
INTEGRITY CODED DATABASES:

ENSURING CORRECTNESS AND FRESHNESS OF

OUTSOURCED DATABASES

by

Ujwal Karki

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

August 2017

c© 2017
Ujwal Karki

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Ujwal Karki

Thesis Title: Integrity Coded Databases: Ensuring Correctness and Freshness of
Outsourced Databases

Date of Final Oral Examination: 16 June 2017

The following individuals read and discussed the thesis submitted by student Ujwal
Karki, and they evaluated the presentation and response to questions during the final
oral examination. They found that the student passed the final oral examination.

Jyh-haw Yeh, Ph.D. Chair, Supervisory Committee

Dianxiang Xu, Ph.D. Member, Supervisory Committee

Gaby Dagher, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Jyh-haw Yeh, Ph.D., Chair
of the Supervisory Committee. The thesis was approved by the Graduate College.

This thesis work is dedicated to all my family members, well wishers and supporters.

iv

ACKNOWLEDGMENTS

Certainly, this journey until now was not by me alone. There has been continuous

guidance and support from many individuals, who have helped me reach this far.

First and foremost, I would like to express my sincere gratitude to my very helpful

advisor Dr. Jyh-haw Yeh. He always provided me the motivation, correct guidance,

important and timely suggestions which has made this work a successful one. I would

also like to thank my committee member Dr. Dianxiang Xu from whom I have learned

a lot in the issues related to computer security, which is closely related to my thesis

work, and also the various aspects of software engineering from the classes I have

taken with him. I am also very thankful to my other committee member Dr. Gaby

Dagher, for providing me with invaluable feedback, ideas and suggestions during my

regular meetings with him. I am also very grateful to him for allowing me to be the

part of his advanced cryptography class, where I got to learn a lot of topics related

to my thesis work.

The financial support from the Department of Computer Science by providing me

a full scholarship is one of the reasons I was able to pursue my graduate studies at

Boise State University. I feel very humbled for having that opportunity. I also feel

lucky enough to be surrounded by such wonderful friends and colleagues, which made

me feel this new place as friendly and as close as my home.

My special thanks go to my mother who has always been my sole inspiration in

life’s many lessons.

v

ABSTRACT

In recent years, cloud storage has become an inexpensive and convenient option

for individuals and businesses to store and retrieve information. The cloud releases

the data owner from the financial burden of hiring professionals to create, update

and maintain local databases. The advancements in the field of networking and

the growing need for computing resources for various applications have made cloud

computing more demanding. Its positive aspects make the cloud an attractive option

for data storage, but this service comes with a cost that it requires the data owner

to relinquish control of their information to the cloud service provider. So, there

remains the possibility for malicious insider attacks on the data that may involve

addition, omission, or manipulation of data. This paper presents a novel Integrity

Coded Database (ICDB) approach for ensuring data correctness and freshness in

the cloud. Various options for verifying the integrity of queried data in different

granularities are provided, such as the coarse-grained integrity protection for the

entire returned dataset or a more fine-grained integrity protection down to each tuple

or even each attribute. ICDB allows data owners to insert integrity codes into a

database, outsource the database to the cloud, run queries against the cloud database

server, and verify that the queried information from the cloud is both correct and

fresh. An ICDB prototype has been developed in order to benchmark several ICDB

schemes to evaluate their performance.

vi

TABLE OF CONTENTS

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xxi

LIST OF SYMBOLS . xxii

1 Introduction . 1

1.1 Background . 1

1.1.1 Thesis Statement . 2

1.1.2 Outline . 5

2 Previous work . 6

2.0.1 Integrity Coded Databases (ICDB)–Protecting Integrity for Out-

sourced Databases . 6

2.0.2 Securing Storage in Public Cloud Infrastructure 7

2.0.3 Freshness Guarantee for an Outsourced Database 8

2.0.4 Authentication of Outsourced Databases using Signature Ag-

gregation and Chaining . 9

vii

2.0.5 Integrity Protection using Authenticated Data Structure-based

Techniques . 10

3 ICDB Models . 12

3.1 Basic ICDB Model . 12

3.2 Dual Mode Verification (DMV) Model . 15

4 ICDB Construction . 20

4.1 Definition of Variables . 20

4.2 Integrity Codes . 21

4.2.1 Integrity Code Generating Algorithms . 23

4.2.2 Serial Number Construction . 26

4.3 Granularity Schemes . 27

4.3.1 One Code per Field (OCF) . 28

4.3.2 One Code per Tuple (OCT) . 37

4.4 Aggregate Integrity Code Generation and Verification 44

5 Experimental Results and Analysis . 47

5.1 Hardware and Software Used . 47

5.2 Integrity Protection . 48

5.2.1 Forgery Attack . 48

5.2.2 Substitution Attack . 49

5.2.3 Old-Data Attack . 50

5.2.4 Tuple Insertion Attack . 51

5.2.5 Tuple Deletion Attack . 51

5.3 Memory Penalty . 52

viii

5.4 Performance Penalty . 56

5.4.1 Experimental Results for the Basic ICDB Model 56

5.4.2 Experimental Results for the Dual Mode Verification (DMV)

Model . 85

6 Conclusion and Future Work . 117

REFERENCES . 121

A Employees Database Schema . 124

B Hardware Specifications . 129

C Development Environment: . 132

D ICDB Commands . 134

D.1 Initial Setup . 135

D.2 Running the ICDB tool . 135

D.3 Commands Available . 136

D.3.1 Convert DB Command . 137

D.3.2 Convert Query Command . 137

D.3.3 Execute Query Command . 137

E Query Conversion: . 138

E.1 MySQL Select Queries: . 139

E.1.1 ICDB Select Queries(OCF): . 139

E.1.2 ICDB Select Queries(OCT): . 140

E.2 MySQL DELETE Queries . 141

ix

E.2.1 ICDB Delete Verification Queries (OCF): 141

E.2.2 ICDB Delete Verification Queries (OCT): 142

E.3 MySQL Functional Query: . 143

E.3.1 ICDB Functional Query(OCF): . 143

E.3.2 ICDB Functional Query(OCT): . 143

x

LIST OF TABLES

3.1 An example of an ICDB table with tuple-level integrity protection 14

4.1 An example table for OCF granularity . 28

4.2 An example table for OCT granularity . 38

5.1 Database sizes: DB is the original Employees SQL database; MAC-OCT

and MAC-OCF are the Employees ICDB databases using 128-bit HMAC

or CMAC integrity code implementing the OCT scheme and the OCF

scheme, respectively. Sizes are displayed in Megabytes. 53

5.2 Database sizes for the original Employees SQL database, and the con-

verted ICDB RSA-OCT and RSA-OCF databases respectively. Sizes

are displayed in Megabytes . 55

5.3 Using HMAC-SHA, query process time raw data in milliseconds for

different number of tuples returned (in thousands) by the SELECT *

query over the Employees.salaries table. 59

5.4 Using CMAC-AES, query process time raw data in milliseconds for

different number of tuples returned (in thousands) by the SELECT *

query over the Employees.salaries table. 60

5.5 Using RSA, query process time raw data in milliseconds for different

number of tuples returned (in thousands) by the SELECT * query over

the Employees.salaries table. 61

xi

5.6 A table with raw data for the Basic ICDB model showing the process

rate, i.e., how much user data (size in MB) can be processed in a

SELECT * query using three different algorithms in OCT or in OCF.

The data in the DB row is the process rate for a standard SQL database. 63

5.7 Using HMAC-SHA, query process time raw data in milliseconds for

different number of tuples inserted (in thousands) by the INSERT

query into the Employees.salaries table. 66

5.8 Using CMAC-AES, query process time raw data in milliseconds for

different number of tuples inserted (in thousands) by the INSERT

query into the Employees.salaries table. 67

5.9 Using RSA, query process time raw data in milliseconds for different

number of tuples inserted (in thousands) by the INSERT query into

the Employees.salaries table. 68

5.10 Using HMAC-SHA, query process time raw data in milliseconds for

different number of tuples deleted (in thousands) by the DELETE

query from the Employees.salaries table. 71

5.11 Using CMAC-AES, query process time raw data in milliseconds for

different number of tuples deleted (in thousands) by the DELETE

query from the Employees.salaries table. 72

5.12 Using RSA, query process time raw data in milliseconds for different

number of tuples deleted (in thousands) by the DELETE query from

the Employees.salaries table. 73

5.13 HMAC-SHA raw data for a Query joining the Employees.employees

and the Employees.salaries tables, showing the time required (in

milliseconds) for the number of tuples selected (in thousands). 77

xii

5.14 CMAC-AES raw data for a Query joining the Employees.employees

and the Employees.salaries tables, showing the time required (in

milliseconds) for the number of tuples selected (in thousands). 78

5.15 RSA raw data for a Query joining the Employees.employees and the

Employees.salaries tables, showing the time required (in milliseconds)

for the number of tuples selected (in thousands). 79

5.16 HMAC-SHA plotted with time required (in milliseconds) against num-

ber of tuples (in thousands) returned using an ICDB SELECT Query

corresponding to the Functional Query . 82

5.17 CMAC-AES plotted with time required (in milliseconds) against num-

ber of tuples (in thousands) returned using an ICDB SELECT Query

corresponding to the Functional Query . 83

5.18 RSA plotted with time required (in milliseconds) against number of

tuples (in thousands) returned using an ICDB SELECT Query corre-

sponding to the Functional Query . 84

5.19 Using HMAC-SHA, query process time raw data in AV mode in mil-

liseconds for different number of tuples returned (in thousands) by the

SELECT * query from the Employees.salaries table. 89

5.20 Using CMAC-AES, query process time raw data in AV mode in mil-

liseconds for different number of tuples returned (in thousands) by the

SELECT * query from the Employees.salaries table. 90

5.21 Using RSA, query process time raw data in AV mode in milliseconds

for different number of tuples returned (in thousands) by the SELECT

* query from the Employees.salaries table. 91

xiii

5.22 A table with process rate raw data for the AV mode in DMV model

showing the speed the user data (size in MB) can be processed by three

different algorithms in OCT and in OCF. The data in the row labeled

DB is the process rate for a standard SQL database. 93

5.23 Using HMAC-SHA, query process time raw data in AV mode in mil-

liseconds for different number of tuples deleted (in thousands) by the

DELETE * query from the Employees.salaries table. 97

5.24 Using CMAC-AES, query process time raw data in AV mode in mil-

liseconds for different number of tuples deleted (in thousands) by the

DELETE * query from the Employees.salaries table. 98

5.25 Using RSA, query process time raw data in AV mode in milliseconds

for different number of tuples deleted (in thousands) by the DELETE

* query from the Employees.salaries table. 99

5.26 HMAC-SHA plotted query processing time for a query joining the

Employees.employees and the Employees.salaries tables, showing

the time required (in milliseconds) for the number of tuples selected

(in thousands) in aggregate verification mode. 103

5.27 CMAC-AES plotted query processing time for a query joining the

Employees.employees and the Employees.salaries tables, showing

the time required (in milliseconds) for the number of tuples selected

(in thousands) in aggregate verification mode. 104

5.28 RSA plotted query processing time for a query joining the Employ-

ees.employees and the Employees.salaries tables, showing the time re-

quired (in milliseconds) for the number of tuples selected (in thousands)

in aggregate verification mode. 105

xiv

5.29 HMAC-SHA plotted query processing time against the number of tu-

ples returned using a SELECT Query corresponding to the Functional

Query . 108

5.30 CMAC-AES plotted query processing time against the number of tu-

ples returned using a SELECT Query corresponding to the Functional

Query . 109

5.31 RSA plotted query processing time against the number of tuples re-

turned using a SELECT Query corresponding to the Functional Query 110

5.32 Memory penalty rates for all experiments in both the ICDB basic and

the DMV models . 111

5.33 Average performance penalty rates for all experiments in both ICDB

basic and DMV models . 111

5.34 Ranking Scale . 116

5.35 Ranking of different ICDB schemes in either Basic or DMV model 116

xv

LIST OF FIGURES

2.1 Merkle Hash Tree . 11

3.1 A diagram illustrating the interactions between ICDB client and cloud

DB Service Provider . 13

3.2 An Architecture for Dual Mode Verification (DMV) model (built on

the top of the basic ICDB model) . 19

5.1 Database sizes: DB is the original Employees SQL database; MAC-OCT

and MAC-OCF are the Employees ICDB databases using 128-bit HMAC

or CMAC integrity code implementing the OCT scheme and the OCF

scheme, respectively. Sizes are displayed in megabytes. 53

5.2 Database sizes for the original Employees SQL database, and the con-

verted ICDB RSA-OCT and RSA-OCF databases respectively. Sizes

are displayed in megabytes . 55

5.3 Using HMAC-SHA, plotted query process time in milliseconds for dif-

ferent number of tuples returned (in thousands) by the SELECT *

query over the Employees.salaries table. 59

5.4 Using CMAC-AES, plotted query process time in milliseconds for dif-

ferent number of tuples returned (in thousands) by the SELECT *

query over the Employees.salaries table. 60

xvi

5.5 Using RSA, plotted query process time in milliseconds for different

number of tuples returned (in thousands) by the SELECT * query

over the Employees.salaries table. 61

5.6 A chart plotted for Basic ICDB model showing the process rate, i.e.,

how much user data (size in MB) can be processed in a SELECT *

query using three different algorithms in OCT or in OCF. The leftmost

bar marked as DB is the process rate for a standard SQL database. 63

5.7 Using HMAC-SHA, plotted query process time in milliseconds for dif-

ferent number of tuples inserted (in thousands) by the INSERT query

into the Employees.salaries table. 66

5.8 Using CMAC-AES, plotted query process time in milliseconds for dif-

ferent number of tuples inserted (in thousands) by the INSERT query

into the Employees.salaries table. 67

5.9 Using RSA, plotted query process time in milliseconds for different

number of tuples inserted (in thousands) by the INSERT query into

the Employees.salaries table. 68

5.10 Using HMAC-SHA, plotted query process time in milliseconds for dif-

ferent number of tuples deleted (in thousands) by the DELETE query

from the Employees.salaries table. 71

5.11 Using CMAC-AES, plotted query process time in milliseconds for dif-

ferent number of tuples deleted (in thousands) by the DELETE query

from the Employees.salaries table. 72

5.12 Using RSA, plotted query process time in milliseconds for different

number of tuples deleted (in thousands) by the DELETE query from

the Employees.salaries table. 73

xvii

5.13 HMAC-SHA plotted for a Query joining the Employees.employees

and the Employees.salaries tables, showing the time required (in

milliseconds) for the number of tuples selected (in thousands). 77

5.14 CMAC-AES plotted for a Query joining the Employees.employees

and the Employees.salaries tables, showing the time required (in

milliseconds) for the number of tuples selected (in thousands). 78

5.15 RSA plotted for a Query joining the Employees.employees and the

Employees.salaries tables, showing the time required (in millisec-

onds) for the number of tuples selected (in thousands). 79

5.16 HMAC-SHA plotted with time required (in milliseconds) against num-

ber of tuples (in thousands) returned using an ICDB SELECT Query

corresponding to the Functional Query . 82

5.17 CMAC-AES plotted with time required (in milliseconds) against num-

ber of tuples (in thousands) returned using an ICDB SELECT Query

corresponding to the Functional Query . 83

5.18 RSA plotted with time required (in milliseconds) against number of

tuples (in thousands) returned using an ICDB SELECT Query corre-

sponding to the Functional Query . 84

5.19 Using HMAC-SHA, plotted query process time in AV mode in mil-

liseconds for different number of tuples returned (in thousands) by the

SELECT * query from the Employees.salaries table. 89

5.20 Using CMAC-AES, plotted query process time in AV mode in mil-

liseconds for different number of tuples returned (in thousands) by the

SELECT * query from the Employees.salaries table. 90

xviii

5.21 Using RSA, plotted query process time in AV mode in milliseconds for

different number of tuples returned (in thousands) by the SELECT *

query from the Employees.salaries table. 91

5.22 A chart plotted the process rates for the AV mode in DMV model

showing the speed the user data (size in MB) can be processed by three

different algorithms in OCT and in OCF. The leftmost bar labeled DB

is the process rate for a standard SQL database. 93

5.23 Using HMAC-SHA, plotted query process time in AV mode in mil-

liseconds for different number of tuples deleted (in thousands) by the

DELETE * query from the Employees.salaries table. 97

5.24 Using CMAC-AES, plotted query process time in AV mode in mil-

liseconds for different number of tuples deleted (in thousands) by the

DELETE * query from the Employees.salaries table. 98

5.25 Using RSA, plotted query process time in AV mode in milliseconds for

different number of tuples deleted (in thousands) by the DELETE *

query from the Employees.salaries table. 99

5.26 HMAC-SHA plotted query processing time for a query joining the

Employees.employees and the Employees.salaries tables, showing

the time required (in milliseconds) for the number of tuples selected

(in thousands) in aggregate verification mode. 103

5.27 CMAC-AES plotted query processing time for a query joining the

Employees.employees and the Employees.salaries tables, showing

the time required (in milliseconds) for the number of tuples selected

(in thousands) in aggregate verification mode. 104

xix

5.28 RSA plotted query processing time for a query joining the Employ-

ees.employees and the Employees.salaries tables, showing the time re-

quired (in milliseconds) for the number of tuples selected (in thousands)

in aggregate verification mode. 105

5.29 HMAC-SHA plotted query processing time against the number of tu-

ples returned using a SELECT Query corresponding to the Functional

Query . 108

5.30 CMAC-AES plotted query processing time against the number of tu-

ples returned using a SELECT Query corresponding to the Functional

Query . 109

5.31 RSA plotted query processing time against the number of tuples re-

turned using a SELECT Query corresponding to the Functional Query 110

xx

LIST OF ABBREVIATIONS

ICDB – Integrity Coded Databases

IC – Integrity Code

AIC – Aggregate Integrity Code

SQL – Structured Query Language

CA – Cloud Application

CDS – Cloud Database Server

DMV – Dual Mode Verification

AV – Aggregate Verification

DV – Detailed Verification

OCF – One Code per Field

OCT – One Code per Tuple

MAC – Message Authentication Code

CMAC – Cipher-based Message Authentication Code

HMAC – keyed-Hash Message Authentication Code

ICRL – Integrity Code Revocation List

xxi

LIST OF SYMBOLS

+ concatenation/ summation

* multiplication

mod modulo operation

−1 multiplicative inverse operation

⊕ exclusive or (XOR)∏
product

xxii

1

CHAPTER 1

INTRODUCTION

1.1 Background

Cloud services provide tremendous benefits, since businesses do not need to maintain

an IT department that hires an IT staff and purchases/installs expensive hardware

and software. Among many cloud services, Database-as-a-Service (DaaS) has grown

significantly in the cloud market in recent years. Examples include Amazon Relational

Database Service [13], Microsoft Azure SQL Database [12], Google Cloud SQL [11]

and many others. However, the convenience of outsourcing database management

to the cloud comes with potential privacy and security risks [17]. Different kinds of

attacks can be carried out on the database [10]. Insiders who have access to private

user data (e.g., DBAs and system administrators) could steal, modify, or even destroy

sensitive information. Most notably, data owners subscribed to the cloud service must

trust the service providers and assume the cloud system/database administrators will

not attempt to manipulate their data. Despite the existence of such insider security

threats, current Cloud Database Server (CDS) do not implement any data integrity

protection mechanism to assure customers. Although they have implemented state of

the art technologies to defend against external attacks, there remains the real risk of

attacks from insiders who have privileges to access the stored data. Thus, this insider

security threat is one of the major concerns in developing/growing cloud technologies

2

and it needs to be addressed.

While protecting data privacy in the cloud is an important topic, protecting data

integrity is equally important, but often is a more challenging issue [1] since a company

will actually lose the physical control of their data if the company wishes to outsource

their data to the cloud. Without physical control of their data, the company cannot

prevent (but may be able to detect) unauthorized data tampering from malicious

cloud insiders.

1.1.1 Thesis Statement

Since unauthorized data modification in outsourced databases cannot be prevented,

this paper presents an Integrity Coded Database (ICDB) approach, as first seen

in [18], which makes it possible for data owners to detect an insider’s modifications.

Database Integrity

Data integrity protection is to prevent/detect unauthorized data modifications. Once

a database is outsourced, the data owner expects that data item retrieved from

the cloud database should be the original data without unauthorized modification.

If there is no protection mechanism in place, the database service provider (e.g.,

malicious DBA or compromised cloud software) can provide fabricated data without

detection.

By using an ICDB, the data owner is capable of verifying the integrity of their

queried data. The key idea of ICDB is to insert some Integrity Codes (IC) into

the database and these ICs are stored alongside with the data they are protecting.

The ICs are generated by applying a cryptographic function with the data (to be

protected) and the data owner’s secret key as input. A unique serial number is

3

assigned to each IC to guarantee the freshness of the data (defined below). When

an ICDB is queried, each data item will be fetched along with its corresponding IC

and serial number. Use of the secret key in the construction of ICs assures that only

the database owner is able to verify the integrity of queried data. To verify data, the

data owner re-computes the IC from the data (with serial number and secret key)

and then comparing it to the IC returned from the query. If either the data or the

IC is forged, the data owner will be able to detect these changes. In order to fully

guarantee data integrity, the returned data should be

• Correct: Returned data should be original, and not forged.

• Fresh: Returned data should be current and not include previously removed

data.

• Complete: All data items satisfying query conditions should be returned.

