
THE EVOLUTION OF ANTI-BAT SENSORY ILLUSIONS IN MOTHS 

 

 

 

 

 

by 

Juliette Rubin 

 

 

 

 

 

 

A thesis 

submitted in partial fulfillment 

of the requirements for the degree of 

Master of Science in Biology 

Boise State University 

 

August 2017  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2017 

Juliette Rubin 

ALL RIGHTS RESERVED  



BOISE STATE UNIVERSITY GRADUATE COLLEGE 

 

 

DEFENSE COMMITTEE AND FINAL READING APPROVALS 
 

 

of the thesis submitted by 

 

 

Juliette Rubin 

 

 

Thesis Title: The Evolution of Anti-Bat Sensory Illusions in Moths 

 

Date of Final Oral Examination: 29 June 2017 

 

The following individuals read and discussed the thesis submitted by student Juliette 

Rubin, and they evaluated her presentation and response to questions during the final oral 

examination. They found that the student passed the final oral examination.  

 

Jesse R. Barber, Ph.D.    Chair, Supervisory Committee 

 

Jennifer Forbey, Ph.D.   Member, Supervisory Committee 

 

James F. Smith, Ph.D.    Member, Supervisory Committee 

 

The final reading approval of the thesis was granted by Jesse R. Barber, Ph.D., Chair of 

the Supervisory Committee. The thesis was approved by the Graduate College.  



iv 

DEDICATION 

I would like to dedicate this thesis to my incredible team of bats, who unwillingly 

but devotedly gave their time. Also to the moths of the world, may you forever grow in 

beauty and educate our populace on the facts of evolution.



v 

ACKNOWLEDGEMENTS 

I thank my advisor, Jesse Barber, for his deep devotion to his research and 

graduate students. His guidance and the active academic atmosphere of the Barber Lab 

were essential to the creation and completion of this project and to my growth as a 

research scientist. He is the kind of thoughtful and engaged professor I someday hope to 

be. Akito Kawahara provided insight into phylogenetics and a wealth of Lepidoptera 

knowledge and puns in the field. I also thank Brad Chadwell, Chris Hamilton and Chris 

McClure, whose contributions were essential. I recognize Brian Leavell, Krystie Miner 

and Amanda Lofthus, whose tireless work with data collection and the bat colony made 

this project possible and enjoyable. Also thanks to Nic Carlson, Michael Brownlee, 

Melissa Eschenbrenner, Kelzie Hafen, Brett Howell and Adam Keener for their help with 

animal care and more. Cesar Cardenas, Tim Goslin, Joe Bohman and Lemon Beckham 

helped with data analysis. Special thanks to the other graduate students in my lab, Elizeth 

Cinto Mejía and Mitchell Levenhagen, for their constant emotional and academic 

support. Members of the Kawahara Lab, Geena Hill, Samm Epstein and Nick Homziak, 

helped to raise and identify moths for this project. Finally, I would like to thank my 

family for their support; my roommate, Stephanie Coates, whose friendship buoyed me 

throughout my time at BSU; and my partner, Rebecca DelliCarpini, for agreeing to share 

a life with me.



vi 

ABSTRACT 

Prey-generated illusions span sensory systems. Previous studies have mainly 

focused on visual illusions presented by prey coloring or morphology, but few have 

explored illusions produced via sound. We investigate an acoustic sensory illusion in 

moths, created by complex hindwing structures that divert echolocating bat predators. A 

phylogeny of the moth family, Saturniidae, in combination with data from geometric 

morphometrics, reveals that hindwings have repeatedly elongated to form tails across 

evolutionary time. Using high-speed, multi-camera, synchronized videos of bat-moth 

battles, we quantified the selective pressure of predation on extant and experimentally-

modified moths, defined by moth escape success from bat attack. We approximated a 

gradient of less derived to more derived non-tailed Saturniidae morphs using Antheraea 

polyphemus, by reducing hindwing area (reduced), maintaining hindwing area (intact, 

sham) and adding hindwing area (elongated). We performed similar alterations along a 

potential evolutionary gradient with two tailed species, Actias luna and Argema mimosae, 

by removing the tails (ablated), shortening the tails (shortened, blunt), maintaining the 

tails (intact, sham) or elongating the tails (elongated, A. luna only). With increasing tail 

length, moths had a greater chance of surviving bat attack (model slope = 0.180.05) and 

the longest-tailed moths (tails > 7cm) survived bat attack in more than 56% of battles. Bat 

attack was also diverted from a moth’s body to its hindwing region at increasing rates 

with increasing hindwing length (model slope = 0.310.05). Tailed moths drew bat attack 

either towards the body or tail ends in 75% of interactions and towards the hindwing in 
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only 25% of interactions, thus providing support for an attack on multiple targets, rather 

than the center of a single enlarged echo. We also extracted the 3D flight paths of moths 

from these encounters and found that flight kinematics do not change across genera or 

treatments, nor are they associated with escape success. These data provide evidence 

supporting a sonar-specific sensory illusion of multiple targets, and a challenge to the 

physiological limits of bat echolocation.
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STUDY PREFACE 

Predation is a potent selective pressure. Dawkins and Krebs hypothesize in their 

“life-dinner principle” (Dawkins and Krebs 1979), that the stakes in a predator-prey 

interaction are much higher for the prey than the predator. Predation is likely to have a 

strong role in shaping trait characteristics and behavior of prey animals. From under this 

selective pressure, diverse anti-predator adaptations can emerge (Vamosi 2005). My 

study focused on a potential evolutionary pathway that Lepidopteran (Order: moths and 

butterflies) lineages follow under natural selection from bat predation. Unsuccessful 

predation attempts are common among predatory mammals, around 50% post-detection 

(Vermeij 1982), and any trait that increases escape success for individual prey can be 

crucial. Research into the evolutionary pathways of both anti-predator and sexual traits 

indicate that intermediate trait values are often less advantageous than a complete 

absence or exaggeration of the trait. Thus, evolutionary stabilization might drive 

divergence (Emlen and Nijhout 2000; Buskirk et al. 2003; Langerhans 2007). 

