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ABSTRACT 

Thermoelectric generators (TEGs) convert heat to electricity by way of the 

Seebeck effect. TEGs have no moving parts and are environmentally friendly and can be 

implemented with systems to recover waste heat. This work examines complete 

thermoelectric systems, which include the (TEG) and heat exchangers or heat sinks 

attached to the hot and cold sides of the TEG to maintain the required temperature 

difference across the TEG. A 1-D steady state model is developed to predict the 

performance of a TEG given the required temperatures and device dimensions. The 

model is first validated using a 3-D model and then is used to examine methods to 

improve the TEG performance. A numerical model is developed to predict the thermal 

performance of heat exchangers to be used in combination with the TEG model. The 

combined thermoelectric generator – heat exchanger model, is compared with a 3-D 

model and then used to predict the performance of a TEG – heat exchanger system used 

to recover waste heat from a diesel engine. Next natural convection heat sinks are 

modeled and studied to be implemented with the TEG. A model is developed to predict 

the performance of a system applied for power harvesting in a nuclear power plant. The 

model is also used to design a system to recover waste heat from the human body. 

Finally, a novel natural convection heat sink is suggested, where microwires act as the 

extended surface for the heat sink. The microwire heat sink is modeled accounting for the 

relevant thermal physics. The microwire heat sink is used in combination with the TEG 

model to predict the performance of a system used to recover waste body heat.
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INTRODUCTION 

Thermoelectric Effect 

The thermoelectric effect is the conversion of a temperature gradient into a 

voltage difference or the process of using electricity to obtain a temperature gradient 

between two different materials that conduct electricity. The thermoelectric effect is 

widely used in a conventional thermocouple used for temperature measurement. With the 

advancement of modern semiconductor materials, the thermoelectric effect can be 

utilized for thermoelectric power generation or thermoelectric cooling. The 

thermoelectric effect consists of three effects, the Seebeck effect, Peltier effect and the 

Thomson effect. 

Seebeck Effect 

The Seebeck effect named after Thomas Johann Seebeck is the phenomenon in 

which a temperature gradient between two different electrical (semi)conductors produces 

a voltage difference. When the semi-conductors are connected to an electric circuit in 

series, heat can be converted into electricity [1]. The Seebeck coefficient, α is defined by 

the following equation: 

 
𝛼 =  −

𝛥𝑉

𝛥𝑇
 

 

(1-1) 

where V is the voltage and T is the temperature. The Seebeck effect results from the 

diffusion of charge carriers from the hot side to the cold side in the thermoelectric 

material due to the charge carriers having higher thermal energy on the hot side compared 

to the cold side as illustrated in Figure 1. Charge carriers in the n-type material are 
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electrons, and electron holes constitute charge carriers in p-type materials. The gradient 

of charge carrier distribution forms an electric field, which restricts the diffusion caused 

by the temperature difference. Equilibrium is reached when the two opposing forces 

balance each other, and an electrochemical potential known as the Seebeck voltage is 

created resulting from the temperature gradient. 

Peltier Effect 

The Peltier effect is the reverse process of the Seebeck effect. When an electrical 

current is passed through two different electrical (semi) conductors, heating at a rate of q 

occurs at one end of the junction and cooling at the other end. The Peltier coefficient, π is 

defined as the ratio of the current to the rate of cooling as defined by the following 

equation: 

 
𝜋 =  

𝐼

𝑞
 

(1-2) 

 

where I is the electric current and q is the rate of cooling. The Peltier effect is important 

in solid-state cooling in thermoelectric coolers.  

 
Figure 1: (a) The Seebeck effect is observed when a temperature difference 

causes a voltage difference across the hot and cold side. (b) The Peltier effect is 

observed when an electric current causes cooling at one junction and heating at the 

other of two dissimilar semiconductors. 
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Thomson Effect 

The Thomson effect relates to the rate of heat generation caused by the 

temperature dependent nature of the Seebeck coefficient. The Thomson coefficient β, 

which is dependent upon the rate of change of the Seebeck coefficient with temperature, 

is defined by the following equation[1]: 

 
𝛽 =  𝑇

𝑑𝛼

𝑑𝑇
 

(1-3) 

 

where T is the temperature and α is the Seebeck coefficient. 

Thermoelectric Figure of Merit  

The thermoelectric figure of merit is widely used in the thermoelectric field to 

estimate the performance of a thermoelectric material. The thermoelectric figure of merit 

Z is defined as follows: 

 
𝑍 =  

𝜎𝛼2

𝜅
 

(1-4) 

 

where α, σ and κ are the Seebeck coefficient, electrical conductivity and thermal 

conductivity of the thermoelectric materials respectively. The numerator of the 

thermoelectric figure of merit is defined as the thermoelectric power factor. The non-

dimensional thermoelectric figure of merit, ZT, is given as follows: 

 
𝑍𝑇 =  

𝜎𝛼2𝑇

𝜅
 

(1-5) 

 

where T is the absolute temperature. A thermoelectric generator can operate under two 

conditions, operate with the goal of obtaining maximum power or function with the goal 

of operating at peak efficiency. The TEG efficiency can be related to the figure of merit 
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depending on the operating condition. For the peak efficiency operating condition the 

heat-to-power conversion efficiency is obtained by the following equation: 

 
𝜂𝑚𝑎𝑥 (𝐸) =

𝛥𝑇

𝑇ℎ

√1 + 𝑍 ∙ 𝑇𝑎𝑣𝑔 − 1

√1 + 𝑍 ∙ 𝑇𝑎𝑣𝑔 +
𝑇𝑐
𝑇ℎ

 

 

(1-6) 

where ΔT is the temperature difference between the hot and cold sides, Th is the hot side 

temperature measured in Kelvin. It is important to note the thermoelectric figure of merit 

is a function of the Carnot efficiency ΔT/Th. Z is the thermoelectric figure of merit of the 

materials, Tc is the cold side temperature measured in Kelvin and  Tavg = (Th + Tc )/2. The 

heat-to-power conversion efficiency is related to the thermoelectric figure of merit for the 

maximum power operating condition, which is primarily used in waste heat recovery 

applications by the following equation: 

 
𝜂max (𝑃) =

𝛥𝑇

𝑇ℎ

𝑍𝑇ℎ

𝑍𝑇𝑚 + 𝑍𝑇ℎ + 4
 (1-7) 

The relationship between device efficiency and average ZT are plotted for both 

the maximum efficiency and maximum power operating conditions in Figure 2. The 

figure shows that with increasing ZT the device efficiency approaches the Carnot 

efficiency for a given temperature difference between the hot and cold sides of the TEG. 
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Figure 2: (a) Thermoelectric device efficiency vs. average ZT for a TE device 

operating at the maximum efficiency condition. (b) Thermoelectric device efficiency 

vs. average ZT for a TE device operating at the maximum power condition 

The equation relating device efficiency to the thermoelectric figure of merit fails 

to take into account any temperature dependent variations in the thermoelectric 

properties, as well as any contribution from the Thomson effect, which is dependent upon 

the change in the Seebeck coefficient with temperature as explained in the previous 

section. Kim et al. have suggested a relationship with better accuracy [2]. The proposed 

relationship accounts for the temperature dependent nature of the thermoelectric 

properties and any influence from the Thomson effect. The conversion efficiency can be 

related to the thermoelectric figure of merit using the following relationship [2]: 

 
𝜂𝑚𝑎𝑥 (𝐸) = 𝜂𝑐

√1 + (𝑍𝑇)𝑒𝑛𝑔(𝑎 𝜂𝑐 − 1/2)⁄ − 1

𝑎(√1 + (𝑍𝑇)𝑒𝑛𝑔(𝑎 𝜂𝑐⁄ −
1
2 + 1) + 𝜂𝑐

 

 

(1-8) 

 
(𝑍𝑇)𝑒𝑛𝑔 = 𝛥𝑇

(∫ 𝑆(𝑇)𝑑𝑇
𝑇ℎ

𝑇𝑐
)2

∫ 𝜌(𝑇)𝑑𝑇
𝑇ℎ

𝑇𝑐
∫ 𝜅(𝑇)𝑑𝑇

𝑇ℎ

𝑇𝑐

 

 

(1-9) 

 
𝑎 =

𝑆(𝑇ℎ)𝛥𝑇

∫ 𝑆(𝑇)𝑑𝑇
𝑇ℎ

𝑇𝑐

 
(1-10) 

 



6 

 

 

where ηc is the Carnot efficiency, (ZT)eng  is the engineering figure of merit, and a is the 

intensity of the Thomson effect. S, ρ, and κ are the temperature dependent Seebeck 

coefficient, electrical resistivity and thermal conductivity of the material. T, Th, Tc, and 

ΔT are the temperature, hot side temperature, cold side temperature and the temperature 

difference between the hot and cold sides measured in Kelvin. 

Thermoelectric Generators and Their Applications 

Thermoelectric generators consist of numerous thermoelectric unicouples 

arranged electrically in series and thermally in parallel as illustrated in Figure 3. The 

different components of a thermoelectric unicouple are also shown in Figure 3. The 

purpose of the copper headers connected to the thermoelectric legs is to complete the 

electric circuit, while the top and bottom copper headers serve the purpose of reducing 

thermal stress. The ceramic layers in the unicouple act as an electrical insulator, and 

prevents the electric circuit from shorting. 
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Figure 3: A thermoelectric module and a thermoelectric unicouple are shown, 

with the different components of the unicouple identified. 

Thermoelectric applications can be divided into energy conversion and cooling 

applications. The Seebeck effect is implemented to convert heat energy into electricity, 

and the Peltier effect is used for thermoelectric cooling. Thermoelectric devices require 

no moving parts and are environmentally friendly, which makes it easy to be 

implemented with other systems. Thermoelectric generators are a viable option for waste 

heat recovery applications, and some of the applications are illustrated in Figure 4. 

Thermoelectric generators have been implemented to recover waste heat from a diesel 

engine [3]. Furthermore, around 70% of fuel used in automobiles is discharged as waste 

heat [4], which can be employed as a heat source for thermoelectric generators, in order 

to improve the fuel efficiency of the automobile. Similarly, waste heat from aircraft 

engines has been utilized as a heat source for thermoelectric generators to improve the 
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overall efficiency of rotorcraft engines which can lose up to 70% of the potential 

chemical energy [5]. Thermoelectric energy generation can be implemented wherever a 

heat source is available and ideally, a waste heat source due to the low heat-to-electricity 

conversion efficiency. The human body exudes a considerable amount of heat energy, 

and thermoelectric generators have been implemented to utilize the waste heat from the 

body. Thermoelectric generators that recover waste heat from the body are used to power 

such devices as wireless sensor nodes, electrocardiograms, and pulse oximeters. [6-8]. 

Furthermore, TEGs can be integrated into residential heating systems, which require both 

fuel and electricity for heat production and electricity for operating its electric 

components. These heating systems are more reliable in providing heat during extreme 

weather conditions than conventional systems connected to the power grid. 

Thermoelectric modules can be implemented to make such systems truly self-powered 

[9]. TEGs have also been incorporated with residential gas-fired boilers with a 4% heat-

to-electricity conversion efficiency [10]. 
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Figure 4: (a) A TEG applied to a car to recover waste heat from the exhaust [11] 

(b) A pulse oximeter powered by a TEM [7] (c) An autonomous wireless sensor node 

powered by a TEM (d) TEMs integrated into a gas-fired boiler [10] 

 Thermoelectric Materials 

As suggested by the thermoelectric figure of merit, the three critical properties for 

a thermoelectric material are its Seebeck coefficient, electrical conductivity, and thermal 

conductivity. Thermoelectric effects are predominantly observable in semiconductor 

materials. The Seebeck coefficient, which is critical to the thermoelectric effect, is 

inversely proportional to charge carrier concentration, whereas the electrical conductivity 

is proportional to the charge carrier concentration. The thermal conductivity in 

semiconductors is dominated by phonons, which are atomic vibrations [12]. 

Thermoelectric materials are classified into three categories based on the operation 

temperature. Bismuth based alloys combined with Antimony, Tellurium, and Selenium 

have high ZT as illustrated in Figure 5 are used for low-temperature applications up to 
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around 450K. The intermediate temperature range used for heat recovery applications up 

to around 850 K consist primarily of lead Chalcogenides, Skutterudites, and Half-

Heuslers. While thermoelements employed in high-temperature applications up to 1300 

K consist of silicon Germanium alloys [1]. Lead based thermoelectric materials are 

highly toxic and have weak mechanical strength. Skutterudites, which are rare earth 

metal-based minerals, suffer from having poor thermal stability as well as being of 

limited supply in nature. On the other hand, Half-Heusler alloys are environmentally 

friendly, mechanically and thermally robust and the cost is dependent upon the Hafnium 

material. Half-Heuslers alloys consist of a XYZ chemical composition, where X can be a 

transition metal, a noble metal, or a rare-earth element, where Y is a transition metal or a 

noble metal, and Z is a main group element [13]. 

 

 
Figure 5: An overview of ZT vs. Temperature for various materials [13]. 
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Objective and Organization of this Thesis 

The purpose of this thesis research is to examine and model thermoelectric 

systems. Thermoelectric systems are composed of a thermoelectric generator, which is 

accompanied by heat exchangers or heat sinks on the hot and cold side of the TEG. The 

first task that was accomplished was the development of a finite element model to predict 

the performance of a thermoelectric unicouple, which is then extended to a thermoelectric 

module. The work done in developing the finite element model for a thermoelectric 

unicouple is detailed in Chapter 2, along with suggestions for improving the unicouple 

performance. Chapter 3 describes the development of a TEG – Heat exchanger model. 

The heat exchanger model developed in Chapter 3 utilizes forced convection. The TEG – 

Heat exchanger model builds on the TEG model developed in Chapter 2. Natural 

convection heat sinks and their application with TEGs are examined in Chapter 4, with 

the development of a TEG-Heat Sink model. The work culminates in the development of 

a microwire heat sink model, which is developed to be used in collaboration with the 

TEG model to recover waste heat from the human body. As each chapter focuses on 

somewhat varied topics, the literature review is done on a per chapter basis. Additionally, 

the equation variables for each chapter are independent of each other, stemming from the 

fact that heat flow and heat transfer coefficients are used throughout this work in different 

context.
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TEMPERATURE DEPENDENT FINITE ELEMENT MODEL FOR A 

THERMOELECTRIC MODULE 

Introduction 

Thermoelectric material properties are temperature dependent, and in practical 

use, there is a significantly large temperature gradient along a thermoelectric unicouple. 

As indicated in Figure 6, the P-type Half-Heusler material is particularly sensitive to 

temperature. With a temperature change from 100 °C to 600 °C, a 100%, 174% and 32 % 

changes are observed in the Seebeck coefficient, electrical resistivity, and thermal 

conductivity respectively. 

 
Figure 6: Temperature dependent properties of the Half-Heusler alloy. 

Much of the work done on modeling thermoelectric unicouples has been done in 

an ANSYS environment [14] or COMSOL environment [15]. Similar thermoelectric 

models do not take into account the temperature dependence of the material properties 

[16]  or the influence of the headers attached to the unicouple [17 -20]. With the goal of 

accurately predicting, the thermoelectric power generation and heat-to-power conversion 
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efficiency of a thermoelectric module a steady-state finite element model was developed 

in a MATLAB environment. 

Temperature Dependent Model 

Model Assumptions and Boundary Conditions 

The following assumptions were made to simplify the model. 

1) The temperature variation was assumed one-dimensional through the unicouple. 

The reasoning for this assumption was that the temperatures at the hot and cold 

side of a unicouple are fixed and assumed constant. Furthermore, there are no 

significant heat losses from the lateral sides of the unicouple. 

2) The energy generation or absorption was assumed constant throughout the finite 

element, and material properties are assumed to be constant within a given finite 

element. 

3) Convection and radiation heat transfer from the external surfaces of the unicouple 

were ignored in the model. 

4) The whole of the top surface of the unicouple is assumed to be at the constant hot-

side temperature, and the bottom surface is assumed that of the cold-side 

temperature. This assumption is utilized as the boundary condition for the model. 

5) The module power output and voltage were obtained by the product of the 

number of unicouples and the power output and voltage of a single unicouple 

respectively. 

Thermoelectric Power Generation 

The energy generation terms are significant for the finite element solution. The 

two primary energy generation/absorption are the Peltier heat generation/absorption at the 
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boundaries and joule heat generation in the unicouple. Joule heat generation occurs in the 

resistive elements of the electrical circuit, and net Peltier heat absorption occurs in the 

thermoelectric legs, as explained by Figure 7. The purpose of the ceramic layer is to act 

as an electrical insulator, while the copper headers connecting the legs aid in completing 

the electrical circuit and top and bottom copper headers are integrated with a heat 

exchanger or heat sink. 

 
Figure 7: The unicouple components labelled. QH is the heat flow into the 

unicouple when the hot side temperature is maintained at a given value. Qc is the heat 

leaving the cold side of the unicouple when the cold side temperature is maintained 

at a fixed value. PEL is the thermoelectric power generated by the unicouple. 

The thermoelectric power generation calculations are done on both the n and p 

legs separately. The primary principal used to obtain the power generation is the first law 

of thermodynamics. The thermoelectric unicouple is divided vertically into 100 finite 

elements as illustrated in Figure 8(a). One hundered elements were chosen as the results 

do not vary significantly by increasing the number of elements over 100. The 



15 

 

 

thermoelectric power generated by the unicouple is equal to the sum of the difference 

between the heat input and heat leaving each segment in the thermo-electric leg. It is 

important to note that for the thermoelectric power generation calculation, only segments 

covering the thermoelectric legs are considered, although the complete unicouple is 

segmented in the model. 

The heat transferred into a finite element containing a thermoelectric leg is given 

by the following equation: 

 𝑄ℎ,𝑝,𝑛 =  𝑎𝑏𝑠(𝛼𝑝,𝑛(𝑇)) ∙ (𝑇𝑛𝑜,𝑝,𝑛)∙ 𝐼 + 𝐾𝑝,𝑛(𝑇𝑛𝑜,𝑝,𝑛 −  𝑇𝑛𝑜+2,𝑝,𝑛) − 
1

2
𝐼2 ∙ 𝑅𝑒𝑙,𝑝,𝑛  

      

(2-1) 

The heat leaving a finite element containing a thermoelectric leg  is given by the 

following equation: 

 𝑄𝑐,𝑝,𝑛 =  𝑎𝑏𝑠(𝛼𝑝,𝑛(𝑇)) ∙ (𝑇𝑛𝑜+2,𝑝,𝑛)∙ 𝐼 + 𝐾𝑝,𝑛(𝑇𝑛𝑜,𝑝,𝑛 −  𝑇𝑛𝑜+2,𝑝,𝑛) + 
1

2
𝐼2 ∙ 𝑅𝑒𝑙,𝑝,𝑛  

            

(2-2) 

where Qh,p,n is the heat transferred in to the p-leg and n-leg segments, and Qc,p,n is the heat 

transferred from the cold side of the p-leg and n-leg segments. The first terms on the right 

hand side of equations 2-1 and 2-2 account for the Peltier heat at the boundaries of the 

segment, where αp,n (T) is the temperature dependent Seebeck coefficient of each 

segment. Tno,p,n  is the temperature of each element at the upper node of the element and 

Tno+2,p,n  is the temperature of the bottommost node of each element, the nodes, and 

elements of the model are shown in Figure 8(a). I is the current through the two legs, 

which are connected in series. The second term on the right side of equations 2-1 and 2-2 

account for the thermal conduction through the thermoelectric legs, where Tno, p,n  and 

Tno+2,p,n  are defined as above. Kp,n is the thermal conductance of each element which is 

given by the following equation: 

 𝐾𝑝,𝑛 =  
𝜅𝑝,𝑛(𝑇)∙𝐴𝑝,𝑛

𝑙𝑝,𝑛
       (2-3) 
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where κp,n (T) is the temperature dependent thermal conductivity in each segment, Ap,n is 

the area of each segment and lp,n is the height of each segment. The third term on the right 

hand side of equations 2-1 and 2-2 account for any Joule heat produced in the elements. 

The model assumes that half the Joule heat is transferred to the top of the element and the 

other half is transferred to the bottom of the element. Rel,p,n is the electrical resistance of 

each segment defined as follows: 

 
𝑅𝑒𝑙,𝑝,𝑛 =  

𝜌𝑝,𝑛(𝑇) ∙ 𝑙𝑝,𝑛

𝐴𝑝,𝑛
 

 

(2-4) 

where ρp,n (T)  is the temperature dependent electrical resistivity of each segment. The 

thermoelectric power generated in each segment is obtained by the difference between 

Qh,p,n and Qc,p,n in each segment described the following equation: 

 𝑃𝑝,𝑛 =  𝑄ℎ,𝑝,𝑛 − 𝑄𝑐,𝑝,𝑛 (2-5) 

The open circuit voltage is critical in obtaining the current through the circuit and 

is obtained by summing the individual voltage drops across each segment. The electric 

current through the unicouple is obtained using the open circuit voltage across the 

unicouple by the following equations: 

 
𝑉𝑜𝑐 = ∑(𝛼𝑝(𝑇) − 𝛼𝑛(𝑇))

𝑁

𝑖=1

(𝑇𝑛𝑜 − 𝑇𝑛𝑜+2) 

 

(2-6) 

 
𝐼 =  

𝑉𝑜𝑐

𝑅𝑒𝑙,𝑇𝐸𝐶 + 𝑅𝑒𝑙,𝐿
 

 

(2-7) 

where Rel,TEC is the electrical resistance of the unicouple and Rel,L is the external load 

resistance, and N is the number of elements. When the goal is to obtain maximum power 

from a thermoelectric device, the external load resistance is set equal to the electrical 

resistance of the unicouple. On the other hand, if efficiency is of more importance, Rel,L = 
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Rel,TEC(1 +ZT)1/2, where ZT is the thermoelectric figure of merit of the material at the 

average temperature of the unicouple. The model is also setup to simulate a current 

swipe, where the load resistance is varied from 0 to a value greater than Rel,TEC. As 

indicated by the equations above, it is necessary to obtain the temperature profile along 

the thermoelectric unicouple; this process is explained in the following section. 

 
Figure 8: (a) The division of the unicouple along its vertical length into finite 

elements and the corresponding nodes, each element shares a node with its 

neighboring element (b) The simplified thermal circuit for the unicouple and the 

components of the unicouple 

Temperature Profile 

The temperature profile of the thermoelectric unicouple was obtained by solving a 

one-dimensional finite element model of the unicouple, which requires the assembly of a 
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global stiffness matrix and a forcing vector. The temperature profile can be obtained by 

the matrix solution as follow: 

 𝑇 =  𝐾−1𝐹 (2-8) 

  

where T is the temperature vector, K-1 is the inverse global stiffness matrix, and F is the 

forcing vector. The assembly of the global stiffness matrix requires elemental stiffness 

matrix, which is obtained as follows [21]: 

 
𝐾𝑒 =  ∫ [𝐵]𝑇[𝐷][𝐵]𝐴𝑒𝑑𝑥

𝑘

𝑙

 

 

(2-9) 

where B is a term borrowed from structural mechanics called the strain displacement 

matrix, the D matrix contains the elemental thermal conductivity terms, and Ae is the area 

of the element. The model uses one-dimensional quadratic elements, which allows an 

accurate solution to be obtained with a smaller number of elements in comparison to 

linear elements. The elemental stiffness matrix for this model simplifies to the following 

equation: 

 
𝐾𝑒 =  

𝐴𝑒𝑘𝑒

𝑙𝑒
[

14 −16 2
−16 32 −16

2 −16 14
] 

 
 

(2-10) 

where le is the element thickness. It is important to note that each element will have its 

own, temperature dependent thermal conductivity term, κe. The elemental area would 

change according to the geometry of the headers and the thermoelectric legs. The global 

stiffness matrix is assembled using the individual stiffness matrix while taking into 

consideration that each element has three temperature nodes illustrated in Figure 8(a). 

