lightly loaded engineering structures 

such as pavements are too small to counter excessive swelling pressures applied by 

underlying expansive soils (Johnson et al., 1975). 

2.2.4 Active-Zone 

The depth in the soil, which periodic changes of moisture occur, is usually 

referred to the active-zone. The depth of the active-zone varies, depending on location 

and moisture fluctions. In some clays and clay shales in the Western United States, the 

depth of the active-zone can be as much as 50 ft. (1524 cm). The active-zone depth can 

be easily determined by plotting the liquidity index (LI) against the depth of the soil over 

several seasons as shown in Figure 2.1 (O’Neill and Poormoayed, 1980; Das, 1999). LI is 

defined as the relative consistency of a cohesive soil in its natural state, which is given 

by: 

                            
w PL

LI
LL PL





                                 (2.1) 

where LL = Liquid Limit (%); w = Natural Moisture Content (%); PL = Plastic Limit (%). 

Vanapalli and Lu ( 2012) stated that soil heave is induced due to the change in 

soil suction within the active-zone. Soil suction is the principal stress-state variable that 

governs the swelling potential of the clayey soil. In other words, it can be explained a soil 

suction within the active-zone is an illustration of a state of balance of environmental 

factors (i.e., soil-atmospheric interactions) and soil-water storages processess (Vanapalli 
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and Adem, 2013). It is critical to define a zone that could be wetted with time because as 

water travels through pores in the soil, different zones are wetted at various times.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

 
Figure 2.1 Determining Active-Zone using Liquidity Index (Recreated from 

Source: O’Neill and Poormoayed, 1980; Das, 1999) (1 ft. = 30.5 cm) 

2.3 Identification and Characterization of Expansive Soils 

Different methods have been developed to identify expansive soils in the 

laboratory and field. Various criteria adopted to recognize the presence of expanding-

lattice-type clay minerals in a natural soil can be broadly classified into three categories, 

namely (1) index property tests, (2) mineralogical identification, and (3) physical and 

mechanical characterization methods. Brief discussions on these methods are presented in 

the following subsections. 
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2.3.1 Index Property Tests for Evaluating Swell Potential 

Index property tests can be used for the evaluation of the swelling potential of 

expansive soils. The first and still most commonly used index properties correlated with 

swell potential are the soil consistency limits. The plasticity index and liquid limit are 

useful indices for determining the swelling characteristics of most clays (Holtz and 

Gibbs, 1956). Seed and Lundgren (1962) showed that the plasticity index alone could be 

used as a preliminary indication of the swelling characteristics of most clays. The relation 

between the swelling potential of clays and the liquid limit and plasticity index can be 

classified in Table 2.1. 

Table 2.1 Classification of swelling soils (Army TM 5-818-7, 1983) 

Classification of 

potential swell 

Liquid Limit 

(LL) (%) 

Plasticity 

Index PI (%) 

Low <30 0-10 

Medium 30-50 10-20 

High  50-60 20-35 

Very High >60 >35 

Some other tests are easy to perform and should be included as routine tests in the 

investigation of pavement sites in those areas having expansive soil. Such tests may 

include (1) linear shrinkage tests, and (2) colloid content tests, etc. Altmeyer (1955) 

provided some values for shrinkage limits and linear shrinkages as a guide to determine 

potential expansiveness of clayey soil. These values are presented in Table 2.2. 
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Table 2.2 Relation between Swelling Potential, Shrinkage Limits and Linear 

Shrinkages (Source-Altmeyer, 1955; Chen, 1988) 

Shrinkage Limit 

(%) 

Linear 

Shrinkage (%) 

Degree of 

Expansion 

<10 >8 Critical 

10-12 5-8 Marginal 

>12 0-5 Non-critical 

Accordingly, Seed and Lundgren (1962) believed that there is no correlation 

between swelling potential and percentage of clay sizes. For any given clay type, the 

relationship between the swelling potential and percentage of clay size can be expressed 

by the equation:  

 
XS KC                            (2.2)  

where S  is the swell potential (%); C is the percentage of clay sizes finer than 0.002 

mm ; X is an exponent depending on the type of clay, and K is the coefficient depending 

on the clay type. 

Where a hydrometer test determines the number of the clay size particles, the 

quality of colloid reflected by X  and K  in the above equation, controls the amount of 

swell. 

2.3.2 Mineralogical Identification and Quantification 

Mineralogical identification helps identify elements present in a clay particle. 

There are several ways to determine the mineralogical composition of a clay particle. 

Some commonly used methods are X-Ray Diffraction (XRD), Differential Thermal 

Analysis, Vibrational Spectroscopy, and X-Ray Absorbance Spectroscopy. Quantitative 

determinations of some clay minerals based on simple comparison of the diffraction peak 
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heights or areas are uncertain due to many factors like differences in absorption 

coefficients, particle orientations, crystallinity and other factors (Mitchell and Soga, 

2013). As a result, other techniques using chemical mass balance concepts in conjunction 

with XRD data have been developed that are currently utilized for the clay mineral 

quantification (Alexaides and Jackson, 1966; Hodgson and Dudeney, 1984; Johnson et 

al., 1985; Randall et al., 1994). 

2.3.3 Physical and Mechanical Characterization Methods 

There are several ways very popular and widely practiced to determine swelling 

potential of the expansive soil. Brief discussions on these methods have been presented in 

the following subsections. 

2.3.3.1 Oedometer Test 

Swelling pressure is defined as the pressure in an oedometer test required to 

prevent soil sample from swelling after being saturated where swelling pressure which is 

determined by the oedometer test method is one of the important parameters used in 

determining heave potential (Vanapalli and Lu, 2012). Various loading and surcharge 

pressures have been used by researchers to represent in-situ conditions. Loading and 

wetting sequence, surcharge pressure, sample disturbance and apparatus compressibility 

all should be taken into account while performing oedometer test. The total stress applied 

to the sample is controlled in the conventional consolidometers. Engineers are widely 

using oedometer tests; however, environmental factors such as drainage and effects of 

lateral pressure cannot be simulated while conducting oedometer test (Vanapalli and 

Adem, 2013). Another disadvantage of this test is that it takes a longer period for 

achieving equilibrium which makes this tedious and costly. Two types of oedometer tests 
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commonly practiced are (1) consolidation-swell test, and (2) constant volume or swell 

pressure test (Nelson and Miller, 1992). 

2.3.3.2 Soil Suction Methods 

Soil suction is the quantity that can be used to characterize the effect of moisture 

on volume, and it is a measurement of the energy or stress that holds the soil water in the 

pores. Surface tension at the air-water interface in an unsaturated soil will lead to 

negative water pressure in the soil and therefore referred to as matric suction. Matric 

suction varies with the soil’s moisture content. The total suction is expressed as a positive 

quantity and is defined as the sum of matric and osmotic suction. Researchers used the 

filter paper test to determine the initial total suction and matric suction of the soil sample. 

One-dimensional heave and the swelling pressure can be determined using soil suction 

method as it is based on stress state. In determining heave, soil suction is taken into 

account through the use of different parameters. Soil suction methods are considered to 

be reliable and can simulate field conditions (Vanapalli and Adem, 2013). 

2.3.3.3 United States Bureau of Reclamation (USBR) Method 

This method involves direct correlation of observed volume change with colloidal 

content, plasticity index, and shrinkage limits. Colloid content is the total percent of 

particle sizes less than 3.9 × 10-5 in. (0.001 mm) in diameter present in the soil sample. 

The typical relationship of these properties with swelling potential is presented in Figure 

2.2, and the identification criteria of expansive clay are shown in Table 2.3. 
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Figure 2.2 Relation of Volume Change to Colloid Content, Plasticity Index, and 

Shrinkage Limit (Recreated from Source- Chen, 1988; Murthy, 2010) 

Table 2.3       Data for Making Estimates of Probable Volume Changes for 

Expansive Soils (Source: Chen, 1988; Murthy, 2010) 

Data from index tests  

Probable 

Expansion, 

percent total 

vol. change 

 

Degree of 

Expansion 

Colloid Content, 

percent minus 3.9 

× 10-5 in. (0.001 

mm) 

Plasticity 

Index 

(%) 

Shrinkage 

Limit (%) 

>28 >35 <11 >30 Very high 

20-13 25-41 7-12 20-30 High 

13-23 15-28 10-16 10-30 Medium 

<15 <18 >15 <10 Low 

 

2.3.3.4 Potential Volume Change (PVC) 

The Potential Volume Change (PVC) method was developed by T.W. Lambe 

(1960) for the Federal Housing Administration (FHA). In this approach, a remolded soil 

sample is compacted in a fixed ring consolidometer with a compaction effort of 55,000 

pcf (~8640 kN/m3). After compaction, a pressure of 200 psi (~1379 kPa) is applied on to 

the sample. Then the sample is wetted and allowed to swell against the proving ring. 
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Swell index is then calculated by converting pressure in the proving ring to a qualitative 

volume change using the plot shown in Figure 2.3. PVC test is an indirect method for 

determining the swelling potential of the expansive soil, and also the test is carried out on 

remolded samples. So, this test can only be used for identifying the expansive soil, and 

should not be used as design parameters for undisturbed soil samples (Chen, 1988; 

Murthy, 2010). 

 
 

Figure 2.3 Determining PVC from Swell Index (Recreated from Lambe, 1960) (1 

psf = 0.05 kPa) 
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2.4 Methods for Prediction of Swelling Potential 

There are three general methods for predicting potential heave, namely, (1) 

empirical, (2) semi-empirical, and (3) analytical methods (Nelson and Miller, 1992). 

Most of the methods assume some change in soil moisture content, generally from the in-

situ moisture content to an assumed final moisture content (such as saturation). Most 

semi-empirical methods are only used to predict potential vertical heave, which is 

commonly referred to as Potential Vertical Rise (PVR). PVR values can easily be used to 

predict the effects of select fill. Brief discussions on PVR methods have been presented 

in the following subsections. 

2.4.1 Potential Vertical Rise (PVR) 

The Potential Vertical Rise (PVR) method, developed by McDowell in 1956 

(1956), is widely used across the United States to the estimate the volume change 

behavior of expansive soils. PVR, expressed in inch (cm). The PVR computed for a given 

site is currently used in pavement design to determine what depth of the natural soil must 

be removed and replaced with a more inert soil in place. In order to reduce the computed 

PVR to 1 in. (2.54 cm), 1.5 in. (3.75 cm), or 2 in. (5 cm) dependent upon the highway 

facility. There are some recommended values of 1 in. (2.54 cm) for interstate, and U.S. 

highways, 1.5 in. (3.75 cm) for state highways, and 2 in. (5 cm) for farm-to-market roads 

(Jayatilaka et al., 1993). A summary of assumptions together with discussions based on 

PVR are listed below (Lytton, 2004): 

1. Soil at all depths has access to water in capillary moisture conditions. 

2. The vertical swelling strain is one-third of the volume change at all depths. 

3. Remolded and compacted soils adequately represent soils in the field. 
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4. PVR of 0.5 in. (1.27 cm) produces poor riding quality. 

5. Volume change can be predicted by the use of plasticity index alone. 

Moreover, there are limitations and drawbacks to this method. For example, this 

approach does not consider topography, vegetation and drainage effects. It is an overly 

conservative estimation of swell potentials for low plasticity soils and an underestimation 

for high PI soils (Lytton, 2004). However, this method has limitations of not considering 

topography, vegetation and drainage effects, as well as overly conservative estimations of 

swell potentials. Therefore, Texas Department of Transportation (TxDOT) uses Tex-124-

E (TxDOT, 1999) test method to determine the PVR.  

2.5 Remediation Strategies for Pavement Damage Occurring due to 

Expansive Soil 

The volumetric change may be more severe and thus become a bigger challenge 

for expansive soil. The expansion action may result in intolerable differential heaving of 

pavements. The commonly used remediation methods include (1) mechanical/chemical 

stabilization, (2) moisture control barriers, and (3) geosynthetics reinforcement. The 

following sections describe different remediation methods. 

2.5.1 Pre-wetting 

The objective of pre-wetting is to allow the soil to reach moisture equilibrium 

prior to placement of pavement. Pre-wetting a site to increase moisture content can 

eliminate an expansive soil problem if high moisture content can be maintained (Thomas, 

1998). The soil is allowed to swell in order to maintain a constant volume, achieving a no 

heave state, and therefore structure built over it will not be damaged (Chen, 1988). 

Experience in Southern California indicates that pre-wetting moderately expansive soils 
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to a condition of 85% saturation at a depth of 30 in. (~76 cm) is often satisfactory, while 

in the case of highly expansive soils, pre-wetting to as much as 36 in. (~91 cm) may not 

be sufficient (Chen, 1988). 

Although this method has been successful in some projects, a significant problem 

is associated with this technique. Pre-wetting has greater chances of success during the 

hot, dry season when soils are in a desiccated state. Clayey soils usually have low 

permeability and thus the time required for pre-wetting of soil to desired depth will be 

longer. Therefore, soil mass and depth needed for pre-wetting are usually limited. Also, 

wetting of deep, expansive layer takes longer time and becomes susceptible to future 

heave. Another disadvantage is that clayey soil when saturated reduces the bearing 

capacity. There is a possibility that excess water left in the upper soil can cause swelling 

in deeper layers at a later date (Chen, 1988). 

2.5.2 Surcharge 

The expansive behavior of clay can be reduced by loading structure with a 

surcharge sufficient to counteract swell pressures caused by an increase in moisture 

content. This method consists of applying sufficient pressure to the expansive soil to 

reduce the amount of swell. For example, a layer of non-expansive soil or less expansive 

soil can be placed on top of the expansive soil deposit to apply sufficient downward 

pressure on the soil layer. The greater the surcharge pressure, the lower will be the 

percent swell. The surcharge pressure can be calculated by one of the following 

approaches: (1) constructing an inert embankment to pre-calculated height and (2) 

replacing soil to a calculated depth with an inert material. The principle is to make a 

balance between the pavement structure, and the subgrade by eliminating the upward 
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swelling pressure (Djellali et al., 2012). This can be done applying a surcharge on the 

subgrade (see Figure 2.4). 

 
Figure 2.4 Principle of the Stabilization of an Expansive Subgrade (Djellali et al., 

2012). 

where 
pp  is the applied vertical pressure, 

2/lb ft (
2/kN cm ), sp  is the swelling pressure, 

2/lb ft (
2/kN cm ), 

LH  is the selected fill thickness, ( . /in cm ).  

This method is only feasible for soils with low to moderate swelling pressure. 

Proper laboratory and field testing are required to determine swelling pressure of the soil 

(Nelson & Miller, 1992). However, the vertical stress applied by lightly loaded 

engineering structures such as pavements is often lower in magnitude than swell 

pressures exerted by expansive soil subgrades. Therefore, the surcharge approach to 

counter the swell pressure from subgrade soil is more feasible for structures with heavy 

foundations (Johnson et al., 1975). 

2.5.3 Chemical Stabilization 

Cement and lime stabilization have been widely used to improve the strength of 

the expansive soils. The reason for chemical stabilizer popularity is that they are 

applicable in a wide range of soil type and are widely available and relatively cheap as 

H

L 

p sp p   

LH   

sp   
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compared to other modes of soil stabilization. Brief discussions on different types of 

admixture have been presented in the following subsections. 

2.5.3.1 Lime 

Lime stabilization is widely used to chemically transform the unstable soils so 

that the soils could be used as sound foundations. Lime stabilization creates some 

important engineering properties of soils, such as the advantages of providing increased 

strength; improved resistance to fracture, fatigue, and permanent deformation; improved 

resilient properties; reduced swelling; and resistance to the damaging effects of moisture. 

The most substantial improvements in these properties are seen to be in moderate to high 

plasticity soils, such as heavy clays (Little et al., 2000). Lime stabilizes soils through two 

important mechanisms, soil modification, and soil stabilization. The rapid 

physicochemical reactions such as cation exchange and flocculation between lime and 

clay minerals are referred as soil modification while the long-term soil-lime pozzolanic 

reactions are referred as soil stabilization (Rao et al., 2008). 

2.5.3.2 Cement 

Many researchers have indicated that the role of cement as a soil stabilizer is 

similar to lime due to the presence of calcium in both products (Estabragh et al., 2013). 

Cement stabilization develops from the cementitious materials between the calcium 

silicate, aluminate hydration products and the soil particles (Croft, 1967). The addition of 

cement to clay soil reduces the liquid limit, plasticity index, and swelling potential; and 

increases the shrinkage limit and shear strength of soil (Nelson and Miller, 1992). 
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2.5.3.3 Fly Ash 

Fly ash is a byproduct of coal-combustion electric-generating plants. There are 

mainly two types of fly ash, namely (1) Class-F, and (2) Class-C fly ash. Class-F is 

obtained from the burning of bituminous coal, which contains a very low concentration of 

calcium product, and thus Class-F does not possess self-cementing characteristics but can 

be used in the presence of lime and cement. On the other hand, Class-C fly ash is 

obtained from burning of sub-bituminous coal, which is rich in Calcium Carbonate and 

thus contains cementing agent Calcium. Usually, Class-C fly ash is used in the presence 

of lime and cement. But Class-C fly ash can form a cementitious bond similar to Portland 

cement so in some cases only fly ash can be used (Mackiewicz and Ferguson, 2005). A 

study carried out by Malhotra and Naval (2013) concluded that the right proportion of fly 

ash and lime could decrease swelling and shrinkage characteristics of the expansive soil. 