By upholding all three points above, it is possible to achieve maximal integrity by

detecting the following unauthorized actions:

• Data Manipulation: The alteration of data in the database or in the returned

values.

• Data Omission: Deletion of data in the database or omission of information

in the returned values.

• Data Addition: Insertion of data in the database or addition of information

in the returned values.

• Stale Data: Returning old data or data previously removed from the database.

4

Due to the complexity and performance issues incurred while enforcing data

completeness as shown in [2], [3] and [4], our proposed ICDB approach in this study

will only concentrate on ensuring correctness and freshness. This means that the

ICDB models as formulated in this thesis will be only able to fully detect data

manipulation, data addition, and stale data on the fetched query results.

Database Evaluation

Although ICDB is able to detect data alterations, it comes with a cost. An ICDB will

incur memory penalties for storing integrity codes in addition to the original data,

and performance penalties to retrieve extra information (integrity codes) for verifying

the integrity of returned data. To test and benchmark the trade-off between security

and performance penalty, we have implemented an ICDB prototype [16]. This thesis

will focus on answering the following research questions:

• Question 1: Integrity protection. How effective is the introduction of

Integrity Codes to ensure the data correctness and freshness?

• Question 2: Memory Penalty. How much additional memory is required to

store integrity codes?

• Question 3: Performance Penalty. How much additional time is required

for data to be verified after it is queried and/or how much extra information

(i.e., integrity codes) is required to be retrieved from the cloud in every query?

Each of these evaluation metrics will be benchmarked against a pre-populated database.

The database will be converted to an ICDB first, and then it will be tested by several

experiments designed to evaluate its performance. In this thesis, three cryptographic

5

algorithms were chosen to generate ICs. They are RSA, CMAC AES, and HMAC

SHA. In addition, we have studied the ICDB in two different integrity protection

granularities, i.e., One integrity Code per Tuple (OCT) or One integrity Code per

Field (OCF), which will be described in section 4.2.

1.1.2 Outline

This thesis is organized into six chapters describing the various aspects of ICDB.

We also share the experimental results and offer suggestions for various real cloud

schemes.

In section 1.1, we discuss concerns about outsourced databases and provide a thesis

statement to address the problem described.

In Chapter 2, we give a literature review on various existing data integrity protection

schemes of outsourced databases.

In Chapter 3, we propose two different models of ICDB and how to evaluate their

performance.

In Chapter 4, we present the construction of Integrity Unit (integrity code and serial

number) and also describe the two different integrity granularity schemes.

In Chapter 5, we present and analyze the experimental results for different combina-

tions of algorithms and granularities for both the ICDB models.

In Chapter 6, we conclude the research and also outline future work that can be done.

6

CHAPTER 2

PREVIOUS WORK

In this chapter we discuss some of the research that is directly related to the integrity

protection of outsourced databases. The ongoing research has made use of different

approaches such as signature, hash functions, and encryption. We will review how

these various research approaches are related to this research work.

2.0.1 Integrity Coded Databases (ICDB)–Protecting Integrity for Out-

sourced Databases

Nanjundarao’s work [18] (2015) defined the processes for which ICDBs can be created

and queried. Her thesis outlined and provided preliminary results for an ICDB model

using RSA to generate one integrity code per data field.

My thesis is a continuation of Nanjundarao’s work. My research provides addi-

tional ICDB configurations and enhancements to improve performance. In addition

to using RSA signatures, this thesis details performance results for using AES and

SHA as the underlying integrity-code-generating function, along with performance

differences for different integrity granularity protection, i.e., generating integrity codes

per field, or per tuple. We also introduce an innovative technique ”aggregate integrity

code verification” in the ICDB model to significantly enhance its performance.

7

2.0.2 Securing Storage in Public Cloud Infrastructure

Haxhijaha et al. (2014) in their research [25] focused on verifying the integrity of

the outsourced data by the client themselves, rather than depending upon some third

party auditor. Their paper attempts to point out advantages and security concerns

of cloud computing and focuses on avoiding third party auditors. For this, hash

values of files are computed at the customer’s side to avoid the need for third party

auditors. The hash values are then stored at a secure local hash repository. The client

can request the data file from the cloud at any time and regenerate the hash for the

file. The regenerated hash value can be matched against the precomputed and stored

hash values for verification. Unlike ICDB, the technique proposed in their paper is

targeted for the file system and not for databases. The MD5 hash algorithm is used

as cryptographic algorithm. The MD5 is reported with various attacks [36]. The

hash values are stored at the client machine, which incurs extra storage cost to the

client. In their study, unfortunately no experimental results regarding performance

overhead are provided.

In 2004, researchers [19] outlined an implementation for ensuring data complete-

ness in relational databases. Although not explicitly stated, the model offers correct-

ness and completeness guarantees by providing a signature per tuple for correctness,

along with a separate table signature for completeness. Tuple signatures, referred to

as Record Integrity Codes (RICs), are generated using keyed hashes. In addition to

RICs, the paper offers an incremental signature scheme using XOR MACs [20]. With

this they are able to provide a table-level signature that requires computation based

on the number of updates on the data (and not the size of the table). This table

signature is able to detect additions and deletions of tuples in the database, thereby

8

ensuring completeness for each table.

Much like RICs, integrity codes in ICDB offer correctness by generating a keyed

signature. The major difference is that integrity codes in ICDB, in addition to

signatures, also have a serial component attached to them to maintain freshness.

Unlike RICs, integrity codes in ICDB can also be generated per field.

2.0.3 Freshness Guarantee for an Outsourced Database

A 2008 paper [3] focused on providing freshness guarantees for outsourced databases

provided two approaches for freshness, using timestamps or using a probabilistic

method. The first approach with timestamps sets an expiration time for each sig-

nature, and the signature must be updated when it is expired. This approach works

under an assumption that the local time is always correct. The second approach

defines operations, known as audits, which occasionally perform fake updates. Audits

can insert new fake tuples and delete old ones from the outsourced database, checking

that the new fake tuples always show up in query results. If any deleted fake tuple

show up in the query result, the old data attack can be detected.

Another research work [14] tried a similar approach by inserting fake data. They

require a Trusted Third Party (TTP) for performing verification, where the data

owner hands the check sum to the TTP. The search request contains two parts: the

real search request and the verification one. For the real one the user can receive

the expected results but for the verification one a check value sum′ generated by the

service provider should be provided. The user can then compare the sum and sum′

to check for freshness and completeness.

ICDB’s freshness guarantee differs from both the timestamp and probabilistic

methods. The timestamp method requires constant updates to expired timestamps,

9

while the probabilistic method is not completely secure, and both methods require

periodical operations (timestamp updates and audits) which contribute noticeable

system overhead. ICDBs use serial numbers, which can be cross-checked with a

compact list of invalid serial numbers without extra operations. This significantly

reduces system overhead to guarantee freshness, since the serial number only needs

to be updated when the data is updated.

2.0.4 Authentication of Outsourced Databases using Signature Aggrega-

tion and Chaining

A paper detailing another authenticated database system [4] (2006), provides a similar

approach to our ICDB implementation and addresses the integrity of query replies

in the outsourced databases. The approach, called Digital Signature Aggregation

and Chaining (DSAC), is used along with digital signatures at the granularity of

individual tuples. Each individual signature is constructed by a hash value of the

tuple combined with the hash value of its preceding tuple in each searchable attribute,

signed with a secret key. This construction helps to achieve completeness by a

secure linking of tuple-level signatures to form a so-called signature chain. The

verification object includes sets of matching tuples for the query, sets of immediate

predecessor and successor nodes of the first and last nodes respectively along the

search dimension, a unified signature rather than individual signatures, and hashes

of immediate predecessor tuples along all other searchable dimensions.

Like ICDBs, they provided results for signing each tuple in the database for

correctness. The key difference is that their approach provides completeness with

signature chaining, but no freshness guarantees are provided. Also, the paper is solely

focused on the completeness problem for range queries. This requires the tuples to

10

be sorted in ascending order prior to the signature computation. This adds extra

computational overhead to both the database server(cloud) and the client.

2.0.5 Integrity Protection using Authenticated Data Structure-based Tech-

niques

Niaz and Saake in their work [5] focused on Merkle Hash Tree–based data integrity

techniques. Merkle Hash Tree is a Signature Scheme based on a binary tree of hashes.

Each leaf node holds the hash of a data block. To verify the integrity of any data

block, a signer transmits the hashes of only those nodes which are involved in the

authentication path of the data block under consideration. With those hashes, the

client can compute the hash of the root node and then match it against the stored

root hash. For example, for the merkle hash tree in Figure 2.1, if the receiver needs

to verify the integrity of data block 2 then only H(1), H(3,4) and H(5,8) need to

be transfered to the receiver. With these hashes, the receiver can compute the root

hash H(1,8) and then compare it against the stored root hash. Two models have

been implemented: Single Authentication Table (SAT), which is one table with all

of the authentication data and Level Based Authentication Table (LBAT), where

authentication data for each level of an MHT is stored in an individual table.

Though the integrity is protected, the structure of the relational database is

changed. In addition, it requires the server side to trace the involved nodes in the

authentication path and thus adding performance overhead. The ICDB model is more

transparent to the database server without the need to change the database structure

or to trace the authentication path.

11

Figure 2.1: Merkle Hash Tree

12

CHAPTER 3

ICDB MODELS

In this thesis, we propose two ICDB models: (1) the Basic ICDB model and (2) Dual

Mode Verification (DMV) model. The DMV model is built on top of the basic model

and verifies query results in aggregation.

3.1 Basic ICDB Model

There are two components in the basic ICDB model: the ICDB client and the Cloud

Database Server (CDS) as shown is figure 3.1. The Cloud Service Provider uses

a Cloud Database Server for data storage and various database–related operations.

The ICDB client and the Cloud Service Provider are connected via the Internet. The

ICDB client (on behalf of the data owner) seeks to outsource their data to the CDS,

but would like to keep the capability of detecting unauthorized changes to their data.

Hereafter, we will use the term ”ICDB client” instead of data owner, knowing that

the ICDB client is a software client conducting ICDB operations on behalf of the data

owner.

The ICDB client has five different modules responsible for central management,

DB conversion, query conversion, verification and user interface display respectively.

The ICDB Manager is responsible for managing the other four modules by provid-

ing input and receiving output for each module, forwarding data between modules,

13

Figure 3.1: A diagram illustrating the interactions between ICDB client and cloud
DB Service Provider

connecting with the Cloud Service Provider via the Internet, and displaying results

on the user interface. The ICDB database instance is created and outsourced to the

cloud as shown in Steps 1 and 2 in figure 3.1. The ICDB manager, upon receiving

a SQL query request from the user, will forward the SQL query to the ICDB query

conversion module to convert the SQL query to an ICDB query which will then be

forwarded to the CDS as shown in Steps 3 and 4. The CDS returns the query result

14

along with serial numbers and Integrity Codes to the ICDB manager and the ICDB

manager forwards the query result to the verification module in Step 5. Finally, the

results of integrity verification are presented to the user in Step 6.

The model in figure 3.1 is designed with the goal that employing the proposed

ICDB technology will be transparent to the cloud service provider. The ICDB client

can convert an existing database to an ICDB instance without the need to redesign

existing database systems (e.g., MySQL, PostgreSQL). The CDS does not have to

treat any ICDB instance differently from a standard database.

The ICDB client is responsible for the following actions:

1. Converting a database to an ICDB instance by inserting Integrity Codes (ICs)

into the database before outsourcing it to the service provider:

An Integrity Code (IC) is a cryptographic code used for the integrity verification

for a data item (either an attribute or a tuple). The code is constructed by

applying a cryptographic function with inputs such as the data itself, the secret

key of the data owner, and a unique ’Serial Number’. Each IC is generated

to protect either an attribute data or the entire tuple in a table based on the

level of protection granularity. For example, in the Table 3.1 below, the column

’IC’ represents the Integrity Code of the entire tuple along with a unique serial

number associated with the IC. In the case of attribute level integrity protection,

each attribute will have an IC column and a serial number column associated

with it.

Table 3.1: An example of an ICDB table with tuple-level integrity protection

dept no dept name IC serial
d001 Marketing IC(d001,Marketing,1135980685) 1135980685

15

2. Upon receiving a SQL query, converting it to an ICDB query:

In addition to the requested data, the ICDB query should also retrieve corre-

sponding ICs and serials related to the data so that the ICDB client is able to

verify the integrity of requested data. In the example of Table 3.1, a SQL query

to retrieve department number is written: {Select dept name From departments

where dept no=’d001’;} The converted ICDB query for the given SQL query

would be: {Select dept no, dept name, IC, serial number from departments

where dept no=’d001’;} See below for why the ICDB query needs to retrieve

extra data for the integrity verification.

3. Verifying the integrity of queried data to ensure correctness and freshness:

After the data is fetched along with the corresponding IC and serial number,

verification is done by the ICDB client recomputing the IC to compare with the

IC fetched from the ICDB query. Regeneration of the IC requires the dept no,

the dept name, the IC and the serial number.

3.2 Dual Mode Verification (DMV) Model

Comparing with the data to be protected, integrity code size could be relatively

larger. Fetching these larger size integrity codes along with queried data is a notable

overhead in the network. To reduce this network overhead, we propose an innovative

Dual Mode Verification (DMV) model. In addition to the ICDB client running in the

data owner’s machine, this model requires an ICDB cloud application to be running in

the cloud service provider. This is easily done through Software-as-a-Service (SaaS)

[31] [32] in cloud computing. The DMV model provides an option to verify the fetched

data in:

16

1. Aggregate Verification (AV) mode: verify the integrity of all fetched data

as a whole, and/or

2. Detailed Verification (DV) mode: verify the integrity of each fetched tuple

or attribute in a finer granularity.

The DMV model shown in figure 3.2 is designed to reduce network overhead if the

ICDB client chooses to perform data integrity verification using the AV mode only.

If the AV mode verification fails, it means some data is corrupted within the fetched

dataset. In this case, the ICDB client can either discard the entire dataset or can

choose to perform the DV mode verification to figure out which data items (attributes

or tuples) in the fetched dataset are actually corrupted. This means integrity codes

will be fetched only in the DV mode if the aggregate verification fails.

The DMV architecture consists of three components: the ICDB Client, the

Cloud Database Server (CDS) and the ICDB Cloud Application (CA). The

DMV model has an extra component, the ICDB cloud application, for aggregate

verification in addition to those components in the basic ICDB model. The ICDB

cloud application is responsible for generating an Aggregate Integrity Code (AIC)

for the entire dataset fetched in the AV mode. AIC is a single integrity code that is

generated by aggregating all the ICs of all fetched data. Depending on the encryption

algorithm used, we will need to use a different approach to generate the AIC. The

algorithms and techniques used for generating ICDB integrity codes and AIC will be

described in detail in sections 4.2 and 4.4. In aggregate verification mode, the ICDB

client only needs to fetch one integrity code (AIC) along with the query result, rather

than an integrity code for each data item in the query result. Current cloud service

providers have 64-bit maximum size limit [15] for a BigInteger variable in the cloud

17

database server. This restricts the computation of AIC in the cloud database server

and thus the DMV model requires a separate cloud software application for AIC

generation. We call this software the ICDB cloud application or the AIC generator.

Because the DMV model is built on top of the basic ICDB model, the module for

converting the database to an ICDB instance and outsourcing it remains the same

as that shown in steps 1 and 2 in figure 3.2. Similar to the Basic model, the ICDB

manager in the DMV model is responsible for forwarding an SQL query to the ICDB

query conversion module based on the level of protection granularity as depicted in

Step 3. The difference is that the DMV model converts an SQL query to two ICDB

queries Q1 and Q2 in step 4. Q1 is sent to the cloud database server to fetch the

SQL query result (data along with associated serial numbers), and Q2 is sent to the

ICDB cloud application to delegate the ICDB cloud application to fetch all the ICs

corresponding to the data retrieved by Q1. The ICDB cloud application, on receiving

Q2, forwards it to the CDS to fetch all the ICs as described in Steps 5 and 6. The

ICDB cloud application then generates and sends the AIC to the ICDB client as shown

in Step 7. In this step, the AIC is generated from ICs (not from data). For aggregate

verification, the ICDB client has to regenerate the aggregate integrity code from data

(not from ICs), using the ICDB Q1 result that includes data and the serials fetched

from the CDS in Step 8. The details of AIC generation and regeneration by the cloud

application and by the ICDB client respectively will be described in detail in section

4.4. The AIC regenerated by the ICDB client is then matched with that returned by

the ICDB cloud application for aggregate verification. If aggregate verification fails,

the ICDB client provides an option for DV. If aggregate verification succeeds, the

ICDB manager presents verified data to the user through the User Interface Display.

Since DV is optional, if the user chooses to not perform detailed verification, the

18

entire dataset will be discarded and a message of a failed aggregate verification will

notify the user as shown in Step 10. On the other hand, if the user chooses to perform

detailed verification, all the ICs for all the data items (fetched earlier by Q1) have to

be fetched using ICDB Q2 as shown in Steps 11 and 12. Upon receiving the ICs from

the CDS, the ICDB manager will forward the results of both ICDB Q1 and Q2 to the

detailed verification module as in Step 13. Finally, the result of detailed verification

will present each individual corrupted data item to the user as shown in Step 14. DV

can detect either particular tuples or attribute values have been altered, depending

on the level of protection granularity. Since the integrity code construction in the

DMV model is same as that of the basic ICDB model, the ICDB instances in the

DMV model are no different than those in the basic ICDB model.

19

Figure 3.2: An Architecture for Dual Mode Verification (DMV) model (built on the
top of the basic ICDB model)

20

CHAPTER 4

ICDB CONSTRUCTION

4.1 Definition of Variables

In this section, we will define some variables.

• d: A data item to be protected. In this thesis, it could be a field entry (an

attribute value) or an entire tuple. In ICDB, each data item d will have an

Integrity Code (IC) to ensure its integrity.

• D = {d1, d2, . . . , dr}: A dataset (a set of data item di’s) returned by an SQL

query, where r is a non-negative integer.

• ICSet = {IC1, IC2, . . . , ICr}: The set of corresponding integrity codes to the

dataset D. Each ICi is the integrity code for each data item di.

• s: Each integrity code IC has a unique serial number s. The construction of

ICs ensures that s is an unforgeable identity of that IC.

• S = {s1, s2, . . . , sr}: The set of corresponding serial numbers to the ICSet and

thus to the dataset D. That is, each si ∈ S is the corresponding serial number

to each ICi ∈ ICSet and thus to each di ∈ D.

• m: A collection of information related to d, including d itself and a unique serial

number s, that are used to construct the integrity code for the data item d.

21

• M = {m1,m2, . . . ,mr}: A set of mi’s, returned by an ICDB query (converted

from an SQL query) so that the ICDB client has enough information to re-

generate the ICs.

4.2 Integrity Codes

In the ICDB model, we protect data integrity by assuring their correctness and

freshness. To accomplish this, our approach is to insert an integrity code along with

a serial number into the database for each data item to be protected. By checking

the integrity code to see whether it matches with the data to be protected, we are

able to ensure the data’s correctness since the integrity code is constructed using a

secret key known only by the data owner. Nobody, except the data owner, is able to

modify the data and generate a matching integrity code for it. By checking the serial

number, we are able to ensure the data’s freshness since the serial numbers for all

removed data will be marked as invalid (not fresh) in the data owner’s record. The

approach we use to track valid serial numbers is similar to that of the X.509 standard

on maintaining the validity of public key certificates.

Given a data item d and a secret key k (known only to the data owner), the

Integrity Code IC(d) of data d is constructed using an IC generating function G(m, k)

:

IC(d) = G(m, k) (4.1)

where m is a collection of information related to d as described in Section 4.1. In

each level of integrity protection granularity, m contains a different collection of

information. In OCF (One Code Per Field) granularity, m is formed by concatenating

the following information:

22

m = T.A(e) + D + T.K(e) + A + T + s = d + D + T.K(e) + A + T + s (4.2)

where T is a table name, A is an attribute (field) name, s is a unique serial number

assigned to the code, + means concatenation, T.A(e) = d is the attribute A’s value

of an entity e in table T , a delimiter D for prohibiting the replacement attack as

described in Section 5.2.2, T.K(e) is the primary key value of the same entity e (i.e.,

the primary key in the same tuple as T.A(e) is located). In OCT (One Code per

Tuple) granularity, m is organized as:

m = T.A1(e) + D + T.A2(e) + . . . + T.An(e) + T + s = d + T + s (4.3)

where T is a table name, s is the unique serial number, + means concatenation, and

T.A1(e), . . . , T.An(e) are the field values in a tuple (or in other words, the attribute

A1’s, A2’s, . . ., An’s values for an entity e, respectively) and D is a delimiter in between

each field value for prohibiting the replacement attack as described in Section 5.2.2.

In OCT the data item to be protected is the entire tuple, i.e., d = T.A1(e)+T.A2(e)+

. . . + T.An(e).

Sections 4.3.1 and 4.3.2 will describe in detail why m should contain a different

collection of information in OCF and OCT. Equation 4.1 above shows an integrity

code’s construction, where the function G can be one of three different cryptographic

algorithms which will be described later. On top of the integrity code, let’s define an

integrity unit for a data item d as a pair of < IC(d), s >, i.e., an integrity unit is an

integrity code and the corresponding serial number (in clear).

The following sections describe the three different cryptographic algorithms used

to generate the integrity code in this thesis, and the management of serial numbers.