The elemental loading vector was developed taking into consideration energy generation 
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or absorption in the element, which is the Peltier heat absorption/generation and Joule 

heat produced in each element: 

 
𝐹𝑒 =  ∫ 𝐺[𝑁]𝑇𝐴𝑑𝑥

𝑘

𝑙

 

 

(2-11) 

where G is the volumetric energy generation/absorption, N is the shape function, and A is 

the elemental area. For a one-dimensional quadratic element, the forcing vector reduces 

to the following vector: 

 
𝐹𝑒 =  

𝐺𝑒𝐴𝑒𝑙𝑒

6
[
1
4
1

] 

 

(2-12) 

where Ge is the elemental volumetric energy generation/absorption, Ae and le are defined 

as above. Once again, the global loading vector was assembled using each of the 

elemental loading vectors while considering that each element has three temperature 

nodes. 

It must be noted that an initial temperature profile (initial guess) is needed to 

obtain the required terms for the elemental stiffness matrix (temperature dependent 

thermal conductivity) and forcing vector (thermoelectric power generation in an 

element). The thermal circuit illustrated in Figure 8(b) is used to obtain the temperatures 

at critical boundaries along the unicouple, and a linear profile is assumed between those 

boundaries to obtain the initial temperature profile (intial guess). The temperature 

dependent properties and energy generation terms are evaluated using the initial 

temperature profile. Once the temperature profile is obtained using equation 2-8, it is 

used to obtain the temperature dependent global stiffness matrix and forcing vector. This 

process is repeated until the difference between the temperature profiles is less than the 

convergence criteria as explained by the following equation: 
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∑ 𝑎𝑏𝑠(𝑇𝑜𝑙𝑑(𝑖) − 𝑇𝑛𝑒𝑤(𝑖))

𝑒𝑙𝑒𝑚𝑠

𝑖=1

< 𝐶𝐶 

 

(2-13) 

where Told  is the temperature profile obtained from the previous iteration, Tnew is the new 

temperature profile, elems is the number of elements and CC is the convergence criteria 

set equal to 1°C. Once the final temperature profile is obtained, it is used in equations 2-1 

through 2-7 to obtain the thermoelectric power generated by a unicouple. 

Contact Resistance 

 

The brazing process between the thermoelectric legs and headers can induce an 

electrical resistance. The electrical contact resistance is captured into the overall circuit, 

by adding it as an additional resistor, using an electrical resistivity of 1*10-9Ω-m2 [22]. 

The electrical contact resistivity was obtained from experimental data and numerical 

simulations. The electrical contact resistance is obtained using the following equation: 

 𝑅𝑐𝑜𝑛𝑡 =
𝜌𝑐𝑜𝑛𝑡

𝐴𝑐
 

 

(2-14) 

where ρcont is the electrical contact resistivity value of 1*10-9Ω-m2, and Ac is the area of 

contact between the legs and the copper headers. 

Model Validation 

The one-dimensional model was compared with a 3-D model developed in an 

ANSYS environment for three different material types. The ANSYS model was 

developed for a unicouple with the dimensions in Table 1. The ANSYS model used a fine 

mesh with 19359 elements and 98186 nodes and further details regarding the ANSYS 

model can be found in Appendix I. The finite element model results were also compared 

with available experimental data for the Half-Heusler alloy. The experimental data 

compared is expected to be published in 2017 and was obtained using a similar 
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experimental setup that is described by Zhang et al.[10]. Table 1 illustrates the 

dimensions of the unicouple components, which are the dimensions used for the 

experimental data obtained. The unicouple that was experimentally tested is illustrated in 

Figure 9, as well as the temperature profile of the unicouple obtained from the 3-D 

ANSYS model. 

Table 1 Dimensions of the unicouple elements 

Component Thickness/Height [mm] Area [mm x mm] 

Copper Header 1 0.203 [1.93 * 1.96]*2 

Ceramic 1 0.635 2.26 * 4.51 

Copper Header 2 0.203 1.96 * 4.21 

P-Leg 2.400 1.50 * 1.50 

N-Leg 2.400 1.50 * 1.50 

Copper Header 3 0.203 [1.96 * 4.07]*2 

Ceramic 2 0.635 2.26 * 8.81 

Copper Header 4 0.203 [1.96 * 8.50]*2 
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Figure 9: (a) Thermoelectric unicouple that was experimentally tested with 

results in Figure 11. (b) Temperature profile along unicouple for the 3-D ANSYS 

model for a hot side temperature of 600°C and cold side temperature of 100 °C, the 

results from the ANSYS model are available in Figure 11, Figure 14, and Figure 16 

The ANSYS model developed was used to compare results from the finite 

element model for two additional materials, Bi2Te3 and PbTe with the temperature 

dependent materials shown in Figure 10. 
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Figure 10: Temperature dependent properties of the Bi2Te3 material (a) Seebeck 

Coefficient (b) Thermal Conductivity (c) Electrical Resistivity. Temperature 

dependent properties of the PbTe material (d) Seebeck Coefficient (e) Thermal 

Conductivity (f) Electrical Conductivity. 

The results for the Half-Heusler alloy unicouple was compared for hot side 

temperatures of 200 °C, 300 °C, 400 °C, 500 °C and 600 °C while maintaining the cold 

side temperature at 100 °C as illustrated in Figure 11. The power results for the Half-

Heusler material compare fairly well with the ANSYS model with an average percent error 

of 11.93%. The discrepancies in the power values are due to differing values of the leg hot 

and cold side temperatures. The temperature difference between the leg hot and cold sides 

influence the open circuit voltage of the unicouple, which in turn affects the power 

produced by the unicouple. The leg hot side temperature (T3 from Figure 8) is lower in the 

3-D model compared to the 1-D model. Similarly, the leg cold side temperature (T4 from 

Figure 8) is smaller in the 1-D model. Therefore, a larger temperature difference is 

observed across the legs for the 1-D model, which results in larger power being produced. 

The discrepancies in the temperatures of the legs are due to heat spreading effects in the 3-
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D model as shown by the lateral temperature variations in Figure 12. The 1-D model 

assumes temperature variation along the vertical direction only, and lateral heat spreading 

is not accounted for. The average percent difference for the efficiency is 2.57%, the errors 

in the power calculations are carried over to the efficiency calculations, however, they are 

offset to a certain degree by the overestimation of the heat flowing into the unicouple. 

 
Figure 11: (a) Peak thermoelectric power generation of a unicouple composed of 

the Half-Heusler alloy compared to a 3D ANSYS Model and experimental data. (b) 

Unicouple efficiency compared with a 3D ANSYS Model and experimental data. 

The discrepancies of the finite element model with the experimental results are 

explained by an underestimation of the electrical contact resistivity included in the finite 

element model. Furthermore, the finite element model fails to account for any thermal 

contact resistances between contacting surfaces, which are experienced by the 

experimental unicouple. The finite element model ignores any natural convection or 

radiation effects from the external surfaces of the unicouple, which could explain the 

larger discrepancies with the experimental data at larger hot side temperatures. 
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Figure 12: A cross-sectional view of the bottom surface of the n-type leg. Lateral 

temperature variations are observed in the ANSYS model, which is not accounted for 

in the 1-D finite element model. 

The power and efficiency curves obtained by varying the load resistance are 

displayed in Figure 13 (a) and (b) for the five different hot side temperatures. The device 

voltage decreases from the open circuit voltage to zero as the current is increased by 

varying the load resistance as shown in Figure 13(c). The maximum power is obtained at 

a device voltage that is equal to half the open circuit voltage. 

 
Figure 13: (a) Thermoelectric power generated for varying current for a 

unicouple composed of the Half-Heusler alloy. (b) The TEG efficiency for varying 

current for a unicouple composed of Half-Heusler alloy (c) Device voltage vs. electric 

current for a unicouple composed of the Half-Heusler alloy. 
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Similarly, the power generated and efficiency was compared for a unicouple 

composed of Bi2Te3. The hot side temperature was increased from 50°C, 100°C, 150 °C, 

200°C and 250°C, which is its operating limit while maintaining the cold side temperature 

at 20 °C. The power and efficiency results are compared in Figure 14. The average percent 

error in the power calculations is 2.73% for the Bi2Te3 material, whereas the average 

percent error for the efficiency calculation is 14.2%. The better accuracy in the power 

calculations are accounted for by smaller discrepancies in the leg hot (T3 from Figure 8) 

and cold side temperatures( T4 from Figure 8) when compared with the 3-D ANSYS model. 

The discrepancies in the heat flow are attributed to the model underestimating the heat flow 

into the model, considering 3-D heat spreading effects are not accounted for in the model. 

 
Figure 14: (a) Peak thermoelectric power generation of a unicouple made of the 

Bi2Te3 material compared to a 3D ANSYS Model (b) Unicouple efficiency compared 

with a 3D ANSYS Model. 

The power and efficiency curves obtained by varying the load resistance is 

displayed in Figure 15. The electrical current values are restricted by the open circuit 

voltage values, which are smaller for the unicouple composed of the Bi2Te3 material 

compared to the unicouple composed of the Half-Heusler material. 
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Figure 15: (a) Thermoelectric Power Generated for varying current for a 

unicouple composed of the Bi2Te3 material (b) The TEG efficiency for varying current 

for a unicouple composed of the Bi2Te3 material (c) Device voltage vs. electric current 

for a unicouple composed of the Bi2Te3 material. 

Finally, the thermoelectric power and efficiency of a unicouple composed of PbTe 

was compared for hot side temperatures of 200 °C, 300 °C, 400°C, 500°C and 600°C, while 

the cold side temperature was held at 100 °C as shown in Figure 16. The average percent 

error in the power calculations for the PbTe material are 4.85% and 7.85% for the 

efficiency calculations. The better accuracy in the PbTe unicouple model is possibly 

explained by the smaller variations in thermal conductivity of PbTe in the operating 

temperature of the material. 
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Figure 16: (a) Peak thermoelectric power generation of a unicouple composed of 

the PbTe material compared to a 3D Ansys Model (b) Unicouple efficiency compared 

with a 3D Ansys Model 

Similar to the Half-Heusler alloy unicouple and Bi2Te3 unicouple, the power and 

efficiency curves were obtained by varying the load resistance, which resulted in the power 

and efficiency curves in Figure 17 (a) and (b). The accompanying voltage vs. current curves 

are displayed in Figure 17(c). 

 
Figure 17: (a) Thermoelectric Power Generated for varying current for a 

unicouple composed of the PbTe material (b) The TEG efficiency for varying current 

for a unicouple composed of the PbTe material (c) Device voltage vs. electric current 

for a unicouple composed of the PbTe material. 
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Thermoelectric Thin Films 

Bulk thermoelectric modules are difficult to implement with or in small-scale 

devices. Furthermore, it is challenging to design flexible bulk thermoelectric modules. 

Thin film thermoelectrics uses semiconductor processing to create nano-structured thin 

films used as the thermoelectric legs. These films have a thickness of around 10 µm, 

compared to the leg heights of 1-2 mm discussed previously. The miniature scale of the 

thin film devices results in flexible thermoelectric devices, which can be beneficial when 

the heat source has a contoured surface, such as the human body. Flexible thermoelectric 

devices are an attractive option for powering power sensors, biomedical devices and 

wearable electronics [23]. The thermoelectric model was used to predict the performance 

of a thin film thermoelectric device with an area of 2mm by 0.01mm and height of 10.5 

mm, consisting of five thin films for a cold side temperature of 20 °C with the material 

properties detailed in [23]. The power density is the ratio of the total thermoelectric 

power generated to the surface area occupied by the TEG. The experimental power 

density and open circuit voltage results in [23] are compared with the finite element 

model results in Figure 18. An average percent difference of 11.5% is observed for the 

power density, and an average percent difference of 5.4% is observed for the open circuit 

voltage. 
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Figure 18: (a) Power density vs. temperature difference compared with 

experimental results. (b) Open circuit voltage vs. temperature difference compared 

with experimental results [23]. 

Ceramic Material 

The thermoelectric power generated by a unicouple can be increased by having the 

largest possible temperature difference between the thermoelectric legs (temperatures T3 

and T4 from Figure 8). For the Half-Heusler material model described in the previous 

section, the temperature difference across the legs is 463.05°C, when the temperature 

difference across the unicouple is 500°C. The temperature drop across the copper and 

ceramic components of the unicouple accounts for the 36.95°C difference. As copper is an 

effective thermal conductor, the temperature drop across the copper header is negligible. 

However, there is a 30.968°C temperature drop across ceramic 1 and a 4.99°C temperature 

drop across ceramic 2. If a larger ratio of the 500°C temperature difference can be had over 

the thermoelectric legs, the unicouple performance could be improved by having a larger 

open-circuit voltage resulting in more thermoelectric power generated. The performance 

of the unicouple can be improved by eliminating the ceramic component of the unicouple; 

however, the ceramic element serves to act as an electrical insulator, which is essential for 

the unicouple. A larger temperature difference could be obtained across the thermoelectric 
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legs by reducing the thermal resistance of the ceramic component, which could be 

accomplished by: 

a) Using a thinner ceramic component 

b) Using an electrical insulator with a larger thermal conductivity 

In this thesis, the latter option was examined. The thermal conductivity of the 

ceramic currently used Alumina (Al2O3) varies from 24.7 W/m-K at room temperature to 

6.59 W/m-K at 600°C as illustrated in Figure 19. Three other electrical insulators with 

better thermal conductivities are considered in this section. The three materials of interest 

are Aluminum Nitride, Silicon nitride, and Beryllium oxide. Alumina is the industry 

standard for electronic substrates [24] and is the ceramic chosen in the model in the 

previous section. It offers the advantages of having relatively high strength, a high service 

temperature, being chemically inert and having a lower cost when compared to the other 

materials. Beryllia (BeO) has the highest thermal conductivity values of 259.4 W/m-K at 

room temperature and 46.79 W/m-K at 600°C among the materials considered. However, 

it is extremely expensive due to high powder costs. Furthermore, it is also considered a 

toxic substance, which limits its application. Aluminum nitride (AlN) has a thermal 

conductivity of 200 W/m-K at room temperature and 40.46 W/m-K at 600°C, which is 

comparable to the thermal conductivity of Beryllia. It offers a non-toxic alternative to 

Beryllia and has good oxidation resistance, which is significant at high temperatures. 

However, similar to Beryllia it is expensive and is only feasible in limited applications. 

Silicon nitride (Si3N4)  has thermal conductivity values of 63.5 W/m-K at room temperature 

and 38.31 W/m-K at 600 °C; additionally, it offers high-temperature strength and thermal 
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shock resistance, which makes it an attractive material for high-temperature applications 

[25]. 

 
Figure 19: Thermal Conductivity vs. Temperature comparison of ceramics that 

can be used as an electrical insulator for a unicouple [25] 

As the goal of this section is to show the significance of the ceramic layer, 

thermoelectric legs with lower thermal resistance are chosen compared to the values in 

Table 1. The updated values leg heights are 1.7mm and leg area of 2mm by 2mm, while 

the copper and ceramic header dimensions are as in Table 1. For the comparison between 

the ceramics, the unicouple dimensions were kept the same, and the Half-Heusler material 

was chosen for the unicouple legs. As illustrated in Figure 20 there is a temperature 
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difference of 479.6 °C across the legs when Beryllia is used as the electrical insulator when 

compared to a temperature difference of 417.3°C when Alumina is used. It should be noted 

that unicouples with Aluminum Nitride and Silicon Nitride as the ceramic exhibit relatively 

similar temperature profiles to that of the unicouple with Beryllia as the ceramic, and were 

not included in the figure to improve clarity. 

 
Figure 20: Temperature profile of the unicouple for a unicouple that has Alumina 

as the ceramic and Beryllia as the ceramic; the green lines are used to indicate the 

temperature along the thermoelectric legs. 

The larger temperature differences across the thermoelectric legs for the 

unicouples with Beryllia, Aluminum Nitride and Silicon Nitride illustrated in Figure 

21(a) induce a larger open circuit voltage across the unicouple shown in Figure 21 (b). 
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The improvements in the open circuit voltages are 1.16 for Aluminum Nitride, 1.15 for 

Silicon Nitride and 1.17 for Beryllia when compared with the open circuit voltage of the 

unicouple with Alumina as the ceramic. The enhancements in the power results are 1.33 

for Aluminum Nitride, 1.30 for Silicon Nitride and 1.34 for Beryllia when compared with 

the power output of the unicouple with Alumina as the ceramic as shown in Figure 21(c).  

It is interesting to note that although the Beryllia material has a higher overall thermal 

conductivity compared to Aluminum Nitride and Silicon Nitride, the improvements in the 

thermoelectric power are comparable to the unicouples with AlN and Si3N4 as the 

ceramic. This observation is explained by the fact that the temperature the top ceramic 

experiences is in the 500°C -600°C range. The average thermal conductivities of Beryllia, 

Aluminum Nitride, and Silicon Nitride is 56.13 W/m-K, 44.28 W/m-K, and 39.78 W/m-k 

respectively in the 500°C to 600 °C temperature range. 
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Figure 21: (a) The temperature drop across the legs for the four different 

unicouples. (b) A comparison of the open circuit voltage for the four different 

unicouples (c) Power generated vs. electric current comparison for unicouples 

composed of the four different ceramic material (d) Efficiency vs. electric current for 

unicouples made of the different ceramic 

The enhancements in the power results are approximately a square of the 

improvements in the open circuit voltage, which are validated by the fact that the 

thermoelectric power for the maximum power condition from a unicouple can be 

approximated by the following equation: 

 
𝑃𝑇𝐸𝐶 =  

𝑉𝑜𝑐
2

4 ∙ 𝑅𝐿
 

(2-15) 

 

where Voc is the open circuit voltage and RL is the load resistance, which is set to be equal 

to the resistance of the unicouple. The improvements in efficiency are 1.12 for the 
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unicouple with a ceramic composed of Aluminum Nitride, 1.11 for one with Silicon 

Nitride, and 1.12 for one with Beryllia, which corresponds to the increase in the 

temperature difference across the legs. 

Segmented Leg Unicouples 

One of the major limitations of thermoelectric generators holding it back from 

large-scale production is their low heat-to-power conversion efficiencies. The conversion 

efficiency is itself capped by the Carnot efficiency η = (Th –Tc)/Th  as demonstrated by 

equations 1-6 and 1-7. The conversion efficiency is dependent upon the thermoelectric 

figure of merit, which is temperature dependent as illustrated in Figure 22, suggesting 

that certain thermoelectric materials perform better at specific temperatures.  

 
Figure 22: (a) ZT of the N-Type for the respective materials. (b) ZT of the P-Type 

for the respective materials (c) Compatibility factor for the Half-Heusler alloy, PbTe 

material, and Bi2Te3 material. 

This observation begs the question, whether a thermoelectric unicouple can be 

designed by placing a combination of thermoelectric materials along the unicouple leg, 

i.e. using a high-temperature thermoelectric material in the high-temperature region of 

the unicouple and using a low-temperature material in the low-temperature region of the 

unicouple. Segmented generators and cascaded thermoelectric generators illustrated in 
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Figure 23 are utilized to achieve this goal. The primary difference between a segmented 

and cascaded thermoelectric generator is that a cascaded generator uses an independent 

electrical circuit for each stage (material), whereas a segmented generator uses one 

electrical circuit. 

 
Figure 23: A segmented TEG and cascaded TEG are illustrated using a single 

unicouple. The primary difference is the use of two different electrical loads 

connected to the different stages in the cascaded TEG and the use of a single circuit 

in the segmented TEG. 

Thermoelectric Compatibility 

Utilizing segmented thermoelectric legs puts forward the problem of 

thermoelectric compatibility. From equation 2-7, it is shown that peak power of a 

thermoelectric unicouple is dependent upon the electric current through it, for the peak 

power condition this is obtained by setting the load resistance equal to the electrical 

resistance of the unicouple. When two materials are segmented the same current flows 

through both materials, however, the optimum electric current will be different for both 
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materials as they would have different electrical resistivites. Furthermore, each material 

has its own optimum relative current density defined by the following equation [26]: 

 
𝑢 =  

𝐽

𝜅𝛻𝑇
 

 

(2-16) 

where J is the electric current density, κ is the thermal conductivity and 𝛻T is the 

temperature gradient. If the relative current density of the two-segmented materials 

differs significantly, the thermoelectric efficiency may decrease when compared to using 

a single material [26]. The thermoelectric compatibility equation may be utilized to select 

materials, which can be used for segmentation: 

 
𝑠 =  

√1 + 𝑧𝑇 − 1

𝛼𝑇
 

 

(2-17) 

where ZT is the thermoelectric figure of merit, α is the Seebeck coefficient, and T is the 

absolute temperature. Initially, it was suggested that two materials with compatibility 

factors differing by a factor of 2 would decrease efficiency when segmented [27, 28]. 

However, Ouyang and Li suggest that it is the smooth transition of the compatibility 

factors at the temperature boundaries that is significant [29]. A smooth transition is 

observed in the compatibility factor for the p-type at 200°C for Bi2Te3 and PbTe, and a 

similar transition can be witnessed for Bi2Te3 and Half-Heusler at 250 °C in Figure 22(c). 

For the n-type material, the transition is observed at the limit of the Bi2Te3 operating 

temperature of 250 °C. Additionally, it is also observed that the thermoelectric figure of 

merit of Bi2Te3 is larger than that of the Half-Heusler and PbTe materials from 20°C to 

approximately 225 °C for the n-type material and 200°C for the p-type material. 

Design of Segmented Leg Unicouples 

The thermoelectric unicouple model was modified to predict the performance of a 

unicouple containing a Half-Heusler segment and a Bi2Te3 segment (unicouple A). 
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Additionally, a unicouple containing a PbTe segment and a Bi2Te3 segment (unicouple B) 

was designed. The two newly designed unicouples were then compared with 

conventional unicouples containing only a single material of PbTe and Half-Heusler alloy 

for a hot side temperature of 600°C and cold side temperature of 20°C. 

Taking into consideration the transition of the compatibility factor between Bi2Te3 

and the Half-Heusler material and the thermoelectric figure of merit of both materials, 

250°C appears to be a suitable interface temperature. This observation means that the 

segmented unicouple would be designed such that the Bi2Te3 segment of the unicouple 

will experience a temperature from 250 °C to 20 °C. Similarly, the Half-Heusler alloy 

segment will have a hot side temperature of 600°C, and a cold side temperature of 250°C. 

The total height of the unicouple was kept similar to that in Table 1. In order to obtain the 

required interface temperature, the thermal resistances of the segments have to be 

adjusted according to the required interface temperature. While keeping the leg areas 

constant, the following equation can be utilized to obtain the ratio of the two segment 

heights [30]:  

 𝑙𝑝1

𝑙𝑝2
=  

∫ 𝜆𝑝,1(𝑇)𝑑𝑇
𝑇ℎ

𝑇𝑖𝑛𝑡

∫ 𝜆𝑝,2(𝑇)𝑑𝑇
𝑇𝑖𝑛𝑡

𝑇𝑐

 

 

(2-18) 

 𝑙𝑛1

𝑙𝑛2
=  

∫ 𝜆𝑛,1(𝑇)𝑑𝑇
𝑇ℎ

𝑇𝑖𝑛𝑡

∫ 𝜆𝑛,2(𝑇)𝑑𝑇
𝑇𝑖𝑛𝑡

𝑇𝑐

 

 

(2-19) 

 𝑙 =  𝑙𝑝1 + 𝑙𝑝2 = 𝑙𝑛1 + 𝑙𝑛2 (2-20) 

 

where lp,n,1 is the length of the p and n type top segment, lp,n,2 is the height of the p and n 

type bottom segment. Th is the temperature at the interface between the top copper header 

and the top segment; Tint is the temperature at the segment interface, Tc is the temperature 
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at the interface between the bottom copper segment and the bottom segment, and l is the 

total height of the combined leg. The leg heights of each segment obtained by equations 

2-18 through 2-20 and are shown in Table 2. 

