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ABSTRACT 

 

Climate and anthropogenic land use changes can alter biological communities and 

affect disease infection rates and parasite species distribution and abundance. 

Management to mitigate the threats of emerging infectious diseases and parasite species 

requires identifying and understanding factors that influence individual susceptibility 

within populations. Golden eagles (Aquila chrysaetos) in southwestern Idaho face several 

current and emerging threats, including a landscape-mediated diet shift that has increased 

the potential for disease infection, and warming temperatures that may increase the 

distribution and abundance of hematophagous ectoparasites. We examined prevalence of 

Trichomonas gallinae infection in golden eagle nestlings across western North America 

in 2015 and conducted a detailed study of the risk factors associated with T. gallinae 

infection in southwestern Idaho. We also quantified the abundance of Mexican chicken 

bug (Haematosiphon inodorus; Hemiptera: Cimicidae) in golden eagle nests in 

southwestern Idaho in 2015 and 2016. We developed a pit fall trap method to measure H. 

inodorus abundance, investigated factors that might affect abundance in nests, tested the 

‘nest protection’ hypothesis that eagles modify nest sites to reduce the effects of 

ectoparasitism, and measured the physiological effects of ectoparasitism on nestlings. 

In our study of T. gallinae, we found a 6% infection rate distributed broadly 

across our western North America study area, with a relatively high T. gallinae infection 

rate, 41%, in Idaho. The probability of T. gallinae infection increased as the proportion of 
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rock pigeons in nestling diet increased. Landscape-level change in southwestern Idaho is 

related to an increase in eagle diet diversity, and an increase in rock pigeons in nestling 

diet increased the probability of T. gallinae infection. 

In our study of H. inodorus, we found that eagles reuse less parasitized nests in 

successive years, and that south-facing nests and nests with later phenology had higher H. 

inodorus abundance. We found support for the ‘nest protection’ hypothesis. Golden 

eagles selected gray rabbitbrush as nest material, a plant that has high phenolic 

concentrations relative to others available on the landscape, and aromatic nest material 

had a positive effect on nestling hematocrit, suggesting these nest additions reduced the 

effects of ectoparasitism on nestlings. We found that increased ectoparasitism reduced 

nestling mass and hematocrit, and increased the probability that nestlings either fledged 

early or died in the nest. Nestling circulating corticosterone, which may act as a 

mechanism in the timing of fledging behavior, increased relative to ectoparasite 

infestation levels. 

Our results suggest that the current and emerging threats of disease and 

ectoparasites have the potential to negatively affect golden eagle productivity in 

southwestern Idaho. Although our data suggest there is a low incidence of T. gallinae 

infection in golden eagle populations across western North America, shifts in eagle diet, 

that result from habitat degradation and loss of historical prey resources, have the 

potential to affect golden eagle nestling survival. In addition, the presence and intensity 

of ectoparasitism affects the physiological condition of young eagles, and changes to the 

landscape in southwestern Idaho may reduce the ability of eagles to ‘defend’ their nests 

from the effects of ectoparasitism with aromatic plants. Given the projections of current 
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climate trends, continued monitoring of the effects of disease and ectoparasites on golden 

eagle populations will be important for future conservation.
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INTRODUCTION 

 

Climate change and anthropogenic land use change, including agricultural 

production and urbanization, can promote new interactions between pathogens, vectors, 

and hosts. Biological impoverishment, as a result of climate change, habitat 

fragmentation, and the increased human ecological footprint, has resulted in 

unprecedented disease emergence (Aguirre and Tabor 2008). Moreover, climate change 

is predicted to precipitate changes in the spatial distributions of species, which have the 

potential to affect community structure and dynamics (Møller et al. 2013). These changes 

include the expansion of both parasite species and vector species distributions, which 

could introduce diseases and threats to host fitness into previously unaffected areas 

(Cumming and Van Vuuren 2006). Management to mitigate the threats of emerging 

infectious diseases and parasite species requires an understanding of the drivers and 

factors that influence the risk of infection and individual susceptibility within 

populations. 

Avian trichomonosis, caused by the parasitic protozoan Trichomonas gallinae, 

has been identified as an emerging infectious disease in avian populations worldwide 

(Tompkins et al. 2015). An epidemic strain of T. gallinae, first discovered in Great 

Britain in 2005, spread from the United Kingdom along migratory routes with 

documented cases in Scandinavia (Lawson et al. 2011; Lehikoinen et al. 2013) and the 

Canadian Maritime Provinces (Forzán et al. 2010) over a two-year period. The epizootic 
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caused by avian trichomonosis continues to occur in British finch populations (Chi et al. 

2013), and has been observed in wild columbid, passerine, and avivorious raptor 

populations worldwide with six major outbreaks documented since the year 2000 

(Tompkins et al. 2015). At least 15 genetic strains of T. gallinae are known to infect 

avian species, and this variation causes differences in susceptibility and virulence 

(Sansano-Maestre et al. 2009). As a result, T. gallinae is increasing recognized as a 

conservation concern for the management of threatened or endangered species (Real et al. 

2000; Bunbury et al. 2007). 

Ectoparasites affect their host species in a myriad of ways that include influencing 

behavior, morphology, survival, and life history traits (Newton 1998), and global 

increases in temperature and anthropogenic changes in land use may allow parasites to 

expand their current distributions (Cumming and Van Vuren 2006). One potential 

example of such range expansion is the Mexican chicken bug (Hemiptera: Cimicidae: 

Haematosiphon inodorus), a relatively new addition to the avian ectoparasite community 

in southwestern Idaho. The first documentation of H. inodorus in Idaho (McFadzen et al. 

1996), coincides with a period of significant warming in winter minimum temperatures 

(Heath et al. 2012), and previous studies have shown the detrimental effects of H. 

inodorus on nestling prairie falcons (Falco mexicanus) in Idaho (McFadzen and Marzluff 

1996) and other breeding raptors in the Southwest U.S. 

The effects of exposure to new or increased rates of disease and parasite 

infestations in raptors could be compounded by climate-induced habitat degradation or 

the loss of historical prey resources (Staley and Bonneaud 2015). Thus, documenting and 

understanding host-parasite interactions, the theme of this thesis, is an important 
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consideration for the effective conservation and management of threatened species, 

particularly in a time of increased global change. 

The chapters presented in this thesis have been formatted and prepared as 

manuscripts to be submitted to peer-reviewed journals. Each manuscript will include co-

authors, although for the purposes of the thesis, these authors are identified in the 

‘Acknowledgements’ section. Chapter 1, Prevalence and Risk Factors of Trichomonas 

gallinae Infection in Golden Eagle Nestlings in Western North America’, is written and 

formatted for the Journal of Wildlife Diseases. Chapter 2, ‘Quantifying Abundance and 

Identifying Risk Factors that Predict Hematophagous Ectoparasites in Golden Eagle 

Nests, and a Test of the Nest Protection Hypothesis’, is written and formatted for Oikos. 

Chapter 3, ‘The Physiological Effects of Hematophagous Ectoparasites on Golden Eagle 

Nestlings’, is written and formatted for Conservation Physiology. 
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PREVALENCE AND RISK FACTORS OF TRICHOMONAS GALLINAE 

INFECTION IN GOLDEN EAGLE NESTLINGS IN WESTERN NORTH AMERICA 

 

Abstract 

Climate and anthropogenic land use changes alter biological communities, which 

can affect both disease infection rates and virulence. Understanding the risks of infectious 

disease is important for the conservation of imperiled species. Avian trichomonosis, 

caused by the protozoan Trichomonas gallinae, is an emerging infectious disease that 

affects bird species worldwide. Columbiformes, particularly rock pigeons (Columba 

livia), are considered the reservoir for the parasite, and raptor species are susceptible to 

infection via predation of infected birds. Previous studies have shown T. gallinae 

infection rates in nestling raptors are influenced by oral pH and diet; however, no studies 

have quantified prevalence and identified causal factors of infection in golden eagles 

(Aquila chrysaetos). We examined prevalence of T. gallinae infection in golden eagle 

nestlings across western North America in 2015, and conducted a detailed study of the 

risk factors associated with T. gallinae infection in southwestern Idaho. We found a 6% 

infection rate of T. gallinae distributed broadly across our western North America study 

areas with a relatively high infection rate, 41%, in Idaho. At our Idaho study area, 

nestling age did not explain infection probability. However, nestling oral pH became 

more acidic with age, which has been shown to create a less hospitable environment for 

T. gallinae. The probability of T. gallinae infection increased as the proportion of rock 
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pigeons in nestling diet increased. Landscape-level change in southwestern Idaho is 

related to an increase in eagle diet diversity, and an increase in rock pigeons in nestling 

diet increased the probability of T. gallinae infection. Although our data suggest there is a 

low incidence of T. gallinae infection in golden eagle populations across western North 

America, shifts in eagle diet that result from habitat degradation and loss of historical 

prey resources have the potential to affect golden eagle nestling survival. 

Introduction 

Changes in climate, land cover, and the distribution of introduced species drive 

changes in biological communities and can promote new interactions between pathogens, 

vectors, and hosts (Patz et al. 2000; Zamora-Vilchis et al. 2012). Emerging infectious 

diseases pose significant threats to wildlife populations, and studies focused on 

understanding the relationships between patterns of change and the risks of disease will 

support the conservation of imperiled species (Daszak et al. 2000). Avian trichomonosis, 

caused by the flagellated protozoan parasite Trichomonas gallinae, is an emerging 

infectious disease affecting avian communities worldwide (Tompkins et al. 2015). In 

2005, an outbreak of a clonal strain of T. gallinae caused significant declines in 

populations of two common passerine species, the greenfinch (Carduelis chloris) and the 

chaffinch (Fringilla coelebs) in the United Kingdom (Robinson et al. 2010). Significant 

population declines of common avian species suggest that populations of rare or 

threatened species could face increased risks from trichomonosis. 

Trichomonas gallinae is commonly found in birds of the Columbidae family and 

the disease has followed the introductions, and subsequent range expansions, of rock 

pigeons (Columba livia) (Stabler 1951). Trichomonas gallinae was first described in the 
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United States in 1934 (Stabler 1954), and was likely introduced to the New World 

avifauna in the 1600s as European settlers began transporting rock pigeons to North 

America (Schorger 1951). Wild columbid populations can have variable infection rates of 

T. gallinae, and some individuals can be sub-clinical carriers (Stabler 1954). The parasite 

has had a significant negative effect on isolated and previously unexposed columbid 

populations, including the endangered Mauritius pink pigeon (C. mayeri), where T. 

gallinae is the primary cause of nestling mortality and a limitation to population growth 

(Bunbury et al. 2008). Trichomonas gallinae primarily affects the upper digestive tract of 

birds. Clinical signs of infection include caseous lesions in the oropharynx that can lead 

to starvation or suffocation (Stabler 1947). Vertical transmission of the parasite occurs 

through protein-rich crop milk which adult columbids feed their offspring (Amin et al. 

2014). Transmission can also occur indirectly and horizontally, through communal food 

and water sources (Stabler 1954; Villanúa et al. 2006). For example, Lennon et al. (2013) 

found a higher incidence of infection in columbids living on farms that provided 

supplementary food for game birds than those did not, which suggests that these food 

sources increase transmission rates. Purple and Gerhold (2015) found that T. gallinae can 

persist in water for up to 18 hours, demonstrating that bird baths are a potential source of 

parasite transmission, and T. gallinae infection rates have been positively correlated with 

warmer, drier, conditions that effectively limit sources of fresh water and force birds to 

communally drink from few, potentially contaminated, sources (Bunbury et al. 2007). 

Although the severity of infection depends on the virulence of specific T. gallinae strains 

and the susceptibility of individual birds, infection rates also likely vary temporally, 

spatially, and within host species (Stabler 1948; Chi et al. 2013; Girard et al. 2014). 
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Moreover, warmer temperatures and reduced precipitation, both of which are possible 

outcomes of future climate change, could increase T. gallinae viability and genetic 

variability, thereby leading to higher incidence and severity of infection in avian species 

(Rogers et al. 2016). 

Raptors that feed on prey infected with T. gallinae are susceptible to infection. 

Previous studies have found high rates of trichomonosis in raptor populations that 

experienced habitat loss and associated changes in historical prey populations. Boal et al. 

(1998) found T. gallinae in 85% of urban Cooper’s hawk (Accipiter cooperii) nestlings in 

Tucson, Arizona compared to a 9% infection rate in nestlings from a nearby rural 

population. The infection rate in urban Cooper’s hawk nestlings was related to an urban 

environment where nestling diet consisted of 83% columbids compared to the rural 

population where columbids were not a readily available prey source (Boal 1997). 

Similarly, Real et al. (2000) detected T. gallinae in 36% of Bonelli’s eagle (Aquila 

fasciata) nestlings in northeastern Spain and identified trichomonosis as an important 

cause of nestling mortality. Palma et al. (2006) found that in the absence of traditional 

prey items, Bonelli’s eagles increased their consumption of rock pigeons and, therefore, 

risk of infection. All three studies concluded that trichomonosis negatively impacted 

reproductive success and affected their respective species at the population level (Boal et 

al. 1998; Real et al. 2000; Palma et al. 2006). Similar studies have described high 

infection rates in local populations of northern goshawks (Accipiter gentilis) in Great 

Britain (Cooper and Petty 1988) and Poland (Wieliczko et al. 2003) where landscape 

level changes and encroaching development have caused shifts in traditional diets to 

include higher proportions of columbids. 
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In addition to diet, Urban and Mannan (2014) found age-dependent susceptibility 

to T. gallinae infection in Cooper’s hawk nestlings in Arizona. Mean nestling oral pH 

was sufficiently basic (6.83) to create a hospitable environment for T. gallinae, which 

thrives at a pH range of 6.5 to 7.5 (Read 1957). Nestling oral pH became more acidic as 

young hawks approached fledging and the oral pH of adult Cooper’s hawks was over 

seven times more acidic than that of nestlings, making adults less susceptible to infection 

(Urban and Mannan 2014). However, it is unclear if all adult raptors have an acidic oral 

pH strong enough to prevent infection, as T. gallinae has been detected in adult bald 

eagles (Haliaeetus leucocephalus) (Stone and Nye 1981). 

In western North America, golden eagles (Aquila chrysaetos) occupy a wide 

range of open habitats, including shrub steppe, grasslands, and deserts (Kochert et al. 

2002). Golden eagles prey primarily on mammals and, to a lesser extent, on birds and 

reptiles (Olendorff 1976). The relative importance of prey taxa varies by region, however 

leporids (e.g., hares and rabbits) are consistently an important prey type and sciurids 

(e.g., ground squirrels, prairie dogs, and marmots) are an important secondary food 

source (Bedrosian et al. in press). 

