
THE MECHANISM OF RADIATION-INDUCED NANOCLUSTER EVOLUTION IN 

OXIDE DISPERSION STRENGTHENED AND FERRITIC-MARTENSITIC ALLOYS  

 

 

 

 

by 

Matthew John Swenson 

 

 

 

 

 

A dissertation 

submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy in Materials Science and Engineering 

Boise State University 

 

August 2017  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2017 

Matthew John Swenson 

ALL RIGHTS RESERVED  



BOISE STATE UNIVERSITY GRADUATE COLLEGE 

 

 

DEFENSE COMMITTEE AND FINAL READING APPROVALS 
 

 

of the dissertation submitted by 

 

 

Matthew John Swenson 

 

 

Dissertation Title: The Mechanism of Radiation-Induced Nanocluster Evolution in 

Oxide Dispersion Strengthened and Ferritic-Martensitic Alloys 

 

Date of Final Oral Examination: 17 May 2017 

 

The following individuals read and discussed the dissertation submitted by student 

Matthew John Swenson, and they evaluated his presentation and response to questions 

during the final oral examination. They found that the student passed the final oral 

examination. 

 

Janelle P. Wharry, Ph.D.   Co-Chair, Supervisory Committee 

 

Hui Xiong, Ph.D.    Co-Chair, Supervisory Committee 

 

Yaqiao Wu, Ph.D.    Member, Supervisory Committee 

 

James Cole, Ph.D.    Member, Supervisory Committee 

 

The final reading approval of the dissertation was granted by Janelle P. Wharry, Ph.D., 

Chair of the Supervisory Committee. The dissertation was approved by the Graduate 

College. 

 



iv 

DEDICATION 

The culmination of the effort to create this dissertation is dedicated to my wife, 

Sarah Swenson, and my parents, John and Lori Swenson. Both have made tremendous 

sacrifices and have provide endless encouragement to help me achieve goals for both my 

life and career. For their patience and belief in me, I am sincerely grateful.



v 

ACKNOWLEDGEMENTS 

The most important person to acknowledge for the success of dissertation is my 

advisor, Dr. Janelle Wharry. I am so grateful to have been aligned with her throughout 

this experience. She has been a relentless source of encouragement throughout the 

process, showing patience and willingness to listen to my new ideas. The times we have 

spent using each other as a sounding board for ideas will always be cherished. Dr. 

Wharry has taught me much about how to be a better writer, a disciplined scientist, and 

an improved leader of students. 

Next, I must acknowledge my fellow students who were instrumental in my 

ability to learn new skills and navigate my way through graduate school. For the first two 

years of my time at BSU, Corey Dolph and I spent a great deal of time together in the lab 

and traveling to and from CAES in Idaho Falls. We enjoyed some good laughs, but most 

importantly grew up together in learning how to use the focused ion beam and 

transmission electron microscopy (TEM). For the past two years, Kayla Yano and I have 

spent a lot of time together advancing our TEM ability and applying in situ TEM 

mechanical testing. Kayla is such a quick learner, is easy to get along with, and has been 

an encouraging friend. I with her all the best in her future endeavors at Purdue 

University. 

I want to extend my sincere gratitude to the faculty and staff in the Micron School 

of Materials Science and Engineering at BSU. From the very beginning, the MSMSE 

department has made me feel very welcome and secure, even as a non-traditional student. 



vi 

Everyone makes me feel like they are glad I am here. This means a lot to someone who 

took the risk to give up a successful career in industry to come back to graduate school. 

I would remiss to not acknowledge the staff of scientists for their above-and-

beyond assistance in the Microscopy and Characterization Suite (MaCS) at the Center for 

Advanced Energy Studies (CAES) in Idaho Falls. Both Jatu Burns and Alyssa Bateman 

have taught me everything I know about operating the focused ion beam, while Yaqiao 

Wu has been my personal mentor in learning a variety of techniques on the transmission 

electron microscope. Yaqiao was also responsible for conducting all of the LEAP data 

analysis on my APT samples, enabling me to come home while this process was carried 

out. These people are so talented at what they do, but also a group of the most 

encouraging people I have ever worked with. I could always count on coming home with 

valuable data and progress after every trip I ever made to CAES. Finally, the Lab 

Manager, Joanna Taylor, has been one of my most prized working relationships, as she 

always ensured I accomplished all of my goals with every visit I made to MaCS. 

Finally, several others have participated in my progress throughout the past four 

years. At the Michigan Ion Beam Laboratory (MIBL), the team of people including 

Anthony Monterrosa, Liz Getto, Shyam Dwaraknath, Ovidiu Toader, Fabian Naab, and 

Dr. Gary Was all helped greatly with the ion irradiation experiments. 

This research was sponsored in part by the US Nuclear Regulatory Commission 

Grant NRC-HQ-84-14-G-0056, the Micron Foundation, and by the US DOE, Office of 

Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-05ID14517, as 

part of the Nuclear Science User Facilities experiments 13-419, 14-486, 15-540, 15-569, 

16-625, and 16-720.



vii 

ABSTRACT 

The objective of this study is to evaluate the mechanism of irradiation-induced 

nanoparticle evolution in a model Fe-9%Cr oxide dispersion strengthened steel and 

commercial ferritic-martensitic alloys HCM12A and HT9. Each alloy is irradiated with 

Fe2+ ions, protons, or neutrons to doses ranging from 1-100 displacements per atoms at 

500°C. The morphology of nanoclusters are characterized using atom probe tomography. 

The evolution of clusters in each alloy are notably different with each irradiating particle, 

and the competing effects of ballistic dissolution and radiation-enhanced, diffusion-

driven growth are attributed to the respective differences in cluster evolution. A phase 

evolution model, originally theorized by Nelson, Hudson, and Mazey, is used to simulate 

time-dependent nanocluster irradiation evolution in each alloy, with useful insights 

achieved to inform future alloy development. In all cases, a downward temperature shift 

is required to emulate low-dose-rate nanocluster evolution using higher-dose-rate 

irradiations.
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CHAPTER ONE: INTRODUCTION 

Advanced nuclear fusion and fission reactors have the potential to safely and 

reliably fulfill the growing worldwide energy demand. But these reactor designs demand 

their component materials (e.g. fission reactor cladding, fusion first wall and blanket 

structures) perform under extreme conditions, including temperatures up to 700°C and 

irradiation doses up to several hundred displacements per atom (dpa) [1–3]. Oxide 

dispersion strengthened (ODS) steels [4–13] and ferritic/martensitic (F-M) Fe-Cr b.c.c. 

alloys [11,14–21] are leading candidates for these applications because of their high-

temperature strength and dimensional stability under irradiation. 

The extreme performance of ODS steels is attributed to their high density of Ti-

Y-O-rich nanoparticles, which: 1) act as localized sinks for point defects, providing 

resistance to irradiation swelling [4–6,8–10,12], and 2) strengthen the material without 

significantly compromising ductility. Since the properties and performance of ODS steels 

are highly dependent upon the oxide nanoparticles, it is imperative that the integrity of 

the nanoparticles under high temperature irradiation be well understood. Previous 

investigations have shown that irradiation can induce considerable morphological and 

chemical changes in the oxide nanoparticles [22]. However, a wide variety of irradiation-

induced changes have been observed, making it difficult to discern the mechanisms of 

nanoparticle irradiation evolution. 

In F-M alloys, a multitude of nanoscale irradiation-induced phases can be found. 

First are G-phase precipitates, rich in Si, Ni, and Mn, which have been reported in 
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commercial F-M alloys containing as low as nominally 9 wt% Cr, irradiated at 

temperatures between 400C and 500C [11,20,21,23–30]. Chromium-rich α’ phases are 

also observed [11,20,24–29,31–33] and their formation predicted by computational 

approaches [34] in both commercial and high-purity Fe-Cr b.c.c. alloys at irradiation 

temperatures <500C. Cu-rich nanoclusters are also observed to nucleate, often alongside 

G-phases [16,23–25,35], although their formation has been ascribed to the low solubility 

limit of Cu in Fe, rather than to irradiation. 

Ion irradiations, including protons and heavier species, are widely utilized to 

emulate neutron irradiation effects in F-M and ODS alloys, especially to access 

irradiation damage levels 100 dpa [30,36–39]. Ions can deliver high irradiation damage 

rates in short experimental time frames, at lower costs, and with little to no residual 

radioactivity. However, questions remain about the ability of ions to comprehensively 

emulate the damage introduced by neutrons in a reactor environment. Studies on the 

efficacy of charged particles to emulate neutron damage have tended to focus primarily 

on void nucleation and growth. For example, Was, et al. [36] is able to obtain a relatively 

consistent void morphology in a commercial heat of F-M alloy HT9 between neutron and 

self-ion irradiations. But in the same study, the G-phase (Si-Ni-Mn-rich nanoclusters) 

morphologies are markedly different between irradiation types. Likewise, irradiation 

evolution of ODS oxide nanoclusters has also been noted to differ between neutron and 

ion irradiations [40]. 

Given that nanoclusters contribute significantly to the mechanical performance – 

especially under irradiation – of F-M [23] and ODS alloys [41], it is critical that we 

understand whether charged particle irradiations can appropriately emulate neutron 
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irradiation-induced nanocluster evolution. Charged particle and neutron irradiations have 

several key differences that affect resultant nano/microstructures: a) dose rates typically 

differ by at least two orders of magnitude, and b) differences in irradiating particle type 

introduce differences in damage cascade parameters. The consequences of these dose rate 

and damage cascade differences are largely unknown, particularly with respect to the 

mechanisms of nanocluster evolution. But attaining this mechanistic understanding is a 

vital step toward accomplishing the greater challenge of predicting the performance of 

ODS and F-M components over reactor lifetimes. 

The objective for this dissertation is to determine the mechanism of radiation-

induced nanocluster evolution in oxide dispersion strengthened and ferritic-martensitic 

alloys. A series of irradiation experiments are conducted, with characterization of the 

microstructure and cluster morphology measured. These results are coupled with cluster 

evolution modeling efforts to describe the observed cluster evolution as a result of each 

irradiation. Chapter 2 of this thesis will first outline the relevant background information, 

including details about the alloys in question, existing literature on the mechanisms and 

modeling of cluster evolution, and current experimental results of cluster evolutions. 

Chapter 3 outlines the objective of this thesis. Chapter 4 presents the detailed 

experimental procedures applied. The results of the irradiation and characterization 

experiments are presented in Chapter 5, while the detailed approach for the modeling 

efforts and analysis of the model results is outlined in Chapter 6. Chapter 7 reviews and 

discusses the experimental results and related interpretation of the model predictions, 

including limitations of the model. Finally, a set of conclusions and recommended future 

work are provided in Chapter 8.
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CHAPTER TWO: BACKGROUND 

Structural and cladding components in advanced nuclear reactor applications will 

be subjected to a high fluence of fast neutrons at temperatures higher than previous 

reactor designs. Damage from neutron bombardment in these applications is capable of 

producing considerable changes in the microstructure and mechanical properties of such 

components, impacting their long-term durability and useful life. Within prior generation 

reactors, structural and cladding components have been observed to experience 

undesirable irradiation-induced side effects including swelling, embrittlement, and 

enhanced creep. These changes in mechanical properties have been traced to irradiation-

induced evolution in the microstructure, including the nucleation and growth of 

dislocation loops and voids, phase transformations, and composition gradients present at 

grain and sink boundaries. 

A variety of advanced alloys are actively under development for structural and 

cladding applications for Generation IV nuclear reactors that will ideally provide 

enhanced resistance to neutron bombardment, leading to longer-term stability in their 

mechanical properties and increasing their useful life in these applications. The 

microstructure of these advanced alloys are generally distinguished by having a high sink 

strength for irradiation-induced defects, which is generally accomplished through the 

presence of smaller laths, high dislocation density, and/or nanoscale phases embedded 

within the matrix. Commercial ferritic-martensitic (F-M) alloys and ferritic oxide 

dispersion strengthened (ODS) alloys are considered candidates for these applications 
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due to their high temperature strengths and dimensional stability upon irradiation. 

Additionally, ODS and other nanostructured ferritic alloys (NFAs) contain a high density 

of nanoparticles, which: 1) act as localized sinks for point defects, providing resistance to 

irradiation swelling, and 2) strengthen the material without significantly compromising 

ductility. However, the long-term irradiation stability of the microstructure of these alloys 

is still not well understood, particularly the irradiation-induced evolution of nanoscale 

phases that may be present. 

This chapter will provide an overview of the mechanisms of irradiation damage 

and its effects on b.c.c. Fe-based alloys, and the mechanisms of nanocluster evolution in 

an irradiation environment. An overview of commercial F-M and ODS alloys will be 

provided, including an assessment of existing literature covering irradiation-induced 

microstructure and nanocluster evolution. 

2.1 Mechanisms of Irradiation Damage 

The bombardment of neutrons onto a structural component in a nuclear reactor 

will induce the localized displacement of atoms within the microstructure of the target 

alloy. As a result, for the development of any alloys for nuclear reactors, a clear 

understanding of the irradiation response of the microstructure is required to validate an 

alloy for use. However, neutron irradiation experiments are time-consuming (10+ years 

in a fast neutron spectrum to accumulate up to 100 displacements per atom), extremely 

costly, and specimens become highly activated and thus difficult to handle and 

characterize [42]. In order to accelerate the evaluation process for F-M and ODS alloys, 

charged particles are increasingly being used to emulate neutron irradiations. Charged 

particle irradiations allow the possibility of conducting irradiation experiments within a 
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shorter time period (i.e. over a few hours or days) and will typically not cause activation 

of the material, accommodating faster turnaround in post irradiation examination and 

analysis. This section will provide an overview of the mechanism of irradiation damage 

accumulation, then discuss the relevant similarities and differences between neutron 

irradiation and charged particle irradiation experiments. 

2.1.1 Irradiation Damage 

Irradiation damage is incurred when an incident particle (i.e. neutron, proton, or 

ion) interacts with the atomic structure of the target alloy. The incident particle will 

initially translate through the matrix of the target material before eventually colliding 

with the nucleus of a target matrix atom (i.e. the primary knock-on atom, or PKA). If 

enough energy is transferred from the incident particle to the PKA, it will be dislodged 

from its original lattice position and relocated elsewhere with the matrix, likely as an 

interstitial defect. A corresponding vacancy defect remains at this original lattice 

position. The coupling of these interstitial and vacancy defects is referred to as a Frenkel 

pair (Figure 2.1). Furthermore, if the amount of energy transferred to the PKA is 

sufficiently high, the high-energy PKA will impact additional target matrix atoms, 

creating a chain reaction, or cascade, of multiple Frenkel pair defects. 
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Figure 2.1. Illustration of Frenkel pair generation by an incident particle on a 

target alloy matrix, from [43]. 

If a continuous fluence of incident particles is present, the generation of Frenkel 

pair defects will accumulate at a rate that is proportional to the particle fluence. The rate 

of damage accumulation is typically quantified in terms of displacements per atom per 

sec (dpa/s). When the fluence of incident particles is applied over a fixed period of time, 

the resultant dose (in dpa) may be determined. 

Through the ongoing accumulation of Frenkel pair defects during irradiation, a 

non-equilibrium, higher concentration of vacancy and interstitial defects will result. 

Given that most alloying solutes in F-M and ODS alloys diffuse via the vacancy diffusion 

mechanism [42], a higher concentration of vacancies will result in radiation-enhanced 

diffusion rates for each of the substitutional solutes. The vacancy defects also have the 

ability to diffuse within the matrix of the material. The diffusion of each vacancy defect 

may result in one of the following: 1) recombination with an existing interstitial defect, 2) 

clustering with other vacancy defects to create voids or dislocation loops, or 3) migration 

to a sink where it may become "trapped" and is no longer mobile. The relative likelihood 

of each of these results depends upon many factors in the irradiation process. 
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2.1.2 Charged Particles as Surrogates for Neutron Irradiation 

Charged particle irradiations offer several opportunities for earlier verification of 

alloys under development for structural and cladding applications. Higher dose rates 

enable faster turnaround time for irradiation experiments, which provides the opportunity 

to gain information about the irradiation response of alloys much quicker. With the 

ability to conduct experiments more quickly, development through iterative experiments 

and ultimately the complete design cycle may be expedited, potentially saving large 

amounts of product development resources. Despite these important benefits, it is critical 

to recognize that some inherent differences exist between in-lab charged particle 

irradiation experiments and the in-reactor neutron irradiation environment components 

will be exposed to. In particular, the irradiation dose rate, depth profiles, and damage 

cascade morphologies all differ widely between proton, self-ion, and neutron irradiation. 

Currently, there is limited understanding of the significance of these physical differences 

and how they manifest in the resultant microstructure and mechanical properties of F-M 

and ODS steels. 

As charged particles such as protons or Fe2+ self-ions are incident on the target 

alloy, the inherent charge of the ions will encounter coulombic interactions with both the 

positive charged nuclei and negatively charged electron clouds of the target matrix atoms. 

These coulombic effects will tend to naturally reduce the momentum of the incident 

particle, until the particle eventually collides with the PKA. This reduction in momentum 

will limit the depth that each particle is able to translate through the matrix before 

colliding with the PKA. The displacement damage caused by charged particle irradiations 

may be calculated using the Stopping and Range of Ions in Matter (SRIM) [44], which is 
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a Monte Carlo simulation of incident ion interactions with the target. The representative 

depth profiles of irradiation with either 5 MeV Fe2+ ions or 2 MeV protons on a target Fe-

9%Cr alloy using are provided in Figure 2.2. Upon irradiation with 5 MeV Fe2+ ions, the 

damage will be limited to only the top ~1-1.5 μm of depth. Likewise, upon proton 

irradiation with 2 MeV protons, the damage is limited to a depth of ~20 μm. On the other 

hand, neutrons are charge neutral and do not encounter these same coulombic interactions 

with the target matrix atoms. Accordingly, the momentum of the incident neutron 

encounters little resistance to impede its inertia and will translate through the target 

material until colliding with the PKA at a random depth. The result of neutron irradiation 

is a generally flat damage profile through the thickness of the material (Figure 2.2). 

 
Figure 2.2. Simulated damage profiles for 5.0 MeV Fe++ ions and 2.0 MeV protons 

incident on Fe-9%Cr, with a flat neutron damage profile of arbitrary magnitude for 

reference, from SRIM [44]. 
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It has been estimated that different irradiating particles, and their respective 

momentums at the time of incidence, are responsible for generating different 

morphologies of damage cascades [42] and in some cases (e.g. protons), generate only 

Frenkel pair damage rather than damage cascades [45]. The cascade process has been 

studied extensively by molecular dynamics simulations [46–48], and these studies 

consistently reveal intricate and complex cascade shapes that are dependent not only on 

the particle type, but also on its energy and the target composition. Furthermore, the 

extent of damage remaining in the material following cascade collapse is not easily 

quantifiable relative to the size or expanse of the original cascade. In short, for a given set 

of experimental parameters, it is not easy to understand damage cascade formation and 

evolution without conducting cascade dynamics simulations. A simplified approximation 

may be applied based on the work of Norgett, et al. [49] and Lindhard [45,50,51] and 

summarized in [42], in which the relative size, l (i.e. effective diameter) of a single 

damage cascade for each irradiation condition may be estimated using [42]: 

𝑙 = 2 (
3

4𝜋

𝐸𝐷

𝑈𝑎𝑁
)

1/3

     (2.1)  

where Ua is the energy per atom (~0.3 eV [42]), N is the atomic density of the target 

(85.2 atoms/nm3 for b.c.c. Fe). The damage energy (ED) of the cascade may be 

approximated as [42]: 

𝐸𝐷 =
𝑇

1+𝑘𝑁𝑔
      (2.2)  

For Eq. 2.2, T is the energy transferred to the primary knock-on atom (PKA), while kN 

and g are each a numerical approximation given by [42]: 

𝑘𝑁 = 0.1337𝑍1
1/6

(
𝑍1

𝐴1
)

1/2

     (2.3)  
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and 

𝑔 = 3.4008𝜀𝑁
1/6

+ 0.40244𝜀𝑁
3/4

+ 𝜀𝑁    (2.4)  

in which Z1 and A1 are the atomic number and atomic weight, respectively, of the incident 

particle. The value for 𝜀𝑁 may be calculated as [42]: 

𝜀𝑁 = (
𝐴2𝑇

𝐴1+𝐴2
) (

𝑎

𝑍1𝑍2𝜀2
)      (2.5)  

where Z2 and A2 are the atomic number and atomic weight, respectively, of the target 

atoms (Fe), ε is the unit electronic charge (1.44 eV·nm). The screening radius (a) is 

calculated by [42]: 

𝑎 = (
9𝜋2

128
)

1/3

𝑎0(𝑍1
2/3

+ 𝑍2
2/3

)
−1/2

    (2.6)  

in which 𝑎0 is the Bohr radius (0.053 nm). The values for each of these variables and the 

estimated effective diameter of cascades resulting from common irradiating particles are 

given in Table 2.1. By this estimation, the cascades resulting from proton irradiation are 

the smallest (~2.3 nm), while those from Fe2+ irradiation are larger (~6.8 nm), and typical 

cascades created by fast neutron irradiation are the largest at ~10.4 nm. One should note 

that this volume does not describe a true irradiation damage cascade that envelops the 

region, but rather describes a space over which Frenkel pairs are produced. 
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Table 2.1 Summary of calculation variables and estimated effective diameter for 

different irradiating particles. 

Irradiating 

particle 

PKA 

Energy,T 

(eV), 

from [42] 

Screening 

Radius,   

a (nm) 

𝜺𝑵 𝒌𝑵 g 

Cascade 

Damage 

Energy, 

ED (eV) 

Estimated 

effective 

cascade 

diameter,   

l  (nm) 

1 MeV electrons 60 0.016 60.00 0.000 75.4 60 1.65 

2 MeV protons 200 0.015 0.026 0.134 1.90 159 2.28 

5 MeV Fe2+ 5000 0.009 0.004 0.157 1.34 4134 6.76 

Fast neutrons 35000 0.015 4.520 0.134 10.1 14857 10.36 

 

2.2 Ferritic-Martensitic Alloys 

High-Chromium (9-12%) ferritic-martensitic (F-M) alloys have been in use as 

early as 1912. At that time, it was discovered that Fe-based alloys with such high Cr 

content were resilient against rusting, while also producing a hard and sharp cutting edge. 

As a result, F-M alloys were first used in knife and blade applications [11]. Later, in the 

1930's, it was discovered that adding solutes to F-M alloys, including small amounts of C 

(<0.1%), Mo, W, V, Nb, and N, would yield increased creep-rupture strength and further 

improve resistance to corrosion and oxidation. With these improvements, F-M alloys 

have found many uses in a variety of applications including chemical plants, gas turbines, 

boilers, steam power plants, aircraft/aerospace, and nuclear reactor components [11]. 

More recently, in the 1970's, interest in use of F-M steels in nuclear reactor 

applications increased even further. At that time, austenitic stainless steels were the 

prominent materials of choice for fuel and cladding applications, but were found to 

exhibit swelling over long periods of exposure to irradiation [11]. On the other hand, F-M 
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alloys have demonstrated much better resistance to swelling, while also having a higher 

thermal conductivity and lower coefficient of thermal expansion [11]. For these reasons, 

F-M steel alloys are considered more viable alternatives for structural components in 

advanced nuclear reactors moving forward. 

As the development of F-M alloys advances, many factors in the metallurgy of 

these alloys will influence the macroscopic properties and performance of the materials. 

In this section, an overview of the metallurgical considerations will be presented, along 

with reflection on the limitations of F-M alloys and the current developmental directions. 

2.2.1 Physical Metallurgy 

Ferritic-martensitic alloys are generally produced following a three step process:  

1) austenitizing at elevated temperature, 2) transformation from austenite to martensite 

via rapid cooling to room temperature, and 3) tempering at a moderately elevated 

temperature to obtain desirable microstructure and macroscopic properties [11]. Within 

this framework, many variables may be adjusted in the alloys and the production process 

to enable "tuning" of the properties to help meet desired requirements.  

The equilibrium phase diagram of the Fe-Cr system is shown in Figure 2.3. High 

Chromium (9%) F-M alloys will generally have an austenitic structure (γ-phase) at 

temperatures between 850 - 1200°C, with the γ-phase loop extending out to 

approximately 12% Cr [11]. This loop can be extended to entail higher Cr contents 

through alloying with elements such as C, N, Ni, Mn, Cu, and Co, while addition of 

elements including Mo, Nb, V, W, Si, Ti, and Al will reduce the Cr limit of this loop 

[11]. 
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Figure 2.3. Fe-Cr equilibrium phase diagram, from [11]. 

The resultant phases following the rapid cooling of an austenized F-M alloy will 

also depend upon the solute content of the alloy. The predicted phases are illustrated by 

the Schaeffler-Schneider diagram in Figure 2.4, in which phase boundaries are 

differentiated by the relative Ni-equivalent and Cr-equivalent of the alloying components, 

which may be calculated using [11]: 

𝑁𝑖 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 (𝑤𝑡%) = (%𝑁𝑖) + (%𝐶𝑜) + 0.5(%𝑀𝑛) + 0.3(%𝐶𝑢) +

30(%𝐶) + 25(%𝑁)         (2.7) 

𝐶𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 (𝑤𝑡%) = (%𝐶𝑟) + 2(%𝑆𝑖) + 1.5(%𝑀𝑜) + 5(%𝑉) +

1.75(%𝑁𝑏) + 0.75(%𝑊) + 1.5(%𝑇𝑖) + 5.5(%𝐴𝑙) + 1.2(%𝑇𝑎) + 1.2(%𝐻𝑓) +
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1.0(%𝐶𝑒) + 0.8(%𝑍𝑟) + 1.2(%𝐺𝑒)       (2.8) 

Depending on the solute content of the alloy, the resultant microstructure upon cooling 

may be a combination of martensite (α'), ferrite (δ), or austenite (γ). 

 
Figure 2.4. Schaeffler-Schneider diagram, predicting resultant microstructure 

following rapid cooling from austenite based on Ni-equivalent and Cr-equivalent 

content, from [11]. 

Another key consideration when alloying F-M steels is controlling the start and 

finish temperatures of the martensitic transformation, which must be maintained above 

room temperature, ensuring full transformation will occur upon cooling. Generally, the 

addition of solutes will lower both the start (Ms) and finish (Mf) temperatures of the 

martensitic transformation, thus, there are limits to the amount of alloying which is 

feasible. For F-M alloys, Ms typically ranges from 250° - 350°C, while Mf ranges from 

80° - 190°C [11]. 
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A representative isothermal transformation (TTT) diagram for a 12Cr-MoVNb 

ferritic-martensitic alloy is illustrated in Figure 2.5. In this case, the nose of the pearlite 

transformation region is at approximate 700°C at an isothermal cooling time of almost 

104 seconds (~2 hours). Since this is a relatively long duration, it is possible to use air 

cooling to facilitate the transformation from austenite (A) to martensite (M), without any 

formation of pearlite (P) or bainite. And, since air cooling is a slower process than 

traditional water or oil quenching, the martensitic microstructure will result in laths 

which are thicker than typical rapid quenched steels [11]. 