Table 2 Height of the material segments in unicouple A and B 

Segment  Unicouple A Unicouple B 

Half-Heusler alloy segment 2.106 mm - 

PbTe segment - 1.618 mm 

Bi
2
Te

3
 segment  0.294 mm 0.782 mm 

Total Height 2.4 mm 2.4 mm 

 

The power and efficiency curves are compared in Figure 24 for both the Half-

Heusler-Bi2Te3 segmented unicouple (unicouple A) and the PbTe-Bi2Te3 segmented 

unicouple (unicouple B) compared with only using a single material. The models were 

run for a hot side temperature of 600°C and cold side temperature of 20°C and compared 

using similar geometric properties with the difference being leg heights defined in Table 

2. For the segmented Half-Heusler unicouple there was a 16 % increase in the power 

output, while there was 61 % increase in the peak efficiency. The higher increase in the 

efficiency is explained by the fact that the compatibility factor is utilized to find matching 

materials, which can be used to improve efficiency. While improvements in power 

generation are expected with improved efficiency, the primary improvement is in the heat 

to power conversion efficiency. Similarly, for the PbTe-Bi2Te3, segmented unicouple a 

49.5% improvement was observed for power, and an increase of 65.5% was observed for 

the efficiency. 
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Figure 24: (a) Thermoelectric power and (b) efficiency comparison for the Half-

Heusler-Bi2Te3 unicouple compared to a unicouple composed only of the Half-Heusler 

alloy. (c) Thermoelectric power and (d) efficiency comparison for the PbTe-Bi2Te3 

unicouple compared to a unicouple composed only of the PbTe material. 
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THERMOELECTRIC GENERATOR – HEAT EXCHANGER MODEL 

Introduction 

Thermoelectric generators are often accompanied by heat exchangers with the 

goal of maintaining the required temperature difference across a thermoelectric module. 

Compact heat exchangers are used in waste heat recovery when there is a restriction on 

the available space, for instance in automotive waste heat recovery applications [3]. 

Further, applications of compact heat exchangers include high-temperature polymer 

electrolyte membrane fuel cell exhaust heat recovery [19] and waste heat reclamation 

from jet engines[5]. Heat exchangers, which utilize forced convection, are often used, as 

the waste heat is often available as a flowing hot fluid. 

Heat exchanger models have been developed to be used in combination with 

thermoelectric generator models. A plate-fin heat exchanger model has been developed in 

combination with a TEG model to predict the electrical power output and overall heat 

transferred to be implemented for automotive waste heat recovery [16]. The model uses 

the hot exhaust gas as the hot side fluid and the liquid coolant for the cold side fluid. A 

similar numerical model has been developed for a TEG to be used with a parallel-plate 

heat exchanger [17]. Cylindrical shell and straight fin heat exchangers offer an alternative 

to parallel plate heat exchangers to recover waste heat from an automotive. A numerical 

heat transfer model has been developed along with a TEG model to predict the heat 

transfer and electrical power performance of a combined system [20]. 
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A heat exchanger model is developed to complement the thermoelectric module 

model for steady state operation. The model developed in a MATLAB environment is 

solved by considering the first law of thermodynamics in every finite control volume 

illustrated in Figure 25. The inputs to the heat exchanger-TEG model are the geometry of 

the heat exchanger and the inlet temperatures of the working fluids as well as the 

temperature dependent fluid and thermoelectric properties. 

Model Assumptions 

The following assumptions were made to simplify the heat exchanger model. 

1) The model divides each spacing in the heat exchanger as an individual channel, 

which leads to the following assumptions 

a. The mass flowrate in each channel is identical and is obtained by dividing 

the total flowrate by the number of channels. 

b. The heat transfer coefficient and friction factor in each section of the 

channel is constant for the control volume. 

2) Lateral variations in temperature are ignored. 

3) The model assumes the flow is fully developed when entering each channel. The 

heat exchangers are usually accompanied by a diffuser, which is not included in 

the model. 

4) Constant fluid temperatures are assumed in each control volume and a constant 

fin base temperature is assumed for each control volume. 

5) The lateral sides of the heat exchanger are assumed to be perfectly insulated. 
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Control Volume – Energy Balance 

The model is solved by portioning each segment of the TEG-heat exchanger 

system into finite control volumes as illustrated in Figure 22. The fundamental principal 

used to solve the model is the first law of thermodynamics, by equating the heat flow 

through the fins to be equal to the heat flow through the thermoelectric modules. The 

TEG-Heat exchanger model is split into two symmetric components as shown in Figure 

25 and calculations are performed on one section to minimize computational expense. 

The length of one control volume needs to be the length of the thermoelectric module. 

 
Figure 25: TEG – Heat Exchanger model illustrated with a 3-D view, front view 

and a side view explaining the energy balance concept used in the model. QH is the 

heat flow into the hot side of the TEG within the control volume and QC is the heat 

flow from the cold side of the TEG to the cold-side heat exchanger. QFH is the heat 

flow from the hot side heat exchanger within the control volume and QFC is the heat 

flow from the cold-side heat exchanger in the control volume. PEL is the 

thermoelectric power generated by the TEG. 

The heat flow through the heat exchanger in the control volume is given by the 

following equation by using the adiabatic fin tip condition [31]: 

 
𝑄𝑓 = 𝑀 ∙ 𝑡𝑎𝑛ℎ (𝑚 ∙

𝑓ℎ

2
) ∙ (𝑁𝑓 − 1) + 𝐴𝑢𝑓 ∙ ℎ ∙ (𝑇𝑏 − 𝑇𝑓) 

(3-1) 
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 𝑀 =  √ℎ ∙ 𝑃 ∙ 𝑘 ∙ 𝐴𝑐 ∙ (𝑇𝑏 − 𝑇𝑓) (3-2) 

 
𝑚 =  √

ℎ ∙ 𝑃

𝑘 ∙ 𝐴𝑐
 

(3-3) 

 

where fh is the fin height, Nf is the number of fins, Auf is the un-finned area, Tb is the fin 

base temperature of the control volume, Tf is the fluid temperature within the control 

volume and h is the channel convection coefficient which will be discussed in detail in 

the next section. P is the fin perimeter, k is the thermal conductivity of the fin material, 

and Ac  is the cross-sectional area of the fin. The heat flow into the module, Qh is equal to 

the heat transferred through the fins in the control volume, while the heat flow leaving the 

cold side of the module, Qc is equal to the heat transferred through the cold side heat 

exchanger, QFC. The difference between the heat entering and leaving the module is 

equal to the thermoelectric power generated by the module as explained in the previous 

chapter. An iterative process solves the TEG-Heat Exchanger model, and the energy 

balance criteria have to be met for each control volume. The difference between the heat 

flow through the hot side of the heat exchanger (QFH) and the heat flow into the module 

(QH) has to be less than the required convergence criteria of  10-4W. Similarly, the 

difference between the heat flow leaving the cold side of the module (TC) and the heat 

flow through the cold side heat exchanger (QFC) has to be smaller than the convergence 

criteria. The iterative process requires solving the base temperature of both the hot and 

cold side heat exchangers for the control volume. The exit temperature of the fluid in the 

control volume will be the inlet temperature of the next one and is obtained by the 

following equation: 
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𝑇𝑓,𝑜𝑢𝑡 =  𝑇𝑓,𝑖𝑛 −

𝑄𝑓

�̇� ∙ 𝑐𝑝
 

 

(3-4) 

where Tf,out is the exit temperature of the fluid in the control volume, Qf  is the heat 

transferred by the heat exchanger within the control volume, �̇� is the mass flowrate and 

cp  is the specific heat of the fluid.  

Channel Convection Coefficient 

The channel convection coefficient utilized in the model are obtained from 

available empirical correlations. Similar numerical models [16, 17] have used Reynolds 

number dependent empirical correlations for the convection coefficients for channel flow. 

The current model uses convection coefficients for smooth rectangular ducts, which are 

dependent upon the channel width to height ratio. The hydraulic diameter, dh dependent  

Reynolds number for the channel flow is obtained by the following equations: 

 
𝑅𝑒 =

𝑣𝑐ℎ ∙ 𝑑ℎ

𝜈𝑓
 

 

(3-5) 

 
𝑑ℎ =

4 ∙ 𝐴

𝑃
 

 

(3-6) 

where vch is the channel velocity, νf is the kinematic viscosity, P is the wetted perimeter, 

and A is the channel cross-sectional area. The critical Reynolds number for a rectangular 

inlet geometry varies from 2000 to 3100 with the upper limit at 10000 [32]. For this 

model, laminar and turbulent flow is analyzed with the critical Reynolds number being 

2500 based on the empirical correlation used. The convection coefficient evaluated using 

the Nusselt number relationships for the laminar and turbulent regions are obtained using 

the following equations [32]: 

 𝑁𝑢 =  7.541 ∙ (1 − 2.61𝛼 + 4.970𝛼2 − 5.199𝛼3 + 2.702𝛼4 − 0.548𝛼5) 
 

𝑅𝑒 ≤ 2500 
 

(3-7) 
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 𝑁𝑢 = 0.024 ∙ 𝑅𝑒𝑑ℎ
0.8𝑃𝑟0.4 Re ≥ 2500  ( Ts > Tf ) (3-8) 

 𝑁𝑢 = 0.026 ∙ 𝑅𝑒𝑑ℎ
0.8𝑃𝑟0.3 

 
 

Re ≥ 2500  ( Tf > Ts ) (3-9) 

 
ℎ =

𝑁𝑢 ∙ 𝑘𝑓

𝑑ℎ
 

 

(3-10) 

where α is the height to spacing ratio, Re is the hydraulic diameter dependent Reynolds 

number, Pr is the Prandtl number, kf is the fluid thermal conductivity,dh is the hydraulic 

diameter defined above, Ts is the surface temperature, and Tf is the fluid temperature. 

Compact heat exchangers defined as having a surface area of 650 m2 per cubic 

meter [33] are widely used in applications such as automotive waste heat recovery due to 

spatial constraints. The following equations developed by Weiting [34] for compact 

rectangular offset plate fin heat exchangers are considered in the model as well: 

 𝑗 = 0.483 ∙ (
ℎ𝑥𝑙

𝑑ℎ
)−0.162 ∙ 𝛼−0.184 ∙ 𝑅𝑒−0.536           Re ≤ 1000 (3-11) 

 𝑗 = 0.242 ∙ (
ℎ𝑥𝑙

𝑑ℎ
)−0.322 ∙ (

𝑡𝑓

𝑑ℎ
)−0.089 ∙ 𝑅𝑒−0.368        Re > 1000 (3-12) 

 
ℎ = 𝑗 ∙ 𝑅𝑒 ∙ 𝑃𝑟1/3 ∙

𝑘𝑓

𝑑ℎ
 

 

(3-13) 

where j is the Colburn factor, hxl is the heat exchanger length, tf is the fin thickness, and 

the other variables are similar to that defined above. The Colburn factor is a modified 

version of the Stanton number taking into consideration variations in the fluid Prandtl 

number [32]. There are certain limitations in extending these empirical correlations to 

compact channel flow. The empirical correlations are obtained for offset plate fin heat 

exchangers, which means that there is a boundary layer developing on the thickness of 

the plate. In addition, there is turbulence generated by the plate thickness at the leading 

edge and wake flow developed at the trailing edge. However, the influence of the fin 
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thickness is not included in the correlation for the laminar region, suggesting the 

influence of the fin thickness is limited in laminar flow [34]. 

Model Validation 

The TEG heat exchanger model was compared with an available computational 

fluid dynamics and ANSYS model, which was developed for a TEG-Heat Exchanger 

system for automotive waste heat recovery from a diesel engine [3]. The model was 

compared using the convection coefficients for duct flow using equations 3-10 and the 

convection coefficients for compact offset fin heat exchangers using equation 3-13. The 

model was compared for fin packing fractions of 10%, 15%, 20%, 25%, and 30 % and fin 

thicknesses of 0.1mm, 0.2mm, 0.3mm and 0.4 mm encompassing in 20 different designs. 

The exhaust of a car resemble the properties of air, and the temperature dependent 

properties of air were used in the model. The hot-side heat exchanger is composed of 

Nickel as it has a high thermal conductivity, high service temperature and corrosion 

resistance [3]. The cold side temperature of the TEG was assumed constant at 94°C, 

which can be accomplished by using water as the cold side fluid. The following figure 

illustrates the input into the model and Table 3 lists the parameters. 
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Figure 26: Input parameters for the TEG – Heat exchanger model. Four modules 

with a fixed cold side temperature are combined with the hot side heat exchanger. 

 

Table 3 Input to the TEG – Heat Exchanger Model 

Input  Value  

Exhaust Inlet Temperature 558 °C 

Hot Side Fluid Exhaust gas (Air) 

Number of Modules 4 

Module Size 40mm x 40 mm x 4.9 mm 

TEM Cold Side Temperature 94 °C 

Heat Exchanger Width 40 mm 

Heat Exchanger Length 160 mm 

Heat Exchanger Height  20 mm 

Heat Exchanger Material Nickel  

 

The average heat flow through each TEG is compared in Figure 27 for a TEG – 

Heat exchanger model that uses convection coefficient of (a) duct and (b) compact heat 

exchanger with a 3-D model developed in ANSYS Icepak. The 3-D model results are 

available in [3]. The heat exchangers with a fin thickness of 0.1mm provide more 
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channels and a larger fin surface area, resulting in better heat flow compared to the other 

heat exchanger designs. However, the better thermal performance comes at the cost of a 

larger pressure drop across the heat exchanger. The model using the compact heat 

exchanger convection coefficient appears to show more consistent results when compared 

with the model using the duct convection coefficient. The discrepancies between the two 

models developed can be attributed to the limitations of the empirical convection 

coefficients used and the lateral heat spreading that is captured in the 3-D model. The 

mismatch in convection coefficients between the models results in a mismatch in the heat 

transferred through the heat exchanger, which can be used to explain the discrepancies 

observed in Figure 27. Furthermore, the model accuracy could be improved by 

accounting for the heat spreading within the heat exchanger. The model assumes that the 

base temperature in each control volume is maintained at the same temperature, this is 

not the case in the 3-D ANSYS model. 
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Figure 27: The average heat flow through each module compared with a 3D Model 

using the TEG – Heat Exchanger Model that uses compact heat exchanger convection 

coefficients and duct convection coefficients for (a) fin thickness = 0.1 mm (b)  fin 

thickness = 0.2 mm (c)  fin thickness = 0.3 mm (d) fin thickness = 0.4 mm[3]. 

The average percent difference between the models using the two different types 

of convection coefficients are compared in Table 4. The compact heat exchanger 

convection coefficient model has marginally smaller percent errors compared to the duct 

convection coefficient model. 
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Table 4 Average percent error comparison between the two models. The 

percent error values are obtained assuming the 3-D model values as the exact or 

theoretical value. 

Fin Thickness  Duct Convection 

Coefficient model 
Compact Heat-Exchanger 

Convection Coefficient 

model 

0.1 mm 7.60 % 7.50 % 

0.2 mm 5.79 % 4.63 % 
0.3 mm 6.37 % 4.36 % 

0.4 mm 8.13 % 4.76 % 
 

The temperature difference between the TEG hot and cold side is critical to the 

thermoelectric performance of the TEG. The average temperature difference between the 

TEGs are compared for the different heat exchanger designs evaluated. The results follow 

similar trends to the average heat flow results shown in Figure 27. 
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Figure 28: The average temperature difference across each module compared 

with a 3D Model using the TEG – Heat Exchanger Model that uses compact heat 

exchanger convection coefficients and duct convection coefficients for (a) fin thickness 

= 0.1 mm (b)  fin thickness = 0.2 mm (c)  fin thickness = 0.3 mm (d) fin thickness = 0.4 

mm[3]. 

The average module power generation and efficiency are shown in Figure 29 for 

the different heat exchanger designs. The largest TEG power generation of 7.75 W is 

obtained for the heat exchanger design with a fin thickness of 0.1mm and packing 

fraction of 30%. This design has the largest heat flow through it resulting in more power 

generated. Additionally, this design resulted in the largest temperature difference between 

the TEG, corresponding to the largest TEG efficiency of 4.96 %. It should be noted that 

the 0.1mm – 30% packing fraction heat exchanger has a significantly larger pressured 
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drop compared to the other designs. When the heat exchanger design is considered both 

pressure drop and heat transfer capabilities of the heat exchanger should be evaluated. 

 
Figure 29: (a) The average thermoelectric power generated by a module for heat 

exchanger fin thicknesses of  0.1 mm, 0.2 mm, 0.3 mm and 0.4 mm (b) Average module 

efficiency for heat exchanger fin thickness of 0.1mm, 0.2mm, 0.3 mm and 0.4 mm. 
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THERMOELECTRIC GENERATORS COMBINED WITH NATURAL 

CONVECTION HEAT SINKS 

Introduction 

Natural convection heat sinks can be incorporated with TEGs to maintain the cold 

side temperature of the TEG. There are many instances when it is not possible to 

integrate a forced convection heat sink with a TEG, for instance when a TEG is used to 

recover waste heat from the body. Furthermore, natural convection heat sinks are much 

more reliable than forced convection heat exchangers. Natural convection heat sinks 

require almost no maintenance, which makes them ideal to be implemented with TEG 

devices that are used to self-power electric devices. Additionally, natural convection heat 

sinks require no pumping power, as compared to forced convection heat sinks, which 

means that all the power generated by a TEG can be used to power devices, and none of 

the energy is expended on pumping power. However, heat transfer coefficients for natural 

convection heat sinks are much smaller than forced convection heat exchangers. 

Buoyancy effects drive natural convection, which is dependent upon density variations of 

the fluid, which in turn require a significant temperature difference between the surface in 

consideration and the ambient fluid. Natural convection heat sinks are classified into 

plate fin heat sinks and pin fin heat sinks, whose performance is influenced by the heat 

sink orientation with regard to the gravitational field. This section looks at vertical plate 

and pin fin heat sinks, as well as horizontal base pin fin heat sinks, where the primary 

difference in the models are the convection coefficients of the heat sinks. The three 
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different types of heat sinks are illustrated in Figure 30 with their orientation with respect 

to the gravitational field shown. The heat sinks are then optimized to be used with a TEG 

to power a wireless sensor using waste heat from a pipe in a nuclear power plant. Finally, 

optimized heat sinks are combined with TEGs to harvest waste body heat which can be 

used to power wearable electronics. 

 
Figure 30: The three different types of heat sinks considered in this section. 

Vertical Flat Plate Heat Sink Model 

As stated in the introduction section, the primary difference between the heat sink 

models are the convection coefficients of the heat sinks. Natural convection coefficients 

for parallel plate heat sinks are obtained from work done by Bar-Cohen et al. [35]. The 

convection coefficient builds on work initially done by Bar-Cohen [36]. It is important to 

note the convection coefficient apply to finned geometries, which takes into consideration 

asymmetric heat flow. A 1-D analytical steady state model is developed to predict the 

thermal performance of vertically oriented natural convection plate fin heat sinks. The 

primary direction of heat transfer is from the base of the heat sink to the ambient. 

Consequently, the model assumes that there are no lateral variations in temperature along 

the heat sink base. The key parameter used to evaluate the performance of a heat sink is 

the thermal resistance of the heat sink defined as follows: 
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𝑅𝑡ℎ =

𝑇𝑏 − 𝑇𝑎𝑚𝑏

𝑄𝐻𝑆
 

 

(4-1) 

 

where Tb is the temperature of the heat sink base. Tamb is the ambient temperature, and 

QHS is the heat flow through the heat sink. The heat flow through the heat sink by heat 

convection was obtained as follows: 

 𝑄𝐻𝑆 = 𝑛𝑓𝑖𝑛 ∙ 𝑞𝑓𝑖𝑛 + ℎ𝑏𝑎𝑠𝑒 ∙ 𝐴𝑏 ∙ (𝑇𝑏 − 𝑇𝑎𝑚𝑏) 
 
 

(4-2) 

where nfin is the number of fins, Ab is the unfinned base area, Tb is the heat sink base 

temperature, and hbase  and qfin are defined by the following equations. The unfinned base 

area is treated as a vertical flat plate, and the convection heat transfer coefficient is 

obtained as follows: 

 ℎ𝑏𝑎𝑠𝑒 = 0.59 ∙ 𝑅𝑎𝐿
1/4

∙ 𝑘𝑓 𝐿⁄  
 
 

(4-3) 

where kf  is the thermal conductivity of air, and L is the vertical length of the heat sink, 

and the Rayleigh number, RaL is obtained as follows: 

 𝑅𝑎𝐿 = 𝑔 ∙ 𝛽 ∙ 𝜃𝑏 ∙ 𝑃𝑟 ∙ 𝐿3 𝜈2⁄  
 

(4-4) 

where g is gravity, β is the coefficient of thermal expansion, θb is the temperature 

difference between the heat sink base and the ambient, Pr is the Prandtl number, and ν is 

the kinematic viscosity of the fluid. The heat transfer from each of the individual plate-

fins, qfin, is obtained as follows[31]: 

 𝑞𝑓𝑖𝑛 = 𝑀 ∙ 𝑡𝑎𝑛ℎ (𝑚 ∙ 𝐻) 
 

(4-5) 

where H is the height of the plate fins extruding in the horizontal direction, M and m are 

fin parameters defined as follows: 

 𝑀 = √ℎ ∙ 𝑃 ∙ 𝑘 ∙ 𝐴𝑐 ∙ (𝑇𝑏 − 𝑇𝑎𝑚𝑏) (4-6) 



58 

 

 

 
 𝑚 = √(ℎ ∙ 𝑃) (𝑘 ∙ 𝐴𝑐)⁄  (4-7) 

where k is the thermal conductivity of the fin material, P is the fin perimeter, and Ac is the 

cross-sectional area. The convection heat transfer coefficient, h from non-isothermal 

asymmetric plates, take into account the two limiting spacing conditions for flat plate 

heat sinks, small fin spacing, and large fin spacing. The convection coefficient 

considering the spacing limits above is obtained as follows [35]: 

 
ℎ𝑓𝑖𝑛 =

𝑘𝑎

𝑠
∙ (

576

(𝜂𝑓𝑖𝑛 ∙ 𝐸𝑙)2
 +

2.873

(𝜂𝑓𝑖𝑛 ∙ 𝐸𝑙)
1
2

)1/2 

 

(4-8) 

where s is the spacing between the plate fins, ηfin is the fin efficiency, and El, the 

Elenbaas number, which is a modified version of the Rayleigh number, is obtained as 

follows: 

 𝐸𝑙 = (𝑔 ∙ 𝛽 ∙ 𝜃𝑏 ∙ 𝑃𝑟 ∙ 𝑠4) 𝐿𝜐2⁄  (4-9) 

 

The first term in parentheses in equation 4-8 accounts for the small fin spacing 

condition, while the second term represents the large spacing condition. When the heat 

sink is used for applications with large temperature differences, radiation effects become 

significant and are considered in the heat sink model. Radiation heat transfer from the 

outer surfaces of the heat sink was considered in the model, as these surfaces have a view 

factor of 1 with the ambient. The heat transfer by radiation is given by the following 

equation: 

 𝑄𝑟 = 𝐴𝑟 ∙ 𝜎 ∙ 𝜀 ∙ (𝑇𝐻𝑆
4 − 𝑇𝑎𝑚𝑏

4 ) (4-10) 
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where Ar is the heat sink area transferring heat by radiation to the ambient, σ is the 

Boltzmann constant, ε is the emissivity of the heat sink material, and THS is the average 

heat sink temperature. It is important to note that the model uses absolute temperature 

values for the radiation analysis. 

Vertical Base Pin Fin Heat Sink Model 

Vertical base pin fin heat sinks are another viable option to be used along with 

TEGs to harvest waste thermal energy. Pin fin heat sinks have better thermal performance 

compared to flat plate heat sinks when the mass of the heat sink is considered [37]. A 

one-dimensional heat transfer model is developed similar to the vertical flat plate heat 

sink model. The primary differences between the two models are the fin geometry, the fin 

cross-sectional area, and the fin perimeter. In addition to the fin geometry, the convection 

coefficient for pin fin heat sinks is different to that of the vertical plate heat sinks. The 

convection coefficient for pin fin heat sinks are influenced by four limiting conditions, 

which are listed below: 

1) Small vertical spacing with small horizontal spacing 

2) Small vertical spacing with large horizontal spacing. 

3) Large vertical spacing with small horizontal spacing. 

4) Large vertical spacing with large horizontal spacing. 