Southwestern Idaho is home to a dense breeding population of golden eagles 

along the Snake River Canyon and associated uplands, yet much of the sagebrush steppe 

community has been degraded and fragmented by anthropogenic features and land 

conversion to agriculture, energy, and urban development (Leu et al. 2008). Furthermore, 

overgrazing of native vegetation and the spread of exotic invasive plants has altered 

historical fire regimes, causing further change to native plant communities (Fleischner 

1994). Research on eagle diet from 1971-1981 (hereafter historical diet) in southwestern 
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Idaho showed that golden eagles preyed primarily on black-tailed jackrabbits (Lepus 

californicus) during the breeding season (Steenhof and Kochert 1988). However, since 

the early 1980s, the native shrub communities that jackrabbits typically inhabit (Knick 

and Dyer 1997) have been reduced by more than 50% through the combined effects of 

wildfire, livestock grazing, drought, and exotic plant species (Kochert and Pellant 1986; 

U.S. Department of the Interior 1996). Research conducted in southwestern Idaho from 

2014-2015 (hereafter current diet) showed that these habitat alterations were correlated 

with a shift in golden eagle diet composition and diversity (Heath and Kochert 2016). 

Specifically, the authors report both a decrease in the proportion of jackrabbits in nestling 

diet and an increase in avian prey, including rock pigeons, which would be expected to 

increase the probability of T. gallinae infection among eagles. 

Given the recent and increasingly frequent outbreaks of virulent strains of T. 

gallinae (Robinson et al. 2010; Rogers et al. 2016), anthropogenic changes to western 

shrubland ecosystems that have altered raptor prey availability (Steenhof et al. 1999), and 

increased contact between nesting raptors and synanthropic species like rock pigeons 

(Leu et al. 2008), our objectives were to document the prevalence of T. gallinae in 

nestling golden eagles, identify the risk factors that predict infection, and examine 

whether exposure risk has changed over time. To meet our objectives, we sampled golden 

eagle nestlings at breeding sites throughout western North America to assess the 

prevalence of T. gallinae infection over a wide geographic area, and we conducted a 

detailed study of a golden eagle population in southwestern Idaho to understand the risk 

factors associated with T. gallinae infection. Specifically, we evaluated whether nestling 

age, oral pH, or diet predicted T. gallinae infection rates. Finally, we used historical data 
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on nestling diet and the presence of oral lesions, which are suggestive of T. gallinae 

infection, to address whether risk of infection has changed over time at our Idaho study 

area. 

Methods 

Study Areas 

We collected oral swab samples in 2015 from golden eagle nestlings from the 

Tehachapi Mountains and Mojave Desert in southern California, Butte Valley in northern 

California, western Nevada, central and eastern Oregon, central and eastern Washington, 

the west desert mountains of Utah, northwestern Wyoming, northwestern Arizona, 

eastern New Mexico, western Colorado, southwestern Nebraska, the Seward Peninsula of 

Alaska, and southwestern Idaho (Figure 1.1). Our study area in Idaho, where we 

conducted our detailed study of the factors associated with T. gallinae infection, was 

located along the Snake River Canyon in the Morley Nelson Snake River Birds of Prey 

National Conservation Area (NCA) and the adjacent Upstream Comparison Area (UCA), 

which extends east from the NCA to Hagerman, Idaho (Figure 1.1, inset). The steep 

basalt cliffs of the Snake River Canyon provide nesting locations for golden eagles. The 

surrounding uplands are a mosaic of land cover types and habitats including native 

sagebrush steppe and salt-desert communities characterized by big sagebrush (Artemisia 

tridentata), shadscale (Atriplex confertifolia), gray rabbitbrush (Ericameria nauseosa), 

and disturbed grasslands and rangeland dominated by exotic annuals, native perennial 

grasses, irrigated agricultural land, and rural and suburban development (U.S. 

Department of the Interior 1996). 
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Oral Sampling for T. gallinae, DNA sequencing, and nestling pH 

During the 2015 golden eagle breeding season (April – June), we swabbed the 

surface areas of the mouth and upper esophagus of nestling eagles with a sterile, dry, 

cotton-tipped swab to sample for T. gallinae. Swabs were immediately introduced into 

InPouch TF Tritrichomonas foetus test kits (BioMed Diagnostics, White River, OR, 

USA). For samples collected outside of Idaho, test kits were shipped overnight to Boise 

State University and incubated at 37°C within 72 hours of sampling. Idaho samples were 

incubated typically within 12 hours of sampling. After 24 hours of incubation, the 

InPouch test kit was placed under a compound light microscope and visually inspected at 

100X magnification for the presence of T. gallinae (Cover et al. 1994). If no live, motile 

T. gallinae were detected on the first examination, we continued to incubate and observe 

samples every 24 hours for up to 6 days. Samples were recorded as negative for T. 

gallinae if no motile T. gallinae were observed within 144 hours (BioMed Diagnostics, 

2012). To test if differences in time to incubation affected our ability to detect T. 

gallinae, we collected replicate samples at our Idaho study area and delayed incubation 

for 24, 48, 72, 96, and 120 hours. In all cases, delayed incubation up to 72 hours did not 

affect detection of T. gallinae. At sampling locations outside of Idaho, we collected 

samples 1-2 times during the breeding season. At our Idaho study area, we collected 

samples every 8-10 days during the same period, resulting in 3.9 ± 1.3 (mean ± SD) 

samples per nestling. Idaho nestlings that developed oral lesions indicative of 

trichomonosis were treated with a 30 mg dose of Spartrix (Janssen, Brussels, Belgium), an 

antiprotozoal drug effective at reducing the development of oral lesions, after we 

completed sampling. We continued to monitor nestlings treated with Spartrix for re-
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infection, but subsequent T. gallinae infections were not included in our analysis of risk 

factors. 

We performed DNA extractions on a subset of InPouch kits to confirm the 

presence of T. gallinae, identify the strain, and test for false negatives. PCR amplification 

and sequencing of the ITS1/5.8S/ITS2 ribosomal region was performed using the primers 

described in Cepicka et al. (2005) at the University of Tennessee-Knoxville. Forward and 

reverse sequences were assembled and aligned and consensus sequence chromatograms 

were trimmed and edited by hand using Sequencher 5.3 (Gene Codes Corporation, Ann 

Arbor, MI, USA). The resultant nucleotide sequences were subjected to a basic local 

alignment search tool (BLAST; http://blast.ncbi.nlm.nih.gov/Blast.cgi). Additionally, 

DNA extractions were performed on eight samples collected in Oregon and Utah that 

were not incubated within 72 hours, but were suspected to contain T. gallinae based on 

the presence of oral lesions or the presence of rock pigeons as prey items during 

sampling. 

We measured the oral pH of 15 nestlings every 10 days throughout the nestling 

period at the Idaho study area. To take the samples, we held a microelectrode (Cole-

Parmer Combination pH Microelectrode BNC, Vernon Hills, IL) under the ventral 

surface of the tongue until the reading on a digital field meter (Oakton pH Tester 10 

BNC, Oakton Instruments, Vernon Hills, IL) stabilized. The microelectrode was stored in 

a 4.0 pH buffer solution (Aldon Corporation, Avon, NY) during transport in the field and 

was rinsed with distilled water before use. The microelectrode was allowed to rest in the 

buffer solution in between sampling events. We calibrated the microelectrode to three 

points (pH = 4.0, 7.0, and 10.0) at least once a day prior to sampling (Urban and Mannan 
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2014). The sex of nestlings was determined through DNA analysis of nestling blood 

samples processed at Purdue University (West Lafayette, IN, USA). All field methods 

followed protocols approved by the Boise State University Institutional Animal Care and 

Use Committee (Protocol #006-AC14-007). 

Current and Historical Nestling Diet 

We used golden eagle nestling diet information collected in 2015 (Heath and 

Kochert 2016; Dudek, unpublished data) to assess whether the proportion of rock pigeons 

in the diet predicted risk of T. gallinae infection. We assessed nestling diet using a 

combination of prey remains, pellet analysis, and nest camera images as described in 

Steenhof and Kochert (1985) and Heath and Kochert (2016). We summarized the 

frequency of all prey items collected from nest sites to calculate the proportion of rock 

pigeons in nestling diet. We analyzed historical nestling diet data collected in the NCA 

and UCA by Steenhof and Kochert (1988) to determine whether the proportion of rock 

pigeons in nestling diet, and the exposure risk as a result of diet, had changed over time. 

To make this comparison, we selected 17 eagle territories where nestling diet was assessed 

in both the historical diet study and the current diet study. Therefore, by comparing the 

same territories from different time periods, we controlled for territory location within the 

study area. In the historical diet study, the presence of oral lesions indicative of 

trichomonosis was documented in field notes (USGS unpublished data). 

Data Analysis 

We used a generalized linear mixed model (GLMM) with presence and absence of 

T. gallinae as a binomial response variable and nestling age as the predictor variable to 

examine the association between nestling age and infection. This model included nestling 
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identity and territory identity as random variables to account for non-independence of 

samples. We created a linear mixed model to test whether nestling age, sex, or an 

interaction between age and sex explained oral pH with nestling identity and territory 

identity as random variables. We used a GLMM with presence and absence of T. gallinae 

as a binomial response variable and the proportion of rock pigeons in nestling diets as the 

predictor variable to test the association between the proportion of rock pigeons in 

nestling diet and the probability of T. gallinae infection. We used a GLMM with a 

negative binomial distribution for the response variable, total count of rock pigeons in 

nestling diet, and an offset for the total prey items cataloged at each nest to compare 

whether the proportion of pigeons in nestling diet has changed over time (i.e., from the 

historical study to recent study) at the same 17 territories, which would indicate a change 

in host exposure to infection. Both of these models included territory identity as a random 

variable. To explore whether pathogenicity has changed in the system, we used a GLMM 

with a binomial distribution with the presence or absence of lesions indicative of T. 

gallinae infection as the response variable, and territory identity as a random variable, to 

examine the interaction between study period (i.e., the historical study or the recent 

study) and the proportion of pigeons in the diet. All numerical predictors were scaled and 

centered before analysis. For GLMMs, we created confidence intervals by back-

transforming the prediction after adding and removing the standard error. Linear models 

were created using functions lmer and glmer in the package lme4 (Bates et al. 2015) and 

function glmmADMB in the package glmmADMB (Fournier et al. 2012). All analyses 

were performed in R (version 3.2.2, R Core Development Team 2016). Descriptive 

statistics are reported as mean ± standard deviation. 
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Results 

We collected oral swab samples from 96 eagle nestlings ranging in age from 21 

days old to 59 days old, from 62 nests, across 10 western states (not including Idaho). We 

found incidence of T. gallinae infection at four western study areas. Trichomonas 

gallinae was detected in 6.2% (n = 6) of non-Idaho nestlings, and 9.7% (n = 6) of nests 

outside of Idaho had at least one nestling that developed infection. Positive samples came 

from Kern and Siskiyou counties in California, Crook and Lake counties in Oregon, and 

Tooele County, Utah. Overall, the prevalence of T. gallinae infection across the western 

study areas was lower than the Idaho study area. In Idaho, we collected samples from 32 

eagle nestlings from 19 nests. These nestlings ranged in age from 7 days old to 63 days 

old. Trichomonas gallinae was detected in 41% (n = 13) of nestlings, and 42% (n = 8) of 

nests had at least one nestling that developed infection. 

We confirmed the presence of T. gallinae with DNA extraction through DNA 

amplification via PCR followed by nucleotide sequencing in 52% (n = 25) samples. 

Sequence analysis also identified the presence of non-T. gallinae protozoans in four 

samples. Three non-T. gallinae showed 100% identity and 100% coverage to 

Trichomonas gypaetinii (Martinez-Diaz et al. 2014) recovered from two Idaho nestlings 

and one California nestling. To our knowledge, this is the first record of T. gypaetinii 

DNA in wild raptors in North America. Trichomonas spp. sequences showed 91-99% 

identity to ITS genotype B, 74% to genotype C, 90-100% to genotype D, 92% to 

genotype E, and 98% to genotype L (Gerhold et al. 2008). The remaining non-T. gallinae 

sequence, from one nestling, had a 95% identity and 100% coverage to Monocercomonas 

colubrurom, a protozoan typically found in the guts of reptiles (Richter et al. 2008). PCR 
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and sequence results of 17 samples had a 94% agreement to microscopy detection of 

Trichomonas sp.; the single false positive via microscopy was M. colubrurom. In 

addition, PCR and sequencing detected T. gallinae in 4 (n = 8) samples from Oregon and 

Utah that were not incubated within 72 hours of collection. No living organisms were 

detected under the microscope due to delayed incubation, but T. gallinae DNA was 

detected via PCR. 

At our Idaho study area, the mean nestling age, for which T. gallinae infection 

was detected in culture from oral swabs, was 23.5 ± 11.0 days old (range 8 – 38 days 

old). The mean age of detection of oral lesions was 30.3 ± 13.5 days old (range 12 – 49 

days old). We observed the development of oral lesions 7.2 ± 7.0 days after detecting 

presence of T. gallinae in culture from oral swabs. Twelve of 13 (92%) nestlings that 

tested positive for T. gallinae in culture subsequently developed oral lesions suggestive 

of T. gallinae infection. In all cases in which we observed oral lesions and administered 

antiprotozoal medicine, treatment resulted in the disappearance of oral lesions within 8 – 

10 days. Moreover, T. gallinae was not detected in cultured swabs taken on the 

subsequent visit. We observed three cases of T. gallinae reoccurrence, both in culture and 

through the presence of oral lesions within 16, 24 and 25 days of initial treatment. All 

three birds were successfully treated a second time. Two nestlings that tested positive for 

T. gallinae in culture developed small oral lesions just prior to fledging and were left 

untreated. One nestling presumably fledged successfully, whereas the other was found 

dead in the nest after its sibling had fledged. Decomposition was too advanced to 

determine whether oral lesions contributed to this individual’s death. 
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Nestling age did not predict the probability of T. gallinae infection (2 = 0.3, p = 

0.58). Between the ages of 8 and 38 days old, younger nestlings were no more likely to 

become infected with T. gallinae than older nestlings. Oral pH of nestlings decreased as 

nestlings aged (2 = 9.0, p = 0.003, Figure 1.2) and was not related to sex (2 = 1.3, p = 

0.25). Mean oral pH of nestlings less than 32 days old, when the majority of nestlings 

first tested positive for T. gallinae, was 7.21. Mean oral pH during our last sampling, 

when nestlings were at least 49 days old, was 6.68. This result indicates that as nestlings 

approached fledging age, they were still susceptible to developing infection. Although 

nestling oral pH decreased as nestlings aged, there was no significant relationship 

between T. gallinae infection and oral pH (2 = 2.1, p = 0.14). 