 
Figure 2.5. Isothermal transformation (TTT) diagram for 12Cr-MoVNb 

martensitic steel (A = Austenite, K = Carbide, Sp δ-F = Trace of ferrite, M = 

Martensite, P = Pearlite, Ac1b = Start of austenite formation on heating, Ac1e = 

Completion of austenite formation on heating), from [11]. 

Once the transformation to a martensitic structure is completed, the material is 

brittle and generally not useful. A tempering process is necessary to enable 

recrystallization of the microstructure and obtain more desirable and useful properties. In 

order to avoid re-austenitizing of the material, the temperature of the tempering process 
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needs to be below the point at which austenite formation (Ac1) will start (ref. Figure 2.5). 

It is important to recognize that addition of alloying elements will also influence Ac1, 

thus affecting the range of temperatures available for the tempering process. A summary 

of the alloying species influence on austenite formation temperature (Ac1) is provided in 

Table  2.2. Typical temperatures for Ac1 in F-M steels range from 760 - 850°C, while 

typical values for the completion of austenite transformation upon heating (Ac3) range 

from 870 - 960°C [11]. 

Table 2.2 The influence on austenite formation temperature upon heating by 

several alloying elements, from [11]. 

Element 
Change in Ac1 (°C) 

per mass % 

Ni -30 

Mn -25 

Co -5 

Si +25 

Mo +25 

Al +30 

V +50 

 

In the end, the tempering temperature may also be strategically selected to induce 

different types of microstructure development. Softening due to tempering at 

temperatures below ~500°C will be slow, but increases dramatically at temperatures in 

the range between 500° - 550°C as annealing is more pronounced [11]. At temperatures 

above 550°C, the response of the microstructure will be a combination of annealing (i.e. 

softening) along with precipitation of secondary phases including M23C6 carbides or 

nitrides such as VN or Nb(CN), which contribute to hardening of the alloy [11]. In 
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general, the extent of precipitation will depend on the tempering temperature and the 

amount of C and N in the alloy (e.g. higher C or N content will give way to more 

precipitation) [11]. The final microstructure will consistent of tempered martensitic laths 

decorated with M23C6 particles along the prior austenite and ferrite grain boundaries. 

Finer precipitates may also be found either within the laths or on the boundaries of the 

martensitic laths and subgrains [11]. 

2.2.2 Limitations & Development 

Advanced Generation IV nuclear fission reactors are expected to operate at 

temperatures potentially as high as 700°C. Therefore, materials utilized in reactor core 

applications as fuel cladding and structure components will need to exhibit long-term 

thermal stability (along with irradiation resistance) at these extreme conditions. In the 

case of high-chromium ferritic-martensitic steels, the application of aging and creep 

straining at temperatures from 400° - 750°C leads to further precipitation of several 

possible new phases in the microstructure (summarized in Figure 2.6) [11]. One notable 

group of secondary phases that develop are the Laves phases, which typically nucleate 

and grow at temperatures ranging from 450° - 650°C. Isothermal time-temperature-

precipitation (TTP) diagrams are provided for several F-M steels in Figure 2.7. The nose 

of the curves for T91 and HT9 are at approximately 550° to 600°, which gives way to 

precipitation of laves phases in these alloys after only ~2 hours of operation at these 

temperatures. Another example of an isothermal TTP diagram for P92 (NF616) is 

provided in Figure 2.8. In this case, curves representing increasing amounts of laves 

phase precipitation are calculated to show that, depending on the aging temperature, the 

phase amount increases to an equilibrium value. 
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Figure 2.6. Precipitation phases observed in tempered, aged, and creep-rupture 

tested ferritic-martensitic steels, from [11]. 

Based on the manifestation of precipitates at higher operating temperatures, F-M 

steels are typically limited in thermal creep-rupture strengths above ~550°C [11] and are 

currently only approved for applications operating below these temperatures. Further 

development of F-M alloys continues to strive to increase this threshold, particularly in 

light of goals for advanced nuclear reactors to operate at temperatures as high as 700°C. 
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Figure 2.7. Isothermal TTP curves for laves phases in several ferritic-martensitic 

steels, from [11]. 

 
Figure 2.8. Isothermal TTP curves for laves phases in P92 (NF616) steel, from [11]. 

In summary, it has been shown that the relative amounts of alloying solutes in 

high-chromium F-M steels will greatly influence a multitude of properties including the: 

a) Austenite solubility limit of Cr (Figure 2.3) 

b) Resulting phases (α', γ, and δ) after the austenite-to-martensite transformation 

(Figure 2.4) 
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c) Martensite transformation temperatures (Ms and Mf) upon cooling 

d) Austenite transformation temperatures (Ac1, Ac3) upon heating (Table 2.2) 

e) Phases of precipitates and relative amounts formed during tempering 

f) Phases of precipitates and relative amounts formed upon aging and creep 

straining (Figures 2.6, 2.7, and 2.8). 

Based on these strong dependencies on alloying content, much of the future 

development of F-M alloys is aimed at the elemental tailoring of the alloying elements to 

achieve the following goals [11]: 

1) Optimize the final constituents, particularly the δ-ferrite content (e.g. adding 

Cu, Co). 

2) Maximize the solid solution strengthening (e.g. adding W, Mo, N). 

3) Stabilize the martensite dislocation structure and M23C6 precipitates (e.g. 

adding B). 

4) Enhance dispersed precipitate strengthening with fine VN or Nb(CN), which 

are more resistant to coarsening during ageing. 

5) Reduce activation by replacing higher activation elements including Mo, Nb, 

and Ni with more resistant elements such as W, V, Mn, Si, Ta, and Ti. 

Although these are important directions for research and development, F-M steels 

are unlikely to be approved for applications at dramatically higher temperature limits 

within the foreseeable future [11]. As a result, variations of F-M steels containing small, 

nanoscale particles have gained more attention due to their increased strength and 

stability at higher temperatures. The next section will provide an overview of how the 

development of ODS alloys has complemented F-M steels, potentially presenting a 
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solution to the requirement for irradiation-resistant structural materials capable of 

operating at higher temperatures. 

2.3 Oxide Dispersion Strengthened Alloys 

Oxide dispersion strengthened (ODS) alloys are variations of F-M alloys, 

modified with a distribution of small, nanoscale particles intended to enhance the strength 

of the material at elevated temperatures where traditional F-M alloys are limited [11]. 

Initial versions of these steels were developed in the 1960's, with compositions of 

13%Cr-1.5%Mo and 11-13%Cr-3%W, and included small oxide dispersions of Ti2O3 

and/or Y2O3 particles [11]. These small Ti and Y oxide particles provide additional 

strength at elevated temperatures, as they effectively inhibit dislocation motion. At that 

time, these alloys were found to possess strong swelling resistance upon irradiation, even 

when He was known to be present [11], as the oxides provide sites for the nucleation and 

"trapping" of He bubbles. Today, development of ODS alloys is actively underway in 

Japan, Europe, and the United States [52], while only a handful of commercially 

available ODS alloys are currently produced, including MA956, PM2000 and MA957 

(which has been discontinued). 

Although the development of ODS alloys is still in a relatively early stage, 

interest in ODS alloys continues to grow in the field of nuclear materials due to their 

irradiation resistance and improved mechanical performance at higher temperatures. In 

this section, an overview of the unique manufacturing and microstructural implications of 

ODS alloys will be presented, along with a brief review of current development thrusts 

and directions moving forward. 
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2.3.1 Metallurgy 

One of the key challenges for ODS is the development of a standardized process 

for creating a semi-homogeneous distribution of secondary phase particles throughout the 

microstructure of the material. This is typically accomplished through a process of 

mechanical alloying by ball milling fine powders of the metal along with ultrafine oxide 

powders (often Y2O3) [11,52]. Subsequently, the powdered mix is consolidated through 

either hot extrusion, hot isostatic pressing (HIP), or spark plasma sintering at elevated 

temperature [11,52,53]. As with traditional F-M steels, the alloy is rapidly cooled to 

achieve a martensitic structure, followed by tempering at elevated temperature to achieve 

the final microstructure. 

The resultant microstructure generally contains fine grains less than 1 µm in 

length, resulting in enhanced uniaxial creep-rupture strength and ductility. However, 

elongated grains tend to lead to anisotropy in mechanical properties, which is one of the 

primary concerns with ODS alloy development [11,52]. The size of the nanoscale oxide 

phase is generally on the order of a few nm, and are typically enriched with Ti content 

often higher than Y, which suggests that Ti solutes have an influence on the dissolution 

process of the oxide powders [52]. The oxide phases present in ODS have been shown to 

improve radiation resistance in F-M alloys. The oxides provide a high density of 

interfaces, which act as sinks for the point defects generated by irradiation. As a result, 

the formation of defect clusters is less favorable, thus delaying the nucleation of voids, 

which lead to swelling. Ideally, the microstructure is most effective when the oxide 

nanoclusters are smallest (few nm) and homogeneously distributed, to maximize the sink 

strength of the microstructure. 



24 

 

 

2.3.2 Limitations and Development 

By comparison to traditional F-M alloys, the development of ODS alloys are still 

in a relatively early stage. One of the key challenges is to overcome the anisotropy of 

mechanical properties, which are attributed to the elongated grain structure [11,52]. 

Development is underway for fabrication of ODS alloys with a more equiaxed grain 

structure by tailoring the microstructure through composition, warm rolling, and heat 

treatment processes [11]. Generally, compositions with 9-11% Cr and 2-3% W have 

exhibited improved anisotropy and resulted in excellent tensile strengths [11].  

Additionally, methodologies for producing thick-walled components out of ODS 

alloys has not yet been established, nor has a process for joining (i.e. welding) ODS 

alloys to make complex fabricated assemblies [11]. However, due to the clear advantages 

and irradiation resistance potential of ODS alloys, several thrusts of development are 

occurring in parallel to develop production capability for ODS alloys and optimize 

microstructure to maximize irradiation resistance while ensuring isotropic mechanical 

properties for nuclear reactor applications. 

2.4 Mechanisms of Cluster Evolution 

As discussed above, the distribution of nanoscale phases within the matrix of 

ODS alloys provide a number of benefits, making them potential alternatives to 

traditional F-M alloys as they enable higher strength and creep resistance at higher 

operating temperatures [52,54–56]. These dispersed nanoclusters inhibit dislocation 

motion, strengthening the material without dramatically compromising ductility, and 

offering sites for vacancy and He clusters to nucleate, limiting the ability of voids and 

bubbles to grow and cause substantial swelling of the material [52,54–56]. Although 
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traditional F-M alloys do not contain any nanoscale phases in their "as manufactured" 

condition, several irradiation studies have shown that irradiation-induced nanoscale 

phases rich in Si, Mn, and Ni (referred to as G-phase), Cu-rich clusters, or Cr-rich 

clusters (α'-phase) may nucleate within the material matrix. Subsequently, these phases 

are believed to provide similar benefits as the oxide nanoclusters in ODS alloys, namely, 

increased strength and resistance to swelling via voids and bubble formation. 

Due to the benefits of these dispersed phases, one of the over-arching questions in 

the development of nanofeatured ferritic alloys (NFA) such as ODS and F-M alloys for 

nuclear applications is whether these nanoscale phases will remain stable upon long-term 

irradiation to higher doses at the elevated temperatures planned for advanced nuclear 

reactors. It has been hypothesized that the stability of nanoclusters in b.c.c. Fe-based 

alloys upon irradiation is influenced by multiple factors, including: a) ballistic dissolution 

due to nuclear displacements, b) radiation-enhanced diffusion, c) nucleation, and d) 

Ostwald ripening. Upon irradiation, each of these influences are potentially in effect, and 

the resulting evolution of nanoclusters likely depends on the relative extent of the 

influence of these factors. In this section, a brief overview of each mechanism will be 

provided, with a discussion on the potential implications to oxide nanoclusters in ODS or 

G-phase, Cu-rich and α'-phase clusters in F-M alloys. 

2.4.1 Ballistic Dissolution 

Incident irradiation particles impact PKA atoms and (at high enough energies) can 

generate cascades of collisions in which target atoms are displaced from their original 

lattice positions. These cascades will occasionally overlap with the distributed 

nanoclusters of the material, potentially leading to the physical dissolution of solutes 
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from the nanoclusters to the surrounding matrix and thus, the reduction in size of the 

nanoclusters. This process is described as ballistic dissolution and should be considered 

as two separate, complimentary mechanisms: 1) recoil dissolution, and 2) disordering 

dissolution [57]. Recoil dissolution refers to the ejection of solute atoms from the 

nanocluster due to the physical displacement of knock-on atoms within the damage 

cascades to a position outside of the nanocluster. Heinig, et al. [58] developed a method 

to estimate the average distance a solute atom travels upon ejection (�̅�). By executing a 

SRIM calculation [44] on a thin slab of the cluster composition imbedded in an Fe-

matrix, a recoil distribution is created and an average recoil distance may be determined 

[59]. Typical values for �̅� are approximately 0.25 - 0.35 nm [59], depending on the 

solute, which is on the same order as the lattice parameter of b.c.c. Fe (0.286 nm). 

On the other hand, disordering dissolution refers to the localized disordering of 

atoms within the damage cascade. Although not physically ejected, disordered atoms are 

no longer strongly bound to the nanoclusters, thus enabling them to more readily diffuse 

away, resulting in cluster size reduction. In either case, once an atom has been displaced, 

it is free to diffuse within the matrix and either: a) rejoin the original nanocluster, b) join 

a different nanocluster, c) move to another nanocluster via subsequent recoil events, or d) 

remain in the matrix. 

Finally, Dai, et. al [34] has shown through Molecular Dynamics and Metropolis 

Monte Carlo simulations that overlapping cascades will lead to a higher rate of Frenkel 

pair production, also giving way to a higher size and number density of vacancy clusters. 

This insight suggests that damage cascade size and morphology may have a direct 
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influence on the amount of cascade overlaps and thus, the ability of irradiation to 

influence the evolution of the microstructure. 

2.4.2 Radiation-Enhanced Diffusion 

As discussed in Section 2.1, irradiation will result in a concentration of defects 

that exceeds those driven purely by thermodynamics. This higher concentration provides 

additional vacancies that enable atomic transport via diffusion at a higher rate [57]. This 

increased mobility of atoms enables solutes to migrate more quickly, thus influencing the 

microstructure. Solutes have an opportunity to diffuse towards or away from existing 

nanoclusters, potentially enlarging or shrinking such clusters, depending on chemical 

composition gradients. Since irradiation results in a non-equilibrium condition, the 

resulting evolution of nanoclusters may also be in a non-equilibrium state. 

Quantifying radiation-enhanced diffusion (Dirr) is typically accomplished through 

comparison of the concentration of vacancies present in the microstructure with and 

without irradiation [59,60]: 

𝐷𝑖𝑟𝑟 =
𝐶𝑣

𝑖𝑟𝑟

𝐶𝑣
𝑒𝑞 𝐷𝑡ℎ     (2.9)  

where 𝐶𝑣
𝑒𝑞

 and 𝐶𝑣
𝑖𝑟𝑟 are the concentration of vacancies at thermal equilibrium and during 

irradiation, respectively. The thermal diffusion rate (Dth) is the solute diffusion rate 

following typical arrhenius behavior. The value for 𝐶𝑣
𝑖𝑟𝑟 may be estimated as [59]: 

𝐶𝑣
𝑖𝑟𝑟 = 𝑅𝜏      (2.10)  

in which R is the defect production rate (dpa/s) and τ is the characteristic amount of time 

required for defects to react with sinks in the microstructure. This time can be written as 

[59]: 

𝜏 =
1

𝑘2𝐷𝑣
      (2.11)  
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with k2 as the sink strength of the microstructure and Dv is the thermal diffusion rate for 

vacancies. In these relationships, it is important to recognize that microstructures with 

higher sink strengths will result in lower values for τ, 𝐶𝑣
𝑖𝑟𝑟, and thus, Dirr. This suggests 

high sink strength alloys will inherently be more resistant to radiation-enhanced 

diffusion. 

2.4.3 Ostwald Ripening 

Ostwald ripening can be described as the coarsening of particles within either a 

solid or liquid solution. In this mechanism, smaller particles within solution tend to 

dissolve, while larger particles tend to grow due to redeposition of dissolved solutes from 

the smaller particles. The net result is an increase in average size of the particles, along 

with a decrease in number density, as illustrated in Figure. 2.9 [61]. The Ostwald ripening 

mechanism is driven by the relative difference of particle interfacial energy. Smaller 

particles have higher interface energy and are less stable. Thermodynamically, the system 

is driven to minimize surface area and surface tension (i.e. interfacial energy) and thus 

sacrifices smaller, incoherent particles in favor of larger ones. 
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Figure 2.9. Illustration of typical nanocluster size and number density evolution 

that is characteristic of Ostwald ripening with time progressing from a) to d), from 

[61]. 

Classical theory of Ostwald ripening was originally developed in ~1958 for two 

different extreme conditions. The Lifshitz-Slyokov theory accounts for the case for which 

the reaction rate for Ostwald ripening is limited by diffusion of atoms in the solution. On 

the other hand, the Wagner theory assumes that the reaction rate is only limited by the 

kinetics of the particle-matrix interface [62,63]. The most complete solution for modeling 

Ostwald ripening is with combining the classical Lifshitz-Slyokov and Wagner (LSW) 

models, but this solution is only applicable for the situation of low particle fraction that is 

vanishing. The general solution of this combined model can be written as [64]: 

〈𝑟𝑝(𝑡)〉3 − 〈𝑟𝑝(𝑜)〉3 = 𝐾𝐿𝑆𝑊𝑡     (2.12)                
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where 〈𝑟𝑝〉 is the average particle radius, KLSW is the coarsening rate constant, and t is 

time. 

Since the development of the LSW theory, much effort has occurred to further 

enhance and apply the theory in a more general form for multiple circumstances. Most 

literature involves an abundance of theory and mathematics attempting to enhance 

existing models or create new models to develop better prediction methods for Ostwald 

ripening in such cases as in binary alloys [62], ternary alloys [65], multi-component 

alloys [66], as well as ripening in liquid solutions [61,64]. Unfortunately, few studies in 

literature evaluate irradiation experiments and attempt to correlate calculating models 

with observed results. 

The most common theoretical model utilized for simulating Ostwald ripening is 

the phase-field model. Key assumptions with this model are: 1) the transport of mass 

occurs by diffusion only, and 2) the different nanoparticles are not allowed to coalesce. 

As a result of the second assumption, each particle is allowed to have its own 

crystallographic orientation, which brings about the introduction of multiphase fields 

[64]. Another key assumption of the classical LSW theory is that the volume fraction of 

the nanocluster particles is vanishing, which creates some limitation. In a refinement to 

the phase-field model developed by Kim [64], a correction to the rate constant has been 

included that allows the volume fraction to evolve over time. In the model by Kim, 〈𝑟𝑝〉 is 

dependent on the volume fraction, fp(t), and the number density, np(t). This revised model 

was simulated on a solid-cluster in liquid system to assess its applicability and compared 

to the classical LSW model. The evolution of fp and np over time in this simulation are 

shown in Figure 2.10. The volume fraction of particles increases initially and then 
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stabilizes after longer durations. Meanwhile, the number density dramatically declines, 

which is consistent with the coarsening mechanism of Ostwald ripening [64]. 

 
Figure 2.10. Evolution of the particle volume fraction (fp) and number of particles 

(np) in a typical simulation, from [64]. 

Additionally, the results for four different simulations with different starting 

volume fractions are illustrated in Figure 2.11 as a plot of the evolution of 〈𝑟𝑝〉3 over time 

[64]. Based on the classical LSW theory from Eq. 2.12, these plots would be expected to 

follow a linear trend. For lower volume fractions, the trend appears to be close to linear, 

but at higher volume fractions, the slope appears to continue to slightly increase 

throughout the duration of the simulation [64]. This also demonstrates the rate constant 

has a strong dependence upon the volume fraction, fp. Therefore, additional factors need 

to be considered for estimating the rate constant for Ostwald ripening. 
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Figure 2.11. Evolution of 〈𝒓𝒑〉𝟑 over time for four different initial particle fractions, 

from [64]. 

Kim wrote an expression for an adjustment to the rate constant as [64]: 

𝐾𝑎𝑝𝑝 = 𝐾𝐿𝑆𝑊 + ∆𝐾     (2.13)  

where Kapp is the apparent (i.e. observed) rate constant, KLSW is the classical rate constant 

and ΔK is an adjustment due to change in particle volume fraction. Each of these terms 

can be replaced and the following equation can be written [64]: 

𝑑〈𝑟𝑝〉3

𝑑𝑡
=

𝛿〈𝑟𝑝〉3

𝛿𝑛𝑝
|
𝑓𝑝=𝑐𝑜𝑛𝑠𝑡

∙
𝑑𝑛𝑝

𝑑𝑡
+

𝛿〈𝑟𝑝〉3

𝛿𝑓𝑝
|

𝑛𝑝=𝑐𝑜𝑛𝑠𝑡

∙
𝑑𝑓𝑝

𝑑𝑡
   (2.14)  

where the left side of the equation is Kapp, the first term on the right hand side is KLSW and 

the second term on the right hand side is ΔK. Through mathematical rearranging and 

using the definition for fp, we can write [64]: 

∆𝐾 =
〈𝑟𝑝〉3

𝑓𝑝

𝑑𝑓𝑝

𝑑𝑡
      (2.15)  

Through experimentation, 〈𝑟𝑝〉, fp, and dfp/dt can be measured and thus ΔK may be 

calculated. 
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Irradiation studies of ODS have also been observed to exhibit nanocluster 

coarsening consistent with the Ostwald ripening mechanism [67,68]. Observations such 

as these have led to hypotheses that irradiation-induced coarsening should be 

proportional to φ1/3 (i.e. KLSW from Eq. 2.13 is proportional to φ), where φ is the 

irradiation flux [59,69]. Conversely, other irradiation studies have shown evidence of 

reduction in average nanocluster size [70] and even of haloing [71,72], in which a high 

density of smaller nanoclusters nucleate around, and at the expense of, larger 

nanoclusters. This trend is fundamentally the opposite that of Ostwald ripening, and is 

commonly referred to as inverse Ostwald ripening (Section 2.4.5). 

It appears the existing theoretical models for Ostwald ripening could provide a 

strong foundation for the prediction of Ostwald ripening behavior in irradiated materials. 

Since the nanoclusters are under the additional influence of ballistic dissolution during 

irradiation, the Kim model, which allows for change in the particle volume fraction, 

could provide additional accuracy. The key challenge in developing a predictive model 

for radiation-induced Ostwald ripening will likely require the overlay of ballistic 

dissolution along with radiation-enhanced diffusion effects due to the higher 

concentration of vacancies produced (Section 2.4.5). 

2.4.4 Nucleation 

The process of nucleation may be described as the condensation or adsorption of 

solutes into a precipitate embryo. The free energy barrier to nucleation consists of two 

parts:  a) volume free energy, and b) surface free energy [73]. The volume free energy is 

the difference in free energy of each respective phase, while the surface free energy is a 
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function of the interface between each phase. If the precipitate embryo grows beyond the 

critical radius, growth of the precipitate is favored by thermodynamics. 

Two different types of nucleation mechanisms are possible: homogeneous and 

heterogeneous [73]. Homogeneous nucleation involves precipitate nuclei forming in the 

interior of the solvent phase, while heterogeneous nucleation is facilitated by the presence 

of a local, pre-existing surfaces or interfaces. Due to the reduction of surface free energy 

present in heterogeneous nucleation, the activation barrier for heterogeneous nucleation is 

typically considerably lower than homogeneous nucleation. As a result, heterogeneous 

nucleation is more kinetically favorable. In either case, the rate of nucleation and growth 

of precipitate nuclei is highly dependent on the diffusion rates of the respective solutes. 

2.4.5 Multiple Active Mechanisms 

In considering each of these mechanisms in isolation, the nanoclusters in F-M 

alloys could take any number of conflicting evolution paths. On its own, ballistic 

dissolution will result in the complete dissolution of all nanoclusters over time. 

Conversely, the mechanism of Ostwald ripening alone would lead to indefinite 

coarsening of the nanoclusters over time, at least until some saturation point is achieved. 

As irradiation is introduced, diffusion rates of solutes will be enhanced, giving way to 

increased rates for Ostwald ripening and nucleation even further. None of these 

mechanisms in isolation are capable of explaining the results of nanocluster evolution 

observed in literature (see Section 2.5). Consequently, multiple authors [57,60,74] have 

hypothesized that nanocluster evolution upon irradiation is governed by a balance 

between these competing mechanisms. 
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The concept of multiple active mechanisms has also been hypothesized in an 

emerging fields of nanoelectronics, in which ion-beam irradiation is used for size 

refinement of embedded metallic nanoparticles [58,75–78]. In this context, smaller 

nanoparticles are observed to nucleate and grow at the expense of larger nanoparticles, a 

mechanism described as "inverse Ostwald ripening". The framework of this mechanism 

involves multiple steps: 1) ion irradiation induces solute ejection (i.e. ballistic 

dissolution), 2) ejected solutes nucleate into new particles (i.e. nucleation), and 3) new 

nanoparticles grow and coarsen (i.e. Ostwald ripening). Over time, a steady, refined 

particle size distribution is obtained as each of these competing influences arrive at a new 

equilibrium state. Therefore, inverse Ostwald ripening is consistent with the notion of 

several cluster evolution mechanisms acting in parallel, culminating in an altered system 

equilibrium. 

2.4.6 Cluster Evolution Modeling in Literature 

Since the onset of development of ODS steels and NFAs, the prevailing 

hypothesis has suggested irradiation will influence the long-term stability of the 

nanoclusters in these alloys. Several efforts have been made over the past few decades to 

apply a calculation model describing the evolution of nanoclusters as a result of varying 

irradiation conditions. Irradiation parameters such as dose rate, temperature, and 

irradiation particle will all potentially influence the nanocluster evolution. Ideally, a 

calculation model would capture the influence of each of these parameters and their 

relative effect on the long-term stability of the nanoclusters. 

One of the earlier models was developed by Nelson, et al. [57]. Within this model, 

the authors isolate the ballistic effects on nanoparticle dissolution (recoil and 
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disordering), while overlaying simultaneous growth of nanoclusters via radiation-

enhanced diffusion. First, the volumetric growth rate of nanoclusters due to concentration 

of solutes in the matrix, c, is written as: 

𝑑𝑉

𝑑𝑡
=

3(𝐷+𝐷′)𝑐𝑟

𝑝
     (2.16)  

in which p is the atomic fraction of solute atoms in the cluster phase, r is the radius of the 

nanocluster, and (D+D') represents the radiation-enhanced diffusion rate of the solutes. 