From a foundational study carried out by the Barber and Kawahara teams (Barber 

et al. 2015), we know that the hindwing tails of moths within Saturniidae provide a 

survival advantage against echolocating bats over non-tailed hindwings. Phylogenetic and 

geometric morphometric data indicates an apparent evolutionary progression of hindwing 

length within several clades, possibly from simple hindwings, to hindwing lobing, then 

from shorter to longer tails (Barber et al. 2015; Zhong et al. 2016). We therefore 

predicted that predation success would decline along this morphological continuum, and 
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would drive the elongation of the hindwing tail trait, rather than stabilize the tailed and 

non-tailed forms. Because of their less vital role in flight (Jantzen and Eisner 2008), 

hindwings are likely more responsive to natural selection pressures than forewings 

(Outomuro et al. 2012). We experimentally tested the strength of predatory force imposed 

by bats against saturniids of varying hindwing lengths and structures, and paired these 

data with a phylogenetic view of hindwing evolution. 

Bats and moths have been coevolving for the past 65 million years (Conner and 

Corcoran 2012). Since bats evolved laryngeal echolocation and powered flight (Gunnell 

and Simmons 2005), night-flying insects have been under attack. Long-lived moths must 

evade predation for weeks or months. Some moths in the family Sphingidae, for instance, 

must survive this nightly threat repeatedly as they complete their adult life cycle – 

nectaring and finding mates (Haber and Frankie 1989). These animals often have 

complex anti-bat behavior, driven by sonar detecting ears and sound producing structures 

(Miller and Surlykke 2001; Barber and Kawahara 2013). Sound production is a post-

detection defense, which either startles the attacking bat (Bates and Fenton 1990), warns 

of moth toxicity (Dowdy and Conner 2016), mimics toxic moth sounds (Barber and 

Conner 2007), or jams bat sonar (Corcoran et al. 2009).  

Saturniids have an entirely different strategy. This family comprises earless moths 

that lack sound producing structures and live only one week without feeding (Tuskes et 

al. 1996). Male saturniid moths need only run the nocturnal gauntlet for a few nights, 

weaving through the air to follow the pheromone trails of awaiting females (Cardé 2016). 

During these amorous flights, saturniid moths can dodge bat predation either by flying 

close to vegetation in the “clutter overlap zone” (Rydell 1998; Denzinger and Schnitzler 
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2013), or by flying at different times than bats (Yack 1988; Soutar and Fullard 2004). 

These conditions are spatially and temporally constraining, and rely on bats’ failure to 

detect moths due to partitioning in time and space. Post-detection defenses, however, 

permit freedom of movement and allow for more direct, efficient flight between locations 

(Ratcliffe et al. 2008). Barber et al. (2015) describe a post-detection anti-bat trait in 

Saturniidae that has evolved repeatedly across clades. Hindwing tails with twisted and 

cupped ends that rotate in flight divert bat attack in 55.2% of interactions. In the current 

study, we investigate the proximate causes (Tinbergen 1963) for this deflective defense, 

and explore its role as a sensory illusion. 

Sensory illusions “act to distort the perception of the viewer” (Kelley and Kelley 

2014). This line of research therefore lends itself to understanding not just the 

evolutionary history of an illusory trait in the sender, but also the cognitive processing 

and constraints of the receiver (Théry 2014). Illusions have primarily been studied in 

human systems (Kelley and Kelley 2014), likely due to our own sensory constraints, 

which limit the type of sensory information and illusions that we can perceive. To 

document a sensory illusion, we must know enough about the receiver’s sensory 

experience that we can predict how a sender might render information along a specific 

channel such that the receiver perceives something that does not exist (Merilaita 2014). 

Only with the advent of specialized equipment were scientists able to discern UV color 

patterns that flowers used to communicate with bees (Chittka et al. 1994). One might 

imagine, then, that documenting a misleading illusion in a foreign sensory system could 

be a difficult task. Humans primarily receive information through the visual system, and 

therefore most studies on sensory illusions focus on visual illusion (Kelley and Kelley 
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2014). There is overlap in visual illusions across human and non-human animals. 

Bowerbirds and humans share a susceptibility to the Müller-Lyer illusion; an illusion of 

forced perspective. Male bowerbirds organize objects along a positive size-distance 

gradient. That is, the court’s components increase in size as distance from the bower 

increases, making the objects that the male displays on the court more salient to the 

female observer  (Endler et al. 2010; Kelley and Endler 2012).  

Acoustic illusions, such as “auditory induction,” where the listener can restore 

components of an auditory segment that was erased by noise (Bashford and Warren 

1987), are also present in the human sensory system and might be even more critical in 

acoustically oriented animals. Bat echolocation, although well studied, remains 

mysterious in some of its processing details and constraints (Griffon 1995; Yovel et al. 

2011). This study seeks to probe the limits of echolocation through its investigation of an 

anti-bat sensory illusion in moths. I use a behavioral assay and phylogenetic evidence to 

track the evolution of elongated and structured hindwings, and their effect on bats. My 

data are just the beginning of a deeper understanding of a complex, ever-unfolding 

evolutionary story as bats and moths continue to clash fates across the night skies of 

almost every continent in the world.
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THE EVOLUTION OF ANTI-BAT SENSORY ILLUSIONS IN MOTHS 

Once detected by predators, prey must overpower, outrun, or redirect their 

attackers (Edmunds 1974; Cooper, Jr. 1998). To divert predatory strikes, prey manipulate 

predator perception (Kelley and Kelley 2014). Sensory illusions selected to misdirect 

predation attempts often target the primary sensory system of the predator (Stevens 2013; 

White and Kemp 2015). Conspicuous eyespots along butterfly wing margins (Lyytinen et 

al. 2003; Olofsson et al. 2010; Prudic et al. 2015) and brightly colored, waving lizard tails 

(Telemeco et al. 2011; Fresnillo et al. 2015) deflect strikes by visual predators away from 

the body. Sea hares eject ink that their chemosensory-oriented crustacean predators 

pursue as alternative prey (Kicklighter et al. 2005). 

Moths navigate the nightly dangers of an auditory world, imposed by their 

echolocating bat predators. Recent work with moths in the family Saturniidae indicates 

that spinning hindwing tails divert bat attack away from the vital body core (Barber et al. 