During the 2015 breeding season, the proportion of rock pigeons in nestling diet 

predicted T. gallinae infection (2 = 4.5, p = 0.03, Figure 1.3). As the proportion of rock 

pigeons in the diet increased, so did the probability of developing T. gallinae infection; 

chance of infection approached 100% when rock pigeons accounted for at least 10% of 

nestling diet. When we compared the two diet studies, we found that the proportion of 

rock pigeons in eagle nestling diet increased significantly from the historical study to the 

current study (2 = 7.9, p = 0.005, Figure 1.4). However, we did not find a significant 

interaction between period and the proportion of rock pigeons in the diet on the 

probability of developing oral lesions, indicating that parasite pathogenicity within the 

population has not changed at these sites from the historical study to the current study (2 

= 1.2, p = 0.26). 
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Discussion 

Parasites like T. gallinae negatively affect the survival of raptor nestlings and may 

become a conservation concern when ecosystem-level changes increase transmission and 

infection rates. We found evidence of T. gallinae infection in golden eagle nestlings in 

five different study areas across western North America, with a relatively high rate of 

infection in southwestern Idaho. We used BioMed InPouch test kits and PCR to confirm 

the presence of T. gallinae, and we demonstrate that T. gallinae infection in eagle 

nestlings is treatable with antiprotozoal medicine. Although mortality from T. gallinae 

infection depends on numerous factors including host susceptibility and parasite 

virulence, previous studies reported high mortality rates in nestling raptors infected with 

T. gallinae (100% - Cooper and Petty 1988; 86% - Real et al. 2000). We treated 11 of 13 

nestlings with T. gallinae infection with the antiprotozoal medicine Spartrix. Without 

treatment, we expect that 34% of all eagle nestlings in 2015 (n = 32) would have likely 

died; however, even with treatment, these 11 nestlings were still at risk of re-infection 

prior to or soon after fledging. 

In Idaho, younger nestlings had a less acidic oral pH, but we found no relationship 

between T. gallinae infection and oral pH. Although oral pH decreased as nestlings aged 

(see also Urban and Mannan’s 2014 study of Cooper’s hawks), mean nestling oral pH at 

80% of fledgling age was 6.68; which is within the tolerable range for T. gallinae (Read 

1957). It is unknown if oral pH of golden eagles continues to decrease as fledglings age, 

but evidence of T. gallinae infection in recently fledged golden eagles (Beecham 1970; 

Kochert 1972) suggests that the oral pH of fledglings may not be acidic enough to 

prevent infection. 
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We found a positive association between the probability of T. gallinae infection in 

golden eagle nestlings and the proportion of rock pigeons in nestling diets. Smith et al. 

(1983) first isolated and positively confirmed the presence of T. gallinae in golden eagle 

nestlings in the NCA, and although large caseous lesions suggestive of T. gallinae 

infection have been noted since the late 1960s (USGS unpublished data), no studies have 

yet attempted to find an association between golden eagle diet and T. gallinae infection 

rates. Although previous studies have demonstrated a link between the presence of 

columbids in raptor nestling diets and T. gallinae infection, we demonstrate that nestlings 

whose diet consists of  >10% rock pigeons have nearly a 100% chance of infection, 

indicating that there may be a threshold at which nestlings are more susceptible to 

infection. 

Relatively low rates of infection in other western golden eagle breeding 

populations might be related to habitat quality and the availability of historical prey 

populations (e.g., leporids and sciurids) for the meta-population in western North 

America (Bedrosian et al. in press). Columbidae accounted for <5% of prey in any of the 

37 individual studies in this meta-population study (B. Bedrosian, pers. comm.), which is 

below the 10% critical threshold we found predicts T. gallinae infection in Idaho. Golden 

eagles of the Arizona/New Mexico plateau, the Mojave Desert, the Wyoming Basin, the 

Northern Basin and Range of Oregon, and northern California still primarily prey on 

leporids and sciurids; however, avian prey have been historically important for breeding 

eagles in Oregon and northern Utah (Bedrosian et al. in press). The upper Columbia 

Plateau of Washington has undergone a conversion of shrub-steppe habitat to agricultural 

land, similar to southwestern Idaho, resulting in the reduction of jackrabbit and ground 
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squirrel populations. Land use change has caused shifts in eagle diet composition and 

breadth, with a high diversity of avian prey (Watson and Davies 2015). Our sample size 

from Washington nestlings was low and, although we did not document T. gallinae, shifts 

in diet composition and the presence of rock pigeons in current nestling diet has increased 

the potential risk of exposure. 

Although our data indicate that the incidence of T. gallinae infection was higher 

in Idaho than in other western states, and that it may be influenced by diet, we cannot rule 

out the possibility that the timing of opportunistic sampling in study areas outside of 

Idaho may have limited detection of T. gallinae at those sites. Many of the samples from 

other western breeding populations were obtained near the end of the nesting period 

when young were being banded or fit with satellite transmitters. Given that we 

documented T. gallinae infection developing when nestlings were 8 – 38 days old in 

Idaho, it is possible that T. gallinae could have already caused nestling mortality at nests 

sampled late in the season, thereby causing us to underreport infection rates at those sites. 

Our comparison of historical and current nestling diet at 17 nesting territories 

found a lack of an interaction between period and the proportion of pigeons in nestling 

diet for predicting oral lesions. This suggests that parasite pathogenicity within rock 

pigeon populations may not changed over time, and eagle nestlings are currently as likely 

to develop T. gallinae infection through the consumption of pigeons as they were 

historically. Although our data suggests T. gallinae pathogenicity has not changed, the 

proportion of rock pigeons in nestling diets in southwestern Idaho has increased from the 

historical diet study (Steenhof and Kochert 1988) to the current diet study (Heath and 

Kochert 2016), likely increasing exposure risk for eagle nestlings. Natural fluctuations in 
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prey abundance likely caused periodic increases in risk of infection for eagle nestlings 

historically, but the effects of wildfire and the expanding human footprint on current 

available prey resources in southwestern Idaho has likely increased the level of exposure 

risk for nestlings with potential negative consequences at a population level. 

Our documentation of T. gypaetinii represents, to our knowledge, a new 

geographic distribution for the protozoan, which has previously only been reported in 

Egyptian vultures (Neophron percnopterus) and cinereous vultures (Aegypius monachus) 

in Europe (Martínez-Díaz et al. 2014). We are unsure of the geographical distribution of 

T. gypaetinii in North America. It is unknown if this parasite was introduced recently into 

North America, and represents a new risk to North American raptor populations, or has 

been endemic and previously undetected. Given T. gypaetinii is morphologically similar 

to T. gallinae, only molecular analysis can distinguish the species, which underscores the 

importance of integrating classical and molecular analysis of Trichomonas spp. We 

observed the development of oral lesions similar to those caused by T. gallinae in two of 

the three cases of T. gypaetinii in our study; however, further laboratory studies are 

needed to determine the pathogenicity of T. gypaetinii. 

Our study is the first comprehensive survey to report the prevalence of T. gallinae 

infection in golden eagle nestlings over large parts of their western range. Although T. 

gallinae is present in eagle breeding populations across western North America, factors 

related to nestling diet may increase risks of infection within local populations. The 

effects of wildfire and other anthropogenic land use changes on sagebrush steppe habitat 

and available prey resources (Kochert and Pellant 1986; U.S. Department of the Interior 

1996; Steenhof et al. 1999) have caused a shift in eagle nestling diet composition and 
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diversity (Heath and Kochert 2016), and likely increased the probability of infection and 

the potential for negative consequences for reproduction at those territories. Future 

variation in climatic conditions, such as temperature and rainfall, have the potential to 

affect transmission rates and pathogenicity within pigeon populations (Bunbury et al. 

2008; Rogers et al. 2016), which could further change infection rates in eagle 

populations. Understanding prevalence and the risk factors of disease infection rates and 

pathogenicity is crucial in developing conservation strategies to manage wildlife 

populations. Monitoring changes in infections rates and pathogenicity will be important 

for the future conservation of threatened species like golden eagles. 
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Figure 1.1 Location of sampling locations (black dots) where oral swabs were 

collected in the western United States to test for T. gallinae, including an inset for the 

study area in southwestern Idaho and the Seward Peninsula in Alaska. Sampling for 

T. gallinae occurred from April-June 2015. 
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Figure 1.2 Observed oral pH (dark circles) and predicted line (dark line) with 

associated 95% confidence intervals (solid gray area) of golden eagle nestlings aged 

between 14 and 54 days old in southwestern Idaho, USA in 2015. Nestling oral pH 

decreased as nestlings aged (2 = 9.2, p = 0.003). 
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Figure 1.3 Observed occurrence (open circles) and predicted probability (solid 

line) with associated 95% confidence intervals (dotted lines) of T. gallinae infection in 

golden eagle nestlings in southwestern Idaho, USA in 2015. As the proportion of rock 

pigeons in nestling diet increased, so did the probability of T. gallinae infection (2 = 

4.5, p = 0.03). 
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Figure 1.4 Proportion of rock pigeons in golden eagle nestling diets in 

southwestern Idaho, USA at the same 17 territories during the historical (1971-1981) 

diet study and the recent (2014-2015) diet study. Bold lines within boxes represent the 

median, upper and lower limits of the box are the first and third quartiles, whiskers 

contain 1.5 times the interquartile range, and open circles are outliers. Golden eagle 

diet in recent years consisted of more rock pigeons, a common vector of T. gallinae 

(2 = 7.9, p = 0.005), suggesting that risk of infection in 2014-2015 was likely higher 

compared to the period of 1971-1981.
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QUANTIFYING ABUNDANCE AND IDENTIFYING RISK FACTORS THAT 

PREDICT HEMATOPHAGOUS ECTOPARASITES IN GOLDEN EAGLE NESTS, 

AND A TEST OF THE NEST PROTECTION HYPOTHESIS 

 

Abstract 

Changes in climate and land use will likely affect host-parasite interactions 

through removal of constraints that limit parasite abundance or distribution, or changes in 

the ability of hosts to deter parasites. Cliff-nesting birds, such as raptors, may be 

particularly susceptible to ectoparasites during the nesting period because young birds are 

unable to escape the source of parasites. Assessing ectoparasite load of raptors can be 

problematic because parasites are often difficult to detect, and few standardized survey 

methods practical for sampling large raptor nests exist. Our goal was to document the 

occurrence and quantify the abundance of ectoparasites in golden eagle (Aquila 

chrysaetos) nests during the nesting period, and to focus specifically on factors that might 

affect Mexican chicken bug (Haematosiphon inodorus; Hemiptera: Cimicidae) 

abundance in nests, such as previous nest use, nest aspect, nearby cliff-nesting species, 

proportion of aromatic green nest material, and nest phenology. Further, we tested the 

‘nest protection’ hypothesis to determine if the addition of aromatic plants in nests might 

function to either reduce ectoparasites in the nest or moderate the effects of 

ectoparasitism on nestlings. Using pitfall traps to estimate the relative abundance of H. 

inodorus, we found that nests that had been used by eagles in the previous three years had 

lower H. inodorus abundance than those that had not been used, south-facing nests had 
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higher H. inodorus abundance than north-facing nests, and eagle pairs that bred later in 

the season experienced higher H. inodorus abundance in their nests. Additionally, our 

results supported the ‘nest protection’ hypothesis. Golden eagles preferentially selected 

gray rabbitbrush, a plant that has high phenolic concentrations relative to others available 

on the landscape, as nest material. Moreover, use of aromatic nest material was positively 

associated with nestling hematocrit, which suggests the addition of this material reduced 

the effects of ectoparasitism on nestlings. 

Introduction 

Shifts in climate can create conditions that allow for changes in the spatial 

distributions of species, and these changes have the potential to alter community structure 

and dynamics (Møller et al. 2013). Insects are particularly responsive to environmental 

change, and many insect taxa, including parasite species, are expanding their geographic 

distributions with increasing global temperatures and anthropogenic change (Sánchez-

Guillén et al. 2016). Generalist parasites that expand into new areas have the potential to 

associate with, and adversely affect, new host species or previously unaffected 

populations of their usual hosts (Cumming and Van Vuren 2006). Given the fitness costs 

of parasites to their hosts (Brown and Brown 1986; Møller et al. 1990), selection in hosts 

should favor adaptations to avoid or limit parasite infestations (Goater et al. 2013). In the 

present study we examine the occurrence of hematophagous ectoparasites in golden eagle 

(Aquila chrysaetos) nests, and whether eagles exhibit nesting behaviors that reduce these 

infestation rates. In a time of increased global change, understanding host-parasite 

interactions is essential to the conservation and management of threatened wildlife, 

including raptors. 
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Bird nests are contained ecosystems composed of a rich and diverse community 

of both free-living and parasitic arthropods (Heeb et al. 2000). The abundance of 

ectoparasitic arthropods within nests is governed by many factors. At a local scale, 

climate may be an important driver in the occurrence of specific nest ectoparasites 

(Cumming and Van Vuren 2006), and their densities within nests could be influenced by 

abiotic factors such as temperature and humidity (Heeb et al. 2000). Indeed, microclimate 

conditions in nests have been shown to influence ectoparasite infestation in several 

passerine species. For example, higher ambient temperatures increased ectoparasite load 

in tree swallow (Tachycineta bicolor) nests, likely because warmer temperatures allowed 

ectoparasites to develop more rapidly (Dawson et al. 2005). Certain ectoparasitic insects, 

such as Protocalliphora spp., spend less time in larval and pupal stages as ambient 

temperatures increase (Bennett and Whitworth 1991). Abiotic factors such as temperature 

can be influenced by nest orientation; however, the importance of nest orientation to 

ectoparasitism remains unclear. George (1959) found that the abundance of ectoparasites 

in European pied flycatcher (Ficedula hypoleuca) nests was highest in south and west-

facing (i.e., warmer) nests. In a study of breeding great tits (Parus major), Goodenough 

et al. (2011) reported that south-southwest facing nest boxes were significantly warmer, 

used less frequently, and were associated with lower offspring condition than nest boxes 

in other orientations. However, there was no relationship between ectoparasite abundance 

and orientation-induced differences in nest box temperatures. 

Ectoparasite abundance at nests often exerts a strong influence on nest-site choice 

for many avian species (Loye and Carroll 1998). Continued use of the same nest, or 

adjacent nests, can increase the abundance of nest ectoparasites and reduce nesting 
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success (Rothschild and Clay 1952; Bennett and Whitworth 1991). Many passerine birds 

have been shown to avoid infested nests, and select non-infested nests if a choice is 

available (Barclay 1988; Loye and Carroll 1998). Many raptor species defend territories 

that include multiple nests, and the use of alternate nests in successive years has been 

suggested as a mechanism to avoid ectoparasites (Philips and Dindal 1977; Wimberger 

1984; Kochert and Steenhof 2012). For example, Ontiveros et al. (2008) found that 

dipteran ectoparasites have a negative effect on the breeding success of Bonelli’s eagles 

(Aquila fasciatus), and eagle pairs that used alternate nests in successive years had greater 

breeding success, leading the authors to hypothesize that nest reuse may increase nest 

ectoparasites with negative fitness consequences. 