At the same time, total concentration of solute atoms (C) in the system is maintained as: 

𝐶 =
4

3
𝑝𝜋𝑟3𝑛 + 𝑐     (2.17)  

where n is the number density of clusters per unit volume. The net result are equations for 

the rate of change in the radius of a nanocluster (dr/dt), written as follows: 

𝑑𝑟

𝑑𝑡
= −

𝜙

𝑁
+

3(𝐷+𝐷′)𝐶

4𝜋𝑝𝑟
− (𝐷 + 𝐷′)𝑟2𝑛  (recoil dissolution)  (2.18)  

𝑑𝑟

𝑑𝑡
= −𝜓𝐾 +

3(𝐷+𝐷′)𝐶

4𝜋𝑝𝑟
− (𝐷 + 𝐷′)𝑟2𝑛 (disorder dissolution)  (2.19)  

In these equations, both the second and third terms are identical and represent the growth 

rate of the nanoclusters applying Eqs. 2.16 and 2.17. The first terms in Eq. 2.18 and 2.19 

each represent the recoil dissolution or disordering dissolution influence, respectively. 

For recoil dissolution, ϕ is the estimated flux of solute atoms ejected from existing 

nanoclusters, estimated as 𝜙 = 1014 ∙ 𝐾 (𝑐𝑚−2𝑠−1) with K as the dose rate (in dpa/s), 

and N as the density of target atoms per unit volume. For the disordering dissolution term 

in Eq. 2.19, ψ represents the disordering parameter and is estimated as 𝜓 = 𝑙𝑓, where l is 

the estimated size of a damage cascade and f is the fraction of solutes that dissolve as a 

result of disordering. Application of either Eq. 2.18 or 2.19 will result in a solution 

similar to the one shown in Figure 2.12. These curves each indicate smaller precipitates 
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will exhibit a positive dr/dt (i.e. growth), while larger precipitates exhibit a negative dr/dt 

(i.e. shrinkage). The net result is an equilibrium radius, represented by the point at which 

each curve crosses the horizontal axis in Figure 2.12. Similarly, a plot of the precipitate 

radius evolution over increasing dose in illustrated in Figure 2.13 for two different dose 

rates. In both cases, large and small precipitates evolve to converge on an equilibrium 

size, and this evolution is generally completed within the first 5 dpa of irradiation. Within 

this model, Nelson et al. [57] acknowledge the least understood variable in Eq. 2.19 is the 

disordering parameter, ψ. The authors therefore suggest that this parameter may be fitted 

to existing experimental data to determine the estimated value for different irradiation 

conditions. 

 
Figure 2.12. Solutions to Eq. 2.19 using values of 𝑲 = 𝟏𝟎−𝟐𝒅𝒑𝒂/𝒔, 𝑫′ =
𝟔𝒙𝟏𝟎−𝟏𝟒𝒄𝒎𝟐/𝒔, 𝝍 = 𝟏𝟎−𝟔𝒄𝒎, and 𝑪 = 𝟎. 𝟏𝟑𝟓 and different values for n, from [57]. 
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Figure 2.13. Change in precipitate radius with dose with values of 𝑲 = 𝟏𝟎−𝟐𝒅𝒑𝒂/𝒔 

(solid lines) and 𝑲 = 𝟏𝟎−𝟔𝒅𝒑𝒂/𝒔 (dashed lines), from [57]. 

Another approach to modeling cluster evolution is developed by Martin [60]. The 

basis of this model is a steady-state solution to the diffusion equations, which produce an 

equilibrium concentration profile around clustering solid solutions. Details of the 

derivation are more complex than the relatively elegant Nelson, et al. solution, and are 

detailed elsewhere [60]. One of the key conclusions developed through this model is the 

ballistic effects of irradiation will lead to an increase in configurational entropy of the 

system. This entropy increase is essentially the same as a rise in temperature of the 

system. The resulting equivalent temperature (T') is written as [60]: 

𝑇′ = 𝑇(1 + ∆)     (2.20)  

where Δ is the temperature dilation factor and is influenced by both the irradiation flux 

and temperature (T), and can estimated as: 

∆= ∆𝑜𝑒
(

𝐸∆
𝑘𝐵𝑇

)
      (2.21)  

The activation energy, EΔ, in Eq. 2.21 is estimated as: 
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𝐸∆ = 𝐸𝐷 − 𝐸𝐹 −
𝐸𝑚

2
≅

𝐸𝑚

2
     (2.22)  

where ED, EF, and Em are the activation energies for solute diffusion, vacancy formation, 

and vacancy migration, respectively. An important feature to note in Eq. 2.21, which 

exhibits arrhenius behavior, is the dilation factor will be reduced at higher temperature. 

The implication of this temperature dilation is the potential shift in the solubility limits of 

the solutes in the surrounding matrix, per examples illustrated in Fig. 2.14. Depending on 

the equilibrium phase diagram of the system, irradiation ballistic effects may potentially 

induce dissolution of nanoscale phases, or it may facilitate phase separation from solid 

solution to two (or more) separate phases. In the case of the Martin model, Δ0 is the least 

understood parameter, but the opportunity exists to apply this model to existing 

experimental data and deduce the values of Δ0 for various irradiation conditions. 

 
Figure 2.14. Possible alloy behaviors as a result of ballistic effects of irradiation, a) 

precipitate dissolution, or b) unmixing (at T') or complete disordering (at T''), from 

[60]. 

More recently, Chen, et al. [79] has advanced a model originally introduced by 

Wagner [80] which couples the Gibbs-Thomson model of Ostwald ripening with ballistic 

dissolution. The model is based on the same competing mechanisms, in which the 
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diffusion-driven growth evolution of clusters is influenced by the interface coherency 

between the clusters and the surrounding matrix. They find that fine and coherent clusters 

(with low interface energy) experience the least dramatic change in size, while incoherent 

clusters (i.e. high interface energy) more readily dissolve, particularly at lower 

temperatures. Similarly to the Nelson, et al. solution [57], this model also predicts an 

equilibrium size of clusters will be reached over time. This equilibrium state is written as 

[79]: 

𝑑𝑟

𝑑𝑡
=

𝐷

𝑟
∙

𝑐−𝑐𝑟

𝑐𝑝−𝑐𝑟
− 𝐾𝜓 = 0    (2.23)  

in which D is the solute diffusion rate, r is the cluster radius, c is the solute matrix 

concentration, cp is the solute cluster concentration, and cr is the solute concentration at 

the interface with the matrix, given by: 

𝑐𝑟 = 𝑐∞𝑒𝑥𝑝 (
2𝛾𝑖𝑣𝑎𝑡

𝑘𝑇𝑟
)     (2.24)  

where 𝑐∞ is the concentration of solutes at a flat interface of the two phases, γi is the 

interface energy, vat is the atomic volume within the cluster, T is the temperature, and k is 

the Boltzmann constant. The solution space for Eq. 2.23 is illustrated Figure 2.15, in 

which a finite region of interface energies and cluster radii will lead to cluster growth, 

while the remaining regions dictate cluster shrinkage. 
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Figure 2.15. Solution space for Eq. 2.23 under various conditions, from [79]. 

Finally, a relatively new study by Xu, et al. [35] evaluates a binary Fe-Cu alloy, 

correlating an atomistically based continuum model to experimental data. The model 

incorporates thermal and radiation-enhanced diffusion, clustering of Cu precipitates, 

thermal dissociation and cascade-induced redissolution effects. The model predicts a 

concentration (i.e. number density) gradient of clusters over time written as [35]: 

𝑑𝐶𝑛

𝑑𝑡
=  𝑘𝑛−1

+ 𝐶1𝐶𝑛−1 + 𝑘𝑛+1
− 𝐶𝑛+1 − 𝑘𝑛

+𝐶1𝐶𝑛 − 𝑘𝑛
−𝐶𝑛   (2.25)  

where C is the concentration (i.e. number density) of n-Cu clusters, and with 𝑘𝑛
+ and 𝑘𝑛

− 

as the rate constants for capture and emission of Cu atoms, respectively. The capturing 

rate is written as: 

𝑘𝑛
+ = 4𝜋(𝑟1 + 𝑟𝑛)(𝐷1 + 𝐷𝑛)     (2.26)  



42 

 

 

where r is the radius, either of a Cu atom (r1) or Cu cluster (rn). Likewise, D is the 

diffusivity of a Cu atom (D1) or for a Cu cluster (Dn). In this model, Dn is assumed to be 

zero. The rate of solute emission is then written as: 

𝑘𝑛
− = 4𝜋(𝑟1 + 𝑟𝑛−1)(𝐷1 + 𝐷𝑛−1)𝐶0 exp (−

𝐸𝑛
𝐵

𝑘𝐵𝑇
) + 𝑆𝐼𝐶𝑅𝐷 ∙

4𝜋

3
(𝑟𝑛 + 𝑎0)3 ∙ 𝜙 ∙

𝛿2𝑁𝑃𝐾𝐴≥1𝑘𝑒𝑉

𝛿𝑙 𝛿𝑁𝑖𝑜𝑛
          (2.27)  

In this expression, C0 is the matrix atomic number density, 𝐸𝑛
𝐵 is the binding energy of a 

Cu atom to the Cu-rich cluster. The SICRD represents the "size-independent cascade re-

dissolution parameter" (~1 per PKA), a0 is the lattice parameter of the Fe-matrix, ϕ is the 

ion flux, and the final derivative term represents the number of PKAs with energy above 

1 keV generated per ion per unit depth, which may be calculated using SRIM and the 

"COLLISION.txt" output file [44]. In this study, Xu et al. initially anneal the sample to 

induce Cu precipitation as a starting point for all subsequent experiments. Upon 

incorporating irradiation at either -20°C or 300°C, the model predicts contrasting 

evolution of the cluster size distribution as shown in Figure 2.16. In this study, Xu et al. 

conduct physical experiments corresponding to the simulated irradiation conditions and 

demonstrate a strong correlation between the model and physical results. It is important 

to recognize that this calculation is for a binary Fe-Cu system, and may become 

incrementally much more cumbersome if attempted on a multi-component system such as 

ODS or F-M alloys. 
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Figure 2.16. Model predicted cluster size distributions resulting from irradiation at 

a) -20°C, and b) 300°C, from [35] 

Although each of these calculation models approach the simulation with unique 

methodology, the foundational theory of multiple active mechanisms persists throughout. 

Strong evidence is available to suggest the hypothesis of ballistic effects and diffusion-

driven growth of clusters are competing upon irradiation. However, a comprehensive and 

universal solution for predicting the evolution of multi-component solute clusters in b.c.c. 

Fe-based alloys upon a range of irradiation conditions continues to remain elusive. 

2.5 Cluster Evolution Experiments on ODS Alloys 

Oxide dispersion strengthened alloys contain nanoclusters rich in Y-Ti-O atoms in 

the "as-manufactured" condition. These clusters have been shown to exhibit excellent 

strength and creep resistance, even at higher temperatures, and are expected to provide 

resistance to irradiation damage, particularly void and bubble growth [52,54–56]. 

Consequently, any alteration of these clusters as a result of irradiation would have 

implications on the mechanical properties and long-term irradiation resistance of 

components manufactured with these alloys. As a result, it is important to have a clear 

understanding of the evolution of these nanoclusters upon irradiation in order to predict 

the long-term durability and useful life of potential reactor structural components. 
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To date, several studies have observed irradiation-induced changes to nanocluster 

size, number density, chemistry, and/or crystal structure. However, the results from these 

studies are yet inconclusive, for a variety of reasons. Each experiment is typically 

conducted under unique conditions including: 1) ODS alloys with varying composition, 

fabrication processing, and heat treatment, 2) alloys with varying nanocluster 

composition and morphology, and 3) irradiation conditions with varying particle type and 

energy, dose, dose rate, and temperature. Each of these variables has the potential to 

significantly influence experimental results, thus making it difficult to make side-by-side 

comparisons between one study and another. To complicate matters, each study 

attempting to evaluate "stability" of the oxide nanoclusters defines "stability" slightly 

differently, which further obscures the development of a comprehensive conclusion. 

A summary of all studies evaluating irradiation evolution of ODS nanoclusters are 

provided in Table 2.3. From the information, it can be seen that every possible result of 

irradiation-induced evolution has been observed. On the surface, there are no distinct 

trends, but one could ascertain that cluster morphology (i.e. size and number density), 

chemistry, and crystal structure are all highly relevant to defining the irradiation 

evolution of the oxide nanoclusters. In the following sections, each of these attributes of 

the nanoclusters will be further discussed in relation to observed irradiation-induced 

evolution available in literature.
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Table 2.3 Summary of previous studies of oxide nanoparticle evolution in ODS alloys, from open literature (alloy type F = 

ferritic, M = martensitic, F-M = ferritic-martensitic. 

Material Type 
Irrad. 

Particle 

Irrad. 

Temp. 

(°C) 

Irrad. 

Dose 

(dpa) 

Dose 

Rate 

(dpa/s) 

Method Structure Chemistry Size Number Density Ref 

F94 F Fast n 400-530 2.5-15  TEM n.s. n.s. Stable Stable [81] 

MA957 F Fast n 325 6  
TEM, 

SANS 
n.s. n.s. Stable n.s. [82] 

9Cr ODS M Ni+ 500- 700 
5, 50, 

150 
1.4 x 10-3 

HR-

TEM 
n.s. n.s. Decrease Increase [83,84] 

MA957 F 
He+ + 

Ni+ 
450, 650 150 2 x 10-3 TEM n.s. n.s. Stable Stable [85] 

MA957 F Fast n 412-670 
109-

113 
 APT n.s. Stable Stable Stable [86] 

9Cr ODS F H+ 525 1 5 x 10-6 
APT, 

EFTEM 
n.s. Stable Decrease Decrease [6] 

14YWT F H+ 400 1, 3 5 x 10-6 EFTEM n.s. n.s. Increase Increase [5] 

14YWT F Ni2+ –75-600 
5, 50, 

100 
2 x 10-3 APT n.s. n.s. 

Decrease at Tirr< 

600°C; else stable 
Stable [5] 

14YWT F Ni2+ –75-600 
5, 50, 

100 
2 x 10-3 EFTEM n.s. n.s. Increase 

Decrease for Tirr≤ 

300°C; else 

increase  

[5] 

14YWT F Fast n 500 3 1 x 10-7 
APT, 

EFTEM 
n.s. n.s. Decrease Increase [5] 

12Cr ODS F-M Fe2+ 325-625 
100, 

200 
n.s. HRTEM 

Larger phases 

lose coherency 
n.s. Decrease Decrease [79] 
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12Cr ODS F-M 
Fe8+ + 

He+ + H+ 
21 4.4  EFTEM n.s. Stable Stable Stable [87] 

DY F Fast n 400-580 81  TEM 
Halo; irregular 

O/M interfaces 
Ti, Al loss Decrease Decrease [88] 

14YT F Fe3+ 700 50  APT n.s. Y:Ti decrease  Increase Increase [89] 

14YWT F Ni2+ 300-600 100 
1.39 x 10-

2 
APT n.s. 

Y:Ti increase 

at 300°C 
Decrease  Decrease [8] 

9Cr ODS F H+ 400 3.7 0.5 x 10-5 APT n.s. Y:Ti increase Increase Decrease [9] 

MA957 F 
He+ + 

Ni+, C- 
475- 625 200 

3.0-14 x 

10-3 
TEM n.s. n.s. Stable Stable [90] 

9Cr, 12Cr ODS M, F Fast n 420-835 28-51  TEM n.s. n.s. Stable Stable [91] 

MA957 F Fe+ 25 18  TEM Amorphize n.s. Stable n.s. [92] 

MA957 F Kr+ 500 200  TEM Stable n.s. Stable n.s. [92] 

K6 F n.s. ion 300-700 20 9.9 x 10-5 HRTEM n.s. n.s. Stable Stable [93] 

K1, K4 F Fe3+ 500-700 20, 150 1 x 10-3 STEM n.s. n.s. Stable Stable [94] 

SOC-1 F Fe3+ 650 60 5 x 10-4 STEM n.s. Stable Stable Stable [95] 

18Cr ODS F Fe+ 500 4-45  EFTEM 

Interfaces 

become 

irregular 

 Stable Stable [96] 

18Cr ODS F Fe+ 500 150  
APT, 

EFTEM 
n.s. 

Approaches 

Y2Ti2O7 

stoich. 

Increase Decrease [59] 

18Cr ODS F Au2+ RT 156  
APT, 

EFTEM 
Amorphization n.s. Dissolution Dissolution [59] 

9Cr-2W ODS M e– 400   TEM Amorphization n.s. Decrease Decrease [97] 

DY F 
Cr6+ + 

He+ 
475 50 3.0 x 10-4 TEM 

Complex oxides 

not observed 
n.s. Stable n.s. [98] 
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F82H, 16Cr 

ODS 
F Fe3+ 380 20 1.1 x 10-3 HRTEM n.s. n.s. Decrease Decrease [12] 

14Cr ODS F Fe3+ 
Cryo - 

700 
15 3 x 10-3 GIXRD Stable n.s. 

Dissolution at 

cryo; else 

decrease or stable 

Dissolution at 

cryo; else 

decrease or stable 

[99] 

MA957 F Therm. n 325 2.0, 5.5 2.9 x 10-7 
TEM, 

SANS 
Stable n.s. Stable Stable [100] 

DY F Fast n 400-480 75.4  
XAFS, 

TEM 
Disordering n.s. 

Decrease (larger 

oxides) 
Not Specified [101] 

MA957 F Fast n 600 3 3.7 x 10-7 APT n.s. Y:Ti decrease Stable Stable [102] 

DY F Kr18+ RT   STEM Amorphize  Stable Stable [103] 

EM10 ODS F e– 300-500 100 3-6 x 10-3 HRTEM n.s. Stable Decrease n.s. [72] 

DY, EM10 ODS F He+ 400 0.05  HRTEM n.s. Stable Stable Stable [104] 

DY, EM10 ODS F Ar+ 400 33  HRTEM Amorphize n.s. Decrease Decrease [104] 

DY F Fast n 400-580 ≤81  HRTEM Halo 

Al, Ti loss < 

70 dpa; else 

stable 

Decrease > 70 

dpa 
Decrease >70 dpa [104] 

DY, EM10 ODS F e– 300-550 33 3-6 x 10-3 HRTEM n.s. Stable Decrease  Decrease  [104] 

12YWT F Fe+ 300 0.7 1.9 x 10-4 APT n.s. Stable n.s. Stable [105] 

12Cr, 14Cr ODS F 
Fe5+ + 

He+ + H+ 
RT, 600 10-30 1 x 10-3 PAS 

Vacancy cluster-

Cr complexes 
n.s. Stable n.s. [106] 

14LMT F Fe2+ 30 10-100  
APT, 

EFTEM 
n.s. Stable Stable n.s. [107] 

14LMT F Fe2+ 500 10-100  
APT, 

EFTEM 
n.s. Cr, La pickup Decrease Stable [107] 

Eurofer 97 ODS F-M H+ 40 0.3, 1, 2  TEM 
Amorphize 

particles <20 nm 
n.s. n.s. Stable [108] 
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18Cr ODS F Xe+ 27, 500 2.5  TEM 
Amorphize at 

Tirr=27°C 
n.s. 

Increase at 

Tirr=27°C; else 

stable 

n.s. [109] 

MA957 F Fe+ 500 150 6.5 x 10-4 
HRTEM, 

EFTEM 
Stable n.s. Increase Decrease [69] 

MA957 F Fast n 412, 430 50, 75 1.3 x 10-7  
HRTEM, 

EFTEM 
Stable n.s. 

Stable at 

Tirr=412°C; else 

increase 

Stable at 

Tirr=412°C; else 

decrease 

[69,110

,111] 

14Cr ODS F Fe+ 500 150  EFTEM n.s. 
Stable non-

stoich. 
Increase Decrease [112] 

Fe-Y2O3 ODS F 

Fe+ 

with/out 

He+ 

500, 600 100  
TEM, 

SANS 
n.s. n.s. 

Stable at 

Tirr=500°C; else 

increase 

Stable [113] 

Eurofer 97 ODS F Fast n 330 32  
APT, 

TEM 
n.s. 

V loss, Y 

pickup 

Dissolution (of 

particles > 10 

nm) 

Increase 
[67,114

] 

Eurofer 97 ODS F 

Fe+, 

Fe2+, 

Fe3+ 

RT 32  
APT, 

TEM 
n.s. V, N Loss Dissolution Stable [115] 

Eurofer 97 ODS F 
Fe2+ and 

Ti2+ 
RT 0.8-0.9  

APT, 

TEM 
n.s. 

Y, O, Mn 

pickup 
Decrease Increase [116] 

13.5Cr ODS F-M Ti2+ RT, 300 0.8-2.4  
APT, 

TEM 
n.s. 

O pickup; 

Y:Ti decrease 
Stable Increase [116] 

13Cr ODS F e– 400, 500 12 2.2 x 10-3 TEM n.s. n.s. 
Difficult to 

discern 

Difficult to 

discern 
[117] 

14Cr ODS F 
Fe5+ + 

He+ + H+ 
600 30  EFTEM n.s. Stable Increase Stable [118] 
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Eurofer 97 ODS M H+ 40, 350 0.3-2.0  TEM n.s. n.s. Stable Stable [119] 

Cr16 ODS, 

EP450 
F Bi+, Xe+ 350-650   HRTEM 

Amorphous ion 

tracks 
n.s. 

Decrease for 

Tirr>600°C 
Stable [120] 

EP450 F 
Xe+, Kr+, 

Ar+ 
RT   HRTEM 

Amorphous ion 

tracks 
n.s. n.s. n.s. [121] 

Eurofer 97 ODS M Fe2+ 400 2 ~1 x 10-4 APT n.s. Stable Stable Stable [122] 

1DS M Fast n 450-560 10.5-21  TEM n.s. n.s. Decrease Decrease [123] 

1DK F Fast n 450-560 10.5-21  TEM n.s. Y:Ti decrease Increase Decrease [123] 

F95 F Fast n 400-530 2.5-15  HRTEM Stable 
Y:Ti decrease 

for Tirr≥500°C 
Stable Stable 

[81,124

] 

M93 M Fast n 400-530 2.5-15  HRTEM Stable Y:Ti decrease Stable Stable 
[81,124

] 

MA957 F Fast n 500, 700 100 1.2 x 10-6 TEM n.s. n.s. Increase Decrease [125] 

16Cr ODS F e– 500 10  TEM Stable n.s. Decrease Stable [126] 

K3 F Fe3+ 300, 500 1-10 1 x 10-3 TEM n.s. n.s. Stable Stable [127] 

12.5Cr ODS F e– + H+ 350-550 15 2 x 10-3 TEM 

O/M interface 

becomes 

irregular 

n.s. Stable Stable [128] 

PM2000 F 
Fast n, 

He+ 
500 21  EFTEM 

Amoprhization; 

faceted shape 

becomes 

spherical 

Cr-rich shells n.s. n.s. [129] 
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2.5.1 Size, Number Density, and Volume Fraction 

Changes in size of the clusters is the most widely reported feature of irradiation-

induced evolution, and it is important to understand the long-term evolution of cluster 

size over a range of doses. However, few studies report data of cluster size evolution over 

a dose range. The results of these studies are illustrated in Figure 2.17. From this 

comparison, the results are inconsistent, with no common direction or convergence as 

dose increases, making it impossible to interpret in a broad context. Similarly, the data in 

literature also presents contradictory results with respect to irradiation temperature. 

 
Figure 2.17. Nanocluster size evolution with increasing irradiation dose. 

Figure 2.18 plots the results from literature (when available) with indication of 

direction of change respective to: a) nanoparticle size, b) number density, and c) volume 

fraction. For simplicity, the results from each study are classified directionally as 

increases, stable, or decreases to evaluate any potential trends. Based on these plots, no 
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clear trend or threshold is apparent within the range of doses or temperatures evaluated 

for nanocluster size or number density. The volume fraction plot (Figure 2.18c) 

potentially indicates a pattern suggesting decreasing volume fraction at temperatures 

>600°C, while increasing at temperatures <600°C. However, with so few data points 

available, this cannot be concluded with certainty. 
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Figure 2.18. Results from literature indicating direction of irradiation-induced 

evolution of a) nanocluster size, b) number density, and c) volume fraction. 
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2.5.2 Chemistry 

Historically, the chemistry of nanoclusters has been characterized using 

transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) 

or energy filtered TEM (EFTEM) techniques. More recently, with the increased 

utilization of atom probe tomography (APT), the characterization of chemistry of clusters 

has become more precise, enabling the relative comparison of irradiation-induced 

chemistry evolution between specimens. Most commonly, irradiation-induced changes in 

oxide nanocluster chemistry are quantified in terms of the Y:Ti ratio and the (Y+Ti):O 

ratio, which give insight to the stoichiometry of the clusters and any changes in one 

solute element relative to the other. The Y:Ti ratio has been observed to both increase in 

some studies [8,9,59,67,88,104,114,116], and decrease in others 

[81,89,102,116,123,124], while the (T+Ti):O ratio is typically observed to remain the 

same [8,9,116]. A summary of literature data providing evolution information for these 

two ratios is provided in Figure 2.19. Studies observing a decrease in Y:Ti ratio tend to 

have temperatures above 500°C, while studies with increasing Y:Ti ratio are generally 

below 500°C. On the other hand, there is no apparent temperature dependence on the 

(Y+Ti):O ratio. Although changes in this ratio are observed at doses of 100-150 dpa, few 

data points exist, making it difficult to draw any conclusions about dose dependence. In 

addition to the oxide solute ratios, other studies have also observed such phenomena as 

Cr enrichment at the interface of nanoclusters [107,112], or depletion of Al from 

nanoclusters [88,104]. Enrichment of Cr is usually attributed to radiation-induced 

segregation of Cr to sinks such as the oxide nanoclusters [112,122]. 
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Figure 2.19. Results from literature indicating direction of irradiation-induced 

evolution of a) Y:Ti ratio, b) (Y+Ti):O ratio. 

2.5.3 Crystal Structure 

The coherency between the oxide nanocluster and matrix interface is considered a 

critical attribute of nanoclusters, as this will directly influence the effectiveness of the 

interface as a sink for defects [101,110,111,125]. Using high resolution transmission 

electron microscopy (HRTEM), several studies have found oxides to generally be 

coherent with the matrix [69,79,88,96,128]. Observations in literature also suggest that 

coherency may be closely related to the size of clusters, with smaller oxides trending 

towards non-stoichiometric chemistry with Y:Ti ratio ~0.50 [9,13], while larger oxides 

trend towards a Y:Ti ~1.3 [9,13] with a pyrochlore Y2Ti2O7 or orthorhombic Y2TiO5 

structure [124,130–134]. 

Oxide nanoclusters have been observed to amorphize to varying degrees upon 

irradiation [59,92,97,101,103,104,108,109,135]. The extent of amorphization is attributed 

to three factors: 1) the structure of the oxides, 2) irradiation dose, and 3) irradiation 

temperature [109,135]. Of these three influences, the effect of irradiation dose and the 
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structure of the oxides are the least understood, while a critical amorphization 

temperature may be determined for any given system and irradiation condition [135]. 