23

4.2.1 Integrity Code Generating Algorithms

To maintain correctness, an IC must be cryptographically strong against forgery.

With this in mind, we chose to use three different cryptographic algorithms to generate

the integrity code: RSA, CMAC AES, and HMAC SHA [24], [7], [4], [34] [35].

In the literature, both CMAC (Cipher-based Message Authentication Code) and

HMAC (Hash-based Message Authentication Code) algorithms have been designed

with the objective that anyone without the secret key is unable to produce a valid

(matching) MAC. A matching MAC to a data item means that anyone with the

knowledge of the secret key can verify the validity of the MAC which in turn proves

the integrity of the data item. In this project, we chose to use CMAC AES and HMAC

SHA provided by the BouncyCastle Java library [22] to generate integrity codes in

our experiments. Compared to RSA, these MAC algorithms have the advantages

of smaller-size integrity codes and more efficient code generation. Despite RSA’s

large memory and performance footprint, we have included RSA in our experiments

because its homomorphic property [23] is useful in aggregate verification and also as

a comparison to other notable publications involving the use of RSA [24], [7] and [4].

RSA

RSA has been used widely in many public-key cryptosystems. The public key is used

for the encryption (or signature verification) while the private key is used to decrypt

the encrypted data (or generate a signature). If y is an RSA private key and (N, x)

is the public key, for a message m (or a collection of information related to a data

item d as described in Equations 4.2 or 4.3), the signature Sig(m) can be used as the

integrity code to protect the data item d:

24

Sig(m) = my mod N (4.4)

The signature Sig(m) can be verified by checking:

m
?
= Sig(m)x mod N (4.5)

The homomorphic property allows the operations to be made on the ciphers without

the need of decryption [30]. RSA has the multiplicative homomorphic property which

allows multiplication operations to be made on the integrity code (signature). The

result of these operations is equal to the integrity code of the product of the messages

(or data) as shown in the the equations below:

Sig(m1) = my
1 mod N (4.6)

Sig(m2) = my
2 mod N (4.7)

Sig(m1) ∗ Sig(m2) = (m1 ∗m2)
y mod N = Sig(m1 ∗m2) (4.8)

This RSA homomorphic property [23] allows the ICDB cloud application in our

ICDB model to generate a single Aggregate Integrity Code (AIC) from many indi-

vidual ICs (which will be described in section 4.4), which can reduce the integrity

verification process’s computational complexity in the ICDB client. Furthermore,

checking the integrity of a queried dataset as a whole in the AV mode, the ICDB

client only requires one AIC, rather than requiring all individual ICs for all data

items in the dataset, thus greatly reducing the network load.

There are other public key algorithms such as Elgamal and Paillier [8] [9], which

also have the homomorphic property. We chose RSA partially because the research

25

work in [33] have found that RSA takes less time for encryption and decryption

compared to Elgamal and Paillier, though RSA’s key generation may take a longer

time. We use RSA in this research only for integrity code generation/verification and

not for the purpose of protecting confidentiality. The time to generate keys is not

an issue since the data owner (ICDB client) will not share his/her RSA keys (both

public and private keys) with anyone: neither the cloud server nor the ICDB cloud

application. Thus, the keys can be generated offline. The data owner uses the private

key to generate integrity codes (signatures) and uses the public key to verify the

integrity codes along with data returned from clouds. The only value shared with the

cloud server and the ICDB cloud application is the RSA modulus N , which will be

used in modular multiplication of multiple ICs to generate one Aggregate Integrity

Code (AIC). Because the public key is not shared with anyone, the known attacks

on unpadded RSA are not possible. The use of unique serial number means that all

data items (even with the same value) have a unique integrity code.

Cipher-based Message Authentication Code (CMAC)

One type of MAC suited for generating integrity code is a CMAC, using AES-128 [6]

as its backing cipher. CMAC is a technique for constructing a Message Authentication

Code from a block cipher much like CBC-MAC [34]. It provides assurance of both

the authentication and integrity. CMAC is a variation of CBC-MAC and fixes the

security vulnerabilities such as the variable-length attack in CBC-MAC. An attacker

who knows the correct message-tag in CBC-MAC pairs for two messages (m, t) and

(m′, t′) can generate a third message m′′ whose CBC-MAC will also be t′. These

security issues are fixed in CMAC and hence we chose it as one of our integrity code

generating algorithms.

26

Keyed-Hash Message Authentication Code (HMAC)

The second MAC algorithm we chose to use is HMAC, using SHA-128 as its digest.

HMAC is a message authentication code that uses a cryptographic hash and a secret

key. So HMAC can simultaneously verify both integrity and authentication. Hash

functions are used in various prior works [25] for integrity protection. Hash algorithms

such as SHA-1 and MD5 have been attacked in various ways [36]. One way is with

length extension attacks where the attacker uses Hash(m1) and length of m1 to gen-

erate Hash(m1||m2). Since HMAC doesn’t use the construction Hash(key||message),

HMAC is not subject to length extension attacks [35]. The cryptographic strength of

HMAC depends on the properties of underlying hash function. The construction of

HMAC is described as:

HMAC(k,m) = H((k′ ⊕ opad) + H((k′ ⊕ ipad) + m)) (4.9)

Where, H is a cryptographic hash function, k is the secret key, m is the message, k′

is a secret key derived from the original key k , + denotes concatenation, ⊕ denotes

exclusive or (XOR), opad is the outer padding and ipad is the inner padding

4.2.2 Serial Number Construction

In addition to the integrity code, a unique serial number is generated and stored

along with the IC to ensure the freshness of the protected data. The data owner

must keep an Integrity Code Revocation List (ICRL) locally, which contains those

serial numbers that are revoked/invalid. When the data owner removes or updates

a piece of data, the serial number corresponding to the data (and thus the integrity

code) should be listed or marked as revoked/invalid in the ICRL file. Thus, if a

27

query were to return a data entry with a verifiable integrity code but with a serial

number marked as revoked, the returned data is not fresh even though it is correct

(not forged). The data owner will be able to detect invalid serial numbers for the

data returned from the cloud by simply looking up the local ICRL file.

In case the list of revoked serial numbers grows, ICRL size can be reduced by

applying the same technique used in the X.509 standard (this standard is used

in keeping the size of the public key certificate revocation list small). Using this

technique, ICDB maintains first valid serial number Sf . All the serial numbers less

than Sf are invalid. Here are the steps to reduce the size of the ICRL:

• Select a new first valid serial number S ′f

• All valid integrity codes in the ICDB whose serial number is less than S ′f need

to be renewed.

• Fetch the corresponding data and ICs for those serials to be renewed. Regen-

erate ICs with new serials (greater than S ′f).

• The updated ICRL now contains only those revoked serial numbers greater than

or equal to S ′f , listed in an ascending order. Those revoked serial numbers less

than S ′f will be no longer kept in the list, and thus the ICRL size is reduced.

4.3 Granularity Schemes

We have studied and experimentally bench-marked two different granularity levels

of integrity protection, henceforth referred to as a Granularity Scheme. These two

schemes are One Code per Field (OCF) and One Code per Tuple (OCT). Both

28

schemes specify how data will be grouped together to construct the integrity code

so that the correctness and freshness of the data can be guaranteed.

4.3.1 One Code per Field (OCF)

The OCF scheme specifies that for every field (attribute) data, there must exist a

corresponding Integrity Code (IC). In other words, for every field containing user

data in a table, there must exist a field to store the corresponding ICs. Furthermore,

another field is also required to store the corresponding serial numbers. Table 4.1

below illustrates this ICDB OCF scheme:

Table 4.1: An example table for OCF granularity

dept no dept name dept no ic dept no serial dept name ic dept name serial
d001 Marketing IC(d001) 1135980686 IC(Marketing) 1135980687
d002 Finance IC(d002) 1135980682 IC(Finance) 1135980683

Here, the OCF integrity code ICOCF (d) for a user data d is defined by the following

IC generating function:

ICOCF (d) = G(m, k) = G(T.A(e) + D + T.K(e) + A + T + s, k) (4.10)

where the symbol + means concatenation and m is a collection of information related

to the user data d, including the data d = T.A(e) itself (a field A’s value of an entity

e in table T), a delimiter D for prohibiting the replacement attack as described in

5.2.2, primary key value T.K(e) of the same entity e (i.e., the key value in the same

tuple where T.A(e) is located), the name of the field A, the name of the table T , a

unique serial number s assigned to the code. G(m, k) is the IC generating function

29

using the data owner’s secret key k. We use different information related to d in the

collection m for preventing/detecting various attacks described in section 5.2. Each of

the entity values is tied with their corresponding Primary Key value. This releases us

from the burden of generating ICs for all the combinations of attributes in the table.

For example, a Database University may contain a Table student with attributes

FirstName, LastName, SSN, StudentNumber, Sex, Birthdate, Class, Degree and

Address. The query fetching the values for attributes FirstName and Address would

require the IC to be generated by combining the same two attributes; this is also true

for all other combinations of attributes. The use of the primary key value T.K(e)

along with each of the attribute values/data T.A(e) for generating the Integrity Code

helps in tying each of the attributes with their respective Primary Keys - which in

turn ties them with each other. This helps us get rid of multiple ICs to be generated

based on the different combination of attributes. In addition, the use of attribute

name A along with the data d, detects a substitution attack in the particular table

since different data items with the same values cannot be related to the same Primary

Key value and to the same attribute name. However, the attack may not be detected

if another table in the same database contains the same attribute name with same

data value and primary key value. To ensure the detection of a substitution attack

in such cases, we use the table name T in the collection m, since a database cannot

have multiple tables with the same name.

This scheme allows for fine-grained integrity protection down-to each individual

field. If a field’s data does not match its integrity code, the data owner knows that

this field entry is invalid. In order for the ICDB client (on behalf on the data owner)

to verify the integrity of the returned data, the query to be issued by the ICDB client

to the cloud database server needs to request information in addition to the data

30

itself such including the corresponding integrity codes, key values, serial numbers,

etc. Thus, the ICDB client needs to convert an original SQL query to an ICDB query

to retrieve enough information for integrity verification.

OCF Query Conversion in the ICDB Basic Model

In the ICDB Basic model, there are only two entities: the CDS and the ICDB client.

Once the ICs are generated and inserted into the database, the ICDB client

is responsible for converting any SQL query [26] to an ICDB query. The query

conversion can be explained as the Algorithm A below:

Algorithm A: OCF-Basic Query Conversion.

Input (an SQL query):

SELECT A1, A2, . . . Ar FROM T1, T2, . . . Tm WHERE C1 and/or . . . Cn ;

Output (an OCF-Basic query):

SELECT A1, A2, . . . Ar, K1, K2, . . . Km, B1, B2, . . . Bk,

IC(A1), IC(A2), . . . IC(Ar), S(A1), S(A2), . . . S(Ar),

IC(k1), IC(k2), . . . IC(km), S(k1), S(k2), . . . S(km),

IC(B1), IC(B2) . . . IC(Bk), S(B1), S(B2), . . . S(Bk)

FROM T1, T2, . . . Tm

WHERE C1 and/or . . . Cn ;

31

where A1 . . . Ar are attribute names, K1 . . . Km are key attribute names for tables

T1 . . . Tm respectively, B1 . . . Bk are attribute names that appear in the conditions

C1 . . . Cn within the WHERE clause. In order to verify the integrity of these attribute

values listed above, we also need to retrieve the associated Integrity Unit (IC and serial

number), one for each of these attributes A1 . . . Ar, K1 . . . Km , B1 . . . Bk respectively.

We use example SQL queries Query 1 and Query 2 over an ’Employees’ database

to demonstrate how to apply the above query conversion algorithm, where Query 1 is

a selection query from a single table and Query 2 is a query with a join operation from

multiple tables. The ’Employees’ database chosen is a MySQL sample database pub-

licly available online: Employees (v1.0.6) [21]. It has a total of six tables and consists

of 4 million records. These six tables are departments, dept emp, dept manager,

employees, salaries and titles, of which the table salaries is the largest. The

database schema is provided in Appendix A.

Query 1 - Retrieve the salary of employees whose employee number is

1001:

The original SQL query for Query 1 is

SELECT salary FROM salaries WHERE emp no = 1001;

Applying the query conversion Algorithm A, the converted OCF-Basic query is:

SELECT salary, emp no, from date

salary IC, salary serial, emp no IC, emp no serial,

from date IC, from date serial

32

FROM salaries

WHERE emp no = 1001;

The resulting ICDB query, in addition to ’salary’ attribute, also selects ’emp no’

and ’from date’ attributes along with their integrity unit (IC and serial). This is

because these additional attributes are the primary key for the ’salaries’ table, and

is required for the integrity verification process. All the example queries discussed

in the following sections will follow the same pattern of fetching additional related

information to the data based on the query conversion Algorithm A described earlier.

In addition to a selection query from a single table, Algorithm A also describes

how to convert a join query from multiple tables. We use the Query 2 below to

demonstrate the conversion:

Query 2 - For each employee, retrieve the department name in which they

are working and the start and end dates of their time working there.

The original SQL join query for Query 2 is:

SELECT departments.dept name, dept emp.from date, dept emp.to date

FROM departments, dept emp

WHERE departments.dept no = dept emp.dept no AND

departments.dept no = ’d002’;

The converted OCF-Basic query for Query 2 is:

SELECT departments.dept name, dept emp.from date, dept emp.to date,

departments.dept no, dept emp.emp no,

IC(departments.dept name), S(departments.dept name),

33

IC(dept emp.from date), S(dept emp.from date),

IC(dept emp.to date), S(dept emp.to date),

IC(departments.dept no), S(departments.dept no)

IC(dept emp.emp no), S(dept emp.emp no)

FROM departments, dept emp

WHERE departments.dept no = dept emp.dept no AND

departments.dept no = ’d002’;

In addition to selection and join queries, the ICDB was also designed to handle

SQL functional queries. For any aggregate operation (sum, min, max, average, count),

all the data used to determine the result of an aggregate function has to be fetched

back to the ICDB client so that the ICDB client is able to perform the aggregate

operation over these fetched data on behalf of the data owner. ICDB was designed

in this way because in the ICDB models the cloud database server is not trustworthy

to directly perform all the SQL queries, including the aggregate queries. Thus, the

ICDB client will need to convert the original SQL aggregate query to an OCF query

so that all the required data can be fetched to calculate the aggregate value. Consider

an example SQL functional Query 3 below.

Query 3 - calculates the sum of all the salaries in the ’salaries’ table:

The original SQL aggregate functional query for Query 3 is:

Select sum (salary) from salaries;

The converted OCF-Basic query for Query 3 is:

34

SELECT salary, emp no, from date

salary IC, salary serial, emp no IC, emp no serial,

from date IC, from date serial

FROM salaries;

After all the fetched data are verified, the ICDB client can then perform the

aggregate (sum) operation, i.e., all the salary data are summed. For other SQL

functional queries, the query conversion and aggregate value generation processes are

exactly the same as we described in this example.

OCF Query Conversion in the ICDB DMV Model (OCF-DMV)

In the ICDB Dual Mode Verification (DMV) model, there are three entities: the cloud

database server, the ICDB cloud application, and the ICDB Client.

DMV model makes use of two different cloud services i.e, the cloud database

server and the ICDB cloud application. So, each SQL query needs to be converted

to separate ICDB queries for CDS and CA so that both of them can accomplish

their respective tasks. The ICDB cloud application requires only the IC’s to generate

an Aggregate Integrity Code (AIC). The ICDB client needs to fetch from the cloud

database server all the data along with the serials to regenerate IC’s. The ICDB

client also needs to fetch the AIC from the cloud application to verify the regenerated

IC’s and thus verify the user data.

The DMV model has two modes (aggregate verification or detailed verification).

Different queries need to be executed in different entities in different modes.

35

OCF Query Conversion in Aggregate Verification Mode: In an aggregate

verification mode, the ICDB client has to issue a query to the cloud database server

to fetch data along with the corresponding serial numbers (but not the IC’s). The

ICDB client simultaneously has to issue another query to the ICDB cloud application

to request the AIC of the corresponding IC’s.

The query to be issued to the cloud database server would be similar to the

Algorithm A by excluding the Integrity Codes, whereas the query to be issued to the

ICDB cloud application would be again similar to the Algorithm A but only retrieving

the IC’s. Algorithm B below describes this query conversion.

Algorithm B: OCF-DMV Query Conversion.

Input (an SQL query):

SELECT A1, A2, . . . Ar FROM T1, T2, . . . Tm WHERE C1 and/or . . . Cn ;

Output (an OCF-DMV query Q1 to the cloud database server and an OCF-

DMV query Q2 to the ICDB cloud application):

36

OCF-DMV query Q1: to be issued to the cloud database server.

SELECT A1, A2, . . . Ar, K1, K2, . . . Km, B1, B2, . . . Bk,

S(A1), S(A2), . . . S(Ar),

S(k1), S(k2), . . . S(km),

S(B1), S(B2), . . . S(Bk)

FROM T1, T2, . . . Tm

WHERE C1 and/or . . . Cn ;

OCF-DMV query Q2: to be issued to the ICDB cloud application.

SELECT IC(A1), IC(A2), . . . IC(Ar), IC(k1), IC(k2), . . . IC(km),

IC(B1), IC(B2) . . . IC(Bk)

FROM T1, T2, . . . Tm

WHERE C1 and/or . . . Cn;

Upon receiving OCF-DMV query Q1, the cloud database server will return the

requested data and the corresponding serials to the ICDB client. However, when the

ICDB cloud application receives OCF-DMV query Q2, it will forward the query to

the database server to retrieve all the ICs so that it can generate the AIC. Finally,

the ICDB cloud application will forward the single AIC to the ICDB client. After

receiving the AIC and all the data and serials (from Q1), the ICDB client is able to

check the data integrity by performing an aggregate verification. The AIC generation

in the ICDB cloud application and the aggregate verification process in the ICDB

client will be described later in Section 4.4.

37

OCF Query Conversion in Detailed Verification Mode: When aggregate

verification fails, it means there is something wrong in the returned dataset as a

whole. The ICDB client can either discard the entire dataset since it is incorrect, or

the ICDB client can choose the option to verify the data in detail to identify which

particular data’s integrity has been compromised. In case the ICDB decides not to

take the detailed verification option, there is no need to download all the IC’s from the

cloud and thus reduce the network overhead. If the ICDB client chooses to perform

detailed verification, then it has to issue the query Q2 again to the cloud database

server to fetch all the individual IC’s, which is in fact the same query issued to the

cloud application in the aggregate verification mode.

4.3.2 One Code per Tuple (OCT)

When bench marking the performance of the OCF schemes, results have indicated

that the average ratio between an Integrity Code size and its corresponding data

field size is high (see experimental results). The storage usage is inefficient since each

data field usually holds only a small amount of data, but it needs to have a much

larger size of storage to store the corresponding IC. For example, a tuple with an

attribute First Name can contain the data, George, which is only 6 characters (48

bits) compared to an Integrity Code (IC) which are usually recommended to have a

minimum of 128 bits (using MAC algorithms) or at least 1028 bits (using the RSA

algorithm) to be safe from forgery.

To make the storage usage more efficient, instead of one code per field (OCF), we

can generate only one code per tuple (OCT). A tuple usually contains multiple fields,

and therefore in many cases, the data size (entire tuple) is more than the 128-bit

integrity code size (if using MAC algorithms).

38

To generate an integrity code for an entire tuple, all the data in the tuple can be

concatenated before passing it to the IC-generating function, as shown in the example

table 4.2.

Table 4.2: An example table for OCT granularity

dept no dept name IC serial
d001 Marketing IC(d001,Marketing,1135980685) 1135980685
d002 Finance IC(d002,Finance,1135980689) 1135980689

IC unit is an ordered pair consisting of an IC and serial number, where the IC in

OCT schemes is defined by the following IC-generating function:

ICOCT (d) = G(m, k) = G(T.A1(e)+D+T.A2(e)+. . .+T.An(e)+T+s, k) = G(d+T+s, k)

(4.11)

where the symbol + means concatenation. T.A1(e), . . . , T.An(e) are the field values

in a tuple (or in other words, attributes values for an entity e), D is a delimiter in

between each field values for prohibiting the replacement attack as described in 5.2.2,

and in OCT the data item to be protected is d = T.A1(e) + T.A2(e) + . . . + T.An(e)

(i.e., the entire tuple). The information collection m = d+ T + s represents the data

item d along with the table name T and a unique serial number s assigned to the code.

The purpose of including additional information related to the data item (tuple) d in

the collection m is to ensure the uniqueness of m and also to prevent/detect various

attacks described in section 5.2. Although each tuple in a table T is unique within the

same table due to the Primary Key constraint in the SQL standard, another table T ′

in the same database could have the exactly same tuple values, i.e., a tuple in table T ′

with different attributes but with the same values, compared to the tuple in table T .

So, including table name T in the IC construction helps in detecting a substitution

39

attack in this scenario. G(m, k) is the integrity code generating function on m using

data owners secret key k.

By contrast with OCT it is not possible to determine whether a particular field

entry is invalid since there is only one integrity code for the entire tuple. If the

integrity code verification fails, it means some field entry in the tuple is invalid. It

has no way to know which field entry in the tuple causes the verification failure. Thus

OCT schemes relinquish fine-grained detection in exchange for a smaller memory

footprint, and fewer ICs that need to be generated.

OCT Query Conversion in the ICDB Basic Model

In the ICDB Basic model, with only two entities, an SQL query needs to be converted

to an ICDB OCT query to request enough information for the ICDB client to verify.