Breeding phenology may affect exposure to ectoparasites during the nesting 

period. In temperate climates, earlier nesting pairs may face colder conditions during egg 

laying and early incubation stages, but breeding early may reduce the number of days 

nestlings are exposed to the warm conditions that promote ectoparasite activity. 

Ectoparasite abundance has been shown to increase throughout the breeding season, with 

negative fitness consequences for late-breeding birds (Brown and Brown 2015). 

Although relatively little is known about how ectoparasites affect breeding phenology, in 

passerines the level of parasitism at nests influences decisions of whether to initiate 

second broods (Møller 1990). 

Modifications of nest sites through the manipulation of nest material may reduce 

the reproductive success, and therefore density, of obligate ectoparasites (Heeb et al. 

2000). Many birds that regularly reuse nests add aromatic green plant material to their 

nests throughout the nesting period (Wimberger 1984; Clark and Mason 1985; 
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Lambrechts and Dos Santos 2000). One hypothesis for this behavior is the ‘nest 

protection’ hypothesis, which holds that phytochemical compounds in plants decrease 

nest parasites or pathogens and indirectly benefit nestlings (Clark 1991; Scott-Baumann 

and Morgan 2015). Specifically, secondary plant compounds, such as monoterpenes and 

phenolics, may disrupt or mask the olfactory and tactile cues ectoparasites use to find 

their hosts, or inhibit development or reproduction in ectoparasite species (Wimberger 

1984; Clark and Mason 1988). Clark and Mason (1988) specified three criteria for the 

‘nest protection’ hypothesis: 1) birds must select plants as nest material (i.e., plants are 

used at a higher proportion in the nest than they are available in the surrounding 

environment); 2) selected plants must contain more bioactive compounds relative to other 

available vegetation; and 3) selected plants must be effective at controlling the 

abundance, or moderating the effects, of ectoparasites. 

The ‘nest protection’ hypothesis has been studied in several passerine species. For 

example, Clark and Mason (1985) found that European starlings (Sturnus vulgaris) 

preferentially selected plants with higher amounts of secondary compounds as nest lining, 

and suggested these materials may act as fumigants against parasites or pathogens. In the 

laboratory, Clark and Mason (1988) found that certain aromatic plants inhibited the 

feeding ability of the hematophagous northern fowl mite (Ornithonysus sylviarum), and 

suggested that the addition of aromatic plants in starling nests could mitigate the effects 

of ectoparasitism and benefit the hematological condition of nestlings. Similarly, 

Gwinner et al. (2000) experimentally controlled for the presence of aromatic plant 

material in starling nests. Although ectoparasite abundance was unaffected by treatment, 

nestlings raised in nests with aromatic material were heavier, had higher hematocrit 
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levels, and had higher post-fledging survival than nestlings raised in control nests, 

suggesting that aromatic materials may have mitigated the effects of the ectoparasites. 

Many raptor species incorporate aromatic green plants into their nests 

(Wimberger 1984; Ontiveros et al. 2008; Dykstra et al. 2009). While the use of aromatic 

green plant material by raptors may signal territory occupancy or aid in nest sanitation by 

covering prey remains (Newton 1979), there is some support for the ‘nest protection’ 

hypothesis as an alternative explanation. For example, Bonelli’s eagles in Spain select 

aromatic plants as nest material, and the amount of aromatic material in the nest is 

associated with a lower abundance of ectoparasitic blow fly (Protocalliphora sp.) larvae 

and increased breeding success of eagle pairs (Ontiveros et al. 2007). Golden eagles also 

regularly add green plant material to their nests throughout the breeding season (Watson 

2010) and, in southwestern Idaho, native shrub-steppe plants contain aromatic secondary 

compounds that may interact with nest ectoparasites. 

Nests of raptor species provide suitable habitat for an array of arthropods due to 

the large nest volume and the continued reuse of nests over multiple breeding seasons 

(Philips and Dindal 1977). Ectoparasites associated with raptors include blood-sucking 

flies, fleas, ticks, and bugs, as well as feather-feeding lice and mites (Philips 2007). The 

effects of ectoparasite infestation on raptors vary, but hematophagous ectoparasites may 

increase the costs associated with reproduction by reducing the development or survival 

of nestlings (McFadzen and Marzluff 1996). 

McFadzen et al. (1996) published the first report of Mexican chicken bugs 

(Haematosiphon inodorus; Hemiptera: Cimicidae) in prairie falcon (Falco mexicanus) 

scrapes in the Morley Nelson Snake River Birds of Prey National Conservation Area 
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(NCA) in southwestern Idaho, which at the time was the northern-most record for this 

species. Although heavy infestations of cimicid ectoparasites were noted in golden eagle 

and other raptor nests in southwestern Idaho during the late 1960s and early 1970s 

(Hickman 1968; M. Kochert pers. comm.), H. inodorus represents a relatively new 

addition to the ectoparasite community. Haematosiphon inodorus live in the nest material 

of raptors and surrounding cliff walls and, while the biology of the insect is well studied 

(Lee 1955; Usinger 1966), there is little known about distribution and abundance of H. 

inodorus in relation to nesting eagles in southwestern Idaho. 

Nests appear to be a limiting factor for H. inodorus and cliff-nesting birds may 

readily exchange ectoparasites through the successive use or synchronous use of adjacent 

nests (Wilson and Oliver 1978). Both adult and nymph cimicid bugs have been reported 

emigrating locally from nearby nests into raptor nests in search of available hosts 

(Santillán et al. 2009). Although the maximum dispersal distance of H. inodorus across 

cliff systems is unknown, we observed bugs on the canyon rim at least 50 m from 

occupied nests after eagle nestlings have fledged, indicating significant dispersal ability. 

Given the close proximity of cliff swallow colonies to eagle nests, and the fact that 

swallows are already natural hosts for swallow bugs (Oeciacus vicarious), a 

hematophagous ectoparasite in the Cimicidae family, it is possible that cliff swallow 

nests could serve as an alternative host for H. inodorus. Fassbinder-Orth et al. (2013) 

reported swallow bugs switching hosts from cliff swallows to nearby nesting house 

sparrows (Passer domesticus), which may extend the seasonal activity of the bugs. 

Golden eagle nesting ecology has been well studied in the NCA since the late 

1960s (Kochert and Steenhof 2012). Although researchers noted the presence of 
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ectoparasites in golden eagle nests (Hickman 1968; Kochert 1972), there have been no 

attempts quantify their abundance, understand the factors that predict infestation, or 

assess the role aromatic green nest material might serve to moderate the effects of 

ectoparasitism. Therefore, our objectives in the present study were to: 1) document and 

describe the ectoparasite community in golden eagle nests when nestlings were present; 

2) specifically quantify the abundance of H. inodorus in eagle nests; 3) evaluate factors 

that could predict H. inodorus abundance such as previous nest use, nest aspect, nearby 

cliff-nesting species, proportion of aromatic green nest material, and nest phenology; and 

4) determine whether eagles select aromatic green nest material during the nesting period, 

and if so, assess whether these materials reduce H. inodorus abundance in the nest, 

moderate the effects of ectoparasitism on nestlings, or both. 

Methods 

Study Area 

Our study area was located along the Snake River Canyon in the NCA and the 

adjacent Upstream Comparison Area (UCA), which extends east from the NCA to 

Hagerman, Idaho (Figure 2.1). The steep basalt cliffs of the Snake River Canyon provide 

nesting locations for golden eagles. The surrounding uplands are a mosaic of land cover 

types and habitats that include native shrub-steppe and salt-desert communities 

characterized by big sagebrush (Artemisia tridentata), shadscale (Atriplex confertifolia), 

gray rabbitbrush (Ericameria nauseosa), and disturbed grasslands and rangeland 

dominated by exotic annual grasses, native perennial grasses, irrigated agricultural land, 

and rural and suburban development (U.S. Department of the Interior 1996). 
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Field Techniques 

From March through July 2016, we monitored 16 golden eagle nesting territories. 

Most nesting territories in our study area have been monitored for more than four decades 

(Kochert and Steenhof 2012). We visited study nests every 10 days beginning when 

nestlings were approximately 21 days old, the age at which young eagles are able to 

thermoregulate (Kochert et al. 2002), until nestlings were approximately 51 days old. On 

the first nest visit, we placed SenSci ActivVolcano Bed Bug Detector® (SenSci, 

Lawrenceville, NJ, USA) traps in nests. These devices are small pitfall traps with a scent 

lure designed to attract and capture common bed bugs (Cimex lectularius). We placed 

three traps in each nest approximately 10 cm beneath the top surface of nest material. 

Traps were placed along the nest edge that abutted the cliff face and covered with a small 

cardboard ‘tent’ that prevented nest material from falling into the trap. Photographs with 

mapped locations of the traps aided the recovery of traps during the next visit. Traps were 

collected during each subsequent visit and replaced with fresh traps. Collected traps were 

placed individually in sealable plastic bags and stored in the freezer until the end of the 

season when trap contents were evaluated. 

In addition to collecting H. inodorus abundance data through the use of traps, we 

grouped levels of infestation into three categories based on visual observations of adult 

and nymph bugs in the nest and on nestlings: (1) no infestation: no bugs observed in the 

nest material or on nestlings; (2) low infestation: 1 – 10 bugs observed in total; or (3) 

high infestation: >10 bugs observed. Visual categorical rankings of infestation were made 

independent of trap counts. Twice during the nestling period, when nestlings were 4 and 

7 weeks old, we used a 25-gauge needle to withdraw blood from the brachial vein of 
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nestlings to measure nestling hematocrit. Blood was drawn into two heparinized capillary 

tubes and, within eight hours, was centrifuged for 6 minutes at 10,000 rpm. We recorded 

the proportion of packed red blood cells in the total blood volume and used the mean of 

two values to represent hematocrit for each nestling during each visit. All field methods 

followed protocols approved by the Boise State University Institutional Animal Care and 

Use Committee (Protocol #006-AC14-007). 

We obtained historical occupancy data on each study territory from U.S. 

Geological Survey records at the Snake River Field Station to determine the year each 

nest was last used by an eagle pair, termed ‘previous nest use’. During nest entries, we 

measured nest aspect as the magnetic azimuth of a line radiating directly away from the 

center of the nest. We conducted surveys of the surrounding cliff-nesting community by 

analyzing photographs taken from observation points approximately 400 m away from 

occupied nests. From each photograph we estimated a 50 m buffer around the nest in all 

directions and counted the number of cliff swallow nests that were located within that 

buffer. We collected photographs 3 m directly above the surface of eagle nests and 

analyzed the images with the Program SamplePoint (Booth et al. 2015) to determine the 

proportion of the nest surface covered by aromatic green plants during each visit. We 

used nest material collections and additional reference photographs to identify green 

plant species in each image. For each nest visit, we pooled the focal plant species with 

known aromatic compounds (i.e., big sagebrush, gray rabbitbrush, green rabbitbrush 

(Chrysothamnus viscidiflorus) and spiny hop sage (Grayia spinosa)) in order to calculate 

the proportion of the nest surface covered by aromatic green plants. We conducted 100 m 

line-intercept transects within a 1 km radius around nest sites to determine cover of each 
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focal shrub within each eagle territory (Floyd and Anderson 1987). We used ArcMap 

10.2 to create 1 km radius buffers around each nest, identified areas dominated by shrubs 

with the 1 km radius using the National Land Cover Database (Homer et al. 2015), and 

randomly generated transect origin points within these shrub areas. We calculated the 

percent shrub cover within the 1 km radius of each nest, and conducted a line intercept 

transect for every 5% of shrub cover (157,079 m2) within the 1 km radius. 

Plant Chemical Analysis 

We measured the phenolic compounds of the four focal aromatic plant species 

observed and collected from nests. We collected fresh clippings of plant vegetative 

growth from within 1 km buffers of occupied 2016 nests and assessed total phenolic 

content using colorimetric assays of whole leaf extracts. Samples (0.5 g wet weight) were 

extracted for two 3-minute periods in 10 mL GC-grade methanol in a sonicating water 

bath and filtered through glass wool. An adapted Folin-Ciocalteu assay (Ainsworth and 

Gillespie 2007) was used, where samples were diluted with methanol (1:3) to fit within 

the standard curve. Gallic acid (#92-6-15, Acros Organics) diluted in methanol was used 

as a standard (0 to 2900 μM). For each sample extract and standard, 20 μl of the dilution 

was pipetted in triplicate into 96-well plates. Next, 100 μl of 10% Folin-Ciocalteu reagent 

was added to each well, mixed gently, and 80 μl of 700 μM (7.5%) sodium carbonate was 

added and mixed. Plates were allowed to incubate at room temperature for 2 hours, and 

then were shaken on the plate reader (BioTek Synergy MX multi-mode plate reader) for 

60 seconds before reading at an absorbance of 765 nm at room temperature. 
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Statistical Analysis 

We used a generalized linear mixed model (GLMM) with a negative binomial 

distribution to compare categorical infestation levels to absolute pitfall trap counts. We 

found parameter estimates of each infestation level were not contained within the 95% 

confidence intervals of other levels, thus each rank was significantly different. This 

model had an offset for the number of trap days. Territory identity was included as a 

random variable. Because this approach validated our use of trap counts to assess H. 

inodorus abundance, we used trap counts as the response variable in subsequent analyses. 

We used multiple GLMM with negative binomial distributions to assess the influence of 

previous nest use, nest aspect, neighboring cliff swallow nests, proportion of aromatic 

green nest material, nest phenology, and sampling date (to control for the time of year 

samples were collected) on H. inodorus abundance. Models had an offset for the number 

of trap days. Territory identity was included as a random variable in all models. We 

created a categorical variable for the previous nest use by grouping nests into two 

categories: used in the previous three years prior to 2016 or not used in the previous three 

years. We selected three years because closely related swallow bugs have been found to 

survive in cliff swallow nests not used by swallows for three consecutive years (Loye 

1985), so we predicted that nests reused within three years would have higher H. 

inodorus abundance. We created a categorical variable for nest aspect by grouping nests 

into two categories: north-facing and south-facing. Nest phenology was represented by 

the estimated hatch date of an egg at each nest. If there was more than one egg at a nest, 

we used the median estimated hatch date of all eggs. All numerical predictors were scaled 

and centered before analysis. We conducted an exploratory analysis of covariates 
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predicting H. inodorus abundance by fitting a full model that included all covariates and 

then sequentially eliminating the covariate with the lowest effect size and largest variance 

until no additional covariate could be eliminated without leading to an increase in 

Akaike’s information criterion (AIC; Pagano and Arnold 2009). Models with ΔAIC < 2 

were considered to have the most support and variables with 85% confidence intervals 

that did not overlap zero were biologically informative (Arnold 2010). 