2.6 Cluster Evolution Experiments on F-M Alloys 

Ferritic-martensitic alloys do not contain any nanoclusters in the "as-

manufactured" condition. However, several species of nanoclusters have been found to 

nucleate in F-M alloys under irradiation. As such, these clusters have a similar potential 

to offer beneficial side-effects similar to those of oxides in ODS alloys. On the other 

hand, these phases have been shown to cause undesirable consequences, most notably 

embrittlement. Consequently, any nucleation and growth of these clusters as a result of 

irradiation will also have implications on the mechanical properties and long-term 

irradiation resistance of components manufactured with F-M alloys. As a result, it is 

important to have a clear understanding of the nucleation behavior and long-term stability 

of these nanoclusters upon irradiation in order to predict the durability of any structural 

components in reactor applications. 

To date, several studies have observed irradiation-induced nucleation and growth 

of various nanoclusters in F-M alloys including: a) G-phase precipitates, which are rich in 

Si, Mn, and Ni, b) Cu-rich nanoclusters, often alongside the G-phases, and c) Cr-rich α' 

phases. A summary of the studies evaluating irradiation evolution of nanoclusters in F-M 

alloys are provided in Table 2.4. As with ODS steels, however, experimental evidence is 

somewhat limited, precluding any definitive conclusions regarding the role of 

temperature and damage cascades in F-M alloy microstructure evolution. In the following 

sections, each type of nanoclusters species will be further discussed in relation to the 

observed irradiation-induced evolution available in literature.  
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Table 2.4 Summary of previous studies with nanoparticle evolution in F-M alloys, from open literature. 

Experiment Details G-phase Cu-rich Cr-rich (α' phase) 

Reference 
Material 

Irrad. 

Particle 

Irrad. 

Temp. 

(°C) 

Irrad. 

Dose 

(dpa) 

Dose Rate 

(dpa/s) 

Charact. 

Method 

Diam. 

(nm) 

Number 

Density 

(x 1021 m-3) 

Diam. 

(nm) 

Number 

Density 

(x 1021 m-3) 

Diam. 

(nm) 

Number 

Density 

(x 1021 m-3) 

HT9 Fast n 380 20 - TEM 11.3 9.3 - - 7.8 72 [20] 

HT9 Fast n 410 100 - TEM 16.0 3.2 - - 8.8 22 [20] 

HT9 Fast n 440 155 - TEM 26.5 1.1 - - 9.6 1.1 [20] 

HT9 Fast n 466 92 - TEM - - - - - - [20] 

HT9 Fast n 505 2 - TEM - - - - - - [20] 

HT9 5 MeV Fe2+ 460 75 0.6-1.2 x 10-3 TEM 7.9 0.24 - - - - [30] 

HT9 5 MeV Fe2+ 460 130 0.6-1.2 x 10-3 TEM 7.2 0.25 - - - - [30] 

HT9 5 MeV Fe2+ 460 188 0.6-1.2 x 10-3 TEM 11.0 0.79 - - - - [30] 

HT9 5 MeV Fe2+ 460 250 0.6-1.2 x 10-3 TEM 13.2 0.105 - - - - [30] 

HT9 5 MeV Fe2+ 460 350 0.6-1.2 x 10-3 TEM 12.3 0.74 - - - - [30] 

HT9 5 MeV Fe2+ 460 450 0.6-1.2 x 10-3 TEM 12.0 0.82 - - - - [30] 

HT9 5 MeV Fe2+ 460 550 0.6-1.2 x 10-3 TEM 15.3 0.99 - - - - [30] 

HT9 5 MeV Fe2+ 460 650 0.6-1.2 x 10-3 TEM 19.4 0.66 - - - - [30] 

T91 5 MeV Fe2+ 460 350 0.6-1.2 x 10-3 TEM 24.8 0.8 - - - - [30] 

T92 5 MeV Fe2+ 460 350 0.6-1.2 x 10-3 TEM 29.8 0.7 - - - - [30] 

T91 2 MeV p+ 400 7 1.3 x 10-5 APT 4.0 74 3.1 56 - - [23] 

T91 2 MeV p+ 400 7 ~10-5 APT 4.4 127 4.0 74 - - [25] 

T91 2 MeV p+ 500 7 ~10-5 APT 8.0 14 5.0 17 - - [25] 

HCM12A 2 MeV p+ 400 7 ~10-5 APT 4.6 269 4.0 296 3.6 460 [25] 

HCM12A 2 MeV p+ 500 7 ~10-5 APT 7.2 43 6.6 37 - - [25] 

HCM12A 5 MeV Fe2+ 500 100 ~10-3 APT 7.8 8 6.2 29 - - [25] 
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HT9 2 MeV p+ 400 7 ~10-5 APT 4.6 180 - - 3.8 1340 [25] 

HCM12A 2 MeV p+ 400 3 ~10-5 APT 4.2 232 3.4 427 3.0 152 [24] 

HCM12A 2 MeV p+ 400 7 ~10-5 APT 5.0 271 3.8 239 - - [24] 

HCM12A 5 MeV Fe2+ 500 500 ~10-3 APT 7.4 7 - - 20.2 10 [24] 

Fe-2.5%Cr model n 300 0.6 - APT 3.6 130 - - - - [33] 

Fe-5%Cr model n 300 0.6 - APT 4.4 130 - - - - [33] 

Fe-9%Cr model n 300 0.6 - APT 3.3 240 - - 2.2 210 [33] 

Fe-12%Cr model n 300 0.6 - APT 3.2 110 - - 2.2 5000 [33] 

HT9 Fast n 443 155 - TEM 22.0 1 - - - - [18] 

HT9 Fast n 505 4 - TEM - - - - - - [18] 

HT9 Fast n 384 28 - TEM 8.5 4.5 - - - - [18] 

Fe-3%Cr model Fast n 290 1.82 - APT - - - - - - [31] 

Fe-6%Cr model Fast n 290 1.82 - APT - - - - - - [31] 

Fe-9%Cr model Fast n 290 1.82 - APT - - - - 4.8 85 [31] 

Fe-12%Cr model Fast n 290 1.82 - APT - - - - 3.0 950 [31] 

Fe-15%Cr model Fast n 290 1.82 - APT - - - - 2.6 3200 [31] 

Fe-18%Cr model Fast n 290 1.82 - APT - - - - 2.4 5300 [31] 
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2.6.1 G-phase Clusters 

The irradiation-induced formation of G-phase, a complex silicide (Mn6Ni16Si7), 

has been commonly observed in F-M alloys upon multiple irradiation conditions. Several 

studies report the morphology (size and density) of G-phase clusters at a given irradiation 

temperature and dose. However, few studies report data of cluster size evolution over a 

range of doses. A bubble chart summarizing the relative cluster sizes of each study is 

provided in Figure 2.20. From this comparison, the size of the clusters tend to be larger at 

higher doses and elevated temperatures. This trend may suggest that more advanced 

coarsening occurs at these conditions, which is consistent with lower number densities 

also observed at higher dose and temperature (Table 2.4). It is important to note that APT 

will enable much finer detectability of nanoscale phase, thus typically yielding smaller 

average clusters sizes (at higher density) as more of the smaller nanoclusters may be 

detected. 

One study by Anderoglu, et al. [20] has suggested that phase precipitation is more 

sensitive to temperature than dose, which would suggest their formation and growth is a 

diffusion-driven process, but this has not been proven. Another study by Allen, et al. [16] 

observed a potential difference in the incubation period of G-phase nucleation, noting 

that clusters are observed between 1 and 3 dpa upon proton irradiation at 400°C, but are 

not present until ~7 dpa upon Fe2+ irradiation at the same temperature. 
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Figure 2.20. Results from literature indicating average size of irradiation-induced 

G-phase clusters. Size of bubbles represent relative size of clusters. 

2.6.2 Cu-rich Clusters 

The nucleation and growth of Cu-rich phases have also been observed by a 

number of studies. Clusters are commonly observed alongside G-phases [16,23–25], 

although their formation is typically attributed to the low solubility limits of Cu in b.c.c. 

Fe. To date, it is not clear whether G-phase or Cu precipitates first. A bubble chart 

summarizing the relative cluster sizes of each study is provided in Figure 2.21. Once 

again, the sizes of clusters tend to indicate coarsening at higher doses and elevated 

temperatures. However, very little data is available to draw any firm conclusions. 
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Figure 2.21. Results from literature indicating average size of irradiation-induced 

Cu-rich clusters. Size of bubbles represent relative size of clusters. 

2.6.3 Cr-rich (α') Clusters 

Another common phase observed to nucleate and grow in F-M alloys is the Cr-

rich α' phase. A bubble chart summarizing the relative cluster sizes of each study is 

provided in Figure 2.22. Once again, the sizes of clusters tend to indicate coarsening at 

higher doses and elevated temperatures. Generally, phase separation of α-Fe and α' are 

only observed in alloys with Cr composition ≥ 9 at% Cr. As a result, this threshold 

corresponds to the approximate solubility limit of Cr in b.c.c. Fe. Several experiments 

and models have attempted to quantify the solubility limit of Cr upon irradiation, a 

summary of which is provide in Figure 2.24 [20]. Although some disagreement between 

the models and experiments persists, the observed solubility limit of 9 at% Cr appears to 

be a good approximation at temperatures below ~500°C. 
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Figure 2.22. Results from literature indicating average size of irradiation-induced 

Cr-rich (α') clusters. Size of bubbles represent relative size of clusters. 

 
Figure 2.23. Models and experiments predicting α-α' phase separation, along with 

the irradiation temperatures of HT9 in ref. [20]. 
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2.7 Irradiation effects on Microstructure 

In additional to irradiation-induced phase separation, the microstructure of the 

target alloy may also be considerably altered through the formation of irradiation-induced 

defect clusters. These changes in the microstructure may also influence the macroscopic 

mechanical properties of the material, potentially impacting the long-term durability of 

components. As a result, it is important to develop a clear understanding of the 

mechanisms of defect cluster formation and growth as a result of irradiation. This section 

will review the different types of defect clusters typically observed in F-M and ODS 

alloys upon irradiation including dislocation loops and voids, while connecting all 

microstructural changes to the resultant hardening of the alloy. 

2.7.1 Dislocation Loops 

Dislocation loops are irradiation-induced features formed as vacancy or interstitial 

defects cluster to form a mixed dislocation that alternates from edge to screw type 

dislocation as it wraps around in a ring-shape. Dislocation loops are most favorable on 

high density habit planes (i.e. {001} and {111} in b.c.c. Fe. Due to the higher mobility of 

interstitial defects, interstitial dislocation loops are vastly more common than vacancy 

dislocation loops, although the latter are theoretically possible. Dislocation loops 

typically range in size from a few nm up to tens of nanometers. 

Upon irradiation, dislocation loops will nucleate and grow. It has been 

hypothesized that defect clusters such as loops will eventually approach a saturation 

value, as modeled by Whapham and Makin [136]. In this model, the number density (N) 

of defect clusters increases with dose by the following relationship [136,137]: 

𝑁 = 𝑁𝑠 [1 − 𝑒𝑥𝑝 (−
𝜙

𝜙0
)]    (2.28)  
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in which Ns is the saturation density, ϕ is the irradiation dose, and 𝜙0 is the scaling dose 

which is used to characterize how fast saturation is approached. This model has also been 

corroborated by experimental observation, in which dislocation loop morphology appears 

to approach a saturation point at higher dose [16,23,138]. 

2.7.2 Voids 

Over the past several decades, much effort has been spent in the nuclear materials 

research community to understand the mechanisms of void swelling and the development 

of materials more resistant to void nucleation and growth upon irradiation. One of the key 

attributes that make F-M and ODS alloys strong candidates for nuclear reactor 

applications is their improved resistance to void swelling. The mechanism of nucleation 

for defect clusters such as voids is essentially the same as that for solute phase separation. 

Vacancies cluster within the matrix, forming embryo whose fate is governed by the free 

energy barrier to formation for a void. If the void embryo grows beyond the critical 

radius, growth of the void is favored by thermodynamics. 

2.7.3 Dispersed Barrier Hardening 

It is well known that irradiation-induced microstructural features such as voids 

and dislocation loops increase the strength of a material by acting as obstacles to impede 

dislocation motion during deformation. Likewise, the oxide nanoclusters in ODS and the 

irradiation-induced phases in F-M alloys also serve as dislocation pinning points, 

contributing to hardening and increased yield strength of the alloys. The most common 

method for relating discrete microstructural features to the yield strength is the simplified 

dispersed barrier hardening model [139], written as: 

∆𝜎𝑦,𝑖 = 𝛼𝑖𝑀𝜇𝑏√𝑁𝑖𝑑𝑖     (2.29)  
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In this equation, M is the Taylor factor (3.06 for b.c.c. Fe-Cr alloys such as the F-M 

alloys of interest [42]), μ is the shear modulus, b is the Burger’s vector (0.248 nm for 

b.c.c. Fe [140]), Ni is the number density of feature type i, and di is the average diameter 

of feature i. The factor αi represents the barrier strength of feature i and should be a 

coefficient valued between 0 and 1. A feature with a low α is considered a weak obstacle 

that more readily allows dislocations to bypass or shear through them, while features with 

α approaching a value of 1 are considered to be stronger inhibitors to dislocation motion. 

Equation 2.29 may be written for each type of feature present, then superimposed upon 

each other to calculate an overall net increase in yield strength from a network of 

microstructural features [42,141,142]. 

Over the years, studies have provided guidelines to directly estimate αi [42,143]. 

But it is expected that αi values are influenced by many sample-specific characteristics 

such as nanocluster composition and coherency, void faceting, and dislocation loop habit 

planes [144]. As a result, the values for each αi will likely vary from sample to sample. 

To attain sample-specific αi values, some studies have calculated the relative obstacle 

strengths necessary to mathematically relate the microstructure to the measured 

mechanical behavior (via indentation or tensile testing techniques) [144–146]. Adding to 

the complexity, additional studies have suggested that the strength of each obstacle is also 

dependent upon the size and/or number density of the obstacles in the matrix of the 

material [10,147–149]. 

More recently, Tan and Busby developed size- and density-dependent expressions 

for α of the obstacles of interest to F-M alloys [147]: 

Incoherent Precipitates 𝛼𝑛𝑐
𝑖𝑛𝑐𝑜ℎ =

0.135

(1−𝜈)1/2(1−0.816𝒅√𝑵𝒅)
𝑙𝑛 (

0.816𝒅

𝑟0
)  (2.30)  
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Voids/Cavities  𝛼𝑣 =
0.383

(1−𝜈)1/2(1−0.816𝒅√𝑵𝒅)
𝑙𝑛 [

0.247𝒅

𝑟0
(1 − 0.816𝒅√𝑵𝒅)] (2.31)  

Loops (thin plates)   𝛼𝑙 =
0.271𝑨

(1−𝜈)1/2√𝑵𝒅(16−𝜋𝑡𝑨)
𝑙𝑛 (

0.637𝒅

𝑟0
)  (2.32)  

or, for coherent precipitates:  

𝛼𝑛𝑐
𝑐𝑜ℎ =

0.816𝛾𝑛𝑐𝒅

𝜇𝑏2(1−0.816𝒅√𝑵𝒅)
+ 1.7 (

𝒅

𝑏
)

1.5

𝜀1.5 +  0.0054 (
𝒅

𝑏
)

0.275

(
∆𝜇

𝜇
)

1.5

 (2.33)  

where ν is Poisson’s ratio (~0.33 [131,149–151]), 𝐴 = √16𝜋𝑁𝑑 + 4𝑁𝑑2 − 𝜋2𝑁𝑑𝑡, and t 

is the loop thickness (0.165 nm for {111} loops in b.c.c. Fe). The dislocation core radii, 

r0, are not well known but often approximated as r0 ~ b. 

Once the contribution of each microstructure feature is determined, the next 

challenge is superimposing their respective effects to determine a combined influence on 

strength and hardening. Two methods are typically employed: 1) linear superposition, 

and 2) root-sum-square superposition. Linear superposition is generically written as [42]: 

∆𝜎𝑦,𝑙 = ∑ ∆𝜎𝑦,𝑖𝑖      (2.34)  

and is considered more applicable when the obstacles have widely differing strengths. 

Root-sum-square superposition is written as [42]: 

∆𝜎𝑦,𝑟 = √∑ (∆𝜎𝑦,𝑖)2
𝑖      (2.35)  

and is considered more accurate when the obstacles have similar strengths. A mixed 

approach, introduced by Odette and Lucas [141], uses a weighting parameter S based on 

the relative strengths of the strongest and weakest barriers as: 

∆𝜎𝑦 = 𝑆(∆𝜎𝑦,𝑙 − ∆𝜎𝑦,𝑟) + ∆𝜎𝑦,𝑟    (2.36)  

𝑆 = 𝛼𝑠 − 5𝛼𝑤 + 3.3𝛼𝑠𝛼𝑤     (2.37)  
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where αs is the strength of the strongest obstacle and αw is the strength of the weakest 

obstacle. The difficulty in applying this mixed approach is that the αi values for each 

obstacle type must be known in order to identify the strongest and weakest barriers. 

2.7.4 Solid Solution Strengthening 

Individual solutes within the matrix are also capable of inhibiting dislocation 

motion upon deformation of the material. A common method for modeling solid solution 

strengthening for a b.c.c. Fe matrix is [152,153]: 

∆𝜎𝑠𝑠,𝑖 = 𝐾𝑖𝐶𝑖      (2.38)  

in which Δσss,i is the resultant change in yield strength due to solid solution strengthening, 

Ki is the strengthening coefficient of the solute element, and Ci is the composition of the 

solutes in the matrix. Equation 2.38 may be applied for each solute element, then the 

overall solid solution strengthening effect may be calculated using [152]: 

∆𝜎𝑠𝑠 = ∑ ∆𝜎𝑠𝑠,𝑖𝑖      (2.39)  

Estimated values of Ki from prior studies of F-M and ODS alloys are tabulated in Table 5 

from Refs. [152–155] for solutes in b.c.c. Fe. One particular observation is that interstitial 

solute species such as C and N have a strengthening factor K that is 2 to 3 orders of 

magnitude greater (~1000 MPa/at%) than K factors for solutes that occupy substitutional 

positions [153]. Unfortunately, limited data is available for the K factors of O, W, and Y 

in b.c.c. Fe, but they would be expected to have similar orders of magnitude as other 

interstitial solutes (for O) or other substitutional solutes (for W and Y). 
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Table 2.5 Solid solution strengthening coefficients for solute elements at room 

temperature (in MPa / at%), from Refs. [152–155]. 

Element 

Substitutional 

or 

Interstitial 

Ref. 

[154] 

Ref. 

[153] 

Ref. 

[155] 

Ref. 

[152] 

C Interstitial - ~1050 - 1103.45 

N Interstitial - ~1050 - 1103.45 

O Interstitial - - - - 

Si Substitutional 49-55 45 - 25.8 

Mn Substitutional 35-40 33 - 16.9 

Ni Substitutional 35-41 2.9 - 19.2 

Cr Substitutional 5-9 - 2.5-3.5 2.6 

W Substitutional - - - - 

Ti Substitutional - - - 17.9 

Y Substitutional - - - - 

Mo Substitutional - - - 15.9 

Al Substitutional - - - 9.0 

Co Substitutional - - - 2.1 

V Substitutional - - - 2 
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CHAPTER THREE: OBJECTIVE 

The objective of this dissertation is to determine the mechanism of radiation-

induced nanocluster evolution in oxide dispersion strengthened and ferritic-martensitic 

alloys. Accomplishing this objective will incorporate a two-pronged approach: 1) 

experimentation to measure cluster evolution as a result of irradiation, and 2) modeling 

efforts to mathematically describe cluster evolution and provide an empirically-

benchmarked tool for future alloy development. The activities of this thesis will be 

applied to alloys with different compositions, giving way to varying solute clustering 

behavior, and will be evaluated across multiple irradiating particles and a range of doses. 

Prior modeling efforts in literature have incorporated a combination of influences 

from the competing effects of ballistic impacts (leading to nanocluster dissolution) and 

radiation-enhanced diffusion (leading to diffusion-driven growth). Each model has 

attempted to overlay each of these effects into an over-arching equation that describes the 

evolution of clusters in the presence of variable irradiation conditions [35,57,60,74]. To 

date, these models have demonstrated success in describing isolated experiments, but a 

comprehensive solution for predicting the evolution of multi-component solute clusters in 

b.c.c. Fe-based alloys upon a range of irradiation conditions continues to remain elusive. 

Irradiation experiments are conducted on a model Fe-9%Cr ODS alloy and two 

commercial ferritic-martensitic alloys (HCM12A and HT9). Following each irradiation, 

the microstructure is characterized via TEM and APT to measure the average size and 

number density of grains, dislocations, carbide precipitates, dislocation loops, voids (if 
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present), and any nanoclusters present. The following experimental variable 

dependencies will be evaluated: 

 Composition dependence:  Fe-9%Cr ODS alloy contain solute clusters rich in 

Y, Ti, and O. HCM12A have demonstrated clustering of Si-Mn-Ni, Cu-rich 

clusters, and Cr-rich clusters in literature. HT9 is similar to HCM12A, but 

generally lacks Cu-rich clusters due to lower Cu content. 

 Irradiation particle and dose rate dependence:  Irradiations with Fe2+ ions 

(dose rate ~10-4 dpa/s), protons (~ 10-5 dpa/s) and neutrons (~ 10-7 dpa/s). 

 Dose dependence:  Irradiation doses with Fe2+ ions to 1, 3, and 100 dpa, with 

protons to 1, 3, and 7 dpa, and with neutrons to 3 dpa. 

Direct measurement of the average size, number density and compositions of all 

nanoclusters from each specimen provides statistically relevant data that will be applied 

to modeling efforts for verification. The measurement of other microstructural features 

(grains, carbides, loops, voids, etc.) provides context as to the relative sink strengths of 

each alloy and the sink strength evolution in response to irradiation. Furthermore, the 

mechanisms of the irradiation evolution of loops and voids is well-known as compared to 

those of nanoclusters; measuring all of these features and contrasting their behaviors 

helps inform the lesser-known mechanisms of irradiation evolution of nanoclusters. 

Modeling of the cluster evolution, in the form of change in cluster morphology 

over time (i.e. dose), will initially be conducted using the Nelson, Hudson, and Mazey 

(NHM) calculation approach [57]. Composition data measured via APT provide the 

necessary inputs required to successfully conduct the calculations progressively. 

Systematic development of the model will proceed through the following progression: 
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1) Application to the ODS alloy results, fitting the model to experimental cluster 

measurements to estimate the relative damage cascade disordering efficiencies 

(f) of each irradiation particle. 

2)  Division of ODS cluster measurements by individual solutes, fitting the 

model to measurements to estimate fi for each solute. Identify any trends that 

contribute to species-specific fi values. 

3) Application to the HCM12A results, confirming particle-specific f values 

along with species-specific fi values and the respective solute diffusion rates 

toward existing clusters. 

4) Produce model-driven predictions for cluster evolution in HT9. Evaluation of 

predictions and reconfirmation of fi and solute mobilities (as needed). 

5) Comparison of model-predicted and measured clustering behavior as observed 

in literature on various F-M and ODS alloys. 

With the convergence of the NHM modeling parameters, efforts move to evaluate the 

Martin theory [60] and the potential for a downward temperature shift to emulate solute 

cluster evolution using higher dose irradiations in place of lower dose irradiations. 

Finally, using both the NHM and Martin calculation model results, the merit of 

charged particle irradiations as a surrogate for neutron irradiation is evaluated with 

respect to nanocluster evolution behavior. The potential for a downward temperature 

shift, as proposed by Martin [60], is analyzed and compared to prior reports in literature. 

The long-term goal of this work is to provide a predictive tool for the clustering response 

of b.c.c. Fe-based alloys, informing future development and optimization of alloys for 

advanced nuclear reactor applications.
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CHAPTER FOUR: EXPERIMENTS 

This chapter will detail the techniques and procedures used in conducting 

experimental measurements for this dissertation. The experiments are divided into sub-

sections representing each major stage of development: 1) alloys and sample preparation, 

2) irradiations, 3) post-irradiation sample preparation, 4) microstructure examination, and 

5) cluster identification and analysis. 

4.1 Alloys and Sample Preparation 

In order to investigate the microstructural evolution of ferritic-martensitic and 

ODS alloys upon irradiation, three separate alloys were selected for study: a) a model 

ferritic Fe-9%Cr ODS alloy, which contains Y-Ti-O rich oxide nanoclusters in its "as-

received" condition, b) commercial F-M alloy HCM12A, which contains Si, Mn, Ni, Cu 

solutes and ~11%Cr, and c) commercial F-M alloy HT9, which contains Si, Mn, Ni 

solutes and ~12%Cr, but, by contrast, contains only trace amounts of Cu. Previous 

studies of HCM12A and HT9 have demonstrated clustering of these solutes [24,25], 

making them of particular interest to irradiation-resistant alloy development. 

4.1.1 Alloys and Processing 

A rod of ferritic Fe-9%Cr ODS steel material was provided by the Japan Nuclear 

Cycle Development Institute (now known as the Japan Atomic Energy Agency). Alloyed 

ferritic steel was mechanically mixed with Y2O3 powders that were hot extruded at 

1150°C. Finally, the rod was austenitized at 1050°C for 1 hour, air cooled, then tempered 
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at 800°C with subsequent air cooling. Additional details regarding the mechanical 

alloying and fabrication of the sample rod may be found in [156]. 

Alloy HCM12A, nominally 12Cr-MoVNbWCu, exhibits a two-phase 

microstructure comprised of martensite laths and δ-ferrite needles, both on the order of 

0.9 μm wide and 6.1 μm long. Its final heat treatment involved austenitizing at 1050°C 

for 60 minutes followed by air cooling, and subsequent tempering at 770°C for 45 

minutes followed by air cooling. Alloy HT9, nominally 12Cr-MoVW, exhibits a three-

phase microstructure of martensite (laths are 0.4 μm wide and 14.6 μm long), δ-ferrite, 

and retained austenite. Its final heat treatment involved austenitizing at 1040°C for 30 

minutes followed by air cooling, and subsequent tempering at 760°C for 60 minutes 

followed by air cooling. The complete alloy compositions for all three alloys are provided 

in Table 4.1. 
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Table 4.1 Chemical composition of Fe-9%Cr ODS, HCM12A, HT9, in wt%. 

Element Fe-9%Cr ODS HCM12A HT9 

Cr 8.60 10.83 11.63 

Mo - 0.3 1 

Mn 0.05 0.64 0.52 

Ni 0.06 0.39 0.5 

V - 0.19 0.3 

Cu - 1.02 0.04 

W 1.95 1.89 0.52 

Si 0.048 0.27 0.22 

Nb - 0.054 - 

C 0.14 0.11 0.2 

N 0.017 0.063 0.047 

Al - 0.001 <0.01 

P <0.005 0.016 0.02 

S 0.003 0.002 0.006 

Ti 0.23 - 0.002 

Y 0.27 - - 

O 0.14 - 0.013 

Ar 0.004 - - 

Fe Bal. Bal. Bal. 