2015). These trailing structures seem to create an acoustic sensory illusion, distracting 

bats from their primary target, or displacing the echoic target center (Janzen 1984; Lee 

and Moss 2016). Tails have evolved in Saturniidae at least four different times, on three 

unique continent systems (Actias group [Saturniinae], Asia; Eudaemonia group 

[Saturniinae], Africa; Copiopteryx group [Arsenurinae], South America; Coscinocera 

group [Saturniinae], Australia). Each evolution contains a history of increasing hindwing 

length and complexity (Figure 1) (Barber et al. 2015). Geometric morphometrics on 

extant saturniids reveals a clustering into repeated morphological groups, with 
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increasingly derived species moving from reduced hindwing area through enlarged 

hindwing lobes, to short projections, and eventually to elongated tails (Barber et al. 2015; 

Zhong et al. 2016). Hindwings might be more susceptible to evolutionary modification 

than forewings (Outomuro et al. 2012) because they are less constrained by flight 

requirements. A study testing the relative roles of insect wings found that complete 

removal of the hindwings mainly limits maneuverability, while forewing removal renders 

the animal flightless (Jantzen and Eisner 2008). Thus, although strikes to the moth’s 

hindwing might be costly, structural damage to the forewing or body could be deadly. 

Hindwing morphology might therefore be released to expand into a more diverse 

morphometric space, driven by sonar sensing in attacking bats.  

We address the proximate causes (Tinbergen 1963) of hindwing tails by 

measuring flight kinematics and natural selection of several hindwing shapes in an 

experimental paradigm. We pit 16 big brown bats (Eptesicus fuscus) against saturniid 

moths, both extant tailed and tailless species, and moths with experimentally-altered 

hindwing lengths (Picture 2). To measure the efficacy of moth tails as an anti-bat sensory 

illusion, we filmed bat-moth battles in a completely dark 10m3 sound-attenuating flight 

room. We used three synchronized high-speed cameras and four ultrasonic microphones 

trained on an interaction area defined by the flight range of a moth constrained by a 1m 

fishing line tether. 

To track the potential non-tailed precursory stages of this sensory illusion, we 

simulated reduced-hindwing and derived elongated-hindwing conditions in the 

polyphemus moth (Antheraea polyphemus) by cutting and gluing the hindwing material. 

We built Bayesian models, including moth size as a covariate, individual bat identity as 
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random slopes and bat hunting night as random intercepts to focus our analysis on the 

outcome of bat-moth battles. Polyphemus with experimentally elongated hindwing lobes 

escape bat attack more often than intact polyphemus (hindwing length elongated = 

5.80.40cm [meanSD], escape success=56%0.11; hindwing length intact = 

5.40.29cm, escape success = 27%0.09) (Figure 2). While we found no difference in 

escape success between polyphemus with experimentally reduced hindwing area 

(hindwing length reduced = 3.340.32, escape success = 45%0.10) and intact 

polyphemus moths (27%0.09), bats directed more of their strikes toward the hindwings 

of elongated polyphemus moths (proportion of strikes towards posterior region of 

elongated = 50%0.11) than any of the other treatments’ (intact = 17%0.08, reduced = 

120.05) (Figure 3A). Our behavioral paradigm provides evidence that elongated 

hindwing lobing deflects bat attack. 

To understand the anti-bat advantage that twisted and cupped tails offer in 

addition to hindwing lobing, we experimentally varied tail length in naturally tailed luna 

(Actias luna, tail length = 7.260.59cm) and African moon moths (Argema mimosae, tail 

length = 12.320.77cm), and pit these treatments against the same bats. With complete 

removal of a tail, escape success was low (ablated luna hindwing length = 4.00.32cm, 

escape success = 26%0.09; ablated moon moth hindwing length = 5.040.23cm, escape 

success = 34%0.13) (Figure 2), and bats infrequently aimed their attacks at moth 

hindwings (proportion of posterior attacks on ablated luna = 17%0.07, ablated moon 

moth = 18%0.10) (Figure 3A). We created short-tailed luna (tail length = 5.090.47cm) 

and moon moths (tail length = 8.550.34cm) by removing the tail shafts and regluing the 

twisted and cupped ends to the hindwing. Short-tailed luna escape more than ablated luna 
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(short-tailed = 60%0.09, ablated = 26%0.09). We did not find the same result in moon 

moths (short-tailed = 45%0.13, ablated = 34%0.13), although this could be attributed 

to low sample size (n short-tailed = 22, n ablated = 17, Figure 2), particularly given that 

moon moths follow the same positive trend of the complete escape model (total escape 

model slope = 0.18 0.05) (Figure 2).  

The process of cutting and gluing tail material did not in itself change flight 

ability, or proficiency at evading attacking bats. Control sham treatments, with hindwing 

area or tails cut and re-glued (Picture 2), yielded the same escape success (sham 

polyphemus = 43%0.11, sham luna = 57%0.11, sham moon moth = 78%0.12) and 

drew the same proportion of bat attacks to the hindwing region (sham polyphemus = 

18%0.08, sham luna = 41%0.11, sham moon moth = 61%0.14) as intact animals of 

each genus. Three-dimensional kinematic analyses derived from synchronized high-speed 

footage of intact and sham moths in flight revealed no difference in mean speed, 

tangential acceleration, angular velocity, or their correlated counterparts (mean curvature, 

radial acceleration and tortuosity; n = 8-12 per treatment). Reducing and elongating the 

hindwing material of moths also did not affect flight kinematics (n = 10-13), except in 

short-tail moon moths, which had a larger mean angular velocity (turning rate sensu 

(Combes et al. 2012)) than intact moon moths (Table 1.1). Previous studies report that 

angular velocity is an important variable for prey escape (Combes et al. 2012; Corcoran 

and Conner 2016). Short-tailed moon moths were not different from intact moon moths in 

evading bat attack, however (Figure 2). Our Bayesian model revealed no correlation 

between mean angular velocity and escape success, and no change in the direction of the 

model slope (Table A1). We therefore excluded angular velocity from our models and do 
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not attribute evasion differences between treatments to the hindwing modification 

methodology, or to flight parameters in the resulting morphs. 