2.5.4  Moisture Barriers 

The primary factor influencing volume change of expansive soil is fluctuations in 

the moisture content. In the encapsulation technique, the soil is made isolated from any 

moisture changes by the use of waterproof membrane (Johnson et al., 1975). The 

encapsulation technology provides for the complete isolation of expansive soils from all 

water sources. Encapsulating barriers have been constructed using both asphaltic 

materials, and more recently, with geomembranes. Encapsulation can only be used with 

new pavement construction. The barrier could be of two types: horizontal as well as 

vertical barriers. 

Horizontal moisture barriers are installed around rigid paving or flexible paving to 

prevent excessive intake of moisture from the surrounding. Based on a study by 
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Browning (1999), horizontal moisture barriers neither produce a smoother ride than the 

unprotected pavement in the roughness tests nor reduce the moisture variance. 

Vertical moisture barriers are installed around the perimeter of a building to 

prevent water entering under slab soils. Koerner (2005) discusses that moisture barriers 

are not likely to work as thermos-dynamic processes by themselves lead to moisture 

fluctuations in the soil. The major drawback of this approach lies in the high expense and 

complex construction methods. Field trials to evaluate the effect of barrier depth showed 

that deeper barriers at 8 ft. (~244 cm) outperformed the shallow barriers at 6 ft. (~183 

cm) in maintaining a more constant moisture regime, thereby further reducing vertical 

movements (Gay and Lytton, 1988). However, the deeper the barrier, the more expensive 

the construction will become. Thus, using vertical moisture barriers has usually only been 

reserved for major highways. 

2.5.5 Geosynthetics Reinforcement 

A more innovative, evolving technique being used in pavement design for 

expansive soils is the use of geosynthetic reinforcements in the base layer or at the 

interface of the base and subgrade layers. The American Society for Testing and 

Materials (ASTM) defines geosynthetics as “a planar product manufactured from a high 

density polymeric material used with soil, rock, earth, pipelines or other geotechnical 

engineering related material as an integral part of a man-made project, structure, or 

system (ASTM 4439 2004).” Various types of geosynthetics have different functions that 

can be grouped as separation, reinforcement, filtration, drainage, and containment 

(Kwon, 2007; Christopher, 2010). Geosynthetics provide a significant improvement in 

pavement construction and performance. Figure 2.5 illustrates a number of potential 
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geosynthetic applications in a layered pavement system to improve its performance and 

the design life of pavement structures. The reinforcement approach shown in Figure 2.5 

can be provided by geosynthetic through friction or interlock (geogrids) developed 

between the aggregate and the geosynthetic interface. These applications include 

subgrade stabilization, base/subbase, and asphalt reinforcement (Christopher, 2010). 

 
Figure 2.5 Potential Applications of Geosynthetics in Layered Pavement System 

(Christopher, 2010) 

Geosynthetics include geogrids, geomembranes, geotextiles, geonets, 

geocomposites, and geocells (Koerner, 2005). Among all the geosynthetic types stated 

above, the effect of geocells inclusion for the case of pavement application is described in 

the following subsections. 

2.5.5.1 Geocell 

Geocell is one of the geosynthetic products used primarily for improving soil 

conditions. In the 1970s, it was originally developed by the U.S. Army Corps of 

Engineers for quick reinforcement of cohesion less soil in the military field. Like other 
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geosynthetic products, geocellular confinement systems (geocells) are 3D permeable, 

honeycomb or web structure and usually made from polymeric materials, such as high-

density polyethylene (HDPE). For convenient transportation, most geocell products have 

a foldable three-dimensional geometry as shown in Figure 2.6 (Webster and Alford, 

1977).  

Figure 2.6 3D Geocellular Confinement (Webster and Alford, 1977). 

Various shapes and sizes of geocell exist (see Figure 2.7), and they can be found 

in a multitude of materials. This multitude of product specifications allows extreme 

versatility in its applications to soil reinforcement. 

 
Figure 2.7 Various Geocells: Strataweb (left, copyright: Strata Systems), and 

Neoweb (right, copyright: PRS Mediterranean). 

2.5.5.2 Mechanism of the Geocell Reinforcement 

Zhao et al. (2009) reviewed the geocell-reinforced layers under embankments and 

suggested that the main geocell layer functions in three aspects: (1) lateral resistance 
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effect, (2) vertical stress dispersion effect, and (3) membrane effect. The reinforcing 

mechanism in the geocell provides all round confinement to the materials by virtue of its 

interconned cells a result it prevents the lateral spreading of soil on the application of 

load (see Figure 2.8a). Because of this better composite material is formed and the 

geocell layer behaves as a stiffer mattress that redistributes the footing load over a wider 

area, as shown in Figure 2.8b (Dash et al., 2008). The loads from the embankment deflect 

the geocell reinforcement thus generate tension force, as shown in Figure 2.8c. 

 
Figure 2.8 Possible Reinforcement Functions Provided by Geocell in Roadways 

(a) Lateral Resistance Effect, (b) Vertical Stress Dispersion Effect, and (c) 

Membrane Effect (Zhao et al., 2009). 
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2.5.5.2 Application of the Geoccell Reinforcement 

Geocells are widely used for the reinforcement of soft soil. There is a bundle of 

areas where geocells are applied successfully. These are widely being used for enhancing 

the bearing capacity and shear strength of soil under the different types of civil 

engineering structures. Geocells have been now used for different structures like 

embankments, foundation, paved and unpaved roads, retaining walls, and also for slope 

stability. Geocells are used to improve the bearing capacity of the foundation and 

meanwhile reduce the settlement, as shown in Figure 2.9 (a & b). Figure 2.9 (c & d) 

illustrates the application of geocell-reinforced base course supporting repeated traffic 

load in both paved and unpaved roads. Besides, geocell can be used for erosion control 

and earth retaining structures (see Figure 2.9e & f). This suggests that geocell could be 

beneficial in pavement foundation applications as well. 

 

Figure 2.9 Geocell Application (Yang, 2010) 
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Several studies have shown that utilization of the cellular confinement mechanism 

significantly improves the strength and stiffness of a granular material; however, a lack of 

generic design methodology has inhibited its implementation (Han et al., 2008). 

Leshchinsky (2011) noted that the confinement of the ballast using geocell was quite 

effective in reducing vertical settlement and lateral spreading. Despite the use of geocell 

reinforcement in a variety of geotechnical applications for decades, there is a limited 

study on its use in expansive soil, possibly due to a combination of moisture swelling 

effects, conservative nature of the field and a lack of design methodology for such an 

application, specifically for expansive subgrade. A hybrid geosynthetic system uses two 

or more geosynthetic alternatives to solve a given problem. For example, a hybrid 

geotextile system was applied in a landfill that contains coal combustion residuals along 

with other waste products (Ahlberg et al., 2015). Another example that is very relevant to 

this problem is the use of geogrid and geocell combination to solve expansive soil 

problem for a railroad application in Israel (Kief, 2015) (see Figure 2.10). 

 

 

 

 

 

 

 
 

Figure 2.10 Cross Section of Hybrid Geosynthetic Solution Implemented in a 

Railroad Track Construction in Israel (Recreated from Source: Kief, 2015) 

11240 lbs 

(~50 kN) 

11240 lbs 

(~50 kN) 
57 in. (~145 cm) 

Two Layers of NPA Geocells 

Stiff Biaxial Geogrid 

Subgrade  

E = 4 ksi (~28 MPa)  

Sub-ballast 37 in. (~95 cm) 

E = 49 ksi (~337 MPa)  
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The success of the solution was corroborated through track monitoring 

measurements, which showed negligible rail head settlements compared to an adjacent 

parallel unreinforced section. In most cases, projects that have used geosynthetics have 

employed the use biaxial geogrids and geocells but there are a few cases where 

geotextiles and glass grids are used. Although guidelines have not been firmly established 

for this technique, geosynthetics have proven to reduce or even prevent the development 

of longitudinal cracking of pavement over expansive clays (Zornberg & Gupta, 2009). 

This technique does not alter the swelling potential expansive clays but the geosynthetics 

can redistribute the non-uniform uplift load such that points of high stress move from the 

paved area to the shoulder area (Rhoodi & Zornberg, 2012). Thus, the geosynthetic 

improves the performance of the pavement and can increase the overall lifetime of the 

pavement structures (Palmeira, 2009). 

2.6 Summary of the Literature Review 

Expansive soils cause significant damage to civil engineering structure as 

discussed throughout this chapter and therefore remedial measures are required to repair 

the damage caused. However, it is important to establish some factors before embarking 

on a remedial measure implementation plan. Apparently, to select an appropriate 

corrective measure an adequate forensic site investigation is required. Key information 

needed includes (1) cause and extent of damage, (2) soil profile (as it is often difficult to 

determine whether settlement/heave is the cause of structural distress), and (3) a measure 

of the expansive potential of the soil. Expansive soils tend to swell and shrink with a 

change in moisture content. The expansion potential of the soil is governed by its 

mineralogical composition, the extent of volume change experienced by a soil layer on 



32 

 

 

 

the field is also affected by environmental and site-specific factors such as the degree of 

moisture variation and drainage characteristics. Different methods used for identifying 

and quantifying the expansive potential of soils were discussed in this chapter. For the 

quantitative measurement of swelling potential, the oedometer test is widely used and is 

common in engineering practice. However, it is crucial to stabilizing shrink/swell soils 

before construction to prevent loss of properties and lives. Though no universal guideline 

can be applied to all situations involving expansive soil related problems, particular site 

characteristics and historical performance records accompanied by forensic investigations 

can often lead to the selection of suitable rehabilitation alternatives.  

This chapter presented findings from a review of published literature on topics 

pertinent to the research objectives. First, an overview of factors affecting the shrink-

swell behavior of expansive soil was presented, followed by an overview of clay 

mineralogy, soil fabric, active-zone, and their properties. The objective was to identify 

and to quantify of the soil as expansive soil. Subsequently, detailed review of several 

remediation strategies for pavement damage occurring due to expansive soil was 

presented. Finally, a brief discussion on geocell reinforcement of the pavement was 

presented.  

The next chapter (Chapter 3) of this thesis document will present a detailed 

project background of this Master’s thesis effort and laboratory findings from an 

extensive laboratory test matrix.
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CHAPTER 3: PROJECT BACKGROUND AND LABORATORY 

CHARACTERIZATION OF EXPANSIVE SOILS SAMPLES 

3.1 Introduction 

This chapter presents a detailed background of the problematic pavement section 

investigated within the scope of this Master’s thesis effort. This is followed by a 

discussion of the laboratory test matrix developed for extensive characterization of soil 

samples collected from the problematic pavement section. Findings from the laboratory 

testing effort are presented, and inferences are drawn concerning the primary mechanism 

contributing to the recurrent pavement damage. Finally, underlying principles of potential 

remedial measures to adequately address the source of the problem are discussed. 

3.2 Study Location and Project Description 

As mentioned in Chapter 1, the problematic stretch of pavement investigated in 

this research study is an 18.5-mile (~30-km) long section of U.S. highway 95 just east of 

the Oregon-Idaho border. Figure 3.1 shows an aerial map of the location highlighting the 

section under investigation. A summary of the project construction history as extracted 

from Hardcastle (2003) is given below. 
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Figure 3.1 Aerial Image Showing Project Location (source: Google Maps) 

3.3 Pavement Construction and Maintenance History 

Different segments of the problematic pavement section have been subjected to 

various maintenance/rehabilitation efforts over the last few decades. Figure 3.2 shows a 

schematic of the problematic highway segment and identifies different segments and 

corresponding rehabilitation methods. For instance, segments AD (MP 0.0-6.36), and BC 

(MP 6.36-18.5) were realigned in 1972 and early 1980s, respectively. A chronological list 

of the different rehabilitation methods implemented has been presented in Table 3.1.  

A research study was undertaken by Hardcastle (2003) to investigate the recurrent 

heaves observed along this stretch of pavement. A series of laboratory tests were 

performed including conventional geotechnical tests such as Atterberg limits, and 1D 

swell tests, along with tests such as X-Ray Diffraction (XRD) and Cation Exchange 

Capacity (CEC) aimed at mineralogical characterization of field-obtained soil samples. 

Hardcastle (2003) also evaluated different stabilization methods and recommended swell 

remediation and prevention techniques for existing and new constructions.  
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Figure 3.2 Schematic Representation of the Problematic Pavement Section (1 

mile = 1.6 km) 

 

Table 3.1 Construction/Reconstruction Activities over the Life of the Project 

Year Roadway Segment Activity and Stabilization Effort 

1972 AD (MP 0.0 - 6.36) Reconstruction and subgrade soils compacted wet of 

optimum moisture content (OMC); 

Early 

1980’s 

DI (MP 6.36 - 18.5) Construction of new alignment and 15 in. (~38 cm) of 

lime-stabilized subgrade; 

1989 FH (MP 16.7 - 17.9) Reconstruction and15 in. (~38 cm) of lime-stabilized 

subgrade; 

1992 BC (MP 0.22 - 5.3) Reconstruction and 15 in. (~38 cm). of lime-

stabilized subgrade; 

2003 GH (MP 17.2 - 17.9) Reconstruction and impermeable geomembrane; 

2010 AF (MP 0.0 - 16.7) Reconstruction and geogrid reinforcement. 

Note that not all soils encountered and sampled by Hardcastle (2003) along this 

section of U.S. highway 95 showed high expansion potential. Correspondingly, not all 

locations along this pavement section exhibited heaving-induced distresses. Hardcastle 

(2003) observed that swelling-related distresses primarily occurred at the transitions 
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between the cut and fill sections as at Milepost 2.3. Moreover, locations close to the 

natural ground surface in relatively flat areas underlain by colluvial soils also exhibited 

significant amounts of distress. The hypothesis was that potentially expansive soil 

adjacent to the cut sections were used to construct the fill sections at the transition 

locations. The higher initial suction of the compacted expansive soil and increased 

exposure to surface water at the grade points could be the primary factors leading to 

increased pavement distresses at these locations. Finally, recommendations were also 

made for the base materials to be used in new construction over expansive soils. It was 

recommended that these materials be well-graded with non-plastic fines having hydraulic 

conductivities less than
73.28 10 6/ (10 / )ft s cm s

. If such materials were not available 

resulting in the use of conventional free-draining base materials, placement of an 

impervious asphalt or geosynthetic membrane on the surface of the subgrade before 

placing any base was recommended (see Figure 3.3) 

Figure 3.3 Schematic Representation of Rehabilitated Pavement Section 

Recommended by Hardcastle (2003) 

Idaho Transportation Department (ITD) implemented these recommendations 

during the reconstruction of this stretch of highway, which resulted in partial success. 

While most sections performed satisfactorily after treatment, a few sections continued to 
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exhibit pavement distresses resulting from subgrade heaves. Figure 3.4 shows the severe 

distress observed at the site as of May 2015. 

 
Figure 3.4 Problematic Sections of MP 16.3 to MP 18.0 (Picture Taken in May 

2015) 

3.4 Development of an Extensive Laboratory Test Matrix 

The main objective of this research effort was to characterize the problematic soil 

layer contributing to the recurrent pavement damage due to volume changes in the 

underlying soil layers. The laboratory testing program was designed to determine 

properties relating to volume change behaviors of expansive soil samples extracted from 

the section of U.S. highway being investigated. Extensive laboratory testing program was 

mainly comprised of tests to determine basic soil properties; clay mineralogy; and 

physical and mechanical characteristics. Ten boreholes were strategically placed on and 

off heave zones along the pavement section, and soil samples were collected for 

laboratory testing and characterization. Eight of the ten boreholes were drilled through 

heaved zones while the other two were drilled through the non-heave zone to identify any 

possible the difference in soil stratigraphy. The relative locations of the boreholes are 
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shown on a map in Figure 3.5. The boreholes were designated as AH-1 through AH-10 

where AH stands for Auger Hole. 

 

 Figure 3.5 Boreholes Locations Map (Courtesy-ITD) 

3.5 Drilling and Sample Collection 

Drilling and sampling of the subsurface soils in the pavement section of interest 

performed in collaboration with ITD between May to June 2015. Drilling was performed 

using dry hollow-stem augers. With this system, the soil sample is retained inside clear 

Polyvinyl Chloride (PVC) sampler tubes with dimensions of 3.25 in. (~8 cm) inside 

diameter and 30 in. (~76 cm) length. In addition Standard Penetration Tests (SPT) were 

N 
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performed, and split-spoon samples were collected at various depths. Figure 3.6 shows 

photographs of the drilling and sampling conducted on site. Boreholes were terminated 

when strong gravelly layers were encountered which made sampling difficult. Table 3.2 

presents a list of the borings with their location specifics and termination depths 

measured from the pavement surface. A typical borelog obtained from the drilling efforts 

have been shown in Appendix B. Samples collected during drilling were transported to 

the laboratory, and stored in a moisture-controlled chamber for testing and 

characterization. 