 

4.1.2 Sample Preparation 

Specimens of each alloy for neutron irradiation were cut into transmission 

electron microscopic (TEM) discs, 3 mm in diameter, and approximately 150-200 µm 

thick. Prior to irradiation, the discs were also mechanically polished through 4000 grit 

SiC paper, followed by electropolishing at -30°C in 10% perchloric acid + 90% methanol 

at the Idaho National Laboratory (INL). The fabrication of neutron-irradiated specimens 
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was done prior to this study, as is not specifically part of this thesis. Charged particle 

irradiation specimens of each alloy were fabricated into separate rectangular rods for each 

irradiation. Each rod was cut by electrical discharge machining into 1.5-2 mm x 1.5 mm x 

16-20 mm bars (Figure 4.1) to a quantity of: a) seven bars of Fe-9%Cr ODS, b) four bars 

of HCM12A, and c) four bars of HT9. 

 
Figure 4.1 Geometry of charged particle irradiation specimens. 

The collection of bar samples for each irradiation were assembled "side-by-side" 

onto a glass slide and mounted with wax. Each sample assembly was mechanically 

polished with SiC grit paper starting with 240 grit paper and gradually increasing to 4000 

grit until a mirror finish was achieved with minimal scratches visible upon imaging with 

an optical microscope. The samples were then removed from the glass slide by soaking in 

a ultrasonic bath of acetone and then stored and labeled in sample tubes for transport to 

the Michigan Ion Beam Laboratory (MIBL). In order to remove any plastic deformation 

introduced by mechanical polishing, the samples were electropolished at MIBL for 20 

seconds in a 10% perchloric acid + 90% methanol solution maintained at -40°C, with a 

35 V applied potential between the specimen (anode) and platinum mesh cathode. 
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Separately, a specimen of the as-received Fe-9%Cr ODS was cut into a specimen 

~5 mm x 5 mm x 1.5 mm thick and polished in the same manner. This specimen was not 

irradiated, but received the same microstructural examination as the irradiated samples in 

order to characterize the ODS microstructure and clusters prior to irradiation. 

4.2 Irradiations 

The irradiation conditions investigated for this dissertation are summarized in 

Table 4.2. All charged particle irradiations were conducted at the Michigan Ion Beam 

Laboratory at the University of Michigan, while the neutron irradiations were completed 

in the Advanced Test Reactor (ATR) at INL. The following sections will outline the 

unique considerations specific to each type of irradiations. 

Table 4.2 Summary of irradiation conditions studied. 

Irradiating 

Particle 

Dose Rate 

(dpa/s) 

Temperature 

(C) 

Dose 

(dpa) 

Fe-9%Cr 

ODS 
HCM12A HT9 

Neutron (ATR) ~ 10-7 500 3    

2 MeV Proton 1.2 x 10-5 

500 1    

500 3    

500 7  - - 

5 MeV Fe2+ 

Ion 
2.2 x 10-4 

500 1  - - 

500 3    

500 100    

400 50  - - 

 

4.2.1 Neutron Irradiations 

Neutron irradiation began in September 2008 as part of the University of 

Wisconsin Pilot Project at the Advanced Test Reactor (ATR) National Scientific User 

Facility. Each of the sample discs were irradiated in a fast neutron spectrum (dose rate 
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~10-7 dpa/sec) in the ATR. The irradiation temperature of 500°C was determined with 

SiC electrical resistivity samples placed in experiment capsules; thermal models, in 

which the gas-gap distance was adjusted, correlated the SiC experimental data [157]. 

4.2.2 Proton Irradiations 

For each proton irradiation experiment, the collection of alloy samples were re-

assembled in the same sequence and orientation (including the guide bars) as when they 

were polished (Section 4.2.1). The sample assembly was mounted onto a copper 

irradiation stage with a shim filled with liquid indium sandwiched between the specimens 

and stage to provide efficient heat application or removal from the specimens. A hold-

down plate was installed with four screws to ensure samples could not slip during 

installation or irradiation, and to prevent against liquid indium leakage. Finally, 

thermocouples were spot-welded onto the specimen to monitor and calibrate the initial 

temperature. An image of a typical stage assembly is provided in Figure 4.2. 

 
Figure 4.2 Typical sample stage assembly for charged particle irradiation at 

MIBL. 
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With the accelerator beam line inactive, the irradiation stage was installed at the 

end of the beamline chamber, with the stage electrically isolated from the accelerator 

beamline, to allow for accurate charge collection (Figure 4.3a). Pressure in the chamber 

was pumped down and maintained at pressures below 1.3 x 10-5 Pa (10-7 torr) throughout 

the experiment. Prior to commencement of irradiation, the size of the focused proton 

beam was measured in a beam profile monitor and was found to have a FWHM of no 

more than 3 mm. In order to define the target irradiation surface area, tantalum aperture 

plates were aligned such that the irradiation area fully overlapped each target sample and 

partially overlapped the guide bars on each side (Figure 4.3b and Figure 4.4). 

 

 
Figure 4.3 Irradiation stage mounting at end of beamline, from [158]. 
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Figure 4.4 Typical irradiation region (i.e. scanned beam area), as defined by 

aperture plates with beam area fully covering samples and partially overlapping 

guide bars on each side, from [158]. 

As a final step before irradiation commences, the installed thermocouples are used 

to calibrate a 2D infrared thermal pyrometer (Figure 4.3a), which records the 

temperatures of three areas of interest on the specimen at 0.1 Hz throughout the 

experiment. An example of the 2D thermal infrared pyrometer image is illustrated in 

Figure 4.5. Throughout the irradiation, a combination of resistance heating and air 

cooling were used to maintain the irradiation temperature at 500±10°C. 
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Figure 4.5 Typical 2D thermal infrared pyrometer image from a 500° irradiation, 

from [158]. 

The specimens were then irradiated with 2.0 MeV protons in a 1.7 MV General 

Ionex Tandetron accelerator. During irradiation, the focused proton beam was raster-

scanned across samples at a frequency of 2061 Hz in the vertical direction and 255 Hz in 

the horizontal direction. The duration of one scanning cycle in the vertical direction is 

0.48 ms, and 3.9 ms in the horizontal direction. The ratio of these two scanning cycles is 

a non-integer number, which ensures that the beam path is offset from the previous scan 

cycle, which provides good spatial uniformity of the scanned beam area. Figure 4.6 

illustrates this scanning pattern overlaid onto the alignment apertures. The resulting beam 

current density was ~22 μA/cm2, yielding a dose rate of ~1.2 x 10-5 dpa/sec (Table 4.2). 
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Figure 4.6 Pattern of raster-scanned beam during proton (and Fe2+ ion) 

irradiations, from [158]. 

Calculation of the displacement damage of 2 MeV protons incident on a nominal 

Fe-9%Cr alloy are calculated using the Stopping and Range of Ions in Matter (SRIM) 

software program. Damage was calculated through the simulation of 1,000,000 incident 

ions to enable high statistical confidence and a more finely distributed damage profile. 

The displacement energy for both the Fe and Cr target atoms is set to 40 eV [159]. The 

specific proton irradiation conducted to 3 dpa on the ODS, HCM12A, and HT9 alloys 

was conducted by Dr. Janelle Wharry [158] at MIBL in ~2010. At the time of that 

irradiation, the displacement damage of 3 dpa and the damage depth profile were 

calculated with the SRIM-2006 version [160] in “Detailed Calculation” mode and the 

displacements were obtained from the vacancy.txt file. A flux of 2.0 MeV protons normal 

to Fe-9%Cr produces a relatively uniform damage profile between 1 μm and 10 μm, with 

a damage peak at ~19 (Figure 2.2). Therefore, target irradiation dose is calculated at a 

depth of 9.5 µm from the surface, which avoids both the surface sink and the large 

damage peak. Subsequently, in 2013, Stoller, et al. demonstrated that SRIM calculations 

are more accurate when conducted in “Quick Calculation” (K-P) mode and the energy 
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partition results are used to obtain the estimate for displacements per ion [159]. With this 

recommended calculation method, and at these analysis depths, the accumulated dose 

would be ~2.1 dpa. For all other proton irradiations for this thesis (1 dpa and 7 dpa), the 

displacement damage was calculated with the SRIM-2013 software [44] in “Quick 

Calculation (K-P)” mode. The displacement damage calculated by SRIM is ~3 x 10-5 

displacements/Å-ion. 

The irradiation dose accumulation is in direct correlation with the flux of 

irradiating ions onto the target samples. Given that each irradiating proton carries a single 

unit charge (1.6 x 10-19 C/p+), it is possible to monitor the flux of protons by measuring 

the beam current incident on the samples. At each measurement, the beam current is 

integrated over the amount of time passed to calculate the accumulated dose (in dpa) by 

the following equation: 

𝐷𝑜𝑠𝑒 (𝑑𝑝𝑎) =
𝑡∙𝐼𝑎𝑣∙𝑅𝐷

𝑁𝑎𝑡∙𝑞∙𝐴𝑖𝑟𝑟
    (4.1)  

where t is the total elapsed time of irradiation, Iav is the average current measured over 

the total elapsed time, RD is the displacement rate (as calculated by SRIM), Nat is the 

atomic density of the target (~83.4 atoms/nm3), q is the electronic charge (1.6 x 10-19 C), 

and Airr is the irradiated region (as defined by the location of the Ta aperture plates). In 

this manner, the accumulated dose may be closely monitored. Once the target dose is 

achieved, the stage heating mechanism is disabled, allowing the temperature of the stage 

to decline to ~350°C before the irradiation flux is discontinued. The purpose of reducing 

the temperature prior to turning off the ion beam is to minimize any annealing of the 

target samples that may occur if the samples were held at 500°C at the time the beam is 

discontinued (even if only for a few minutes). 
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4.2.3 Fe2+ Irradiations 

For each irradiation with Fe2+ ions at MIBL, the procedures for sample 

fabrication, polishing, stage assembly, beam alignment, and temperature monitoring were 

identical to those used for proton irradiation. However, for each irradiation, the 

specimens were irradiated with 5.0 MeV Fe2+ ions in the same 1.7 MV General Ionex 

Tandetron accelerator. As with proton irradiation, the focused beam was raster-scanned 

across samples at a frequency of 2061 Hz in the vertical direction and 255 Hz in the 

horizontal direction, yielding the same scanning cycle (Figure 4.6). The resulting beam 

current density was ~0.13 - 0.24 μA/cm2, yielding a dose rate of ~2 x 10-4 dpa/sec (Table 

4.2). 

In the same manner as the proton irradiations, calculation of the displacement 

damage of 5 MeV Fe2+ ions incident on a nominal Fe-9%Cr alloy are calculated using the 

SRIM-2013 software program in “Quick Calculation (K-P)” mode. The damage profile 

(Figure 2.2) exhibits a steep gradient between the surface and the damage peak, which is 

located approximately 1.2 µm from the surface. Therefore, target irradiation dose is 

calculated at a depth of 600 nm from the surface, which avoids both the surface sink and 

the Fe implantation peak. The displacement damage calculate by SRIM is ~0.34 

displacements/Å-ion. 

As with proton irradiation, the irradiation dose accumulation is in direct 

correlation with the flux of irradiating ions onto the target samples. However, for heavier 

ions, measurement is accomplished by temporarily inserting a faraday cup in front of the 

samples and measuring the beam current. It is important to do this quickly, since 

irradiation is momentarily interrupted when the faraday cup is in place. Throughout the 
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irradiation, this current measurement is taken every ~20 minutes, or as needed depending 

on the stability of the beam current and the target dose. The accumulation of dose is 

monitored in the same manner and calculated using the following: 

𝐷𝑜𝑠𝑒 (𝑑𝑝𝑎) =
𝑡∙𝐼𝑎𝑣∙𝑅𝐷

𝑁𝑎𝑡∙𝑞2∙𝐴𝑖𝑟𝑟
    (4.2)  

where Eq. 4.2 only differs from Eq. 4.1 by the power of q in the denominator. For Fe2+ 

irradiation, q is squared due to the 2+ charge of the incident ions. 

4.3 Post-irradiation Sample Preparation 

After each respective irradiation, the microstructure of each specimen was 

characterized to evaluate any irradiation-induced evolution of grains, dislocation density, 

and carbide phases, or any irradiation-induced dislocation loops or voids. Transmission 

electron microscopy (TEM) is the primary technique to conduct this analysis. In addition 

to the above features, characterization of the microstructure also entailed evaluating the 

evolution of the oxide nanocluster in the ODS, or any irradiation-induced solute 

clustering in the F-M alloys. Imaging of these nanoclusters is possible in TEM, 

particularly in areas of the lamellae having low dislocation contrast, allowing the z-

contrast of the clusters to be more visibly prominent. However, this technique has limited 

detectability of nanoclusters <2 nm in diameter [6,161]. Thus, APT analysis complements 

the TEM work by identifying the <2 nm nanoclusters, providing results that more 

accurately quantify the average nanocluster size, number density, and composition. The 

following sections provide a summary of how samples from each specimen were 

fabricated for both TEM and APT analysis. These samples were created for each 

irradiation condition identified in Table 4.2, and for the as-received specimen of the 

model Fe-9%Cr ODS alloy. 
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4.3.1 TEM lamellae 

TEM lamellae were prepared for all specimen conditions using the focused ion 

beam (FIB) lift-out technique on an FEI Quanta 3D FEG FIB at the Center for Advanced 

Energy Studies (CAES). TEM lamellae were cut and lifted perpendicular to the surface of 

the bulk material. In the case of proton and Fe2+ irradiation, this orientation provided a 

cross-section of the damage profile within the depth of the TEM film. Prior to milling, all 

specimen surfaces were protected with a 3 µm platinum deposit, which ensured the 

original irradiated surfaces were retained for reference. For each sample, a liftout ~2 μm 

in thickness was removed from the bulk via a series of trenching and cleaning steps to 

separate the sample from the bulk. Once the sample was removed, it was mounted onto a 

copper grid and attached using platinum deposit. Each sample was milled on both sides at 

30 kV to an estimated thickness of ~100 nm, width of ~15 µm, and depth of ~7 µm 

(Figure 4.7). The samples were subsequently milled at 5 kV to an estimated thickness of 

50-100 nm, followed by cleaning at 2 kV for approximately 1 minute on each side. The 

purpose of the cleaning process was to reduce any surface damage to the sample caused 

by the milling. 
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Figure 4.7 Typical sample geometry of TEM lamellae, imaged via SEM in the FIB, 

irradiation direction is specified for proton and Fe2+ irradiations only. 

4.3.2 APT needles 

APT needles were fabricated using the same FEI Quanta 3D FEG FIB at CAES. 

For the as-received, Fe2+ irradiated, and neutron-irradiated specimens, sample wedges ~2 

µm wide and ~3 µm deep were cut and lifted in a direction perpendicular to the surface of 

the material (Figure 4.8a). The wedges were subsequently mounted onto the silicon posts 

(with platinum deposit) of a standard coupon and partitioned, resulting in 6-10 APT tips 

for each liftout (Figure 4.8b). Each tip was then milled using progressively smaller 

annular ring patterns to shape them into needles with a tip radius ≤ 50 nm [162], as 

shown in Figure 4.9. The needle was sharpened such that the tip of the needle was 

positioned just below the irradiated bulk surface. For proton-irradiated specimens, it is 

desired to position the needle tip ~1 µm below the irradiated surface in order to ensure 

sampling of the flat portion of the damage profile illustrated in Figure 2.2. Consequently, 

larger wedges ~3 µm wide and ~4.5 µm deep were cut and lifted from each proton-

irradiated specimen. For these samples, attachment and annular milling was conducted in 
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the same manner, except the sharpening process was extended to remove the top 1 µm of 

material to position the tip of the sample accordingly. 

 
Figure 4.8 Typical sample preparation of APT needle:  a) trenching to shape 

sample wedge, and b) mounting sample wedge onto Si posts of LEAP coupon. 

 
Figure 4.9 Illustration of needle shaping process showing a) annular ring milling, 

and b) typical final sample geometry imaged via SEM in the FIB. 
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4.4 Microstructure Examination 

TEM specimens were analyzed using an FEI Tecnai TF30-FEG scanning 

transmission electron microscope (STEM) at CAES. This TEM features a field emission 

gun (FEG) source that operates at 300 keV and several attached analysis capabilities 

including scanning transmission electron microscopy (STEM) and electron energy loss 

spectroscopy (EELS), among many others. The following sections will describe the 

techniques used for imaging and characterization of the microstructure of each respective 

specimen in this study using TEM. 

4.4.1 Bright Field Imaging 

With the TEM lamellae thinned to 50-100 nm in thickness, bright field imaging is 

quiet effective at creating sufficient contrast to differentiate a multitude of features within 

the microstructure. As a result, bright field imaging is the first technique used to achieve 

an overall sense of the microstructure and evaluate any potential changes due to 

irradiation. For the as-received, proton- and neutron-irradiated specimens, the entire TEM 

lamellae is available for imaging of the microstructure. However, it is important to 

recognize that only the first ~1 um depth of the Fe2+ irradiated lamellae are influenced by 

irradiation. Furthermore, within this depth, the target analysis region resides at a depth of 

only 400-600 nm, which provides a relatively narrow area of sample which has 

experienced the target irradiation dose of each experiment and thus may be investigated. 

Image collection is conducted using Digital Micrograph software, while post-imaging 

analysis was conducted using ImageJ software. 

The grain and lath structure of the alloys are typically imaged at a magnification 

of 5900x. Images are captured in succession while scanning across the analysis region of 
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the sample. Identification of grain and latch boundaries is accomplished through looking 

for continuously dark contrast lines, evidence of dislocation pile-up, and carbide phases, 

which typical reside on grain boundaries. For each grain that is identified, a measurement 

of its overall length (lgr) and width (wgr) is taken and the effective diameter (𝑑𝑔𝑟
𝑒𝑓𝑓

) of each 

grain is calculated as: 

𝑑𝑔𝑟
𝑒𝑓𝑓

= √𝑙𝑔𝑟 ∙ 𝑤𝑔𝑟     (4.3)  

An average effective diameter is also calculated for each specimen. 

Carbide precipitates are typically imaged at a magnification of 12,000x and are 

identified primarily by their unique contrast with bright field imaging. Carbides typically 

display a darker, dislocation free contrast compared to the surrounding matrix, and are 

most often located on grain or lath boundaries. As with grains, the overall length (lp) and 

width (wp) of each carbide is measured and the effective carbide diameter (𝑑𝑝
𝑒𝑓𝑓

) is 

calculated as: 

 𝑑𝑝
𝑒𝑓𝑓

= √𝑙𝑝 ∙ 𝑤𝑝     (4.4)  

An average carbide effective diameter is also calculated. Within each image, the relative 

analysis area in which the carbides were identified is measured. It is important to ensure 

that the analysis area of one image does not overlap with that of an adjacent image. The 

number density of carbide precipitates (Np) is then calculated by: 

𝑁𝑝 =
𝑛𝑝

𝐴𝑡𝑜𝑡∙𝑡𝑎𝑣
      (4.5)  

where np is the total number of carbides identified, Atot is the total image area analyzed, 

and tav is the average measured thickness of the sample (see Section 4.4.3). 

Dislocations are visible in bright field imaging as lines of dark contrast and are 

distributed throughout the microstructure. Depending on the orientation of each 
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individual grain, dislocations may be more or less visible, as typically Burgers vectors for 

the b.c.c. crystal structure are in the <111> family of directions [73]. In order to measure 

the dislocation density of an alloy, grains that exhibit the darkest contrast (and thus the 

highest density of dislocations) are selected for analysis. Within the selected grain, the 

areal density of dislocations is determined by measuring the linear density of dislocations 

for successively perpendicular measurements. A line of fixed length (l) is drawn within 

the grain and the number of intersecting dislocations across that line is counted (ndisl). 

Areal density of dislocations (Ndisl) is then calculated for each line by: 

𝑁𝑑𝑖𝑠𝑙 = (
𝑛𝑑𝑖𝑠𝑙

𝑙
)

2

    (4.6)  

Finally, an overall average areal density of dislocations is calculated for each specimen. 

After irradiation, it is possible for voids to be present in the microstructure of 

ODS and F-M alloys. If present, these voids are typically imaged via the through-focus 

technique in bright field TEM. It is generally easier to image voids in grains that exhibit 

low dislocation contrast, particularly if the voids are small. However, larger voids (>15 

nm) are generally quite easy to identify anywhere within the sample. The through focus 

technique is conducted by first focusing the TEM onto a grain with low dislocation 

contrast. Next, the image is alternately under-focused and over-focused, respectively, to 

observe any changes in Fresnel contrast within the image. Spherical voids will typical 

exhibit a dark perimeter with a "hollow" bright center in the under-focus image, but will 

switch to exhibiting a bright perimeter with a "solid" dark center in the over-focus image. 

Smaller voids also tend to be invisible in the in-focused image. It is important to 

recognize that nanoscale phases (such as oxides) will also exhibit similar Fresnel contrast 

when imaged with the through-focus technique, although typically without a hollow 



90 

 

center in the over- or under-focused conditions. Larger oxides are also generally visible 

in the in-focused image. For each void identified, the diameter is measured, and an 

overall average diameter of voids (dv), along with the standard deviation, is calculated. 

Similar to the carbides, a number density of voids (Nv) is determined as: 

𝑁𝑣 =
𝑛𝑣

𝐴𝑡𝑜𝑡∙𝑡𝑎𝑣
      (4.7)  

where nv is the total number of voids identified, Atot is the total image area analyzed, and 

tav is the average measured thickness of the sample. 

Upon irradiation, dislocation loops are a common side effect within the 

microstructure. Archival literature studies have commonly used techniques within bright 

field TEM imaging to image dislocation loops. The most common method is imaging 

with multiple two-beam conditions. This method is accomplished by the following steps: 

1) locating a grain oriented on a low index zone axis (relative to the electron beam) such 

as [001], [011], and [111], 2) tilting the sample to achieve a two-beam condition in which 

ideally only one direction of beams are illuminated in the diffraction pattern, 3) capturing 

images of dislocation loops that have burgers vectors which are visible as a result of the 

respective two-beam condition, and then 4) tilting to another two-beam condition on the 

same grain and capturing more images. Although this technique is proven and effective, 

some inherent challenges with ODS and F-M alloys make this technique cumbersome 

and somewhat unreliable: a) the small grain structure makes it very difficult to tilt the 

sample without the image moving away from the particular grain in question, b) the high 

dislocation density of grains tilted onto low index zone axes floods the image, 

complicating the reliable distinguishing of loops from the rest of the dislocation forest. 

Due to these technical challenges in imaging dislocation loops, an alternate technique for 
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imaging dislocation loops via STEM was selected. The following section will outline the 

details of this relatively new method, which proved to be vastly more reliable. 

4.4.2 STEM Imaging 

Dislocation loops were imaged in STEM mode on the same instrument at CAES 

following a procedure outlined by Parish et al. [161]. Prior to imaging with STEM, the 

sample is imaged in TEM mode to locate a grain within the target analysis region that is 

oriented close to a low index zone axis such as [001], [011], or [111]. For the grain, the 

sample is tilted to align the electron beam of the microscope to as closely parallel to the 

zone axis as possible. Once this is accomplished, an image of the grain and the diffraction 

pattern for the grain is captured. Just before switching the microscope to STEM mode, 

the smallest condenser aperture at the top of the microscope is inserted and aligned with 

the source beam. The purpose of the small condenser aperture is to minimize the 

collection angle (β) of the beam interacting with the sample. Once the instrument is 

transitioned into STEM mode, the camera length for imaging is increased to its highest 

setting (4.5 m) to minimize the convergence (α) angles, which enables a STEM "bright 

field" image. This resulting image will reduce the amount of contrast due to the 

surrounding dislocation forest, while enabling all orientations of dislocation loops visible 

without any forbidden reflections (as is the case with two-beam conditions). 

Identification of dislocation loops within the STEM images is aided by 

dislocation loops orientation maps developed by Yao, et al. [163] for b.c.c. Fe materials. 

Dislocation loops in b.c.c. Fe are known to commonly reside on the {001} and {111} 

habit planes. In this study by Yao, et al., the expected orientation and visibility of loops 

on each habit plane are identified (Figure 4.10). In order to use these maps, the diffraction 
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pattern acquired above is aligned with the map vectors, providing a prediction of each 

dislocation loop orientation and appearance within the image. In some cases, dislocation 

loops will appear as round circles, while loops with different orientation may appear as 

"edge-on". For loops imaged close to an “edge-on” condition, the longer dimension 

observed is taken to be the loop diameter [163]. For each loop identified, the diameter is 

measured, and an overall average diameter of loops (dl), along with the standard 

deviation, is calculated. Similar to the carbides and voids, a number density of loops (Nl) 

is determined as: 

𝑁𝑙 =
𝑛𝑙

𝐴𝑡𝑜𝑡∙𝑡𝑎𝑣
      (4.8)  

where nv is the total number of voids identified, Atot is the total image area analyzed, and 

tav is the average measured thickness of the sample. 

 
Figure 4.10 Dislocation loop orientation maps for the a) [001] zone axis, b) [011] 

zone axis, and c) [111] zone axis, from [163]. 

It is important to note with the STEM imaging technique the visibility of loops is 

highly dependent upon the TEM lamella thickness. Lamellae less than 50 nm thick are 

generally more effective, but it is recognized this target thickness is difficult to 



93 

 

consistently achieve during sample fabrication. As a result, the loop visibility may vary 

with lamella thickness, which can lead to disparity in measured number densities. 

4.4.3 Thickness Measurement 

In order to measure the volumetric density of microstructure features such as 

carbides, voids and dislocation loops, a measurement of the sample thickness is required. 

This is accomplished using the electron energy loss spectroscopy (EELS) technique, 

which is an attached capability of the TEM at CAES. With EELS, a detector located 

below the sample collects electrons that translate through the sample based on their 

residual energy. The resulting measurement is a spectrum of energies (Figure 4.11), with 

a large, sharp peak at high energy which corresponds to electrons that have lost 

essentially zero energy as a result of passing through the sample. Using the Digital 

Micrograph software, an integration underneath the energy spectrum, not including the 

zero-loss peak, will provide an estimated thickness (t) at the location of the measurement. 

For this integration algorithm, it is key to provide the size of the respective condenser and 

objective apertures for the measurements. In the case of this study, the 100 nm condenser 

aperture and 50 nm objective aperture were used for each EELS thickness measurement. 

Multiple thickness measurements were conducted at a variety of locations within each 

sample and an average thickness (tav) was calculated. 
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Figure 4.11 Example of EELS spectrum collected from a typical TEM lamella, 

collected using Digital Micrograph software. 