In aggregate, escape success increases markedly with increasing hindwing length 

(escape model slope = 0.180.05). We find the same result when we remove moon 

moths, whose long tails provide an impressive effect, from the model (escape model 

slope with moon moths removed = 0.170.06, Table A2). Intact moon moths escape bat 

attack markedly more than short-tailed or ablated morphs (intact escape success = 

73%0.09, short-tailed = 45%0.13, ablated = 34%0.13) (Figure 2). Luna moths have 

more incremental variations in escape success between treatments, yet track the same 

positive trend as the overall models, where escape success (total escape model slope = 

0.180.05) (Figure 2), and diversion of bat attack (total posterior aim model slope = 

0.310.05) (Figure 3A) increases with hindwing length. The moon moth is a larger 

animal than the luna moth, with tails 1.5 times longer. Although our models control for 

moth size, moon moth’s twisted and cupped ends take up one third of the total tail length, 

while lunas’ make up one half. Thus, although changes to tail length were proportionally 

the same, (moon moth short tail 69% of intact tail, luna moth short tail 70% of intact tail), 

alterations to moon moth tails maintain a greater positional distance from the body center, 

and might therefore have produced greater effect. Clearly, longer hindwing tails provide a 

powerful anti-bat advantage. 

Tails could alter a bat’s perception of the echoic target of a moth (Barber et al. 

2015), either via an illusion of larger size (Janzen 1984), due to an integration of echo 

highlights reflected across the moth’s entire length to create an enlarged echo with a 

target center shifted from the true moth center (Lee and Moss 2016), or due to the 
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creation of two or more alternative targets created by primary reflections from the 

forewings and cupped ends of the tails (Fig. 3B inset). Our behavioral results indicate that 

bats hunting tailed moths targeted either the body or the ends of tails 75% of the time, 

providing support for a multiple targets illusion (Fig. 3B). A similar illusion is generated 

in the visual system, when bird attacks are drawn from the head and anterior wing 

margins (Wourms and Wasserman 1985) to deceptive “false heads” twitching at the tips 

of butterflies’ hindwings (Robbins 1981; Stevens 2005; Sourakov 2013).  

To begin to understand the morphology underlying tails’ diversionary effect, we 

removed the twisted and cupped ends of luna tails, creating a blunt-tailed morph. These 

blunt ends exist naturally in butterflies and day-flying moths with short, unstructured tails 

(Scoble 1992). Blunt luna and shortened luna provide a good comparison because the 

length of extra hindwing material is roughly the same, but shortened luna maintain the 

end structure (Blunt length = 5.670.42cm, short-tail length = 5.090.47cm). We found 

that both these morphs escaped bat attack (blunt-tailed = 50%0.10, short-tailed = 

60%0.09) (Fig. 2), and diverted bat aim to the posterior region with roughly the same 

rate (blunt-tailed = 23%0.08, short-tailed = 37%0.09) (Figure 3A). With longer tails 

possessing twisted and cupped ends, intact luna moths are more successful at diverting 

bat attack to the hindwing region than blunt luna moths (intact = 45%0.08, blunt-tailed 

= 23%0.08). This difference is not solely reliant on tail length, however, since there is 

no measurable difference in the proportion of posterior attacks between intact luna and 

shortened luna (intact = 45%0.08, shortened = 37%0.09), despite intact luna having 

longer tails. Thus, the efficacy of the illusion relies to a certain degree on the twisted end 

of the tail. 
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How elongated hindwings create an acoustic illusion likely depends on the sonar 

strategy and processing limitations of the attacking bat. Moths face a diversity of bat 

species and echolocation types on a given night (Denzinger and Schnitzler 2013). Bats 

with frequency modulated sonar cries, such as E. fuscus, might extract object 

characteristics from a single echo (Grossetête and Moss 1998; Yovel et al. 2011), or 

across an echo stream (Kober and Schnitzler 1990a; Moss and Zagaeski 1994; Fontaine 

and Peremans 2011). Constant frequency bats are known to use Doppler shifts imposed 

on the returning echo stream to discriminate targets (Von Der Emde and Schnitzler 1990; 

Kober and Schnitzler 1990b). It is possible that spinning hindwing tails create a flutter 

signature in constant frequency echoes distinct from the fluttering moth forewings, but it 

is unclear whether tails would have the same effect for frequency modulated bats. 

Definitively determining the illusion created by rotating hindwing tails awaits 

phylogenetically widespread, multi-angle ensonification experiments, using both constant 

frequency and frequency modulated sonar regimes, to generate a three-dimensional 

reconstruction of the perceived moth shape from all possible attack angles. 

Regardless of the mechanism, elongated tails clearly tested the physiological 

limits of our frequency modulated bats’ processing ability. Over months of hunting nights 

and interactions with tailed animals, bats’ strike accuracy and capture success did not 

improve (Table 1.2). Additionally, we did not find any differences in the sonar behavior 

of bats across moth treatment (Figure A1, A2). FM bats elongate the duration of their 

terminal sonar phases (buzz I and buzz II) when confronted with a more difficult 

predatory task (Hulgard and Ratcliffe 2016). We did not observe any changes in buzz 
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duration, indicating that the bats in our study did not perceive a task difficulty gradient 

among the moth morphs we presented. 

Bats experienced the same difficulty capturing moths with experimentally 

elongated lobing as moths with tails (Fig. 2). Our study did not address post-capture 

handling, and therefore survival, which could vary between a large hindwing and 

structured tail morphology (Wourms and Wasserman 1985; Eschke and Opp 2002). Tails 

might provide a similar deflective effect to elongated lobing, but offer less material for an 

attacking bat to grab during aerobatic capture maneuvers. In contrast to lobing, the 

smaller surface area of tails might also reduce energetic requirements for the moth pupa 

during development (Miner et al. 2000), or might provide a flight benefit, shedding air 

vortices during flight to improve maneuverability (Evans and Thomas 1992; Norberg 