 (a) (b) 

Figure 3.6 Drilling and Sample Collections: (a) Full view of Drilling Operation 

(b) Plastic Tube Sampler with Soil Sample Inside (Sample Collected in May 2015; 

Courtesy-ITD) 

Table 3.2 List of the Borings with their Location Specifics and Termination 

Depths Measured from the Pavement Surface (1 ft. = 30.5 cm) 

S.  

No. 

Location  

Characteristic 

Termination 

 Depth (ft.) 

S.  

No. 

Location  

Characteristic 

Termination 

 Depth (ft.) 

AH-1 On the heave 26.0  AH-6 Next to heave 14.9 

AH-2 Next to heave 20.9 AH-7 On the heave 18.5 

AH-3 On the heave 22.5  AH-8 Next to heave 19.5 

AH-4 Next to heave 11.7 AH-9 Non-heave zone 16.3 

AH-5 On the heave 17.9 AH-10 Non-heave zone 13.0  
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The laboratory test matrix included: (1) Moisture content tests, (2) Atterberg 

limits tests, (3) Specific surface area (SSA) tests, (4) Cation exchange capacity (CEC) 

tests (5) One-dimensional (1D) swell test, and (6) Soluble sulfate content tests. A 

summary of the laboratory procedures, apparatus used, and results are presented in this 

chapter.  

3.6 Moisture Content Tests 

The initial moisture content of the expansive soils controls the amount of 

swelling. Moisture content tests were performed to establish the field moisture contents 

within the soil layers at the time of the sampling. These tests were performed per the 

AASHTO T 265 (2004) test procedure. A total of 169 tests were conducted on samples 

corresponding to different depths within each borehole. Moisture content values 

established for various samples collected from AH-1 are presented in Table 3.3. As seen 

from the table, soil samples from a depth beyond 5 ft. (~150 cm) showed the significantly 

higher percent of moisture content compared to those from shallow depths. The moisture 

content in each layer was determined to reach a conclusion regarding possible source of 

moisture ingress. The moisture movement within the soil was not caused by the suction 

mechanism as the ground water table (GWT) was at more than 26 ft. (~793 cm) depth 

from the pavement surface. Therefore, moisture in pavement layer comes from other 

sources such as infiltration of rain water through the cracks in pavement and percolation 

from the drainage ditches etc. Similar data for other boreholes have been shown in 

Appendix B. 
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Table 3.3 Summary of Moisture Content for AH-1 (1 ft. = 30.5 cm) 

S. 

No. 

Sample 

Depth (ft.) 

Moisture 

Content (%) 

S. 

No. 

Sample 

Depth (ft.) 

Moisture 

Content (%) 

1 1.0-2.0 7 6 7.0-9.3 70 

2 2.0-2.5 6 7 9.5-11.8 74 

3 2.5-4.0  8 8 14.5-16.8 72 

4 4.7-5.5 64 9 19.5-21.8 69 

5 6.1-6.3 70 10 24.3-24.5 57 

 

3.7 Atterberg Limits Tests 

Liquid Limit (LL) values have been linked to the expansive potential of soils. 

Soils with LL values greater than 60% are considered to be highly expansive (Holtz and 

Gibbs, 1956). Atterberg limit tests reveal properties related to consistency of the soil and 

can be used to establish the Liquid Limit (LL), Plastic Limit (PL) and Shrinkage Limit 

(SL) values. Upon addition of water, the state of soil changes progressively from dry, 

semisolid, plastic, and finally to liquid. The moisture content at the boundaries of these 

states are known as Shrinkage Limit (SL), Plastic Limit (PL) and Liquid Limit (LL), 

respectively (Lambe, 1960). The numerical difference between LL and PL values is 

known as Plasticity Index (PI) and characterizes the plasticity nature of the soil. 

Representative soil samples from the ten boreholes drilled in this study were tested for 

Atterberg limit values following the ASTM D 4318 (1994) test procedure. 

A total of sixty eight (68) samples were tested from the ten boreholes to establish 

the variation in LL and PL values with depth. The LL values ranged from 29% to 164% 

while the PL values ranged from 20% to 75%. Atterberg limit values established for 

different samples collected from AH-1 are presented in Table 3.4. As seen from the Table 
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3.4, soil samples from a depth beyond 9 ft. (~275 cm) showed significantly higher LL 

and PI values compared to those from shallow depths. Similar data from other boreholes 

are presented in Appendix B. 

Table 3.4 Summary of Atterberg Limits for AH-1 (1 ft. = 30.5 cm) 

S. 

No 

Sample 

Depth (ft.) 

Liquid Limit 

(%) 

Plastic Limit 

(%) 

Plasticity 

Index (%) 

1 1.0-2.0 60 35 25 

2 2.0-2.5 60 35 25 

3 2.5-4.0  60 35 25 

4 4.7-5.5 60 35 25 

5 6.1-6.3 89 54 35 

6 7.0-9.3 89 54 35 

7 9.5-11.8 148 54 94 

8 14.5-16.8 139 59 80 

9 19.5-21.8 138 63 75 

 

3.7.1 Change in Liquid Limit Values with Depth 

Figure 3.7 presents liquid limit profiles for AH-1 and AH-2 boreholes. It should 

be noted that the red dotted line in these plots indicates the cutoff LL between high and 

low swelling potentials. It can be observed from Figure 3.7 that soils from 2 ft. (~60 cm) 

to 5 ft. (~150 cm) depth had LL values close to 60 while soil samples obtained from 

depths greater than 5 ft. (~150 cm) showed LL higher than 60 for AH-1. Similar 

observations can be made for borehole AH-2 where the LL values were less than 60 up to 

a depth of 10 ft. (~305 cm) and greater than 60 after that. From these observations, it is 

clear that soils with higher swell potentials exist at much shallower depth at AH-1 than at 
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AH-2. This could be one of the reasons for pavement heaving at AH-1 while no heaving 

was observed at AH-2.  

 

Figure 3.7 Liquid Limit vs Depth for Boreholes AH-1 (left) and AH-2 (right) (1 

ft. = 30.5 cm).  

Similar plots were generated for AH-3 through AH-10 and have been included in 

Appendix B. Similar phenomenon can be observed at AH-3 and AH-4 where high 

swelling soils were encountered at shallower depths at AH-3 to compare with AH-4. This 

again is reflective of the surface swelling observed at these borehole locations. Such 

contrast was not visible from the LL profiles with depth for AH-5 and AH-6; both soil 

profiles showed high swelling soils throughout. This is due to the fact that the heave in 

this area was spread wider than in the other locations, and hence neither borehole was 

located out of the heave zone. One notable difference between the profiles is that the LL 

values for AH-5 soils were as high as 160 at shallow depths while the highest LL value 

for AH-6 was around 90. High expansive soils were observed at depths starting at 6 ft. 

(~180 cm) and 5 ft. (~150 cm) for boreholes AH-7 and AH-8, respectively. Lastly, the LL 

profiles for boreholes AH-9 and AH-10, which were located outside the heaving area did 

not indicate the presence of any soil with high expansion potentials. 
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3.7.2 Using Liquidity Index (LI) Values to Establish Active-Zone Depths 

As already mentioned in Chapter 2, Liquidity Index (LI) values, defined as

w PL
LI

LL PL





, have been used by researchers in the past to identify the depth of active-

zones. Figure 3.8 presents typical LI vs. depth plots for AH-1 and AH-2 boreholes. 

Similar plots for the remaining boreholes have been included in Appendix B. 

Figure 3.8 Liquidity Index vs Depth for Boreholes AH-1 (left) and AH-2 (right) 

(1 ft. = 30.5 cm) 

 A Liquidity Index (LI) value, proposed by O’Neill and Poormoayed (1980), was 

used to establish the active-zone depth using LI values from ten boreholes. However, this 

profile requires the LI data to be obtained over several seasons. Seasonal variation in 

liquidity index (LI) indicates the moisture fluctuation, which leads to shrink-swell 

behavior in expansive soils. Based on the data obtained for the ten boreholes, a set of 

moisture data were selected over different years (instead of seasons). The moisture data 

corresponding to different years was extracted from past studies (Nottingham, 1985 and 

1986; Hardcastle, 2003). Figure 3.9 shows that for depths greater than of 11 ft. (~335 

cm), there is no significant change in moisture content across different seasons. This 

indicates that the active-zone underneath this pavement section extends to a depth of least  
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11 ft. (~335 cm) from the pavement surface, and therefore most of the heaving likely 

originates from the soil layers as deep as 11 ft. (~335 cm) from the pavement surface. 

Accordingly, shallow stabilization treatment (often limited to 3 ft. or ~91 cm) may not be 

suitable to remediate the recurrent pavement heave.  

 
Figure 3.9 Determination of Active-Zone using Liquidity Index Profile (1 ft. = 

30.5 cm) 

Once the problematic zone was established by using liquidity index profiles, the 

next task involved the Potential Vertical Rise Calculations (PVR) to define most 

problematic pavement locations. 

3.8 Potential Vertical Rise (PVR) 

Potential Vertical Rise (PVR) is an index used to quantify the swelling potential 

of a particular soil stratum. The PVR approach was developed in Texas Department of 

Transportation (TxDOT) procedure Tex-124-E (TxDOT, 1999), and has been 

successfully used to identify the swelling potential of soil layer underlying pavements. 



46 

 

 

 

The PVR originally developed by McDowell in 1956 (McDowell, 1956), and after that 

several modifications have undergone. Over the years (Lytton, 1977; Mitchell and 

Avalle, 1984; Gay, 1994; Jayatilaka, 1999) several other advanced methods to predict the 

swelling of expansive soil deposits have been developed. PVR tests in this research effort 

were performed based on the test procedure, TEX-124-E. It represents the simplest and 

most applicable method to predict the volume change in expansive soil deposits. In this 

procedure, the natural moisture content and the wet densities of each swelling soil layers 

are first determined from the core samples collected. The liquid limit (LL) and plasticity 

index (PI) values of each swelling layer are also used in this analysis to calculate the 

minimum (dry) and maximum possible moisture (wet) conditions in the respective soil 

layers. These moisture contents can be obtained by using the following empirical 

relations 

 Dry moisture condition, 0.2 9dw LL                       (3.1) 

Wet moisture condition, 0.47 2ww LL                     (3.2) 

Then the percentage free swell (swell under no load condition) is calculated using 

the following formula 

Free (%) (%) 1.07+2.6swell Volumetric change         (3.3) 

Now, the PVR for a particular layer is calculated based on the following function 

( ; ; ; )PVR f LL PI moisture content percent soil binder (3.4) 

Once the PVR value for each layer has been calculated, the overall PVR value for 

the stratum is calculated by taking the cumulative value of the individual contributing 

layers (see Appendix B). PVR values have been linked to the ability of a soil layer to 

swell when subjected to moisture fluctuations at given moisture content, density and 
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loading conditions. The PVR values greater than 1 in. (2.54 cm) are considered to be 

problematic for U.S. highways, and hence remedial measures need to be adopted in such 

scenarios (Joyatilaka et al., 1993). Figure 3.10 compares the PVR values calculated for 

the 10 boreholes drilled during the current study. As shown in the figure, the PVR values 

of AH-1, AH-3, AH-5, AH-7, and AH-8 are higher than 1 in. (2.54 cm), and therefore the 

corresponding sections can be considered to be problematic. Borehole numbers AH-9 and 

AH-10 were located in non-heave zones, and PVR values were less than 1 in. (2.54 cm). 

The boreholes AH-2, AH-4, AH-6, and AH-8, were located adjacent to heave zone. 

However, as shown in Figure 3.10, the PVR value corresponding to AH-8 exceeds the 

threshold value of 1 in. (2.54 cm). This is indicative of high expansion potential. This can 

be directly related to the fact that the borehole AH-8 was not completely outside the 

heave zone (see Table 3.2) Figure 3.10 demonstrates that AH-1 recorded the highest PVR 

among all the boreholes. Supporting data for calculating the PVR is provided in 

Appendix B. 

 
Figure 3.10 PVR Values for the 10 Boreholes (1 in. = 2.54 cm) 
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The laboratory tests results indicate that subgrade soil corresponding to this 

problematic section of US-95 is likely to be expansive. Figure 3.11 shows that soil 

samples from AH-1, AH-2, AH-3, AH-5, AH-6, AH-7 and AH-8 recorded higher LL 

values beyond the depth at 9 ft. (~275 cm), which corroborate the higher PVR values. 

This means that PVR values act as representative indicators for the likelihood of 

pavement surface heave. Primarily PVR assumes a condition that the soil stratum has 

unlimited access to moisture. But in the field, moisture access to a particular soil stratum 

depends on site conditions that do not correspond the assume condition for establishing 

the PVR value. Through PVR value in boreholes can not estimate the actual amount of 

surface heave, still it helps with the idea of most likely swelling prone locations.  

 
Figure 3.11 Established the Soil Profile, PVR, and LL for the 10 Boreholes (1 ft. = 

30.5 cm) 
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Now, the next task was to evaluate the effectiveness of PVR values in estimating 

the surface heave by comparing with pavement surface roughness found from 

International Roughness Index (IRI).  

3.9 Evaluating Pavement Surface Roughness using International 

Roughness Index (IRI) Values 

As mentioned, one of the most common approaches to predict the vertical 

movement in pavements due to volume changes in underlying expansive soil layers 

involves the use of Potential Vertical Rise (PVR). However, the PVR value is calculated 

based on index properties of the soil layers and their respective locations within the 

pavement substructure. Therefore, the PVR value indicates the maximum “rise” that the 

pavement surface will undergo if the expansive soil layers had unlimited access to 

moisture. However, this may not be representative of actual conditions in the field. 

Therefore, it is necessary to evaluate the suitability of the PVR predictions with actual 

field observations. One common approach to quantifying the surface irregularity of 

pavement is by the use of the International Roughness Index (IRI). Developed at the 

International Road Roughness Experiment (IRRE) held in Brazil (Sayers, 1986) under the 

sponsorship of the World Bank, the IRI values has been adopted as a standard for the 

FHWA Highway Performance Monitoring System (HPMS) database. The IRI 

summarizes the longitudinal surface profile along the wheel path and is computed from 

surface elevation data collected by either a topographic survey or a mechanical 

profilometer. It is defined by the average rectified slope (ARS), which is a ratio of the 

accumulated suspension motion to the distance traveled obtained from a mathematical 

model of a standard quarter car transversing a measured profile at a speed of 50 mph (80 
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km/h). It is expressed in units of inches per mile (in/mile) or meters per kilometer 

(m/km). 

IRI data for the problematic pavement section was obtained from ITD’s 

automated pavement distress survey records. Exact locations of the boreholes were used 

to identify particular sections of the pavement where the IRI values could be treated as 

being representative heaves observed near the borehole locations. IRI information for the 

pavement section was extracted from the “Pathweb” website, a service provided by 

“Pathway Services” (pathweb.pathwayservices.com/Idaho). This website interface allows 

the user to identify exact segments of a particular highway to extract the corresponding 

IRI information. Figure 3.12 shows a screenshot of the “Pathweb” interface. As seen in 

Figure 3.12, the interface can generate plots of the IRI values for identified pavement 

segments. The latitude and longitude values for individual boreholes were used to extract 

the corresponding IRI values using the “Pathweb” interface. Another source for the IRI 

values was a spreadsheet obtained from ITD that lists IRI values along a particular 

pavement section based on latitude and longitude values. As some discrepancy between 

the two data sources was observed (possibly due to different years of data collection), this 

study used both data sources to map the IRI values along the section of highway being 

investigated. Note that IRI= 0 indicates a perfectly flat driving surface; there is no 

theoretical upper limit to the IRI value. 
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Figure 3.12 Photograph Showing Pathweb (a) IRI Graph (b) Image Control 

 

Table 3.5 presents the IRI values corresponding to each of the borehole locations, 

as obtained from the “Pathweb” interface as well as the spreadsheet provided by ITD. 

From the Table 3.5, it can clearly be seen that AH-9 and AH-10 correspond to 

significantly lower IRI values when compared to the other eight boreholes. This 

observation is directly in-line with the PVR trends observed for the ten boreholes. In an 

effort to compare the PVR values with the pavement surface roughness trends observed 

in the field, Figure 3.13 shows both the PVR as well as IRI trends for the ten boreholes. 