Unfortunately, we did not have H. inodorus abundance data for each blood-

sampling event to determine the effect of abundance on nestling hematocrit. Instead, we 

used categorical rankings of infestation levels to assess the effects of H. inodorus on 

nestling hematocrit. We used linear mixed models and an AIC model selection approach 

to assess the effects of the proportion of aromatic green nest material and H. inodorus 

infestation level on nestling hematocrit levels. To account for the association between 

proportion of aromatic green nest material and H. inodorus infestation level, we used a 

GLMM to generate the residuals of aromatic plant-adjusted infestation level and used the 

residuals in the model. We evaluated models using AIC and considered models with the 

lowest AIC score to have the most support given the data. 

Aromatic green plant selection was measured by Manly’s selectivity index (MSI) 

design III, which computes selectivity for each pair of eagles, to calculate the selection of 

the four focal aromatic shrub species based on use (i.e., brought to the nest as nest 

material) vs. presence (i.e., availability of shrubs within a 1 km radius of the nest site). 

MSI allows the testing of preference vs. avoidance and tests differences between 

selection ratios. MSI was calculated across all territories and was evaluated using 85% 

confidence intervals. Shrub species with test statistics and confidence intervals > 1 were 
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selected and < 1 were avoided (Manly et al. 2002). All analyses were performed in R 

(version 3.2.2, R Core Development Team 2016). Linear models were created using 

functions lmer and glmer in the package lme4 (Bates et al. 2015) and function 

glmmADMB in the package glmmADMB (Fournier et al. 2012). Descriptive statistics 

are reported as mean ± standard deviation. 

Results 

Ten insect families representing six orders, as well as spiders, ticks, and a 

scorpion, were collected from the pitfall traps placed within our 16 golden eagle nests 

(Table 2.1). Most of the arthropods collected were either larval or adult scavenging 

Coleopterans that feed primarily on decaying prey remains and detritus in the nest. The 

two most common ectoparasites of eagle nestlings were blow flies (Diptera: 

Calliphoridae) and H. inodorus. Myiasis, caused by blowflies, was observed typically 

within the first 5 weeks in the nestling period, at which point larvae exited nestlings, 

pupated, and emerged as adult flies. We observed myiasis in 9 of 26 (35%) nestlings 

from 7 of 16 (44%) nests. Haematosiphon inodorus were detected in 14 of 16 eagle nests 

while nestlings were present, and in one additional nest after the nestlings fledged. 

Although median date of first H. inodorus detection in the nest was 12 May, dates of first 

detection ranged substantially (21 April – 22 May). We collected 2,712 H. inodorus from 

pitfall traps in nests, 85.8% (n = 2,327) of which were nymphs. Pit fall traps had been 

moved deep into a cliff alcove at one nest, likely by a resident woodrat (Neotoma sp.). 

Traps at this nest did not capture a representative sample of H. inodorus abundance and 

were thus removed from subsequent analyses. Relative H. inodorus abundance at the 

remaining 15 nests varied by nest, and ranged from 0.03 - 13.5 bugs trap-1 night-1. These 
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values were consistent with the categorical infestation levels we assigned during each 

visit (Figure 2.2). Although abundance of H. inodorus at nests generally increased 

throughout the nesting period, fluctuations in bug populations caused this trend to be 

uninformative because the confidence intervals of the model overlapped zero (β = 0.09, 

CI = -0.2, 0.3). 

Twelve nests in our study had been used previously by golden eagle nesting pairs 

within the last 1 – 10 years. Additionally, three study nests were ‘new’ to the long-term 

study, and had not been used by eagles in at least 40 years. Eight nests had been used 

within 3 years and the remaining seven had not been used in >3 years. Nest aspect varied 

among nests; nine nests faced southeast, south, or southwest, and six nests faced 

northwest, north, or northeast. Hatch dates at study nests averaged 4 April ± 7.3 days 

(range 28 March – 20 April). Number of cliff swallow nests within a 50 m buffer of eagle 

nests averaged 24.5 ± 29.1 (range 0 – 342). Mean proportion of the nest surface covered 

in aromatic green material during a single visit was 0.04 ± 0.05 (range 0 – 0.16). 

The top model for explaining H. inodorus abundance included previous nest use, 

nest aspect, and nest phenology (Table 2.2). Nests reused in within the previous three 

years were less infested than nests that had not been used in the previous years (β = -2.3, 

CI = -3.9, -0.6). These results were opposite of our prediction that recent nest use would 

lead to increased H. inodorus abundance. We found higher H. inodorus abundance in 

south-facing nests compared to north-facing nests (β = 1.7, CI = 0.2, 3.3). Nests with a 

median hatch date later in the season had higher H. inodorus abundance than nests with 

earlier hatch dates (β = 0.9, CI = 0.2, 1.7). The second-most supported model (ΔAIC) 

contained the same variables as the top model plus the variable ‘proportion of aromatic 
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green nest material’. Aromatic green nest material tended to reduce H. inodorus 

abundance (β = -0.4), but the 85% CI included zero suggesting the direction of the effect 

is unreliable (CI = -0.8, 0.04). 

Green nest material in nests was represented primarily by the four focal aromatic 

shrub species: big sagebrush, gray rabbitbrush, green rabbitbrush, and spiny hop sage. 

These shrubs accounted for 72% of all green plant material observed in eagle nests. The 

proportion of land covered by shrubs within 1 km of eagle nests was variable (0.46 ± 

0.25). Seven native shrub species were found within shrub areas, and included the four 

aromatic shrubs identified earlier plus shadscale, horsebrush (Tetradymia canescens), 

golden currant (Ribes aureum). Eagles used gray rabbitbrush for their nests in greater 

proportion than the proportion available within a 1 km radius of the nests (Wi = 2.53, CI = 

1.2, 3.8; Figure 2.3), and used big sagebrush less frequently compared to its availability 

(Wi = 0.18, CI = 0.02, 0.4). Both green rabbitbrush (Wi = 1.37, CI = 0.9, 1.9) and spiny 

hop sage (Wi = 1.59, CI = -0.5, 3.7) were used in proportion to their availability on the 

landscape. In terms of total phenolic content, both gray rabbitbrush and green rabbitbrush 

had relatively high concentrations of phenolics (325,443 AUC and 287,614 AUC, 

respectively), which reflect potential insecticidal properties of these species. By contrast, 

big sagebrush and spiny hop sage contained relatively lower phenolic concentrations 

(99,533 AUC and 26,650 AUC, respectively). 

Mean nestling hematocrit during the nestling period was 0.28 ± 0.06 (range 0.12 – 

0.46). Nestling hematocrit was best explained by both H. inodorus infestation level and 

proportion of aromatic green nest material (Table 2.3). Haematosiphon inodorus 

infestation level had a negative effect on nestling hematocrit (β = -0.03, CI = -0.04, -
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0.007); nestlings in most infested nests had significantly lower hematocrit levels than 

nestlings in nests with low or no H. inodorus infestation. By contrast, the proportion of 

aromatic green material in nests had a positive effect on nestling hematocrit (β = 0.004, 

CI = 0.0009, 0.008, Figure 2.5). These results suggest that even at nests with high H. 

inodorus infestation, aromatic green plants had a positive effect on nestling health, 

consistent with the predictions of the ‘nest protection’ hypothesis. 

Discussion 

Ectoparasites can impair growth and survival and represent a significant threat to 

the fitness of raptor nestlings of many species (Delannoy and Cruz 1991; Smith et al. 

1998). Severe infestations of ectoparasites can reduce nestling mass and hematocrit 

levels, and repeated biting can lead to hemorrhages, muscle weakness, and chronic stress 

of nestlings (McFadzen and Marzluff 1996; Justice-Allen et al. 2016). The presence of H. 

inodorus in raptor nests has been documented previously (Platt 1975; Grubb et al. 1986; 

McFadzen and Marzluff 1996); however, no studies have yet attempted to quantify 

abundance or identify the factors that predict abundance at nests. We documented a 

diverse arthropod fauna in golden eagle nests in southwestern Idaho and developed the 

use of pit fall traps as an efficient method to measure the relative abundance of nest 

ectoparasites. Using this method, we show specific nest reuse, aspects, and the timing of 

breeding phenology influenced H. inodorus abundance in nests. Aromatic green nest 

material tended to be negatively associated with H. inodorus abundance and had a 

positive effect on nestling hematocrit. Our results suggest that eagles modify nests 

through the addition of aromatic green plant material to moderate the effects of H. 

inodorus ectoparasitism on the potential health (e.g., hematocrit) of their offspring. 
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Raptor nests are a microcosm for arthropod communities that include both free-

living and parasitic species (Heeb et al. 2000). Within golden eagle nests we found a 

diversity of arthropods, primarily scavenging beetles, but also leaf beetles, plume moths, 

ants, grasshoppers, ticks, spiders, and a scorpion. Of the scavenging beetles, dermestids, 

histerids, clerids, and staphylinids were relatively common. Dermestidae beetles are 

important for the decomposition of animal prey remains in raptor nests (Philips and 

Dindal 1977), but when abundant, larvae may prey on nestlings (Rothschild and Clay 

1952). Beetles in the families Histeridae, Cleridae, and Staphylinidae are scavengers that 

feed on prey remains, but also may prey on fleas and other insects and, therefore, could 

be important in determining the abundance of nest ectoparasites (Philips and Dindal 

1977). 

Although many arthropods associated with the nests of eagles, and other raptor 

species, are obligate scavengers, we documented two ectoparasites, blow flies and H. 

inodorus, on golden eagle nestlings. Blow fly larvae parasitize raptor nestlings by 

entering the body near the nares, ears, wing pits and leg pits. Although White (1963) and 

(Kochert 1972) reported nestling mortality associated with blow fly infestations, most 

incidents of myiasis are not fatal (Sargent 1938; M. Kochert pers. comm.). We observed 

myiasis in 35% of nestlings, however, lesions caused by blow fly larvae were small and 

healed before nestlings were 35 days old. 

Haematosiphon inodorus was the second-most numerous type of insect collected 

from pitfall traps after scavenging beetle larvae, although abundance of H. inodorus 

varied considerably among nests. We found eagles reuse nests with lower H. inodorus 

abundance, potentially to avoid selecting nests with high ectoparasite loads. Reusing 
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nests with low levels of infestation may be a behavioral response to avoid or reduce the 

negative effects of ectoparasitism on the survival and condition of offspring (Moore 

2002). Ectoparasite abundance exerts strong influence on nest selection in many avian 

species (Loye and Carroll 1998). For example, colonially nesting cliff swallows tend to 

avoid nesting in areas with previously high ectoparasite abundance (Brown and Brown 

1991) and barn swallows (Hirundo rustica) that reuse nests appear able to assess parasite 

load and select old nests that are not parasitized (Barclay 1988). 

In addition to previous nest use, nest aspect and breeding phenology explained H. 

inodorus abundance in golden eagle nests. South-facing nests had higher H. inodorus 

abundance relative to north-facing nests, suggesting that a southern aspect, which may 

create warmer nest microclimates (Goodenough et al. 2011), had a positive effect on H. 

inodorus populations. Local spring and summer temperatures and humidity at nests can 

be a function of orientation and many ectoparasitic insects spend less time in larval and 

pupal stages as ambient temperatures increase (Bennett and Whitworth 1991). Further, 

our results suggest eagle pairs that breed later in the season are more likely to experience 

high H. inodorus abundance than eagles that breed earlier in the season. Our results could 

be explained by an increase in warm days, as the season progresses, that nestlings spend 

in the nest prior to fledge. Warmer temperatures in late spring may allow H. inodorus 

populations to increase in abundance while nestlings are present in the nest. Brown and 

Brown (2015) demonstrated that swallow bugs increase throughout the breeding season, 

increasing the cost of parasitism for later nesting birds. 

How H. inodorus reached southwestern Idaho and how populations continue to 

move through the cliff ecosystem of the Snake River Canyon is unknown. Many of the 
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known avian hosts of H. inodorus nest over ranges that exceed the current distribution of 

the parasite. Although climate is likely a limiting factor in the geographical distribution 

of H. inodorus, the proximity of cliff shelters could also be an important factor that 

governs local distributions. Haematosiphon inodorus are highly mobile and are rarely 

found on raptors away from nest sites (Lee 1955), but the extent of their dispersal 

movements to find new hosts is not known. Wilson and Oliver (1978) found the bugs on 

a turkey vulture (Cathartes aura) away from a nest site early in the breeding season, 

suggesting bugs may be transported from nests by hosts when raptors are investigating 

nest sites prior to breeding. Loye (1985) suggested swallow bugs may be transported on 

adult swallows to colonize new colonies located several miles away, but also observed 

bugs crawling across the cliff faces towards adjacent nests. Nearby cliff-nesting species, 

such as prairie falcons, common ravens (Corvus corax), cliff swallows, and rock pigeons 

(Columba livia), are likely come into contact with H. inodorus, and may also facilitate 

the life history and distribution of the ectoparasite (Santillán et al. 2009). Additionally, H. 

inodorus may be brought to eagle nests along with avian prey, such as rock pigeons and 

prairie falcons (Philips and Dindal 1977). 

Negative effects of ectoparasites on host fitness can drive the evolution of a wide 

variety of host defenses that involve a range of nest maintenance behaviors, which 

include the addition of aromatic green nest material. We found that eagles selected nest 

material with high phenolic concentrations, and while these plants were not associated 

with lower abundance of H. inodorus in nests, higher proportions of aromatic material 

had a positive effect on nestling hematocrit values. Thus our results suggest that the 

addition of aromatic plants in nests by golden eagles may not directly reduce 
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ectoparasites in nests, but may instead disrupt the cues these ectoparasites use to locate 

hosts, inhibit feeding by ectoparasites, or delay reproduction or development of the 

ectoparasites (Clark and Mason 1988). Additionally, Mennerat et al. (2009) suggested 

aromatic plants might stimulate host immune systems to the physiological benefit of 

eagle nestlings. Developing young birds face a trade-off between growth and immune 

function (Brommer 2004), therefore mechanisms that improve immune function could 

improve nestling growth rates and hematocrit. 

Although our results suggest addition of aromatic plants to nests may benefit 

golden eagle nestlings, availability of these shrubs for nest material has been adversely 

affected by human activity. Across the American West, sagebrush steppe communities 

have been degraded and fragmented by anthropogenic activities (Fleischner 1994; Leu et 

al. 2008). Within the NCA, wildfire, livestock grazing, drought, and the spread of exotic 

invasive plants (U.S. Department of the Interior 1996) have reduced shrub availability 

within eagle territories and surrounding areas, which could reduce the ability of eagle 

pairs to add beneficial shrubs to nests during the nesting period to moderate 

ectoparasitism. Future landscape-level change that reduces shrub cover in sagebrush 

steppe ecosystems may indirectly affect the degree of ectoparasitism experienced by 

eagle nestlings. 