1994). Their aerodynamic structure might additionally enhance maximum vertical 

aerodynamic force production and maximum power output, although the added weight 

and possible drag could also have energetic costs (Marden 1994; Chai et al. 1997; Dillon 

and Dudley 2004). Our kinematic assessments did not reveal differences in flight ability 

between tailed (luna, moon moth) and non-tailed (polyphemus moth) genera (Table 1.1), 

and therefore did not support a flight benefit to tails, but this question deserves more 

study. In lineages that have evolved tails, their length and structure might play a role in 

sexual selection, although saturniids are short-lived and females tend to mate with the 

first male that approaches (Morton 2009). Perhaps simply surviving the predatory hazards 

of night flight is evidence enough for a male’s superior genetics and efficacy at 

generating an anti-bat illusion. 
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Bats could evolve a counter-measure to shatter moths’ acoustic illusions. Perhaps 

this already occurs in the night sky, where bats have access to visual cues provided by 

moonlight (Boonman et al. 2013). Interestingly, moon moth tail shafts are dark in color, 

with only the twist and cupped tail ends sharing the same bright green as the moth’s fore 

and hindwings. This dichromatic patterning could visually augment the acoustic illusion 

of moth tail ends as alternative targets to the moth body. Acoustic illusions could also 

exist in other forms. Moth scales absorb ultrasound within the frequency range of their 

bat predators (Zeng et al. 2011), which might cause the bat to misjudge target distance 

(Ntelezos et al. 2016), or misconstrue the true shape of the moth. We predict that sensory 

illusions are widespread defenses throughout predator-prey systems, and provide a novel 

means of probing the evolutionary edge of predator processing. 

Materials and Methods 

Behavioral Methods: 

We conducted all studies in a dark 10m3, sound-attenuating flight room at Boise 

State University. Illumination was provided to researchers and cameras by two red 

ceiling lights and eight infrared Wildlife Engineering arrays. We filmed all interactions 

with three synchronized, high-speed, infrared-sensitive cameras (Basler Scout, 120fps, 

3.5mm lens) and an additional Basler Scout camera was fitted with a 6mm lens for a 

narrower focus to aid in behavioral identification. Before beginning their experimental 

trials, we allowed bats two weeks post-capture to acclimate to the novel lab setting. We 

trained bats to approach a 1m monofilament line secured to the ceiling by stringing wax 

moths (Grisella mellonella) during each flight session. Vitamin-coated meal worms and 

water ad libidum supplemented bats’ diets. Once a bat could catch wax moths off the line 
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with 90-100% success, we introduced 1-2 saturniids a day. We did not consider bats 

ready to begin the experimentation process until they seemed motivated to repeatedly 

attack saturniids. 

Once a bat was ready for trials, we introduced experimental moths in randomized 

order, commonly resulting in each bat hunting different moth species of varying 

treatments each night. We presented two small pyralids (Grisella mellonella) in pseudo-

randomized order, one at the beginning of the experimental day and one partway through 

the trial, to ensure bat motivation levels were high. Before allowing the bat to attack, we 

verified that moths were adequately flying. We suspended the trial if a moth ceased 

flying, or if damage occurred. Upon review of the triple video recordings, we eliminated 

all moths exhibiting unnatural flight from the dataset. Each day we inspected newly 

eclosed moths for eclosion defects or damage before pitting them against bats. We 

assigned each approved moth one of several possible hindwing alteration treatments and 

photographed it against graph paper for size analysis before the trial began. We created 

the various treatments by cutting and gluing hindwing material to shorten or lengthen 

posterior structures (Picture 2). Vertebrate work was done following Boise State 

University’s Animal Care and Use Committee protocol (number: 006-AC14-018). 

We completed behavioral analysis using a custom built LabView program and 

Maxtraq. J.J.R. surveyed all footage and noted the behavior type (capture, aim, miss, and 

location of damage on the moth’s wings, if applicable) and time stamp within the video 

for each interaction so that audio and video data could be analyzed together. We defined 

Capture behaviors as the bat being able to grab and carry the moth out of the interaction 

space. Aim behaviors was the directional heading of the bat at either the forewing and 
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body (anterior) or hindwing (posterior) of the moth three frames before the interaction. 

We included tail end aim as an additional category for moths with long tails (A. luna 

intact, sham, elongated; A. mimosae short, intact, sham). Miss we defined as a bat making 

no contact with the moth, despite exhibiting complete capture behaviors, including full 

attack echolocation call and enclosure of the wing membrane. We determined the 

location of bat-related damage by visually inspecting the video, as well as post-encounter 

photos that we took after a damaging attack. 

Statistical Analysis 

We used generalized linear mixed models fit under a Bayesian framework to 

examine differences between treatment groups and relationships between dependent 

variables and tail length. To determine differences between treatments, we used models 

including treatment as a fixed factor. To determine relationships with tail length, we used 

models that included tail length as a covariate. We implemented the model in JAGS 

version 4.2.0 (Plummer 2003) using the jagsUI package version 1.4.4 (Kellner 2016) and 

R version 3.2.3 (R Core Team 2016). We ran 3 chains for 50,000 iterations after 10,000 

burnins. We used standard weakly informative priors (Kéry and Schaub 2012) and 

visually assessed traceplots and used the Gelman-Rubin statistic (Gelman and Rubin 

1992) to check for convergence. We built escape and aim models with binomial 

distributions and logit links. To focus our conclusions on natural selection forces, we 

included moth size as a covariate and individual bat identity and hunting night as random 

intercepts and slopes, respectively. 
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Kinematic Analysis 

We randomly selected ten videos from each treatment for digitization, beginning 

100 frames (1 second) out from the moment of bat-moth interaction. When possible, we 

did not digitize an individual moth’s flight path more than once, even if it contributed 

multiple trials to our dataset. We were only able to digitize eight sham A. mimosae 

flights, due to camera view obstruction (i.e., moth flew behind one of the mounted 

microphones, or researcher’s hand obscured the flight path). We recorded trial number 

for each moth and determined that it was statistically inconsequential to flight kinematics. 

Using DLTdv5 and easyWand5 packages in MATLAB (Hedrick 2008; Theriault et al. 