The work done by Joo et al. [37] consider convection coefficients for each limiting 

case and combine them to match empirical data. The convection coefficient for limiting 

case 1 looks at densely packed heat sink with a large number of pins in both the 

horizontal and vertical directions. The convection coefficient for the densely packed 

condition is obtained by modeling the fin array as a porous medium: 
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ℎ𝑓𝑖𝑛,1 =

𝑆ℎ𝑆𝑣

𝜋𝑑𝐿
∙

4𝑆ℎ𝑆𝑣 − 𝜋𝑑2

48
 ∙

𝜌𝑓𝑐𝑝𝑔𝛽𝜂𝑓𝑖𝑛(𝑇𝑏 − 𝑇∞)

𝜐𝑓
 

 

(4-11) 

where Sh and Sv are the horizontal and vertical spacing, d is the fin diameter, L is the heat 

sink length, ρf is the fluid density, cp is the specific heat of the fluid, g is the acceleration 

of gravity, β is the thermal coefficient of expansion, ηfin is the fin efficiency, νf is the 

kinematic viscosity of the fluid, Tb is the base temperature and T∞ is the ambient 

temperature. For the second limiting case, the pins are arranged in a vertical direction 

with large horizontal spacing and can be modelled as an isolated vertical array of 

cylinders by the following equation: 

 
ℎ𝑓𝑖𝑛,2 =

𝑘𝑓

𝐿
∙ [0.3669

𝑆𝑣

𝑑
− 0.0494] 𝐺𝑟𝐿

1/4 

 

(4-12) 

 
𝐺𝑟𝐿 =

𝑔𝛽𝜂𝑓𝑖𝑛(𝑇𝑏 − 𝑇∞)𝐿3

𝜐𝑓
2  

 

(4-13) 

where GrL is the length dependent Grashof number and the other variables as defined 

above. For the third limiting case, pins are arranged in a single horizontal direction with 

large vertical spacing, and the convection coefficient is obtained by the following 

equation: 

 
ℎ𝑓𝑖𝑛,3 =

𝑘𝑓

𝑑
∙ [2.132𝑆ℎ

∗ − 0,4064](
𝑔𝛽(𝑇𝑏 − 𝑇∞)

𝛼𝑓𝜐𝑓𝑑
)0.188 

 

(4-14) 

 
𝑆ℎ

∗ =
𝑆ℎ

∗

𝑑3/4𝐿1/4
 

 

(4-15) 

where Sh
* is the non-dimensional horizontal spacing and αf is the thermal diffusivity of the 

fluid, and the other variables are defined as above. The final limiting condition accounts 

for a pin fin with large horizontal and vertical spacing, which is an isolated horizontal 

cylinder with the convection coefficient given by the following equation: 
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ℎ𝑓𝑖𝑛,4 =

𝑘𝑓

𝑑
∙ 0.85𝑅𝑎𝑑

0.188 

 

(4-16) 

 
𝑅𝑎𝑑 =

𝑔𝛽𝜂𝑓𝑖𝑛(𝑇𝑏 − 𝑇∞)𝑑3

𝛼𝑓𝜈𝑓
 

 

(4-17) 

where Rad is the fin diameter dependent Rayleigh number and the other variables as defined 

above. The four convection coefficients are combined to match experimental data and 

reduces to the following equation:  

 
ℎ𝑓𝑖𝑛 = [(ℎ𝑓𝑖𝑛,1

−1.3  +  ℎ𝑓𝑖𝑛,2
−1.3  ℎ𝑓𝑖𝑛,3

−1.3 )
8

1.3 + ℎ𝑓𝑖𝑛,4
−8 ]

1
−8 

(4-18) 

 

Horizontal Base Vertical Pin Fin Heat Sink Model 

Initial work on pin fin heat sinks was done by Sparrow and Vemuri [38]. They 

performed experiments in air to measure the combined convection and radiation heat 

transfer from (1) horizontal fins with a vertical base plate, (2) vertical fins with a 

downward facing base plate and (3) vertical fins for an upward facing base plate. 

Horizontal base plate vertical pin fin heat sinks have been numerically and 

experimentally been studied by Sahray et al. [39]. A mean convection coefficient for a 

heat sink is obtained taking into consideration fin height, fin packing fraction (which 

considers fin spacing) and heat sink base area. The convection relation is obtained for 

vertical square pin fins on a horizontal base. The Nusselt number correlation and 

convection coefficient are given by the following equations: 

 
ℎ𝑐 =

𝑘𝑓 ∙ 𝑁𝑢𝑠

𝑆
 

 

(4-19) 

 𝑁𝑢𝑠 = 0.0285 {1 − 𝑒𝑥𝑝 (−
𝐻

𝑊
)} … 

…{1 + 1.50𝑒𝑥𝑝 (−0.07
𝐿

𝐻
)} 𝑅𝑎𝑠

1/2
{1 − 𝑒𝑥𝑝 [−

7000

𝑅𝑎𝑠
]}

1/3
 

 
 

(4-20) 
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𝑅𝑎𝑠 =

𝑔𝛽𝛥𝑇𝑆3𝑃𝑟

𝜈2
 

(4-21) 

 𝑆 = 𝑃 − 𝑊 (4-22) 

where kf is the fluid thermal conductivity, Nus is the spacing dependent Nusselt number, S 

is fin spacing defined by equation 4-22. L is the heat sink base width, H is the pin height, 

Ras is the spacing dependent Rayleigh number, P is fin pitch, W is the pin width and the 

variables in equation 4-21 are similar to that defined in the previous sections. 

TEG for Power Harvesting in a Nuclear Power Plant 

Introduction 

Constant monitoring of temperature, pressure, and radiation levels are critical to the 

safe operation of a nuclear power plant. Wireless sensor nodes are used to monitor the 

temperature pressure and radiation levels in a nuclear power plant. When natural disasters 

such as the Fukushima Daiichi nuclear incident in March 2011 occur, where power 

supply from both the on-site and off-site power depletes, monitoring systems lose 

function and cannot collect critical information regarding the nuclear plant status. The 

loss of off-site power in nuclear plants is a frequent occurrence where 42 power outages 

have been recorded from 1997 to 2004 [40]. Thermoelectric generators can be utilized to 

self-power wireless sensor nodes making nuclear power plants safer. Furthermore, cost 

savings can be observed by eliminating cable installation and maintenance. The lack of 

required maintenance and reliability of natural convection heat sinks make them an ideal 

candidate to be used with a thermoelectric generator to power wireless sensor nodes. 

TEG – Heat Sink System Model for Powering a Wireless Sensor Node 

A one-dimensional model was developed in a MATLAB environment combining 

the thermoelectric model from chapter two and the corresponding heat sink model. The 
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primary direction of heat transfer is from the pipe (Heat Source) to the ambient. 

Therefore 1-D heat flow through the TEG and heat sink is considered as illustrated in 

Figure 31. The inputs into the heat transfer model are the TEG hot side temperature (TH ), 

and the ambient temperature (Tamb). The combined model is solved by an iterative 

process, which requires that the heat leaving the cold side of the TEG (Qc) match the heat 

flow through the heat sink (QHS) as explained by the following equation: 

 abs(𝑄𝑐 − 𝑄𝐻𝑆)  < 𝐶𝐶 (4-23) 

where CC is the convergence criteria equal to 10-6
 W. When the convergence criterion is 

met, the model will solve for the cold side temperature. Eventually, the model will output 

the heat flow through the TEG, while obtaining the cold side temperature of the TEG, the 

power output of the TEG, as well as the operational current and voltage. The external 

temperature of a nuclear power plant piping system can vary from 200°C – 350°C, the 

lower limit of 200 °C was used in the model.  

 
Figure 31: Heat Transfer model accounting for the heat flow through TEG and 

the heat sink, where QH is the heat flow into the hot side of the TEG, QC is the heat 
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leaving the cold side of the TEG, and QHS is the heat flow from the heat sink to the 

ambient. The heat sink plates are vertically oriented, and the figure illustrates a top 

view. 

Heat Sink Design 

A vertical flat plate heat sink was chosen to be placed on the cold side of the 

TEG. Vertical flat plate heat sinks have better thermal performance compared to a 

vertical base –horizontal pin fin heat sink when the overall mass of the heat sink is 

insignificant [37]. The design of the vertical flat plate heat sink was optimized with the 

goal of obtaining the smallest thermal resistance. Table 5 lists the conditions that were 

held constant for each optimization. 

Table 5 Constant input parameters 

Parameter Value 

Base Thickness 1 cm 

Base Area 4 cm x 4 cm 

Base Temperature 110 °C 

Ambient Temperature 20 °C 

 

The vertical flat plate heat sink was optimized for fin thickness, fin packing 

fraction and fin height with the heat sink optimization parameters listed in the table 

below. 

Table 6 Optimization parameters of the plate-fin heat sink 

Parameter      Value 

Fin Thickness  1mm – 10 mm with 0.5 mm increments 

Fin Height 1cm – 30 cm  with 1 cm increments 

Fin Packing Fraction 10% - 50 % 
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At a fin height of 15 cm, the thermal resistance of the heatsink approaches an 

asymptotic value as illustrated in Figure 32(a). The diminishing returns in thermal 

resistance with fin height are explained by the reduction in fin efficiency of an individual 

fin. A fin height of 15 cm provides considerable heat flow without extruding out 

significantly. A fin thickness of 1.5 mm provides the smallest thermal resistance of 1.67 

K/W at a packing fraction of 25 % as shown in Figure 32(b). 

 
Figure 32: a) Heat sink thermal resistance and fin efficiency for varied fin height 

for a fin packing fraction of 26.25% and fin thickness of 1.5 mm. (b) Heat sink thermal 

resistance for varied fin thicknesses and packing fractions for a fin height of 15 cm. 

The minimum thermal resistance of the optimized heat sink is 1.67 K/W, and the 

relevant fin parameters are listed in Table 7. 

Table 7 Dimensions of the optimized vertical flat plate heat sink 

Parameter Value 

Heat Exchanger Base Area  4 cm x 4 cm 

Fin Height 15 cm 

Fin Thickness 1.5 mm 

Fin Packing Fraction 26.25% 
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TEG Optimization 

The optimized heat sink described in Table 7 was combined with a TEG. The 

TEG was optimized by increasing the TE leg height from 0.4 mm to 4 mm while holding 

the leg fill factor to 19.85 %. The thermoelectric power generated was compared for two 

modules, one composed of the Half-Heusler alloy and the other composed of the Bi2Te3 

material. A peak power density of 101.79 mW/cm2 is obtained for at leg height of 1.5mm 

for the Half-Heusler alloy, and a peak power density of 133 mW/cm2 is obtained at a leg 

height of 0.8mm for the Bi2Te3 material as illustrated in Figure 33. The TEG made of 

Half-Heusler produces a total power of 1.63 W and the one composed of Bi2Te3 produces 

2.128 W. The larger power produced by the Bi2Te3 material stems from its superior 

performance at the device operation temperature range. 

 
Figure 33: Power density vs. varied leg height for a fixed leg packing fraction of 

19.85% for a TEG composed of the Half-Heusler alloy and Bi2Te3 material. 
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Harvesting Body Heat Using a TEG-Natural Convection Heat Sink System 

The human body emits significant quantities of waste heat with an average heat 

flow from the human body found to be 19 mW/cm2 for data collected from 100 persons 

[41]. Many wearable electronic devices use much less power than ever before and could 

be powered by waste heat from the human body. There has been a considerable amount 

of work done to demonstrate the potential of harvesting body heat using TEGs. The 

concept of using body heat to power electronic devices was pioneered to power an 

electronic watch [42] producing 22.5 µW of power. Further applications of TEGs 

harvesting body heat have been used to power wireless sensor nodes [6] where a pin fin 

heat sink is used to improve heat transfer from the cold side of the TEG. Further 

applications examine using TEGs to power autonomous wireless sensors for body area 

networks. Additional applications include utilizing a TEG to power a pulse oximeter, 

which measures the oxygen level in the body [7, 43]. Experimental work has been done 

on a TEG used to harvest body heat, where copper heat spreaders were used to extract 

body heat [44]. Experimental work done has examined the best location to recover waste 

heat from the human body, when no airflow is considered the wrist is the best position to 

extract waste body heat. Interestingly, the work does not use a heat sink but uses copper 

heat spreaders on both the hot and cold side of the TEG[45]. To obtain a larger 

temperature difference across the TEG, the thermal resistance of the TEG has to be 

increased; this has been accomplished by stacking commercially available TEGs on top 

of each other [46]. 

 

 



68 

 

 

TEG- Heat Sink System Model for Harvesting Waste Heat from the Body 

The TEG- Heat sink heat transfer model for harvesting body heat is illustrated in 

Figure 34. The known inputs into the model are the body core temperature, which is 

assumed to be 37°C and the ambient temperature of 22°C. The body regulates the heat 

flow from itself by adjusting the thermal resistance between the core and the skin. The 

thermal resistance of the skin is obtained by the following equation: 

 
𝑅𝑡ℎ =

1

𝑈 ∙ 𝐴𝑏
 

 

(4-24) 

where Ab is the cross sectional area of the TEG placed on the skin, U is the heat transfer 

coefficient accounting for heat transfer through the skin, which was found to be equal to 

25 W/m2∙K [46]. The model also considers the contact resistance between the human skin 

and the TEG. The contact resistance between the skin and the TEG is given by the 

following equation [8]: 

 
𝑅𝑡ℎ(𝑐𝑜𝑛𝑡𝑎𝑐𝑡) =

1

ℎ𝑐 ∙ 𝐴𝑏
 

 
 

(4-25) 

 
ℎ𝑐 = 1.25

𝜅𝑠𝛥𝑎

𝜎
(

𝑃

𝐻𝑐
)0.95 

 

(4-26) 

where κs is the harmonic mean thermal conductivity, 𝛥a is the surface roughness, P is the 

applied pressure, Hc is the micro-hardness of the skin and Ab is as defined above. The 

smallest contact resistance value is obtained for the forearm, where the hc value varies 

from 50 -75 Wm-2K-1[8]. The conservative value of 50 Wm-2K-1 was used in the model. 

The two thermal resistances connected in series were combined into one thermal 

resistance with an overall heat transfer coefficient of 16.67 Wm-2K-1. 
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Figure 34: The TEG-Heat Sink heat transfer model, where QBo is the heat 

transferred from the body, which is equal to the heat input to the TEG. Qs is the heat 

transfer from the heat sink, which is equal to the heat leaving the cold side of the 

TEG. PEL is the thermoelectric power generated by the TEG, QB is the heat 

transferred from the heat sink base, and QF is the heat transfer from the fins. The 

TEG is connected to an electrical load resistance RL. The equivalent thermal network 

is shown in the figure with Tcore being the core temperature of the body and Tamb being 

the ambient temperature. 

The model is solved in a similar iterative manner to the TEG-Heat Sink model for 

the wireless sensor node. However, this model requires two iterative conditions to be 

satisfied. Firstly, the heat flow through the human skin (QBo) has to match the heat flow 

in to the hot side of the TEG, QH as explained by the following equation: 

 𝑎𝑏𝑠(𝑄𝐵𝑂 − 𝑄𝐻)  < 𝐶𝐶 (4-27) 

where CC  is the convergence criteria and is equal to 10-6 W. The second condition is that 

the heat leaving the cold side of the TEG, Qc has to match the heat flow through the 

micro-wire heat sink (QS) as explained by the following equation: 
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 𝑎𝑏𝑠(𝑄𝑠 − 𝑄𝐶)  < 𝐶𝐶 (4-28) 

The hot side temperature of the TEG (TH) and the cold side temperature of the 

TEG (TC) are unknown and will be solved by satisfying the aforementioned iterative 

conditions. Eventually, the model will solve for the heat flow from the body, in the 

process obtaining the total power output of the TEG, along with the hot side temperature, 

cold side temperature, operational current and voltage. 

Heat Sink Optimization 

Two types of heat sinks were considered to be implemented with a TEG to 

recover waste body heat. A vertical flat plate heat sink and a horizontal base square pin 

fin heat sink, it is interesting to note that these two heat sinks are oriented perpendicular 

to each other as illustrated in Figure 30. The fin height was capped at 3 cm, as a design 

that is bulky is not desirable for waste heat recovery from the body. A base area of 4 cm x 

4 cm is selected to match a conventional base area of a TEG. A flat plate heat sink and 

square pin fin heat sink were optimized to obtain the smallest thermal resistance. The 

thermal resistance of both the plate fin heat sink and the square pin fin heat sink are 

illustrated in Figure 35 for varied packing fractions and fin thickness. A minimum 

thermal resistance of 19.25 K/W is obtained for the flat plate heat sink for a fin thickness 

of 1 mm and packing fraction of 12.5%. For the square pin fin heat sink, diminishing 

returns in thermal resistance is observed at a packing fraction of 42.5% for a fin thickness 

of 1 mm where a minimum thermal resistance of 17.3 K/W is observed. 
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Figure 35: (a) Thermal resistance of the plate fin heat sink for varied packing 

fraction and fin thickness for a fixed fin height of 3 cm (b) Thermal resistance of the 

square pin fin heat sink for varied packing fraction and fin thickness for a fixed fin 

height of 3 cm. 

TEG Optimization 

The principle of thermal impedance matching is used to design the thermoelectric 

generator. For small temperature differences, the TEG thermal resistance should match 

the sum of the external thermal resistances. Such a condition is required to obtain the 

highest possible heat flow through the TEG while having the largest possible temperature 

difference across the module. If the thermal resistance of the module is much smaller 

than the external thermal resistance, the temperature drop across the module will be 

small, resulting in smaller thermoelectric power. On the other hand, if the thermal 

resistance of the module is much larger than the external thermal resistance the heat flow 

through the module is restricted. The thermal resistance of the module composed of the 

Bi2Te3 material described in chapter 2, is varied by adjusting the thermoelectric leg 

height. The leg packing fraction, which is the ratio of the leg area to the base area, was 

held constant. For the TEG combined with a flat plate heat sink a total power output of 

0.717 mW at a power density of 44.82 µW/cm2 is obtained for a leg height of 0.65 mm 
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for a leg packing fraction of 0.63% as shown in Figure 36. Similarly, for the TEG 

combined with a horizontal base square pin fin heat sink a total power output of 0.731 

mW at a power density of 45.69 µW/cm2 was obtained for a leg height of 0.6mm. 

 
Figure 36: The power density vs. leg height for a TEG – Heat Sink system that uses 

a vertical flat plate heat sink and horizontal base pin fin heat sink. The leg packing 

fraction was held constant at 0.63%. 
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THERMOELECTRIC GENERATORS COMBINED WITH NATURAL 

CONVECTION MICROWIRE HEAT SINKS 

Introduction 

Natural convection heat transfer is driven by buoyancy effects, which require a 

large temperature difference for effective heat transfer. Natural convection heat sinks 

offer the advantages of not requiring any pumping power, low cost, and high reliability. 

As established in Chapter 4, natural convection heat sinks have limited heat flow, and 

convection coefficients are largely dependent upon the temperature difference between 

the heat sink and the ambient temperature. Heat transfer in microscale structures (sub 100 

µm) experience much larger natural convection coefficients when compared with its 

macro-scale counterparts. Natural convection heat transfer in micro-structures is 

dominated by heat conduction to the ambient air, and buoyancy effects have a limited 

effect [47], this conclusion has been reached by the observed phenomenon that 

orientation of the microstructure with regard to gravitational fields has no effect on the 

heat transfer performance of a microstructure. Further explanations of the enhanced heat 

transfer suggest that the increased surface area to volume allow for much larger heat 

conduction with the ambient fluid [48]. It should also be noted that the thermal boundary 

layer created by heat transfer from micro-structures is thin, which leads to better heat 

transfer [49]. This chapter examines the development of a natural convection heat sink, 

which uses micro-wires as its extended surface. A proposed heat sink that utilizes micro-

scale extended surfaces can be manufactured by additive manufacturing methods. 
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Flat plate heat sinks with fin heights of 200µm have been experimentally 

investigated by Mahmoud et al. [50]. However, the smallest fin thickness is 1mm, which 

cannot be considered to be of micro-scale. Similarly, the thermal performance of heat 

sinks with a minimum thickness of 200 µm and a maximum height of 0.8 mm have been 

examined, while considering the orientation of the heat sink with respect to the 

gravitational field [51]. Heat transfer of square micro pin fin with the smallest dimension 

of 0.4 mm under natural convection has been examined [52]. The work mentioned above 

do not fully exploit the micro-scale effects, which are observed at dimensions smaller 

than a 100 µm. Additionally, flat plate heat sinks with micro-scale dimensions of 40 µm 

have been examined by Kim et. al [53]. The heat sink heights are capped at 200 µm that 

limit their performance as will be explained in the following sections. 

Microwire Convection Coefficient 

Convection coefficients for micro-wires with diameters in the range from 10.6 µm 

to 95.6 µm are experimentally obtained [47]. The convection coefficient is obtained for 

microwires of both horizontal and vertical orientations with respect to the gravitational 

field. The convection coefficient for natural convection in a micro-wire is given by the 

following equation [47]: 

 
ℎ =

𝑘𝑎

1 + 𝐾𝑛
(

1

𝑑
) [

1

16
𝑙𝑛2 (

𝛼𝑎

𝑑2
) − 0.292 𝑙𝑛 (

𝛼𝑎

𝑑2
) + 0.958]

−1/2

 

 

 

(5-1) 

where d is the pin diameter, ka is the thermal conductivity of air, αa is the thermal 

diffusivity of air and Kn is the Knudsen number which is the ratio of the mean free path of 

air to the pin diameter. As evidenced by equation 5-1, the convection coefficient is 

independent of the temperature difference between the surface and the ambient. The 
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equation suggests an inverse relationship between the convection coefficient and the fin 

diameter. Furthermore, experimental data indicate that the microwire orientation has no 

influence on the convection coefficient. The length or the length to diameter ratio has no 

impact on the convection coefficient as confirmed by the experimental data in the source.  

A similar experimental convection coefficient has been obtained for natural 

convection from copper microwires using both air and water as the ambient fluid [49]. 

The experimental results have been confirmed by a 3-D numerical model, which also 

revealed details about the thin boundary layer thickness around the microwire. The 

convection coefficient follows the form of conventional natural convection Nusselt 

numbers, and is given by the following equation: 

 𝑁𝑢 = 1.03 ∙ (𝐺𝑟 ∙ 𝑃𝑟)0.035 
 
 

30 µm < D < 120 µm 
 

0.0001 < Gr < 2.5 
 

(5-2) 

 
𝐺𝑟 =  

𝑔 ∙ 𝛽 ∙ (𝑇𝑠 − 𝑇∞)𝑑3

𝜐2
 

 

(5-3) 

where Pr is the Prandtl number, g is the gravitational acceleration, Ts is the surface 

temperature, T∞  is the ambient temperature, d is the microwire diameter, and ν is the 

kinematic viscosity. The experimental results were obtained for microwire diameters of 

39.9 µm, 65.9 µm, and 119.1 µm. The inclusion of the temperature difference between 

the microwire surface and the ambient fluid resulting from the inclusion of the Grashof 

number may suggest the importance of the temperature difference. However, 

experimental results from the source show a weak relationship between the convection 

coefficient and the temperature dependence, which is also illustrated in Figure 37(b). 
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Figure 37: (a) Microwire Convection Coefficient obtained from equation 5-1 [47]. 

(b) Nusselt number dependent convection coefficient obtained from equations 5-2 and 

5-3 [49].  

Microwire Pin Fin Heat Sink Model 

The enhanced heat transfer from the microwires can be exploited in natural 

convection applications. A steady state numerical model is built in a MATLAB 

environment utilizing the microwires as extended surfaces on a heat sink. For this model, 

the ambient temperature of the fluid adjacent to a fin and the ambient temperature of the 

fluid further away from the heat sink base is treated differently as shown in Figure 38. 

The ambient temperature away from the heat sink base will be referred to as T∞ and the 

ambient temperature adjacent to the fin will be denoted by Tamb. 
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Figure 38: Microwire pin fin heat sink with the thermal plume created by heat 

transfer from the base in the background. QF is the heat transfer from the microwire 

fins and Qb is the heat transfer from the base. 