4.4.4 TEM vs. APT Measurements 

Throughout literature, a variety of characterization techniques are used to 

measurement the morphology of nanocluster and nanoscale phases in ODS and F-M 

alloys. Generally, these techniques fall into two primary categories of characterization: 1) 

TEM-based, and 2) APT-based. A few other techniques including x-ray absorption fine 

structure (XFAS) spectroscopy [101], glancing-incident angle x-ray diffraction (GIXRD) 

[99] and small angle neutron scattering (SANS) [82,100,164,165] are occasionally used 

as well. Characterization using TEM/STEM is often used as a combination of techniques 

aimed at conducting structural analysis with HRTEM 

[12,69,72,79,81,83,84,93,104,110,111,120,121,124], or compositional analysis with 

EFTEM [5,6,59,69,96,107,110–112,118,129,166] in addition to bright field TEM 

imaging. 

For this thesis, the primary focus is the characterization of nanocluster 

morphology (size and number density) and its evolution as a result of irradiation. Bright 
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field images of the oxide clusters in Fe-9%Cr ODS were also obtained in TEM by 

reviewing areas having low dislocation contrast, allowing the z-contrast of the clusters to 

be more visibly prominent. For example, in the as-received specimen, the clusters 

appeared to be homogeneously distributed (Figure 4.12a). A similar distribution is 

observed in the specimen proton-irradiated to 3 dpa at 500°C (Figure 4.12b). On the other 

hand, in the specimen neutron-irradiated to 3 dpa at 500°C, the z-contrast of the clusters 

does not appear to be as prominent in the bright field images (Figure 4.12c). It is also 

important to recognize the local thickness of each sample for these images varies between 

50 to 100 nm, so the perceived density of the clusters in each image cannot be directly 

compared. For all specimens, it becomes difficult to resolve any nanoclusters that are less 

than 2 nm in diameter [6,161]. As a result, atom probe tomography is believed to achieve 

a more objective determination of the oxide nanocluster average size and number density. 
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Figure 4.12 Bright field TEM images of oxide distributions for a) as-received, b) 

proton-irradiated (3 dpa, 500°C), and c) neutron-irradiated (3 dpa, 500°C) in Fe-

9%Cr ODS. 

4.5 Nanocluster Analysis 

Atom probe tomography (APT) is increasingly being used to complement 

transmission electron microscopy (TEM) to characterize 3D chemical compositions and 

distributions at high spatial resolution, particularly for nanofeatured materials containing 
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phases below TEM resolution limits [6,8,9,24,25,40,59,86]. Local electrode atom probe 

(LEAP) tomographic cluster analysis algorithms provide an objective means to identify 

and measure the size and number density of these nanoscale phases [167]. The following 

sections will describe the techniques used for LEAP analysis, reconstruction, and cluster 

identification and analysis for each respective specimen in this study using APT. 

4.5.1 LEAP Data Collection 

For each specimen, a series of sample needles were fabricated according to the 

procedure outlined in Section 4.2. Each needle was analyzed one at a time using a 

Cameca LEAP 4000X HR at CAES. Within the LEAP, a high frequency voltage (or a 

pulsed laser) is applied to the needle-shaped sample. The thermal spike resulting from the 

voltage (or laser) ionizes and evaporates atoms from the surface, which are then 

accelerated towards a detector screen. The detector captures the location of incidence and 

the time-of-flight of the ion traveling from the pulse to impact with the detector (Figure 

4.13). This process is continually repeated (up to several hours) to collect tens of millions 

of ions. The resulting data set includes the location of each incident ion and a spectrum of 

time-of-flight measurement peaks which may be translated into a mass-to-charge ratio for 

each ion, allowing elemental identification. 
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Figure 4.13 Schematic of atom probe tomography analysis technique, from [168]. 

For all of the specimens in this study, the LEAP was operated in laser pulsed 

mode with the samples held at 40 K. The sample is initially aligned manually with the 

electrode, followed by evaporation, which is largely an automated process. During 

evaporation, laser power ranged from 40-100 pJ, with a pulse repetition rate of 200 kHz. 

Evaporation may continue until the sample is exhausted (i.e. evaporation reaches the Si 

post), but most often ends when the sample eventually fractures due to thermal loading of 

the pulsing process. It is important to recognize the detector efficiency of the LEAP 

4000X HR is only 36%. Even with this relatively low efficiency, the resulting data sets in 

this study ranged in size from <1 million ions up to ~60 million ion counts per needle. 

Once each sample has concluded evaporation, the data set is stored as a .RHIT file and is 

available for analysis offline using a separate software package (Section 4.5.2). A typical 

histogram of events seen by the detector for one needle is shown in Figure 4.14. 
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Figure 4.14 Typical detector event histogram from the field evaporation. 

4.5.2 Reconstruction 

The data analysis for each LEAP sample was conducted using the Integrated 

Visualization and Analysis Software (IVAS) Version 3.6.12. The IVAS software enables 

processing of the .RHIT file from the LEAP analysis to reconstruct the original sample 

"atom-by-atom" and is a versatile tool for interrogating the data via composition analysis, 

cluster identification and analysis, and many other techniques. 

The first step of reconstruction is to establish the selected ions which will be used 

for virtually rebuilding the sample. This is accomplished via the voltage history of the 

LEAP ion evaporation, which is plotted against the sequence of ions collected by the 

detector. A typical voltage history from a single sample needle is given in Figure 4.15. In 

general, it is desirable to maximize the amount of ions from the voltage history used for 

reconstruction in order to maximize the analysis volume and counting statistics. 
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However, there are some areas in the curve that should be avoided. First, the ions 

collected at the very beginning of the analysis are collected as the LEAP process is being 

calibrated by the operator. These ions represent a very small volume and are difficult to 

accurately reconstruct. Second, it is beneficial to avoid any locations of the sample where 

a fracture of the sample has occurred. This would be evident in the voltage history by a 

large discontinuity in the history curve (example in Figure 4.16). Examples of the 

optimum selection of ions, as indicated by a highlighted box in both Figure 4.15 and 

Figure 4.16 is provided. Every sample will have its own unique voltage history. If it is 

unclear which ions in the history are best to select, it is suggested to iterate reconstruction 

with different sets of ions and evaluate which set yields the most reliable results. 

 
Figure 4.15 Typical voltage history from the LEAP evaporation process for a single 

sample needle. The highlight represents the selected ions for use in reconstruction. 
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Figure 4.16 Example voltage history from the LEAP evaporation process which 

exhibits a fracture event during the collection process. 

The next step in the reconstruction process is to initiate the time of flight (TOF) 

correction. This is an automated process within IVAS which translates the TOF 

information for each ion collected into a mass-to-charge ratio for each ion. The net result 

of this conversion is a distribution of counts for different mass-to-charge ratios from the 

sample, an example of which is illustrated in Figure 4.17. In this distribution, the user has 

an opportunity to identify the peaks highlighted in red. Knowledge of the material 

composition is particularly useful for this step, as well as the relative abundance of 

different elemental isotopes. Since Fe is by far the most prevalent element in the alloys of 

this study, it is helpful to identify these peaks first. Upon evaporation, the sample atoms 

are typically ionized to either a 1+ or, more commonly, a 2+ charge. It is also possible for 

higher charge ions, but less frequently. For Fe, the most abundant isotope is Fe56. If these 

atoms are ionized to a 2+ charge, the corresponding mass-to-charge ratio would equal 56 / 

2 = 28. As a result, the largest peak, which is closest to a mass-to-charge value of 28, may 

be positively identified as the 2+Fe56 isotope. The same logic may be applied to all other 

isotopes of Fe, as well as all of the other elements that make up the composition of the 
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studied alloy. It is important to recognize that some isotope peaks overlap, such as those 

of 58Fe2+ and 58Ni2+ at a mass-to-charge ratio of 29. For situations such as this, the peak 

should be identified as the elemental isotope which will be in most abundance given the 

alloy composition. In this example, the peak at 29 is identified to be 58Fe2+ because the 

bulk concentration of Fe is ~1500 times that of Ni, although it is probable that a minority 

of these ions are 58Ni2+. At this stage, it is not possible to deconvolute this peak into two 

separate elements. 

 
Figure 4.17 Example mass-to-charge ratio distribution prior to final calibration for 

the Fe-9%Cr ODS alloy. Peaks highlighted in red may be identified by the user to 

calibrate the mass spectrum. 

On occasion, sample ions will evaporate together as a compound and impact the 

detector simultaneously. As a result, their time of flight will correspond to a higher mass 

equal to the combined masses of the respective atoms. Examples of this seen in the ODS 

alloy are oxide compounds such as FeO, CrO, YO, and TiO. Consequently, these peaks 

will correspond to "combined mass"-to-charge ratio values. Unfortunately, it is not 

possible to identify these peaks at this calibration step, but it is be possible to identify 

these compounds at a later time. Once all of the possible peaks have been identified, the 
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IVAS software will calibrate the full mass-to-charge spectrum, locating the identified 

peaks onto their known mass-to-charge ratios and locating all remaining peaks at the best 

"fit" to the spectrum as possible. 

Once the mass spectrum has been calibrated, the analyst has an opportunity to 

"range" the peaks within the mass-to-charge ratio spectrum. In the same manner as above, 

each peak is identified based on it mass-to-charge ratio and its relative isotope 

abundance. IVAS provides several analysis tools to assist this process. Once a peak has 

been positively identified, a "range" of mass-to-charge ratio within the spectrum is 

selected to assign the ion counts within the peak to an element or compound. Within the 

APT community, some debate exists about where to start and end each range within the 

peak. Some argue that the range should start at the full-width half maximum (FWHM) 

front edge of the peak, and end at the FWHM back edge of the peak. Alternatively, and 

for all experiments in this study, the range is defined at edges located at the base of the 

peak, where the peak begins to rise above the background. Following this approach 

enables the maximum amount of atoms to be identified within the data  set, increasing 

confidence in the reconstruction. Examples of peaks ranged at FWHM and at full width 

are given in Figure 4.18. The process is repeated, assigning and ranging each peak for 

their respective element or compound. For small data sets, many of the peaks may be 

difficult to differentiate from the background level in the mass-to-charge spectrum. As a 

result, only data sets containing > 2 million ions were used for APT analysis. Once all of 

the peaks have ranged, the next step is to define the tip profile for reconstruction. 
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Figure 4.18 Example peaks ranged at a) full-width half maximum (FWHM), and b) 

full-width. The approach in b) was used for all peaks in this study. 

The primary goal in reconstructing the data set is to approximate the original 

geometry and morphology of the sample needle as closely as possible. In order to 

accomplish this, the value of several parameters must first be identified and entered into 

IVAS including: a) the image compression factor (ICF), b) the k-factor (k), and c) the 

evaporation field (F). The most influential of these factors is the ICF, which may be 

estimated based on the voltage history of the evaporation (Figure 4.15). The ICF provides 

information about the amount of "compression" the trajectory of ions has experienced en 

route to the detector. As ions are evaporated and accelerated towards the detector, their 

flight path will follow a arced trajectory due to the accelerating voltage narrowing their 

flight path and resulting in a compression in their detector impact location, as illustrated 

in Figure 4.19. This image compression factor (ξ or ICF) is strongly correlated to the 

voltage and Prosa, et al. [169] have shown them to be related by the curve in Figure 4.20. 

Within the IVAS software, the default value for the ICF is 1.65, which is most accurate 

for a collection voltage of ~2800 V. But this voltage is typically well below the collection 

voltage history of all of the samples collected in this study. Since the ICF varies as a 
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function of collection voltage (Figure 4.20) [169], it would be ideal to collect data sets 

with a relatively constant voltage history. However, accomplishing this requires APT 

needles with a shank angle close to zero [169], which may not be practical for all 

materials and users, as was the case in this study. As a result, an “effective” voltage, Veff, 

was estimated for each data set by selecting the collection voltage at the mid-point of the 

data history (Figure 4.15). Using the specific Veff from each data set, an “effective” ICFeff 

was then selected (Figure 4.20). 

 
Figure 4.19 Illustration of image compression factor (ξ) and its influence on 

detector impact location, from [170]. 

 
Figure 4.20 Relationship between collection voltage (V) and image compression 

factor (ICF), from [169]. 
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The k-factor is also an important geometric factor that influences the 

reconstruction geometry. It is dependent on the tip radius of the sample, the shank angle 

and the relative proximity to the electrode during the LEAP process. In this experiment, 

each sample was fabricated following the same process, and LEAP was consistently 

conducted with the samples ~40 μm from the electrode. Based on these consistencies, the 

k-factor was consistent for each data set reconstruction at a value of 3.30. 

Finally, the evaporation field, F, is dependent on the material analyzed. Each 

element will require a slightly different field value for evaporation. Given that each alloy 

is this study is predominantly Fe-based, the known field for Fe (33.00 V/nm) was used 

for each reconstruction. It is important to recognize that the evaporation of solutes within 

the samples is influenced by this field. As a result, localized concentrations of solutes, 

such as nanoclusters, may evaporate more readily or less readily depending on the 

elemental composition of the nanoclusters. This fluctuation in evaporation rate can have a 

small influence on the resulting density and measured size of the nanoclusters. 

Unfortunately, there is not any practical solution to this, but it is an important artifact for 

the analyst to be aware of. An example of the interface in IVAS for entering 

reconstruction parameters is shown in Figure 4.21. Before reconstruction, it's also critical 

to confirm the primary element (e.g. Fe in this study) is selected. 
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Figure 4.21 Typical interface in IVAS version 3.6.12 for entering parameters that 

define the reconstruction and data set geometry. 

Within IVAS, there are three different possible methods for defining the tip 

profile of the data set, which will prescribe the corresponding shape of the reconstruction:  

1) "Voltage" mode, 2) "Shank" mode, and 3) "Tip profile" mode. The voltage (V) at the 

time of ion evaporation is related to the tip radius of the sample (R0), which can be 

written as [170]: 

𝑅0 =
𝑉

𝑘𝐹
     (4.9)  

in which k is the geometric k-factor (3.30), and F is the evaporation field of the material 

sampled (33.00 V/nm for Fe). These values are taken as constants for the materials and 

sampling procedures used in this study. Consequently, the sample radius is essentially 

proportional to the collection voltage, which means the voltage history provides useful 

data for reconstructing the evolution of the sample radius during the LEAP analysis. For 
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all three reconstruction modes, the initial voltage is used to calculate the initial sample 

radius. 

For reconstruction in "Voltage" mode, IVAS will simply use the entire voltage 

history (e.g. Figure 4.15) to calculate the tip radius throughout the entire evaporation 

history. The net result is a reconstructed tip radius which increases proportionally with 

the voltage increase and the sample. This methodology is generally the simplest and most 

accurate means for reconstruction as long as the voltage history is continuous. 

Conversely, if the voltage is discontinuous (e.g. Figure 4.16) the net result of 

reconstruction in this mode will be a sample that also contains this discontinuity, which is 

not representative of the original sample geometry. As a result, for data sets with 

discontinuous voltage history, reconstruction in Shank mode or Tip profile mode are 

likely to be more effective. 

For reconstruction in Shank mode, it is required to predefine the shank angle of 

the original sample (i.e. the angle between the slope of the sample sides and the vertical 

axis of the tip). IVAS will estimate this angle based on the voltage history of the LEAP 

analysis, so it is possible to use this estimated value or manually enter a unique value. 

Typically, it is beneficial to generate "Preview" reconstructions with multiple angles and 

select the one which appears to reconstruct the data set in the most representative manner. 

The net result will be a reconstruction with an initial tip radius calculated from the initial 

voltage and then a linear side slope of the sample according to the defined shank angle. 

This mode succeeds at eliminating any profile discontinuities that would come from a 

discontinuous voltage profile, but accuracy of the evolving tip radius is also partially 

compromised. 
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For reconstruction in Tip Profile mode, it is possible to manually define the 

evolution of the tip radius. This is accomplished by importing an image of the sample tip 

(as taken via the SEM microscope in the FIB) prior to the LEAP analysis. Using this 

image, the corresponding tip radius of the sample is measured at a range of depths, 

enabling the construction of a tip radius profile. IVAS will then use this tip profile to 

define the resulting geometry of the reconstructed data set. This mode is most useful for 

very large data sets (i.e. > 30 million ions) to help ensure the radius evolution is 

consistent with the original sample. 

Once the reconstruction parameters are set, the next step is to generate a 

"Preview" reconstruction (Figure 4.22). This provides an opportunity to review the 

resulting shape and cluster morphology of the data set. If this is satisfactory, the analyst 

may "Save Reconstruction" and proceed with generating the full reconstruction. IVAS 

will position each atom based on its relative detector position, the ICF, and the sequence 

in which it impacted the detector. Inevitably, these inputs may not perfectly converge on 

the precise location of every original sample atom. As a result, the algorithm will attempt 

to consider each input and locate each atom at is best "fit" location. As a result, the 

reconstruction will often exhibit localized fluctuations in atomic density to enable this 

best "fit". Although this is undesirable, it is also unavoidable due to the limitations in 

requiring ICF and the k-factor to be constant for the entire reconstruction and the 

estimations used in the tip profile generation. The procedures outline above are designed 

to minimize this effect and maximize the integrity of the resulting reconstruction. 
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Figure 4.22 Typical "Preview" reconstruction in IVAS version 3.6.12. 

Once the final reconstruction is completed, two more activities are critical for the 

accuracy of the reconstruction. First, it is recommended to review and update the mass 

spectrum ranging once again. It is at this stage that the analyst will have the most 

resolution of the spectrum, and can define all ions and compounds accordingly. Finally, 

the analyst should inspect the solute distribution for each element in the reconstruction, 

confirming any unique morphology or clustering is consistent with expectations. In the 

case of ODS and F-M alloys, the nanoclusters typically appear spherical when observed 

in the TEM. Therefore, it is expected that any ODS oxide nanoclusters (Y-Ti-O-rich) and 

F-M nanoclusters (Si-Mn-Ni-rich, Cu-rich, or Cr-rich) should appear as approximately 

spherical in the 3D reconstruction. If they instead appear to be consistently "stretched" in 

the horizontal or vertical directions, it would suggest the accuracy of the reconstruction is 
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not optimum, in which case an iterative process for reconstruction should be pursued 

until the solute morphology is the most representative. 

Once satisfied with the reconstruction, a systematic analysis of the cluster 

morphology and composition may proceed. The following section provides detailed 

descriptions of the procedures followed to analyze nanoclusters in the ODS and F-M 

alloys used in this study. 

4.5.3 Cluster Identification and Analysis 

With a complete reconstruction of each data set, the IVAS software enables the 

identification and analysis of solute clusters using multiple techniques. For the work in 

this thesis, two complimentary techniques are used to maximize confidence in the 

objective identification of clusters: 1) construction of isosurfaces (i.e. iso-concentrations), 

and 2) the maximum separation method. Each technique is executed independently and 

the results are compared to ideally accomplish similar results, thus yielding confidence in 

the analysis parameters. 

With the completed reconstruction, the isosurfaces method is used first for the 

clustered solutes in the studied specimen. In the case of Fe-9%Cr ODS, these solutes are 

Y, Ti, and O. For the HCM12A and HT9, solutes of Si, Mn, Ni, and P are studied. In 

addition, for HCM12A and HT9, separate isosurfaces and cluster analysis are conducted 

for Cu and Cr solutes if there is visible evidence of clustering of these elements in the 

data set. Isosurfaces are created in IVAS by "right-clicking" on the "3D Grid" in the 

Analysis menu for the data set. Initially, the solutes of interest are selected, as identified 

above (Figure 4.23a). Next, the user identifies the concentration threshold (in at.%) for 

the isosurfaces to be constructed (Figure 4.23b). For this study, a threshold of 6 at.% was 
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used for all of the studied alloys and elements, which consistently produced concentration 

profiles that most closely matched the size of clusters visible in the data set. On occasion, 

it is helpful to vary this threshold to perceive the influence of this parameter and/or adjust 

it as necessary. Once a concentration threshold is established, the isosurfaces are finalized 

(Figure 4.23b). The IVAS software measures the local concentrations of each set of 

solutes and constructis surfaces across the concentration gradients at the threshold 

identified. Referring back to the Analysis menu, an itemized list of the clusters is now 

available. With this list, the number of clusters is counted. For smaller samples in which 

each cluster is visually distinguishable, the number of clusters generated via isosurfaces 

is compared to the visual number of clusters. Ideally, these two number are a close match, 

suggesting the isosurfaces do an adequate job at distinguishing each individual cluster. If 

the numbers are not consistent, it is recommended for the user to reiterate the analysis 

using varying concentration thresholds. 

 
Figure 4.23 Entry points within IVAS for construction of solute iso-concentration 

surfaces:  a) solute selection, and b) concentration threshold (i.e. Isovalue). Once the 

parameters are set, the user clicks on "Create Interfaces" to finalize. 

Next, the maximum separation method is used to conduct a detailed analysis of 

the clusters present using a completely different algorithm. The accuracy of the 
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maximum separation method is highly dependent upon the input parameters selected for 

the algorithm [171]. The primary parameters to be defined are (Figure 4.24): 

 dmax - the maximum distance between solute atoms for them to be identified as 

"clustered" 

 Nmin - the minimum number of "clustered" solute atoms required for a group of 

solutes to be formally identified as an individual "cluster" 

 L - the maximum distance for adjacent non-solute atoms to be included in the 

cluster 

 E - the maximum distance of atoms near the matrix interface to be removed 

(erosion distance) 

The analysis is most sensitive to the selection of dmax and Nmin, which depend upon the 

amount of solute concentration in the alloy and the relative distribution of the solutes 

within the matrix [172,173]. Since other authors have observed composition changes of 

nanoclusters under irradiation [8,9,13,59,104,124,174], it is considered likely that the 

dmax and Nmin values may also differ for each specimen. As a result, both parameters are 

determined independently for each specimen and each individual data set. 
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Figure 4.24 Schematic illustrating the maximum separation method:  a) solute 

atoms shaded, b) solute atoms (core atoms) shaded darker if within DMAX, c) non-

solute atoms (hatched) with L distance from the core atoms, and d) atoms within 

distance E from the matrix atoms are removed via erosion, from [171]. 

Selection of the analysis parameters for the maximum separation method is 

typically an iterative process using several different analysis tools within IVAS. The 

following is the approach utilized for this study. Within each data, the first tool used is a 

"Nearest Neighbor Distribution", which will confirm if significant clustering is present 

and assist with the initial estimation of the dmax parameter. With this algorithm, the user 

identifies the solute elements of interest, the range of atom-to-atom distances (d-pair) for 

consideration (usually up to 1.0-1.5 nm), and the sampling intervals (typically 0.05-0.1 

nm to balance resolution and relative computing time). This algorithm is performing two 

separate calculations. First, it is measuring the amount of occurrences in which two 

solutes atoms fall within the d-pair distance, generating a histogram of this distribution. 
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Second, the algorithm calculates what this histogram would look like if all of the solute 

elements were randomly distributed throughout the sample. Therefore, if the sample truly 

has random distribution of solutes, these two histograms will be virtually identical. On 

the other hand, if these two histograms are grossly different, there is evidence of solute 

clustering. In which case, a point of reference is the cross-over point between these two 

curves (shown in Figure 4.25), which serves as the initial estimate of dmax. 

 
Figure 4.25 Typical results of a "Nearest Neighbor Distribution" for a data set 

exhibiting solute clustering. The cross-over point is highlighted with a blue arrow. 

The next tool used is a "Cluster Size Distribution Analysis", which is used to 

estimate the value of the Nmin parameter. For this calculation, the user once again 

identifies the solute elements of interest, and makes an initial estimate of dmax (in nm). 

Once again, the algorithm is performing two separate calculations. First, it applies the 

initial value for dmax across the data set to identify each cluster and plot a histogram of the 

size of each cluster. It is important to recognize this is an estimate, as the parameters L 
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and E are not considered at this time. Second, the algorithm estimates the distribution of 

cluster size as if the solutes were randomly distributed within the data set. Typical 

distributions of cluster sizes for both the data set and for a random distribution are 

illustrated in Figure 4.26. In the random calculation (red), it is expected that a few small 

"clusters" would still be identified as random solutes are coincidentally located near each 

other. The same effect is also observed for the calculation based on the actually data. One 

of the main goals of this step in the process is to filter out any of these random clustering 

events. As a result, the best approach is to iteratively choose different estimates of dmax 

until the low-end slopes of each of these curves closely match and converge on a 

common point on the x-axis. The point at which these slopes intersect the x-axis (Cluster 

Size) then provides a good estimate for the Nmin parameter. With this approach, any 

clusters that are smaller in size are eliminated from consideration, thus ruling out any 

clusters that only occur randomly. 
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Figure 4.26 Typical results of a "Cluster Size Distribution Analysis" with a) the 

dmax estimate is too small, and b) dmax is more appropriately estimated and an 

initial Nmin is identified. 

The next tool used is the "Cluster Count Distribution Analysis" which is used to 

finalize the value of dmax. Once again, the user identifies the solute elements of interest, 

the maximum of dmax distances to consider (usually up to 1.0-1.5 nm), and the sampling 
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intervals (typically 0.05-0.1 nm to balance resolution and relative computing time). The 

user defines the estimated Nmin value from the prior step. The algorithm is once again 

performing two separate calculations, one against the existing data in the data set, the 

other for a random distribution of solutes, and plots histograms of the number of clusters 

identified based on the dmax parameter used for calculation. Typically, the random 

distribution results in a single mode distribution at higher dmax values. Conversely, the 

data set distribution will often have a single mode distribution at lower dmax values 

(Figure 4.27a), or a bimodal distribution with peaks at lower dmax values and at higher 

dmax values (Figure 4.27b). In the former situation, selection of dmax is a little more 

subjective. Typically, it is best to look for values in the region where the data-driven and 

random histograms cross-over (Figure 4.27a). However, in cases where a bimodal 

distribution is present, appropriate dmax values were selected for each condition following 

the approach proposed by Kolli and Seidman [175] and further refined by Williams, et al. 

[173], in which the selected dmax yielded a minimum number of counted clusters by the 

analysis (Figure 4.27b). When dmax values were too small, a “cluster of clusters” effect 

was present in which the software identified a single cluster as a group of smaller clusters 

clumped together. This effect overinflated the number density of clusters, while under-

estimating their average size. Conversely, when dmax values were too large, additional 

clusters were spuriously generated and counted, which also overinflated the number 

density. In all cases, the best approach is to iterate between the "Cluster Size 

Distribution" and "Cluster Count Distribution" analyses until both dmax and Nmin each 

converge onto the same values for both analyses. It is also helpful to compare the 

estimated number of clusters (y-axis) to the total number of clusters identified using 
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isosurfaces (via procedure above). Ideally, these values should be close (within ± 10%) to 

increase confidence in the selected parameters. 

 

 
Figure 4.27 Typical results of a "Cluster Count Distribution Analysis" with a) a 

single mode distribution with the data set calculation, and b) a bimodal distribution 

with the data set calculation. 

Finally, the parameter values for L and E must be selected. The value of L defines 

a maximum distance from cluster atoms identified in the analysis. Any matrix atom that 
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falls within this distance is also included in the cluster. The purpose of this addition is to 

ensure the measured cluster is not hollow. Typically, values for L are less than or equal to 

dmax. For this study, the value of L was defined as 0.5 nm for every data set, and no 

hollow clusters were ever observed in any of the samples. The value of E defines the 

erosion of the cluster at the interface with the matrix. Any matrix atoms that fall within 

this distance from an adjacent matrix atom at the interface is thus removed from the 

cluster. In this study, the value of E was consistently defined as 0.2 nm for every data set. 