As seen in Figure 3.13, the PVR and IRI trends closely match with each other. For 

example, AH-1 corresponds to the highest PVR and IRI values, whereas the values for 

AH-9 are the lowest. This clearly indicates that the PVR trends established using the 

laboratory test results can be matched with actual field-observed surface profile trends to 

an acceptable limit. Therefore, PVR values for the boreholes can be reasonably assumed 

to be indicative of actual expansion potential for the soil layers at those locations. 
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Table 3.5 Total Summary of IRI Values for the 10 Boreholes (North Bound) 

Direction: Increasing (North Bound) 

Borehole No. 
Pathweb Spreadsheet 

Left IRI Right IRI Left IRI Right IRI 

AH-1 500 470 194 234 

AH-2 300 500 304 218 

AH-3 390 500 135 131 

AH-4 390 500 135 131 

AH-5 345 380 227 184 

AH-6 345 445 227 184 

AH-7 500 500 160 217 

AH-8 500 500 200 225 

AH-9 115 105 55 59 

AH-10 220 240 66 68 

 

Figure 3.13 Plot of Potential Vertical Rise (PVR) and International Roughness 

Index (IRI) Trends along the Problematic Section of US-95 being Investigated 

(North Bound; 1 in. = 2.54 cm) 
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Once the PVR values for the different boreholes along with LL values established 

at different depths, the next task was to determine the amount of different clay minerals. 

This was carried out by conducting the chemical tests involving Specific Surface Area 

(SSA) tests, and Cation Exchange Capacity (CEC) tests. 

3.10 Specific Surface Area (SSA) Tests 

Specific Surface Area (SSA) of a soil sample is the total surface area contained in 

a unit mass of soil. This property is primarily dependent on the particle size of the soil. 

Soils with smaller particle sizes have higher specific surface areas. It should be noted 

here that soil particles with the high specific surface areas demonstrate high water 

holding capacity and greater swell potential. 

The most commonly used method to establish the SSA of a soil sample comes 

from the field of agronomy and involves the adsorption of Ethylene Glycol Monoethyl 

Ether (EGME) (Carter et al., 1986). At the room temperature, EGME has a higher vapor 

than ethylene glycol, which allows the evaporation to take place more quickly. This method 

involves saturating prepared soil specimens, equilibrating them in vacuum over a 

Calcium Chloride – EGME (CaCl2-EGME) solvate, and weighing to find the point when 

equilibrium is reached. Specific surface is then determined from the mass of retained 

EGME in comparison to the amount retained by pure montmorillonite clay, which is 

assumed to have a specific surface area of 4.15 × 106 ft2/lb (850 m2/g) (Carter et al., 

1986). This test procedure typically takes two days to complete. This method was fully 

evaluated for geotechnical usage by Cerato and Lutenegger (2002), who concluded that 

the method is applied to a wide range of mineralogies, and is capable of determining 

specific surface area ranging from 2.4 × 104 to 4.15 × 106 ft2/lb (5 to 850 m2/g). They also 



54 

 

 

 

indicated that the procedure gives reliable results. Details of the procedural steps of this 

method have been included in Appendix B. Typical SSA values for commonly observed 

clay minerals were collected from the literature (see Table 3.6) 

Table 3.6 Threshold Values of SSA for Pure Minerals (Cerato and Lutenegger, 

2002) (1 ft2/lb = 2.05× 10-4 m2/g) 

Mineral Type SSA (ft2/lb) 

Illite 3.9×105- 6.1×105 

Kaolinite 2.4×104- 2.2×105 

Montmorillonite 2.9×106- 4.1×106 

A total of sixty four (64) samples were tested from 10 the boreholes to determine 

SSA values. The SSA values varied from 2.5 × 105 to 3.6× 106 ft2/lb (53 to 773 m2/g). 

SSA values established for different samples collected from AH-1 are presented in Table 

3.7. As seen in Table 3.7, soil samples from a depth beyond 5 ft. (~150 cm) showed 

significantly higher SSA values compared to those from shallow depths. This indicates 

higher expansion potential for soil corresponding to depths greater than 5 ft. (~150 cm) 

from the pavement surface. Similar data were established for AH-2 through AH-10, and 

have been included in Appendix B. 

Table 3.7 Summary of SSA for AH-1 (1 ft. =30.5 cm; 1 ft2/lb = 2.05× 10-4 m2/g) 

S. No. Sample Depth (ft.) SSA (ft2/lb) 

1 1.0-2.0 2.5×105 

2 2.5-4.0 2.1×105 

3 4.7-5.5 2.7×106 

4 6.1-6.3 2.9×106 

5 9.5-11.8 3.5×106 

6 14.5-16.8 3.6×106 



55 

 

 

 

3.11 Cation Exchange Capacity (CEC) 

The cation exchange capacity (CEC) of soil is a measure of the quantity of readily 

exchangeable cations neutralizing negative charge in the soil. According to Camberato 

(2001), CEC refers to a number of negative charges in soil existing on the surfaces of 

clay and organic matter (see Figure 3.14). 

 
Figure 3.14 Schematic of a Clay Particle with Negative Surface Charge Attracting 

Various Cations (Camberato, 2001) 

The positively charged ions or cations are attracted by negative charges, hence the 

name Cation Exchange Capacity. Soil CEC is normally expressed in units of charge per 

weight of soil. Two numerically equivalent sets of units are used: meq/0.22 lb (meq/100 

g) (milliequivalents of charge per 0.22 lb or (100 g) of dry soil) or cmolc/lb (cmolc/kg) 

(centimoles of charge per lb (kg) of dry soil). CEC of soil can be defined as the capacity 

or the ability of the soil to exchange free cations that are available in the exchange 

locations. One of the most common methods to establish CEC was proposed by Chapman 

(1965) and has been used in this research. 

CEC can be used to determine the mineral composition of the soil specimen with 

a high CEC value indicating a high amount of expansiveness due to the presence of the 
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clay mineral Montmorillonite where as a low CEC indicates the presence of non-

expansive clay minerals such as Kaolinite and Illite. The isomorphorous substitution in 

Montmorillonite layer results in charge deficiency in clay particles which is responsible 

for the swelling behavior of the clay mineral. The method involves the addition of a 

saturating solution and then removal of the adsorbed cations using an extracting solution. 

The saturating solution used here is Ammonium Acetate (NH4OAc) at pH 7. This 

solution is added to the prepared soil specimen (preparation involves treating for organics 

with 30% Hydrogen Peroxide (H2O2) and set aside for 16 hours after shaking for half 

hour, to ensure that all the exchange locations are occupied by the ammonium ion 

(NH4+)). Then the solution is filtered through a Buchner funnel and washed with 4 

different 25 mL additions of NH4OAc. This step is to bring out all the cations from the 

soil sample solution. Now, all the cation places are replaced by the ammonium ion, and 

excess ammonium is also removed. The CEC of the soil sample can be obtained by 

measuring a number of ammonium ions. This is done by washing the sample with 8 

different 25 mL additions of 1M potassium chloride (KCl) solution. Though potassium 

ion (K+) has similar electronegativity, it has higher molecular weight and has the ability 

to substitute the NH4+ ion. The concentration the NH4+ in the KCl extract gives the CEC 

of the soil. Details of the procedural steps of this method have been included in Appendix 

B. A total of sixty four (64) samples were tested from the 10 boreholes to determine CEC 

values. The CEC values varied from 0.9 to 2.5 meq/0.22 lb (404 to 1150 meq/100 g). 

CEC values established for different samples collected from AH-1 are presented in Table 

3.8. Similar data for AH-2 through AH-10 has been included in Appendix B. 

 



57 

 

 

 

Table 3.8 Summary of CEC for AH-1 (1 ft. = 30.5 cm; 1 meq/0.22 lb=1meq/100 

g) 

S. 

No. 

Sample 

Depth (ft.) 

CEC, meq/0.22 

lb Measured 

S. 

No. 

Sample Depth 

(ft.) 

CEC, meq/0.22 

lb Measured 

1 1.0-2.0 0.90 4 6.1-6.3 1.92 

2 2.5-4.0 0.96 5 9.5-11.8 2.0 

3 4.7-5.5 622 6 14.5-16.8 2.1 

As seen in Table 3.8, the CEC values obtained from laboratory testing were 

unnaturally high compared to typical CEC numbers for natural soils. This is due to the 

ammonium electrode used in this test that has interference with potassium from the 

potassium chloride solutions used in this test. An equation proposed by Yukselen and 

Kaya (2006), can be used to determine the CEC values from the LL and SSA values. 

0.33CEC    0.44LL  8.8SSA            (3.5) 

                                                          

where LL is the Liquid Limit (%); CEC is the Cation Exchange Capacity, / 0.22meq lb  

( /100meq g ); SSA is the Specific Surface Area, 2 /ft lb 2( / )m g . Table 3.9 presents the 

CEC data for borehole AH-1. For better characterization and understanding, it is 

desirable to have a comprehensive understanding of the soil mineralogy as well as 

volume change related characteristics of the soils. Clay minerals which typically cause 

soil volume changes are montmorillonites and some mixed layer minerals. Illite can be 

expansive, but generally, do not pose a significant problem. Kaolinite is normally non-

expansive (Nelson and Miller, 1992). Table 3.9 also presents the percentage of 

Montmorillonite (%MM) mineral in the fines fraction of the soil. %MM is an indicator of 

high swelling nature of the soil. This percentage was obtained by using equation 3.6 

which was developed by Chittoori (2008). 

% 2.87 0.08MM     2.66SSA  CEC       (3.6) 
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where %MM is the percentage by weight of the mineral montmorillonite in the fines 

fraction of the soil. As seen in Table 3.9, soil samples from a depth beyond 6 ft. (~183 

cm) showed significantly higher percentage of montmorillonite values compared to those 

from shallow depths. Similar data from other boreholes are presented in Appendix B. 

Table 3.9 Summary of Additional Chemical Testing for AH-1 Borehole  

(1 ft. = 30.5 cm; 1 ft2/lb = 2.05× 10-4 m2/g; 1 meq/100 g = 1 meq/0.22 lb) 

S. 

No. 

Sample 

Depth 

(ft.) 

Liquid 

Limit 

(%) 

SSA 

(m2/g) 

CEC 

(meq/100 g) 

Measured 

CEC  

(meq/100 g) 

Predicted 

%MM in fines 

fraction (−#200) 

of the soil 

1 2.5-4.0 60 53 411 6 2 

2 4.7-5.5 60 43 435 172 78 

3 6.1-6.3 89 457 622 184 86 

4 9.5-11.8 148 512 875 167 82 

5 14.5-16.8 139 517 905 175 85 

6 19.5-21.8 138 530 950 150 74 

Figure 3.15 shows a graphical representation of % MM vs. depth as established 

by testing soil samples collected from the 10 boreholes. It can be observed that soil 

samples from a depth beyond 6 ft. (~183 cm) showed significantly higher %MM values 

compared to those from shallow depths. The percentage of MM indicated that the 

problematic soil areas are located at a greater than 6 ft. (~183 cm) from the pavement 

surface, and therefore most of the swelling likely originates from soil layers as deep as 6 

ft. (~183 cm) from the pavement surface. Note that even for boreholes (e.g., AH-9 & AH-

10) that did not exhibit high Montmorillonite (%MM) contents, the expansive soil 

deposits are often greater than 6 ft. (~183 cm) from the pavement surface.  
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Figure 3.15 Established a Problematic Area of % MM for the 10 Boreholes (1 ft. = 

30.5 cm). 

After completion of the chemical tests, it is known that the high amount of 

montmorillonite leads the soil to be expansive in nature. But these approach cannot 

measure the actual amount of heave. To estimate the amount of heave in the laboratory, 

1D swell test was performed.  

3.12 1D Swell Test 

1D swell tests for the soil specimens were performed in a conventional 

consolidometer setup in this study. The soil samples obtained from the field were 

carefully extracted, and placed in the consolidometer. Filter papers were then placed on 

top and bottom of the soil specimen. A pressure of 1 psi (6.89 kPa) was applied to the soil 

specimen prior to the start of testing. Once proper seating loading was used, and the 

LVDT (Linear Variable Differential Transformer) was positioned in place to monitor 

vertical soil deformation, the soil specimen was subjected to moisture inundation, which 

resulted in soil swelling with time. Once the soil sample had experienced the maximum 
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possible swelling, an oedometer test was conducted to establish the swell pressure of the 

soil. Once the specimen reached a maximum swelling point, loads were added in order to 

bring back the soil to its original position. The total load applied to the specimen to bring 

back to its original position was then used to calculate its swell pressure. Figure 3.16 

presents photographs showing the 1D swell setup for this research. 

 
 (a) (b) (c) 

Figure 3.16 Photographs Showing 1D Swell Test Procedure (a) Extracted Soil 

Sample from the Field (b) Soil Sample in the Consolidation Mold (c) Fully 

Assembled 1D Swell Test Setup 

A total of forty six (46) samples were tested from the ten boreholes to determine 

the swell pressure values. Swell pressure is defined as the pressure required to keep a soil 

element at constant volume when boundary conditions are such as to induce a tendency 

for volume change. Swell pressure is an important parameter for the design of structures 

interacting with swelling soils. Table 3.10 is a guide for estimating the probable volume 

change of expansive soils.  

Table 3.10 Data for Making Estimate of Probable Volume Change for Expansive 

Soils (Recreated from Source: Nelson and Miller, 1992) (1 psi = 6.89 kPa) 

Swelling Pressure, psi Degree of Expansion 

>138 Very High 

34-138 High 

20-34 Medium 

< 20 Low 

2.5 in. 
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 Figure 3.17 presents the swell pressure data for the samples that underwent 

swelling and demonstrates that AH-1 recorded highest swelling pressure 24.4 psi (~168 

kPa) while AH-2 experienced swell pressure only 10.4 psi (71.65 kPa). This data showed 

low to medium swelling in boreholes that recorded high PVR values further 

corroborating the field observations. The maximum swell pressure (24.4 psi or ~168 kPa) 

was measured for AH-1, followed by AH-7 (17.4 psi or ~120 kPa), AH-2 (10.4 psi or 

~72 kPa) , AH-4 (10.4 psi or ~72 kPa), AH-8 (10.4 psi or ~72 kPa) and AH-5 (3.5 psi or 

~24 kPa). Note that no significant swell pressure values were measured for samples from 

boreholes AH-3, AH-6, AH-9, and AH-10. Only four boreholes (AH-1, AH-2, AH-3, and 

AH-7) have potential swelling characteristics as the swelling pressure is higher than 

overburden pressure at these locations as shown in Table 3.11. 

 
 

Figure 3.17 Established the Soil Profile, PVR and Swell Pressure for the 10 

Boreholes (1 ft. = 30.5 cm; 1 psi = 6.89 kPa) 
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Table 3.11 Summary of Swell Pressure and Overburden Pressure for the 

Boreholes (1ft. = 30.5 cm; 1 psi = 6.89 kPa) 

Borehole 

Number 

Depth 

(ft.) 

Swell 

Pressure 

(psi) 

Overburden 

Pressure 

(psi) 

Swelling 

Potentiality/Remarks 

(Y/N) 

 

AH-1 

13 24.4 9.8 Y 

16 24.4 12 Y 

18 10.4 13 N 

22 10.4 14 N 

AH-2 12 10.4 8.6 Y 

AH-4 8 10.4 7.7 Y 

 

AH-5 

10 3.5 7.4 N 

13 3.5 8.6 N 

16 3.5 10.8 N 

18 3.5 12 N 

AH-7 13 17.4 9.6 Y 

AH-8 16 10.4 10.8 N 

After establishing the swelling potentiality with the measuring of swelling 

pressure exerted by the different boreholes along with the overburden pressure values at 

different depths, the next task was to identify the locations having a significant amount of 

sulfates presence. By knowing any case having sulfates in soils, the effectiveness of 

calcium-based stabilizers was work out with the fact of the probability of forming 

Ettringite and Thaumasite minerals. These minerals have a significant amount of swelling 

potential. 
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3.13 Soluble-Sulfate Content 

Soluble-sulfate measurement in subgrade soils is an integral part of geotechnical 

investigations due primarily to sulfate-induced heave distress problems experienced by 

certain chemically treated sulfate soils. Sulfate measurements can assist engineers in the 

selection of appropriate soil stabilization methods in construction projects (Puppala et al., 

2002). Therefore, it is very important to evaluate sulfate content in a particular soil 

stratum prior to deciding on the type of chemical stabilization. 

There are no ASTM Standards that provide specifications for determining the 

sulfate content in soils. Current methods, including the University of Texas at Arlington 

(UTA) method are based on gravimetric procedures and often provide test results with 

high standard deviations. A modified UTA method, which was developed by addressing 

the limitations of the earlier methods (Puppala et al., 2002). The AASHTO T-290 method 

also describes a similar procedure outlined by Puppala et al., (2002). 

The test procedure consists of taking 0.022 lbs (10 grams) of dried soil and 

diluting with 100 mL of distilled water. This solution is shaken on an Eberbach shaker for 

thirty minutes (see Appendix B). After the shaking, the extraction of the solution is 

obtained by centrifuging at a speed of roughly 14,000 rpm. The pH values of the solution 

are controlled within the range of 5 to 7 with the help of Hydrochloric acid. The extracted 

solution is kept on a hot plate until it starts boiling. Barium Chloride (BaCl2) is then 

added to the boiling solution to bring out sulfate in the form of Barite (BaSO4). The 

solution is then placed in an 85°C oven for 12 hours to continue the digestion process in 

which precipitation takes place to obtain Barite by the gravimetric process. The barite 

precipitated from this process, is used in the calculations to obtain the soluble sulfate 
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content in the soil samples. A total of forty two (42) samples were tested from the ten 

boreholes to determine the sulfate content in soils. The sulfate content values ranged from 

450 to 3366 ppm. Soluble sulfate values established for different samples collected from 

AH-1 are presented in Table 3.12. As seen from the Table 3.12, soil samples from a depth 

beyond 9 ft. (~275 cm) showed slightly higher sulfate content values compared to those 

from shallow depths. Similar data from other boreholes are presented in Appendix B. 