Algorithm C below describes the query conversion.

Algorithm C: OCT-Basic Query Conversion.

Input (an SQL query):

SELECT A1, A2, . . . Ar FROM T1, T2, . . . Tm WHERE C1 and/or . . . Cn ;

Output (an OCT-Basic query):

SELECT A1, . . . At, IC1, . . . ICm, S1, . . . Sm (Actually is SELECT ∗)

FROM T1, T2, . . . Tm

WHERE C1 and/or...Cn;

where T1 . . . Tm are tables from where the data are to fetched, each ICi and Si,

∀i = 1, 2, . . .m, are the IC and serial in each table Ti, C1 . . . Cn are conditions within

40

the WHERE clause. A1, . . . , Ar in the input query are some attributes from all tables

T1, . . . Tm, whereas A1, . . . , At in the output query are all attributes for all tables

T1, . . . , Tm. To regenerate IC’s, it is necessary to select all attributes of the entire

tuple. An example of OCT-Basic query conversion is provided using the same Query

1 used in the OCF query conversion example.

The original SQL query for Query 1 is:

SELECT salary FROM salaries WHERE emp no = 1001;

Applying the query conversion Algorithm C, the converted OCT-Basic query is:

SELECT emp no, salary, from date, to date, salaries IC, salaries serial

FROM salaries

WHERE emp no = 1001;

The converted ICDB query for OCT in this example includes additional attributes

such as emp no, from date, to date in addition to the requested attribute salary.

This is because, to regenerate the IC in the integrity verification process by the

ICDB client, all attributes of the table (the entire tuple) are required to be retrieved.

As in OCF schemes, an SQL join query from multiple tables can be converted in

OCT scheme as well. An ICDB join query would require all the attributes from all

the tables that are joined together. In addition to a selection query from a single

table, Algorithm C also describes how to convert a join query from multiple tables.

We use the same Query 2 mentioned in OCF query conversion to demonstrate the

conversion: The original SQL join query for Query 2 is:

41

SELECT departments.dept name, dept emp.from date, dept emp.to date

FROM departments, dept emp

WHERE departments.dept no = dept emp.dept no AND

departments.dept no = ’d002’;

The converted OCT-Basic query for Query 2 is:

SELECT *

FROM departments, dept emp

WHERE departments.dept no=dept emp.dept no AND

departments.dept no=’d002’;

Just as with selection and join queries, functional queries are similar to what

has been explained in the OCF query conversion. However, OCT needs to fetch all

attribute values in a tuple even for a query only requesting an aggregate value over a

single attribute. We use the example Query 3 used earlier in OCF query conversion to

demonstrate the OCT query conversion for a functional SQL query with an aggregate

operation.

The original SQL aggregate functional query for Query 3 is:

Select sum (salary) from salaries;

The converted OCT-Basic query for Query 3 is:

42

Select * From salaries;

Upon receiving all data from the cloud, the ICDB client will need to verify the

integrity correctness for all received data, including the salary data. If all data pass

the integrity check, the ICDB client can perform the aggregate operation over the

received salary data and then present the aggregate result to the user.

OCT Query Conversion in the ICDB DMV Model (OCT-DMV)

In the DMV model, the communication is among three entities, which are the ICDB

client, the ICDB cloud application and the cloud database server.

OCT Query Conversion in Aggregate Verification Mode: Similar to OCF

schemes, for the aggregate verification mode in OCT schemes, the ICDB client has

to issue a query Q1 to the cloud database server to fetch all those tuples that match

the query conditions along with the corresponding serial numbers (but not the IC’s).

At the same time, the ICDB client also has to issue another query Q2 to the ICDB

cloud application to request an AIC, which is an aggregate integrity code for all the

IC’s corresponding to those tuples retrieved in query Q1.

The query Q1 to be issued to the cloud database server would be similar to the

one in Algorithm C by excluding the integrity codes, whereas the query Q2 to be

issued to the ICDB cloud application would also be similar to the one in Algorithm

C but including only the integrity codes. This query conversion is described by the

Algorithm D below.

43

Algorithm D: OCT-DMV Query Conversion

Input (an SQL query):

SELECT A1, A2, . . . Ar FROM T1, T2, . . . Tm WHERE C1 and/or . . . Cn ;

Output (an OCT-DMV query Q1 to the cloud database server and an OCT-

DMV query Q2 to the ICDB cloud application):

OCT -DMV query Q1: to be issued to the cloud database server

SELECT A1, . . . At, S1, . . . Sm

FROM T1, T2, . . . Tm

WHERE C1 and/or...Cn;

OCT -DMV query Q2: to be issued to the ICDB cloud application

SELECT IC1, . . . ICm

FROM T1, T2, . . . Tm

WHERE C1 and/or...Cn;

As in the OCF schemes, upon receiving OCT-DMV query Q1, the cloud database

server will return the requested data and the corresponding serials to the ICDB client.

When the ICDB cloud application receives OCT-DMV query Q2, it will forward the

query to the database server to retrieve all the ICs so that it can generate the AIC.

Finally, the ICDB cloud application will forward the AIC to the ICDB client. After

receiving the AIC and all the data and serials (from Q1), the ICDB client is able to

44

check the data integrity by performing an aggregate verification. The AIC generation

in the ICDB cloud application and the aggregate verification process in the ICDB

client will be described later in Section 4.4.

OCT Query Conversion in Detailed Verification Mode: When aggregate

verification fails, it means there is something wrong in the returned dataset (a set of

tuples) as a whole. Similar to the OCF-DMV scheme, the OCT-DMV scheme also

provides the data owner with an option to either discard the dataset and stop, or

verify the data further in the detail mode to identify which particular tuple has been

compromised. To verify in the detail mode, the ICDB client has to issue the same

query Q2 to the cloud database server again to fetch all the IC’s so that it can verify

each individual tuple.

4.4 Aggregate Integrity Code Generation and Verification

We use different approaches to construct the Aggregate Integrity Code (AIC) de-

pending on which cryptographic algorithm is used in generating ICs. In the previous

examples, the query Q2 fetches all the ICs to the ICDB cloud application from the

cloud database server. If ICs are generated using the RSA algorithm, its homomorphic

property allows multiplication to be performed on ciphers (or ICs here) without

decrypting it. Making use of this property, the ICDB cloud application can modularly

multiply all the fetched ICs together to generate a single AIC. According to the

variable definitions in Section 4.1, let’s assume query Q1 returns a set of information

collections M = {m1,m2, . . . ,mr}, which includes a dataset D = {d1, d2, . . . , dr}

and their serial numbers S = {s1, s2, . . . , sr}, to the ICDB client. We also assume

45

query Q2 fetches the corresponding ICSet = {IC1, IC2, . . . , ICr} to the ICDB cloud

application. Equation 4.12 below describes the AIC generation for RSA algorithm.

AIC =
r∏

i=1

ICi mod N (4.12)

If ICs are generated by MAC algorithms (CMAC AES or HMAC SHA), the ICDB

cloud application can generate a single AIC by concatenating all the ICs fetched from

the cloud database server and then applying a hashing algorithm (SHA-256) to the

concatenated ICs. The produced digest or result is the AIC. Equation 4.13 describes

the AIC generation for MAC algorithms.

AIC = H(IC1 + IC2 + . . . + ICr) (4.13)

where H() is a hashing function implementing the SHA-256 hash algorithm.

After the AIC is generated and returned to the ICDB client, along with all the

data returned by the query Q2, the ICDB client can then perform the AV mode

verification. In the AV mode verification, if RSA is the IC generating function, the

ICDB client has to compute the aggregate data by modularly multiplying all mi, for

all data items di in the return dataset. The AIC can be regenerated by applying

the RSA algorithm to the aggregate data. Equation 4.14 below describes this AIC

regeneration by the ICDB client.

AIC = Sig(
r∏

i=1

mi mod N) = (
r∏

i=1

mi)
y mod N (4.14)

According to Equation 4.4, each ICi = Sig(mi) = (mi)
y mod N , where y is the RSA

private key and N is the RSA public modulus. The AIC constructed in Equation 4.12

46

by the ICDB cloud application should match with the regenerated AIC in Equation

4.14 by the ICDB client. The following derivation shows this.

Original AIC =
∏r

i=1 ICi mod N

= IC1 × IC2 × . . .× ICr mod N

= my
1 ×my

2 × . . .×my
r mod N

= (m1 ×m2 × . . .mr)
y mod N

= (
∏r

i=1mi)
y mod N

= Regenerated AIC

IF the IC generation function is one of the MAC algorithms (CMAC AES or

HMAC SHA), the ICDB client has to regenerate all the integrity codes for all the

returned data mi and then regenerate the AIC from all the regenerated ICs. Equation

4.15 shows this AIC regeneration by the ICDB client.

AIC = H(MAC(m1) + MAC(m2) + . . . + MAC(mr)) (4.15)

where H() is an SHA-256 hash function and MAC() is either the CMAC AES or the

HMAC SHA algorithm. The original AIC based on Equation 4.13 generated by the

ICDB cloud application should match the AIC based on Equation 4.15 regenerated

by the ICDB client since each ICi = MAC(mi) and thus

Original AIC = H(IC1 + IC2 + . . . + ICr)

= H(MAC(m1) + MAC(m2) + . . . + MAC(mr))

= Regenerated AIC

Finally if the regenerated AIC does not match with the returned AIC from the

ICDB cloud application, an integrity violation message will be sent to the user.

47

CHAPTER 5

EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Hardware and Software Used

All of our ICDB prototype implementation, testing, and benchmarking were per-

formed at Boise State University’s Onyx server (See Appendix B for specifications).

MySQL (MariaDB) was used as the underlying database management system, using

InnoDB as its database engine. For database conversion (initial IC code generation

and insertion), query conversion, and query verification, we have implemented all the

modules with JAVA SE 1.8 and made them available in [16].

To test against a database with real data, we have chosen a sample MySQL

database publicly available online: Employees (v1.0.6) [21] (See Appendix A). The

database has size of 196.4 MB with close to 4 million tuples, which includes six tables

employees, departments, dept manager, dept emp, titles, salaries. Before

each experiment, the databases were returned to their original state for fair compar-

ison.

We tested all possible combinations of RSA, CMAC-AES, and HMAC-SHA with

different granularities of protection levels in OCF and OCT schemes, for a total of 6

different ICDB implementations in each of the ICDB Basic model and in the ICDB

DMV model. RSA uses a 1024-bit (fixed size) output for all integrity codes. AES

outputs a 128-bit IC using a CMAC, SHA outputs a 128-bit IC using an HMAC, and

48

both are given a 128-bit key as input.

As mentioned in the introduction, the metrics to evaluate the proposed ICDB

approach are: integrity protection, memory penalty, and performance penalty. The

following sections show the results in evaluating each metric over a standard database

and its converted ICDB counterpart. All results in this section are based on the

Employees database provided by MySQL [21].

5.2 Integrity Protection

If an ICDB cannot verify the integrity of the protected data, then there is no advan-

tage of using it over a standard database. The highest priority of this thesis is to test

whether the ICDB is able to detect various kinds of malicious attacks. The following

attacks have been tested with our ICDB prototype which also answers the Question

1 stated in section 1.1.1.

5.2.1 Forgery Attack

A forgery attack is an attack that mutates or alters fields in a database. This could

involve either the manipulation of the data itself, or its integrity code. Since there

is no feasible way within a reasonable amount of time to generate an IC without the

private key of the data owner, the ICDB should be able to detect this kind of attack.

For testing, we modified some attribute values and a few IC codes. Our ICDB

prototype was able to detect such modifications.

49

5.2.2 Substitution Attack

A substitution attack modifies fields by replacing them with other existing fields

within the database. This could include copying and replacing a field somewhere

else, moving data around, or swapping data from the same row/column. In OCT

schemes, the IC is cryptographically generated by concatenating the entire tuple

with the table name and thus is unique. It is not possible to substitute among tuples

without being detected. It is also not possible to substitute some fields within a tuple

without being detected since the IC is generated based on the original tuple as a

whole. In OCF schemes, since primary key (row identity), attribute name (column

identity) and the table name concatenated together with the field data will make

the collection of information unique and thus make the integrity code unique, it is

not possible to swap field’s value or an IC from other places (e.g., different rows and

columns) without being detected.

To test the substitution attack, we swapped the field values and ICs of attributes

from date and to date in salaries table. Our ICDB prototype was able to de-

tect this attack due to the uniqueness of the attribute name within a table. Also,

swapping the values of attributes from date and to date of two tables salaries

and dept manager was detected due to the uniqueness maintained by the table name

within a database, though the four attributes have the same data type.

Replacement Attack:

A replacement attack in OCT schemes moves the value of one field (or more) and

concatenates that value with the value of a neighboring field. A replacement attack

in OCF schemes moves part of the Primary Key value to another attribute.

50

In a replacement attack on an OCT scheme, the overall data within a tuple

will not be altered but the position of some data will be changed. For example,

certain characters from one attribute value may be moved and attached to some

other attribute value.

To test for a replacement attack on an OCT granularity scheme, a prefix substring

from attribute last name was moved to the end of first name in employees table,

keeping the overall tuple data unaltered. The presence of the inter-field delimiter

affects the calculation of the IC, making the IC of the changed row different from the

IC on the original data.

To test the attack for an OCF granularity scheme, a number from the value in the

Primary Key emp no was moved to the end of value in that row’s salary attribute.

The modified salary value, its IC and serial were then copied to the corresponding

attributes in a different tuple whose Primary Key value is equal to the value of the

now-modified Primary Key. For an example replacement attack, an emp no with value

’11001’ and salary with value ’11677’ was modified by moving the first number ’1’

from ’11001’ to the end of ’11677’ creating a new salary value ’116771’. This new

salary value along with its corresponding IC and serial were copied to a tuple with

primary key ’1001’. In this case as well, the use of a delimiter in between the Attribute

value and the Primary Key aided in detecting the replacement of the numbers.

5.2.3 Old-Data Attack

An old-data attack means the cloud returns data which has been previously updated

or deleted. Because each IC contains a serial number and the data owner has a private

list of revoked serial numbers in their ICRL, old-data attacks can be detected if the

data owner keeps the ICRL up-to-date.

51

To test for an old-data attack, several tuples in the salaries table were deleted

by the ICDB client. These deleted rows were then re-inserted (with the same data

value, serial and IC) into the ICDB database. In a normal process, adding previously

deleted data back into the database, a new serial number should be used. In this test,

we used the old serial number to re-insert the deleted data for the purpose of testing

old-data attacks. The re-inserted old data was successfully detected by scanning the

ICRL file.

5.2.4 Tuple Insertion Attack

A tuple insertion attack introduces new rows in the database. This could be a

completely new fake tuple, a tuple containing data copies from other rows, or a

duplicate of another tuple.

To test a tuple insertion attack, new rows were added to the departments table

with random ICs or with ICs copied from other tuples. These modifications were also

detected by our prototype.

5.2.5 Tuple Deletion Attack

A tuple deletion attack removes existing tuples from the database. Because we do

not guarantee completeness, it is not possible to know whether a targeted data item

is missing from a query result being fetched.

52

5.3 Memory Penalty

A memory penalty is an obvious trade-off for obtaining integrity protection in an

ICDB since the database needs extra fields to store ICs and serial numbers. The fol-

lowing charts illustrate the database size increase for all six ICDB combinations with

different cryptographic algorithms and different protection granularities as discussed

earlier. This section answers the Question 2 stated in section 1.1.1.

To interpret the experimental result easily, we define a memory penalty rate as

memory penalty rate =
size of the ICDB database

size of the SQL database
(5.1)

where the rate indicates the database size increase rate for an ICDB database com-

pared to the original SQL database.

Figure 5.1 and the raw data in Table 5.1 display the size increase between the

Employees DB [21] and its ICDB counterparts using MAC algorithms (CMAC and

HMAC) in OCT and in OCF. Since both HMAC-SHA and CMAC-AES generate a

128-bit integrity code, the ICDB sizes are the same for both algorithms.

A quick comparison between granularity schemes reveals that the memory penalty

rate for the MAC-OCT is about 1.53, while the memory penalty rate for the MAC-

OCF is 3.15. This means MAC-OCF is larger in size than that of MAC-OCT by a

factor of 2.05.

53

Figure 5.1: Database sizes: DB is the original Employees SQL database; MAC-OCT
and MAC-OCF are the Employees ICDB databases using 128-bit HMAC or CMAC
integrity code implementing the OCT scheme and the OCF scheme, respectively.
Sizes are displayed in megabytes.

Table 5.1: Database sizes: DB is the original Employees SQL database; MAC-OCT

and MAC-OCF are the Employees ICDB databases using 128-bit HMAC or CMAC
integrity code implementing the OCT scheme and the OCF scheme, respectively.
Sizes are displayed in Megabytes.

Size (MB) Memory Penalty Rate
DB 196.44
MAC-OCT 300.61 1.53
MAC-OCF 619 3.15

54

Figure 5.2 and Table 5.2 show the size increase again, but this time using 1024-bit

RSA integrity code. The memory penalty rate defined in Equation 5.1 for the RSA-

OCT is about 3.88 compared to the original database, while RSA-OCF database

size is increased by a memory penalty rate of 13.07. Thus, RSA-OCF resulted in

a database with 3.37 times larger size than that of RSA-OCT. By the experimental

results above, it is clear that OCT is a better choice over OCF with respect to memory

cost.

Though different databases may have a different memory penalty rate, the experi-

mental result based on the example Employees database still gives us an approximate

idea of how much memory penalty will be if the ICDB technique is used to protect

data integrity.

55

Figure 5.2: Database sizes for the original Employees SQL database, and the
converted ICDB RSA-OCT and RSA-OCF databases respectively. Sizes are displayed
in megabytes

Table 5.2: Database sizes for the original Employees SQL database, and the
converted ICDB RSA-OCT and RSA-OCF databases respectively. Sizes are displayed
in Megabytes

Size (MB) Memory Penalty Rate
DB 196.44
RSA-OCT 762.06 3.88
RSA-OCF 2567.78 13.07

56

5.4 Performance Penalty

To evaluate the performance penalty, we focused on testing the performance of query

processing in ICDB and in the standard SQL database. This thesis has evaluated

different type of queries such as SELECT, INSERT, DELETE, UPDATE, JOIN and a

Functional Query. In a standard SQL database, these type of queries are well-defined.

However, to perform these queries in ICDB, the process of each query needs to be

changed accordingly. Though we have described how to change the queries in ICDB in

previous chapters, we will describe the query process in steps again when we present

its performance penalty in later sections. This section explains the Question 3 stated

in section 1.1.1

To present the performance penalty for queries, we define a performance penalty

rate as

performance penalty rate =
time required to conduct the ICDB query

time required to conduct the SQL query
(5.2)

We will present the performance penalty rate for each type of query in later sections

based on our experimental results. Note that different ICDB queries may have

different query process steps.

5.4.1 Experimental Results for the Basic ICDB Model

In this thesis, We have proposed two ICDB models, the Basic model and the Dual

Mode Verification (DMV) model. This section will show and analyze our experimental

results in the Basic model.

57

SELECT

In a standard SQL database, a SELECT query only contains one step - the execution

of the query in the database server, i.e., to fetch data. However, an ICDB SELECT

query has three steps as described below.

ICDB SELECT query process steps in the Basic model:

1. Query conversion: The ICDB client converts an SQL SELECT query to an

ICDB SELECT query as described in Algorithms A and C in Chapter 4,

and then issues the query to the cloud database server.

2. Query execution (Data fetching): The cloud database server executes the

ICDB SELECT query over the ICDB database, and then returns the query

result.

3. Query result verification: The ICDB client verifies the returned query result.

This section presents the performance penalty of the ICDB SELECT query, using a

SELECT * query on the salaries table in Employees database under the basic ICDB

model described in section 3.1. The experimental results are shown in three figures

and three tables, one for each algorithm (HMAC-SHA, CMAC-AES, and RSA). Each

figure shows three data points a) Query process time (only query execution) for a

standard database, b) Query process time for an ICDB OCT counterpart, and c)

Query process time for ICDB OCF counterpart. The X-axis in the figure shows the

number of tuples fetched in thousands and the Y-axis shows the time in milliseconds.

Although query conversion is a part of every query process in the ICDB, it is not

shown in the figures due to its negligible average time of about 25ms.

58

Figures 5.3, 5.4 and 5.5 (and Tables 5.3, 5.4 and 5.5) show that each data point

roughly scales linearly with the amount of data queried for all three algorithms. The

figures and tables also show that query result verification takes significantly more time

compared to the data fetching (i.e., query execution). This result is expected since

the verification process must regenerate all the ICs for the returned data. Generating

an IC is time-consuming since it is a cryptographic operation. The operation is

especially expensive if the RSA algorithm is used. Verification time in an OCF scheme

is greater than that in an OCT scheme because there are more ICs to regenerate (for

verification) in OCF than in OCT.

The Performance Penalty Rate for an ICDB SELECT query using CMAC-AES is

the least of all three algorithms with 11.07 and 25.24 on average in OCT and OCF

respectively. The rate is slightly higher for HMAC-SHA with 13.29 and 31.39 on

average in OCT and OCF respectively. While for RSA, the penalty rate is greatest

with 104.81 and 389.21 on average in OCT and OCF respectively.

The overall query process time (query conversion time, data fetching time and

verification time) in OCF is a little more than 2 times, on average, than the time used

in OCT with MAC algorithms. While using the RSA, the overall query processing

time in OCF takes roughly 4 times more than the time used in OCT.