Although parasites are not generally among the most important limiting factors 

for avian populations, costs of parasitism are important to individual hosts when they 

lower reproductive success or the probability of survival (Newton 1998). Climate change 

will likely produce a range of effects on the distribution and abundance of parasite 

species (Stange and Ayres 2010), but, in addition to changes in climate, we show that 
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landscape-level land cover change that limits the availability of shrubs has the potential 

to affect the health of golden eagle nestlings in southwestern Idaho. In Chapter 3, we 

document the physiological effects of H. inodorus ectoparasitism on the condition and 

development of eagle nestlings. Given the negative impacts of H. inodorus infestation on 

nestling mass, hematocrit, and circulating corticosterone, it is important to understand the 

factors associated with H. inodorus abundance. This is the first study to quantify the 

abundance of H. inodorus in golden eagle nests throughout the breeding season, assess 

factors that predict infestation, and test the conditions of the ‘nest protection’ hypothesis. 

In a time of increased global change, it will be essential to continue to monitor and study 

the relationships between host-parasite interactions in this system for the conservation of 

golden eagle populations. 
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Table 2.1 List of arthropods, life stages, and the proportion of nests containing 

each family or order of arthropod in 16 golden eagle nests with nestlings, April – 

June 2016 in southwestern Idaho, USA. Life stages are represented as: l – larva, n – 

nymph, p – pupa, a – adult). 

 

Order   Family   Life Stages Proportion of Nests 

Coleoptera  Dermestidae  l, p, a   1.00 

   Histeridae  l, p, a   0.94 

   Cleridae  a   0.19 

   Staphylinidae  a   0.06 

   Chrysomelidae a   0.06 

Hemiptera  Cimicidae  n, a   0.94 

Diptera  Calliphoridae  l, p, a   0.25 

Hymenoptera  Formicidae  a   0.25 

Lepidoptera  Pterophoridae  a   0.06 

Orthoptera  Acrididae  a   0.06 

Acari      a   0.31 

Araneae     a   0.25 

Scorpiones     a   0.06 
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Table 2.2 Candidate models, number of parameters (K), delta AIC (ΔAIC), and 

model weights (AICwi) used to explain cimicid abundance per trap day in 15 golden 

eagle nests in southwestern Idaho, USA during the 2016 breeding season. See results 

for effect estimates and confidence intervals. 

Model K ΔAIC AICwi 

nest_use + nest_aspect + nest_phenologya 4 0 0.34 

nest_use + nest_aspect + nest_phenology + proportion_aromatic 5 0.4 0.27 

intercept 1 0.8 0.23 

nest_use + nest_aspect + nest_phenology + proportion_aromatic + 

neighboring_cliff_swallows 6 2.2 0.11 

nest_use + nest_aspect + nest_phenology + proportion_aromatic + 

neighboring_cliff_swallows + sampling_date 7 3.9 0.05 

aAIC of top model = 358.0 
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Table 2.3 Candidate models, number of parameters (K), delta AIC (ΔAIC), and 

model weights (AICwi) for models used to explain nestling hematocrit in 15 golden 

eagle nests in southwestern Idaho, USA during the 2016 breeding season. See results 

for effect estimates and confidence intervals. 

Model K ΔAIC AICwi 

proportion_aromatic + infestation_level 6 0 0.43 

infestation_level 5 0.76 0.30 

proportion_aromatic 5 1.36 0.22 

intercept 4 4.13 0.05 
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Figure 2.1 Location of 15 golden eagle nests for the H. inodorus abundance study 

nests in the Morley Nelson Snake River Birds of Prey National Conservation Area 

and Upstream Comparison Area, Idaho, USA in 2016. 
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Figure 2.2 Comparison of H. inodorus abundance determined from pitfall traps 

with H. inodorus infestation level based on visual assessments in 15 golden eagle nests 

in southwestern Idaho, USA in 2016. Bold lines within boxes represent the median, 

upper and lower limits of the box are the first and third quartiles, whiskers contain 

1.5 times the interquartile range, and open circles are outliers. Parameter estimates 

of each infestation level were not contained within the 95% confidence intervals of 

other levels, thus each rank was significantly different. 
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Figure 2.3 Manly’s selectivity index (design III) for four aromatic shrub species 

used by golden eagles in southwestern Idaho, USA in 2016. Selectivity index for 

shrubs used in 16 nests, and found on the landscape within a 1 km radius of nests. 

Aromatic shrubs include gray rabbitbrush (EriNau), green rabbitbrush (ChrVis), 

spiny hop sage (GraSpi), and big sagebrush (ArtTri). Where index is larger than the 

value 1, selectivity for that shrub in the nest is greater than its availability on the 

landscape. Error bars indicate 85% confidence intervals. 
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Figure 2.4 Observed nestling hematocrit at different nest infestation levels 

(colored circles, scaled to remove the effect of infestation level), predicted hematocrit 

(blue line) and associated 85% confidence intervals (filled gray area) at 16 nests with 

no, low, and high infestation levels in southwestern Idaho, USA in 2016. The 

proportion of aromatic green nest material in golden eagle nests had a positive effect 

on nestling hematocrit (β = 0.004, CI = 0.0009, 0.008). 
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PHYSIOLOGICAL EFFECTS OF HEMATOPHAGOUS ECTOPARASITES ON 

GOLDEN EAGLE NESTLINGS 

 

Abstract 

Hematophagous ectoparasites can have direct effects on animals by increasing 

energetic costs through the reduction of resources for growth, development, and survival. 

Prolonged ectoparasitism has been associated with the release of glucocorticoid 

hormones, which facilitate short-term survival at the expense of body condition and 

development, particularly in long-lived species. We studied the physiological effects of 

Mexican chicken bugs (Haematosiphon inodorus; Hemiptera: Cimicidae) on golden 

eagle (Aquila chrysaetos) nestlings in southwestern Idaho to understand the costs 

associated with ectoparasitism. Golden eagles are a widespread but uncommon raptor 

species facing threats across their North American range. Our goal was to assess the costs 

associated with ectoparasite infestation through an examination of nestling mass, 

hematocrit levels, and timing of fledging. In addition, we validated an ELISA assay to 

describe circulating corticosterone concentrations in eagle nestlings, and we investigated 

the physiological impact of ectoparasitism on nestling corticosterone because elevated 

corticosterone during development may influence the timing of fledging behavior with 

negative consequences for young eagles. We found that increased ectoparasitism reduced 

nestling mass and hematocrit and increased the probability that nestlings either fledged 

early or died in the nest. Relative ectoparasite infestation levels predicted circulating 

concentrations of corticosterone in eagle nestlings, and heavily parasitized nestlings had 
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higher corticosterone levels compared to non-parasitized nestlings. This is the first report 

of circulating corticosterone concentrations for golden eagles, and we show the presence 

and intensity of ectoparasitism affects the physiological condition of young eagles. 

Understanding the effects of ectoparasites on golden eagle productivity may be important 

for the conservation of local breeding populations severely impacted by ectoparasites. 

Introduction 

Avian populations are vulnerable to a variety of hematophagous ectoparasites that 

can reduce the reproductive success of their hosts by limiting health, growth, and the 

survival of nestlings (Brown and Brown 1986; Møller 1993). The nestling period in birds 

is energetically expensive with rapid structural growth and maturation of physiological 

systems. Ectoparasite infestation can impact development by competing with hosts for 

resources that could otherwise be used for growth and maintenance (Pryor and Casto 

2015). Nest-bound nestlings in cliff nests may be particularly susceptible to 

ectoparasitism because of their limited ability to evade parasites living in the nest. In 

addition, exposure to ecological stressors, like ectoparasitism, can trigger a stress 

response through the release of glucocorticoid hormones (Raouf et al. 2006). 

Corticosterone is the primary avian stress hormone, and increased levels of circulating 

corticosterone can be beneficial in the short-term by encouraging behaviors such as 

increasing begging for food to facilitate survival (Kitaysky et al. 2003). However, 

prolonged exposure to elevated corticosterone levels, in response to ectoparasitism, can 

severely impede nestling growth and development and may have long-term detrimental 

effects on survival (Raouf et al. 2006). Because ectoparasites incur negative effects on 

their hosts, understanding how host-parasite interactions influence host condition, 
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development, and physiology is important for the conservation and management of 

threatened avian species. 

Hematophagous ectoparasites associated with birds include blood-sucking flies, 

fleas, ticks, and hemipteran insects in the family Cimicidae (Philips 2007). Commonly 

referred to as bed bugs, cimicids can have a significant impact on their hosts because both 

adults and nymphs require blood meals (Usinger 1966). Cimicids are typically associated 

with colonial-nesting birds like swallows and swifts (Brown and Brown 1986; Loye and 

Regan 1991), but they have also been observed in raptor nests (Hickman 1968; Platt 

1975; Sitter 1983; Grubb et al. 1986). Many ectoparasite species expanding or shifting 

their spatial distributions in response to climate change (Møller et al. 2013), and 

introductions of new cimicid species to raptor populations have recently been 

documented (McFadzen et al. 1996; Santillán et al. 2009). McFadzen et al. (1996) first 

reported the presence of Mexican chicken bugs (Haematosiphon inodorus) in the Morley 

Nelson Snake River Birds of Prey National Conservation Area (NCA) in southwestern 

Idaho, which at the time was the northern-most record for this species. Haematosiphon 

inodorus lives in nest material and surrounding substrate (Usinger 1966). Individuals are 

extremely active, feed diurnally and nocturnally, and both adults and nymphs will 

emigrate in search of available hosts (Lee 1955). 

Repeated biting of ectoparasites can lead to hemorrhages, muscle weakness, and 

chronic stress of nestlings (Brown et al. 1995; Eggert et al. 2010; Justice-Allen et al. 

2016). Sever infestation can adversely affect nestling mass, hematocrit, and survival 

(Brown and Brown 1986; Chapman and George 1991; Richner et al. 1993; Merino and 

Potti 1995; Heeb et al. 2000). Although few studies have considered on the ecological 
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impact of H. inodorus on raptors, McFadzen and Marzluff (1996) found young prairie 

falcons in nests infested by H. inodorus had lower mass and hematocrit levels, similar to 

what has been reported in other avian species. 

Chronically elevated stress hormones produce detrimental effects in many bird 

species. The release of glucocorticoid hormones in response to environmental stressors, 

characterized as a stress response, has short-term benefits, including increased foraging 

and energy uptake, which may facilitate short-term survival during adverse conditions 

(Raouf et al. 2006). However, a stress response may carry significant costs for developing 

birds, such as reduced growth efficiency and compromised immune defense and 

cognitive abilities for long-lived species (Kitaysky et al. 2003). Increased corticosterone 

levels have been linked to locomotor activity (Breuner et al. 1998) and nest departure 

(Heath 1997; Corbel and Groscolas 2008). Thus, increases in corticosterone in response 

to ectoparasitism (Kavaliers et al. 2003; Quillfeldt et al. 2004; Raouf et al. 2006) could 

facilitate early fledging behavior and have negative consequences for nestling survival. 

Early fledging in response to ectoparasitism, along with a corresponding increase in 

fledgling mortality, has been reported in barn swallows (Hirundo rustica) (Møller 1990), 

and early fledging may be particularly deleterious for nestlings of cliff-nesting raptor 

species such as golden eagles (Aquila chrysaetos). 

Golden eagles are a widespread, but uncommon, raptor currently facing threats 

across their North American range (Kochert et al. 2002). Golden eagle breeding ecology 

has been well studied in southwestern Idaho and, in Chapter 2, we previously report the 

occurrence of H. inodorus in golden eagle nests in the NCA. The present study is the first 

attempt to document physiological costs associated with infestation in eagle nestlings. 
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Our objectives were to assess the cost associated with H. inodorus infestation to 

determine the impact of ectoparasitism on nestling mass, hematocrit levels, corticosterone 

levels, and the probability of fledging early. 

Methods 

Study Area 

Our study area was located along the Snake River Canyon in the NCA and the 

adjacent Upstream Comparison Area (UCA), which extends east from the NCA to 

Hagerman, Idaho. The steep basalt cliffs of the Snake River Canyon provide nesting 

locations for golden eagles. The surrounding uplands are a mosaic of land cover types 

and habitats that include native shrub-steppe and salt-desert communities characterized 

by big sagebrush (Artemisia tridentata), shadscale (Atriplex confertifolia), gray 

rabbitbrush (Ericameria nauseosa), and disturbed grasslands and rangeland dominated by 

exotic annual grasses, native perennial grasses, irrigated agricultural land, and rural and 

suburban development (U.S. Department of the Interior 1996). 

Field Techniques 

In 2015 and 2016, we surveyed 35 eagle territories in the NCA and UCA that 

have been historically monitored as part of a long term monitoring project (Steenhof et al. 

1997). We visited study nests every 8-10 days beginning when nestlings were 

approximately 21 days old, the age at which young eagles are able to thermoregulate 

(Kochert et al. 2002), until nestlings were approximately 51 days old. To minimize stress 

to the nestlings, we did not visit nests during inclement weather. During each nest visit, 

we examined nestlings for the presence of ectoparasites. We grouped levels of H. 

inodorus infestation into three categories based on visual observations of adult and 
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nymph bugs in the nest and on nestlings: (1) no infestation: no bugs observed in the nest 

material or on nestlings; (2) low infestation: 1-10 bugs observed in total; or (3) high 

infestation: >10 bugs observed. We assessed nestling age in days using the protocols of 

Hoechlin (1976) and Driscoll (2010), and we recorded nestling mass using a Pesola scale. 

We defined early fledging events as nestlings that left their nest before they were 51 days 

old, which is 80% of mean fledging age (Steenhof et al. in press). 

Twice during the nestling period, when nestlings were 4 and 7 weeks old, we 

recorded morphometric measurements, including wing chord, culmen length, and footpad 

length, and we used a 25-gauge needle to withdraw blood from the brachial vein of 

nestlings into a syringe. During these visits, we transported nestlings out of the nest and 

recorded the amount the time between our first contact with a nestling until blood 

sampling was complete to account for handling effects on corticosterone concentrations. 