Table 3.12 Summary of Soluble Sulfate Test for AH-1 (1 ft. = 30.5 cm) 

S. 

No. 

Sample 

Depth (ft.) 

Soluble sulfate 

content (ppm) 

in samples 

S. 

No. 

Sample 

Depth (ft.) 

Soluble sulfate 

content (ppm) in 

samples 

1 4.0-4.7 1500 5 11.8-12 1900 

2 4.7-5.5 1200 6 14.5-16.8 1900 

3 6.1-6.3 1300 7 19.5-21.8 1900 

4 9.5-11.8 1900 - - - 

Soluble-sulfate content values have been linked to the formation of high swelling 

minerals like Ettringite and Thaumasite when treated with calcium-based stabilizers such 

as lime and cement. Hayes (2007) prescribed some threshold values for soils to be 

classified by sulfate contents, and have been listed in Table 3.13. 

Table 3.13 Threshold Values for the Classification of Soils by Sulfate Content 

(Hayes, 2007) 

Relative Degree of Sulfate Attack Sulfate in Water Samples (ppm) 

Negligible 0 -150 

Positive 150 -1,000 

Considerable 1,000 – 2,000 

Severe >2,000 
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Sulfate content levels greater than 2000 ppm are considered to be indicative of 

severe sulfate attack related problems (Hayes, 2007). Figure 3.18 shows the variation in 

sulfate content with depth for soil samples collected for boreholes AH-1 and AH-2. As 

seen from the figure, soil samples from a depth beyond 5 ft. (~150 cm) showed sulfate 

content values higher than 2000 ppm for borehole AH-2, therefore classified as “sever” 

sulfate attack. For borehole AH-1 exhibited sulfate content values up to 1900 ppm of 

depth 4 ft. (~120 cm) to 12 ft. (~360 cm). According to the Table 3.13, borehole AH-1 

classified as “considerable” sulfate attack. From this observation, it is clear that soils with 

a high chance of sulfate attack were observed at much shallower depth for AH-2 when 

compared to AH-1. This means the soil at AH-2 is more susceptible to detrimental 

swelling due to the formation of Ettringite (a swelling mineral) when subjected to 

stabilization methods such as through the use of lime or cement.  

 
Figure 3.18 Sulfate content vs. Depth for boreholes AH-1 and AH-2  

(1 ft. = 30.5 cm) 

Similar plots were generated for AH-3 through AH-10, and have been included in 

Appendix B. Based on the results, the soils corresponding to individual boreholes were 

ranked in terms of their susceptibility to sulfate attack. Table 3.14 lists the likelihood of 
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sulfate attack for different boreholes. As seen in Table 3.14, all soils will not pose 

problems related to the formation of high-swelling minerals upon treatment using 

calcium-based stabilizers. The test results revealed that soil samples from four boreholes 

(AH-2, AH-5, AH-7, and AH-8) contained sulfates greater than 2000 ppm and hence may 

pose problems related to severe sulfate attack. Table 3.14 lists the PVR values for all the 

ten boreholes along with the corresponding likelihood of sulfate attack, when subjected to 

stabilization using calcium-based additives. 

Table 3.14 Comparisons with PVR and Possible Sulfate Attack (1 in. = 2.54 cm) 

Sample 

ID 

Relative 

Degree of 

Sulfate Attack 

PVR (in.) Sample 

ID 

Relative Degree 

of Sulfate 

Attack 

PVR (in.) 

AH-1 Considerable 5.34 AH-6 Positive 0.41 

AH-2 Severe 0.9 AH-7 Severe 3.53 

AH-3 Considerable 2.1 AH-8 Severe 2.06 

AH-4 Positive 0.27 AH-9 Positive 0.2 

AH-5 Severe 1.76 AH-10 Positive 0.53 

As seen in Table 3.14, it can be observed that locations that exhibited high PVR 

values also corresponded to soil samples with a high likelihood of sulfate attack (e.g., 

AH-1, AH-2, AH-3, AH-5, AH-7 and AH-8). This means calcium-based stabilization is 

not suitable for this problematic pavement section. Note that even for boreholes that did 

not exhibit high sulfate contents, the expansive soil deposits are often at depths greater 

than 5 ft. (~150 cm) from the pavement surface. Accordingly, even if sulfate related 

swelling is not an issue, for these locations, chemical stabilization is not economical.  
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3.14 Inferences Based on Laboratory Test Results 

The following inferences can be drawn based on laboratory tests conducted in this 

study: 

1. Moisture content tests established that the moisture movement within the 

soil was not caused by the suction mechanism as the ground water table (GWT) was at 

more than 26 ft. (~793 cm) depth from the pavement surface. Therefore, moisture in 

pavement layer comes from other sources such as infiltration of rain water through the 

cracks in pavement and percolation from the drainage ditches etc. 

2. The Atterberg limit values indicated that the soil layers corresponding to 

most boreholes (except for AH-4, AH-9, and AH-10) likely to be expansive at depths 

greater than 6 ft. (~183 cm) from the pavement surface. Accordingly, shallow 

stabilization was ruled out. 

3. Liquidity Index (LI) calculations indicated that the active-zone extended 

to a depth of at least 11 ft. (~335 cm) from the pavement surface, and therefore, most of 

the heaving likely originates from soil layers as deep as 11 ft. (~335 cm) from the 

pavement surface.  

4. The PVR values of AH-1, AH-3, AH-5, AH-7, and AH-8 greater than 1 in. 

(2.54 cm) are considered to be problematic for a road U.S. highways. Result also 

demonstrated that AH-1 recorded the highest PVR among all the boreholes. 

5. Investigation of pavement roughness profiles using International 

Roughness Index (IRI) values corroborated trends predicted form Potential Vertical Rise 

(PVR) calculations.  
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6. Clay mineralogy tests indicated the presence of high amounts of 

Montmorillonite that can lead to significant volume changes. 

7. The 1D swell test indicated that only four boreholes (AH-1, AH-2, AH-3, 

and AH-7) had potential swelling characteristics as the swelling pressure was higher than 

overburden pressure at these locations. 

8. Soluble sulfate content tests indicated that soils from several of the 

boreholes were susceptible to high levels of sulfate attack. Accordingly, stabilization 

using Calcium-based additives such as cement or lime may not be feasible. 

Based on findings from the laboratory testing, it can be concluded that traditional 

rehabilitation measures such as chemical stabilization, soil removal and replacement or 

shallow treatment alternatives (often limited to 3 ft. or ~91 cm) are not likely to be 

successful in mitigating the recurrent differential heave problems. Due to the fact that 

expansive soil extends to significant depths below the pavement surface, any installation 

of moisture barriers (horizontal or vertical) is likely to be very expansive. Therefore, 

remedial measures that can mechanically dissipate the stresses generated due to volume 

changes in the underlying expansive soil deposits may be more appropriate. One such 

alternative is to use a geosynthetic system that is strong enough to support the traffic 

induced-stressess, and at the same time is flexible enough to subgrade-generated swell 

pressures. 

3.15 Summary 

This chapter presented a detailed background of the problematic pavement 

section. The laboratory test matrix developed for extensive characterization of soil 

samples collected from the problematic pavement section was presented. Subsequently, a 
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summary of the laboratory procedures, apparatus used, and results were discussed, and 

interferences were drawn concerning the mechanisms contributing to the current 

pavement damage. 

The next chapter (Chapter 4) of this document will present the development of 

candidate remedial measures within the scope of this Master’s Thesis. 
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CHAPTER 4: DEVELOPMENT OF CANDIDATE REMEDIAL MEASURES 

4.1 Introduction 

As mentioned in Chapter 3, ten different boreholes were strategically drilled at 

different locations along the problematic pavement section, and soil samples were 

collected for extensive laboratory testing. Different physical, mechanical, and chemical 

tests conducted on the soil samples established that the problematic soil layers were deep 

within the subgrade, and therefore, traditional rehabilitation measures such as shallow 

stabilization, or soil removal and replacement are not likely to address the root cause of 

the problem. Therefore, one potential solution for the heaving problem of this pavement 

section is to use a flexible mechanical system that nullifies the expansion coming from 

the underlying clay layers and protects the pavement structure. One such alternative is to 

use a geosynthetic system that is strong enough to support the pavement structure and 

flexible enough to dissipate the expansive swelling that results in minimal differential 

surficial heaving. Several researchers have conducted studies on the potential benefits of 

geosynthetics in flexible pavement systems through laboratory, field, and finite element 

methods (Barksdale et al., 1989; Al-Qadi et al., 1997; Berg et al., 2000; Saad et al., 2006; 

Al-Qadi et al., 2008). The geosynthetic reinforcement system considered in this study 

involved geocells placed within the granular base layer. Numerical models, using finite-

element method (FEM) simulations, have been proven to be more accurate in depicting 

practical conditions more realistically than theoretical or analytical solutions based on the 

infinite slab and other idealized assumptions (Kuo and Huang, 2006).  
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4.2 Finite-Element Modeling of Flexible Pavement Section 

In recent decades, the finite-element method has become a popular alternative to 

traditional analysis methods in geotechnical engineering (Wanstreet, 2007; Bortz, 2015). 

Proper use of the finite element method in the solution of boundary value problems 

requires sound knowledge relating to element size, aspect ratio, and material properties. 

For simulation of swell-related soil movements involving partially saturated soils, various 

advanced soil models that account for soil matric suction changes, volume changes of 

soils from moisture content fluctuations, and soil shear strength variations are needed. 

Such analysis can be more challenging, particularly when the simulation involves a 

multi-layer system such as a pavement section. Commercially available software, 

ABAQUS® (Simulia, 2016), has built-in material models that can be used to simulate 

shrink and swell behaviors of expansive soils by accounting for moisture content and 

suction related changes. Parameters for these models can be established through 

commonly used geotechnical tests. 

4.3 Establish Material Properties for Input into the Numerical Models 

As mentioned in Chapter 3, ten boreholes were strategically placed on and off 

heave zones along the pavement section, and soil samples were collected for laboratory 

testing and subsurface characterization. To establish relevant soil parameters to be used 

as inputs during numerical modeling of the pavement sections, additional soil samples 

were collected from two boreholes: AH-11 and AH-12. AH-11 was located near AH-1 

(laboratory results exhibited highest heave potential), and AH-12 was located close to the 

pavement section reconstructed in the past incorporating moisture barriers (Hardcastle, 

2003). Accordingly, soil samples obtained from the AH-11 and AH-12 boreholes were 



72 

 

 

 

tested to establish relevant swell-related parameters. Tests performed on these samples 

established liquid limit values in excess of 153% and plasticity index values greater than 

87%, thus establishing the expansive potential for soil samples from both boreholes. The 

Optimum Moisture Content (OMC) and Maximum Dry Density (MDD) values for the 

soil obtained from these two boreholes were established in the laboratory (see Appendix 

B). Both the boreholes exhibited MDD values of approximately 64 lb/ft3 (~1021 kN/m3) 

and OMC values of ~30%. In addition, two other tests were conducted to establish the 

soil suction and volumetric strain properties: (1) soil suction, and (2) volumetric swell 

strain. A summary of the laboratory procedures, apparatus used, and results are presented 

in the following subsections. 

4.2.1 Soil Suction Measurement 

The variation of water or moisture affinity for soil is better represented by the soil 

water characteristic curve (SWCC). The SWCC of a given soil defines the relationship 

between the water content and soil suction. In engineering practice, soil suction is 

composed of two components: (1) matric suction, and (2) osmotic suction. Matric suction 

comes from the capillarity, texture, and surface adsorption forces of the soil. The osmotic 

suction, on the other hand, reflects the effect of dissolved salts in the pore fluid (Bulut et. 

al., 2001). In this research, soil suction was determined using the ASTM D 5298 test 

procedure. This method uses a calibration curve to infer both total suction (matric suction 

+ osmotic suction) and matric suction measurements. This calibration curve is a 

combination of both wetting and drying curves. Per the ASTM D 5298 test procedure, 

soil samples were prepared at the constant density and varying moisture contents. Sample 

dimensions used in this research were 3 in. (~76 mm) diameter and 6 in. (~152 mm) high. 
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Whatman#42 (diameter 2 in. or 50.8 mm) ashless filter paper was used to determine the 

suction of the soil. Matric suction was determined by placing a filter paper sandwiched 

between two protective filter papers and placed between the two halves of the soil sample 

that was previously cut. This allowed the sandwiched filter paper to be in physical 

contact with the soil sample and yet not be contaminated with the soil. The two halves of 

the soil sample were then taped to seal the filter papers inside the soil sample. The taped 

sample was placed inside a glass jar, and another filter paper was placed on top of the 

sample. This filter paper was not allowed to touch the soil sample, and hence a 1-in. 

(25.4-mm) thick Polyvinyl Chloride (PVC) pipe was used as a separator between the soil 

sample and the filter paper. The glass jar was then sealed and placed inside a 

temperature-controlled chamber for one week. After equilibrium conditions were 

achieved, wet filter papers were removed from the samples, and their moisture contents 

were determined. It should be noted here that filter papers must be handled carefully to 

avoid external moisture effect. Suction values were then obtained from the calibration 

curve. The total and matric suction values were determined from the calibration curves 

for the Whatman#42 filter paper as given in ASTM 5298 test procedure. Figure 4.1 

shows photographs of different steps during the process of suction measurement using the 

filter paper method. SWCCs were established by plotting the moisture contents at which 

the samples were prepared versus the total and matric suction values determined. Figure 

4.2 presents the SWCC curves obtained for both AH-11 and AH-12 Soils. 
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Figure 4.1 (a) Matric Suction (left) and Total Suction (right) Measurements 

 
 

Figure 4.2 SWCC for Boreholes AH-11 and AH-12 (1 ksi = 6.89 MPa) 

4.2.2 Volumetric Swell Strain Test 

 Developed by the researchers at The University of Texas at Arlington (UTA), a 

three-dimensional free swell test provides a reasonable representation of the soil 

maximum volumetric swell potential (Punthutaecha et al., 2006). This test was conducted 

to investigate the maximum vertical, radial and volumetric swell potentials of the soils 

from AH-11 and AH-12.  
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In this method, 3 in. (~76 mm) diameter and 6 in. (~152 mm) high soil samples 

were prepared at OMC and MDD conditions. The soil samples were then placed in the 

oven for 14-20 hours. The dried samples were submerged under water to allow for 

swelling to occur. Porous stones were placed at the top and bottom of the samples to 

facilitate water ingress from top and bottom of the soil sample. The soil sample was 

covered with a latex membrane to avoid surficial erosion. Figure 4.3 shows photographs 

of this test in progress. Both vertical and radial swell movements were measured at 

various time by using ‘dial gauge’ and ‘Pi tape’ (Figure 4.3), respectively. Vertical and 

radial swell strains were monitored until there was no further swell and equilibrium 

conditions were reached. All tests were conducted at room temperature.  

In addition, the moisture changes in the sample were also monitored by measuring 

the sample weight and swell strains at12 hour intervals. It was assumed that the increase 

in sample weight was primarily due to water absorption and that there was no soil loss 

during this process. 

                        (a)                (b) 

Figure 4.3 (a) Inundation of Soil Sample in Water Bath; (b) Measurement of 

Radial Swell using “Pi Tape.” 

Soil samples obtained from AH-11 required approximately 430 hours to reach 

equilibrium, while AH-12 soil samples reached equilibrium in 140 hours. This indicates 
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higher permeability for AH-12 soil samples compared to those from AH-11. Typical 

swell characteristic graphs are shown in Figure 4.4, which illustrate a maximum 64% and 

48% volume increase due to swelling for the AH 11 and AH 12 samples, respectively. 

Volumetric swell and suction characteristics established for the two soil types were used 

as material inputs during the numerical modeling effort. 

 
 

Figure 4.4 Volumetric Swelling of Boreholes AH-11 and AH-12 

4.4 Overview of the Model Details 

The first steps in the numerical modeling effort involved establishing (1) the 

model geometry, (2) material properties, and (3) boundary conditions to adequately 

represent the system being analyzed. The model geometry was established through field 

visits, boring logs, surveying records, and pavement construction history data. Laboratory 

characterization of field-collected soil samples helped establish the material properties to 

be used in the numerical models.  
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4.4.1 Geometry and Cross Section 

A typical pavement section comprises a 6-in (~15-cm) thick Hot-Mix Asphalt 

(HMA) section overlying a 54-in (~137-cm) thick unbound granular base layer overlying 

the subgrade layer. To overcome infinite boundary effects, Kim et al., (2009) suggested 

that vertical and horizontal direction should be considered 140 and 20 times the wheel 

loading radius, respectively. The subgrade was assigned a thickness of 162 in. (~411 cm) 

after the several analysis because there was not any wheel loading configuration involve 

in this model. Only shrink-swell behavior was considered defining a finite boundary for 

the model and eliminating boundary effects. There was also an 18-in (~46-cm) thick lime 

stabilized soil layer in between the base and subgrade, which was constructed during past 

stabilization efforts (see Figure 4.5). 