2014) we digitized moth flight from our recorded bat-moth interactions on the tether, 

with center of moth body as our focal point. We ran our outputs through a custom-built 

MATLAB package, Moth Drop (written by B.A.C), and extracted flight parameters of 

interest for evading predatory capture, as defined per Combes et al. (2012). After running 

a correlation matrix (R package Hmisc), we found that mean speed, mean tangential 

acceleration and mean angular velocity were uncorrelated with each other, but highly 

correlated (>0.7) with one or more of the other variables. We therefore limited our 

comparisons to include only these three parameters. Angular velocity (correlated with 

tortuosity and mean curvature) was different between the intact Argema and shortened 

Argema treatments. We ran models of moth escape success against bats including and 

excluding the mean angular velocity parameter to determine whether this flight difference 

affected interaction outcome. We built models with normal distributions and identity 

links and included moth size as a covariate and random slopes and intercepts for hunting 

night and individual bat identity to control for different hunting and learning abilities. 
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Including kinematic parameters does not provide a different explanation of the data, or a 

better inference capability for the model. 

Audio analysis 

We acoustically recorded all attack sequences using four ultrasonic Avisoft 

microphones (CM 16, ±3dB(Z), 20-140 kHz) surrounding the interaction space in the 

four cardinal directions. We analyzed the resulting files using Avisoft SASLab Pro 

software (Hann Window, 1024 FFT). For each moth treatment, we analyzed between 10-

15 call sequences, using 1-2 sound files from at least three different bat individuals. 

When possible, we selected one file from an initial hunting trial and one file from a later 

hunting trial for each bat to account for diversity of experience. We inspected all audio 

channels, beginning 900ms back from the selected interaction, and chose the channel 

with the highest signal to noise ratio to analyze (as in Barber et al. 2015). This selection 

always included pulses from the approach (IPI >15ms), Buzz I (IPI ≤15ms) and Buzz II 

(IPI ≤6.5ms) phases (Griffin et al. 1960; Geberl et al. 2015). Buzz I and II are together 

considered the terminal phase of an echolocation attack sequence and provide the bat the 

final details of a prey animal’s flight path through an increase in pulse emission rate, a 

decrease of interpulse interval (IPI) and a broadening of the frequency bandwidth, and 

therefore beam, of the call (Jakobsen and Surlykke 2010; Ratcliffe et al. 2013; Geberl et 

al. 2015). We included random slopes and intercepts for individual bats to control for 

different hunting and learning abilities. All acoustic models included the size of 

individual moths as covariates. We found no difference in buzz duration lengths while 

hunting tailed versus non-tailed moths. Using the power spectra function in SASLab Pro, 

we extracted the frequencies at 15dB below and above the frequency at peak amplitude in 
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Buzz II (Surlykke and Moss 2000) and using the frequency cursor tool, we extracted the 

absolute minimum frequency of Buzz II. We found no differences in these frequency 

measurements.  

Moth size analysis 

We photographed each moth in the dataset after completing its treatment and 

before flying it against a bat. Later, we measured the surface area and hindwing length of 

each moth from these photos using the freehand and straight line drawing tools, 

respectively, in the freely downloadable program ImageJ (https://imagej.nih.gov/ij/). We 

included individual moth surface area as a covariate in the model and maintained 

hindwing lengths as a primary predictor.  

https://imagej.nih.gov/ij/)
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CONCLUSION 

My experimental behavioral data, together with phylogenetic evidence, provide a 

path and a mechanism by which a sensory illusion has likely evolved. Given our 

behavioral data and the multiple independent origins of this trait, elongated hindwing 

tails seem to be an effective post-detection anti-bat strategy in moths. I found that a tail of 

any length brought predator success to 50% or less. This is a standard rate for predator 

attack (Vermeij 1982), and in the context of the life-dinner principle (Dawkins and Krebs 

1979), still makes any night flight a risky business for a saturniid moth. As tails get 

longer, the slope of the escape success curve moves in a positive direction. Even while 

accounting for body size, A. mimosae moths with some of the longest tails in Saturniidae 

evade capture by bats at a rate that rivals sonar-jamming Sphingidae moths (~50-90% in 

Xylophanes falco, Xylophanes tersa) (Kawahara and Barber 2015). 

Considerations for future study 

Our data indicate that saturniid moths produce a distractive sensory illusion, 

where the bat misconstrues spinning hindwing tails to be an alternative target to the body 

center. More research is needed at this point to determine exactly how this illusion is 

generated. Sensory illusions can provide a rich line of study because of their implications 

for understanding anti-predator defenses in prey, as well as the cognitive limits of 

predators. Studying these anti-predator defenses gets at the core of the sensory ecology 

field, which aims to understand the umwelt of an organism (Uexküll 1910), that is, how 
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an animal receives and responds to information about the world, due to its unique 

assemblage of senses (Dangles et al. 2009). 

One novel method for understanding a bat’s umwelt is ensonification. 

Ensonification experiments involve projecting ultrasonic frequencies at an object and 

recording the returning echoes to get a glimpse of a bat’s perception. This has been done 

with moth tails (Lee and Moss 2016), however, to get a full understanding of an attacking 

bat’s perspective we would need to use multi-microphone arrays and ensonify live moths 

from all incident angles. During wild, aerobatic chase sequences bats might perceive tails 

differently, as they ensonify the moth from various directions (Simmons and Chen 1989). 

Although ensonification can offer an approximation of first-hand echolocation 

experience, a full understanding of bat perception awaits more fine-scaled research into 

how bats process sonar images (Fenton 2013). 

It will also be crucial to conduct more bat-moth studies in situ, capturing natural 

encounters between predator and prey across the Old and New World tropics. Filming 

must be done with high resolution cameras so that we can visually track, and reliably 

digitize, the complex flight maneuvers executed by bats and moths. Wild filming could 

additionally provide insight into important natural history questions surrounding these 

interactions, including the maximum speed and curvature the animals can reach when 

there are no space constraints (Betts and Wootton 1988; Ellington 1991), and the level in 

the canopy that interactions occur (Schulze et al. 2001). These factors are important for 

understanding ultimate flight capability and the specific species pairings that interlock in 

predator-prey battles. Acoustic recordings of free-flight battles could also shed light onto 

the strategies that bats use while hunting saturniid moths. It is already known that bats 
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modify their echolocation calls slightly in a controlled flight room (Surlykke and Moss 

2000). It will therefore be important to record echolocation calls during wild attacks, 

when the bat is forced to hunt while simultaneously navigating the complexities of a 

natural forest environment. With this knowledge, we could more easily contextualize our 

laboratory findings within an ecological and evolutionary framework. 