Blood for corticosterone samples was stored in a 0.8 mL, LH Lithium Heparin mini 

centrifuge tube. For nestling hematocrit samples, blood was drawn into two heparinized 

75 mm capillary tubes. All blood samples were immediately placed in a cooler until 

returning to the Boise State University campus on the same day of sampling. Hematocrit 

samples were centrifuged for 6 minutes at 10,000 rpm. We measured the proportion of 

the blood volume that was packed blood cells and used the mean of two samples to 

represent hematocrit for each nestling during each visit. Nestling sex was determined 

through DNA test results from nestling blood processed at Purdue University (West 

Lafayette, IN, USA; 2015 samples) and by Avian Biotech International (Tallahassee, FL, 

USA; 2016 samples). All field methods followed protocols approved by the Boise State 

University Institutional Animal Care and Use Committee (Protocol #006-AC14-007). 
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Corticosterone Sampling 

We centrifuged corticosterone blood samples at 6,000 rpm for 10 minutes to 

separate plasma within 8 hours of collection, and then stored samples at -20°C until 

processing. We used extracted plasma to determine circulating corticosterone 

concentrations by running enzyme-linked immunosorbent assays (ELISA, Cayman 

Chemicals). We ran samples in duplicate, and utilized a pooled sampling consisting of 

select blood samples to determine inter-assay variability. We twice extracted 

corticosterone from 30 µL of plasma with 5 ml diethyl ether. The lipophilic supernatant 

was poured off and evaporated under a stream of nitrogen gas in a warm water bath. 

Extracted samples were reconstituted with 100 µL of EIA buffer, vortexed, and divided 

into 50 µL aliquots that were added to 96-well plates coated with mouse monoclonal 

antibody. We added corticosterone-specific acetylcholinesterase tracer and rabbit 

corticosterone antiserum and then incubated plates on an orbital shaker for two hours. 

Plates were then rinsed to remove any non-bound corticosterone and developed in a dark 

chamber with Ellman’s reagent for 1 hour. We read plates at 405 nm with a Biotek 

EL800 plate reader. We validated the corticosterone assay by comparing the slopes of a 

plasma dilution curve to the assay standard curve slope. Plasma dilution curves consisted 

of different ratios of pooled eagle plasma to buffer. There was no significant difference 

between the slopes of the plasma dilution and assay standard curve. We calculated the 

concentration of corticosterone in samples by comparing results to a standard curve 

established with known concentrations. We determined extraction efficiency by 

analyzing a standard corticosterone sample, and calculated inter-assay variation from 

repeated values of a pooled sample. We corrected all values for assay extraction 
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efficiency (mean ± SD) 83.0 ± 7.6%. Inter-assay variation averaged 8.63% and average 

intra-assay variation was 2.02%. Assays were completed in two consecutive days and the 

same buffer solutions were used to eliminate any variation in absorbance values due to 

slight differences in concentration. 

Statistical Analysis 

Golden eagle young regularly had food in their crops that biased our mass 

measurements high. We scored the size of nestling crops in quartiles and used a sex- and 

age-specific crop size equation to estimate the mass of crop contents (Collopy 1984). 

Crop mass was then subtracted from measured body mass. We used a linear mixed model 

(LMM) to predict crop-adjusted nestling mass based on H. inodorus infestation level, 

age, age squared, sex and the interaction between infestation level and sex. We used a 

LMM to test whether nestling hematocrit was influenced by infestation level, age, age 

squared, or sex. We used a LMM to predict the effect of age, sex, time of day, and 

infestation level on nestling corticosterone. We included handling time in minutes 

included as a covariate to account for increased corticosterone levels as a result of 

handling. We created a generalized linear mixed model to predict the probability that 

nestlings fledged early or died in the nest as a result of H. inodorus infestation. We 

calculated the mean infestation level at a nest based on all visits to predict the probability 

that nestlings either left the nest early or died in the nest prior to fledging. Nestling 

identity and territory identity were included as random variables in all models to account 

for non-independence of samples. All analyses were performed in R (version 3.2.2, R 

Core Development Team 2016) and linear models were created using functions lmer and 
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glmer in the package lme4 (Bates et al. 2015) Descriptive statistics are reported as mean 

± standard deviation. 

Results 

We assessed H. inodorus infestation levels at 19 and 16 golden eagle territories in 

2015 and 2016, respectively. Ten territories were sampled in both years and one nest was 

sampled in both years. Of the 35 nests sampled, 23% (n = 8) nests experienced no H. 

inodorus infestation, 46% (n = 16) nests experience low levels of infestation 31% (n = 

11) experienced high levels of infestation. Of the 57 nestlings associated with those nests, 

we found three (5% of total) nestlings dead in highly infested nests and we observed 

another 10 (18% of total) leave the nest before reaching 51 days of age. Of the 10 

nestlings that fledged early, six were recovered dead below the nest. In total, the death of 

16% (n = 9) of all nestlings in our study occurred in, or below, highly infested nests and 

can likely be attributed to H. inodorus infestation. 

We measured nestling mass from 31 eagle nestlings in 2015 and 26 nestlings in 

2016. Increasing H. inodorus infestation had a negative effect on nestling mass. Nestlings 

in nests with high infestations had significantly lower body mass than nestlings in non-

infested nests (2 = 23.9, p < 0.01). Nestlings in nests with no or low infestation levels 

added mass at a faster rate than nestlings in highly infested nests (Figure 3.1). The fixed 

effects of both age (2 = 450.7, p < 0.01) and sex (2 = 100.5, p < 0.01) had a positive 

effect on nestling mass. We found no evidence of an interaction between nestling sex and 

infestation level (2 = 0.4, p = 0.81), indicating neither sex was parasitized 

disproportionately. 
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We measured hematocrit from 24 nestlings in 2015 and 26 nestlings in 2016. 

Mean nestling hematocrit over both seasons was 0.29 (range 0.12 - 0.54) and did not vary 

by nestling age (2 = 0.7, p = 0.42) or sex (2 = 0.002, p = 0.96). High levels of H. 

inodorus infestation had a negative effect on nestling hematocrit (2 = 27.9, p < 0.01, 

Figure 3.2). Nestlings from highly infested nests had significantly lower hematocrit than 

nestlings from non-infested nests or nests with low levels of infestation. 

Circulating corticosterone was measured from 26 nestlings during 2015. Nestling 

corticosterone concentrations averaged 22.29 ± 15.17 ng/mL (range 3.70 - 80.65 ng/mL). 

We found no effect of nestling age (2 = 0.4, p = 0.51), sex (2 < 0.1, p = 0.90), or time 

of day (2 = 0.3, p = 0.60) on corticosterone levels, and thus combined all nestlings for 

the subsequent analysis. Circulating corticosterone was significantly higher for nestlings 

that experienced heavy H. inodorus infestation compared to nestlings from nests with 

either no infestation or low infestation (2 = 21.1, p < 0.01, Figure 3.3). We observed an 

increase in nestling corticosterone caused by handling time (β = 2.53, CI = 1.23, 3.78), 

demonstrating that golden eagle nestlings elicit a stress response during handling. We did 

not find a significant interaction between handling time and infestation level (2 = 2.6, p 

= 0.28), which indicates there were no differences in the rate of nestling stress response 

based on infestation level. Mean infestation level at a nest predicted the probability that 

nestlings left the nest before 51 days of age or died in the nest (2 = 10.6, p < 0.01, Figure 

3.4). Nestlings that experienced high infestation levels throughout their time in the nest 

were more likely to leave early or die before leaving the nest. 
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Discussion 

Ectoparasitism by H. inodorus has a detrimental effect on the physiological 

condition of golden eagle nestlings in southwestern Idaho. Higher levels of H. inodorus 

infestation were associated with lower nestling mass and hematocrit, both of which 

suggest that H. inodorus ectoparasitism created an energetically expensive cost to 

nestling development. We also found that nestling circulating corticosterone levels in 

nestlings increased in direct relation to H. inodorus infestation. Although increased 

corticosterone levels may facilitate nestling survival in the short-term by increasing food 

begging, chronic exposure to elevated levels of corticosterone can result in a range of 

deleterious effects, including reduced immune function (Wingfield et al. 1997) and 

reductions in cognitive capabilities (Kitaysky et al. 2003), both of which are likely to 

affect the lifespan of individual birds that survive to independence. Finally, H. inodorus 

infestations were positively associated with early fledging, which can lead to the death 

for young birds leaving nests on high cliffs before they are capable of flight. 

High ectoparasite infestations can negatively affect fitness-related traits in birds 

(Møller 1990; Hurtrez-Boussès et al. 1997; Heeb et al. 2000). Magrath (1991), Arizaga et 

al. (2015), and Jones et al. (2017) all report a positive relationship between nestling body 

mass and condition and juvenile survival, thus reductions in nestling mass not only 

reduces condition at fledging, but could also reduce post-fledging survival as well 

(Tinbergen and Boerlijst 1990). Similar to other studies (e.g., Chapman and George 1991; 

Whitworth and Bennett 1992; Potti et al. 1999), we found that nestling hematocrit 

decreased as infestation increased, suggesting a direct effect of ectoparasitism on nestling 

condition. The reported hematocrit range for healthy raptors is 0.35 – 0.55 (Monks and 
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Forbes 2007); however, lower values have been obtained from apparently healthy birds 

(Rehder et al. 1982). A study evaluating the range in hematocrit values of five adult 

golden eagles found a range of 0.38 – 0.46 (Polo et al. 1992). In our study, nestling 

hematocrit ranged from 0.12 – 0.54 (mean = 0.29), and high levels of H. inodorus 

ectoparasitism were associated with the lowest hematocrit values. Although we do not 

know the survival fate of all nestlings from nests with high levels of infestation, we 

observed that some of those nestlings in highly infested nests survived to fledge and 

disperse from their natal nest. The long-term impact of low mass and hematocrit on the 

survival of fledgling eagles is unknown and warrants further study. 

Chronically elevated corticosterone due to ectoparasitism could be deleterious to 

the survival of eagle nestlings by reducing cognitive function as well as facilitating 

movements that could cause early fledging. Corticosterone has been found to stimulate 

activity in numerous avian species including dispersal in juvenile western screech-owls 

(Megascops kennicottii; Belthoff and Dufty 1998), pre-migratory restlessness in red knots 

(Calidris canutus; Piersma et al. 2000), and migratory flights of bar-tailed godwits 

(Limosa lapponica; Landys-Ciannelli et al. 2002). Heath (1997) demonstrated 

corticosterone increases in American kestrel nestlings just prior to fledging. In our study, 

we recorded 10 instances of early fledging from highly infested nests, most of which 

resulted in mortality. High H. inodorus infestation has been documented nestlings 

fledging early from heavily parasitized nests in several raptor species (McFadzen and 

Marzluff 1996; D. Driscoll, pers. comm.) increased the likelihood of nestlings dying in 

their nests or jumping early to their death. Given the positive effect that corticosterone 

has on nestling movement (Breuner et al. 1998), it is possible that increased 
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corticosterone levels resulting from high infestation levels facilitated fledging movements 

before eagle nestlings were able to fly. Furthermore, decreased cognitive ability as a 

result of ectoparasitism can reduce foraging ability of recently fledged birds, which could 

increase the likelihood of post-fledging mortality due to starvation (Kitaysky et al. 2003). 

Anemia and metabolic stress can cause immunosuppression and increase the 

susceptibility of birds to pathogenic agents (Folstad and Karter 1992). During 

development, nestling birds make trade-offs between growth, survival, and immune 

functions (Brommer 2004). Although H. inodorus is not a known vector of any 

pathogens, the closely related swallow bug (Oeciacus vicarius) is a vector for the Buggy 

Creek virus (Togaviridae: Alphavirus) and transmits the pathogen to cliff swallows 

(Fassbinder-Orth et al. 2013). Future studies might investigate the potential role of H. 

inodorus as a vector of arboviruses and other diseases. Further, Justice-Allen et al. (2016) 

reported that parasitism by argasid ticks caused paresis and ataxia in bald eagle nestlings. 

Avian tick paralysis is caused by neurotoxins associated with many tick species (Luttrell 

et al. 1996). Although ectoparasitism decreased the physiological condition of nestlings, 

we noted no other abnormal effects of H. inodorus ectoparasitism on eagle nestlings and 

repeated biting did not appear to cause additional symptoms. 

Our study is the first to report circulating corticosterone concentrations for golden 

eagles and we validated the use of ELISA assays on eagle plasma. Our results show that 

the presence and intensity of H. inodorus infestation influences circulating corticosterone 

levels in eagle nestlings, and suggest that glucocorticoids are a mechanism to overcome 

the effects of ectoparasitism. Ectoparasitism has been linked to elevated corticosterone 

levels in some bird species (Kavaliers et al. 2003; Quillfeldt et al. 2004; Raouf et al. 
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2006), but not others (Lobato et al. 2008; Eggert et al. 2010; Pryor and Casto 2015), 

leading to the suggestion that an adrenal response to ectoparasitism may depend on the 

ability of the host species to cope with the parasitism event, and also the pattern of 

exploitation by the ectoparasite and the history of association between the host and 

ectoparasite (St. Juliana et al. 2014). Interspecific differences in stress response to 

ectoparasitism demonstrate the importance of investigating corticosterone response in 

raptor species. Host species may exhibit less of a response from by parasite species with 

which they have co-evolved. Thus, relatively new host-parasite relationships may allow 

parasites to exert a strong effect on their hosts. The glucocorticoids response elicited by 

eagle nestlings in southwestern Idaho to H. inodorus infestation may therefore be related 

to the relatively recent arrival of H. inodorus in this area. 

Given the costs of ectoparasitism to nestling condition and survival, it is 

important to understand the physiological response to infestation. When avian 

populations are stressed by habitat reduction or alteration, the negative response to 

hematophagous ectoparasites may compound negative population-level effects (Loye and 

Carroll 1998). North American golden eagle populations face threats from habitat loss 

and the reduction of their historical prey populations (Kochert and Steenhof 2002), and 

monitoring and understanding the effects of ectoparasitism on nestling condition and 

survival may be important for future conservation efforts of the species. 

Acknowledgements 

We thank Mike Kochert for his advice and guidance in designing this project and 

sharing research experience in our study areas. We acknowledge the USGS Snake River 

Field Station for providing historical data in the NCA and UCA. We thank Joe Weldon 



84 

 

for assistance and support in the field. We thank Jordan Harrison and Steve Crane for 

collecting morphometrics and blood samples from nestlings in the NCA in 2015 as part 

of the golden eagle dietary change project. We thank Teresa Ely, Caitlin Davis, and Erin 

Arnold who worked as field assistants on this project. This project was supported by 

funds from the USFWS Western Golden Eagle Team, BLM, Golden Eagle Audubon 

Society, Boise State University Raptor Research Center, Michael W. Butler Ecological 

Research Award, Richard Olendorff/Idaho Chapter of the Wildlife Society Scholarship, 

and a NSF Raptor Research REU award (DBI-1263167 to Michael Henderson). Michael 

Henderson and Julie Heath of Boise State are co-authors on this manuscript. 

References 

Arizaga J, Herrero A, Aldalur A, Cuadrado JF, Oro D (2015) Effect of pre-fledging body 

condition on juvenile survival in yellowlegged gulls Larus michahellis. Acta 

Ornithol 50:139–147.  

Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models 

using lme4. J Stat Softw 67: 1–48. 