Once all of the input parameters have been defined, the formal cluster analysis is 

initiated. At the conclusion of this calculation, two major data outputs are available: a) a 

data table containing detailed information and measurements for each cluster, and b) an 

exportable Cluster .POS file. The latter can be used to reconstruct the data set as a 3D 

rendering with each cluster identified in a unique color (Figure 4.28). This is valuable for 

visual comparison with the isosurfaces created earlier in the original reconstruction, and 

also enables inspection for any evidence of a "clustering-of-clusters" effect, which is 

undesirable. Ideally, each cluster is distinct and closely matches those identified via 

isosurfaces. Once the user is satisfied with the integrity of the cluster analysis, the data 

table may be exported as a .CSV file, which may be opened in Microsoft Excel and used 

for subsequent analysis offline. 
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Figure 4.28 Typical 3D reconstructions of clusters in an ODS data set. 

Finally, in IVAS, the bulk volume of the data set is estimated using the "Radial 

Distribution Function" calculation. For this calculation, any solute elements may be 

selected. The bulk volume is found as part of the "Properties" of this calculation and may 

be later used to calculate the overall number density of the clusters. 

The IVAS cluster analysis output file (.CSV) provides values for Rgx, Rgy and Rgz 

for each cluster, which is taken to be the respective radius of gyration in each coordinate 

direction. An overall radius of gyration (Rg) for each cluster is calculated by [167]: 

   𝑅𝑔 = √𝑅𝑔𝑥
2 + 𝑅𝑔𝑦

2 + 𝑅𝑔𝑧
2     (4.10)  

and the Guinier diameter (DG) for each cluster is determined using [167,176]: 

𝐷𝐺 = 2√
5

3
𝑅𝑔      (4.11)  

The average and standard deviation is calculated across all clusters measured and the 

error propagation formula is used to calculate an overall standard deviation for the 
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Guinier diameter. The standard deviation of the mean is also calculated to evaluate the 

relative certainty of the mean diameter. The cluster number density (Nnc) is determined 

by: 

𝑁𝑛𝑐 =
∑ 𝑁𝑐

∑ 𝑉𝑇
      (4.12)  

where ΣNc is the total number of clusters identified in all tips from a given condition and 

ΣVT is the total analyzed volume in all tips from that condition. The volume fraction of 

clusters (fv) is calculated using: 

𝑓𝑣 =
∑ 𝑁𝑐𝑙

𝑁𝑡𝑜𝑡
      (4.13)  

where ΣNcl is the total number of atoms within the measured clusters and Ntot is the total 

number of atoms within the combined reconstructed volumes from all sample tips [31]. 

Additional IVAS cluster analysis output data includes the elemental composition 

of each cluster identified, along with the composition of the matrix surrounding the 

clusters. Using this data, the average composition in at% is calculated for each cluster. 

Note that the measured amounts of Fe and Cr may be overinflated within the clusters due 

to trajectory aberrations [173,177]. Additional calculations enabled by the cluster analysis 

output data are conducted. The percentage of each element contained within clusters (𝑓𝑐𝑙
𝑖 ) 

is found using: 

𝑓𝑐𝑙
𝑖 =

∑ 𝑁𝑐𝑙
𝑖

𝑁𝑡𝑜𝑡
𝑖       (4.14)  

where ∑ 𝑁𝑐𝑙
𝑖  is the number of total number of species atoms within the clusters and 𝑁𝑡𝑜𝑡

𝑖  

is the total number of species atoms within the combined reconstruction volumes. Finally, 

the ratio of Y:Ti atoms and the (Y+Ti):O ratio are calculated for each cluster and 
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averaged. These additional calculations provide insight into the irradiation evolution of 

the composition of the oxide nanoclusters [9,13] and other irradiation-induced phases. 
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CHAPTER FIVE: RESULTS 

The experimental work in this dissertation aims to characterize the microstructure 

of three separate alloys following a variety of irradiation conditions and doses. As 

outlined in chapter 4, two primary techniques are utilized to measure the microstructural 

morphology for a host of different features: a) transmission electron microscopy to study 

overall microstructure (grains, dislocations, carbide precipitates) and defect clusters 

(dislocation loops and voids), and b) atom probe tomography to study and measure any 

nanoclusters present. The following sections of this chapter will outline the results of 

microstructural measurements following each technique, respectively, for the alloys of 

interest in this thesis: 1) Fe-9%Cr ODS, 2) HCM12A, and 3) HT9. 

5.1 Microstructure and Defect Cluster Morphology Results 

A combination of TEM and STEM imaging is used to characterize the overall 

microstructure and defect cluster morphology for each specimen in this thesis. Bright 

field TEM imaging at a variety of magnifications enables the measurement of grain sizes, 

dislocation density, carbide precipitate size and number density, and the size and density 

of any voids that may be present in the specimen. Meanwhile, imaging and measurement 

of dislocation loops is carried out using STEM imaging on low-index zone axes. The 

following sections will detail the resulting measurements for each alloy studied. 

5.1.1 Microstructure Results in Fe-9%Cr ODS 

A comprehensive comparison of TEM microstructure results are provided in 

Table 5.1, enabling the comparison of microstructure evolution across a range of doses 
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for Fe2+, proton, and neutron irradiation. For each specimen, approximately 100 grains 

and the carbide precipitates contained within them and along their boundaries, are 

measured. Grains and carbides exhibit little change with irradiation, having diameters 

ranging 0.23–0.41 µm and 0.07–0.11 µm, respectively. All diameter variations fall within 

the standard deviation of the measurements. Similarly, the dislocation line density in the 

as-received and all irradiated samples varies over 17.6–22.6 x 1014 m-2 with a standard 

deviation up to 7.6 x 1014 m-2. Based on the range and standard deviations of these grain, 

carbide, and dislocation line measurements, there is no evidence to suggest that these 

features dramatically evolve in response to any irradiation condition. The typical 

microstructure of Fe-9%Cr ODS illustrating grains, carbides, and dislocation forest is 

shown in Figure 5.1. 

 
Figure 5.1 Representative microstructure of grains, carbides and dislocations in 

Fe-9%Cr ODS.
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Table 5.1 Summary of microstructural measurements of Fe-9%Cr ODS using TEM/STEM. 

Feature Measurement 
As 

Received 

Fe2+ ion-

irradiated 

(400°C) 

50 dpa 

Fe2+ ion-irradiated (500°C) Proton-irradiated (500°C) Neutron-

irradiated 

(500°C) 

3 dpa 

1 dpa 

 
3 dpa 100 dpa 1 dpa  3 dpa 7 dpa 

Grains/ 

Laths 

# of grains measured 104 105 101 104 105 104 104 104 104 

Effective diameter 

(x 10-6 m) 

0.23 ± 

0.12 

0.28 ± 

0.10 

0.34 ± 

0.08 

0.28 ± 

0.08 

0.37 ± 

0.19 

0.36 ± 

0.12 

0.31 ± 

0.11 

0.41 ± 

0.14 

0.31 ± 

0.09 

Dislocation 

lines 

# of measurements 17 27 18 21 35 26 46 26 39 

Density (x 1014 m-2) 19.1 ± 3.8 20.4 ± 8.8 21.1 ± 6.1 22.6 ± 4.8 18.4 ± 6.9 19.4 ± 4.1 17.6 ± 5.3 21.8 ± 7.6 18.5 ± 4.8 

Carbide 

Precipitates 

# of carbides 

measured 
36 45 32 48 34 37 51 39 68 

Effective diameter 

(x 10-6 m) 

0.11 ± 

0.07 

0.09 ± 

0.05 

0.08 ± 

0.04 

0.08 ± 

0.04 

0.08 ± 

0.03 

0.08 ± 

0.02 

0.07 ± 

0.03 

0.07 ± 

0.03 

0.10 ± 

0.06 

Density (x 1020 m-3) 0.20 0.17 0.45 0.29 0.76 0.60 0.46 0.30 0.47 

Voids 

# of voids measured 0 63 0 0 0 0 8 1 22 

Diameter (x 10-9 m) - 
7.46 ± 

2.69 
- - - - 

4.00 ± 

1.51 
- 

3.64 ± 

1.14 

Density (x 1021 m-3) - 
0.46 ± 

0.27 
- - - - 

0.34 ± 

0.44 
- 

0.24 ± 

0.12 

Dislocation 

loops 

# of loops measured 0 97 51 48 136 79 688 77 182 

Diameter (x 10-9 m) - 9.8 ± 3.4 8.5 ± 2.7 8.5 ± 2.2 10.7 ± 4.2 6.6 ± 1.2 8.4 ± 1.7 9.2 ± 3.6 8.9 ± 2.0 

Density (x 1021 m-3) - 1.9 ± 0.5 2.8 ± 0.1 2.1 ± 0.1 4.3 ± 0.8 1.6 ± 0.2 10.2 ± 8.0 1.4 ± 0.02 2.7 ± 0.7 
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Small irradiation-induced voids are difficult to distinguish from the oxide 

nanoclusters in bright-field imaging, as both create similar Fresnel contrast when imaging 

using the through-focus technique. The majority of this contrast is attributed to the high 

density of oxide nanoclusters and not as voids. In some conditions, a small fraction of 

these features exhibit more distinct contrast with a solid bright center in the under-

focused condition, a solid dark center in the over-focused condition, and are invisible 

when the sample is in-focus. These latter features are identified as likely voids. However, 

these voids are scarce and sparsely distributed, or indistinguishable throughout the 

specimens. No voids are positively identified in any of the Fe2+ irradiated specimens at 

500°C, nor in the specimen proton-irradiated to 1 dpa. However, several voids are 

observed in the Fe2+ irradiated ODS to 50 dpa at 400°C (Figure 5.2), and a few features 

are identified in the specimens neutron-irradiated to 3 dpa (Figure 5.2) and proton-

irradiated to 3 dpa and 7 dpa (Figure 5.3). 
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Figure 5.2 Representative images of voids in Fe-9%Cr ODS following:  a-c) Fe2+ 

ion irradiation to 50 dpa at 400°C, and d-f) neutron irradiation to 3 dpa at 500°C. 
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Figure 5.3 Representative images of voids in Fe-9%Cr ODS following:  a-c) 

proton irradiation to 3 dpa, and d-f) proton irradiation to 7 dpa, both at 500°C. 

Dislocation loops are imaged in STEM mode at the [011] and [111] zone axes. 

For each zone axis imaged, dislocation loop orientation maps generated by Yao, et al. 

[163] were used to determine that the loops commonly reside on the {111} or {001} habit 

planes. Following Fe2+ irradiation to 1 dpa, dislocation loops have an average diameter of 

8.5 ± 2.7 nm and number density of 2.8 ± 0.1 x 1021 m-3, which is nearly identical to the 

morphologies found after 3 dpa Fe2+ (diameter of 8.5 ± 2.2 nm and number density of 2.1 
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± 0.1 x 1021 m-3). Loop size and number densities are higher, though not outside error 

bands, after 100 dpa Fe2+ irradiation, at 10.7 ± 4.2 nm and 4.3 ± 0.8 x 1021 m-3, 

respectively. After the Fe2+ irradiation at 400°C to 50 dpa, loop size and number density 

are also similar at 9.8 ± 3.4 nm and 1.9 ± 0.5 x 1021 m-3, respectively. With proton 

irradiation, dislocation loops grow from 6.6 ± 1.2 nm at 1 dpa, to 8.4 ± 1.7 nm at 3 dpa, 

and to 9.2 ± 3.6 nm after 7 dpa. Proton-irradiated loop number density remains 

unchanged between 1 and 7 dpa, at 1.6 ± 0.2 x 1021 m-3 and 1.4 ± 0.02 x 1021 m-3, 

respectively. It is important to note with the STEM imaging technique the visibility of 

loops is highly dependent upon the TEM lamella thickness. Lamellae less than 50 nm 

thick are generally more effective, but the author recognizes this target thickness is 

difficult to consistently achieve during sample fabrication. As a result, the loop visibility 

varies with lamella thickness, which can lead to disparity in measured number densities. 

It is believed this is the primary reason for the inflated number density measurement in 

the proton-irradiated specimen to 3 dpa (10.2 ± 8.0 x 1021 m-3), in which the FIB lift-out 

sample produced the highest quality image, enhancing visibility of the loops. Following 

neutron irradiation to 3 dpa at 500°C, the loop size and density are 8.9 ± 2.0 nm and 2.7 ± 

0.7 x 1021 m-3, respectively. STEM micrographs of representative distributions of 

dislocation loops following each proton irradiation and neutron irradiation are illustrated 

in Figure 5.4, while micrographs of loops following each Fe2+ ion irradiation are shown 

in Figure 5.5. Finally, trends in the dislocation loop morphology are plotted in Figure 5.6. 
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Figure 5.4 Representative images of dislocation loops in Fe-9%Cr ODS following 

proton irradiation to a) 1 dpa, b) 3 dpa, and c) 7 dpa and d) neutron irradiation to 3 

dpa, all at 500°C. 
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Figure 5.5 Representative images of dislocation loops in Fe-9%Cr ODS following 

Fe2+ ion irradiation following a) 1 dpa, b) 3 dpa, and c) 100 dpa at 500°C, and d) 50 

dpa at 400°C. 
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Figure 5.6 Summary of dislocation loop morphologies (average diameter and 

number density) after each irradiation at 500°C. 

Bright field images of the oxide nanoclusters are obtained in areas of the lamellae 

having low dislocation contrast, which allows the z-contrast of the clusters to be more 

visibly prominent. However, this technique has limited detectability of nanoclusters, 

especially those <2 nm in diameter [4,5]. Thus, APT analysis complements the TEM 

work by identifying the <2 nm nanoclusters, providing results that more accurately 

quantify the oxide average nanocluster size, number density, and composition. A 

representative TEM image of the oxide nanoclusters in the as-received condition is 

shown in Figure 5.7, illustrating the challenge of quantifying nanoclusters using TEM. 
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Figure 5.7 Bright field TEM images of the oxide distributions for the as-received 

Fe-9%Cr ODS. 

5.1.2 Microstructure Results in HCM12A 

Quantitative TEM microstructure results are provided in Table 5.2 for all 

HCM12A specimen conditions, enabling the comparison of microstructure evolution 

across of range of doses for proton and Fe2+ ion irradiation and across each particle 

irradiation at otherwise common conditions (3 dpa at 500°). Between 40 and 105 grains 

and the carbide precipitates contained within them and along grain boundaries, were 

measured. Grains and carbides exhibit little change with irradiation, having diameters 

ranging 0.61–0.63 µm and 0.07–0.11 µm, respectively. All diameter variations fall within 

the standard deviation of the measurements. Similarly, the dislocation line density varies 

over 12.1–14.6 x 1014 m-2 with a standard deviation up to 8.1 x 1014 m-2. Based on these 

relatively narrow bands of size and density measurements, and their corresponding wide 

standard deviations, there is no statistically significant evidence to suggest that these 

features have dramatically evolved in response to either irradiation condition. The typical 
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microstructure of HCM12A illustrating grains, carbides, and dislocation forest is shown 

in Figure 5.8. 

 
Figure 5.8 Representative microstructure of grains, carbides and dislocations in 

HCM12A.
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Table 5.2 Summary of microstructural measurements of HCM12A using TEM/STEM. 

Feature Measurement 

Fe2+ ion-irradiated 

(500°C) 

Proton-irradiated 

(500°C) 

Neutron-

irradiated 

(500°C) 

3 dpa 
3 dpa 100 dpa 1 dpa 3 dpa 

Grains/Laths 
# of grains measured 86 40 101 71 105 

Effective diameter (x 10-6 m) 0.63 ± 0.22 0.61 ± 0.18 0.62 ± 0.21 0.61 ± 0.26 0.66 ± 0.36 

Dislocation 

lines 

# of measurements 16 13 31 30 30 

Density (x 1014 m-2) 13.3 ± 4.4 14.6 ± 1.9 13.9 ± 8.1 12.1 ± 4.2 13.6 ± 3.6 

Carbide 

Precipitates 

# of carbides measured 32 33 41 58 35 

Effective diameter (x 10-6 m) 0.09 ± 0.04 0.11 ± 0.06 0.10 ± 0.04 0.11 ± 0.05 0.07 ± 0.03 

Density (x 1020 m-3) 0.35 ± 0.10 0.22 ± 0.17 0.15 ± 0.07 0.53 ± 0.28 0.97 ± 0.47 

Voids 

# of voids measured 0 75 0 0 0 

Diameter (x 10-9 m) - 6.1 ± 5.4 - - - 

Density (x 1021 m-3) - 0.17 ± 0.02 - - - 

Dislocation 

loops 

# of loops measured 84 234 105 136 101 

Diameter (x 10-9 m) 7.7 ± 02.4 12.0 ± 4.5 7.6 ± 2.1 7.6 ± 2.4 7.5 ± 2.2 

Density (x 1021 m-3) 2.2 ± 0.3 1.0 ± 0.2 1.6 ± 0.3 4.4 ± 1.1 4.0 ± 0.9 



137 

 

Irradiation-induced voids are only observed in the specimen irradiated with Fe2+ 

ions to 100 dpa (Figure 5.9), with sizes varying from 3-19 nm and a number density of 

0.17 ± 0.02 x 1021 m-3. 

 
Figure 5.9 Representative voids in HCM12A following Fe2+ irradiation to 100 at 

500°C. 

Dislocation loops were imaged in STEM mode at the [001] and [111] zone axes. 

For each zone axis imaged, dislocation loop orientation maps generated by Yao, et al. 

[163] were used to determine that the loops commonly resided on the {111} or {001} 

habit planes [163]. Upon proton irradiation, dislocation loops were consistent in size 

following 1 dpa and 3 dpa, at 7.6 ± 2.1 nm 7.6 ± 2.4 nm, respectively, while number 

density increased from 1.6 ± 0.3 x 1021 m-3 to 4.4 ± 1.1 x 1021. On the other hand, upon 

Fe2+ ion irradiation, dislocation loops increased in size between 3 dpa (7.7 ± 2.4 nm) and 

100 dpa (12.0 ± 4.5 nm) while the density potentially decreased slightly from 2.2 ± 0.3 x 

1021 m-3 to 1.0 ± 0.2 x 1021, respectively. Finally, comparing Fe2+, proton, and neutron 

irradiated specimens at common conditions of 3 dpa at 500°C, the morphology of 

dislocation loops is generally consistent, with average loops sizes ranging 7.6-7.7 nm and 
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densities ranging 2.2-4.4 x 1021 m-3. STEM micrographs of typical dislocation loops in 

HCM12A are shown in Figure 5.10. 

 
Figure 5.10 Representative dislocation loops in HCM12A imaged along the [111] or 

[001] zone axis following a) Fe2+ irradiation to 3 dpa, b) Fe2+ irradiation to 100 dpa, 

c) neutron irradiation to 3 dpa, d) proton irradiated to 1 dpa, and e) proton irradiated 

to 3 dpa, plus f) comparison of loops diameters and density for each condition. 

5.1.3 Microstructure Results in HT9 

Quantitative TEM microstructure results are provided in Table 5.3 for all HT9 

specimen conditions, enabling the comparison of microstructure evolution across a range 

of doses for proton and Fe2+ ion irradiation and across each particle irradiation at 

otherwise common conditions (3 dpa at 500°). Approximately 100 grains and the carbide 

precipitates contained within them and along grain boundaries, were measured for each 

specimen. Grains and carbides exhibit little change with irradiation, having diameters 

ranging 0.30–0.41 µm and 0.06–0.08 µm, respectively. All diameter variations fall within 



139 

 

the standard deviation of the measurements. Similarly, the dislocation line density varies 

over 10.1–14.5 x 1014 m-2 with a standard deviation up to 12.6 x 1014 m-2. Based on these 

relatively narrow bands of size and density measurements, and their corresponding wide 

standard deviations, there is no evidence to suggest that these features have dramatically 

evolved in response to any of the irradiations. The typical microstructure of HT9 

illustrating grains, carbides, and dislocation forest is shown in Figure 5.11. 

 
Figure 5.11 Representative microstructure of grains, carbides and dislocations in 

HT9.
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Table 5.3 Summary of microstructural measurements of HT9 using TEM/STEM. 

Feature Measurement 

Fe2+ ion-irradiated 

(500°C) 

Proton-irradiated 

(500°C) 

Neutron-

irradiated 

(500°C) 

3 dpa 
3 dpa 100 dpa 1 dpa 3 dpa 

Grains/Laths 
# of grains measured 101 93 104 105 105 

Effective diameter (x 10-6 m) 0.41 ± 0.16 0.38 ± 0.12 0.37 ± 0.10 0.31 ± 0.12 0.30 ± 0.10 

Dislocation 

lines 

# of measurements 23 10 22 43 33 

Density (x 1014 m-2) 13.6 ± 12.6 10.1 ± 3.8 14.5 ± 2.4 14.1 ± 4.0 13.8 ± 4.3 

Carbide 

Precipitates 

# of carbides measured 88 51 93 195 163 

Effective diameter (x 10-6 m) 0.07 ± 0.03 0.07 ± 0.02 0.08 ± 0.03 0.07 ± 0.03 0.06 ± 0.03 

Density (x 1020 m-3) 0.62 ± 0.28 0.46 ± 0.20 0.69 ± 0.34 0.62 ± 0.33 0.71 ± 0.41 

Voids 

# of voids measured 0 42 0 0 0 

Diameter (x 10-9 m) - 12.0 ± 5.8 - - - 

Density (x 1021 m-3) - 0.15 ± 0.14 - - - 

Dislocation 

loops 

# of loops measured 169 78 30 98 114 

Diameter (x 10-9 m) 7.6 ± 2.3 9.4 ± 3.6 7.3 ± 2.2 7.5 ± 2.1 7.6 ± 2.2 

Density (x 1021 m-3) 2.0 ± 0.3 1.2 ± 0.1 1.9 ± 0.2 2.4 ± 0.5 2.4 ± 0.5 
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As with HCM12A, irradiation-induced voids are only observed in the specimen 

irradiated with Fe2+ ions to 100 dpa (Figure 5.12), with sizes varying from 4-20 nm and a 

number density of 0.15 ± 0.14 x 1021 m-3. 

 
Figure 5.12 Representative voids in HT9 following Fe2+ irradiation to 100 at 

500°C. 

Dislocation loops were imaged in STEM mode on the [001] and [111] zone axes. 

Upon proton irradiation, dislocation loops were consistent in size following 1 dpa and 3 

dpa, at 7.3 ± 2.2 nm 7.5 ± 2.1 nm, respectively, with a number density ranging 1.9 ± 0.2 x 

1021 m-3 to 2.4 ± 0.5 x 1021. On the other hand, upon Fe2+ ion irradiation, dislocation 

loops increased in average size between 3 dpa (7.6 ± 2.3 nm) and 100 dpa (9.6 ± 3.6 nm) 

while the densities are relatively consistent at 2.0 ± 0.3 x 1021 m-3 and 1.2 ± 0.1 x 1021, 

respectively. Finally, comparing Fe2+, proton, and neutron irradiated specimens at 

common conditions of 3 dpa at 500°C, the morphology of dislocation loops is generally 

consistent, with average loops sizes ranging 7.5-7.6 nm and densities ranging 2.0-2.4 x 

1021 m-3. STEM micrographs of typical dislocation loops in HT9 are shown in Figure 

5.13. 
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Figure 5.13 Representative dislocation loops in HT9 imaged along the [111] or [001] 

zone axis following a) Fe2+ irradiation to 3 dpa, b) Fe2+ irradiation to 100 dpa, c) 

neutron irradiation to 3 dpa, d) proton irradiated to 1 dpa, and e) proton irradiated 

to 3 dpa, plus f) comparison of loops diameters and density for each condition. 

5.2 Nanocluster Morphology Results 

The atom-by-atom detection capabilities of APT with IVAS cluster analysis 

enables high-fidelity spatial and compositional characterization of the nanoclusters in 

each specimen. The following sections will detail the resulting characterization the 

nanoclusters present for each alloy studied. 

5.2.1 Clustering Results in Fe-9%Cr ODS 

The 3D reconstructions of each of the ODS specimens exhibit clustering of Ti, O 

and Y atoms along with TiO, YO, FeO, and CrO compounds all at coincident locations in 

the matrix. For this reason, these atoms/compounds are chosen for the oxide cluster 

analysis in each condition. Oxide nanoclusters can be visualized and analyzed using three 
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separate imaging approaches: 1) 3D atom reconstruction with filtering to display the 

clustered elements (Ti, Y, and O atoms, and TiO and YO compounds), 2) isosurface 

construction with a concentration threshold of 6 at.% Y-Ti-O, and 3) cluster 

reconstruction. Representative APT tips are shown with clusters identified by each of 

these three approaches in Figures 5.14 (as-received and Fe2+ ion-irradiated to 50 dpa at 

400°C), Figure 5.15 (Fe2+ ion-irradiated at 500°C), Figure 5.16 (proton-irradiated), and 

Figure 5.17 (neutron-irradiated). 

 
Figure 5.14 Representative atom distribution maps of oxide nanoclusters in a) as-

received Fe-9%Cr ODS, and b) Fe2+ ions to 50 dpa at 400°C. 
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Figure 5.15 Atom distribution maps of oxide nanoclusters in Fe-9%Cr ODS 

irradiated with Fe2+ ions to a) 1 dpa, b) 3 dpa, and c) 100 dpa, all at 500°C. 
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Figure 5.16 Atom distribution maps of oxide nanoclusters in Fe-9%Cr ODS 

irradiated with protons to a) 1 dpa, b) 3 dpa, and c) 7 dpa, all at 500°C. 
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Figure 5.17 Atom distribution maps of oxide nanoclusters in Fe-9%Cr ODS 

irradiated with neutrons to 3 dpa at 500°C. 

Within the irradiated specimens of Fe-9%Cr ODS, there is also visual evidence of 

clustering among the Si, Mn, and Ni atoms at coincident locations as the oxides. Some 

specimens exhibit this clustering more strongly than others. Some examples of this 

evidence are illustrated in Figure 5.18 (Fe2+ ion-irradiated to 100 dpa at 500°C), Figure 

5.19 (proton-irradiated to 3 dpa at 500°C), and Figure 5.20 (neutron-irradiated to 3 dpa at 

500°C). 
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Figure 5.18 Atom distribution maps for each solute element in Fe-9%Cr ODS 

irradiated with Fe2+ ions to 100 dpa at 500°C. 
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Figure 5.19 Atom distribution maps for each solute element in Fe-9%Cr ODS 

irradiated with protons to 3 dpa at 500°C. 
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Figure 5.20 Atom distribution maps for each solute element in Fe-9%Cr ODS 

irradiated with neutrons to 3 dpa at 500°C. 