59

Figure 5.3: Using HMAC-SHA, plotted query process time in milliseconds for
different number of tuples returned (in thousands) by the SELECT * query over
the Employees.salaries table.

Table 5.3: Using HMAC-SHA, query process time raw data in milliseconds for
different number of tuples returned (in thousands) by the SELECT * query over the
Employees.salaries table.

Time (ms)
No. of Tuples Scheme Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 34.8 0 34.8
OCT 130.4 252.2 382.6 10.99425287
OCF 201.4 688.6 890 25.57471264

100k
DB 60.2 0 60.2
OCT 354.2 582.4 936.6 15.55813953
OCF 427.6 1492.8 1920.4 31.90033223

150k
DB 79.2 0 79.2
OCT 442.6 691 1133.6 14.31313131
OCF 556.8 2053.4 2610.2 32.95707071

200k
DB 107.8 0 107.8
OCT 530.6 766.2 1296.8 12.0296846
OCF 811.8 2621 3432.8 31.84415584

60

Figure 5.4: Using CMAC-AES, plotted query process time in milliseconds for
different number of tuples returned (in thousands) by the SELECT * query over
the Employees.salaries table.

Table 5.4: Using CMAC-AES, query process time raw data in milliseconds for
different number of tuples returned (in thousands) by the SELECT * query over the
Employees.salaries table.

Time (ms)
No. of Tuples Scheme Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 34.8 0 34.8
OCT 141 168.2 309.2 8.885057471
OCF 224.4 407.4 631.8 18.15517241

100k
DB 60.2 0 60.2
OCT 287.2 428.6 715.8 11.89036545
OCF 414.2 1074.6 1488.8 24.73089701

150k
DB 79.2 0 79.2
OCT 399.8 477 876.8 11.07070707
OCF 600.2 1513.8 2114 26.69191919

200k
DB 107.8 0 107.8
OCT 540.8 680.4 1221.2 11.3283859
OCF 749.8 2136 2885.8 26.76994434

61

Figure 5.5: Using RSA, plotted query process time in milliseconds for differ-
ent number of tuples returned (in thousands) by the SELECT * query over the
Employees.salaries table.

Table 5.5: Using RSA, query process time raw data in milliseconds for differ-
ent number of tuples returned (in thousands) by the SELECT * query over the
Employees.salaries table.

Time (ms)
No. of Tuples Scheme Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 34.8 0 34.8
OCT 153 2804.2 2957.2 84.97701149
OCF 222.6 10712.8 10935.4 314.2356322

100k
DB 60.2 0 60.2
OCT 303.8 5759 6062.8 100.7109635
OCF 475.6 21409 21884.6 363.5315615

150k
DB 79.2 0 79.2
OCT 418 8371.6 8789.6 110.979798
OCF 646.4 32274.2 32920.6 415.6641414

200k
DB 107.8 0 107.8
OCT 571.2 11175.4 11746.6 108.9666048
OCF 1224.8 42820.8 44045.6 408.5862709

62

We can interpret the results in Figures 5.3, 5.4 and 5.5 (and Tables 5.3 5.4, and

5.5) in a different perspective. Rather than the performance penalty rate, a process

rate is defined as

Process Rate =
Total fetched user data size in MB

Total processing time
(5.3)

where the total fetched user data does not include the fetched ICs and serials, and

the total processing time includes the query conversion time, query execution time

and the query result verification time. In short, the Process Rate means how many

MB of user data can be processed (in ICDB) per second.

Figure 5.6 and the corresponding Table 5.6 show that the Process Rate for HMAC-

SHA is 3.93 MB/sec in OCT and 1.68 MB/sec in OCF. CMAC-AES has similar but

slightly higher rates than HMAC-SHA, with 4.78 MB/sec in OCT and 2.15 MB/sec

in OCF. RSA, by comparison, processes at a much slower rate of 0.501 MB/sec in

OCT and 0.134 MB/sec in OCF. Thus in the basic ICDB model, CMAC-AES in

OCT scheme has the highest (best) Process Rate among the six combinations.

63

Figure 5.6: A chart plotted for Basic ICDB model showing the process rate, i.e.,
how much user data (size in MB) can be processed in a SELECT * query using three
different algorithms in OCT or in OCF. The leftmost bar marked as DB is the process
rate for a standard SQL database.

Table 5.6: A table with raw data for the Basic ICDB model showing the process
rate, i.e., how much user data (size in MB) can be processed in a SELECT * query
using three different algorithms in OCT or in OCF. The data in the DB row is the
process rate for a standard SQL database.

DB 51.41

HMAC-SHA CMAC-AES RSA
OCT 3.93 4.78 0.501
OCF 1.68 2.15 0.134

64

INSERT

To perform an INSERT query in an ICDB:

ICDB INSERT query process steps in the Basic model:

1. Query conversion: Convert an SQL INSERT query to an ICDB INSERT

query. This step requires generating an IC for each data item to be inserted

with a new and unique serial number. The ICDB client then issues this

converted ICDB INSERT query to the cloud database server.

2. Query execution: The database server inserts all the data items, as well as

the ICs and serials into the ICDB database.

We evaluate the performance using an INSERT query on the Employees.salaries

table. The results are shown in three figures (and three tables), one for each algorithm

(HMAC-SHA, CMAC-AES, and RSA). Each figure shows two data points: a) the

query conversion time: to generate the ICs and serials for all the data to be inserted

and b) the query execution time: to insert all the data and their ICs and serials into

the database.

Figures 5.7, 5.8 and 5.9 show that each data point roughly scales linearly with

the amount of data inserted. The only difference is the scaling factor for each data

point. Note that in the SELECT query the query conversion time is minor and can

be ignored. However, the query conversion process in the INSERT query contributes

a major part of the overall performance penalty because query conversion needs to

generate ICs (an expensive operation) for those data to be inserted.

The average Performance Penalty Rate for an INSERT query using CMAC-AES

is the lowest among all three algorithms with 2.68 and 4.94 in OCT and OCF

65

respectively. The penalty rate is slightly higher for HMAC-SHA with 2.69 and 5.14

on average in OCT and OCF respectively. While for RSA, the penalty rate is the

highest with 6.62 and 21.01 on average in OCT and OCF respectively.

Also, note in Figures 5.7, 5.8 and 5.9 (and Tables 5.7, 5.8 and 5.9) that conversion

and execution time for HMAC-SHA and CMAC-AES are roughly equal. While for

RSA, conversion time on average is 2.45 times and 3.27 times greater than execution

time in OCT and OCF respectively.

66

Figure 5.7: Using HMAC-SHA, plotted query process time in milliseconds for
different number of tuples inserted (in thousands) by the INSERT query into the
Employees.salaries table.

Table 5.7: Using HMAC-SHA, query process time raw data in milliseconds for
different number of tuples inserted (in thousands) by the INSERT query into the
Employees.salaries table.

Time (ms)
No. of Tuples Scheme Conversion Execution Total Query Process Performance Penalty Rate

50k
DB 0 851.2 851.2
OCT 813.8 1155.8 1969.6 2.313909774
OCF 1543.4 2211.6 3755 4.411419173

100k
DB 0 1579.8 1579.8
OCT 2061.2 2319.6 4380.8 2.773009242
OCF 3584.2 4755.6 8339.8 5.279022661

150k
DB 0 2305.6 2305.6
OCT 3032 3579.4 6611.4 2.867539903
OCF 5757.6 6231.8 11989.4 5.200121443

200k
DB 0 2966.2 2966.2
OCT 3652.2 4630.8 8283 2.792461736
OCF 8080.6 8746.2 16826.8 5.672847414

67

Figure 5.8: Using CMAC-AES, plotted query process time in milliseconds for
different number of tuples inserted (in thousands) by the INSERT query into the
Employees.salaries table.

Table 5.8: Using CMAC-AES, query process time raw data in milliseconds for
different number of tuples inserted (in thousands) by the INSERT query into the
Employees.salaries table.

Time (ms)
No. of Tuples Scheme Conversion Execution Total Query Process Performance Penalty Rate

50k
DB 0 851.2 851.2
OCT 832 1158.6 1990.6 2.338580827
OCF 1389.8 2267.2 3657 4.296287594

100k
DB 0 1579.8 1579.8
OCT 2080.2 2622.8 4703 2.976959109
OCF 3464.6 5595.2 9059.8 5.734776554

150k
DB 0 2305.6 2305.6
OCT 2910.6 3397.6 6308.2 2.736034004
OCF 5091.4 7262 12353.4 5.357997918

200k
DB 0 2966.2 2966.2
OCT 3566.6 4316 7882.6 2.657474209
OCF 7097.8 8825 15922.8 5.368080372

68

Figure 5.9: Using RSA, plotted query process time in milliseconds for dif-
ferent number of tuples inserted (in thousands) by the INSERT query into the
Employees.salaries table.

Table 5.9: Using RSA, query process time raw data in milliseconds for dif-
ferent number of tuples inserted (in thousands) by the INSERT query into the
Employees.salaries table.

Time (ms)
No. of Tuples Scheme Conversion Execution Total Query Process Performance Penalty Rate

50k
DB 0 851.2 851.2
OCT 3393.4 1513.4 4906.8 5.764567669
OCF 12355.6 3521.8 15877.4 18.65296053

100k
DB 0 1579.8 1579.8
OCT 7392.8 3917.6 11310.4 7.159387264
OCF 24606 7858 32464 20.54943664

150k
DB 0 2305.6 2305.6
OCT 10597 4086.4 14683.4 6.368580847
OCF 37686.2 11234.8 48921 21.21833796

200k
DB 0 2966.2 2966.2
OCT 15200.4 4922.4 20122.8 6.784033443
OCF 48782.4 15863 64645.4 21.79401254

69

DELETE

An ICDB DELETE query needs to fetch the data to be deleted back to the ICDB

client to ensure these data are valid and their serial numbers are recorded in the local

ICRL file. Thus, an ICDB DELETE query contains the following steps:

ICDB DELETE query process steps in the Basic model:

1. Data fetch: The ICDB client needs to issue a SELECT query to fetch the

data to be deleted from the database server.

2. Verification: The ICDB client verifies the fetched data.

3. Query execution: If all fetched data is verified, the ICDB client will issue the

DELETE query and the cloud database server will execute the DELETE.

4. ICRL update: Revoke the serial numbers in the ICRL after the DELETE

operation is done.

We also analyzed the benchmarks of the time it takes to delete the data and their

corresponding integrity codes, using a DELETE query on the Employees.salaries

table. The DELETE operation must verify the data to be deleted, before executing

the query. Each figure shows three data points a) Query process time (only query

execution) for a standard database, b) Query process time of the corresponding

SELECT query plus Query execution time for an ICDB OCT counterpart, and c)

Query process time of the corresponding SELECT query plus Query execution time

for an ICDB OCF counterpart. The X-axis in the figure shows the number of tuples

deleted in thousands and the Y-axis shows the time in milliseconds. The time required

70

to update the ICRL file is insignificant compared to the required time for other steps

of DELETE query process.

Figures 5.10, 5.11 and 5.12 (and Tables 5.10, 5.11 and 5.12) show that each data

point roughly scales linearly with the amount of data deleted. The only difference

is the scaling factor for each data point. Also, not that DELETE query execution

takes much larger time than other SQL queries (such as SELECT, INSERT) for

the standard database itself. This is because a DELETE query on a table requires

checking each referential integrity constraint in which the table is a parent. Also, for

a large number of tuples being deleted, MySQL needs to maintain a large transaction

log which is also time consuming.

For HMAC-SHA and CMAC-AES, DELETE query execution time takes most of

the total query process time, but it is not the case for RSA schemes. For RSA-OCT

the verification time is almost equal to the DELETE query execution time, whereas

for RSA-OCF the verification time takes the majority of the total query process time.

This is because the verification process requires regenerating ICs for all the data to be

deleted, in which RSA will take more time to regenerate ICs than the MAC algorithm

does.

The average performance penalty rate for DELETE query using CMAC-AES is

the lowest among all three algorithms with 1.53 in OCT and 1.25 in OCF. The average

penalty rate is slightly higher for HMAC-SHA with 1.62 in OCT and 1.25 in OCF.

While for RSA, the average penalty rate is the highest with 2.39 in OCT and 5.75 in

OCF.

71

Figure 5.10: Using HMAC-SHA, plotted query process time in milliseconds for
different number of tuples deleted (in thousands) by the DELETE query from the
Employees.salaries table.

Table 5.10: Using HMAC-SHA, query process time raw data in milliseconds for
different number of tuples deleted (in thousands) by the DELETE query from the
Employees.salaries table.

Time (ms)
No. of Tuples Scheme Fetch Verification ICRL Revoke Execution Total Performance Penalty Rate

50k
DB 2573.4 2573.4
OCT 135.2 247 36.6 2766 3184.8 1.237584519
OCF 189.8 677.6 140.8 3293.4 4301.6 1.671562913

100k
DB 4805 4805
OCT 301.8 515.8 58.4 5292.8 6168.8 1.283829344
OCF 414.2 1332.4 308.8 5862.8 7918.2 1.647908429

150k
DB 7124 7124
OCT 406.8 691.6 79.6 7421.6 8599.6 1.207130825
OCF 585.6 1813.6 407.4 8516.8 11323.4 1.589472207

200k
DB 9457.8 9457.8
OCT 525.6 814 104.8 10001.6 11446 1.210218021
OCF 739.4 2531 515.8 11056.2 14842.4 1.569329019

72

Figure 5.11: Using CMAC-AES, plotted query process time in milliseconds for
different number of tuples deleted (in thousands) by the DELETE query from the
Employees.salaries table.

Table 5.11: Using CMAC-AES, query process time raw data in milliseconds for
different number of tuples deleted (in thousands) by the DELETE query from the
Employees.salaries table.

Time (ms)
No. of Tuples Scheme Fetch Verification ICRL Revoke Execution Total Performance Penalty Rate

50k
DB 2573.4 2573.4
OCT 151.6 193.6 40.4 2808.2 3193.8 1.241081837
OCF 221.8 458.6 156.6 3227.6 4064.6 1.579466853

100k
DB 4805 4805
OCT 279 373.2 54.6 5581.4 6288.2 1.30867846
OCF 428.2 991.6 287.2 5662.8 7369.8 1.533777315

150k
DB 7124 7124
OCT 380 553.8 69.4 7821.6 8824.8 1.23874228
OCF 654.6 1371.6 397.6 8316.8 10740.6 1.507664234

200k
DB 9457.8 9457.8
OCT 517.6 678.4 93.4 10201.6 11491 1.214975999
OCF 735.6 1677 498.8 11256.2 14167.6 1.497980503

73

Figure 5.12: Using RSA, plotted query process time in milliseconds for dif-
ferent number of tuples deleted (in thousands) by the DELETE query from the
Employees.salaries table.

Table 5.12: Using RSA, query process time raw data in milliseconds for dif-
ferent number of tuples deleted (in thousands) by the DELETE query from the
Employees.salaries table.

Time (ms)
No. of Tuples Scheme Fetch Verification ICRL Revoke Execution Total Performance Penalty Rate

50k
DB 2573.4 2573.4
OCT 130.8 2807 32.4 3277 6247.2 2.427605502
OCF 234.4 10730.8 185.4 3378.6 14529.2 5.645915909

100k
DB 4805 4805
OCT 296.6 5780.2 59.8 5111.8 11248.4 2.340978148
OCF 450 21310.4 290 5640.2 27690.6 5.762872008

150k
DB 7124 7124
OCT 407.6 8446 73 8136.8 17063.4 2.395199326
OCF 640.8 31763.8 397.4 8218.6 41020.6 5.758085345

200k
DB 9457.8 9457.8
OCT 547.4 11239.4 98 10794 22678.8 2.397893802
OCF 882.4 42683.4 486.6 11136.2 55188.6 5.835247098

74

UPDATE

The UPDATE operation mirrors both DELETE and INSERT as it is functionally

equivalent to first DELETE a data item (or a set of data items) and then INSERT a

new data item (or a new set of data items). The performance penalty for an ICDB

UPDATE query can be analyzed based on the performance penalty presented earlier

in both ICDB DELETE and ICDB INSERT.

75

JOIN

To perform a JOIN query in ICDB requires the following steps:

ICDB JOIN query process steps in the Basic model:

1. Query Conversion: The ICDB client converts an SQL JOIN query to an

ICDB JOIN query (See Algorithms A and C in Chapter 4) and then issues

the query to the database server.

2. Query Execution (Data fetch): The database server executes the query to

fetch and return data to the ICDB client.

3. Verification: The ICDB client verifies the fetched data.

In our experiment for the JOIN query, attributes from Employees.employees

and Employees.salaries tables were joined together. The JOIN query used for

the experiment was SELECT * FROM employees, salaries WHERE employ-

ees.emp no = salaries.emp no;

Figure 5.13, 5.14, 5.15 and Tables 5.13, 5.14, 5.15 show the time to process an

ICDB JOIN query in the Basic model. The verification process in the JOIN query

contributes more to the overall performance penalty than the query execution (data

fetching) in both OCT and OCF because verification needs to regenerate ICs. Again,

the verification time in OCF is greater than that in OCT because there are more ICs

to regenerate in OCF than in OCT.

The average Performance Penalty Rate for the ICDB JOIN query using CMAC-

AES is the lowest among all three algorithms with 12.18 in OCT and 31.73 in OCF.

The average penalty rate is slightly higher for HMAC-SHA with 13.56 in OCT and

76

36.36 in OCF. For RSA, the average penalty rate is the highest with 89.05 in OCT

and 407.41 in OCF.

77

Figure 5.13: HMAC-SHA plotted for a Query joining the Employees.employees

and the Employees.salaries tables, showing the time required (in milliseconds) for
the number of tuples selected (in thousands).

Table 5.13: HMAC-SHA raw data for a Query joining the Employees.employees

and the Employees.salaries tables, showing the time required (in milliseconds) for
the number of tuples selected (in thousands).

Time (ms)
No. of Tuples Scheme Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 65 65
OCT 221.68 658 879.68 13.53353846
OCF 342.38 1688.4 2030.78 31.24276923

100k
DB 124 124
OCT 602.14 1078 1680.14 13.54951613
OCF 726.92 3754 4480.92 36.13645161

150k
DB 177 177
OCT 752.42 1653.8 2406.22 13.59446328
OCF 946.56 5635 6581.56 37.1839548

200k
DB 225 225
OCT 902.02 2152 3054.02 13.57342222
OCF 1380.06 7815.8 9195.86 40.87048889

78

Figure 5.14: CMAC-AES plotted for a Query joining the Employees.employees

and the Employees.salaries tables, showing the time required (in milliseconds) for
the number of tuples selected (in thousands).

Table 5.14: CMAC-AES raw data for a Query joining the Employees.employees

and the Employees.salaries tables, showing the time required (in milliseconds) for
the number of tuples selected (in thousands).

Time (ms)
No. of Tuples Scheme Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 65 65
OCT 239.7 498.8 738.5 11.36153846
OCF 381.48 1666.2 2047.68 31.50276923

100k
DB 124 124
OCT 488.24 916.8 1405.04 11.33096774
OCF 704.14 3019.4 3723.54 30.02854839

150k
DB 177 177
OCT 679.66 1651.2 2330.86 13.16870056
OCF 1020.34 5318.6 6338.94 35.81322034

200k
DB 225 225
OCT 919.36 1974 2893.36 12.85937778
OCF 1274.66 7382 8656.66 38.47404444

79

Figure 5.15: RSA plotted for a Query joining the Employees.employees and the
Employees.salaries tables, showing the time required (in milliseconds) for the
number of tuples selected (in thousands).

Table 5.15: RSA raw data for a Query joining the Employees.employees and the
Employees.salaries tables, showing the time required (in milliseconds) for the number
of tuples selected (in thousands).

Time (ms)
No. of Tuples Scheme Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 65 65
OCT 260.1 5199.8 5459.9 83.99846154
OCF 378.42 25458.4 25836.82 397.4895385

100k
DB 124 124
OCT 516.46 10113 10629.46 85.72145161
OCF 808.52 47549.4 48357.92 389.9832258

150k
DB 177 177
OCT 710.6 15725.6 16436.2 92.85988701
OCF 1098.88 71085.6 72184.48 407.8219209

200k
DB 225 225
OCT 971.04 20099.8 21070.84 93.64817778
OCF 2082.16 95642 97724.16 434.3296

80

Functional Query

To perform a functional query, all the data items used to evaluate the aggregate value

in the functional query must be fetched and verified. Thus, an ICDB functional query

will need to perform the following steps:

ICDB Function query process steps in the Basic model:

1. Data fetch: The ICDB client will need to issue a SELECT query to fetch

the required data for evaluating the aggregate operation.

2. Verification: The ICDB verifies the fetched data.

3. Query execution in local: The ICDB client now is able to Compute the

aggregate value based on the fetched data. The aggregate function could

be SUM, MIN, MAX, AVG, or COUNT.

Figures 5.16, 5.17, 5.18 and Tables 5.16, 5.17, 5.18 show the experimental results

for an ICDB Functional query. The Functional query used for this experiment includes

four aggregate operations (SUM, MIN, MAX, AVG) in a single Functional query. The

data shows that the process time for a functional query is similar to the corresponding

SELECT query process time. The only additional time required is the time for the

ICDB client to locally compute the aggregate values over the verified data from the

SELECT query, which is negligible. It is also noted that for OCF, the functional

query take less time than the SELECT query in our previous experiment. This is

because the corresponding SELECT query for the Functional query must fetch only

the Employees.salaries and its related attributes for verification. For OCT, all the

attributes in the tuple must be fetched.