Each microwire is treated as an individual fin, conventionally fins in a natural 

convection heat sink can be treated as an individual fin if the boundary layers of the 

adjacent fins do not mix [31]. A similar principle is applied which limits the packing 

fraction of the microwire heat sink governed by a minimum spacing requirement between 

the microwires. The spacing requirement is obtained by using the microwire diameter 

dependent boundary layer thickness data from Guan et al. [49]. The purpose of 

incorporating the spacing limit into the model is to be able to treat the microwires as 

individual fins. Each microwire fin is solved for by a finite element model with a varied 

ambient temperature adjacent to each fin and each fin finite element. The ambient 

temperature surrounding the fin will be influenced by heat transfer from the horizontal 

base as illustrated in Figure 38. The ambient temperature surrounding the fins are 

obtained in the next section and is used as an input into the fin model. The model 

assumes an adiabatic tip and a constant base temperature and is solved by a one-
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dimensional linear finite element model. The temperature profile along the fin is required 

to obtain the heat transfer from an individual microwire and is obtained by the following 

equation [21]: 

 𝑇 =  𝐾−1𝐹 

 
(5-4) 

where T is the temperature vector, K-1 is the inverse global stiffness matrix, and F is the 

forcing vector. The assembly of the global stiffness matrix requires elemental stiffness 

matrix similar to that in Chapter 2, which is obtained as follows: 

 
𝐾𝑒 =  ∫ [𝐵]𝑇[𝐷][𝐵]𝐴𝑑𝑥 +

𝑘

𝑙

∫ ℎ𝑃[𝑁]𝑇[𝑁]𝑑𝑥
𝑘

𝑙

 

 

(5-5) 

where B is the strain displacement matrix, the D matrix contains the elemental thermal 

conductivity terms and A is the area of the element, h is the microwire convection 

coefficient obtained from equation 5-1, P is the circumference of the fin and N is the 

shape function for the linear element. The model uses one-dimensional linear elements, 

which simplify to the following elemental stiffness matrix: 

 
𝐾𝑒 =  

𝐴𝑒𝑘𝑒

𝑙𝑒
[

1 −1
−1 1

] +
ℎ𝑃

𝑙𝑒
[
2 1
1 2

] 

 

(5-6) 

where Ae is the elemental area, ke is the thermal conductivity, le is the elemental length, h 

and P are as defined above. The elemental loading vector was developed taking into 

consideration heat transfer from the surface of the fin by the following equation: 

 
𝐹𝑒 =  ∫ ℎ𝑇𝑎𝑚𝑏[𝑁]𝑇𝑑𝑆

𝑘

𝑆

 

 

(5-7) 

where Tamb is the ambient temperature adjacent to the fluid, once again the forcing vector 

simplifies to the following equation for a one-dimensional linear element: 

 
𝐹𝑒 =

ℎ𝑃𝑇𝑎𝑚𝑏𝑙𝑒

2
[
1
1

] 
(5-8) 

 



79 

 

 

Once the temperature profile T is obtained, it is used to obtain the convection heat 

transfer from each element and is summed to obtain the total heat transfer from the fin. 

 
𝑄𝑇_𝐹𝑖𝑛 = ∑ ℎ ∙ 𝐴𝑒_𝑠 ∙ (

𝑇𝑛 + 𝑇𝑛+1

2
− 𝑇𝑎𝑚𝑏(𝑛))

𝑒𝑙𝑒𝑚𝑠

𝑖=1

 

 

(5-9) 

where elems is the total number of elements, Ae_s is the elemental surface area, Tn  is the 

nodal temperature and Tamb(n) is the ambient temperature for each element. The total heat 

transfer from the heat sink sums up the heat transferred by all of the fins as well as heat 

transferred from the unfinned base area obtained by the following equation: 

 
𝑄𝐻𝑆 = ∑ 𝑄𝑇_𝐹𝑖𝑛

𝐹𝑖𝑛𝑠

𝑖=1

+ ℎℎ𝑝 ∙ 𝐴𝑢𝑓 ∙ (𝑇𝑏 − 𝑇∞) 
(5-10) 

 

where Fins is the total number of fins, hhp is the convection coefficient for an upward 

facing horizontal plate, Auf is the unfinned area, Tb is the base temperature, and T∞ is the 

ambient temperature away from the base of the heat sink. 

Ambient Fluid Temperature 

The fluid temperature adjacent to a fin is used as an input into the model as 

evidenced by equations 5-8 and 5-9. Heat transfer from the base of the heat sink produces 

a thermal plume for a horizontal upward facing orientation [54]. The thermal boundary 

layer produced by the heat transfer from the base results in much warmer ambient 

temperatures for the microwire fins when compared to temperatures further away from 

the base (T∞ ). This phenomenon is particularly apparent near the base of the heat sink up 

to a height of around 5 mm. If the model were to use the ambient temperature away from 

the heat sink base, T∞ illustrated in Figure 38; it would significantly overestimate the 

performance of the heatsink. To capture the influence of the thermal boundary layer 
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developed by the heat sink base, the temperature profile over a horizontal flat plate was 

obtained and implemented in the model. The temperature profile over a horizontal flat 

plate for laminar natural convection was obtained from Guha et al.[55], where an 

analytical solution for a horizontal plate for a varied surface temperature is available. The 

available equation was adjusted for a constant surface temperature condition, which 

realizes in the following equations: 

 
 
𝑇𝑥,𝑦 − 𝑇∞

𝑇𝑠 − 𝑇∞
= (1 − 𝑦/𝛿)2 

 

(5-11) 

 

𝛿 = 4.317𝑥 [
𝑃𝑟 + (16

21⁄ )

𝑃𝑟 ∙ 𝐺𝑟𝑥
]

1/5

 

 
 

(5-12) 

 
𝐺𝑟𝑥 =  

𝑔 ∙ 𝛽 ∙ (𝑇𝑠 − 𝑇∞)𝑥3

𝜐2
 

 

(5-13) 

where Tx,y is the temperature along the surface, T∞ is the ambient temperature away from 

the plate, Ts is the plate surface temperature, and y is the vertical distance from the base of 

the plate. The thermal boundary layer thickness δ is given by equation 5-12, x is the 

horizontal distance from the edge of the base, Pr is the Prandtl number, Grx is the local 

Grashof number, β is the thermal coefficient of expansion and ν is the kinematic 

viscosity. Equation 5-11 only provides the temperature profile for a surface above the 

horizontal plate from the edge towards the midpoint of the plate. To obtain the complete 

temperature profile above the horizontal plate, equation 5-11 was rotated around the 

center of the plate, which sweeps the complete horizontal plate. The temperature profile 

obtained from equation 5-11 was compared with a 3D model developed in Ansys Icepak 

for laminar natural convection as illustrated in Figure 39. The temperature profile above 

the heat sink compares fairly well with the 3-D model temperature profiles up until a 
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height of approximately 6 mm. The temperature profile obtained using equation 5-11 

mostly overestimates the ambient temperature compared to the 3-D model, which serves 

to make the overall model more conservative. The corresponding temperature above the 

base was used as the input into the ambient temperature for the fin model, which was 

established based on the location of the fin. A microwire located at the edge of the base 

would experience adjacent fluid temperature smaller than that of a microwire located at 

the center of the base. 

 
Figure 39: Temperature comparison along a horizontal line using the analytical 

equation 5-11 and a 3-D Icepak simulation at heights above the plate of (a) 1mm (b) 

2mm (c) 3mm and (d) 4mm. 

 

 

 



82 

 

 

Model Assumptions 

The model has some simplifying assumptions, which are listed below. 

1) The model assumes the heat source is a thermal reservoir, such that the base of the 

heat sink can be maintained at a constant temperature, this means that there is no 

lateral heat spreading effects along the base. This assumption is required as more 

heat is transferred from the corner fins, as they are influenced less by the thermal 

plume of the base. As the corner fins transfer more heat, lateral heat variations are 

to be expected if the heat sink is not attached to a thermal reservoir. 

2) The boundary layer of the microwire has little influence on the ambient 

temperature surrounding the fins, which is justified based on the small thicknesses 

of the boundary layer data available from Guan et al.[49]. 

3) Each heat sink fin is treated as an individual fin, where the convection coefficient 

of one fin is not influenced by the heat transfer from the adjacent fin. To make 

this assumption a minimum fin spacing condition was established allowing each 

fin to be treated as an individual extended surface. 

4) The microwire convection coefficients are used as the convection coefficient for 

the heat sink fins, which are of microscale order. 

5) The heat transfer from the unfinned base area affects the ambient temperature and 

is captured in the model. 

6) The model does not take into account the structural stability of the microwires and 

only considers the heat transfer process. 
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TEG- Microwire Heat Sink Model for Harvesting Waste Heat from the Human 

Body 

The heat sinks designed in Chapter 4 provide limited heat transfer and are quite 

bulky. The microwire heat sinks provide better thermal performance while providing a 

compact heat sink which can be implemented with a TEG to harvest waste heat from the 

body. The following sections detail the design of a microwire heat sink to be placed on 

the cold side of the TEG to harvest waste body heat. A theoretical microwire heat sink 

design is suggested with a large fin height-to-diameter ratio. A more practical design is 

suggested while capping the height-to-diameter ratio to 20. The TEG-Microwire Heat 

Sink model is similar to the model described in section 0 and described in Figure 34, 

where this model uses microwires as the heat sink fins. 

Microwire Heat Sink Optimization  

The microwire heat sink was optimized to minimize thermal resistance, for 

temperature differences of 1°C and 5°C. Copper was chosen as the heat sink base and 

microwire material as it has a thermal conductivity of approximately 401 W/m-K at room 

temperature. Similar to the previous section, a heat sink base area of 4 cm x 4 cm was 

chosen to match the surface area of a conventional module. The microwire fin height, 

diameter and fin packing fraction were optimized to obtain the lowest possible thermal 

resistance for the heat sink. The following table lists the optimization parameters. 
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Table 8 Heat sink optimization parameters 

Parameter Value 

Fin Diameter  10 µm, 50µm, 100 µm 

Fin Height 1 mm , 2 mm, 3 mm, 4 mm, 5 mm 

Fin Packing Fraction [10 µm, 50 µm 

and 100 µm] 0.9 % - 1.9 %, 1.2%, 2.2% 

 

The fin height was optimized for a fixed fin diameter of 10 µm and packing fraction 

of 1.9%. As shown in Figure 40, the thermal resistance reaches diminishing returns for a 

fin height of 3 mm. This observation is explained by shrinking fin efficiencies, although 

the fin material is composed of Copper, the large convection coefficients and small cross-

sectional areas result in smaller fin efficiencies. At a fin height of 3 mm, a thermal 

resistance of 0.821 K/W is obtained for a temperature difference of 1°C compared to 

thermal resistances of 0.776 K/W at 4 mm and 0.760 K/W at 5 mm. Similarly, for a 

temperature difference of 5°C a fin height of 3 mm results in a thermal resistance of 

0.706 K/W compared to thermal resistances of 0.673 K/W at 4 mm and 0.664 at 5 mm. 

The proposed fin heights for a fin diameter of 10 µm suggest fin diameter to height ratios 

of 100 to 500 for the optimized fin heights. These height-to-diameter ratios could be 

difficult to manufacture and have little structural integrity. 
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Figure 40: Heat sink thermal resistance variation with fin height for a fin diameter 

of 10 µm and packing fraction of 1.9%. 

Similarly, the fin diameter and packing fractions were optimized for a fixed fin 

height of 3 mm. The fin packing fraction is capped to a maximum of 1.9% for the 10 µm 

heat sink and 2.2 % for the 50 µm and 100 µm heat sinks. The packing fraction is 

restricted by the spacing limit requirement between the fins, which was explained 

previously. The thermal resistances of varied fin diameters and packing fractions are 

compared for a temperature difference of 1 °C and 5°C. The heat sinks with a pin 

diameter of 10µm provide smaller thermal resistances compared to the 50 µm and 100 

µm heat sink as shown in Figure 41. This is attributable to the much larger convection 

coefficient for the 10 µm fin diameter of 982.4 W/m2-K compared to 277.5 W/m2-K for 

the 50 µm fin diameter and 166.4 W/m2-K for the 100 µm fin diameter. 
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Figure 41: Thermal resistance variation of the heat sink with fin diameter and 

packing fraction variation for a fin height of 3mm (a) Base-Ambient temperature 

difference of 1 °C and (b) Base – Ambient temperature difference of 5 °C. 

A minimum thermal resistance of 0.820 K/W is obtained for a temperature 

difference of 1°C, and a minimum thermal resistance of 0.706 K/W is obtained for a 

temperature difference of 5°C for the optimized heat sink design parameters listed in 

Table 9. 

Table 9 Optimized heat sink parameters of the theoretical heat sink 

Parameter Value 

Heat Exchanger Base Area  40 mm x 40 mm 

Heat Exchanger Base Thickness 0.5 mm 

Fin Diameter 10 µm 

Fin Height 3 mm 

Fin Packing Fraction  1.9 % 
 

A comparison of the microwire heat sink to the horizontal base pin fin heat sink can 

be found in Table 10. It is important to note that the macro-scale heat sink had a pin 

height of 3 cm compared to the micro-scale pin height of 3mm; therefore, a normalizing 



87 

 

 

parameter was developed by accounting for the different fin heights. The adjusted 

thermal resistance was obtained by multiplying the thermal resistance by the fin height. 

Table 10 Thermal resistance comparison for a micro-scale heat sink and 

horizontal base pin fin heat sink 

Heat Sink 

Type 

Thermal 

Resistance  
ΔT = 1°C 

Adjusted 

Thermal 

Resistance  
ΔT = 1°C 

Thermal 

Resistance  
ΔT = 5°C 

Adjusted 

Thermal 

Resistance  
ΔT = 5°C 

Macro-scale 28.68 K/W 77.05 K-cm/W 12.90 K/W 38.70 K-cm/W 

Micro-scale 0.820 K/W 0.246 K-cm/W 0.706 K/W 0.212 K-cm/W 

 

The microwire heat sink design suggested in Table 9 has a fin height to diameter 

ratio of 300, which could be difficult to manufacture through additive manufacturing. A 

practical heat sink design is implemented by restricting the pin height to diameter ratio to 

20. The thermal resistances are significantly higher than the theoretical minimum as 

displayed by Figure 42. The 10-µm diameter fin heat sinks are now ineffective, as at their 

height of 200 µm is fully bathed in the thermal plume created by heat transfer from the 

base. The lack of a significant temperature difference limits heat flow from the fins, 

regardless of the high convection coefficient. The 100 µm heat sink has the lowest 

thermal resistance with a packing fraction of 2.2%, as the pin height is 2mm, where it is 

not affected by the thermal plume of the base to the extent the 10µm diameter heatsinks 

are. 
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Figure 42: Thermal resistance variation of the heat sink with fin diameter and 

packing fraction variation for a fin height to diameter ratio of 20 for (a) Base-Ambient 

temperature difference of 1 °C and (b) Base – Ambient temperature difference of 5 

°C. 

The optimized parameters for the practical heat sink are listed in the table below 

with a minimum thermal resistance of 16.35 K/W for a temperature difference of  1°C 

and a minimum thermal resistance of 13.41 K/W for a temperature difference of 5°C. 

Table 11 Optimized heat sink parameters of the practical heat sink 

Parameter Value 

Heat Exchanger Base Area  40 mm x 40 mm 

Heat Exchanger Base Thickness 0.5 mm 

Fin Diameter 100 µm 

Fin Height 2 mm 

Fin Packing Fraction  2.2% 
 

TEG Optimization 

The principle of thermal impedance matching is used to design the thermoelectric 

generator, similar to the TEG designed in Chapter 4. The thermal resistance of the 

module is varied by adjusting the thermoelectric leg height. The leg packing fraction, 
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which is the ratio of the leg area to the base area, was held constant. The maximum 

power density of 66.13µW/cm2 was obtained for a leg height of 0.5 mm as illustrated in  

Figure 43 for the theoretical design. The heat flow from the body was 11.81 mW/cm2 -

when the maximum power was obtained . For the practical heat sink design a maximum 

power density of 49.14 µW/cm2  for a leg height of 0.65 mm, with a heat flow of 8.91 

mW/cm2 was achieved. 

 
Figure 43: Power Density using the TEG Heat Sink model using the two different 

heat sink designs established in Table 9 and Table 11. The thermal resistance of the 

TEG was varied by changing the leg height while holding the packing fraction 

constant at 0.63%. 

The larger power density for the theoretical design stems from the better thermal 

performance of the heat sink, which allows more heat to be transferred from the body and 

through the TEG. However, the improvements in thermal resistance of the theoretical 

design are not matched by increased power density in the combined TEG system. This 
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observation is explained by the thermal resistance of the human skin (and the contact 

resistance between the TEG and skin) limiting heat flow from the human body. 

The power density of the practical design is larger than the maximum power 

density obtained by combining a macro-scale natural convection heat sink to a TEG 

which was obtained in section 0. Furthermore, the microwire heat sink occupies a smaller 

volume when compared to the macro-scale heat sink. The results from this work are 

compared to that of other similar works. Table 12 compares both the base area power 

density and volumetric power density. The base area power density is the ratio of the 

thermoelectric power generated to the base area of the TEG-heat sink, while the 

volumetric power density is the ratio of the thermoelectric power generated to the volume 

of the complete TEG-heat sink system. 

Table 12 A comparison of the power density by the base area utilized by a 

complete TEG-Heat Sink device for similar works, along with a comparison of the 

power density by considering the overall volume of a TEG-Heat Sink device when a 

fair comparison was viable. 

Ref. 
Base Area Power 

Density [µW/cm
2
] 

Volumetric Power Density 

[µW/cm
3
] 

Theoretical HS 66.13 165.33 
Practical HS 49.137 156.0 

[6] 20.00 22.22 
[7] 30.00 20.00 
[41] 0.44 0.30 
[44] 28.50 57.00 
[45] 6.1 50.83 
[46] 60.00 10.00 
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CONCLUSIONS AND FUTURE WORK 

Conclusions 

Temperature Dependent Finite Element Model for a Thermoelectric Module 

The temperature dependent finite element model developed can be used as a 

starting point for the design of a thermoelectric module. The model was validated using a 

3-D model in an ANSYS environment for three popular thermoelectric materials and a 

number of temperature differences pertaining to the operating temperature of the 

materials. The thermoelectric power estimation of the model performs reasonably well 

considering the assumptions made in the model with the largest average percent error of 

11.93 % obtained for the Half-Heusler alloy model. 

Improvements to the unicouple design are suggested by using a ceramic material 

composed of a higher thermal conductivity compared to the standard ceramic material 

used in a unicouple. The power generated was found to be improved by a factor of 1.34 

for a unicouple with a ceramic composed of Beryllia compared to a unicouple with a 

ceramic of Alumina, when a temperature difference of 500°C is applied across the 

unicouple.  

The model developed was used to examine segmented unicouples, which can be 

used to obtain increased power and efficiency. For a temperature difference of 580 °C a 

unicouple composed of the Half-Heusler alloy and Bi2Te3 material produced 16% more 

power and was 61% more efficient compared to a unicouple composed of only the Half-

Heusler alloy. Similarly, a unicouple made of the PbTe material and Bi2Te3 material 
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produced 49.5 % more power and was 65.5 % more efficient compared to a unicouple 

made of only the PbTe material. 

TEG – Heat Exchanger Model 

The heat exchanger model developed is used in combination with the 

thermoelectric module model to compose a complete thermoelectric system. The heat 

exchanger model was compared to a 3D model developed in ANSYS Icepak. The work 

done on the heat exchanger model examines the convection heat transfer coefficient used 

in heat exchangers by implementing a duct convection coefficient for the model and a 

compact heat exchanger convection coefficient. The results using the two convection 

coefficients are compared, where the results indicate that the compact heat exchanger 

convection coefficient provides more accurate results compared to the model using the 

duct convection coefficient. 

TEG – Natural Convection Heat Sink Model 

Natural convection heat sinks to be implemented with TEGs are examined. Three 

different natural convection heat sinks are examined considering the fin type and 

orientation with regards to the gravitational field. The heat sinks are then optimized and 

applied to harvest waste heat from a pipe in a nuclear power plant. The optimized TEG-

Heat Sink system produces a power density of 133 mW/cm2 for a module composed of 

Bi2Te3 which can be used to power a wireless sensor node making the sensor node fully 

autonomous. Further application of a TEG-Heat Sink system is used to harvest waste 

body heat. An optimized system produces a power density of 44.82 µW/cm2 for a TEG 

attached to a vertical plate fin heat sink and a power density of 45.69 µW/cm2 for a TEG 

attached to a horizontal base pin fin heat sink. 
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Natural Convection Microwire Heat Sink 

A numerical model for a heat sink composed of microwires has been developed. 

The heat sink model was then used to optimize a heat sink to harvest waste heat from the 

human body by placing the heat sink on the cold side of TEG. Two heat sink designs are 

suggested, one a theoretical design, and a more practical design whose height is restricted 

by a fin height to diameter ratio. When the theoretical heat sink design is used with a 

TEG a maximum power density of 66.13 µW/cm2 is acquired, while the TEG combined 

with the practical design suggested acheieves a maximum power density of 49.14 

µW/cm2. The power density from both TEG- Heat sink designs are larger than the power 

density obtained from a TEG- Macro scale heat sink obtained in Chapter 4. Furthermore, 

the microwire heat sink provides a more compact design, which is important when 

harvesting waste heat from the human body. 

Future Work 

Temperature Dependent Finite Element Model for a Thermoelectric Module 

The available model could be improved to account for radiation and convection 

losses from the surfaces of the unicouple. Furthermore, the model could be improved to 

incorporate 3-D heat diffusion effects, which diminish the accuracy of the model. 

Furthermore, the available model could be used to study the thermal stress developed in 

the unicouple due to the large temperatures experienced. 

TEG – Heat Exchanger Model 

The pressure drop across the heat exchanger is an important parameter in the heat 

exchanger design. The model could be improved to perform pressure drop calculations 

for a given heat exchanger design. Using the pressure drop values the net power 
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generated from a complete heat exchanger system could be obtained to evaluate the 

complete TEG – Heat exchanger design. 

Natural Convection Microwire Heat Sink 

The natural convection microwire heat sink has a number of limiting assumptions. 

The model developed is only valid when the heat sink base can be maintained at a constant 

temperature. The model could be improved to account for when this condition cannot be 

met. Which would require the model to consider lateral heat spreading in the base. 

Furthermore, the current model considers a heat sink with a horizontal base with vertical 

pins. Future work could examine the model for a vertical base plate, where the microwire 

fins are horizontal to the gravitational field. Although it was stated that the convection 

microwire convection coefficient are not influenced by orientation, the thermal boundary 

layer developed by the base plate is dependent upon its orientation to the gravitational field. 

Finally, the model could be used to obtain data for numerous designs with varied fin 

diameters, packing fractions and fin heights. Using the collected data, convection heat 

transfer coefficients could be developed for the complete heat sink considering heat flow, 

base to ambient temperature difference and total heat sink surface area.
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ANSYS Model for Thermoelectric Unicouple 

The ANSYS model developed in Chapter 2 is described as follows. The 

dimensions of the individual components are the same as that listed in Table 1. A mesh 

with 98186 nodes and 19359 elements was used, a refined mesh was used as the 

calculations were used to validate the 1-D finite element model. The following figure 

illustrates the mesh used. 

 
Figure 44: Mesh used in the 3-D ANSYS model. 