Belthoff JR, Dufty AM (1998) Corticosterone, body condition and locomotor activity: a 

model for dispersal in screech-owls. Anim Behav 55:405–415.  

Breuner CW, Greenberg AL, Wingfield JC (1998) Non-invasive corticosterone treatment 

rapidly increases activity in Gambel's white-crowned sparrows (Zonotrichia 

leucophrys gambelii). Gen Comp Endocrinol 111:386–394. 

Brommer JE (2004) Immunocompetence and its costs during development: an 

experimental study in blue tit nestlings. Proc R Soc Lond Biol 271:110–113.  

Brown CR, Brown MB (1986) Ectoparasitism as a cost of coloniality in cliff swallows 

(Hirundo pyrrhonota). Ecology 67:1206–1218. 



85 

 

Brown CR, Brown MB, Rannala B (1995) Ectoparasites reduce long-term survival of 

their avian host. Proc R Soc Lond Biol 262:313–319. 

Chapman B, George J (1991) The effects of ectoparasites on cliff swallow growth and 

survival. In Loye, JE, Zuk M, eds. Bird-Parasite Interactions: Ecology, Evolution 

and Behavior. Oxford University Press. pp 69–92. 

Collopy MW (1984) Parental care and feeding ecology of golden eagle nestlings. Auk 

101:753–760. 

Corbel H, Groscolas R (2008) A role for corticosterone and food restriction in the 

fledging of nestling white storks. Horm Behav 53:557–566. 

Driscoll DE (2010) Protocol for golden eagle occupancy, reproduction, and prey 

population assessment. American Eagle Research Institute, Apache Jct., AZ. 55 

pp. 

Eggert LM, Jodic PG, O’Reilly KM (2010) Stress response of brown pelican nestlings to 

ectoparasite infestation. Gen Comp Endocrinol 166:33–38. 

Fassbinder-Orth CA, Barak VA, Brown CR (2013) Immune responses of a native and an 

invasive bird to Buggy Creek Virus (Togaviridae: Alphavirus) and its arthropod 

vector, the swallow bug (Oeciacus vicarius). PLoS ONE 8, e58045. doi: 

10.1371/journal.pone.0058045. 

Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence 

handicap. Am Nat 139:603–622. 

Grubb TW, Eakle L, Tuggle BN (1986) Haematosiphon inodorus (Hemiptera: 

Cimicidae) in a nest of a bald eagle (Haliaeetus leucocephalus) in Arizona. J 

Wildl Dis 22:125–127. 

Heath JA (1997) Corticosterone levels during nest departure of juvenile American 

kestrels. Condor 99:806–811. 

Heeb P, Kolliker M, Richner H (2000) Bird-ectoparasite interactions, nest humidity, and 

ectoparasite community structure. Ecology 81:958–968. 



86 

 

Hickman GL (1968) The ecology and breeding biology of the golden eagle in 

southwestern Idaho and southeastern Oregon. U.S. Department of the Interior, 

Bureau of Sport Fisheries and Wildlife. 

Hoechlin DR (1976) Development of golden eaglets in southern California. West Birds 

7:137–152. 

Hurtrez-Boussès S, Perret P, Renaud F, Blondel J (1997) High blowfly parasitic loads 

affect breeding success in a Mediterranean population of blue tits. Oecologia 

112:514–517. 

Jones TM, Ward MP, Benson TJ, Brawn JD (2017) Variation in nestling body condition 

and wing development predict cause-specific mortality in fledgling dickcissels. J 

Avian Biol 48:439–447. 

Justice-Allen A, Orr K, Schuler K, McCarty K, Jacobson K, Meteyer C (2016) Bald eagle 

nestling mortality associated with Argas radiatus and Argas ricei tick infestation 

and successful management with nest removal in Arizona, USA. J Wildl Dis 

52:940–944. 

Kavaliers M, Colwell DD, Choleris E (2003) Learning to fear and cope with a natural 

stressor: individually and socially acquired corticosterone and avoidance 

responses to biting flies. Horm Behav 43:99–107. 

Kitaysky A, Kitaiskaia E, Piatt J, Wingfield JC (2003) Benefits and costs of increased 

levels of corticosterone in seabird chicks. Horm Behav 43:140–149. 

Kochert MN, Steenhof K (2002) Golden eagles in the U.S. and Canada: status, trends, 

and conservation challenges. J Raptor Res 36:32–40. 

Kochert MN, Steenhof K, Mcintyre CL, Craig EH (2002) Golden eagle. In: Poole A, ed. 

The Birds of North America: Cornell Laboratory of Ornithology. 

http://bna.birds.cornell.edu/bna/species/684. Accessed March 2017. 

Landys-Ciannelli MM, Ramenofsky M, Piersma T, Jukema J, Wingfield JC (2002) 

Baseline and stress-induced plasma corticosterone during long-distance migration 

in the bar-tailed godwit, Limosa lapponica. Physiol Biochem Zool 75:101–110. 



87 

 

Lee RD (1955) The biology of the Mexican chicken bug, Haematosiphon inodorus 

(Duges). Pan-Pac Entomol 31:47–61. 

Lobato E, Merino S, Moreno J, Morales J, Tomás G, Martínez de la Puente J, Osorno JL, 

Kuchar A, Möstl E (2008) Corticosterone metabolites in blue tit and pied 

flycatcher droppings: effects of brood size, ectoparasites and temperature. Horm 

Behav 53:295–305. 

Loye J, Carroll S (1998) Ectoparasite behavior and its effects on avian nest site selection. 

Ann Entomol Soc Am 91:159–163. 

Loye J, Regan TW (1991) The cliff swallow bug Oeciacus vicarious (Hemiptera: 

Cimicidae) in Florida: ectoparasite implications for hole-nesting birds. Med Vet 

Entomol 5:511–513. 

Luttrell MP, Creekmore LH, Mertins JW (1996) Avian tick paralysis caused by Ixodes 

brunneus in the southeastern United States. J Wildl Dis 32:133–136. 

Magrath RD (1991) Nestling weight and juvenile survival in the blackbird, Turdus 

merula. J Anim Ecol 60:335–351. 

Mcfadzen ME, Vekasy MS, Morishita TY, Greve JH (1996) Northern range extension for 

Haematosiphon Inodorus (Duges) (Hemiptera: Cimicidae). Pan-Pac Entomol 

72:41–42. 

Mcfadzen ME, Marzluff JM (1996) Mortality of prairie falcons during the fledging-

dependence period. Condor 98:791–800. 

Merino S, Potti J (1995) Mites and blowflies decrease growth and survival in nestling 

pied flycatchers. Oikos 73:95–103. 

Møller AP (1990) Effects of parasitism by a haematophagous mite on reproduction in the 

barn swallow. Ecology 71:2345–2357. 

Møller AP (1993) Ectoparasites increase the cost of reproduction in their hosts. J Anim 

Ecol 62:309–322. 

Møller AP, Merino S, Soler JJ, Antonov A, Badás EP, Calero-Torralbo MA, de Lope F, 

Eeva T, Figuerola J, Flensted-Jensen E, et al. (2013) Assessing the effects of 



88 

 

climate on host-parasite interactions: a comparative study of European birds and 

their parasites. PLoS ONE 8, e82886. doi: 10.1371/journal.pone.0082886. 

Monks DJ, Forbes NA (2007) Physiology: Hematological. In: Bird DM, Bildstein 

KL, eds. Raptor Research and Management Techniques. Hancock House, pp 

278–285. 

Newton I (1998) Population Limitation in Birds. Academic Press. pp 249–286. 

Philips JR (2007) Pathology: Ectoparasites. In: Bird DM, Bildstein KL, eds. Raptor 

Research and Management Techniques. Hancock House, pp 311–317. 

Platt SW (1975) The Mexican chicken bug as a source of raptor mortality. Wilson Bull 

87:557. 

Piersma T, Reneerkens J, Ramenofsky M (2000) Baseline corticosterone peaks in 

shorebirds with maximal energy stores for migration: a general preparatory 

mechanism for rapid behavioral and metabolic transitions? Gen Comp Endocrinol 

120:118–126.  

Polo FJ, Celdrán JF, Peinado VI, Viscor G, Palomeque J (1992) Hematological values for 

four species of birds of prey. Condor 94:1007–1013. 

Potti J, Moreno J, Merino S, Fraís O, Rodríguez R (1999) Environmental and genetic 

variation in the haematocrit of fledgling pied flycatchers Ficedula hypoleuca. 

Oecologia 120:1–8. 

Pryor LJ, Casto JM (2015) Blood-feeding ectoparasites as developmental stressors: does 

corticosterone mediate effects of mite infestation on nestling growth, immunity 

and energy availability? J Exp Zool 323:466–477. 

Quillfeldt P, Masello JF, Möstl E (2004) Blood chemistry in relation to nutrition and 

ectoparasite load in Wilson’s storm-petrels Oceanites oceanicus. Polar Biol 

27:168–176. 



89 

 

R Development Core Team (2016) R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. www.R-

project.org. Accessed March 2017. 

Raouf SA, Smith LC, Brown MB, Wingfield JC, Brown CR (2006) Glucocorticoid 

hormone levels increase with group size and parasite load in cliff swallows. Anim 

Behav 71:39–48. 

Redher NB, Bird DM, Lague PC (1982) Variations in blood packed cell volume of 

captive American kestrels. Comp Biochem Physiol 72:105–109. 

Richner H, Oppliger A, Christe P (1993) Effect of an ectoparasite on reproduction in 

great tits. J Anim Ecol 62:703–710. 

Santillán M, Carpintero DL, Galmes A, Sarasola JH (2009) Presence of cimicid bugs 

(Hemiptera: Cimicidae) on a crowned eagle (Harpyhaliaetus coronatus) nestling. 

J Raptor Res 43:255–256. 

Sitter G (1983) Feeding activity and behavior of prairie falcons in the Snake River Birds 

of Prey Natural Area in southwestern Idaho. M.S. Thesis. University of Idaho, 

Moscow, Idaho. 

St. Juliana JR, Khokhlova IS, Wielebnowski N, Kotler BP, Krasnov BR (2014) 

Ectoparasitism and stress hormones: strategy of host exploitation, common host-

parasite history and energetics matter. J Anim Ecol 83:1113–1123. 

Steenhof K, Kochert MN, Mcdonald TL. 1997. Interactive effects of prey and weather on 

golden eagle reproduction. J Anim Ecol 66:350–362. 

Steenhof K, Kochert MN, McIntyre CL, Brown JL. In press. Coming to terms about 

describing golden eagle reproduction. J Raptor Res. 

Tinbergen JM, Boerlijst MC (1990) Nestling weight and survival in individual great tits 

(Parus major). J Anim Ecol 59:1113–1127. 

Usinger RL (1966) Monograph of Cimicidae. The Entomological Society of America. 



90 

 

U.S. Department of the Interior (1996) The effects of military training and fire in the 

Snake River Birds of Prey National Conservation Area. BLM/IDARNG Research 

Project Final Report. USGS, Snake River Field Station, Boise, ID. 130 pp. 

Wingfield JC, Hunt K, Breuner C, Dunlap K, Fowler GS, Freed L, Lepson J (1997) 

Environmental stress, field endocrinology, and conservation biology. In: 

Clemmons JR, Buchholz R, eds. Behavioral Approaches to Conservation in the 

Wild. Cambridge University Press, Cambridge, pp 95–131. 

Whitworth TL, Bennett GF (1992) Pathogenicity larval of Protocalliphora (Diptera: 

Calliphoridae) parasitizing nestling birds. Can J Zool 70:2184–2191. 

 

 

 

 

 

 

 

 



91 

 

 
Figure 3.1 Observed golden eagle nestling mass (black circles, scaled to remove 

the effect of nestling age and sex), predicted mass (dark line), and associated 95% 

confidence intervals (solid gray area) measured from nestlings experiencing different 

levels of H. inodorus infestation in nests in southwestern Idaho, USA in 2015 and 2016. 

Nestlings that experienced high levels of infestation had lower mass than nestlings in 

nests with no or low levels of infestation (2 = 23.86, p < 0.01). 

No infestation Low infestation High infestation

20 40 60 20 40 60 20 40 60

−1000

−500

0

500

Nestling age in days

S
c
a

le
d
 n

e
s
tl
in

g
 m

a
s
s
 (

g
)



92 

 

 
Figure 3.2 Hematocrit measured from golden eagle nestlings experiencing 

different levels of H. inodorus infestation in nests in southwestern Idaho, USA in 2015 

and 2016. Bold lines within boxes represent the median, upper and lower limits of the 

box are the first and third quartiles, whiskers contain 1.5 times the interquartile 

range, and open circles are outliers. Nestling hematocrit decreased as cimicid 

infestation increased (2 = 27.85, p < 0.01). 
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Figure 3.3 Corticosterone levels measured from golden eagle nestlings 

experiencing different levels of H. inodorus infestation in nests in southwestern Idaho, 

USA in 2015. Bold lines within boxes represent the median, upper and lower limits of 

the box are the first and third quartiles, whiskers contain 1.5 times the interquartile 

range, and open circles are outliers. Nestling corticosterone levels (ng/mL) increased 

as H. inodorus infestation increased (2 = 21.1, p < 0.01). 
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Figure 3.4 Predicted probability (solid dark line) and associated 95% confidence 

intervals (solid gray area) of golden eagle nestlings leaving the nest early, or dying in 

the nest, based on the mean infestation level at nests throughout the breeding season 

in southwestern Idaho, USA in 2015 and 2016. The probability of leaving the nest 

early or dying in the nest increased as infestation increased (2 = 10.58, p < 0.01). 
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CONCLUSION 

 

Parasites, by definition, are costly to their hosts. However, they become 

ecologically important when they begin to influence host populations (Newton 1998). 

Given changes in climate and the expanding human ecological footprint, effects of 

emerging diseases and parasites are increasingly a concern for threatened or endangered 

wildlife populations. Introduced diseases and parasite species can drive changes in 

community structure and facilitate loss of biodiversity (Telfer and Bown 2012). The 

effects of exposure to new or increased rates of disease and parasite infestations could be 

compounded by climate-induced habitat degradation or loss of historical prey resources 

(Staley and Bonneaud 2015). Despite these concerns, community interactions and 

structure may be resilient enough to react to and moderate parasite dynamics. It has 

become increasingly important to study and understand host-parasite interactions, 

especially for the conservation of threatened or endangered species already facing threats 

from a changing climate or encroaching human impacts. This thesis documents two 

parasite species, the protozoan Trichomonas gallinae and insect ectoparasite 

Haematosiphon inodorus, associated with golden eagle populations in North America. 

Currently, both parasites negatively affect golden eagle fitness, and projected future 

climate and anthropogenic land use change may exacerbate these negative effects. Future 

management of ecosystems that promotes system resiliency will be essential for the 

conservation of golden eagle populations. 
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