81

The average performance penalty rate for Functional query using CMAC-AES is

the lowest among all three algorithms with 30.09 in OCT and 47.82 in OCF. The

average penalty rate is slightly higher for HMAC-SHA with 36.05 in OCT and 53.46

in OCF. While for RSA, the average penalty rate is the highest with 197.38 in OCT

and 534.33 in OCF.

82

Figure 5.16: HMAC-SHA plotted with time required (in milliseconds) against num-
ber of tuples (in thousands) returned using an ICDB SELECT Query corresponding
to the Functional Query

Table 5.16: HMAC-SHA plotted with time required (in milliseconds) against num-
ber of tuples (in thousands) returned using an ICDB SELECT Query corresponding
to the Functional Query

Time (ms)
No. of Tuples Scheme Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 17.4 17.4
OCT 130.4 435.2 565.6 32.50574713
OCF 140.98 608.8 749.78 43.0908046

100k
DB 30.1 30.1
OCT 354.2 809.6 1163.8 38.66445183
OCF 299.32 1357 1656.32 55.02724252

150k
DB 39.6 39.6
OCT 442.6 1025.6 1468.2 37.07575758
OCF 389.76 1824.6 2214.36 55.91818182

200k
DB 53.9 53.9
OCT 530.6 1407.2 1937.8 35.95176252
OCF 568.26 2655.6 3223.86 59.81187384

83

Figure 5.17: CMAC-AES plotted with time required (in milliseconds) against num-
ber of tuples (in thousands) returned using an ICDB SELECT Query corresponding
to the Functional Query

Table 5.17: CMAC-AES plotted with time required (in milliseconds) against number
of tuples (in thousands) returned using an ICDB SELECT Query corresponding to
the Functional Query

Time (ms)
No. of Tuples Scheme Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 17.4 17.4
OCT 141 338 479 27.52873563
OCF 157.08 517.4 674.48 38.76321839

100k
DB 30.1 30.1
OCT 287.2 701.2 988.4 32.8372093
OCF 289.94 1255.2 1545.14 51.33355482

150k
DB 39.6 39.6
OCT 399.8 758.6 1158.4 29.25252525
OCF 420.14 1538.6 1958.74 49.46313131

200k
DB 53.9 53.9
OCT 540.8 1117 1657.8 30.75695733
OCF 524.86 2262.6 2787.46 51.71539889

84

Figure 5.18: RSA plotted with time required (in milliseconds) against number of
tuples (in thousands) returned using an ICDB SELECT Query corresponding to the
Functional Query

Table 5.18: RSA plotted with time required (in milliseconds) against number of
tuples (in thousands) returned using an ICDB SELECT Query corresponding to the
Functional Query

Time (ms)
No. of Tuples Scheme Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 17.4 17.4
OCT 153 2843 2996 172.183908
OCF 155.82 7879.8 8035.62 461.8172414

100k
DB 30.1 30.1
OCT 303.8 5461.4 5765.2 191.5348837
OCF 332.92 15156.8 15489.72 514.6086379

150k
DB 39.6 39.6
OCT 418 8071.6 8489.6 214.3838384
OCF 452.48 22721 23173.48 585.1888889

200k
DB 53.9 53.9
OCT 571.2 10823.6 11394.8 211.406308
OCF 857.36 30173.8 31031.16 575.7172542

85

5.4.2 Experimental Results for the Dual Mode Verification (DMV) Model

In this section, we will present and analyze our experimental results for the ICDB

DMV model as described in Section 3.2. In order to minimize network variability for

our experiments, all three entities in the DMV model: cloud database server, ICDB

cloud application and ICDB client, were run on the same machine (see Appendix B

for machine specifications). However, in the real world, these three entities should be

hosted by different machines in different sites. The purpose of having the DMV model,

rather than the Basic model, is to reduce the network loads (downloading/uploading

ICs between the ICDB client and the cloud database server).

DMV model includes two different verification modes: aggregate verification mode

and an optional detailed verification mode. For an ICDB query process, DV mode

does not involve the ICDB cloud application, whereas AV mode involves all three

entities. The figures in this section include only the experimental results for AV

mode because all the processes (and thus the performance) for the DV mode would

be the same as those in the basic ICDB model presented in the previous section 5.4.1.

SELECT

In a standard SQL database, a SELECT query only contains one step - the execution

of the query in the database server, i.e., to fetch data. However, in the AV mode

of the DMV model, an ICDB SELECT query has the following steps as described

below.

ICDB SELECT query process steps in the AV mode of DMV model:

1. Query conversion: ICDB client converts an SQL SELECT query to two

86

ICDB SELECT queries Q1 and Q2 as described in Algorithms B and D in

Chapter 4, and then issues the queries Q1 and Q2 to the cloud database

server and the ICDB cloud application, respectively.

2. Query Q2 processing has two major steps.

(a) IC fetch: The ICDB cloud application forwards query Q2 to the cloud

database server to retrieve all the corresponding ICs.

(b) AIC generation: The cloud application generates an Aggregate In-

tegrity Code (AIC) and then returns it to the ICDB client.

3. Query Q1 processing has two major steps.

(a) Data fetch: Query Q1 fetches data and serial numbers (but not the

corresponding ICs) from the ICDB database and returns them to the

ICDB client.

(b) Verification: Upon receiving data and serial numbers through Q1 and

an AIC through Q2, the ICDB client verifies the data integrity by

regenerating an AIC from the fetched Q1 result and then match it

with the AIC returned by Q2.

This section presents the performance penalty of the ICDB SELECT query, using

a SELECT * query on the Employees.salaries table in the aggregate verification

mode of the DMV model described in section 3.2. The experimental results are

shown in three figures and three tables, one for each algorithm (HMAC-SHA, CMAC-

AES, and RSA). Each figure shows three data points a) Query process time (only

query execution) for a standard database, b) Query process time for the ICDB OCT

counterpart, and c) Query process time for the ICDB OCF counterpart. Although

87

query conversion is a part of the query process in the ICDB, it is not shown in the

figures due to its negligible duration.

The ICDB client sends the ICDB query Q1 to the cloud database server to fetch

the data and their serials and sends the ICDB query Q2 to the cloud application

requesting the AIC. Since the requests are asynchronous, the query process time with

the longest of the two queries could be considered as the best case. However, we

benchmarked and reported the total processing time as the summation of both Q1’s

and Q2’s processing time. In Figures 5.21, 5.20 and 5.19, the reported time for IC

Fetch and AIC generation are the processing time for Q2, while the reported time for

Data Fetch and verification are the processing time for Q1.

Observing the experimental results from Figures 5.21, 5.20 and 5.19 (and Tables

5.21, 5.20 and 5.19), we list some notable results below.

1. AIC generation time (by cloud application) is relatively less than the verification

time (by ICDB client) for both CMAC-AES and HMAC-SHA. This is due to

the fact that the ICDB client has to regenerate all the ICs for the data fetched

in the verification step. While the cloud application just has to fetch all ICs

from the cloud database server to generate the AIC.

2. In the best case scenario when both Q1 and Q2 are processed simultaneously,

one need only consider the longer time taken by Q1 or Q2 while analyzing

the performance penalty. In this scenario, RSA performance is quite similar

to CMAC-AES and HMAC-SHA in both OCT and OCF. Note that RSA

performance is much worse compared to the CMAC-AES and HMAC-AES in

the Basic model.

88

3. In the worst case scenario when considering the summation of the time taken by

both Q1 and Q2, CMAC-AES trivially outperforms both RSA and HMAC-SHA.

4. The average performance penalty rate for the SELECT query using CMAC-AES

is the lowest among the three algorithms with 18.2 in OCT and 43.97 in OCF.

The average penalty rate is slightly higher for HMAC-SHA with 18.8 in OCT

and 48.96 in OCF. While for RSA, the average penalty rate is greatest with

27.33 in OCT and 74.78 in OCF.

89

Figure 5.19: Using HMAC-SHA, plotted query process time in AV mode in
milliseconds for different number of tuples returned (in thousands) by the SELECT
* query from the Employees.salaries table.

Table 5.19: Using HMAC-SHA, query process time raw data in AV mode in
milliseconds for different number of tuples returned (in thousands) by the SELECT
* query from the Employees.salaries table.

Time (ms)
No. of Tuples Scheme IC Fetch AIC generation Data Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 34.8 34.8
OCT 67.8 97.4 159.8 309.6886 634.6886 18.23817816
OCF 154.2 162.4 179.8 1203.5484 1699.9484 48.84909195

100k
DB 60.2 60.2
OCT 97.4 137.6 253.6 587.6222 1076.2222 17.87744518
OCF 155 298.2 379.6 1868.7006 2701.5006 44.87542525

150k
DB 79.2 79.2
OCT 136 217.4 365.6 873.9932 1592.9932 20.11355051
OCF 230.4 621 571.6 2729.4276 4152.4276 52.42964141

200k
DB 107.8 107.8
OCT 187.6 293.8 497.8 1088.207 2067.407 19.17817254
OCF 275.4 660 636.2 3783.4922 5355.0922 49.67617996

90

Figure 5.20: Using CMAC-AES, plotted query process time in AV mode in
milliseconds for different number of tuples returned (in thousands) by the SELECT
* query from the Employees.salaries table.

Table 5.20: Using CMAC-AES, query process time raw data in AV mode in
milliseconds for different number of tuples returned (in thousands) by the SELECT
* query from the Employees.salaries table.

Time (ms)
No. of Tuples Scheme IC Fetch AIC generation Data Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 34.8 34.8
OCT 57.4 140 126 300.005 623.405 17.91393678
OCF 85.8 242.4 161 880.5502 1369.7502 39.36063793

100k
DB 60.2 60.2
OCT 91.2 155 235 522.097 1003.297 16.66606312
OCF 171.8 354.8 367.2 1611.4814 2505.2814 41.6159701

150k
DB 79.2 79.2
OCT 130.6 204 412.4 830.6244 1577.6244 19.9195
OCF 231.6 620 496.2 2578.3812 3926.1812 49.57299495

200k
DB 107.8 107.8
OCT 214.4 225.8 530.6 1000.747 1971.547 18.28893321
OCF 266 695.4 628.4 3297.7274 4887.5274 45.33884416

91

Figure 5.21: Using RSA, plotted query process time in AV mode in milliseconds for
different number of tuples returned (in thousands) by the SELECT * query from the
Employees.salaries table.

Table 5.21: Using RSA, query process time raw data in AV mode in milliseconds
for different number of tuples returned (in thousands) by the SELECT * query from
the Employees.salaries table.

Time (ms)
No. of Tuples Scheme IC Fetch AIC generation Data Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 34.8 34.8
OCT 59.6 297.8 147.2 445.7996 950.3996 27.31033333
OCF 108.8 1010 373 880.0096 2371.8096 68.15544828

100k
DB 60.2 60.2
OCT 90.2 589.6 218.6 637.822 1536.222 25.51863787
OCF 224.8 2091.2 464.6 1572.2774 4352.8774 72.30693355

150k
DB 79.2 79.2
OCT 144.8 893.2 380 865.4458 2283.4458 28.83138636
OCF 248.8 3217.2 651.8 2399.6334 6517.4334 82.29082576

200k
DB 107.8 107.8
OCT 271.4 1139.8 493 1076.194 2980.394 27.6474397
OCF 435.8 4119.2 681.2 2995.6338 8231.8338 76.36209462

92

As was shown when analyzing the ICDB Basic model, a different interpretation

can be done for the results in Figures 5.21, 5.20 and 5.19 (and Tables 5.21, 5.20 and

5.19). The process rate is derived based on the same Equation 5.3 used in ICDB

Basic model. However, the Total Processing Time in this case (AV mode in the DMV

model) includes IC fetch time, AIC generation time, data fetch time and also integrity

Verification time.

Figure 5.22 and Table 5.22 show the process rate for HMAC-SHA is 2.72 MB/sec in

OCT and 1.05 MB/sec in OCF. CMAC-AES has similar but slightly higher process

rates, with 2.83 MB/sec in OCT and 1.16 MB/sec in OCF. RSA takes longer to

process the user data with a process rate of 1.88 MB/sec in OCT and 0.69 MB/sec in

OCF. Similar to the ICDB Basic model, CMAC-AES has the highest (best) process

rate amongst the three different algorithms.

Compared to the ICDB Basic model, the process rates for both CMAC-AES and

HMAC-SHA are decreased (slower) than those in the Basic model (See Figure 5.6

and Table 5.6). This result is expected since in the AV mode of the DMV model,

there are more query process steps than the basic model has. However, the process

rate for the RSA algorithm in the DMV model, compared to the ICDB Basic model,

is improved significantly from 0.501 MB/sec to 1.88 MB/sec in OCT and from 0.134

MB/sec to 0.69 MB/sec in OCF. This result is also expected. Though there are more

query process steps in the DMV model, the verification step in the ICDB client does

not require the time-consuming recalculation of all the ICs before computing the AIC.

The ICDB client is able to compute the AIC from data directly due to the RSA’s

multiplication homomorphic property.

93

Figure 5.22: A chart plotted the process rates for the AV mode in DMV model
showing the speed the user data (size in MB) can be processed by three different
algorithms in OCT and in OCF. The leftmost bar labeled DB is the process rate for
a standard SQL database.

Table 5.22: A table with process rate raw data for the AV mode in DMV model
showing the speed the user data (size in MB) can be processed by three different
algorithms in OCT and in OCF. The data in the row labeled DB is the process rate
for a standard SQL database.

DB 51.41

HMAC-SHA CMAC-AES RSA
OCT 2.72 2.83 1.88
OCF 1.05 1.16 0.69

94

INSERT

To perform an INSERT query in AV mode of the DMV model, the same steps are

performed as in the INSERT query processing of the basic ICDB model described in

Section 5.4.1. Since each data along with its corresponding IC unit must be inserted

into the cloud database as in the basic model, the ICDB cloud application plays no

role in the INSERT query in the DMV model. Thus, the performance penalty for the

INSERT query in the DMV model is the same as that in the Basic model.

DELETE

In the AV mode of the DMV model, the ICDB DELETE query must fetch the data

to be deleted back to the ICDB client to ensure these data are valid and to record

the serial numbers in the local ICRL file. Thus, an ICDB DELETE query takes the

following steps:

ICDB DELETE query process steps in the AV mode of DMV model:

1. Query conversion: The ICDB client generates an SQL SELECT query from

the DELETE query and converts it into two ICDB SELECT queries Q1

and Q2 as described in Algorithms B and D in Chapter 4, and then issues

the queries Q1 and Q2 to the Cloud database server and the ICDB cloud

application, respectively.

2. SELECT queries Q1 and Q2 processing: The processes of Q1 and Q2 are

the same as the SELECT query process described earlier in the AV Mode

of the DMV model, which includes IC fetch, AIC generation, data fetch,

and verification.

95

3. DELETE query execution: If all data fetched is verified, the ICDB client

will issue the DELETE query and the database server will execute the

DELETE.

4. ICRL update: Revoke the serial numbers in the ICRL after the DELETE

operation is done.

This section presents the performance penalty of the ICDB DELETE query, using a

DELETE query on the Employees.salaries table in the aggregate verification mode

of the DMV model described in section 3.2. The experimental results are shown in

three figures and three tables, one for each algorithm (HMAC-SHA, CMAC-AES, and

RSA). Each figure shows three data points a) DELETE query process time (only query

execution) for a standard database, b) The corresponding SELECT query process

time plus DELETE query execution time for an ICDB OCT counterpart, and c) The

corresponding SELECT query process time plus DELETE query execution time for

an ICDB OCF counterpart. From Figures 5.23, 5.24, 5.25 (and Tables 5.23, 5.24,

5.25), we have noted these implications:

1. The DELETE query execution takes more time than the corresponding ICDB

SELECT query process plus ICRL update in all six combinations of our exper-

iment because the DELETE query requires the database server to check the

referential integrity constraint for each data to be deleted.

2. Time taken to update the ICRL file after successful deletion is negligible,

compared to the total query process time.

3. For HMAC-SHA and CMAC-AES, the result is similar to the basic model where

DELETE query execution time is comparatively larger than the corresponding

96

ICDB SELECT query process time. However, the experimental result for RSA

is totally opposite to the result in the basic model. This is because the DELETE

query execution time is actually more than the corresponding ICDB SELECT

query process time (SELECT query process includes verification) in the AV

mode of the DMV model. This opposite result is because the homomorphic

property of RSA allows the ICDB client to generate the AIC directly without

having to regenerating all the ICs in the aggregate verification mode.

4. The average performance penalty rate for DELETE query using CMAC-AES is

1.29 in OCT and 1.7 in OCF. The average penalty rate for DELETE query using

HMAC-SHA is 1.29 in OCT and 1.8 in OCF. For RSA, the average penalty

rate is slightly higher with 1.43 in OCT and 2.13 in OCF, but is improved

significantly over the performance of the DELETE query in the basic model due

to the RSA homomorphic property and because there is no need to regenerate

all ICs.

97

Figure 5.23: Using HMAC-SHA, plotted query process time in AV mode in
milliseconds for different number of tuples deleted (in thousands) by the DELETE *
query from the Employees.salaries table.

Table 5.23: Using HMAC-SHA, query process time raw data in AV mode in
milliseconds for different number of tuples deleted (in thousands) by the DELETE *
query from the Employees.salaries table.

Time (ms)
No. of Tuples Scheme IC Fetch AIC generation Data Fetch Verification Time ICRL Revoke Execution Total Query Process Performance Penalty Rate

50k
DB 2573.4 2573.4
OCT 67.8 97.4 159.8 309.6886 38 2624 3296.6886 1.281063418
OCF 154.2 162.4 179.8 1203.5484 127.6 3022.4 4849.9484 1.884646149

100k
DB 4805 4805
OCT 97.4 137.6 253.6 587.6222 65 5194.2 6335.4222 1.318506181
OCF 155 298.2 379.6 1868.7006 264.4 5202 8167.9006 1.699875255

150k
DB 7124 7124
OCT 136 217.4 365.6 873.9932 72.4 7481.6 9146.9932 1.283968725
OCF 230.4 621 571.6 2729.4276 384.8 8298.6 12835.8276 1.801772544

200k
DB 9457.8 9457.8
OCT 187.6 293.8 497.8 1088.207 92.6 10040.2 12200.207 1.289962465
OCF 275.4 660 636.2 3783.4922 507.2 11256.2 17118.4922 1.809986699

98

Figure 5.24: Using CMAC-AES, plotted query process time in AV mode in
milliseconds for different number of tuples deleted (in thousands) by the DELETE *
query from the Employees.salaries table.

Table 5.24: Using CMAC-AES, query process time raw data in AV mode in
milliseconds for different number of tuples deleted (in thousands) by the DELETE *
query from the Employees.salaries table.

Time (ms)
No. of Tuples Scheme IC Fetch AIC generation Data Fetch Verification Time ICRL Revoke Execution Total Query Process Performance Penalty Rate

50k
DB 2573.4 2573.4
OCT 57.4 140 126 300.005 33.4 2794.6 3451.405 1.341184814
OCF 85.8 242.4 161 880.5502 133.6 2811.4 4314.7502 1.676672962

100k
DB 4805 4805
OCT 91.2 155 235 522.097 63 4971.2 6037.497 1.256503018
OCF 171.8 354.8 367.2 1611.4814 244.4 5193.4 7943.0814 1.65308666

150k
DB 7124 7124
OCT 130.6 204 412.4 830.6244 72.8 7421.6 9072.0244 1.273445312
OCF 231.6 750 496.2 2578.3812 408.6 8098.6 12563.3812 1.763529085

200k
DB 9457.8 9457.8
OCT 214.4 225.8 530.6 1000.747 92.4 9960.2 12024.147 1.271347142
OCF 266 695.4 628.4 3297.7274 511.2 10936.2 16334.9274 1.727138172

99

Figure 5.25: Using RSA, plotted query process time in AV mode in milliseconds for
different number of tuples deleted (in thousands) by the DELETE * query from the
Employees.salaries table.

Table 5.25: Using RSA, query process time raw data in AV mode in milliseconds
for different number of tuples deleted (in thousands) by the DELETE * query from
the Employees.salaries table.

Time (ms)
No. of Tuples Scheme IC Fetch AIC generation Data Fetch Verification Time ICRL Revoke Execution Total Query Process Performance Penalty Rate

50k
DB 2573.4 2573.4
OCT 59.6 297.8 147.2 445.7996 37.4 3020.8 4008.5996 1.557705603
OCF 108.8 1010 373 880.0096 136.4 3018.2 5526.4096 2.147512862

100k
DB 4805 4805
OCT 90.2 589.6 218.6 637.822 65 5037.8 6639.022 1.381690323
OCF 224.8 2091.2 464.6 1572.2774 224.4 5600.2 10177.4774 2.118101436

150k
DB 7124 7124
OCT 144.8 893.2 380 865.4458 74.8 7821.6 10179.8458 1.428950842
OCF 248.8 3217.2 651.8 2399.6334 370.6 8298.6 15186.6334 2.131756513

200k
DB 9457.8 9457.8
OCT 271.4 1139.8 493 1076.194 93.6 9815 12888.994 1.362789867
OCF 435.8 4119.2 681.2 2995.6338 501.2 11336.2 20069.2338 2.121976971

100

UPDATE

Similar to the Basic model, the UPDATE operation in the AV Mode of the DMV

model mirrors both DELETE and INSERT since it is functionally equivalent to first

DELETE a data item (or a set of data items) and then INSERT a new data item

(or a new set of data items). Hence, the experimental result for the UPDATE query

process can be analyzed from the DELETE and INSERT query process described

earlier.