The boundary conditions applied to the finite element were applied to the ANSYS 

model, where the top of the unicouple is assumed to be at a constant hot side temperature, 

and the bottom of the unicouple is assumed to be at a constant cold side temperature as 

shown in the following figure. Additionaly, the bottom copper header attached to the n-

leg was assigned a zero voltage boundary condition. 
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Figure 45: (a) Top surface boundary condition applied in ANSYS model (b) 

Bottom surface boundary condition applied in ANSYS model. 
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Temperature Dependent Finite Element Model for a Thermoelectric Unicouple 

Matlab Code 

%% Finite Element Model for TE Unicouple 
% Pasindu Gamarachchi - Email: pgamarachchi@gmail.com 

  
clc  
clear all 

  
% Naming Convention 
% property/leg/otherconsideration   no slashes 

  
% Nodes and Elements 
elems =100; %  
numn = 2*elems +1; 

  
% Input Temperatures 
Th = 600; 
Tc = 100;    

  

  
% Dimensions 

  
% N - Leg 
hn = (1.7*10^-3); 
ln = 2.0*10^-3;  
tn = 2.0*10^-3; 
% P - Leg 

  
hp = (1.7*10^-3);  
lp = 2.0*10^-3;  
tp = 2.0*10^-3 ;  

  

  
%  T3 - Copper 
t3w = 1.93*10^-3; 
t3l = 1.96*10^-3; 
t3t = 0.2032*10^-3; 

  
% T2 - Ceramic 
t2w = 4.51*10^-3; 
t2l = 2.26*10^-3; 
t2t = 0.635*10^-3; 
% it2t = t2t; 

  
% T1 - Copper 
t1w = 4.21*10^-3; 
t1l = 1.96*10^-3; 
t1t = 0.2032*10^-3; 

  
% B3 - Copper 
b3w = 8.50*10^-3; 
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b3l = 1.96*10^-3; 
b3t = 0.2032*10^-3; 

  
% B2- Ceramic 
b2w = 8.81*10^-3; 
b2l = 2.26*10^-3; 
b2t = 0.635*10^-3; 

  
% B1 - Copper 
b1w = 4.07*10^-3; 
b1l = 1.96*10^-3; 
b1t = 0.2032*10^-3; 

  
ws = warning('off', 'all'); 

  
% Temperature Dependent properties 
syms T 

  
% Seebeck - N  
TNS = [ 20 ,50, 100, 200, 300, 400, 500, 600 ]; 
SN = [ -0.000135243, -0.000142471, -0.000153643, -0.000171607, -

0.000187049, -0.000202244, -0.000211448, -0.000217053]; 
CNS = polyfit( TNS, SN, 6); 
snf = int ( CNS(1)*T^6 + CNS(2)*T^5 + CNS(3)*T^4 + CNS(4)*T^3 + 

CNS(5)*T^2 + CNS(6)*T + CNS(7)); 

  
% Electrical - N  
TNP = [ 20 ,50, 100, 200, 300, 400, 500, 600 ]; 
PN = [ 6.56786E-06, 6.7325E-06, 7.03657E-06, 7.60784E-06, 8.0957E-06, 

8.4766E-06, 8.6924E-06, 8.77723E-06]; 
CNP = polyfit( TNS, PN, 6); 
pnf = int ( CNP(1)*T^6 + CNP(2)*T^5 + CNP(3)*T^4 + CNP(4)*T^3 + 

CNP(5)*T^2 + CNP(6)*T + CNP(7)); 

  
% Theramal - N  
TNK = [ 20 ,50, 100, 200, 300, 400, 500, 600 ]; 
KN = [ 5.308966362, 5.001685214, 4.609217214, 4.251736671, 4.069193415, 

3.95510388, 3.962709849, 4.175676981]; 
CNK = polyfit( TNK, KN, 6); 
knf = int ( CNK(1)*T^6 + CNK(2)*T^5 + CNK(3)*T^4 + CNK(4)*T^3 + 

CNK(5)*T^2 + CNK(6)*T + CNK(7)); 

  
% Seebeck - P  
TPS = [ 20 ,50, 100, 200, 300, 400, 500, 600 ]; 
SP = [7.39928E-05, 7.95446E-05, 8.87751E-05, 0.00010694, 0.000125184, 

0.000142737, 0.000161509, 0.00017735 ]; 
CPS = polyfit( TPS, SP, 6); 
spf = int ( CPS(1)*T^6 + CPS(2)*T^5 + CPS(3)*T^4 + CPS(4)*T^3 + 

CPS(5)*T^2 + CPS(6)*T + CPS(7)); 

  
% Electrical - P 
TPP = [ 20 ,50, 100, 200, 300, 400, 500, 600 ]; 
PP = [1.97399E-06, 2.13811E-06, 2.46366E-06, 3.18329E-06, 4.01544E-06, 

4.92E-06, 5.85437E-06, 6.7556E-06 ]; 
CPP = polyfit( TPP, PP, 6); 
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ppf = int ( CPP(1)*T^6 + CPP(2)*T^5 + CPP(3)*T^4 + CPP(4)*T^3 + 

CPP(5)*T^2 + CPP(6)*T + CPP(7)); 

  
% Thermal - P 
TPK = [ 20 ,50, 100, 200, 300, 400, 500, 600 ]; 
KP = [7.533937719, 7.251196645, 6.711129425, 5.980450245, 5.438397484, 

5.05121694, 4.773241165, 4.550860545]; 
CPK = polyfit( TPK, KP, 6); 
kpf = int ( CPK(1)*T^6 + CPK(2)*T^5 + CPK(3)*T^4 + CPK(4)*T^3 + 

CPK(5)*T^2 + CPK(6)*T + CPK(7)); 

  

  
% Conductivity Copper 102  
TCK = [2.85, 27.85, 77.85, 127.85, 177.85, 227.85, 277.85 , 327.85, 

377.85, 427.85, 477.85, 527.85, 577.85, 627.85, 677.85, 727.85, 777.85, 

827.85, 877.85, 927.85, 977.85, 1027.85, 1077.85, 1084.85 ]; 
KC = [388.23 ,386.52 ,385.47, 384.59, 383.6, 382.34, 380.69, 378.59, 

376.06, 373.12, 369.85, 366.33, 362.67, 358.98, 355.33, 351.8, 348.44, 

345.26, 342.2, 339.16, 335.98, 332.39, 328.07,327.39]; 
CCK = polyfit( TCK, KC, 4); 
kcf = int ( CCK(1)*T^4 + CCK(2)*T^3 + CCK(3)*T^2 + CCK(4)*T + CCK(5)); 

  
% Resistivity Copper 102  
TCP = [0, 19.85, 26.85, 76.85, 126.85, 226.85, 326.85, 426.85, 526.85, 

626.85, 726.85, 826.85, 926.85, 1026.85, 1084.45 ]; 
PC = [1.5430E-08    1.6780E-08  1.7250E-08  2.0630E-08  2.4020E-08  

3.0900E-08  3.7920E-08  4.5140E-08  5.2620E-08  6.0410E-08  6.8580E-08  

7.7170E-08  8.6260E-08  9.5920E-08  1.0171E-07]; 
CCP = polyfit( TCP, PC, 4); 
pcf = int ( CCP(1)*T^4 + CCP(2)*T^3 + CCP(3)*T^2 + CCP(4)*T + CCP(5)); 

  
% Conductivity Al2O3 
TAK = [19.85 ,37.8298, 55.8096, 73.78939, 91.76919, 109.749, 127.7288, 

145.7086, 163.6884, 181.6682, 199.648, 217.6278, 235.6076, 253.5874, 

271.5672, 289.547, 307.5268, 325.5066, 343.4864, 361.4662 ... 
    379.446, 397.4258, 415.4056, 433.3854, 451.3652, 469.3449, 

487.3247, 505.3045, 523.2843, 541.2641, 559.2439,577.2237, 595.2035, 

613.1833, 631.1631, 649.1429, 667.1227, 685.1025, 703.0823, 721.0621 

... 
    739.0419, 757.0217, 775.0015, 792.9813, 810.9611, 828.9409, 

846.9207, 864.9005, 882.8803, 900.8601, 918.8399, 936.8197, 954.7995,   

972.7793,   990.7591,   1008.739,   1026.719,   1044.698,   1062.678 

... 
    1080.658    1098.638    1116.618    1134.597    1152.577    

1170.557    1188.537    1206.517    1224.496    1242.476    1260.456    

1278.436    1296.416    1314.395    1332.375    1350.355    1368.335 

... 
    1386.315    1404.294    1422.274    1440.254    1458.234    

1476.214    1494.193    1512.173    1530.153    1548.133    1566.113    

1584.092    1602.072    1620.052    1638.032    1656.012    1673.991 

... 
    1691.971    1709.951    1727.931    1745.911    1763.89 1781.87 

1799.85]; 

  
KA = [35.4396   33.51727    31.9325 30.42353    28.98777    27.6227 

26.32582    25.0947 23.92694    22.82018    21.77212    20.78048    
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19.84306    18.95768    18.1222 17.33454    16.59267    15.89457    

15.23832 ... 
    14.62198    14.04371    13.50169    12.99413    12.51932    

12.07557    11.66125    11.27474    10.91452    10.57906    10.26692    

9.976668    9.70694 9.456409    9.223791    9.007849    8.80739 

8.621267    ... 
    8.448375    8.287655    8.138092    7.998718    7.868607    

7.746878    7.632696    7.525269    7.42385 7.327738    7.236275    

7.148849    7.064891    6.983877    6.90533 6.828814    6.75394 

6.680364    6.607784 ... 
    6.535945    6.464636    6.393691    6.322987    6.252448    6.18204 

6.111777    6.041714    5.971953    5.902639    5.833964    5.766163    

5.699515    5.634345    5.571022    5.509959    5.451616    5.396494 

... 
    5.345142    5.298152    5.25616 5.219848    5.189943    5.167214    

5.152478    5.146594    5.150467    5.165047    5.191326    5.230344    

5.283184    5.350973    5.434884    5.536134    5.655984    5.795741 

... 
    5.956756    6.140425    6.348187    6.581527    6.841975    

7.131104    7.450535    7.801928 ]; 
CAK = polyfit( TAK, KA, 4); 
kaf = int ( CAK(1)*T^4 + CAK(2)*T^3 + CAK(3)*T^2 + CAK(4)*T + CAK(5)); 

  

  
syms kn kp sn sp pp pn T % k: Conductivity, s: Seebeck, p: resistivity, 

p: p-leg, n:n-leg 

  

  
kn = symfun( knf, T); % Temperature dependent k for n-leg 
kp = symfun (kpf, T); % Temperature dependent k for p-leg 
sn = symfun (snf, T); % Temperature dependent s for n-leg 
sp = symfun (spf, T); % Temperature dependent k for p-leg 
pp = symfun (ppf, T); % Temperature dependent k for p-leg 
pn = symfun (pnf, T); % Temperature dependent k for p-leg 
kc = symfun (kcf, T); % Temperature dependent k for Copper 102 
pc = symfun (pcf, T); % Temperature dependent p for Copper 102 
ka = symfun (kaf, T); % Temperature dependent k for Al2O3 

  

  
% Integral Averages for initial Temperature profile 

  
knm = (kn(Th) - kn (Tc))/(Th-Tc); 
knm = double(knm); 
kpm = (kp(Th) - kp (Tc))/(Th-Tc); 
kpm = double(kpm); 
snm =  (sn(Th) - sn(Tc))/(Th-Tc); 
snm = double(snm); 
spm =  (sp(Th) - sp(Tc))/(Th-Tc); 
spm = double(spm); 
ppm =  (pp(Th) - pp(Tc))/(Th-Tc); 
ppm = double(ppm); 
pnm =  (pn(Th) - pn(Tc))/(Th-Tc); 
pnm = double(pnm); 

  
kcm =  (kc(Th) - kc(Tc))/(Th-Tc); 
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kcm = double(kcm); 
pcm =  (pc(Th) - pc(Tc))/(Th-Tc); 
pcm = double(pcm); 

  
kam =  (ka(Th) - ka(Tc))/(Th-Tc); 
kam = double(kam); 

  

  

  

  
% Thermal Circuit for initial temperature profile 
rc1 = (t3t/(kcm*t3l*t3w/2)); 
ra1 = (t2t/(kam*t2l*t2w/2)); 
rc2 = (t1t/(kcm*t1l*t1w/2)); 
cp =  (kpm* lp*tp)/hp;   
rthp = 1/cp; 
cn =  (knm* ln*tn)/hn;  
rthn = 1/cn; 
RLegs = 1/(cp +cn); 

  
ra2 = (b2t/(kam.*b2l*b2w/2)); 
rc3 = (b1t/(kcm*b1l*b1w/2)); 
rc4 = (b3t/(kcm*b3l*b3w/2)); 

  
Rtot = rc1 + ra1 + rc2 + RLegs + rc3 + ra2 + rc4; 

  
P1 = rc1/Rtot; 
P2 = ra1/Rtot; 
P3 = rc2/Rtot; 
P4 = rLegs/Rtot; 
P5 = rc3/Rtot; 
P6 = ra2/Rtot; 
P7 = rc4/Rtot; 

  
DelTP1 =  (P1*(Th-Tc)); 
DelTP2 = (P2*(Th-Tc)); 
DelTP3 = (P3*(Th-Tc)); 
DelTP4 = (P4*(Th-Tc)); 
DelTP5 = (P5*(Th-Tc)); 
DelTP6 = (P6*(Th-Tc)); 
DelTP7 = (P7*(Th-Tc)); 

  

  
DeltT = DelTP1+ DelTP2 + DelTP3+ DelTP4+ DelTP5+ DelTP6 + DelTP7; 

  
Tcu1 = Th - DelTP1; 
Ta1 = Tcu1 - DelTP2; 
Tcu2 = Ta1 - DelTP3; 
Tpleg = Tcu2 - DelTP4; 
Tcu3 = Tpleg - DelTP5; 
Ta2 = Tcu3 - DelTP6; 
Tcu4 = Ta2 - DelTP7; 

  
Tp = [ Th Tcu1 Ta1 Tcu2 Tpleg Tcu3 Ta2  Tc]; 
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TotalHeight = t3t + hp + t2t + t1t + b3t + b2t + b1t; 

  
t3telems = round((t3t/TotalHeight)*elems); 
t2telems = round((t2t/TotalHeight)*elems); 
t1telems = round((t1t/TotalHeight)*elems); 
hpelems = round((hp/TotalHeight)*elems); 
b3telems = round((b3t/TotalHeight)*elems); 
b2telems = round((b2t/TotalHeight)*elems); 
b1telems = round((b1t/TotalHeight)*elems); 
summedelems = sum([t3telems , t2telems, t1telems, hpelems, b3telems, 

b2telems ,b1telems]); 

  
while ( summedelems ~= elems) 

  
    if (summedelems > elems & t3telems > b3telems) 
        t3telems = t3telems -1; 
        summedelems = sum([t3telems , t2telems, t1telems, hpelems, 

b3telems, b2telems ,b1telems]); 
    elseif (summedelems > elems) 
        b3telems = b3telems -1; 
        summedelems = sum([t3telems , t2telems, t1telems, hpelems, 

b3telems, b2telems ,b1telems]); 
    elseif (summedelems < elems & t3telems > b3telems) 
        b3telems = b3telems +1; 
        summedelems = sum([t3telems , t2telems, t1telems, hpelems, 

b3telems, b2telems ,b1telems]); 
    else 
        t3telems = t3telems +1; 
        summedelems = sum([t3telems , t2telems, t1telems, hpelems, 

b3telems, b2telems ,b1telems]); 

  
    end 
end 

  

  
for i = 1: t3telems  

     
    dt = (Th - Tcu1)/t3telems; 
    T_t3t(i+1) = Th - dt*(i); 

     
end 
T_t3t(1) = Th; 

  
for i = 1: t2telems  

     
    dt = (Tcu1 - Ta1)/t2telems; 
    T_t2t(i+1) = Tcu1 - dt*(i); 

     
end 
T_t2t(1) = Tcu1; 

  
for i = 1: t1telems  



111 

 

 

     
    dt = (Ta1 - Tcu2)/t1telems; 
    T_t1t(i+1) = Tcu2 - dt*(i); 

     
end 
T_t1t(1) = Ta1; 

  
for i = 1: hpelems  

     
    dt = (Tcu2 - Tpleg)/hpelems; 
    T_hp(i+1) = Tcu2 - dt*(i); 

     
end 
T_hp(1) = Tcu2; 

  
for i = 1: b1telems  

     
    dt = (Tpleg - Tcu3)/b1telems; 
    T_b1t(i+1) = Tpleg - dt*(i); 

     
end 
T_b1t(1) = Tpleg; 

  

  
for i = 1: b2telems  

     
    dt = (Tcu3 - Ta2)/b2telems; 
    T_b2t(i+1) = Tcu3 - dt*(i); 

     
end 
T_b2t(1) = Tcu3; 

  
for i = 1: b3telems  

     
    dt = (Ta2 - Tc)/b3telems; 
    T_b3t(i+1) = Ta2 - dt*(i); 

     
End 

T_b3t(1) = Ta2; 
T_b3t(end) = Tc; 

  

  
Tp = [ T_t3t T_t2t T_t1t T_hp T_b1t T_b2t T_b3t ]; 

  

  
ppm =  (pp(T_hp(1)) - pp(T_hp(end)))/(T_hp(1)-T_hp(end)); 
ppm = double(ppm); 
pnm =  (pn(T_hp(1)) - pn(T_hp(end)))/(T_hp(1)-T_hp(end)); 
pnm = double(pnm); 

  
rp = (ppm * hp )/(lp*tp);  
rn = (pnm * hn )/(ln*tn);  
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pt1tm =  (pc(T_t1t(1)) - pc(T_t1t(end)))/(T_t1t(1) - T_t1t(end) ); 
pt1tm = double(pt1tm); 

  
pb1tpm =  (pc(T_b1t(1)) - pc(T_b1t(end)))/(T_b1t(1) - T_b1t(end) ); 
pb1tpm = double(pb1tpm); 

  
pb1tnm =  (pc(T_b1t(1)) - pc(T_b1t(end)))/(T_b1t(1) - T_b1t(end) ); 
pb1tnm = double(pb1tnm); 

  

  

  
snm =  (sn(T_hp(1)) - sn(T_hp(end)))/(T_hp(1)-T_hp(end)); 
snm = double(snm); 
spm =  (sp(T_hp(1)) - sp(T_hp(end)))/(T_hp(1)-T_hp(end)); 
spm = double(spm); 

  
% Contact Resistance 
C_pho = 10*(10^-6); 
CR_n = C_pho/(tp*100)*(lp*100); 
CR_p = C_pho/(tp*100)*(lp*100); 
CR = 2*(CR_n + CR_p); 

  

  
Rt1t = (pt1tm* t1w)/(t1l*t1t); 
Rb1tp = (pb1tpm* b1w)/(b1l*b1t); 
Rb1tn =  (pb1tnm* b1w)/(b1l*b1t) ; 
Rt = rp +rn + Rt1t + Rb1tp +Rb1tn + CR; 
RL = Rt ;  
R = RL + Rt ;   
S =  spm -snm ;  
I = (S*(T_hp(1) -T_hp(end)))/(R); 

  

  
t1te_h = t1t/t1telems; 

  
Jh_t1t = (I^2)* Rt1t; 
Jh_b1tp = (I^2)*Rb1tp; 
Jh_b1tn = (I^2)*Rb1tn; 

  
Jh_t1t_e = Jh_t1t/(t1telems*2); 
Jh_b1tp_e = Jh_t1t/(b1telems); 
Jh_b1tn_e = Jh_t1t/(b1telems); 

  
shp = hp/hpelems; 
shn = hn/hpelems; 

  
%% Thermoelectric Energy Generation calculations using initial 

temperature profile  guess  
%% to be input into FE calculations 
for j = 1:hpelems 

   
    knm(j) = (kn(T_hp(j)) - kn(T_hp(j+1)))/(T_hp(j)-T_hp(j+1)); 
    kpm(j) = (kp(T_hp(j)) - kp(T_hp(j+1)))/(T_hp(j)-T_hp(j+1)); 

  



113 

 

 

    snm(j) =  (sn(T_hp(j)) - sn(T_hp(j+1)))/(T_hp(j)-T_hp(j+1)); 
    spm(j) =  (sp(T_hp(j)) - sp(T_hp(j+1)))/(T_hp(j)-T_hp(j+1)); 
    ppm(j) =  (pp(T_hp(j)) - pp(T_hp(j+1)))/(T_hp(j)-T_hp(j+1)); 
    pnm(j) =  (pn(T_hp(j)) - pn(T_hp(j+1)))/(T_hp(j)-T_hp(j+1)); 

   

  
    rp1(j) = (ppm(j)* shp )/(lp*tp);  
    rn1(j) = (pnm(j)* shn )/(ln*tn);  
    cp(j) =  (kpm(j)* lp*tp)/shp;  
    cn(j) = (knm(j)* ln*tn)/shn;  

     
    Qhp(j) = spm(j)*T_hp(j)*I + cp(j)*(T_hp(j)-T_hp(j+1))-

(0.5)*(I^2)*rp1(j);  
    Qcp(j) = spm(j)*T_hp(j+1)*I + cp(j)*(T_hp(j)-T_hp(j+1))+ 

0.5*(I^2)*rp1(j);  
    Pp(j) = double((Qhp(j)- Qcp(j))) ; 

    
    Qhn(j) = abs(snm(j))*T_hp(j)*I + cn(j)*(T_hp(j)-T_hp(j+1)) - 

(0.5)*(I^2)*rn1(j) ;  
    Qcn(j) = abs(snm(j))*T_hp(j+1)*I + cn(j)*(T_hp(j)-T_hp(j+1)) + 

0.5*(I^2)*rn1(j) ;  
    Pn(j) = double(Qhn(j)- Qcn(j));  

  

  
end 

  

  
% Temperature Dependent elemental k - matrix 
for i = 1:t3telems  

     
    k_t3tp_e(i) = double((kc(T_t3t(i)) - kc(T_t3t(i+1)))/(T_t3t(i) - 

T_t3t(i+1))); 
    k_t3tn_e(i) = double((kc(T_t3t(i)) - kc(T_t3t(i+1)))/(T_t3t(i) - 

T_t3t(i+1))); 
    A_t3t(i) = t3w*t3l; 

  
end 

  
for i = 1:t2telems  

     
    k_t2tp_e(i) = double((ka(T_t2t(i)) - ka(T_t2t(i+1)))/(T_t2t(i) - 

T_t2t(i+1))); 
    k_t2tn_e(i) = double((ka(T_t2t(i)) - ka(T_t2t(i+1)))/(T_t2t(i) - 

T_t2t(i+1))); 
    A_t2tp(i) = 0.5*(t2w*t2l); 
    A_t2tn(i) = 0.5*(t2w*t2l); 

  
end 

  
for i = 1:t1telems  

     
    k_t1tp_e(i) = double((kc(T_t1t(i)) - kc(T_t1t(i+1)))/(T_t1t(i) - 

T_t1t(i+1))); 
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    k_t1tn_e(i) = double((kc(T_t1t(i)) - kc(T_t1t(i+1)))/(T_t1t(i) - 

T_t1t(i+1))); 
    A_t1tp(i) = 0.5*(t1w*t1l); 
    A_t1tn(i) = 0.5*(t1w*t1l); 
end 

  
for i = 1:hpelems  

     
    k_hp_e(i) = double((kp(T_hp(i)) - kp(T_hp(i+1)))/(T_hp(i) - 

T_hp(i+1))); 
    k_hn_e(i) = double((kn(T_hp(i)) - kn(T_hp(i+1)))/(T_hp(i) - 

T_hp(i+1))); 
    A_p(i) = lp*tp; 
    A_n(i) = ln*tn; 

     

     
end 

  
for i = 1:b1telems  

     
    k_b1tp_e(i) = double((kc(T_b1t(i)) - kc(T_b1t(i+1)))/(T_b1t(i) - 

T_b1t(i+1))); 
    k_b1tn_e(i) = double((kc(T_b1t(i)) - kc(T_b1t(i+1)))/(T_b1t(i) - 

T_b1t(i+1))); 
    A_b1t(i) = b1w*b1l; 
end 

  
for i = 1:b2telems  

     
    k_b2tp_e(i) = double((ka(T_b2t(i)) - ka(T_b2t(i+1)))/(T_b2t(i) - 

T_b2t(i+1))); 
    k_b2tn_e(i) = double((ka(T_b2t(i)) - ka(T_b2t(i+1)))/(T_b2t(i) - 

T_b2t(i+1))); 
    A_b2tp(i) = 0.5*(b2w*b2l); 
    A_b2tn(i) = 0.5*(b2w*b2l); 
end 