 
 

Figure 4.5 Schematic Representation of the Modeled Control Section (1 in. = 2.54 

cm) 

4.4.2 Selection of 3D Model Geometry 

A 266-ft. (~81-m) long and 90.5-ft. (~28-m) wide section was initially modeled. 

These dimensions included three driving lanes (each lane 144 in. or ~4 m wide), two 

paved shoulders (138 in. or ~4 m) and clearance for boundary effects as shown in Figure 

4.7. The clearance for boundary effects was optimized of 21.5 ft. (~7 m) after several trial 

analyses. This distance was provided to minimize the effects of boundary conditions on 

pavement heaving. The length of the pavement was selected to match the distance 
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between boreholes AH-1 and AH-2 in the field and was separated by a distance of 223 ft. 

(~70 m) (see Figure 4.6). 

 
Figure 4.6 Schematic Top View of the Modeled Control Section (1 ft. = 0.305 m) 

 
Figure 4.7 Isometric View of the Modeled Control Section (1 ft. = 0.305 m) 

4.4.3 Material Properties 

Different materials involved in the model were HMA, unbound granular base, 

lime stabilized soil, and expansive subgrade. In this study, HMA was modeled as a linear 

elastic material while the unbound granular base, lime stabilized soil and the expansive 

subgrade were modeled as elastoplastic materials. The soil element, when subjected to 
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swelling, will undergo volumetric changes caused by absorbing water. This element is 

not expected to either fail or yield during the swelling period. The resilient modulus of 

subgrade soils was obtained from laboratory test results which were conducted by 

Boudreau Engineering, Inc. The material properties used to model each of these materials 

are listed in Table 4.1. These properties were obtained from various literature and are 

typical for pavement sections involving geosynthetic treatments.  

Table 4.1 Engineering properties of pavement layers used in the model 

          Properties HMA Base Lime-

Stabilized Soil 

Expansive 

Subgrade 

Mass Density, ρ lb/ft3 

(kg/m3) 

148 

(2390) 

137 

(2200) 

62 

(1020) 

62 

(1020) 

Elastic Modulus, E, ksi 

(MPa) 

400 

(2756) 

43.5 

(300) 

29 

(200) 

2.12 

(14.6) 

Poisson’s Ratio, ν 0.3 0.35 0.35 0.4 

Internal Angle of Friction, ϕ - 40 25 10 

Angle of Dilation, ψ - 13 8 3 

Cohesion, c’, psi (kPa) - 0.29 (2) 43.5 (300) 10.8 (75) 

In the case of the expansive subgrade, two additional material properties were 

input into the numerical model. These material properties were intended to characterize 

the sorption and moisture swelling behaviors. Both of these models help define the 

volumetric swell behavior in expansive soils and volumetric free swell at different 

saturation levels. Brief discussions of these two models are presented in the following 

subsections. 
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4.4.3.1 Sorption Model 

The Sorption model replicates suction changes in the soil matrix with a change in 

moisture content. The sorption model considers a partially saturated flow condition in a 

porous medium with a negative value of pore liquid pressure. The degree of saturation 

usually lies within a certain range depending on pore fluid pressure. This saturation limit 

will start at the limit where absorption will occur, and end where the exsorption will 

occur. Figure 4.8 represents this typical range of value s for the degree of saturation 

where alteration between absorption and exsorption takes place along the scanning 

curves. The degree of saturation, s value cannot be zero or greater than unity from the 

definition of the absorption and exsorption behavior of the porous medium (Simulia, 

2016). 

 

 
Figure 4.8 Typical Absortion and Exsorption Behaviors (Simulia, 2016) 

In ABAQUS, the absorption, exsorption and scanning behaviors need to be 

defined in the analysis, if the user wants to consider the partial saturation condition in the 

porous medium. Otherwise, ABAQUS will assume fully saturated flow condition by 

taking unit value for the degree of saturation as a default. ABAQUS analyzes the partially 

Pore pressure 

-uw 

absorption 

exsorption 

scanning 

saturation 0.0 1.0 
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saturated flow coupled equation automatically by using its unsymmetric matrix storage 

and solution scheme. By software default, the sorption behaviors are defined by 

specifying pore pressure values as shown in Table 4.2 which is retrieved from the soil 

water characteristic curves (SWCCs) presented in this chapter (Figure 4.2). The material 

properties used in the model for expansive subgrade are presented in Table 4.2 

Table 4.2 Input Data for Moisture Swelling and Sorption Models 

Soil Type Moisture Swelling Sorption 

Strain Saturation 

 

Pore Pressure, 

ksi (MPa) 

Saturation 

 

 

 

 

 

AH-11 

0 0.09 -4.66 (-32.1) 0.21 

0.14 0.54 -3.09 (-21.3) 0.41 

0.22 0.63 -1.46 (-10.1) 0.52 

0.27 0.69 -1.24 (-8.6) 0.57 

0.31 0.74 -0.89 (-6.15) 0.60 

0.33 0.78 -0.63 (-4.3) 0.64 

0.34 0.83 -0.27 (-1.9) 0.71 

0.37 0.93 -0.11 (-0.8) 0.88 

0.4 1 0 1 

 

4.4.3.2 Moisture Swelling Model 

The Moisture-Swelling model defines the saturation-driven volumetric swelling 

of the soil matrix during partially saturated flow condition and requires volumetric strain 

data with changes in moisture content (Simulia, 2016). The soil containing ground water 

can be modeled in ABAQUS as a multiphase porous medium. This porous medium 

model considers two fluids in the system, one is incompressible wetting liquid, and others 

are compressible gases. Both the fluid existing in the partially saturated medium and 

wetting liquid are free to move through the medium if driven. Sometimes, the wetting 
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liquid may be trapped within particles which result in swelling in the process. Negative 

pore liquid pressure denotes partial saturation condition in a porous medium and moisture 

swelling model developed on the basis of partially saturated flow condition. In the model, 

swelling of a porous medium depends on the degree of saturation caused by wetting 

liquid in a partially saturated flow condition. In ABAQUS model, swelling behavior of 

porous medium is characterized by swelling strain as a function of the degree of 

saturation. Figure 4.9 shows the variation of typical volumetric moisture swelling strain 

with the degree of saturation (Simulia, 2016) 

 
 

Figure 4.9 Typical Volumetric Moisture Swelling vs. Saturation Curve (Simulia, 

2016) 

Volumetric swelling strain at particular node in the model is calculated with 

reference to volumetric swelling strain obtained at the current and initial saturation level 

by using the following equation  

 
1

( ( ) ( ))
3

ms ms I

ii

ms
r s s

ii
                   (4.1) 

Where ( )ms s  and ( )ms Is are the volumetric swelling strains at the current and 

initial saturations. The ratios 
iir  are incorporated into the equation to consider an 

saturation 1.0 S S1 0.0 

𝜀𝑚𝑠 

𝜀𝑚𝑠(𝑠) 

𝜀𝑚𝑠(𝑠𝐼) 
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anisotropic swelling. ABAQUS assumes the isotropic condition if it is not specified by 

the user i.e model will consider unit r value by default. In the model, the user must 

define the initial saturation value and the pore fluid pressure that lie within the absorption 

and exsorption values as discussed in the previous section with Figure 4.8. If this 

condition is not fulfilled, ABAQUS will adjust the saturation value that will satisfy the 

pore fluid pressure requirement as discussed above. 

4.4.4 Boundary Conditions 

The whole pavement section was modeled to simulate the deformations as 

accurately as possible, while only requiring reasonable computational time. Two types of 

boundary conditions (BC) were considered in this study: (1) displacement/rotation BC 

and (2) pore-water pressure BC. The displacement BCs were used to identify the free and 

fixed directions for the model movement, while pore-water pressure BC was used to 

specify a source of water for the expansive soil.  

Using the displacement BC, the bottom most nodes in the x-z plane of the 3D 

model were restrained in all three directions, not allowing displacements in any direction. 

The surface elements in the x-y plane of the model were restricted to move in the z-

direction, and the surfaces in the y-z plane were restricted to move in the x-direction (see 

Figure 4.10). No lateral deformation was allowed on any of the four surfaces, and they 

were free to move in the vertical direction. The pore-water pressure BC was used at the 

center of the expansive subgrade layer to have a perpetual source of water. This condition 

produces the worst-case scenario for the differential heave. 
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Figure 4.10 3D View of Boundary Conditions 

4.4.5 Modeling of Expansive Soil Subgrade 

There are two different aspects of the modeling of expansive soil subgrade: (1) 

representing the layer subgrade, and (2) swell-shrink behavior of soil. This modeling of 

expansive soil layer would lead to identified differential heaving of the pavement surface. 

Differential heaving is defined as the difference between the vertical deformations 

observed on the pavement surface at heaved and non-heaved portions. This differential 

heaving causes riding discomfort to travelers. The primary objective of numerical 

modeling of the control section is to match the differential heaving pattern observed in 

the field. Three possible alternative approaches were considered for the modeling of 

expansive soil layers.  
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Firstly, the entire soil subgrade layer was considered as expansive in nature as 

shown in Figure 4.11, and moisture access was allowed across all boundaries of the 

subgrade layer. However, this phenomenon would lead to uniform moisture fluctuations 

across the subgrade layer, thus resulting in uniform volume change throughout the soil 

deposit. The uniform displacement was observed on entire pavement surface and no 

differential heaving pattern was seen in Figure 4.12 . As the primary objective behind 

modeling of the control section was to match the differential heaving pattern observed in 

the field, this approach was rendered not suitable. 

 
Figure 4.11 Entire Soil Deposit is Expansive in Nature (1 in. = 2.54 cm) 

 
 

Figure 4.12 Uniform Displacement of the Pavement Section Considering Entire 

Soil Deposit is Expansive in Nature 

Uniform Displacement 
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The second alternative involved modeling certain portions of the soil stratum as 

expansive and modeling the rest of the subgrade as non-expansive as shown in Figure 

4.13. Allowing moisture access through all boundaries of the subgrade layer would, 

therefore, lead to volume changes in certain portions, whereas the remaining portions 

would not undergo any volume change. Although this approach has the potential to 

simulate differential heave patterns at the pavement surface, the primary challenge is 

associated with establishing exact locations for the expansive soil segments. Figure 4.14 

shows the differential heaving patterns on the pavement surface. As seen in Figure 4.14, 

only the expansive column has experienced the effect of moisture swelling, and the rest 

of the non-expansive zones did not show any volume changes. Moreover, such 

discontinuous patterns in soil properties would most likely not be a realistic 

representation of actual field conditions. 

 
 

Figure 4.13 Certain Portion of the Soil Stratum are Expansive in Nature 
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Figure 4.14  Differential Heaving Patterns on the Pavement Surface Considering 

Certain Portion of the Soil Stratum are Expansive in Nature 

As the third alternative, the entire subgrade layer was modeled as expansive in 

nature, but access to water was limited to selected locations as shown in Figure 4.15. This 

phenomenon would lead to localized increase in moisture contents, thus resulting in 

differential heave patterns on the pavement surface. After several trial analyses, the size 

of the water source was optimized for the calibration of field PVR values. The moisture 

access was limited to a 5 ft.5 ft. (152 cm   152 cm) the region at the interface between 

the subgrade and the lime-stabilized layers. Figure 4.16 shows the differential heaving 

patterns on the pavement surface. As seen in Figure 4.16, the maximum heave observed 

in the middle of the pavement, and minimum heave observed at the edge of the 

pavement. This means that expansive subgrade and location of moisture have contributed 

the detrimental effect of swelling. This facilitated the simulation of differential heaving 

patterns on the pavement surface.  
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Figure 4.15 Entire Soil Layer is Expansive in Nature, but Access to Water is 

Limited to Selected Locations (1 in. = 2.54 cm) 

 
Figure 4.16 Differential Heave of the Pavement Section Considering Entire Layer 

is Expansive in Nature, and Water is Limited to Selected Locations 

Once the expansive layer subgrade along with the location of moisture access 

established, then next task involved determining the shrink-swell behaviors of expansive 

soil. These behaviors have already discussed in the previous article 4.4.3. 

4.4.6 Element Type and Mesh Size 

Meshing criteria are one of the most important features in finite element analysis. 

The results of analyses can change significantly due to the element’s type and size. In this 

analysis, the mesh size was optimized to produce accurate results, while at the same time 

maintaining the computational time requirements within reasonable limits. Figure 4.17 

Heaved 

Non-heaved 

Differential 

       Heave 
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illustrates the plot between the element size and computational time requirements. It can 

be observed from this figure that as the element size decreases, the displacement is 

increased showing an improvement in the results with the decreasing element size. 

 
 

Figure 4.17 Plot Showing Convergence Results (1 m = 39.37 in.) 

On reducing the element size from 20 in. (~0.5 m) to 16 in. (~0.4 m), no 

significant change in the computed displacement values was observed. However, the 

computational time requirement increased from approximately 60 min to 450 min. 

Hence, the element size of 20 in. (~0.5 m) was used as the optimum size in the 

subsequent analyses, to achieve a balance between result accuracy and computational 

time requirement. Based on the consideration Table 4.3 presents a summary of the 

element types and the number of elements used for each of the materials used in this 

study along with the thicknesses. 
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Table 4.3 Element Details of Different Materials (1 in. = 25.4 mm) 

Material Type Element 

Type 

Number of 

Elements 

Thickness 

(in.) 

Hot Mixed Asphalt (HMA) C3D8R 5,699 6 

Base C3D8R 9,048 54 

Lime Stabilized Soil C3D8R 4,524 18 

Expansive Subgrade C3D8P 33,522 162 

 

The typical three-dimensional element types C3D8R and C3D8P, which are 

continuum stress/displacement, three-dimensional, linear hexahedron element types with 

no pore pressure allowed and with pore pressure allowed, respectively, were assigned in 

this model for modeling asphalt, base, lime-stabilized soil, and expansive subgrade (see 

Table 4.3). The C3D8P element type has the ability to replicate partially or fully saturated 

fluid flow through porous media. Figure 4.18 presents a fully meshed model for the 

geometry used in this study.  

 
Figure 4.18 Finite Element Mesh for the Control Section 
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4.4.7 Initial Conditions 

Since the swell-shrink behaviors of the soil were the main focus of this research, 

an element with swell capabilities and sorption properties were used for simulating an 

expansive subgrade layer. The moisture swelling and sorption model can be used only in 

the elements that allow for pore pressure. The initial saturation values can be defined as 

initial conditions otherwise the ABAQUS will consider fully saturated conditions .The 

initial conditions drive the swelling behavior of expansive soil in the numerical model. 

Initial conditions are input into the model in the form of an initial void ratio (e0), initial 

pore water pressure (U0) and the initial saturation level (S0). The amount of swelling the 

expansive soil experiences depends on its initial saturation level. The lower the saturation 

value, the higher the swelling, as the expansive soil will swell from this initial saturation 

value to full saturation (100%). The initial void ratio (1.5) was established from the 

following relation. 

1w

d

G
e 


                                             (4.2) 

where G is the Specific Gravity; 
w is the Unit Weight of Water ( pcf or

3/kN m ); and d  

is the Maximum Dry Density (MDD) ( pcf or
3/kN m ). 

The initial conditions used in this analysis are presented in Table 4.4. 

Table 4.4 Initial Conditions Specified in the Model 

Property Value 

Initial void ratio, e0 1.5 

Initial pore water pressure, U0 ksi (MPa) -0.89 (-6.15) 

Initial saturation level, S0 0.6 
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4.5 Calibration Approach 

As mentioned in Chapter 3, the PVR trends established using the laboratory test 

results can be matched with actual field-observed surface-profile trends to an acceptable 

limit. Therefore, PVR values for the boreholes can be reasonably assumed to be 

indicative of actual expansion potential for the soil layers at those locations. A numerical 

method-based FEM was used to model the pavement section. The results from these 

numerical model were used to predict swelling behavior experienced by the pavement 

sections. All these predictions were compared with PVR calculations, and these 

comparisons were analyzed and discussed. Out of twelve boreholes, AH-1 was located on 

top of a heave zone while AH-2 was located on a non-heave zone. In order to calibrate 

the control section, it was decided to match the PVR values from two bore holes (heaved 

and non-heaved portions) to the heaving observed in the numerical model.  

As per laboratory findings, AH-1 demonstrated a PVR of 5.3 in (~135 mm) while 

the PVR value for AH-2 was 0.9 in (~23 mm). Figure 4.19 presents the deformation 

contours of the control section modeled using AH-11 soil properties (located near AH-1). 