101

JOIN

To perform a JOIN query in the AV mode of DMV model requires the following steps:

ICDB JOIN query process steps in the AV mode of the DMV model:

1. Query Conversion: The ICDB client converts an SQL JOIN query into two

ICDB JOIN queries, Q1 and Q2 (See Algorithms B and D in Chapter 4)

and then issues the query Q1 to the cloud database server and the query

Q2 to ICDB cloud application.

2. Query Q2 processing has two major steps: IC fetch and AIC generation

in the ICDB cloud application. This process is the same as the Q2 process

in the SELECT query described earlier in the AV mode of DMV model.

3. Query Q1 processing has two major steps: Data fetch and Verification

in the ICDB client. Again, this process is the same as the Q1 process in the

SELECT query described earlier in the AV mode of DMV model.

To analyze a JOIN query in the AV mode of the DMV model, attributes from the

Employees.employees and the Employees.salaries tables were joined together.

The JOIN query used for the experiment was SELECT * FROM employees,

salaries where employees.emp no = salaries.emp no. Figures 5.26, 5.27, 5.28

and Tables 5.26, 5.27, 5.28 show the experimental results.

The time for AIC generation is greater than the IC fetch time in the cloud

application. For RSA, compared to HMAC-SHA and CMAC-AES, the larger time

required for AIC generation is because RSA needs to perform modular multiplications

over large size ICs (1024 bits) to generate the AIC, whereas MAC algorithms just

need to combine the ICs (128 bits) and hash them to generate the AIC. Similarly,

102

verification time required by the ICDB client is more than the data fetch time. For

RSA, compared to HMAC-SHA and CMAC-AES, verification time is less because

RSA does not need to regenerate all ICs but generates the AIC directly from the

data (because of the homomorphic property) for verification.

The average performance penalty rate for the JOIN query in the AV mode using

CMAC-AES is the lowest among all three algorithms with 15.53 in OCT and 45.2 in

OCF. The average penalty rate is slightly higher for HMAC-SHA with 18.47 in OCT

and 53.18 in OCF. Both MAC algorithms in the AV mode have an increased average

penalty rate as compared to the basic model. However for RSA, the average penalty

rate is 24.97 in OCT and 81.17 in OCF, which is a huge improvement compared to the

basic model with the average penalty rate for RSA being 89.05 in OCT and 407.41

in OCF. Again, the reason for this improvement is because RSA’s homomorphic

property allows the ICDB client to generate the AIC directly from the data without

the need to regenerate all ICs in the aggregate verification mode.

103

Figure 5.26: HMAC-SHA plotted query processing time for a query joining the
Employees.employees and the Employees.salaries tables, showing the time re-
quired (in milliseconds) for the number of tuples selected (in thousands) in aggregate
verification mode.

Table 5.26: HMAC-SHA plotted query processing time for a query joining the
Employees.employees and the Employees.salaries tables, showing the time re-
quired (in milliseconds) for the number of tuples selected (in thousands) in aggregate
verification mode.

Time (ms)
No. of Tuples Scheme IC Fetch AIC generation Data Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 65 65
OCT 115.26 146.2 271.66 709.2726 1242.3926 19.11373231
OCF 262.14 439.8 305.66 2546.4152 3554.0152 54.67715692

100k
DB 124 124
OCT 253.6 273 431.12 1207.7948 2165.5148 17.46382903
OCF 379.6 712.8 645.32 4563.5096 6301.2296 50.81636774

150k
DB 177 177
OCT 231.2 391.2 621.52 1934.644 3178.564 17.9579887
OCF 391.68 1131.8 971.72 6836.1018 9331.3018 52.71921921

200k
DB 225 225
OCT 318.92 396 846.26 2791.6656 4352.8456 19.34598044
OCF 468.18 1313.4 1081.54 9402.1746 12265.2946 54.51242044

104

Figure 5.27: CMAC-AES plotted query processing time for a query joining the
Employees.employees and the Employees.salaries tables, showing the time re-
quired (in milliseconds) for the number of tuples selected (in thousands) in aggregate
verification mode.

Table 5.27: CMAC-AES plotted query processing time for a query joining the
Employees.employees and the Employees.salaries tables, showing the time re-
quired (in milliseconds) for the number of tuples selected (in thousands) in aggregate
verification mode.

Time (ms)
No. of Tuples Scheme IC Fetch AIC generation Data Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 65 65
OCT 97.58 87.9 214.2 533.7792 933.4592 14.36091077
OCF 145.86 353.7 273.7 2354.242 3127.502 48.11541538

100k
DB 124 124
OCT 155.04 237.9 399.5 1119.5232 1911.9632 15.41905806
OCF 292.06 449.8 624.24 3905.8574 5271.9574 42.51578548

150k
DB 177 177
OCT 222.02 194.8 701.08 1644.6508 2762.5508 15.60763164
OCF 393.72 740.9 843.54 6010.883 7989.043 45.13583616

200k
DB 225 225
OCT 364.48 245.7 902.02 2251.0052 3763.2052 16.72535644
OCF 452.2 763 1068.28 7846.443 10129.923 45.02188

105

Figure 5.28: RSA plotted query processing time for a query joining the Em-
ployees.employees and the Employees.salaries tables, showing the time required (in
milliseconds) for the number of tuples selected (in thousands) in aggregate verification
mode.

Table 5.28: RSA plotted query processing time for a query joining the Em-
ployees.employees and the Employees.salaries tables, showing the time required (in
milliseconds) for the number of tuples selected (in thousands) in aggregate verification
mode.

Time (ms)
No. of Tuples Scheme IC Fetch AIC generation Data Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 65 65
OCT 101.32 617.6 250.24 555.6094 1524.7694 23.45799077
OCF 184.96 2570.6 634.1 1959.844 5349.504 82.30006154

100k
DB 124 124
OCT 153.34 1092.4 371.62 1492.0876 3109.4476 25.07619032
OCF 382.16 4791.6 789.82 3594.0406 9557.6206 77.07758548

150k
DB 177 177
OCT 246.16 1624.4 646 1623.4768 4140.0368 23.39003842
OCF 422.96 7283.6 1108.06 5563.8386 14378.4586 81.23422938

200k
DB 225 225
OCT 461.38 2374.2 838.1 2613.0462 6286.7262 27.94100533
OCF 740.86 9816.2 1158.04 7198.6142 18913.7142 84.060952

106

Functional Query

Similar to the ICDB basic model, to perform a functional query in the AV mode of

DMV model, all the data items used to evaluate the aggregate value must be fetched

and verified by the ICDB client. Thus, an ICDB functional query in the AV mode of

the DMV model will need to perform the following steps:

ICDB Functional query process steps in the AV mode of the DMV

model:

1. SELECT operation: The ICDB client will need to issue SELECT queries

Q1 and Q2, where the processing steps for Q1 include data fetch and

verification, whereas the processing steps for Q2 include IC fetch and

AIC generation. Check the detailed steps required for a SELECT query

in the AV mode of the DMV model described earlier.

2. Query execution in local: The ICDB client now is able to compute the

aggregate value over the fetched data. The aggregate function could be

SUM, MIN, MAX, AVG, or COUNT.

Figures 5.29, 5.30 and 5.31 and Tables 5.29, 5.30 and 5.31 show the experimental

results for the functional query in the AV mode for the DMV model. The functional

query used for this experiment includes four aggregate operations (SUM, MIN, MAX,

AVG) in a single Functional query. The data shows that the process time for a

functional query in the AV mode is similar to the corresponding SELECT query

(including Q1 and Q2) process time. The only additional time is the time for the

ICDB client to locally compute the aggregate values over the fetched and verified

data. This local computation is insignificant.

107

The average performance penalty rate for functional query using CMAC-AES in

the AV mode is the lowest among all three algorithms with 41.7 in OCT and 70.52 in

OCF. The average penalty rate is slightly higher for HMAC-SHA with 49.66 in OCT

and 81.95 in OCF. Both MAC algorithms have an increased performance penalty

rate in the AV mode compared to their penalty rate in the basic model. However for

RSA, the average penalty rate is 62.54 in OCT and 117.24 in OCF, which is a huge

improvement comparing to the basic model with the average penalty rate for RSA at

197.38 in OCT and 534.33 in OCF. Again, the reason for this improvement is because

RSA’s homomorphic property avoids the need to regenerate all ICs in the aggregate

verification mode.

108

Figure 5.29: HMAC-SHA plotted query processing time against the number of
tuples returned using a SELECT Query corresponding to the Functional Query

Table 5.29: HMAC-SHA plotted query processing time against the number of tuples
returned using a SELECT Query corresponding to the Functional Query

Time (ms)
No. of Tuples Scheme IC Fetch AIC generation Data Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 17.4 17.4
OCT 67.8 100.6 159.8 447.3312 775.5312 44.57075862
OCF 107.94 212 125.86 926.4222 1372.2222 78.86334483

100k
DB 30.1 30.1
OCT 97.4 126.2 253.6 1001.0922 1478.2922 49.11269767
OCF 108.5 236.6 265.72 1664.3822 2275.2022 75.58811296

150k
DB 39.6 39.6
OCT 136 224.2 365.6 1458.3362 2184.1362 55.15495455
OCF 161.28 306.2 400.12 2566.3172 3433.9172 86.71508081

200k
DB 53.9 53.9
OCT 187.6 256 497.8 1744.065 2685.465 49.82309833
OCF 192.78 555.4 445.34 3477.1536 4670.6736 86.65442672

109

Figure 5.30: CMAC-AES plotted query processing time against the number of
tuples returned using a SELECT Query corresponding to the Functional Query

Table 5.30: CMAC-AES plotted query processing time against the number of tuples
returned using a SELECT Query corresponding to the Functional Query

Time (ms)
No. of Tuples Scheme IC Fetch AIC generation Data Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 17.4 17.4
OCT 57.4 94.6 126 419.3074 697.3074 40.07513793
OCF 60.06 151.2 112.7 867.5308 1191.4908 68.47648276

100k
DB 30.1 30.1
OCT 91.2 148.2 235 763.8092 1238.2092 41.13651827
OCF 120.26 256.6 257.04 1517.8262 2151.7262 71.48592027

150k
DB 39.6 39.6
OCT 130.6 183.2 412.4 1058.107 1784.307 45.05825758
OCF 162.12 298 347.34 2046.9774 2854.4374 72.08175253

200k
DB 53.9 53.9
OCT 214.4 207.4 530.6 1232.6138 2185.0138 40.53828942
OCF 186.2 678.6 439.88 2470.9314 3775.6114 70.04844898

110

Figure 5.31: RSA plotted query processing time against the number of tuples
returned using a SELECT Query corresponding to the Functional Query

Table 5.31: RSA plotted query processing time against the number of tuples
returned using a SELECT Query corresponding to the Functional Query

Time (ms)
No. of Tuples Scheme IC Fetch AIC generation Data Fetch Verification Total Query Process Performance Penalty Rate

50k
DB 17.4 17.4
OCT 59.6 273.8 147.2 424.8366 905.4366 52.03658621
OCF 76.16 842.4 261.1 698.252 1877.912 107.925977

100k
DB 30.1 30.1
OCT 90.2 560.8 218.6 957.5804 1827.1804 60.70366777
OCF 157.36 1549.2 325.22 1271.4308 3303.2108 109.7412226

150k
DB 39.6 39.6
OCT 144.8 916.8 380 1313.3244 2754.9244 69.56879798
OCF 174.16 2480.6 456.26 2202.7696 5313.7896 134.1866061

200k
DB 53.9 53.9
OCT 271.4 1248.6 493 1643.716 3656.716 67.8425974
OCF 305.06 3072.4 476.84 2458.4448 6312.7448 117.1195696

111

Summary

Tables 5.32 and 5.33 list the memory penalty rates and the average performance

penalty rates for all of the experiments in both the ICDB basic and the DMV models.

We also summarize our experiments for all twelve different combinations of ICDB

schemes based on their memory penalty and performance penalty.

Table 5.32: Memory penalty rates for all experiments in both the ICDB basic and
the DMV models

Basic model DMV model
Database Scheme SHA AES RSA SHA- AV mode AES- AV mode RSA-AV mode

Employees
OCT 1.53 1.53 3.88 1.53 1.53 3.88
OCF 3.15 3.15 13.07 3.15 3.15 13.07

Table 5.33: Average performance penalty rates for all experiments in both ICDB
basic and DMV models

Basic model DMV model
Query Scheme SHA AES RSA SHA- AV mode AES- AV mode RSA-AV mode

Select
OCT 13.29 11.07 104.81 18.85 18.2 27.33
OCF 31.39 25.24 389.21 48.96 43.97 74.78

Insert
OCT 2.69 2.68 6.62 2.69 2.68 6.62
OCF 5.14 4.94 21.01 5.14 4.94 21.01

Delete
OCT 1.25 1.25 2.39 1.29 1.29 1.43
OCF 1.62 1.53 5.75 1.8 1.7 2.13

Functional
OCT 36.05 30.09 197.38 49.66 41.7 62.54
OCF 53.46 47.82 534.33 81.95 70.52 117.24

Join
OCT 13.56 12.18 89.05 18.47 15.53 24.97
OCF 36.36 31.73 407.41 53.18 45.2 81.17

OCT vs. OCF.

1. In all cases, OCT has a lower memory penalty and performance penalty than

OCF does.

2. However, a very important advantage OCF maintains over OCT is that OCF

is able to detect whether a particular field entry/data is corrupted, while OCT

is only able to detect whether a tuple is corrupted.

112

3. Though OCT costs less memory and has less performance penalty, all queries

need to fetch entire tuples even if the query only requests values from a sin-

gle column. There is an opportunity for further research work to investigate

reducing the volume of additional information related to the data, using the

Authenticated Data Structures (ADS) such as the Merkel Hash Trees described

in [5]. In such structures, instead of fetching the entire tuple, one need only fetch

the requested data and the hash value of the data required to compute the root

of the Hash Tree. In order to support this operation, though, the ICDB client

has to compute multiple hashes before uploading the data. Also, the cloud

database server itself has to compute multiple hashes or store precomputed

hashes of each leaf or internal node. The change in the database structure and

query processing will make the ICDB no longer transparent to the cloud servers

and thus we did not adopt the ADS structure in this research. Nonetheless,

This may still be considered for future research.

HMAC-SHA vs. CMAC-AES vs. RSA.

1. The large (1024 bits) ICs for RSA incur more memory penalty than the MAC

algorithms with 128-bit ICs.

2. CMAC-AES has a slightly lower performance penalty rate than HMAC-SHA in

all experiments.

3. Among the three cryptographic algorithms, in the basic model, RSA has the

maximum performance penalty rate. IN OCT, RSA’s performance penalty rate

is about 2 (INSERT operation) to 10 (SELECT operation) times more than the

penalty rates of MAC algorithms. IN OCF, RSA’s performance penalty rate is

113

about 4 (INSERT operation) to 15 (SELECT operation) times more than the

penalty rates of MAC algorithms.

Similarly, in the AV mode of DMV model, RSA again has the highest perfor-

mance penalty rate. IN OCT, RSA’s performance penalty rate is about 1.1

(DELETE operation) to 1.5 (SELECT operation) times more than the penalty

rates of MAC algorithms. IN OCF, RSA’s performance penalty rate is about 1.2

(DELETE operation) to 1.7 (SELECT operation) times more than the penalty

rates of MAC algorithms.

We can see that in the AV mode, RSA still performs worse than MAC algorithms

but it gets much closer to the performance of MAC algorithms. The reason

for this is because the RSA’s homomorphic property allows the ICDB client to

generate the AIC directly without having to regenerate all ICs in the verification

process in the AV mode.

SELECT vs. INSERT vs. DELETE vs. JOIN vs. Functional

1. Among all query types, based on our experiments in the basic model, the ranking

of incurred performance penalty, from the least to the greatest, is DELETE <

INSERT << SELECT ≈ JOIN < Functional, where the symbol << means a

notable (significant) increase.

2. Similarly for the AV mode of the DMV model, the ranking of the performance

penalty is the same, i.e., DELETE < INSERT << SELECT ≈ JOIN < Func-

tional.

114

Basic Model vs. DMV Model.

1. Introducing the AV mode of the DMV model on top of the basic ICDB model

has reduced the network overhead since the ICDB client need no longer fetch

ICs along with the data from the database servers through the network.

2. Since the cloud database server has to store all the ICs and serials in both

models, the memory penalty for both models is the same.

3. For the DMV model when compared to the basic model, though MAC algo-

rithms did not improve (actually worse) their performance, there was a huge

performance improvement for the RSA algorithm. We see that RSA did not

fare very well in the basic model. It has comparatively large integrity code

size, and takes a much longer time to verify than HMAC-SHA or CMAC-AES

does. However, in the aggregate verification (of the DMV model), the results

are comparable to CMAC-AES and HMAC-SHA.

115

Ranking all the ICDB Schemes: We have suggested a ranking for all the ICDB

schemes from our experimental results based on the incurred memory penalty and

performance penalty. Table 5.35 provides a quick view of the rankings for all the

schemes.

1. The ranking is based on a scale of Low to High as shown in the table 5.34. A

’High’ ranking in the scale refers to the worst result (highest penalty rate) and

a ’Low’ ranking refers to the best result (least penalty rate) in our experiment.

2. Basic-OCF-RSA has High rankings in both metrics and thus is the worst,

whereas DVM(AV Mode)-OCT-HMAC and DVM(AV Mode)-OCT-CMAC have

low rankings in both metrics and thus are the best. On the other hand, OCF-

RSA schemes have better functionality which allow finer integrity protection

granularity to the level of each field entry and the allow the cloud database

server to perform the homomorphic operation (homomorphic multiplication of

numeric data) on behalf of the data owner.

3. The performance penalty for RSA is reduced significantly in the AV mode of the

DMV model compared to the basic model due to the homomorphic property of

RSA.

4. Another major advantage of the AV mode of the DMV model compared to the

basic model is the reduction of network overhead by transmitting a single AIC

instead of many individual ICs over the network.

116

Table 5.34: Ranking Scale

Scale
Low(1)
Moderate Low (2)
Intermediate(3)
Moderate High(4)
High(5)

Table 5.35: Ranking of different ICDB schemes in either Basic or DMV model

MODELS Granularity Algorithms Memory Penalty Performance Penalty

Basic model

OCF
HMAC-SHA Moderate Low (2) Moderate Low (2)
CMAC-AES Moderate Low (2) Moderate Low (2)
RSA High(5) High(5)

OCT
HMAC-SHA Low(1) Low(1)
CMAC-AES Low(1) Low(1)
RSA Intermediate(3) Moderate High(4)

DMV model (AV Mode)

OCF
HMAC-SHA Moderate Low (2) Moderate Low (2)
CMAC-AES Moderate Low (2) Moderate Low (2)
RSA High(5) Intermediate(3)

OCT
HMAC-SHA Low(1) Low(1)
CMAC-AES Low(1) Low(1)
RSA Intermediate(3) Moderate Low (2)

117

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we proposed an ICDB approach to protect data integrity for outsourced

databases in the cloud. The approach inserts a cryptographically generated integrity

code for each data item to be protected. The way we construct the integrity code

ensures that nobody except the data owner is able to modify the data and at the mean

time generates a matching integrity code for it. Using such an integrity code, any

forged data can be detected. In addition, our ICDB approach assigns a unique serial

number to each integrity code and proposes a scheme similar to the X.509 standard

to ensure the freshness of outsourced data, where the X.509 standard is a scheme to

manage all unexpired public key certificates.

We have implemented an ICDB working prototype which was used to conduct

empirical experiments to evaluate the memory and performance penalty for each

ICDB scheme. We have shown all the experimental results and analyzed their indi-

cations/implications in Chapter 5.

In addition to empirical experiments, we also investigated the pricing schemes

of existing database service providers so that we are able to suggest which ICDB

scheme(s) may be the best choice economically for each pricing scheme in the real

world service providers.

Cloud Services Schemes: Different Cloud Service Providers have their own

118

pricing schemes. Reviewing the pricing schemes of three major cloud providers with

the highest market share, Amazon Web Services (AWS) [27], Google Cloud Platform

[29] and Microsoft Azure [28] has helped us to relate our work to the real cloud

environment. Cloud Relational Database Services (RDS) charge customers based on

the storage, data inflow/outflow and number of instances. Some cloud providers

such as Microsoft Azure offer a scheme in package (with a fixed rate of charge)

with maximum database instances per pool, maximum storage per pool, maximum

transaction per pool for an elastic pool of databases. Google cloud offers free inbound

data but charges for all outbound data. Similarly, Amazon Web Services (AWS) has

its own scheme for RDS pricing. It charges per hour of the instance used and GB

per month of storage. As with Google cloud, AWS too is free for inbound data and

charges per GB of outbound data.

ICDB Scheme choices based on Cloud Services Schemes: If the database

size and the number of transactions for the database will never exceed the maximum

limit offered by the cloud service package, then all ICDB schemes can be considered.

In this case, if the database application requires integrity protection level down to

each data field, then OCF schemes will be the choice. Furthermore, if the database

application requires the database server to perform homomorphic operations on behalf

of the data owner, then the ICDB schemes using the RSA algorithm will be the choice.