  

  
for i = 1:b3telems  

     
    k_b3tp_e(i) = double((kc(T_b3t(i)) - kc(T_b3t(i+1)))/(T_b3t(i) - 

T_b3t(i+1))); 
    k_b3tn_e(i) = double((kc(T_b3t(i)) - kc(T_b3t(i+1)))/(T_b3t(i) - 

T_b3t(i+1))); 
    A_b3tp(i) = 0.5*(b3w*b3l); 
    A_b3tn(i) = 0.5*(b3w*b3l); 

  
end 

  
kp_elems = [ k_t3tp_e, k_t2tp_e, k_t1tp_e, k_hp_e, k_b1tp_e, k_b2tp_e, 

k_b3tp_e]; 
kn_elems = [ k_t3tn_e, k_t2tn_e, k_t1tn_e, k_hn_e, k_b1tn_e, k_b2tn_e, 

k_b3tn_e]; 
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Ap_elems = [ A_t3t, A_t2tp, A_t1tp, A_p, A_b1t, A_b2tp, A_b3tp]; 
An_elems = [ A_t3t, A_t2tn, A_t1tn, A_n, A_b1t, A_b2tn, A_b3tn]; 

  
Kp = sparse(numn, numn); 
Kn = sparse(numn, numn); 

  
el_l = TotalHeight/elems; 

  
%% Global K- Matrix Assembly 
for i=1:2:numn-2 

     
    if (i == 1) 
        j = i ; 
    else 
        j =i-(prvj); 
    end 
    prvj = j; 

     
    ke_p = (kp_elems(j))*(Ap_elems(j))/(6*el_l)*[14, -16, 2; -16, 32, -

16; 2, -16, 14]; 
    ke_n = (kn_elems(j))*(An_elems(j))/(6*el_l)*[14, -16, 2; -16, 32, -

16; 2, -16, 14]; 

     
    dof = [ i, i+1, i+2]; 
    Kp(dof, dof) = ke_p +  Kp(dof, dof); 
    Kn(dof, dof) = ke_n +  Kn(dof, dof); 

  
end 

  
% F - Vector assembly using TE energy generation and joule heating 
C0 = t3telems; 
C1 = t3telems + t2telems;  
C2 = C1 + t1telems;  
C3 = C2 + hpelems;  
C4 = C3 + b1telems;  
C5 = C4 + b2telems; 

  
for i = C1+1: C2 

     
    E_gen_t1t(i) = Jh_t1t_e/(Ap_elems(i) * el_l); 

     
end 

  
for i = 1:hpelems 

  
    E_genp(i) = -Pp(i)/(Ap_elems(i+C2)*el_l); 
    E_genn(i) = -Pn(i)/(Ap_elems(i+C2)*el_l); 

  
end 

  
for i = C3+1: C4 

     
    j= i -C3; 
    E_gen_b1tp(j) = Jh_b1tp_e/(Ap_elems(i)* el_l); 
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    E_gen_b1tn(j) = Jh_b1tn_e/(Ap_elems(i)* el_l); 

  
end 
E_gen_b2t = zeros(b2telems,1)'; 
E_gen_b3t = zeros(b3telems,1)'; 

  
E_Gen_pL = [ E_gen_t1t, E_genp, E_gen_b1tp, E_gen_b2t, E_gen_b3t]; 
E_Gen_nL = [ E_gen_t1t, E_genn, E_gen_b1tn, E_gen_b2t, E_gen_b3t]; 

     
prvj =1; 
for i = 3:2: numn-2 

     
    j = i - prvj; 
    prvj =j; 
    fe_p = (E_Gen_pL(j)*Ap_elems(j)*el_l/6)*[1, 4, 1]'; 
    fe_n = (E_Gen_nL(j)*An_elems(j)*el_l/6)*[1, 4, 1]'; 

  
    dof = [i, i+1, i+2]; 
    F_p(dof) =fe_p; 
    F_p(i) = fe_p(1) + fe_p(3); 

            
    F_n(dof) =fe_n; 
    F_n(i) = fe_n(1) + fe_n(3); 
end 

  
%% Adjusing for Boundary Conditions 
F_p(1) = Th; 
F_n(1) = Th; 
F_p(2) = F_p(2) - Kp(2,1)*Th; 
F_n(2) = F_n(2) - Kn(2,1)*Th; 
F_p(3) = F_p(3) - Kp(3,1)*Th; 
F_n(3) = F_n(3) - Kn(3,1)*Th; 

  
F_p(end-2) = F_p(end -2) - Kp(end-2,end)*Tc; 
F_p(end -1) = F_p(end -1) - Kp(end-1,end)*Tc; 
F_p(end) = Tc; 

  
F_n(end-2) = F_n(end -2) - Kn(end-2,end)*Tc; 
F_n(end -1) = F_n(end -1) - Kn(end-1,end)*Tc; 
F_n(end) = Tc; 

  
for i = 1: numn 
    Kp(numn,i) = 0; 
    Kp(i,numn) = 0; 
    Kp(numn,numn) =1; 
    Kp(1,i) = 0; 
    Kp(i,1) = 0; 

     
    Kn(numn,i) = 0; 
    Kn(i,numn) = 0; 
    Kn(numn,numn) =1; 
    Kn(1,i) = 0; 
    Kn(i,1) = 0; 
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end 
Kp(1,1) =1; 
Kn(1,1) =1; 

  

  
Tempr_p = Kp\F_p'; 
Tempr_n = Kn\F_n'; 

  
F_nold = F_n; 
F_pold = F_p; 

  

  
ppm =  (pp(Tempr_p(C2*2 +1)) - pp(Tempr_p(C3*2 +1)))/(Tempr_p(C2*2 +1)-

Tempr_p(C3*2 +1)); 
ppm = double(ppm); 
pnm =  (pn(Tempr_p(C2*2 +1)) - pn(Tempr_p(C3*2 +1)))/(Tempr_p(C2*2 +1)-

Tempr_p(C3*2 +1)); 
pnm = double(pnm); 

  
pt1tm =  (pc(Tempr_p(C1*2 +1 )) - pc(Tempr_p(C2*2 +1)))/(Tempr_p(C1*2 

+1) - Tempr_p(C2*2 +1) ); 
pt1tm = double(pt1tm); 

  
pb1tpm =  (pc(Tempr_p(C3*2 +1)) - pc(Tempr_p(C4*2 +1)))/(Tempr_p(C3*2 

+1) - Tempr_p(C4*2 +1) ); 
pb1tpm = double(pb1tpm); 

  
pb1tnm =  (pc(Tempr_n(C3*2 +1)) - pc(Tempr_n(C4*2 +1)))/(Tempr_n(C3*2 

+1) - Tempr_n(C4*2 +1) ); 
pb1tnm = double(pb1tnm); 

  
snm =  (sn(Tempr_n(C2*2 +1)) - sn(Tempr_n(C3*2 +1)))/(Tempr_n(C2*2 +1)-

Tempr_n(C3*2 +1)); 
snm = double(snm); 
spm =  (sp(Tempr_p(C2*2 +1)) - sp(Tempr_p(C3*2 +1)))/(Tempr_p(C2*2 +1)-

Tempr_p(C3*2 +1)); 
spm = double(spm); 

  
Rt1t = (pt1tm* t1w)/(t1l*t1t); 
Rb1tp = (pb1tpm* b1w)/(b1l*b1t); 
Rb1tn =  (pb1tnm* b1w)/(b1l*b1t) ; 
Rt = rp +rn + Rt1t + Rb1tp +Rb1tn + CR ; 
RL = Rt ;  
R = RL + Rt ;  

  
S =  spm -snm ; 
Voc_av = S*(Tempr_p(C2*2 +1) -Tempr_p(C3*2 +1)); 
I = S*(Tempr_p(C2*2 +1) -Tempr_p(C3*2 +1))./(R); 

  

  
for k = 1:hpelems 

   
    if ( k ==1) 
        j = C2*2 + 1; 
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    else 
        j = C2*2 +1 + (k-1)*2; 
    end 

     

     

     
    knm(k) = (kn(Tempr_p(j)) - kn(Tempr_p(j+2)))/(Tempr_p(j)-

Tempr_p(j+2)); 
    kpm(k) = (kp(Tempr_p(j)) - kp(Tempr_p(j+2)))/(Tempr_p(j)-

Tempr_p(j+2)); 

  
    snm(k) =  (sn(Tempr_n(j)) - sn(Tempr_n(j+2)))/(Tempr_n(j)-

Tempr_n(j+2)); 
    spm(k) =  (sp(Tempr_p(j)) - sp(Tempr_p(j+2)))/(Tempr_p(j)-

Tempr_p(j+2)); 
    ppm(k) =  (pp(Tempr_p(j)) - pp(Tempr_p(j+2)))/(Tempr_p(j)-

Tempr_p(j+2)); 
    pnm(k) =  (pn(Tempr_n(j)) - pn(Tempr_n(j+2)))/(Tempr_n(j)-

Tempr_n(j+2)); 

  
    rp1(k) = (ppm(k)* shp )/(lp*tp);  
    rn1(k) = (pnm(k)* shn )/(ln*tn);  
    cp(k) =  (kpm(k)* lp*tp)/shp;  
    cn(k) = (knm(k)* ln*tn)/shn;  

     
    V_oc_e(k) = (spm(k)-snm(k))*(Tempr_p(j) -Tempr_p(j+2)); 

     
    Qhp(k) = spm(k)*Tempr_p(j)*I  + cp(k)*(Tempr_p(j)-Tempr_p(j+2))-

(0.5)*(I^2)*rp1(k) ;  
    Qcp(k) = spm(k)*Tempr_p(j+2)*I + cp(k)*(Tempr_p(j)-Tempr_p(j+2))+ 

0.5*(I^2)*rp1(k) ;  
    Pp(k) = double((Qhp(k)- Qcp(k))) ; 

    
    Qhn(k) = abs(snm(k))*Tempr_p(j)*I + cn(k)*(Tempr_p(j)-Tempr_p(j+2)) 

- (0.5)*(I^2)*rn1(k);  
    Qcn(k) = abs(snm(k))*Tempr_p(j+2)*I + cn(k)*(Tempr_p(j)-

Tempr_p(j+2)) + 0.5*(I^2)*rn1(k);  
    Pn(k) = double(Qhn(k)- Qcn(k));  

  
end 

  
%% Iterative Process for Temperature profiles to converge 
it =1; 
cc = 1; 
err = cc*3; % Initalize Error value 
while err > cc 

  
    if it ==1  
        Tempr_p = Tempr_p; 
        Tempr_n = Tempr_n; 
    else 
        Tempr_p = Tempr_p2; 
        Tempr_n = Tempr_n2; 
    end 
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%% Temperature Dependent elemental k - matrix using new Temperature 

profile 
for i = 1:t3telems %  t3t (Very Top Cu Layer) Copper Conductivity and 

Area 

     
    if ( i ==1) 
        j =  1; 
    else 
        j = (i-1)*2 +1; 
    end 

     
    k_t3tp_e(i) = double((kc(Tempr_p(j)) - 

kc(Tempr_p(j+2)))/(Tempr_p(j) - Tempr_p(j+1))); 
    k_t3tn_e(i) = double((kc(Tempr_n(j)) - 

kc(Tempr_n(j+2)))/(Tempr_n(j) - Tempr_n(j+2))); 

   
end 

  
for i = 1:t2telems % t22 Top Alumina Conductivity and Area 

     
     if ( i ==1) 
        j = C0 + 1; 
    else 
        j = C0 +(i-1)*2 +1; 
    end 

     

     
     k_t2tp_e(i) = double((ka(Tempr_p(i)) - 

ka(Tempr_p(i+1)))/(Tempr_p(i) - Tempr_p(i+1))); 
     k_t2tn_e(i) = double((ka(Tempr_n(i)) - 

ka(Tempr_n(i+1)))/(Tempr_n(i) - Tempr_n(i+1))); 

  

  
end 

  
for i = 1:t1telems % t1t ( Copper Layer Connecting Legs ) Conductivity 

and Area 

     
     if ( i ==1) 
        j = C1 + 1; 
    else 
        j = C1 +(i-1)*2 +1; 
    end 

     
     k_t1tp_e(i) = double((kc(Tempr_p(i)) - 

kc(Tempr_p(i+1)))/(Tempr_p(i) - Tempr_p(i+1))); 
     k_t1tn_e(i) = double((kc(Tempr_n(i)) - 

kc(Tempr_n(i+1)))/(Tempr_n(i) - Tempr_n(i+1))); 

   
end 

  
for i = 1:hpelems % Leg conductivity and area 

     
     if ( i ==1) 
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        j = C2 + 1; 
    else 
        j = C2 +(i-1)*2 +1; 
    end 

     
    k_hp_e(i) = double((kp(Tempr_p(i)) - kp(Tempr_p(i+1)))/(Tempr_p(i) 

- Tempr_p(i+1))); 
     k_hn_e(i) = double((kn(Tempr_n(i)) - kn(Tempr_n(i+1)))/(Tempr_n(i) 

- Tempr_n(i+1))); 

  

     
end 

  
for i = 1:b1telems % Bottom Copper Conductivity and Area 

     
    if ( i ==1) 
        j = C3 + 1; 
    else 
        j = C3 +(i-1)*2 +1; 
    end 

     
     k_b1tp_e(i) = double((kc(Tempr_p(i)) - 

kc(Tempr_p(i+1)))/(Tempr_p(i) - Tempr_p(i+1))); 
     k_b1tn_e(i) = double((kc(Tempr_n(i)) - 

kc(Tempr_n(i+1)))/(Tempr_n(i) - Tempr_n(i+1))); 

     
end 

  
for i = 1:b2telems % Bottom Alumina Conductivity and Area 

     
    if ( i ==1) 
        j = C3 + 1; 
    else 
        j = C3 +(i-1)*2 +1; 
    end 

     

     
     k_b2tp_e(i) = double((ka(Tempr_p(i)) - 

ka(Tempr_p(i+1)))/(Tempr_p(i) - Tempr_p(i+1))); 
     k_b2tn_e(i) = double((ka(Tempr_n(i)) - 

ka(Tempr_n(i+1)))/(Tempr_n(i) - Tempr_n(i+1))); 

  
end 

  

  
for i = 1:b3telems % Bottomost Copper Conductivity and Area 

     
    if ( i ==1) 
        j = C4 + 1; 
    else 
        j = C4 +(i-1)*2 +1; 
    end 
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     k_b3tp_e(i) = double((kc(Tempr_p(i)) - 

kc(Tempr_p(i+1)))/(Tempr_p(i) - Tempr_p(i+1))); 
     k_b3tn_e(i) = double((kc(Tempr_n(i)) - 

kc(Tempr_n(i+1)))/(Tempr_n(i) - Tempr_n(i+1))); 

  
end 

  
kp_elems = [ k_t3tp_e, k_t2tp_e, k_t1tp_e, k_hp_e, k_b1tp_e, k_b2tp_e, 

k_b3tp_e]; 
kn_elems = [ k_t3tn_e, k_t2tn_e, k_t1tn_e, k_hn_e, k_b1tn_e, k_b2tn_e, 

k_b3tn_e]; 

  
Ap_elems = [ A_t3t, A_t2tp, A_t1tp, A_p, A_b1t, A_b2tp, A_b3tp]; 
An_elems = [ A_t3t, A_t2tn, A_t1tn, A_n, A_b1t, A_b2tn, A_b3tn]; 

  
Kp = sparse(numn, numn); 
Kn = sparse(numn, numn); 

  
el_l = TotalHeight/elems; 

  
%% Global K- Matrix Assembly 
for i=1:2:numn-2 

     
    if (i == 1) 
        j = i ; 
    else 
        j =i-(prvj); 
    end 
    prvj = j; 

     
    ke_p = (kp_elems(j))*(Ap_elems(j))/(6*el_l)*[14, -16, 2; -16, 32, -

16; 2, -16, 14]; 
    ke_n = (kn_elems(j))*(An_elems(j))/(6*el_l)*[14, -16, 2; -16, 32, -

16; 2, -16, 14]; 

     
    dof = [ i, i+1, i+2]; 
    Kp(dof, dof) = ke_p +  Kp(dof, dof); 
    Kn(dof, dof) = ke_n +  Kn(dof, dof); 

  
end 
F_p = sparse(1,numn); 
F_n = sparse(1,numn); 

  
% F - Vector assembly using TE energy generation and joule heating 
C0 = t3telems; 
C1 = t3telems + t2telems;  
C2 = C1 + t1telems;  
C3 = C2 + hpelems;  
C4 = C3 + b1telems;  
C5 = C4 + b2telems; 

  
for i = C1+1: C2 

     
  E_gen_t1t(i) = Jh_t1t_e/(Ap_elems(i) * el_l); 
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end 

  
for i = 1:hpelems 

  
    E_genp(i) = -Pp(i)/(Ap_elems(i+C2)*el_l); 
    E_genn(i) = -Pn(i)/(Ap_elems(i+C2)*el_l); 

  
end 

  
for i = C3+1: C4 

     
    j= i -C3; 
    E_gen_b1tp(j) = Jh_b1tp_e/(Ap_elems(i)* el_l); 
    E_gen_b1tn(j) = Jh_b1tn_e/(Ap_elems(i)* el_l); 

  
end 
E_gen_b2t = zeros(b2telems,1)'; 
E_gen_b3t = zeros(b3telems,1)'; 

  
E_Gen_pL = [ E_gen_t1t, E_genp, E_gen_b1tp, E_gen_b2t, E_gen_b3t]; 
E_Gen_nL = [ E_gen_t1t, E_genn, E_gen_b1tn, E_gen_b2t, E_gen_b3t]; 

     
prvj =1; 
for i = 3:2: numn-2 

     
    j = i - prvj; 
    prvj =j; 
    fe_p = (E_Gen_pL(j)*Ap_elems(j)*el_l/6)*[1, 4, 1]'; 
    fe_n = (E_Gen_nL(j)*An_elems(j)*el_l/6)*[1, 4, 1]'; 

  
    dof = [i, i+1, i+2]; 
    F_p(dof) =fe_p; 
    F_p(i) = fe_p(1) + fe_p(3); 

            
    F_n(dof) =fe_n; 
    F_n(i) = fe_n(1) + fe_n(3); 
end 

  
%% Adjusing for Boundary Conditions 
F_p(1) = Th; 
F_n(1) = Th; 
F_p(2) = F_p(2) - Kp(2,1)*Th; 
F_n(2) = F_n(2) - Kn(2,1)*Th; 
F_p(3) = F_p(3) - Kp(3,1)*Th; 
F_n(3) = F_n(3) - Kn(3,1)*Th; 

  
F_p(end-2) = F_p(end -2) - Kp(end-2,end)*Tc; 
F_p(end -1) = F_p(end -1) - Kp(end-1,end)*Tc; 
F_p(end) = Tc; 

  
F_n(end-2) = F_n(end -2) - Kn(end-2,end)*Tc; 
F_n(end -1) = F_n(end -1) - Kn(end-1,end)*Tc; 
F_n(end) = Tc; 
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for i = 1: numn 
    Kp(numn,i) = 0; 
    Kp(i,numn) = 0; 
    Kp(numn,numn) =1; 
    Kp(1,i) = 0; 
    Kp(i,1) = 0; 

     
    Kn(numn,i) = 0; 
    Kn(i,numn) = 0; 
    Kn(numn,numn) =1; 
    Kn(1,i) = 0; 
    Kn(i,1) = 0; 

  
end 
Kp(1,1) =1; 
Kn(1,1) =1; 

  

  
Tempr_p2 = Kp\F_p'; 
Tempr_n2 = Kn\F_n'; 

  
diffp = abs(Tempr_p -Tempr_p2) ; 
diffn =  abs(Tempr_n -Tempr_n2); 

  
err = sum(diffp + diffn) 
it = it +1 

  
end 

  

  
%% Thermoelectric Calculations using Final Temperature Profile 
ppm =  (pp(Tempr_p2(C2*2 +1)) - pp(Tempr_p2(C3*2 +1)))/(Tempr_p2(C2*2 

+1)-Tempr_p2(C3*2 +1)); 
ppm = double(ppm); 
pnm =  (pn(Tempr_p2(C2*2 +1)) - pn(Tempr_p2(C3*2 +1)))/(Tempr_p2(C2*2 

+1)-Tempr_p2(C3*2 +1)); 
pnm = double(pnm); 

  
pt1tm =  (pc(Tempr_p2(C1*2 +1 )) - pc(Tempr_p2(C2*2 

+1)))/(Tempr_p2(C1*2 +1) - Tempr_p2(C2*2 +1) ); 
pt1tm = double(pt1tm); 

  
pb1tpm =  (pc(Tempr_p2(C3*2 +1)) - pc(Tempr_p2(C4*2 

+1)))/(Tempr_p2(C3*2 +1) - Tempr_p2(C4*2 +1) ); 
pb1tpm = double(pb1tpm); 

  
pb1tnm =  (pc(Tempr_n2(C3*2 +1)) - pc(Tempr_n2(C4*2 

+1)))/(Tempr_n2(C3*2 +1) - Tempr_n2(C4*2 +1) ); 
pb1tnm = double(pb1tnm); 

  
snm =  (sn(Tempr_n2(C2*2 +1)) - sn(Tempr_n2(C3*2 +1)))/(Tempr_n2(C2*2 

+1)-Tempr_n2(C3*2 +1)); 
snm = double(snm); 
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spm =  (sp(Tempr_p2(C2*2 +1)) - sp(Tempr_p2(C3*2 +1)))/(Tempr_p2(C2*2 

+1)-Tempr_p2(C3*2 +1)); 
spm = double(spm); 

  
Rt1t = (pt1tm* t1w)/(t1l*t1t); 
Rb1tp = (pb1tpm* b1w)/(b1l*b1t); 
Rb1tn =  (pb1tnm* b1w)/(b1l*b1t) ; 
Rt = rp +rn + Rt1t + Rb1tp +Rb1tn + CR ; 
RL = Rt ; 
R = RL + Rt ;  

  
S =  spm -snm ;  
Voc_av = S*(Tempr_p2(C2*2 +1) -Tempr_p2(C3*2 +1)); 
I = S*(Tempr_p2(C2*2 +1) -Tempr_p2(C3*2 +1))./(R); 

  

  
for k = 1:hpelems 

   
    if ( k ==1) 
        j = C2*2 + 1; 
    else 
        j = C2*2 +1 + (k-1)*2; 
    end 

     

     

     
    knm(k) = (kn(Tempr_p2(j)) - kn(Tempr_p2(j+2)))/(Tempr_p2(j)-

Tempr_p2(j+2)); 
    kpm(k) = (kp(Tempr_p2(j)) - kp(Tempr_p2(j+2)))/(Tempr_p2(j)-

Tempr_p2(j+2)); 

  
    snm(k) =  (sn(Tempr_n2(j)) - sn(Tempr_n2(j+2)))/(Tempr_n2(j)-

Tempr_n2(j+2)); 
    spm(k) =  (sp(Tempr_p2(j)) - sp(Tempr_p2(j+2)))/(Tempr_p2(j)-

Tempr_p2(j+2)); 
    ppm(k) =  (pp(Tempr_p2(j)) - pp(Tempr_p2(j+2)))/(Tempr_p2(j)-

Tempr_p2(j+2)); 
    pnm(k) =  (pn(Tempr_n2(j)) - pn(Tempr_n2(j+2)))/(Tempr_n2(j)-

Tempr_n2(j+2)); 

  
    rp1(k) = (ppm(k)* shp )/(lp*tp);   
    rn1(k) = (pnm(k)* shn )/(ln*tn);  
    cp(k) =  (kpm(k)* lp*tp)/shp;  
    cn(k) = (knm(k)* ln*tn)/shn;  

     
    V_oc_e(k) = (spm(k)-snm(k))*(Tempr_p(j) -Tempr_p(j+2)); 

     
    Qhp(k) = spm(k)*Tempr_p2(j)*I  + cp(k)*(Tempr_p2(j)-Tempr_p2(j+2))-

(0.5)*(I^2)*rp1(k) ;  
    Qcp(k) = spm(k)*Tempr_p2(j+2)*I + cp(k)*(Tempr_p2(j)-

Tempr_p2(j+2))+ 0.5*(I^2)*rp1(k) ;  
    Pp(k) = double((Qhp(k)- Qcp(k))) ; 
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    Qhn(k) = abs(snm(k))*Tempr_p2(j)*I + cn(k)*(Tempr_p2(j)-