To obtain a more holistic view of anti-bat hindwing morphology, it will also be 

important to determine whether complex hindwings have any role in mating success. 

Saturniids are often monandrous (mating with the first male that approaches) (Tuskes et 

al. 1996; Morton 2009), however some species might select mates based trait assessment 

(Torres-Vila and Jennions 2005). Preliminary results from a collaborative study in the 

Barber and Kawahara labs indicate that female luna moths do not prefer to mate with 

tailed males versus ablated males, but this system calls for more in-depth study. Although 

some tailed saturniid species exhibit sex-based morphology differences, where females 

don’t possess tails at all, both A. luna and A. mimosae females have tails comparable to 

males’. This would be unexpected if tails were costly and only males completed nuptial 

flights during hours of bat activity (Acharya 1995; Allen et al. 2011). Female saturniids 

do, however, fly relatively shorter distances than males to find a suitable spot to lay their 

eggs (Tuskes et al. 1996). Tails must thus either be a neutral trait, or provide an adaptive 

benefit to females. This question requires further natural history study, to determine when 

and how often females fly, and phylogenetic comparison between lineages with sexually 

dimorphic and monomorphic species. 

Reproduction studies combined with predatory battles in the laboratory could 

provide a broader view into the elongated hindwing illusion. During my study, moths that 
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were structurally (non-fatally) damaged by bat attack were retrieved, photographed and 

re-flown, when possible. These data were identified as “post-interaction” trials and were 

recorded, but never analyzed due to time constraints. With the appropriate quantification 

of the extent of damage to each moth, moths could be categorized and assigned to further 

“post-interaction” or mating trials. That is, animals that survived a damaging bat attack 

could either be pit against a bat again to determine subsequent survival success, or be 

introduced to a reproduction chamber to determine whether they would still successfully 

find and complete mating. Given the heritability and flexibility of wing traits, this kind of 

longer-term investment in individual moths could reveal whether pressures from varying 

factors influence evolutionary changes in saturniids (Bolstad et al. 2015; Allen 2016). 

Notes on bat and moth study subjects 

I chose big brown bats (Eptesicus fuscus) for the predator in my laboratory system 

for several reasons. First, this species is native to Idaho, and thus is easily attainable and 

releasable. Second, through diet analysis Eptesicus bats are known predators of 

Saturniidae and are representative of the general size of other bat predators to this family 

(15-20g) (Aguiar and Antonini 2008; Balete 2010). Third, E. fuscus on the eastern side of 

North America overlap with tailed A. luna moths. Eptesicus fuscus from Idaho, however, 

are ubiquitously naïve to this anti-bat strategy, which would have been important had we 

found evidence of bats learning how to successfully circumvent hindwing illusions. Last, 

these bats have well documented frequency modulated (FM) calls, which is a known 

strategy in aerial insectivores that hunt in open spaces (Simmons et al. 1998; Surlykke 

and Moss 2000; Schnitzler et al. 2003). For these reasons our experimental set up created 

a tractable and easily generalizable study. Future studies should include laboratory 
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research with constant frequency bat species, that is, bats who hunt using flutter detection 

(Bell and Fenton 1984). Constant frequency echolocation is the predominant sonar 

strategy in the Old World (Neuweiler 2003), where several clades of tailed saturniids 

have diversified (Michener 1949). Understanding how the hindwing sensory illusion 

operates under this alternative sonar strategy will therefore be necessary to tracking its 

evolutionary path. 

I chose A. luna, A. mimosae and A. polyphemus as my three representative species 

due to their grouping within one subfamily of Saturniidae (saturniinae) and their varying 

hindwing morphologies. A. luna and A. polyphemus are easily attainable moths, as they 

are charismatic species, regularly used in Lepidoptera exhibits and educational events. A. 

mimosae are larger and considered more exotic and therefore are more costly and 

difficult to acquire. Future studies would ideally have access to even larger funds and 

more expansive timelines so that more A. mimosae could be purchased to increase the 

sample size for some treatments and multi-generational studies could be carried out 

across all treatments. More funding would also allow for a greater diversity of hindwing 

morphologies to be tested, including short-tailed Saturniinae and lateral-tailed (projecting 

off a lateral vein) Arsenuriinae moths. 

Final remarks 

My data point to natural selection by bats as an evolutionary driver of hindwing 

elongation in nocturnal Saturniidae through phylogenetic time. There are similar 

evolutions of complex hindwing shapes in other moth families, including Sematuriidae 

and Uraniidae (Picture 3). In both of these independent origins, the tails are also twisted 

and cupped in a similar manner to saturniid morphology. Hindwings might be prone to 
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structural modifications in response to bat predation pressure (Outomuro and Johansson 

2015), due to their independent development from forewings during the pupal stage 

(Nijhout and Emlen 1998) and their less vital role in basic flight (Jantzen and Eisner 

2008). Research describing beak damage and tear lines along conspicuous marginal 

markings on butterfly hindwings provides evidence that hindwings sometimes act in a 

role ancillary to flight (Hill and Vaca 2004). What’s more, there is flexibility in resources 

distributed to wing building during development. When relieved of the energetic 

constraints of building four wings (by removing the two hindwing imaginal discs), the 

two remaining forewings wings will grow disproportionately large (Nijhout and Emlen 

1998; Nijhout and Callier 2015). This sort of reallocation belies a plasticity of energy use 

and gene expression in Lepidoptera pupal stages. More work needs to be done with 

Saturniidae and other tailed moth families to determine the combination of factors that 

might lead to hindwing tails. 

It is especially important to carefully construct studies in the future that will 

elucidate exactly how bats perceive the illusion created by hindwing tails (most likely via 

ensonification). Elongated A. polyphemus moths escaped bat attack with the same success 

as tailed animals, thus the question remains how elongated lobes function to deflect bat 

attack and whether it’s by precisely the same means as spinning tails. Whether hindwing 

tails across genera function in the same manner is also an outstanding question. A. 

mimosae’s wing material has greater flexural stiffness than A. luna’s, which is common 

in larger insects (Combes and Daniel 2003). Its shafts are also thinner, longer and more 

brittle. These differences could potentially lead to differing illusory mechanisms, or could 

simply allow two differently shaped and sized animals to evoke the same sensory 
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illusion. Research into the material properties of these wings, and how they function 

echoically, would reveal interesting results. 