Note that AH-12 was located close to the pavement section reconstructed in the past 

based on Dr. Hardcastle’s recommendation (Hardcastle, 2003). As there was no available 

sample for AH-2, the sorption and moisture swelling data could not be calculated to input 

in the numerical modeling. Hence to serve the preliminary purpose, AH-11 soil properties 

were assigned for the entire calibration efforts. Differential heaving on the pavement 

surface occurs under transient state condition of water infiltration but the PVR value that 

pavement surface will undergo maximum “rise” if the expansive soil layers had unlimited 

access to moisture, which is very similar to a steady state condition. Liquidity index 
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profile shows that seasonal variation in liquidity index value indicates the moisture 

fluctuation which leads to shrink-swell behavior in expansive soil. To obtain the LI 

profile, the LI data requires over several seasons (a function of time), which leads to the 

transient state condition.  

 It can be observed from Figure 4.19 that the maximum deformation experienced 

on the pavement surface at the location corresponding to borehole AH-1 was 5.07 in. 

(~129 mm) and that for the location of borehole AH-2, it was 0.72 in. (~18 mm). Figure 

4.20 shows the differential nature of the surface heaving observed at the locations 

corresponding to AH-1 as compared to AH-2. As indicated in Figure 4.20, the differential 

heave predicted by the numerical model (4.35 in. or ~111 mm) closely matched the value 

determined as a difference of the PVR values (5.34 in. - 0.9 in. = 4.4 in. or 112 mm) 

calculated for these two boreholes. The simulation required approximately 16 hours to 

complete. 

 

Figure 4.19 Displacement contours for Control Section 

AH-1 AH-2 

Movies/266 ft Control Section.mov
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Figure 4.20 Comparisons with PVR and Maximum heave in ABAQUS (1 in. = 

25.4 mm) 

4.6 Cross Section Selection for the Control Section 

After successfully completing the calibration approach and reducing 

computational time requirements, a 50 ft.50 ft. (~15 m~15 m) cross section of flexible 

pavement was modeled with a finite element mesh refined to observe important 

differential heaving behavior due to moisture swelling, both with and without 

geosynthetic reinforcements in the base layers. The subgrade was modeled as expansive 

subgrade but only a 5 ft.5 ft. (~1.5 m~1.5 m) the region at top-middle portion area of 

the expansive subgrade had a continuous water supply.  Figure 4.21 presents the 

isometric view of the pavement control section. An elastic, perfectly plastic material 

behavior was used to model for the base; lime-stabilized soil, and subgrade. To capture 

the elasto-plastic behavior of the base, lime-stabilized soil, and subgrade, the Mohr-

Coulomb yield criterion was adopted in this analysis. Maximum vertical displacements 
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were determined to be 6.93 in. (~176 mm) and 0.83 in. (~21 mm) for AH 11 and AH 12 

soils, respectively (see Figure 4.22) 

 

 Figure 4.21 Isometric View of the Control Section (1 ft. = 0.305 m) 

 

 Figure 4.22 Displacement Contours for the Control Section (1 in. = 25.4 mm) 

 

After successfully analyzing the pavement control section, the next task involved 

incorporating design alternatives using geocell within a granular base layer.  

 

 

 

6.93 in. 

AH-11 

 

 

0.83 in. 

AH-12 
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4.7 Modify the Calibrated Numerical Model to Incorporate Geocell-

Reinforced System 

4.7.1 Geocell Modeling  

Geocells were modeled as three-dimensional shell element (due to its aspect ratio) 

with the dimensions of 6 in. × 6 in. × 0.06 in. (~152 mm ×~152 mm ×~1.5 mm). The 

shape of the cells was modeled as squares as per Leshchinsky (2011). Figure 4.23 shows 

a finite-element representation of the geocell layer that was modeled in this research. 

Each geocell layer was 6-in. (~152-mm) deep and consisted of several 6 in. (~152 mm) 

openings. These openings of the geocells were filled with base material, and the 

interaction between the base material and the geocell material caused the entire layer to 

behave as one stiff layer (see Figure 4.23b). The geocell was modeled with 4-noded 

reduced integration shell element (S4R). 

 
           (a)           (b) 

Figure 4.23 (a) Element Representation of the Geocell Modeled in this Research 

Study, and (b) Embedded Geocells in the Base Layer (1 in. = 25.4 mm) 

4.8 Numerical Analysis Results 

4.8.1 Effect of Geocell Stiffness and Geocell Reinforcement Configurations 

Biabani et al. (2016) reported that the availability of varieties of polymeric 

material, such as High-Density Polyethylene (HDPE) or Novel Polymeric Alloy (NPA), 

GEOCELL 

GEOCELL 
BASE 

6-in. 

6-in. 

6-in. 
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made it necessary to investigate the influence of geocell stiffness on the performance of a 

reinforced-subballast assembly. This was investigated by simulating geocell with a range 

of stiffness that varied from 43 ksi (0.3 GPa) to 725 ksi (5 GPa) to represent a variety of 

materials including HDPE, and NPA. The result shows that geocell with a relatively low 

stiffness performs very well compared to the geocell with a higher stiffness value 

(Biabani et al., 2016). According to Leshchinsky (2011), the effects of geocell stiffness 

were demonstrated by placing the model on a soft foundation (0.145 ksi or 1 MPa). Three 

embankment setups were run using geocell stiffness of 14.5 ksi to 29×103 ksi (0.1 GPa to 

200 GPa) to demonstrate a variety of materials including HDPE, NPA, and structural 

steel. Use of HDPE, NPA, and steel in Test 2 and Test 3 displayed significant 

performance as the results show a significant reduction in settlement (75 % and 82 %, 

respectively) with the increasing geocell stiffness. Hence targeting several stiffness 

values would give insights into the geocell reinforced layer behavior with respect to 

reduction in differential heaving. The stiffness values evaluated were 290 ksi (2 GPa), 

435 ksi (3 GPa), 580 ksi (4 GPa), 725 ksi (5 GPa).  

Leshchinsky (2011) showed that geocell confinement effectively reduced the 

vertical settlement. In comparison to the control section, the geocell treated sections 

reduced vertical settlement by 69% and 72% for the single and double-layer reinforced 

sections, respectively. Saad et al. (2006) conducted a parametric study to investigate the 

three locations of geosynthetics reinforcement, namely the base–asphalt concrete 

interface, the base–subgrade interface, and inside the base layer at the height of 1/3 of its 

thickness from the bottom. The result showed that placing the geosynthetic reinforcement 

at the base–asphalt concrete interface led to the highest reduction of the fatigue strain 
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(46–48%). Placing two layers of geocells can create a relatively high modulus, confined 

granular layer, which acts as a continuous beam (Han et al., 2011). The hybrid 

geosynthetic solution ( two layers geocell + a stiff biaxial geogrid) has been implemented 

by the Israeli Rail Authority (IRA) to restrain differential heave caused to rail track 

pavements by the uneven swelling of expansive soil subgrade for a decade (Keif, 2015). 

Based on the literature, one and two layers of geocell composites were studied 

within the scope of this Master’s thesis. The following geocell reinforcement 

configurations were analyzed using the numerical model. 

I. A single layer of geocell placed at the Base-Lime Stabilized Soil interface 

(GC-1). 

II. A single layer of geocell placed at the HMA-Base layer interface (GC-2). 

III. Two geocell layers: first at mid-depth of the Base layer; second at the 

Base-Lime Stabilized Soil interface (GC-3). 

IV. Two geocell layers: first at mid-depth of the Base layer; second at the 

HMA-Base layer interface (GC-4). 

V. Two geocell layers: first at the HMA-Base layer interface; second at the 

Base-Lime Stabilized Soil interface (GC-5). 

VI. Two geocell layers: Both layers stacked on top of one another and placed 

at the interface between Base and Lime Stabilized Soil layers (GC-6). 

 The rest of the modeling aspects including boundary conditions, meshing 

approach and initial conditions for these models remained the same as that for the control 

section. Figure 4.24 shows schematics of all the configurations listed above. Note that the 

black dotted lines in these figures indicate the location of the geocell. 
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Figure 4.24 Schematic of all the Geocell Reinforcement Configurations (1 in. = 

25.4 mm) 

Figure 4.25 presents the isometric view of a pavement section comprising a 

geocell-stabilized base layer. 

 
 

Figure 4.25 3D Isometric View of the Geocell Treated (GC-1) Pavement Section (1 

in. = 25.4 mm) 

Figure 4.26 shows vertical deformation contours for GC-1 configurations for 

geocell stiffness of 725 ksi (5 GPa). Similar deformation contours were generated for 

GC-2 through GC-6, and have been included in Appendix B. The maximum vertical 

displacement varied from 6.43 in. to 4 in. (~163 mm to ~102 mm) among the six geocell 

HMA 6 in. 

GEOCELL 6 in. 

BASE 54 in. 

LIME STABILIZED 

SOIL 18 in. 

SUBGRADE 162 in. 
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treated sections (GC-1 to GC-6), in comparison to 6.93 in. (~176 mm) experienced by the 

control section (see Figure 4.22). As the ultimate goal of the treatment is to reduce 

differential heaving and not the maximum vertical displacement, the maximum and 

minimum vertical displacement on the HMA surface were calculated at two reference 

points as shown in Figure 4.26, and results are listed in Table 4.5. 

 
Figure 4.26 Displacement Contours for GC-1 Configuration 

 

Table 4.5 Differential Heave for GC-1 Configuration (1 m = 39.37 in) 

Modulus of 

Geocell, 

ksi (GPa) 

Maximum Vertical 

Displacement in 

HMA, (m) 

Minimum Vertical 

Displacement in 

HMA, (m) 

Differential 

Heave, in. (m) 

290 (2) 0.119 0.0526 0.067 

435 (3) 0.118 0.0524 0.065 

580 (4) 0.117 0.0524 0.064 

725 (5) 0.116 0.0524 0.063 

Differential heave was computed for all geocell treated sections, and these values 

are plotted in Figure 4.27. It can be observed from this figure that the differential heave at 

the HMA surface varied from 4.19 in. (~106 mm) to 1.91 in. (~48 mm) for different GC 

combinations with varying stiffness for the geocell composite layer. The maximum 

Maximum Heave 

(Point a) 
Minimum Heave 

(Point b) 
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differential heave of pavement under geocell with varying stiffness is presented in Figure 

4.27. As geocell stiffness increases, the differential heave of pavement decreases in every 

case, while unreinforced (control section) assembly exhibits the highest displacement. 

 
Figure 4.27 Effect of Geocell Stiffness on the Pavement Differential Heave 

Both the number of geocell layers and geocell location played significant roles in 

reducing the differential heave. This may be explained by the confinement of geocell and 

the fill materials. The vertical upward movement was resisted by confining mechanism of 

fill materials and geocells, not by the stiff geocell layer. The location of the geocell layer 

was optimal when they are closest to the expansive soil in the case of the single layer. It 

was found that placing the double layers geocell-reinforcement at the base-lime stabilized 

soil interface (GC-6) led to the highest reduction of the percent reduction in heave (54-

60%). The placement of single geocell layer is particularly effective; the highest percent 

reduction in heave (44-50%) occurs when the geocell is placed at the base-lime stabilized 
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soil interface (GC-1). In addition to constructability issues and economics, a single layer 

of geocell (GC-1) is the most effective alternative to minimize the differential heave at 

the pavement surface. 

 
Figure 4.28 Percentage Reduction in Differential Heave with varying Geocell 

Stiffness 

4.8.2 Effect of Geocell Height 

Geocell height is defined as the depth of the geocell, and geocell width is the 

opening size of the geocell. Although tall geocells seem to perform better in terms of 

structural capacity, compaction of infill material becomes more difficult (Pokharel, 

2011). In the geocell height sensitivity analysis, the effect of geocell height was evaluated 

by modeling geocells that are 4 in. (~100 mm), 6 in. (~152 mm), and 8 in. (~200 mm) 

tall, respectively. Other parameters in the model were held constant, as shown in Table 

4.6. A parametric study was conducted through the numerical modeling effort. The 
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differential heave was observed from numerical models corresponding to the different 

heights of geocell and most suitable design alternative was selected considering 

mechanistic response and ease of implementation. 

Table 4.6 Parametric Study of the Pavement Layers (1 in. = 25.4 mm) 

Pavement Layers/Geocell Thickness (in.) 

HMA 6 

BASE 54 

Lime Stabilized Soil 18 

Subgrade  162 

Geocell Height, HGC 4,6,8 

The maximum differential heave of pavements under geocell with varying heights 

are presented in Figure 4.29. As geocell hight increases, the differential heave of 

pavement decreases in every case, while control section shows the highest differential 

heave. It can be observed from this figure that the differential heave at the HMA surface 

varied from 2.64 in. (~67 mm) to 2.28 in. (~58 mm) for different geocell heights with 

stiffness for the geocell fixed at 290 ksi (2 GPa). 
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Figure 4.29 Effect of Geocell Heights on the Pavement Differential Heave (1 in. = 

25.4 mm) 

Figure 4.30 reveals that the percentage reduction of heave in comparison to 

control section ranged from 45% to 52% for different geocell heights. It was observed 

that GC-8 in. (~200 mm) exhibited the best performance among the three height of 

geocell treated sections. However, the difference in heave reduction percentage between 

GC-4 in. (~100 mm) and GC-8 in. (~200 mm) was only 7% at the same location. 

Although, GC-8 in. (~200 mm) performs better but from an economic point of view and 

compaction of infill materials in the field, GC-4 in. (~100 mm) is the best option to 

mitigate the differential heave at the pavement surface. 
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Figure 4.30 Percentage Reduction in Differential Heave with varying Geocell 

Heights (1 in. = 25.4 mm) 

4.9 Inferences Based on Numerical Analysis Results 

The following conclusions can be drawn from this study: 

1.  The differential heave of the pavement can be reduced by increasing 

geocell stiffness. The differential heave at the HMA surface varied from 4.19 in. (~106 

mm) to 1.91 in. (~48 mm) for different GC combinations with varying stiffness for the 

geocell composite layer. Results also indicate that geocell with a relatively low stiffness, 

E = 290 ksi (2 GPa) performs very well compared to the geocell with a higher stiffness, E 

= 725 ksi (5 GPa). 

2. The number of geocell layers and location of the geocell within the base 

layer played significant roles in reducing the differential heave. The percentage reduction 

of heave in comparison to control section ranged from 10% to 60% for different 

reinforcement combinations. It was observed that GC-6 exhibited the best performance 

among the six geocell treated sections. Results from the numerical modeling effort 
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established that placing two layers of geocell within the unbound granular base layer led 

to the highest reduction (~60%) in the differential heave. Placing a single layer of 

geocell, on the other hand, reduced the differential heave magnitude by approximately 

50%. A single layer of geocell (GC-1) was therefore recommended for implementation to 

achieve the optimal balance between pavement performance and construction costs. 

3. The differential heave decreases with an increase in the height of geocell, 

and the differential heave at the HMA surface varied from 2.64 in. (~67 mm) to 2.28 in. 

(~58 mm) for different geocell height combinations with stiffness for the geocell fixed at 

290 ksi (2GPa). It was observed that GC-8 in. (~200 mm) exhibited the best performance 

among the three different height of geocell treated sections.  

4.10 Summary  

This chapter presented findings the from finite-element simulation of pavement 

section comprising a geocell-stabilized base layer. Subsequently, the numerical modeling 

effort that includes the model geometry, material properties, element size and meshing 

approach, boundary and initial conditions were presented. Results obtained from the 

numerical models were presented in this chapter along with discussions.  

The next chapter (Chapter 5) of this document will present the conclusions of the 

research works done within the scope of this Master’s Thesis. 
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CHAPTER 5: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

FOR FUTURE RESEARCH 

5.1 Research Framework 

In this chapter, at first, a brief summary of the research tasks performed under the 

scope of this Master’s thesis effort has been presented, along with important findings. 

Inferences have been drawn from the research findings to arrive at conclusions 

concerning the research questions and hypotheses. Finally, recommendations have been 

made for future research tasks that would lead to further understanding of the problem at 

hand.  

The main objective of this research effort was to identify the primary mechanism 

contributing to differential heaving problems along with a section of U.S. highway 95 

near the Idaho-Oregon border and to evaluate the effectiveness of geocells as a candidate 

remedial measure. For this purpose, twelve boreholes were drilled at strategically 

selected locations along the pavement section, and soil samples were collected for 

extensive laboratory characterization. Numerical modeling efforts focused on evaluating 

the effectiveness of geocell reinforcement for reducing expansive soil-related differential 

heave in pavements. All research objectives were fully accomplished; important findings 

from the research tasks are summarized in the following section. 

1. Moisture content tests on soil samples collected from different depths 

underneath the problematic pavement section indicated that the moisture movement 

within the soil was probably not governed by the suction mechanism as the ground water 
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table (GWT) was consistently at depths greater than 26 ft. (~793 cm) from the pavement 

surface. 

2. Atterberg limit tests indicated that the soil layers corresponding to seven 

of ten boreholes were likely to be expansive at depths greater than 6 ft. (~183 cm) from 

the pavement surface. Accordingly, shallow-stabilization alternatives were ruled out due 

to constructability concerns. 

3. Liquidity Index (LI) calculations indicated that the active-zone extended 

to a depth of at least 11 ft. (~335 cm) from the pavement surface, soil layers as deep as 11 

ft. (~353 cm) from the pavement surface can undergo volume changes due to moisture 

fluctuation. Preventing moisture fluctuations at such depths through the installation of 

moisture barriers is not practical.  