Tempr_p2(j+2)) - (0.5)*(I^2)*rn1(k);  
    Qcn(k) = abs(snm(k))*Tempr_p2(j+2)*I + cn(k)*(Tempr_p2(j)-

Tempr_p2(j+2)) + 0.5*(I^2)*rn1(k);  
    Pn(k) = double(Qhn(k)- Qcn(k));  

  

  
end 

  
Qhin = max(Qhp) + max(Qhn); 
TotalP = sum(Pp); 
TotalN = sum(Pn); 
Power = TotalP + TotalN - (Rt1t + Rb1tn + Rb1tp + CR)*I^2 
V_oc = sum(V_oc_e); 
Eff = Power*100/Qhin; 
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TEG – Heat Exchanger Model Matlab Code 

 

% Hot Side Heat Exchanger and TE Unicouple model combined 
% Pasindu Gamarachchi - Email: pgamarachchi@gmail.com 
clc 
clear all 

  

  
global hxl hxh hxw N Tin tf TEMW TEML TempC cvl Thg  Tbg mf  

  
% HX Dimensions & Input 
hxl = 0.16;  
hxh = 0.02;  
hxw = 0.04;  
N = 30;  
mf = 0.5*9.7*10^-3;  
Tin = 558;  
tf = 0.1*10^-3;  
s = (hxw - (N.*tf))./(N+1); % Fin Spacing 

  
% TEM Dimensions 

  
TEMW = 40*10^-3; % [m] 
TEML = 40*10^-3; % [m] 

  
TempC = 94; % [C] 

  
cvl = 40*(10^-3);  
cv  = round(hxl./(cvl)); % Number of control volumes 

  
% Guesses and Error 
Err = 0.005; % Convergence Error 
Thg = 5; % Temperature Outlet Guess 
Tbg = 180;  % Base/TEM Hot Side Temperature 
Tdg = 10; 
TempCh = Err*0.9; 
ErrMult = 5; 
DiffLim = 1; 

  
% Fin Material and Fluid Properties 
syms x 
caf = int( 3.134242E-10*x^4 - 8.519344E-07*x^3 + 7.480582E-04*x^2 - 

3.006360E-02*x + 1.007301E+03); % specific Heat of air 
ca =  symfun(caf,x); 
%  
knif = int( -9.32400932E-11*x^4 + 1.13247863E-07*x^3 + 6.33449883E-

05*x^2 -9.47163947E-02*x + 8.13811189E+01); % Thermal Conductivity of 

Nickel 
kni =  symfun(knif,x); 

  
%% 
T = zeros(cv,1); 
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T(1) = Tin; 

  
% Calculations for each control volume 
for j = 1:length(T) 

      

    
    Tin = T(j); 
    Th = Tin; 
    Thi = Tin -Thg; 
    Ti =Tin; 

  
    cam = (ca(Th) - ca(Thi))./(Th-Thi); 
    cam = double(cam); 

   
    cp = cam; 

   
    Tog = Ti - Tdg; 

  
    if j==1; 
        Tb = Ti-Tbg; 
    else 
    end 

     
    [Q,P,Eff] = TEModule(Tb,TempC, Un);% Function with finite element 

unicouple function and number of unicouples 

  
    To = Ti - (Q/(mf*cp)); 
    Pf = 2*(cvl); 
    Af = cvl*tf; 

     
    Tfl = (Ti + To)/2; 

     
    kNim = (kni(Tb) -kni(Tb-10))./(10); 
    kNim = double(kNim); 

  
    % Fin Heat Transfer Calcs 
    [h, v, Re] = convcoeff(Tfl,mf); % Function with Duct Convection 

Coefficient 

     
    M = (sqrt(h*Pf*kNim*Af))*(Ti - Tb); 
    Un_ar = (hxw- tf*N)*cvl; 

      
    m = sqrt((h*Pf)/(kNim*Af)); 
    Qf = M*tanh(m*hxh/2)*((N-1)) + Un_ar*h*(Tb - Tfl) ; 

  
    [QTET, P, Eff] = TEModule(Tb,TempC, Un); 

  
    i=0; 

     
    % Convergence Requirement 
    while abs(Qf-QTET)>Err 

         
        Tb = Tb+(Err); 
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        [h, v, Re]= convcoeffv3(T(j),mf); 
        M = (sqrt(h*Pf*kNim*Af))*((Ti- Tb)); 
        m = sqrt((h*Pf)/(kNim*Af)); 
        Qf = M*tanh(m*hxh/2)*((N-1)) + Un_ar*h*(Tb - Tfl) ; 
        [QTET, P, Eff] = TEModule(Tb,TempC, Un); 

         
        if Qf - QTET> Err & Qf -QTET< (Err*DiffLim)   
            Tb = Tb +(TempCh); 
        elseif Qf - QTET> (Err*DiffLim)  
            Tb  = Tb  + (ErrMult*TempCh); 
        elseif (Qf -QTET ) < (Err*-1) & Qf -QTET > (Err*- DiffLim)  
            Tb = Tb -(TempCh); 
        elseif (Qf - QTET) < (Err*- DiffLim) 
            Tb = Tb -(ErrMult*TempCh); 
        end 
        diff = Qf-QTET; 

  
    end 

     
    progress = j/length(T) 
    QTETv(j) = QTET; 
    Pv (j) = P; 
    Effv(j) = Eff; 

     
    hv(j) = h; 
    vv(j) = v; 
    Rev(j) = Re; 

   
    To = Ti - (Qf./(mf*cp)); 
    Tbv(j) = Tb; 
    Qhv(j) = Qf; 
    T(j+1) = To; 

    
end 
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Compact Heat Exchanger Convection Coefficient Matlab Code 

% Function calculates the convection coefficient along with Velocity 

and 
% Reynolds Number for the hot side of the heat exchanger  
% Pasindu Gamarachchi - Email : pgamarachchi@gmail.com 
 function [h, v, Re] = convcoeff(Th, mf) 

  
 global hxl hxh hxw N tf Thg  

  
Thi = Th - Thg; 

  
%%  Temperature dependent properties 

  
% Density of steam/ Hot side fluid 
 syms x % ps cs ms ks ps  
daf = int(2.876602E-12*x^4 - 7.350893E-09*x^3 + 7.284062E-06*x^2 - 

3.760334E-03*x + 1.251051E+00); 
% Specific Heat Capacity of steam 
caf = int( 3.134242E-10*x^4 - 8.519344E-07*x^3 + 7.480582E-04*x^2 - 

3.006360E-02*x + 1.007301E+03); 
% Dynamic viscocity of Steam 
maf = int(-1.17230617E-17*x^4 +3.14251436E-14*x^3 -3.87294440E-11*x^2 

+4.96283182E-08*x + 1.71301016E-05); 
% Thermal Cond of Steam 
kaf = int(1.146049E-14*x^4 + 5.825050E-12*x^3 - 4.412201E-08*x^2 + 

8.330657E-05*x + 2.396400E-02);   
% Prandtl Number of Steam 
paf = int( 1.946038E-13*x^4 - 8.530084E-10*x^3 + 9.958116E-07*x^2 - 

3.351574E-04*x + 7.176453E-01); 
% Thermal Conductivity of Fin Material 
knf = int(-9.32400932E-11*x^4 + 1.13247863E-07*x^3 +6.33449883E-05*x^2 

+ -9.47163947E-02*x + 8.13811189E+01); 

  
da =  symfun(daf,x); 
ca =  symfun(caf,x); 
ma =  symfun(maf,x); 
ka =  symfun(kaf,x); 
pa =  symfun(paf,x); 

  
kb = symfun(knf,x); 
% Integral averages 

  

  
cam = (ca(Th) - ca (Thi))/(Th-Thi); 
cam = double(cam); 

  
mam = (ma(Th) - ma (Thi))/(Th-Thi); 
mam = double(mam); 

  
kam = (ka(Th) - ka (Thi))/(Th-Thi); 
kam = double(kam); 

  
pam = (pa(Th) - pa (Thi))/(Th-Thi); 
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pam = double(pam); 

  
% Intermediate Calculations 
s = (hxw - (N*tf))/(N+1); % Fin Spacing 
dh = (4*s*(hxh/2))/(s + hxh );  % Hydraulic Diameter, hxh is divided by 

2, because of adiabatic tip 
v = mf/(dam*s*(hxh/2)*(N-1)); 
Re = v*dam*dh/(mam); 
Pr = (cam*mam)/(kam); 

  

  
% Colburn and pressure factors 
al = s/(hxh/2); 
if Re<=1000 
    j_f = 0.483*(hxl/dh)^(-0.162)*al^(-0.184)*Re^(-0.536); 
else  
    j_f =0.242*(hxl/dh)^(-0.322)*(tf/dh)^0.089*Re^(-0.368); 
end 

  
h = j_f*Re*(Pr^(1/3))*kam/(dh); 

  
 end
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Duct Convection Coefficient Matlab Code 

% Function calculates the convection coefficient along with Velocity 

and 
% Reynolds Number for the hot side of the heat exchanger  
% Pasindu Gamarachchi - Email : pgamarachchi@gmail.com 
 function [h, v, Re] = convcoeffv_Duct(Th, mf) 

  
 global  hxh hxw N tf Thg  

  
Thi = Th - Thg; 

  
%%  Temperature dependent properties 

  
% Density of steam/ Hot side fluid 
 syms x % ps cs ms ks ps  
daf = int(2.876602E-12*x^4 - 7.350893E-09*x^3 + 7.284062E-06*x^2 - 

3.760334E-03*x + 1.251051E+00); 
% Specific Heat Capacity of steam 
caf = int( 3.134242E-10*x^4 - 8.519344E-07*x^3 + 7.480582E-04*x^2 - 

3.006360E-02*x + 1.007301E+03); 
% Dynamic viscocity of Steam 
maf = int(-1.17230617E-17*x^4 +3.14251436E-14*x^3 -3.87294440E-11*x^2 

+4.96283182E-08*x + 1.71301016E-05); 
% Thermal Cond of Steam 
kaf = int(1.146049E-14*x^4 + 5.825050E-12*x^3 - 4.412201E-08*x^2 + 

8.330657E-05*x + 2.396400E-02);  
% Prandtl Number of Steam 
paf = int( 1.946038E-13*x^4 - 8.530084E-10*x^3 + 9.958116E-07*x^2 - 

3.351574E-04*x + 7.176453E-01); 

  
% Thermal Conductivity of Fin Material 
knf = int(-9.32400932E-11*x^4 + 1.13247863E-07*x^3 +6.33449883E-05*x^2 

+ -9.47163947E-02*x + 8.13811189E+01); 

  
da =  symfun(daf,x); 
ca =  symfun(caf,x); 
ma =  symfun(maf,x); 
ka =  symfun(kaf,x); 
pa =  symfun(paf,x); 

  
kb = symfun(knf,x); 
% Integral averages 

  
dam = (da(Th) - da (Thi))/(Th-Thi); 
dam = double(dam); 

  

  
cam = (ca(Th) - ca (Thi))/(Th-Thi); 
cam = double(cam); 

  
mam = (ma(Th) - ma (Thi))/(Th-Thi); 
mam = double(mam); 
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kam = (ka(Th) - ka (Thi))/(Th-Thi); 
kam = double(kam); 

  
pam = (pa(Th) - pa (Thi))/(Th-Thi); 
pam = double(pam); 

  

  

  
% Intermediate Calculations 
s = (hxw - (N*tf))/(N+1);  
dh = (4*s*(hxh/2))/(s + hxh );   
v = mf/(dam*s*(hxh)*(N-1));  

  
Re = v*dam*dh/(mam); 
Pr = (cam*mam)/(kam); 

  
% Colburn and pressure factors 
al = s/(hxh/2); 

  
if Re < 2500 
    Nu = 7.541*(1- 2.61*al +4.97*al^2 -5.199*al^3 + 2.702*al^4 -

0.548*al^5); 
else 
    Nu = 0.026*Re^(0.8)*Pr^(0.3); 
end 

  
h = Nu*kam/dh; 

  
end



136 

APPENDIX F



137 

TEG-Combined with Flat Plate Heat Sink Matlab Code 

% TEG Combined with Vertical Flat Plate Heat Sink 
% Pasindu Gamarachchi - Email : pgamarachchi@gmail.com 
clc 
clear all 

  
global hxl cvl NC tf_C Tcg Tcbg hxhC hxwC hxlC Cb  hn ln tn hp lp tp       

  
Th =200; % Hot Side Temperature 
Tamb= 120; 

  
hnv =  0.2*(10^-3): (0.1*(10^-3)): 2.0*(10^-3); 
leng = length(hnv) 
%% 

  

  
%%Heat Sink Dimensions 
NC = 7; 
tf_C = 1.50*(10^-3); 
hxhC = 0.15;   
hxwC = 0.04;  
hxl  = 0.04;  
hxlC = hxl; 
Cb = 1*10^-2; 
cvl = hxl;  
PackFracColdSide = (tf_C*NC/hxwC) 
sC = (hxwC - (NC.*tf_C))./(NC-1) 

  

  
% TC Dimensions 
ln = 1.8*(10^-3); 
tn = 1.8*(10^-3); 
lp = 1.8*(10^-3); 
tp = 1.8*(10^-3); 
F =7; 
G =7; 
C = F*G; 
FillFactor = (tn*ln*2*C)/(hxwC*hxlC) 

  
% Guesses and Error 
Err = 10^-6;  
Tcg = 1; 
Tcbg =35;  
ErrMult = 3.5; 
DiffLim = 800;   
ErrMult = 500; 
TempCh = 0.5*Err; 

  
if TempCh > Err 
    fprintf('Unlikely to converge\n') 
    return 
end 
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% For each unicouple height 
for i = 1:length(hnv) 

  
    hn = hnv(i); 
    hp = hn; 

  
    if i ==1 
        Tb = Tamb + Tcbg; 
        TempC = Tb + Tcg; 
    else 
    end 

  
    [QHT, QCT, P, n, Volt, I, Qm] = TEModuleDOE_Bi2Te3(Th,TempC,C); 
    QTE = QCT; 
    [Qc, Q_b, h_f, h_b ,TEMC ,TTip ,et_f, Qr] = HXFreeConvFlat(Tb, 

Tamb); 

  

    
%% Iterative Condition 
    while ( abs(Qc -QTE)> Err  ) 

         
        [QHT, QCT, P, n, Volt, I, Qm] = TEModuleDOE_Bi2Te3(Th,TempC,C); 
        QTE = QCT; 
        [Qc, Q_b, h_f, h_b ,TEMC ,TTip ,et_f, Qr] = HXFreeConvFlat(Tb, 

Tamb); 

        
        TempC = TEMC; 
        if Qc -QTE> Err & Qc -QTE< (Err*DiffLim)    
          Tb = Tb -(TempCh); 
        elseif Qc - QTE> (Err*DiffLim)  
            Tb = Tb -(ErrMult*TempCh); 
        elseif (Qc -QTE) < (Err*-1) & Qc -QTE > (Err*-DiffLim)  
            Tb = Tb +(TempCh); 
        elseif (Qc -QTE) < (Err*-ErrMult) 
            Tb = Tb +(ErrMult*TempCh); 
        end 

                  
        diffcs  = Qc-QTE 
        Tb; 

           
    end 

  
    progress = i/length(hnv) 

  
    TotalP = P; 
    Eff = (TotalP*100)/QTE; 
    TotalPv(i) = P; 
    QHTv(i) = QHT; 
    QCTv(i) = QCT; 
    nv(i) =n; 
    Voltv(i) = Volt; 
    Iv(i) = I; 
    Tbv(i) =Tb; 
    TEMCv(i) = TEMC; 



139 

 

 

  

  
end 
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Microwire Heat Sink Matlab Code 

% Micro-wire Heat Sink to calculate heat transferred from Heat Sink for  
% varied ambient temperature using finite elements for fins 
% Pasindu Gamarachchi - Email : pgamarachchi@gmail.com 

  

  
 function QTot = HXMicroFinsFiniteElement(Tb, Tamb) 

  
global  hxlC  hxwC   NCx NCz fd fh  

  

  
temprfile = ['Base', num2str(Tb),'Amb', num2str(Tamb), 

'FluidTempDat.mat']; % Load Temperature File based on base and ambient 

temperature 

  
load(temprfile); 

  
Nx = floor(NCx/2);  
Nz = floor(NCz/2);  

  
elemsize = y(2)-y(1); 
elems = ceil(fh/elemsize) -1; 
numn =elems+1;  
len = size(Tempr); 

  

  
Nx_norm = round((1:1:Nx).*(len(1))./(Nx)); 
Nz_norm = round((1:1:Nz).*(len(2))./(Nz)); 

  

  
%% 
TambM = zeros(Nx,Nz,length(y)); 

  
% for j = 1:Nz 
for i = 1:Nx 
    for j = 1:Nz 

     
    p = Nx_norm(i); 
    q = Nz_norm(j); 
    TambM(i,j,:) = Tempr(p,q,:); 

    
    end 
end 

  

  
for i = 1:Nx 
    for j = 1:Nz 

         
        [Qf_fe, TTip, Tempr] = FEFinV(TambM(i,j,:),Tb, Tamb, elemsize 

); % Function for heat transfer from fins 
        Qf_feM(i,j) = Qf_fe; 
        TtipM(i,j) = TTip; 
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    end 
end 

  
% Heat Transfer from Base 

  
h_b = convec_hotplate(Tb, Tamb); % Function to obtain convection coeff 

for Heat Transfer from Base 
Fin_Ar = 0.25*pi*(fd^2)*(NCx*NCz); 
Un_Ar =  (hxwC*hxlC) - Fin_Ar; 

  

  
Q_b = Un_Ar*(h_b)*(Tb-Tamb); % Heat transfer from Base Area 

  
Qf_Tot = sum(sum((Qf_feM))); 
QTot = Qf_Tot*4 + Q_b; 

  

  
 end 

 

% Finite Element Model for heat transfer from microwire fins  
% Pasindu Gamarachchi - Email : pgamarachchi@gmail.com 

  

  
 function [Qf_fe, Ttip, Tempr] =  FEFinVFTemp(AmbTemp, Tb, Tamb, 

elemsize) 

  
global fd fh  

  

  

  
elems = ceil(fh/elemsize) -1; % Number of Elements 

  
numn =elems+1; 

  

  
h = convectionmicro(Tb,Tamb); 
kCupf = (5.25E-15*x^6 - 1.34E-11*x^5 + 1.26E-08*x^4 - 5.19E-06*x^3 + 

8.71E-04*x^2 - 9.61E-02*x + 3.99E+02); 
kCup = symfun(kCupf,x); 
 

kCupm = kCup(Tb) ; 
kCupm = double(kCupm); 

  

  
k = kCupm; 
 

  
l = fh/elems; % Element length 
Tambv = AmbTemp(1:numn); 

  
% Element K Matrix 



143 

 

 

  
A = pi*(fd^2)*0.25; 
P = pi*fd; 

  
C1 = k*A/l; 
C2 = h*P*l/6; 

  

  
ke = C1*[1, -1; -1,1] + C2*[2,1; 1,2]; 

  

  
K = sparse(numn, numn); 
F = sparse(numn,1); 

  
for i = 1:elems 

     
    dof = [ i, i+1]; 
    K(dof, dof) = ke +  K(dof, dof); 

  

    
end 

  
% Calculates Thermal Load for each node 
for i = 1:numn 
    fe(i) = h*P*l*Tambv(i)/2; 

     
end 

  

  
% Combines the Thermal Loads from previous element 
for i = 2:numn-1 
    F(i) = fe(i)+ fe(i-1); 

     
end 

  
F(end) = fe(end); % Last node only has thermal load from itself 
F(2) = F(2) - Tb*(ke(2,1)); 

  
for i=1:numn 
    K(i,1) =0; 
    K(1,i) =0; 
    F(1) = Tb; 
end 

  
K(1,1) =1; 

  
Tempr = K\F; 

  

  
for i = 1:elems 
    Tavg(i) = (Tempr(i) +Tempr(i+1))*0.5; 
    Q_elem(i) = h*P*l*(Tavg(i) - Tambv(i)); 
end 
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Qf_fe = sum(Q_elem); 
Ttip = Tempr(end); 

  

  
 end 

 

% Microfins convection coefficient 

  
function h = convectionmicro(Tcb, Tamb) 

  
global  fd 

  

  
g = 9.81; 
lam = 68*10^-9; 

  

  
% Fin Material 
syms x 

  
knif = ( -9.32400932E-11*x^4 + 1.13247863E-07*x^3 + 6.33449883E-05*x^2 

-9.47163947E-02*x + 8.13811189E+01); % Thermal Conductivity of Nickel 
kni =  symfun(knif,x); 

  
kAlpf = ( 7.00000000E-09*x^4 - 6.18933333E-06*x^3 + 1.25071800E-03*x^2 

+ 1.47795093E-02*x + 2.28807284E+02); 
kAlp = symfun(kAlpf,x); 

  
kCupf = (5.25E-15*x^6 - 1.34E-11*x^5 + 1.26E-08*x^4 - 5.19E-06*x^3 + 

8.71E-04*x^2 - 9.61E-02*x + 3.99E+02); 
kCup = symfun(kCupf,x); 

  
kAlpm = kAlp(Tcb); 
kAlpm = double(kAlpm); 

  
kCupm = kCup(Tcb) ; 
kCupm = double(kCupm); 

  

  
k = kCupm; 

  

  

  
Tcold = Tamb; 

  
%%  Temperature dependent properties 

  
 syms x   
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 daf = (2.876602E-12*x^4 - 7.350893E-09*x^3 + 7.284062E-06*x^2 - 

3.760334E-03*x + 1.251051E+00); 

  
 caf = ( 3.134242E-10*x^4 - 8.519344E-07*x^3 + 7.480582E-04*x^2 - 

3.006360E-02*x + 1.007301E+03); 

  
 maf = (-1.17230617E-17*x^4 +3.14251436E-14*x^3 -3.87294440E-11*x^2 

+4.96283182E-08*x + 1.71301016E-05);  

  
kaf =  ( 1.146049E-14*x^4 + 5.825050E-12*x^3 - 4.412201E-08*x^2 + 

8.330657E-05*x + 2.396400E-02); 

  
 paf = ( 1.946038E-13*x^4 - 8.530084E-10*x^3 + 9.958116E-07*x^2 - 

3.351574E-04*x + 7.176453E-01); 

  
faf = ( 1.093417E-16*x^4 - 1.924826E-13*x^3 + 1.754598E-10*x^2 + 

1.375914E-07*x + 1.847226E-05); 

  
% Kinematic Viscocity of Air 
vaf = ( 9.471589E-18*x^4 - 3.915231E-14*x^3 + 1.054041E-10*x^2 + 

8.961175E-08*x + 1.340998E-05); 

  
da =  symfun(daf,x); 
ca =  symfun(caf,x); 
ma =  symfun(maf,x); 
ka =  symfun(kaf,x); 
pa =  symfun(paf,x); 
fa =  symfun(faf,x);  
va =  symfun(vaf,x); 

  

  
Tfilm = (Tamb + Tcb)/2; 

  
% Air 
dam = da(Tfilm) ; 
dam = double(dam); 

  
cam = ca(Tfilm); 
cam = double(cam); 

  
mam = ma(Tfilm) ; 
mam = double(mam); 

  
kam = ka(Tfilm) ; 
kam = double(kam); 

  
pam = pa(Tfilm) ; 
pam = double(pam); 

  
fam = fa(Tfilm) ; 
fam = double(fam); 

  
vam = va(Tfilm); 
vam = double(vam); 
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TfilmK = Tfilm +273.15; 
Be = 1/TfilmK; 

  

  
% Intermediate Calculations 
Kn = lam/fd; 
C = fam/(fd^2); 
C1 = (log(C))^2; 
C2 = log(C); 

  

  
h = (kam/(1+Kn))*(1/fd)*((1/16)*C1 -0.292*C2 +0.958)^(-0.5); 

  
  end 

 

 