For cloud services that charge only for outbound data, the ICDB schemes in the

AV mode of DMV model is the best choice since the outbound data is almost the

same as a standard SQL database with just additional data for serial numbers. This

will keep the cost similar to standard SQL databases.

If the database size and amount of inflow/outflow data (which directly impact

on the database size) are unpredictable, then the choice of service should be the one

119

with an on-demand pricing scheme that charges based on the usage. CMAC-AES in

OCT has the minimum performance penalty and only increases the database size by

approximately 1.53 times, compared to the standard database. Thus, CMAC-OCT

should be the best choice in this case.

Table 5.35 listing all 12 ICDB schemes with their performance and memory

rankings should provide useful information for users to decide which ICDB scheme

and which database service provider can benefit them the most.

Future Work

1. Although the experimental results presented in this thesis provide an adequate

level of understanding of the ICDB performance, they are not exhaustive.

Additional tests could be conducted separately. For instance, the benchmarks

provided have only been tested on the Employees [21] sample database, which

is approximately 196.4 MB in size. More databases with larger sizes can be

tested to gain a better understanding of performance.

2. The experiment could be performed on the real cloud DB service provider and

cloud application to study the performance in a real cloud environment.

3. The implementation provided is configured to only communicate with a MySQL

database, but other database options can be tested (e.g., PostgreSQL, SQLite).

4. We have only used a SELECT * query for our experiments. There are notable

performance differences between OCT and OCF, namely that OCF does not

necessarily need to return entire tuples when queried but in this case (SELECT

120

*) it has to. Thus, experiments based on a different SELECT query could

reduce the performance gap between OCT and OCF.

5. All the experimental results provided in this thesis are based on the integrity

verification of returned query results. Incomplete query results cannot be

detected with the current ICDB models. Thus, future research is necessary

to assure the completeness of queried data returned from the cloud database

server.

121

REFERENCES

[1] Seny Kamara and Kristin Lauter. 2010. Cryptographic cloud storage. In Pro-
ceedings of the 14th international conference on Financial cryptograpy and data
security (FC’10), Radu Sion, Reza Curtmola, Sven Dietrich, Aggelos Kiayias,
Josep M. Miret, Kazue Sako, and Francesc Sebe (Eds.). Springer-Verlag, Berlin,
Heidelberg, 136-149.

[2] Ghazizadeh, Puya, Ravi Mukkamala, and Stephan Olariu. ”Data integrity eval-
uation in cloud database-as-a-service.” 2013 IEEE Ninth World Congress on
Services. IEEE, 2013.

[3] Xie, Min, et al. ”Providing freshness guarantees for outsourced databases.” Pro-
ceedings of the 11th international conference on Extending database technology:
Advances in database technology. ACM, 2008.

[4] Narasimha, Maithili, and Gene Tsudik. ”Authentication of outsourced databases
using signature aggregation and chaining.” International Conference on
Database Systems for Advanced Applications. Springer Berlin Heidelberg, 2006.
http://scholarworks.boisestate.edu/td/1050

[5] Niaz, Muhammad Saqib, and Gunter Saake. ”Merkle Hash Tree based Techniques
for Data Integrity of Outsourced Data.” GvD. 2015.

[6] Standard, NIST-FIPS. ”Announcing the advanced encryption standard (AES).”
Federal Information Processing Standards Publication 197 (2001): 1-51.

[7] Mallaiah, Kurra, and S. Ramachandram. ”Applicability of Homomorphic En-
cryption and CryptDB in Social and Business Applications: Securing Data
Stored on the Third Party Servers while Processing through Applications.”
International Journal of Computer Applications 100.1 (2014).

[8] ElGamal, Taher. ”A public key cryptosystem and a signature scheme based on
discrete logarithms.” IEEE transactions on information theory 31.4 (1985): 469-
472.

[9] Paillier, Pascal. ”Public-key cryptosystems based on composite degree residuosity
classes.” International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer Berlin Heidelberg, 1999.

122

[10] Murray, Meg Coffin. ”Database Security: What Students Need to Know.”
Journal of Information Technology Education 9.(2010): IIP-61-IIP-77.

[11] Google Developers, Google Cloud SQL Google Developers, 2012.

[12] Microsoft, Microsoft Azure SQL Database - Relational database service, 2016.

[13] Amazon Relational Database Service, 2011, p. 2011.

[14] Jiazhu, Dai, et al. ”A completeness and freshness guarantee scheme for out-
sourced database.” Networking and Distributed Computing (ICNDC), 2011
Second International Conference on. IEEE, 2011.

[15] 10.2 schema object names. Retrieved from
https://dev.mysql.com/doc/refman/5.7/en/identifiers.html

[16] ujjwalkarki (2017) Ujjwalkarki/ICDB-CloudApp. Available at:
https://github.com/ujjwalkarki/ICDB-CloudApp.git.

[17] Khanuja, Harmeet Kaur, and D. S. Adane. ”Database security threats and
challenges in database forensic: A survey.” Proceedings of 2011 International
Conference on Advancements in Information Technology (AIT 2011), available
at http://www. ipcsit. com/vol20/33-ICAIT2011-A4072. pdf. 2011.

[18] Nanjundarao, Archana, ”Integrity Coded Databases (ICDB) Protecting In-
tegrity for Outsourced Databases” (2015). Boise State University Theses and
Dissertations. 1050.

[19] Hacigm, Hakan, Bala Iyer, and Sharad Mehrotra. ”Ensuring the integrity of
encrypted databases in the database-as-a-service model.” Data and Applications
Security XVII. Springer US, 2004. 61-74.

[20] Bellare, Mihir, Roch Gurin, and Phillip Rogaway. ”XOR MACs: New meth-
ods for message authentication using finite pseudorandom functions.” Annual
International Cryptology Conference. Springer Berlin Heidelberg, 1995.

[21] Employees sample database. (2016). Retrieved from
https://dev.mysql.com/doc/employee/en/

[22] ”The Legion of the Bouncy Castle.” Bouncycastle.org. N.p., n.d. Web.

[23] Maha Tebaa, Said El Hajji, Secure Cloud Computing through Homomorphic
Encryption International Journal of Advancements in Computing Technology
(IJACT), 5 (16) (2013)

123

[24] [D. Chandravathi and P. V. Lakshmi. (2017); PERFORMANCE ANALYSIS
OF MODIFIED RSA AND RSA HOMOMORPHIC ENCRYPTION SCHEME
FOR CLOUD DATA SECURITY. Int. J. of Adv. Res. 5 (2). 275-281] (ISSN
2320-5407). www.journalijar.com

[25] Haxhijaha, GB Selman, and F. Prekazi. ”Data integrity check using hash func-
tions in cloud environment.” (2014).

[26] MySQL :: MySQL 5.7 Reference Manual :: 14 SQL Statement Syntax. 2016.
MySQL :: MySQL 5.7 Reference Manual :: 14 SQL Statement Syntax. [ONLINE]
Available at: http://dev.mysql.com/doc/refman/5.7/en/sql-syntax.htm.

[27] Amazon RDS for MySQL pricing Amazon web services. Retrieved from
https://aws.amazon.com/rds/mysql/pricing/

[28] Microsoft Pricing - SQL database — Microsoft azure. . Retrieved from
https://azure.microsoft.com/en-us/pricing/details/sql-database/

[29] Pricing. (2017, February 16). Retrieved from
https://cloud.google.com/sql/pricing

[30] Gentry, Craig. ”Computing arbitrary functions of encrypted data.” Communi-
cations of the ACM 53.3 (2010): 97-105.

[31] Janssen, Marijn, and Anton Joha. ”Challenges for adopting cloud-based software
as a service (saas) in the public sector.” ECIS. 2011.

[32] Godse, Manish, and Shrikant Mulik. ”An approach for selecting software-as-a-
service (SaaS) product.” Cloud Computing, 2009. CLOUD’09. IEEE Interna-
tional Conference on. IEEE, 2009.

[33] Sunuwar, Rosy, and Suraj Ketan Samal. ”Elgamal Encryption using Elliptic
Curve Cryptography.” (2015).

[34] Song, Junhyuk, et al. The aes-cmac algorithm. No. RFC 4493. 2006.

[35] Bellare, Mihir. ”New proofs for NMAC and HMAC: Security without collision-
resistance.” Annual International Cryptology Conference. Springer Berlin Hei-
delberg, 2006.

[36] Wang, Xiaoyun, and Hongbo Yu. ”How to break MD5 and other hash functions.”
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer Berlin Heidelberg, 2005.

124

APPENDIX A

EMPLOYEES DATABASE SCHEMA

125

-- Sample employee database

See changelog table for details

Copyright (C) 2007,2008, MySQL AB

Original data created by Fusheng Wang and Carlo Zaniolo

http://www.cs.aau.dk/TimeCenter/software.htm

http://www.cs.aau.dk/TimeCenter/Data/employeeTemporalDataSet.zip

Current schema by Giuseppe Maxia

Data conversion from XML to relational by Patrick Crews

This work is licensed under the

Creative Commons Attribution-Share Alike 3.0 Unported License.

To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to

Creative Commons, 171 Second Street, Suite 300, San Francisco,

California, 94105, USA.

DISCLAIMER

To the best of our knowledge, this data is fabricated, and

it does not correspond to real people.

Any similarity to existing people is purely coincidental.

CREATE TABLE employees (

emp no INT NOT NULL,

126

birth date DATE NOT NULL,

first name VARCHAR(14) NOT NULL,

last name VARCHAR(16) NOT NULL,

gender ENUM (’M’,’F’) NOT NULL,

hire date DATE NOT NULL,

PRIMARY KEY (emp no)

);

CREATE TABLE departments (

dept no CHAR(4) NOT NULL,

dept name VARCHAR(40) NOT NULL,

PRIMARY KEY (dept no),

UNIQUE KEY (dept name)

);

CREATE TABLE dept manager (

emp no INT NOT NULL,

dept no CHAR(4) NOT NULL,

from date DATE NOT NULL,

to date DATE NOT NULL,

FOREIGN KEY (emp no) REFERENCES employees (emp no)

ON DELETE CASCADE,

FOREIGN KEY (dept no) REFERENCES departments (dept no)

ON DELETE CASCADE,

PRIMARY KEY (emp no,dept no)

127

);

CREATE TABLE dept emp (

emp no INT NOT NULL,

dept no CHAR(4) NOT NULL,

from date DATE NOT NULL,

to date DATE NOT NULL,

FOREIGN KEY (emp no) REFERENCES employees (emp no)

ON DELETE CASCADE,

FOREIGN KEY (dept no) REFERENCES departments (dept no)

ON DELETE CASCADE,

PRIMARY KEY (emp no,dept no)

);

CREATE TABLE titles (

emp no INT NOT NULL,

title VARCHAR(50) NOT NULL,

from date DATE NOT NULL,

to date DATE,

FOREIGN KEY (emp no) REFERENCES employees (emp no)

ON DELETE CASCADE,

PRIMARY KEY (emp no,title, from date)

);

CREATE TABLE salaries (

128

emp no INT NOT NULL,

salary INT NOT NULL,

from date DATE NOT NULL,

to date DATE NOT NULL,

FOREIGN KEY (emp no) REFERENCES employees (emp no)

ON DELETE CASCADE,

PRIMARY KEY (emp no, from date)

);

129

APPENDIX B

HARDWARE SPECIFICATIONS

130

We performed all the testing for ICDB on Onyx server. Onyx is a Boise State

University’s multiuser Linux server for students and faculty. Multi-user Linux com-

puters may be accessed concurrently by more then one user. The remote connection

will require two components on the computer, an X11 server and an SSH client. The

server is accessible through onyx.boisestate.edu. The hardware specifications are as

follows:

Architecture: x86 64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 32

On-line CPU(s) list: 0-31

Thread(s) per core: 2

Core(s) per socket: 8

Socket(s): 2

NUMA node(s): 2

Vendor ID: GenuineIntel

CPU family: 6

Model: 63

Model name: Intel(R) Xeon(R) CPU E5-2640

v3 @ 2.60GHz

Stepping: 2

CPU MHz: 1401.664

BogoMIPS: 5203.83

Virtualization: VT-x

L1d cache: 32K

131

L1i cache: 32K

L2 cache: 256K

L3 cache: 20480K

NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30

NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31

132

APPENDIX C

DEVELOPMENT ENVIRONMENT:

133

Language: Java, Kotlin, JDBC for database connectivity

Database: MySQL

IDE: IntelliJ IDEA

134

APPENDIX D

ICDB COMMANDS

135

D.1 Initial Setup

To be able to build and run against a database, the following must be installed:

Maven

MySQL

Then run the following commands to build the project:

1. git clone https://github.com/ujjwalkarki/ICDB-CloudApp.git

2. cd IntegrityCodedDatabase/ICDB

3. make

D.2 Running the ICDB tool

The arguments for interacting with the ICDB tool is as follows:

icdb [-c config-file] [command] [options]

icdb is a bash script that simply runs the compiled jar. This can be run directly:

java -jar target/icdb-capsule.jar [-c config-file] [command] [options]

All interactions with the tool will require a config file containing a JSON object

with several parameters listed below:

ip - the target MySQL database IP address

port - the port the database is running on

user - database user

password - database password (if any)

schema - database schema to use (for conversion)

icdbSchema - ICDB database schema name (for execution and verification)

algorithm - the encryption algorithm to use (RSA, AES, SHA, RSA AGGREGATE,

AES AGGREGATE and SHA AGGREGATE)

136

granularity - use code per field or code per tuple (FIELD or TUPLE)

macKey - 128-bit MAC key encoded as a base64 string

rsaKeyFile - PEM file containing public and private RSA keys

For convenience, a config file is given at ./ICDB/config.json, which will be loaded

by default if the -c option is not specified.

The default config provides the following JSON object:

”ip”: ”localhost”,

”port”: 10154,

”user”: ”msandbox”,

”password”: ”msandbox”,

”schema”: ”employees”,

”icdbSchema”: ”employees icdb”,

”algorithm”: ”SHA”,

”granularity”: ”TUPLE”,

”macKey”: ”qyPTqFrPGUpxcIo9sz2MdQ==”,

”rsaKeyFile”: ”key.pem”

D.3 Commands Available

1. convert-db - Converts an existing DB to an ICDB (both schema and data)

2. convert-query - Converts a DB query to an ICDB query

3. execute-query - Executes an ICDB query and verifies all returned data

137

D.3.1 Convert DB Command

The convert-db command has 4 phases, any of which can be skipped: –skip-duplicate,

if set, the duplicate DB step will be skipped –skip-schema, if set, the schema conver-

sion step will be skipped –skip-data, if set, the data conversion step will be skipped

–skip-load, if set, the data load step will be skipped. The command is:

convert-db [–skip-duplicate] [–skip-schema] [–skip-data] [–skip-load]

Example:

cd project-root/ICDB

icdb convert-db

D.3.2 Convert Query Command

The convert-query command takes the SQL query as an input and converts it to an

ICDB query. The conversion requires: -q ”The SQL query, passed in as a string”.

The command is:

convert-query [-q query]

Example:

cd project-root/ICDB icdb convert-query -q ”SELECT * FROM employees;”

D.3.3 Execute Query Command

The convert-data command takes a SQL query as input, executes, then verifies any

returned data. -q ”The SQL query, passed in as a string” THe command is:

execute-query [-q query]

Example:

cd project-root/ICDB icdb execute-query -q ”SELECT * FROM employees;”

138

APPENDIX E

QUERY CONVERSION:

139

We used different mySQL queries to convert it to the ICDB queries which are

listed below:

E.1 MySQL Select Queries:

1. SELECT * FROM departments;

2. SELECT emp no, birth date, first name, last name, gender, hire date FROM

employees WHERE gender=’M’;

3. SELECT dept no, from date, to date FROM dept emp;

4. SELECT emp no FROM salaries WHERE salary>60000;

5. SELECT * FROM titles;

6. SELECT departments.dept no,departments.dept name, dept manager.emp no,

dept manager.from date,dept manager.to date FROM departments INNER JOIN

dept manager ON departments.dept no=dept manager.dept no;

E.1.1 ICDB Select Queries(OCF):

1. SELECT dept no, dept name,dept no ic,dept no serial, dept name ic, dept name serial

FROM departments;

2. SELECT emp no, birth date, first name, last name, gender, hire date,emp no ic,

emp no serial, birth date ic, birth date serial, first name ic, first name serial,

last name ic, last name serial, gender ic, gender serial, hire date ic, hire date serial

FROM employees WHERE gender = ’M’;

140

3. SELECT dept no, from date, to date,emp no,dept no ic,dept no serial, from date ic,

from date serial, to date ic, to date serial,emp no ic,emp no serial FROM dept emp;

4. SELECT emp no, salary,from date,emp no ic,emp no serial, salary ic, salary serial,

from date ic,from date serial FROM salaries WHERE salary > 60000;

5. SELECT from date,title,emp no, to date,from date ic,from date serial,title ic,title serial,

emp no ic,emp no serial, to date ic, to date serial FROM titles;

6. SELECT departments.dept no, departments.dept name, dept manager.emp no,

dept manager.from date, dept manager.to date, departments.dept no, dept manager.emp no,

dept manager.dept no, departments.dept no ic, departments.dept no serial, de-

partments.dept name ic, departments.dept name serial, dept manager.emp no ic,

dept manager.emp no serial, dept manager.from date ic, dept manager.from date serial,

dept manager.to date ic, dept manager.to date serial, departments.dept no ic,

departments.dept no serial, dept manager.emp no ic, dept manager.emp no serial,

dept manager.dept no ic, dept manager.dept no serial FROM departments IN-

NER JOIN dept manager ON departments.dept no = dept manager.dept no;

E.1.2 ICDB Select Queries(OCT):

1. SELECT dept no, dept name, ic, serial FROM departments;

2. SELECT emp no, birth date, first name, last name, gender, hire date, ic, serial

FROM employees WHERE gender = ’M’;

3. SELECT emp no, dept no, from date, to date, ic, serial FROM dept emp;

4. SELECT emp no, salary, from date, to date, ic, serial FROM salaries WHERE

salary > 60000;

141

5. SELECT emp no, title, from date, to date, ic, serial FROM titles;

6. SELECT departments.dept no, departments.dept name, departments.ic, depart-

ments.serial, dept manager.emp no, dept manager.dept no, dept manager.from date,

dept manager.to date, dept manager.ic, dept manager.serial FROM departments

INNER JOIN dept manager ON departments.dept no = dept manager.dept no;

INSERT query conversion is not included in the appendix due to the large IC

values in ICDB Query for each of the inserting attributes or tuples.

E.2 MySQL DELETE Queries

1. DELETE FROM departments WHERE dept no=’d006’;

2. DELETE FROM salaries WHERE salary>60000 AND salary<65000;

3. DELETE FROM employees WHERE gender=’M’;

4. DELETE FROM titles;

5. DELETE FROM employees WHERE gender=’M’ AND last name=’Terkki’;

6. DELETE FROM titles WHERE title!=’Staff’;

E.2.1 ICDB Delete Verification Queries (OCF):

1. SELECT dept no, dept name, dept no ic, dept no serial, dept name ic, dept name serial

FROM departments WHERE dept no = ’d006’;

2. SELECT emp no, salary, from date, to date, emp no ic, emp no serial, salary ic,

salary serial, from date ic, from date serial, to date ic, to date serial FROM

salaries WHERE salary > 60000 AND salary < 65000;

142

3. SELECT emp no, birth date, first name, last name, gender, hire date, emp no ic,

emp no serial, birth date ic, birth date serial, first name ic, first name serial,

last name ic, last name serial, gender ic, gender serial, hire date ic, hire date serial

FROM employees WHERE gender = ’M’;

4. SELECT emp no, title, from date, to date, emp no ic, emp no serial, title ic,

title serial, from date ic, from date serial, to date ic, to date serial FROM ti-

tles;

5. SELECT emp no, birth date, first name, last name, gender, hire date, emp no ic,

emp no serial, birth date ic, birth date serial, first name ic, first name serial,

last name ic, last name serial, gender ic, gender serial, hire date ic, hire date serial

FROM employees WHERE gender = ’M’ AND last name = ’Terkki’;

6. SELECT emp no, title, from date, to date, emp no ic, emp no serial, title ic,

title serial, from date ic, from date serial, to date ic, to date serial FROM ti-

tles WHERE title != ’Staff’;

E.2.2 ICDB Delete Verification Queries (OCT):

1. SELECT dept no, dept name, ic, serial FROM departments WHERE dept no

= ’d006’;

2. SELECT emp no, salary, from date, to date, ic, serial FROM salaries WHERE

salary > 60000 AND salary < 65000;

3. SELECT emp no, birth date, first name, last name, gender, hire date, ic, serial

FROM employees WHERE gender = ’M’;

4. SELECT emp no, title, from date, to date, ic, serial FROM titles;

143

5. SELECT emp no, birth date, first name, last name, gender, hire date, ic, serial

FROM employees WHERE gender = ’M’ AND last name = ’Terkki’;

6. SELECT emp no, title, from date, to date, ic, serial FROM titles WHERE title

!= ’Staff’;

E.3 MySQL Functional Query:

1. Select sum(salary) from salaries;

E.3.1 ICDB Functional Query(OCF):

1. Select salary, salary ic, salary serial, emp no, emp no ic, emp no serial, from date,

from date ic, from date serial from salaries;

E.3.2 ICDB Functional Query(OCT):

1. Select * from salaries;