4. The potential vertical rise (PVR) values for five of the ten boreholes (AH-

1, AH-3, AH-5, AH-7, and AH-8) were greater than 1 in. (2.54 cm), which is often the 

threshold value used for deciding when a permanent section needs to be rehabilited. This 

established that rehabilitation is required for most of the pavement section. Investigation 

of pavement roughness profiles using international roughness index (IRI) values 

corroborated trends predicted from the PVR calculations. 

5. Cation exchange capacity (CEC) and specific surface area (SSA) tests 

results a demonstrated strong evidence regarding the presence of high amounts of 

Montmorillonite in the soil samples that can lead to significant volume changes. 

6. Results from 1D swell tests indicated that four of the boreholes (AH-1, 

AH-2, AH-3, and AH-7) exhibited swelling-pressure values greater than overburden 

pressures. 
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7. Soluble sulfate content tests indicated that soils from several boreholes 

were susceptible to high levels of sulfate attack upon chemical stabilization using 

Calcium-based additives. Accordingly, cement or lime stabilization may not be feasible 

for those particular pavement sections. 

8. Numerical modeling of geocell-reinforced pavement sections showed that 

placing two layers of geocell within the unbound granular base layer led to the highest 

reduction (~60%) in the differential heave.  

9. Placing a single layer of geocell, on the other hand, reduced the 

differential heave magnitude by approximately 50%. A single layer of geocell was 

recommended for implementation to achieve the optimal balance between pavement 

performance and construction costs. 

5.2 Recommendations for Future Research 

Based on findings from this research study, the following recommendations are 

made for future research efforts. 

1. Construction and testing of a laboratory-scale box test to evaluate the 

suitability of geocells as a candidate remedial measure to mitigate expansive soil-related 

differential heave in pavements; 

2. Instrumentation of the problematic pavement section and/or the 

laboratory-scale box test to measure the swell pressures associated with volume change in 

the expansive-soil layer; 

3. Installation of moisture probes in the field to identify the spatial and 

temporal extent and magnitude of moisture fluctuation;  
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4. Falling-weight deflectometer (FWD) testing of pavement sections 

comprising geocell-reinforced base layers to obtain realistic estimates of the reinforced 

layer modulus values.  
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Appendix A: Literature Review and Project Background 

Figure A 1 Recommended Decision Process for Identifying and Qualitatively 

Classifying Potentially Expansive Soils (From Snethen et al., 1977) 
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Figure A 2 Example Borelog Generated During the Drilling Operation-Courtesy-

ITD 
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: Laboratory Tests Results and Numerical Analysis Profiles 

Moisture Content Tests 

 

Table B 1 Summary of Moisture Content (1 ft. = 30.5 cm) 

S. 

No. 

Sample 

Depth (ft.) 

Moisture 

Content (%) 

S. 

No. 

Sample 

Depth (ft.) 

Moisture 

Content (%) 

AH-2 

1 3.6-3.8 18 5 8.4-9.5 22 

2 3.8-3.9 5 6 10.9-13.2 35 

3 3.9-5.2 24 7 15.9-18.2 41 

4 5.9-8.2 32 8 18.4-20.4 28 

AH-3 

1 2.0-5.0 10 4 15.0-17.5 58 

2 5.0-9.7 75 5 17.5-19.8 61 

3 10.0-14.7 54    

AH-4 

1 2.0-3.0 5 5 9.8-10.0 26 

2 3.0-4.0 15 6 10.0-10.3 25 

3 6.5-8.3 24 7 10.8-11.7 20 

4 8.5-9.8 24    

AH-5 

1 8.8-9.3 54 4 14.5-16.3 34 

2 9.5-11.8 46 5 16.5-17.7 35 

3 12.0-13.8 60    

AH-6 

1 4.1-4.3 4 5 6.0-8.3 38 

2 4.3-4.8 42 6 8.5-9.6 49 

3 4.8-5.5 45 7 9.8-10.2 43 

4 5.5-5.6 35 8 10.4-10.8 41 

AH-7 

1 5.0-7.5 51 4 15.5-16.2 65 
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S. 

No. 

Sample 

Depth (ft.) 

Moisture 

Content (%) 

S. 

No. 

Sample 

Depth (ft.) 

Moisture 

Content (%) 

2 7.5-9.8 43 5 16.2-17.0 64 

3 12.5-13.8 62 - - - 

AH-8 

1 2.0-3.0 5 5 10.5-12.5 62 

2 3.8-4.5 58 6 15.8-16.3 62 

3 6.4-7.3 56 7 18.0-18.7 66 

4 8.3-9.7 61 8 18.7-19.5 64 

AH-9 

1 5.5-6.0 16 3 8.5-10.1 25 

2 6.0-6.6 16    

AH-10 

1 1.5-1.9 4 4 3.0-4.0 25 

2 1.9-2.4 3 5 4.0-4.5 13 

3 2.4-3.0 8 6 4.5-5.2 5 

 

Atterberg Limits Tests Data 

 

Table B 2 Summary of Atterberg limits for 10 Boreholes (1 ft. = 30.5 cm) 

S. 

No. 

Sample 

Depth (ft.) 

Liquid 

Limit (%) 

Plastic 

Limit (%) 

Plasticity 

Index (%) 

AH-2 

1 3.6-3.8 47.2 33 14.2 

2 3.8-3.9 47.2 33 14.2 

3 3.9-5.2 47.2 33 14.2 

4 5.9-8.2 46 35 11 

5 8.4-9.5 47 30 17 

6 10.9-13.2 80 40 40 

7 15.9-18.2 95 45 49.8 

8 18.4-20.4 98 51 47 

9 21.0-22.0 94 47 47 
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S. 

No. 

Sample 

Depth (ft.) 

Liquid 

Limit (%) 

Plastic 

Limit (%) 

Plasticity 

Index (%) 

AH-3 

1 2.0-5.0 42 29 13 

2 5.0-9.7 96 61 35 

3 10.0-14.7 116 55 61 

4 15.0-17.5 116 58 58 

5 17.5-19.8 133 63 70 

AH-4 

1 2.0-3.0 30 23 7 

2 3.0-4.0 37 26 11 

3 6.5-8.3 29 25 4 

4 8.5-9.8 47 24 23 

5 9.8-10.0 40 28 12 

6 10.0-10.3 38 29 9 

7 10.8-11.7 37 28 9 

AH-5 

1 8.8-9.3 164 54 110 

2 9.5-11.8 130 46 84 

3 12.0-13.8 94 53 41 

4 14.5-16.3 86 44 42 

5 16.5-17.7 94 58 36 

AH-6 

1 4.1-4.3 58 43 15 

2 4.3-4.8 58 43 15 

3 4.8-5.5 58 43 15 

4 5.5-5.6 58 43 15 

5 6.0-8.3 62 38 23.9 

6 8.5-9.6 88 49 39 

7 9.8-10.2 86 56 30 



128 

 

 

 

S. 

No. 

Sample 

Depth (ft.) 

Liquid 

Limit (%) 

Plastic 

Limit (%) 

Plasticity 

Index (%) 

8 10.4-10.8 88 58 30 

9 13.4-14.1 70 37 33 

10 14.1-14.7 70 37 33 

AH-7 

1 5.0-7.5 49 31 18 

2 7.5-9.8 96 45 51 

3 12.5-13.8 132 53 79 

4 15.5-16.2 134 71 63 

5 16.2-17.0 135 71 64 

AH-8 

1 2.0-3.0 42 25 17 

2 3.8-4.5 42 25 17 

3 6.4-7.3 114 32 82 

4 8.3-9.7 80 60 20 

5 10.5-12.5 87 63 24 

6 15.8-16.3 100 71 29 

7 18.0-18.7 124 69 55 

8 18.7-19.5 124 69 55 

AH-9 

1 5.5-6.0 28 22 6 

2 6.0-6.6 29 23 6 

3 8.5-10.1 38 32 6 

AH-10 

1 1.5-1.9 36 21 15 

2 1.9-2.4 36 21 15 

3 2.4-3.0 36 21 15 

4 3.0-4.0 42 27 15 

5 4.0-4.5 42 27 15 
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Figure B 1  Liquid Limit vs. Depth for Boreholes AH-3 and AH-4 (1 ft. = 30.5 cm) 

 
Figure B 2 Liquid Limit vs. Depth for Boreholes AH-5 and AH-6 (1 ft. = 30.5 cm) 

 
Figure B 3 Liquid Limit vs. Depth for Boreholes AH-7 and AH-8 (1 ft. = 30.5 cm) 
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Figure B 4 Liquid Limit vs. Depth for Boreholes AH-9 and AH-10 (1 ft. = 30.5 

cm) 

Liquidity Index Results 

Figure B 5 Liquidity Index vs Depth for Boreholes AH-3 (left) and AH-4 (right) 

(1 ft. = 30.5 cm) 
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Figure B 6 Liquidity Index vs Depth for Boreholes AH-5 (left) and AH-6 (right) 

(1 ft. = 30.5 cm) 

 Figure B 7 Liquidity Index vs Depth for Boreholes AH-7 (left) and AH-8 

(right) (1 ft. = 30.5 cm) 

 

Figure B 8 Liquidity Index vs Depth for Boreholes AH-1 (left) and AH-2 (right) 

(1 ft. = 30.5 cm) 
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Potential Vertical Rise (PVR) Calculations 

 

Table B 3 Summary of PVR values for AH-1 

 

International Roughness Index (IRI) 

Table B 4 Total Summary of IRI values for the 10 boreholes (South Bound) 

Borehole Number Path website Spreadsheet 

Left IRI Right IRI Left IRI Right IRI 

AH-1 405 455 197 177 

AH-2 410 450 197 177 

AH-3 240 270 172 156 

AH-4 455 265 172 156 

AH-5 430 500 266 263 

AH-6 500 500 266 263 

AH-7 345 485 199 172 

AH-8 400 440 199 172 

AH-9 150 155 61 70 

AH-10 90 110 94 78 
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Figure B 9  Plot of Potential Vertical Rise (PVR) and International Roughness 

Index (IRI) Trends along the Problematic Section of US-95 being Investigated 

(South Bound; 1in. = 2.54 cm) 

Specific Surface Area (SSA) and Cation Exchange Capacity (CEC) Tests 

Figure B 10 Flowchart Showing the Procedure Followed to Determine Specific 

Surface Area, and Cation Exchange Capacity 
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Table B 5 Summary of SSA and CEC for AH-1 (1 ft. = 30.5 cm; 1 m2/g = 1.42× 

10-6 ft2/lb; 1 meq/100g = 1meq/0.22 lb) 

S. 

No. 

Sample 

Depth 

(ft.) 

Liquid 

Limit 

(%) 

SSA 

(m2/g

) 

CEC 

(meq/100g) 

Measured 

CEC 

(meq/100 g) 

Predicted  

%MM in fines 

fraction (-#200) 

of the soil 

AH-1 

1 1.0-2.0 60 53 411 10 4 

2 2.5-4.0 60 43 435 6 2 

3 4.7-5.5 60 457 622 172 78 

4 6.1-6.3 89 512 875 184 86 

5 9.5-11.8 148 517 905 167 82 

6 14.5-16.8 139 530 950 175 85 

7 19.5-21.8 138 467 950 150 74 

AH-2 

1 3.9-5.2 47.2 218 35.7 80 35 

2 5.9-8.2 46 278 34.8 105 47 

3 8.4-9.5 47 274 35.5 103 46 

4 10.9-13.2 80 381 68.7 135 63 

5 15.9-18.2 94.8 162 92.4 42 21 

6 18.4-20.4 98 241 98.5 73 35 

AH-3 

1 5.0-9.7 96 384 94.6 131 62 

2 10.0-14.7 116 212 141.2 55 28 

3 15.0-17.5 116 509 141.2 174 83 

4 17.5-19.8 133 573 198.3 194 93 

AH-4 

1 2.0-3.0 29.8 114 25.2 44 18 

2 3.0-4.0 37 168 29.1 64 27 

3 6.5-8.3 29 133 24.8 52 21 

4 8.5-9.8 47 216 35.5 80 35 
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S. 

No. 

Sample 

Depth 

(ft.) 

Liquid 

Limit 

(%) 

SSA 

(m2/g

) 

CEC 

(meq/100g) 

Measured 

CEC 

(meq/100 g) 

Predicted  

%MM in fines 

fraction (-#200) 

of the soil 

5 9.8-10.0 40 255 30.9 98 43 

6 10.0-10.3 38 288 29.7 111 49 

7 10.8-11.7 37 297 29.1 115 51 

AH-5 

1 8.8-9.3 164 450 368.7 135 68 

2 9.5-11.8 130.2 384 187.5 120 59 

3 12.0-13.8 93.98 474 90.9 168 79 

4 14.5-16.3 85.6 440 76.9 157 73 

5 16.5-17.7 94.2 516 91.3 184 86 

AH-6 

1 4.8-5.5 58 271 44.3 98 44 

2 6.0-8.3 61.9 338 47.8 124 57 

3 8.5-9.6 87.5 555 79.8 202 94 

4 9.8-10.2 85.9 572 77.3 209 98 

5 10.410.8 88 489 80.6 175 82 

6 13.414.1 70 352 56.3 127 58 

AH-7 

1 5.0-7.5 49 253 37 94 42 

2 7.5-9.8 96 360 94.6 121 57 

3 15.516.2 134.8 465 205.6 150 74 

4 16.217.0 134.8 465 205.6 150 74 

AH-8 

1 2.0-3.0 42.5 66 32.5 21 8 

2 3.8-4.5 42.5 386 32.5 149 67 

3 6.4-7.3 114.5 369 137 119 57 

4 8.3-9.7 80.6 376 69.5 133 62 
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S. 

No. 

Sample 

Depth 

(ft.) 

Liquid 

Limit 

(%) 

SSA 

(m2/g

) 

CEC 

(meq/100g) 

Measured 

CEC 

(meq/100 g) 

Predicted  

%MM in fines 

fraction (-#200) 

of the soil 

5 10.5-12.5 87 408 79 143 67 

6 15.8-16.3 100 486 102.5 170 80 

7 18.0-8.7 124 524 165.7 178 85 

AH-9 

1 5.5-6.0 28.7 179 24.6 71 30 

2 6.0-6.6 29.2 111 24.9 44 18 

3 8.5-10.1 38.38 177 29.9 67 29 

AH-10 

1 4.0-4.5 42.8 124 32.7 44 19 

 

Soluble Sulfate Content Tests 

 

Figure B 11 Photographic Representation of Sulfate Test Procedure 
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Table B 6 Summary of Soluble sulfate test data (1 ft. = 30.5 cm) 

S. 

No. 

Sample 

Depth (ft.) 

Soluble sulfate 

content (ppm) in 

samples 

S. 

No. 

Sample 

Depth (ft.) 

Soluble sulfate 

content (ppm) in 

samples 

AH-2 

1 5.7-5.9 3238 4 15.9-18.2 3366 

2 8.4-9.5 3366 5 18.4-20.4 3366 

3 10.9-13.2 3366 - - - 

AH-3 

1 4.7-5.0 1450 3 14.7-15 1350 

2 6.0-6.8 1700 4 17.5-19.8 1350 

AH-4 

1 4.0.5-6 450 3 10.3-10.8 750 

2 8.3-8.5 900 4 10.8-11.7 750 

AH-5 

1 9.3-9.5 2750 3 16.5-17.7 2900 

2 14.3-14.5 2900    

AH-6 

1 1.1-1.5 600 3 10.4-10.8 1100 

2 9.6-9.8 1100 4 14.1-14.7 1100 

AH-7 

1 4.0-5.5.0 2600 3 12.5-13.8 3350 

2 9.8-10.0 3350 4 13.8-14.0 3100 

AH-8 

1 3.8-4.5 2200 5 10.5-12.5 2450 

2 5.0.5-6 2500 6 14.4-15.6 2450 

3 8.1-8.3 2450 7 18.7-19.5 2450 

AH-9 

1 3.0-3.7 953 3 2 6.6-6.8 

AH-10 

1 7.0-7.5 450 2 11.1-11.5 700 

 



138 

 

 

 

 

Figure B 12  Sulfate content vs. Depth for boreholes AH-3 and AH-4 (1 ft. = 30.5 

cm)  

 

Figure B 13  Sulfate content vs. Depth for borehole AH-5 and AH-6 (1 ft. = 30.5 

cm) 
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Figure B 14  Sulfate content vs. Depth for borehole AH-7 and AH-8 (1 ft. = 30.5 

cm) 

 

Figure B 15  Sulfate content vs. Depth for borehole AH-9 and AH-10 (1 ft. = 30.5 

cm) 

Standard Compaction Tests 

 
Figure B 16 Moisture Density Relation Curve for Boreholes AH-11 & AH-12 
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Numerical Analysis Profiles 

Figure B 17 Displacement Contours for GC-2 and GC-3 Configuration 

 

 

Figure B 18 Displacement Contours for GC-4 and GC-5 Configuration 

Figure B 19 Displacement Contours for GC-6 Configuration 

 

 

 