Sensory illusions provide a new conceptual framework to investigate the 

evolutionary drivers of trait characteristics. Organisms can only interact with each other 

and their external environment based on the constraints of their sensory profile (Stevens 

2013). From this view, the researcher must probe the perceptual and reactionary palate of 

both predator and prey. There is still much more to know about bat and moth sensory 

processing. This system provides us with evidence for the limits of bat echolocation, and 

the exploitation of these constraints by moth prey across their evolutionary history. 
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Tables 

Table 1.1 Kinematics. Kinematic output data from 100ms of tethered flight, 

using a custom-built Moth Drop program. All other parameters were correlated 

with mean speed, mean tangential acceleration and mean angular velocity (rho>0.7). 

Flight variables from each treatment compared with intact standards of the same 

species, outlined in black. Any differences between treatment moth values and intact 

moth values from the same species are highlighted in red. 
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Table 1.2 Bat Identity and Experience with Saturniids Do Not Affect The 

Outcome of the Trial. Bats included as random intercepts and the number of nights 

bats spent hunting saturniids (bat experience) included as random slopes in a 

Bayesian model overlap 0, indicating that they do not have an effect on moth escape 

success. 
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Figures 

 

Figure 1. Saturniidae Phylogeny. Molecular data from five nuclear loci and the 

COI mitochondrial gene for taxa from Saturniidae and related bombycoid families 

demonstrate four evolutions of hindwing tails with twisted and cupped ends (in gray 

highlights). Filled black circles are origination points for tails and open circles are tail 

losses. Warmer colors indicate longer tails, and asterisks indicate tails that are 

>3.75cm. Letters A and B in the figure represent moths that we used for the 

behavioral assay. Reprinted with permission from Barber et al. (2015). 
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Figure 2. Escape success. Bayesian model of the proportion of interactions where 

a moth escaped bat attack. Inner white line represents the model slope mean and the 

gray area is 95% credibility interval around the mean. Images of moth treatments 

are positioned on their respective data bracket. Only one picture is shown for an 

intact or sham, as they have the same morphology. Samples sizes are as follows: A. 

mimosae (ablated = 17, intact = 30, sham = 13, short = 22,); A. luna (ablated = 38, 

blunt = 48, elongated = 82, intact = 64, sham = 37, short = 93), A. polyphemus (ablated 

= 44, elongated = 29, intact = 40, sham = 35).  
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Figure 3. Posterior Aim. 3A. Bats directed an increasing proportion of their 

attacks at the posterior half of the moth (indicated with the yellow cylinder) as moth 

hindwing length increased. Results extracted from a Bayesian analysis with bat 

identity and hunting night included as random intercepts. 3B. Two-target Aim. The 

enlarged echo sensory illusion predicts that bats will target the hindwing just behind 

moth abdomen, at the perceived echo center (section 2, highlighted in green, 3C). The 

multiple target sensory illusion predicts that bats will target either section 1 or section 

3 of the moth’s body (highlighted in purple, 3C). Bats aimed 75% of their attacks on 

tailed moths (A. luna intact, sham, elongated; A. mimosae intact, sham, shortened) at 

the first and third sections, providing support for the multiple target illusion.  
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Pictures 

 

 

 

 

 

 

 

 

 

Picture 1. “Dodge.” A big brown bat (Eptesicus fuscus) echolocating during a 

feeding. 
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Picture 2. Moth Treatments. Polyphemus treatments were created by cutting 

hindwing material just below the eyespot (ablated) and regluing (sham), or by adding 

hindwing material cut from below another animal’s eyespot to the end of an intact 

animal’s hindwing (elongated). Luna and moon moth treatments were created by 

cutting tail material where it adjoins the hindwing (ablated) and re-gluing the entirety 

(sham), or just the twisted and cupped end (short). Additional luna treatments were 

created by cutting the twisted and cupped ends off (blunt) and gluing an entire second 

tail to the remaining projection (elongated). 
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Picture 3. Twisted and Cupped Tails are Found in Other Families. Four 

representative species from four different families (listed above each picture) where 

elongated and structured hindwing tails have evolved. The dotted line delineates an 

independent evolution across Order, from Lepidoptera to Neuroptera.
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Tables 

Table A1. Mean Angular Velocity Included is Uninformative to the Model. 

When including mean angular velocity as a variable in the escape model (Figure 2), 

we find that it is not a relevant variable to the model (Overlap 0 = TRUE) and does 

not affect model inference (mean slope of the line is negative, in the opposite 

direction from the overall escape model slope). 

 

 M
ean 

S
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O
verlap 0 

Mean 

Angular Velocity 

-
0.107 

0
.126 

T
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Table A2. Escape Model Slope With Luna and Polyphemus Moths Only is the 

Same as Aggregate Escape Model Slope. Bayesian models including all moth genera, 

and luna and polyphemus moths only reveal that moon moths do not drive the mean 

slope of the line, but are a contributive part of the overall trend. 

 

 Mean SD 
Overlap 

0 

Luna + 
Polyphemus 0.169 0.062 FALSE 

Aggregate 0.178 0.046 FALSE 
 

 

 

 

 

 

 

 

 

 



46 

 

Figures  

Echolocation results 

Figure A1. IPI of Echolocation Call Against Intact and Ablated moths. One 

representative call against an individual moth from Intact and Ablated treatments of 

each species demonstrates that IPI does not change between tailed and non-tailed 

individuals. 
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Figure A2. IPI of Echolocation Call Against all Treatments. One representative 

call against an individual moth from each treatment depicts the same results as our 

Bayesian model built with logit links: IPI during bat attack is not different based on 

moth genus or tail length (slope of the line IPI versus tail length (cm) = -0.050.04, 

Overlap 0=TRUE). Buzz duration (slope of buzz duration versus tail length (cm) = -

0.040.04, Overlap 0=TRUE) and frequency 15dB below frequency at peak amplitude 

were also not different (slope frequency 15dB below and above versus tail length (cm) 

= 0.000.03, Overlap 0=TRUE). 

 

 