Cluster analysis using the Integrated Visualization and Analysis Software (IVAS) 

Version 3.6.12 enables quantification of the oxide nanocluster sizes and number 

densities, along with specific chemical analysis of the clusters and the surrounding 

matrix. During cluster analysis for this thesis, it was observed that the cluster size is not 

independent of the data set size (i.e. number of collected and ranged ions). To further 

understand this relationship and its implications, the average nanocluster Guinier 

diameter was calculated for each data set from every specimen condition. The results of 

this exercise are shown in Figure 5.21 as a function of the total number of ranged ions in 
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each data set for the Fe-9%Cr ODS specimens. Linear trend lines are fitted to the data 

sets for each specimen, with a consistent slope (see trendlines in Figure 5.21) resulting 

for most specimens, particularly in those specimens for which a larger number of LEAP 

tips have been analyzed. This further emphasizes the value of collecting as many LEAP 

data sets as possible, including those with varying sizes of the data sets, to gain a higher 

confidence in this trend. 

 
Figure 5.21 Average measured cluster Guinier diameter for each data set collected 

for each sample condition for Fe-9%Cr ODS for the a) as received and Fe2+ 

irradiated specimens, and b) proton- and neutron-irradiated specimens. Linear fits 

are applied for each sample condition showing a consistent trend of increasing 

diameter with increasing data set size (i.e. number of ranged ions). 

As a result of these trends, it is helpful to normalize the data to create a more 

robust means to make an “apples-to-apples” comparison of average cluster size between 

different specimens. One such method is to project the average cluster size measurements 

for each specimen condition to a common data set size. This can be accomplished by 

using the slopes of the trend lines from Figure 5.21 and interpolating to a specified 

number of ranged ions. It is worth noting for each specimen, larger data sets including a 

larger number of clusters will provide a more statistically reliable measurement of the 
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average cluster size. Meanwhile, smaller data sets tend to contain fewer clusters and can 

therefore exhibit greater variation in cluster size. For instances in which only a few small 

data sets were collected, the cluster size measurements were used from either the largest 

data set, or a weighted average of the cluster sizes from the existing data sets. An average 

slope for cluster size vs. ranged ions is then be calculated from the other specimens 

available, and subsequently used to extrapolate the projected cluster size at a common 

data set size. Following this approach, all the cluster diameter data in this study is 

normalized to a common data set size of 20 million ions (Figure 5.22). 

 
Figure 5.22 Normalized cluster Guinier diameter for each sample specimen of Fe-

9%Cr ODS for the a) as received and Fe2+ irradiated specimens, and b) proton- and 

neutron-irradiated specimens. Linear fits are used to normalize the data comparison 

to a common data set size (e.g. 20 million ions). 

The resulting measurements of average cluster size for each ODS specimen are 

tabulated in Table 5.4. Self-ion (Fe2+) irradiation to 1 dpa causes the average nanocluster 

size to increase from 5.71 ± 1.92 nm to 6.20 ± 1.47 nm, but the clusters subsequently 

decrease in size to 5.73 ± 1.47 nm and 5.58 ± 2.30 nm after 3 dpa and 100 dpa, 

respectively. Proton irradiation, on the other hand, induces a continual decrease in 
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nanocluster size to 5.52 ± 1.66 after 1 dpa and further to 5.15 ± 1.40 nm and 5.40 ± 1.91 

nm after 3 dpa and 7 dpa, respectively. Finally, irradiation with neutrons results in a 

decrease in nanocluster size to 5.03 ± 0.99 nm after 3 dpa.
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Table 5.4 Summary of oxide nanocluster morphology and chemistry using APT, with normalized values for average 

cluster diameter. 

Oxide nanoclusters 
As 

Received 

Fe2+ ion-

irradiated 

(400°C) 

50 dpa 

Fe2+ ion-irradiated (500°C) Proton-irradiated (500°C) 
Neutron-

irradiated 

(500°C) 

3 dpa 

1 dpa 3 dpa 100 dpa 1 dpa 

 3 

dpa[40,17

8][40,179]

[40,178] 

7 dpa 

# of LEAP tips analyzed 3 3 3 5 9 7 7 6 3 

# of clusters measured, ΣNc 413 63 283 188 1474 176 975 652 169 

Analysis Volume, ΣVT (nm3) 932,478 274,918 1,196,785 1,565,850 3,404,924 1,127,973 2,352,816 2,625,046 1,109,213 

Average Diameter, DG (nm) 5.71 5.41 6.20 5.73 5.58 5.52 5.15 5.40 5.03 

Standard deviation for DG 1.92 1.92 1.47 1.47 2.30 1.66 1.40 1.91 0.99 

Std. dev. of the mean for DG 0.09 0.24 0.09 0.11 0.06 0.13 0.04 0.07 0.08 

Density, Nnc (x 1021 m-3) 443 229 131 120 433 156 414 226 152 

Volume fraction, fv 4.1% 2.5% 2.7% 1.8% 4.9% 1.8% 4.2% 2.1% 2.0% 

pTi,Y 8.73% 10.97% 11.75% 10.54% 10.40% 15.18% 9.29% 10.53% 9.53% 

CTi,Y 0.62% 0.23% 0.50% 0.43% 0.72% 0.39% 0.63% 0.37% 0.62% 

Y:Ti 
0.49 ± 

0.14 

0.48 ± 

0.28 

0.79 ± 

0.20 

0.92 ± 

0.27 

0.67 ± 

0.34 

0.81 ± 

0.45 

0.56 ± 

0.16 

0.55 ± 

0.17 

1.10 ± 

0.35 

(Y+Ti):O 
1.25 ± 

0.11 

1.21 ± 

0.14 

1.20 ± 

0.12 

1.20 ± 

0.17 

1.16 ± 

0.11 

1.20 ± 

0.13 

1.21 ± 

0.11 

1.26 ± 

0.15 

1.24 ± 

0.12 

Matrix Composition, cm
i (at%) 

Y 0.06% 0.05% 0.04% 0.06% 0.05% 0.02% 0.07% 0.04% 0.10% 

Ti 0.21% 0.19% 0.14% 0.18% 0.18% 0.09% 0.18% 0.12% 0.34% 
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O 0.30% 0.27% 0.19% 0.22% 0.25% 0.12% 0.24% 0.16% 0.38% 

Cr 8.45% 8.02% 8.35% 8.14% 7.35% 8.56% 8.29% 8.41% 8.14% 

Si 0.16% 0.11% 0.13% 0.13% 0.10% 0.11% 0.13% 0.12% 0.14% 

Mn 0.22% 0.05% 0.06% 0.08% 0.04% 0.08% 0.07% 0.06% 0.07% 

Ni 0.04% 0.03% 0.04% 0.04% 0.03% 0.03% 0.03% 0.03% 0.05% 

C 0.16% 0.20% 0.10% 0.12% 0.08% 0.09% 0.11% 0.07% 0.18% 

W 0.63% 0.61% 0.60% 0.65% 0.60% 0.44% 0.61% 0.57% 0.67% 

Trace amounts of P, S, N and H, Ga detected (balance is Fe) 
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The number density and volume fraction of oxide nanoclusters is also calculated 

for each specimen and given in Table 5.4. However, the sampled APT analysis volume 

for each specimen, and hence the number density, is highly sensitive to a non-

homogeneous distribution of nanoclusters within the matrix. An example is illustrated in 

Figure 5.15c and Figure 5.18, in which the lower portion of this APT needle exhibits 

localized absence of oxides. In this example, and others, the oxide-free region does not 

coincide with a Cr-Ti-C-rich carbide, nor is there any chemical evidence to suggest the 

presence of a grain boundary or other major precipitate or feature. This sort of non-

homogeneous distribution is not observed in all specimens from an alloy/condition. Local 

inhomogeneities are also evident in the concentration of Ti and Y atoms in non-carbide 

regions of each specimen (CTi,Y), which fluctuates between 0.23% to 0.72% (Table 4). 

Comparing the nanocluster number density across specimens having such variable CTi,Y 

values inhibits a “like-for-like” comparison – specimens having higher CTi,Y values (i.e. 

more Ti and Y to begin with) will be biased toward higher nanocluster volume fractions. 

Instead, an adjusted volume fraction (𝑓𝑣
𝑎𝑑𝑗

) of nanoclusters is calculated to provide a 

more meaningful comparison. The adjusted volume fraction assumes the overall non-

carbide Ti and Y concentration is consistent for all specimens (i.e. Ti and Y can only 

exist in the matrix or in clusters; they are neither lost nor gained to carbides and grain 

boundaries upon irradiation); this assumption is supported by the lack of evidence for 

segregation to grain boundaries and the observed balance between the composition of 

solutes in clusters and in the matrix (Section 3.2). The adjusted volume fraction is 

determined using: 

𝑓𝑣
𝑎𝑑𝑗

=
𝐶𝑇𝑖,𝑌−𝑐𝑚,𝑎𝑟

𝑇𝑖,𝑌

𝑝𝑇𝑖,𝑌
     (5.1)  
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in which 𝑐𝑚,𝑎𝑟
𝑇𝑖,𝑌

 is the combined matrix composition of Ti and Y atoms in the as-received 

specimen and 𝑝𝑇𝑖,𝑌 is the fraction of all clustered atoms that are Ti and Y. Using 𝑓𝑣
𝑎𝑑𝑗

, an 

adjusted nanocluster number density (𝑁𝑛𝑐
𝑎𝑑𝑗

) is estimated using: 

𝑁𝑛𝑐
𝑎𝑑𝑗

= 𝑁𝑛𝑐 ∙
𝑓𝑣

𝑎𝑑𝑗

𝑓𝑣
     (5.2)  

The adjusted volume fractions and number densities provide more meaningful 

insight into the irradiation evolution of the nanoclusters; these adjusted volume fraction 

and number densities are tabulated in Table 5.5 and illustrated in Figure 5.23. Upon Fe2+ 

irradiation, the adjusted volume fraction decreases from 4.1% to 3.7% after 1 dpa, but 

then remains relatively consistent up to 100 dpa (3.8%). Meanwhile, the adjusted number 

density [from Fe2+] drops sharply from 443 x 1021 m-3 to 180 x 1021 m-3 with 1 dpa, then 

increases to 240 x 1021 m-3 and 341 x 1021 m-3 after 3 dpa and 100 dpa, respectively. 

Under proton irradiation, both the volume fraction and the number density exhibit the 

trend of a rapid decrease between 0 and 1 dpa, followed by an increase from 1 to 3 to 7 

dpa. Finally, after neutron irradiation to 3 dpa, the adjusted volume fraction and number 

density decrease to 2.0% and 149 x 1021 m-3, respectively, which represents the most 

dramatic evidence of nanocluster dissolution of any of the irradiations to 3 dpa at 500°C. 

For comparison, the respective particle size distributions (in relative number density) of 

the as-received samples and following each irradiation are illustrated in Figure 5.24, 

while a plot of the average cluster size evolution relative to dose is provided in Figure 

5.25.
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Table 5.5 Adjusted volume fraction and number density values for oxide nanoclusters, using Eqs. (5.1) and (5.2), and  

Oxide nanoclusters 
As 

Received 

Fe2+ ion-

irradiated 

(400°C) 

50 dpa 

Fe2+ ion-irradiated (500°C) 
Proton-irradiated 

(500°C) 

Neutron-

irradiated 

(500°C) 

3 dpa 
1 dpa 3 dpa 100 dpa 1 dpa  3 dpa 7 dpa 

Adjusted volume fraction, 𝑓𝑣
𝑛𝑜𝑟𝑚 4.1% 3.5% 3.7% 3.6% 3.8% 3.3% 4.1% 4.4% 2.0% 

Adjusted number density, 𝑁𝑛𝑐
𝑛𝑜𝑟𝑚 (x 1021 m-3) 443 323 180 240 341 282 402 488 149 

Species enrichment in clusters, fen
i (above 𝒇𝒗

𝒏𝒐𝒓𝒎) 

Y 63.0% 63.4% 75.1% 57.1% 80.1% 80.4% 66.9% 66.6% 49.8% 

Ti 50.3% 45.9% 52.1% 32.1% 57.4% 59.9% 53.7% 49.6% 19.6% 

O 46.6% 44.9% 55.6% 39.6% 62.0% 63.1% 54.8% 49.2% 28.0% 

Cr* 0.8% 1.0% 0.1% -1.1% 3.0% -0.7% 2.0% -1.6% 0.9% 

Si 1.4% 2.3% 2.9% 0.9% 7.7% 1.5% 5.3% -0.6% 5.3% 

Mn -2.4% 1.4% 0.2% -1.2% 3.1% -1.0% 1.5% -2.0% 3.6% 

Ni 1.6% 3.3% 5.2% 3.4% 13.0% 4.4% 10.2% -0.1% 6.5% 

C* 4.1% 4.0% 10.6% 1.3% 3.5% 8.8% 7.3% 2.7% 1.6% 

W* -0.2% 0.1% -0.7% -2.4% -1.0% -0.4% -1.6% -2.6% -0.6% 

*Does not include species clustering in carbide precipitates 
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Figure 5.23 Evolution of oxide nanocluster adjusted volume fraction and number 

density following each irradiation at 500°C. 
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Figure 5.24 Nanocluster particle size distributions for each analyzed specimen, 

plotted as relative number density for size and overall number density comparison. 
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Figure 5.25 Oxide nanocluster average diameter evolution in Fe-9%Cr ODS 

following each irradiation. 

The enrichment parameter 𝑓𝑒𝑛
𝑖  (Table 5.5), represents the percent of all collected 

ions of species i, above the normalized volume fraction, which is contained in the 

analyzed clusters. This is a key parameter from APT cluster analysis that enables one to 

understand the irradiation evolution of nanocluster chemistry. Upon Fe2+ irradiation, the 

𝑓𝑒𝑛
𝑖  of Y, Ti, and O increases after 1 dpa, declines after 3 dpa, then increases again at 100 

dpa. Upon proton irradiation, the 𝑓𝑒𝑛
𝑖  of Y, Ti, and O increases considerably at 1 dpa, then 

declines at 3 dpa, where it remains relatively consistent through 7 dpa at values that are 

slightly higher than in the as-received specimen. The most dramatic decrease in 𝑓𝑒𝑛
𝑌 , 𝑓𝑒𝑛

𝑇𝑖, 

and 𝑓𝑒𝑛
𝑂  is following neutron irradiation to 3 dpa. One of the most pivotal de-clustering 

species is measured for Ti; prior to irradiation, 50.3% of all Ti ions above the normalized 

volume fraction are clustered, compared to only 19.6% enrichment following neutron 
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irradiation. As expected, the matrix composition generally demonstrates an opposite trend 

as 𝑓𝑒𝑛
𝑖  values (Table 5.5). For elements that exhibit reduced enrichment in clusters upon 

irradiation (Y, Ti, and O) there is a corresponding increase in matrix concentration. For 

elements that exhibit increased enrichment upon irradiation (Si, Mn, and Ni), there is a 

corresponding decrease in matrix concentration. 

A final method to evaluate the chemical evolution of nanoclusters is through 

measurement of the Y:Ti and (Y+Ti):O ratios. A summary of the Y:Ti ratio and 

(Y+Ti):O ratio evolution for each irradiation is illustrated in Figure 5.26. Upon Fe2+ 

irradiation, the Y:Ti ratio increases from 0.49 ± 0.14 to 0.79 ± 0.20 up to 1 dpa, increases 

further to 0.92 ± 0.27 at 3 dpa, then declines to 0.67 ± 0.34 after 100 dpa. Upon proton 

irradiation, the Y:Ti ratio increases to 0.81 ± 0.45 following 1 dpa, then declines to 0.56 

± 0.16 and 0.55 ± 0.17 after 3 dpa and 7 dpa, respectively. Again, the most dramatic 

change is observed after neutron irradiation to 3 dpa (Y:Ti = 1.10 ± 0.35). Regardless, 

each irradiation has resulted in an increase in Y:Ti ratio, which is consistent with other 

studies in literature [8,9], suggesting that Ti atoms are more readily displaced from 

nanoclusters than are Y atoms. Interestingly, the (Y+Ti):O ratio consistently falls in the 

range 1.16–1.25, statistically unaffected by any of the irradiations. This result implies that 

O atoms are displaced at the same rate as Ti atoms are ejected. 
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Figure 5.26 Summary of oxide nanocluster chemistry evolution following each 

irradiation at 500°C:  a) Y:Ti ratio, and b) (Y+Ti):O ratio. 

5.2.2 Clustering Results in HCM12A 

The atomic-level resolution of APT with IVAS cluster analysis enabled the 

characterization of the nanoclusters after each irradiation condition. Each HCM12A 

specimen following Fe2+, proton, and neutron irradiation at common conditions of 3 dpa 

at 500°C exhibit clustering of Si, Mn, Ni, P atoms (G-phase precipitates) along with Cu 

atom clusters at adjacent locations. However, a lower dose proton irradiation to 1 dpa 

exhibited only the Cu atoms clustering, without adjacent G-phases. In addition, no 

clusters were found after Fe2+ irradiation to 100 dpa. Clustering of Cr atoms (i.e. α' 

phase) was observed only after neutron-irradiation (3 dpa). Representative atom 

distribution maps of Si, Mn, Ni, P, Cu and separate maps for Cr are found in Figure 5.27. 

Out of the 6 total tips analyzed for the specimen irradiated with Fe2+ ions to 100 dpa, no 

clusters were found. In one of the tips, shown in Figure 5.27e, clear evidence of grain 

boundary segregation is evident. The significance of this is further discussed in Section 

7.4.2.2. 
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Figure 5.27 Atom probe distribution maps of Si-Mn-Ni-P, Cu, and Cr atom 

distribution in HCM12A following a) proton irradiation to 1 dpa, b) proton 

irradiation to 3 dpa, c) neutron irradiation to 3 dpa, d) Fe2+ ion irradiation to 3 dpa, 

and e) Fe2+ ion irradiation to 100 dpa. 
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As with the Fe-9%Cr ODS, the average nanocluster Guinier diameter was 

calculated for each data set from every specimen condition. The results of this exercise 

are shown in Figure 5.28 as a function of the total number of ranged ions in each data set 

for the HCM12A specimens. Linear trend lines are fitted to the data sets for each 

specimen, with a consistent slope resulting for most specimens, particularly in those 

specimens for which a larger number of LEAP tips have been analyzed (i.e. a larger 

statistical sample size is available). Following the approach as with the Fe-9%Cr ODS, 

all the cluster diameter data in this study is normalized to a common data set size of 20 

million ions (Figure 5.29). Quantitative cluster analysis results are provided in Table 5.6, 

enabling the comparison of cluster evolution across of range of doses for proton and self-

ion irradiation and across each particle irradiation at otherwise common conditions (3 dpa 

at 500°). 

  
Figure 5.28 Average measured cluster Guinier diameter for each data set collected 

for each sample condition in HCM12A for a) as measured, and b) normalized to 20 

million ions). Linear fits are used to normalize the data comparison to a common data 

set size (e.g. 20 million ions in this study).
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Table 5.6 Summary of cluster analysis of HCM12A for each irradiation condition using APT. 

Nanocluster Analysis 

Fe2+ ion-irradiated (500°C) Proton-irradiated (500°C) Neutron-

irradiated 

(500°C) 

3 dpa 

3 dpa 100 dpa 1 dpa 3 dpa 

# of LEAP tips analyzed 2 6 5 6 2 

Analysis Volume, VT (nm3) 811,282 1,536,885 1,383,130 3,426,840 572,186 

Si-Mn-Ni-P rich clusters 

# of clusters measured, ∑ 𝑁𝑛𝑐
𝑆𝑖  75 0 0 66 228 

Average Diameter, 𝐷𝐺
𝑆𝑖 (nm) 5.95 - - 9.63 4.36 

Standard deviation for 𝐷𝐺
𝑆𝑖 2.01 - - 3.49 0.80 

Std. dev. of the mean for 𝐷𝐺
𝑆𝑖 0.23 - - 0.43 0.05 

Density, 𝑁𝑛𝑐
𝑆𝑖  (x 1021 m-3) 92 - - 19 398 

Volume fraction, 𝑓𝑣
𝑆𝑖 1.1% - - 1.9% 2.8% 

Cu-rich clusters 

# of clusters measured, ∑ 𝑁𝑛𝑐
𝐶𝑢 87 0 247 66 213 

Average Diameter, 𝐷𝐺
𝐶𝑢 (nm) 6.18 - 5.03 6.82 4.59 

Standard deviation for 𝐷𝐺
𝐶𝑢 1.26 - 1.12 2.59 0.90 

Std. dev. of the mean for 𝐷𝐺
𝐶𝑢 0.13 - 0.07 0.32 0.06 

Density, 𝑁𝑛𝑐
𝐶𝑢 (x 1021 m-3) 107 - 179 19 372 

Volume fraction, 𝑓𝑣
𝐶𝑢 2.5% - 2.6% 1.5% 3.1% 
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Cr-rich clusters 

# of clusters measured, ∑ 𝑁𝑛𝑐
𝐶𝑟 0 0 0 0 203 

Average Diameter, 𝐷𝐺
𝐶𝑟 (nm) - - - - 3.17 

Standard deviation for 𝐷𝐺
𝐶𝑟 - - - - 0.49 

Std. dev. of the mean for 𝐷𝐺
𝐶𝑟 - - - - 0.03 

Density, 𝑁𝑛𝑐
𝐶𝑟 (x 1021 m-3) - - - - 355 

Volume fraction, 𝑓𝑣
𝐶𝑟 - - - - 0.57% 
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A total of 66, 75, and 228 Si-Mn-Ni-P-rich nanoclusters were identified and 

analyzed in the specimens of HCM12A irradiated with protons, Fe2+ ions, or neutrons to 

3 dpa, respectively. Proton irradiation induced the largest average size of these 

nanoclusters at 9.63 ± 3.49 nm, while clusters following Fe2+ and neutron irradiation 

were 5.95 ± 2.01 nm and 4.36 ± 0.87 nm, respectively. Conversely, number density of Si-

Mn-Ni-P-rich clusters was lowest following proton irradiation to 3 dpa (19 x 1021 m-3) 

and increased to 92 x 1021 m-3 and 398 x 1021 m-3 following Fe2+ and neutron irradiation 

to 3 dpa, respectively. For the Cu-rich clusters in HCM12A, a total of 247, 66, 87, and 

213 clusters were identified after proton irradiation to 1 dpa and 3 dpa, and after Fe2+ and 

neutron irradiation to 3 dpa, respectively. Upon proton irradiation, Cu clusters coarsened 

following doses of 1 dpa and 3 dpa, increased in size from 5.03 ± 1.12 nm to 6.82 ± 2.59, 

while decreasing in density from 179 x 1021 m-3 to 19 x 1021 m-3, respectively. Similar to 

the Si-Mn-Ni-P clusters, neutron irradiation yielded the smallest average Cu-rich cluster 

size at 4.59 ± 0.90 nm, while clusters following Fe2+ irradiation were 6.18 ± 1.26 nm. 

Similar to the Si-Mn-Ni-P clusters, number density of Cu-rich clusters is highest 

following neutron irradiation to 3 dpa (372 x 1021 m-3), while the density following Fe2+ 

irradiation is an intermediate value of 107 x 1021 m-3. Finally, Cr-rich clusters found in 

the neutron-irradiated specimen averaged 3.17 ± 0.49 nm in diameter with a density of 

355 x 1021 m-3. A summary of average nanocluster diameter evolution upon each 

irradiation of HCM12A is illustrated in Fig. 5.29. 
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Figure 5.29 Nanocluster average diameter evolution in HCM12A for Si-Mn-Ni -

rich and Cu-rich clusters. 

5.2.3 Clustering Results in HT9 

The HT9 specimens following proton and neutron irradiation at common 

conditions of 3 dpa at 500°C exhibit clustering of Si, Mn, Ni, P atoms, but do not display 

any clusters upon Fe2+ irradiation either to 3 dpa or 100 dpa. Similarly, after proton 

irradiation to only 1 dpa, no Si-Mn-Ni-P-rich clusters were found. Clustering of Cr atoms 

(i.e. α' phase) are present only after neutron-irradiation (3 dpa). Representative atom 

distribution maps of Si, Mn, Ni, and P and separate maps for Cr are found in Figure 5.30. 

Out of the 2 tips analyzed for the specimen irradiated with Fe2+ ions to 100 dpa, no 

clusters were found. In one of the tips, shown in Figure 5.29e, clear evidence of grain 

boundary segregation is evident. The significance of this is further discussed in Section 

7.4.2.2. 
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Figure 5.30 Atom probe distribution maps of Si-Mn-Ni-P and Cr atom distribution 

in HT9 following a) proton irradiation to 1 dpa, b) proton irradiation to 3 dpa, c) 

neutron irradiation to 3 dpa, d) Fe2+ ion irradiation to 3 dpa, and e) Fe2+ ion 

irradiation to 100 dpa. 
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As with the Fe-9%Cr ODS and HCM12A, the average nanocluster Guinier 

diameter is calculated for each data set from every specimen condition. The results of this 

exercise are shown in Figure 5.31 plotted against the total number of ranged ions in each 

data set for the HT9 specimens. Linear trend lines are fitted to the data sets for each 

specimen. With a limited number of samples and specimens, the trends are less clear, 

particularly for the small samples of the proton-irradiated specimen. Since the trendline 

slope for the larger neutron-irradiated specimen is very similar to those found in the ODS 

specimens, this same slope was used to normalize the proton-irradiated measurements. 

Furthermore, since the smallest proton-irradiated sample only contained 1 cluster, the 

trendline is extrapolated from the larger proton-irradiated sample (Figure 5.31b). 

Quantitative cluster analysis results are provided in Table 5.7, enabling the comparison of 

cluster evolution across a range of doses for proton and self-ion irradiation and across 

each particle irradiation at otherwise common conditions (3 dpa at 500°). 

 
Figure 5.31 Average measured cluster Guinier diameter for each data set collected 

for each sample condition in HT9 for a) as measured, and b) normalized to 20 million 

ions). Linear fits are used to normalize the data comparison to a common data set size 

(e.g. 20 million ions in this study).
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Table 5.7 Summary of cluster analysis of HT9 for each irradiation condition using APT.  

Nanocluster Analysis 

Fe2+ ion-irradiated (500°C) Proton-irradiated (500°C) Neutron-

irradiated 

(500°C) 

3 dpa 

3 dpa 100 dpa 1 dpa 3 dpa 

# of LEAP tips analyzed 2 3 5 2 2 

Analysis Volume, VT (nm3) 643,426 584,088 1,330,673 449,677 1,275,897 

Si-Mn-Ni-P rich clusters 

# of clusters measured, ∑ 𝑁𝑛𝑐
𝑆𝑖  0 0 0 13 515 

Average Diameter, 𝐷𝐺
𝑆𝑖 (nm) - - - 7.47 5.09 

Standard deviation for 𝐷𝐺
𝑆𝑖 - - - 3.21 4.19 

Std. dev. of the mean for 𝐷𝐺
𝑆𝑖 - - - 0.89 0.18 

Density, 𝑁𝑛𝑐
𝑆𝑖  (x 1021 m-3) - - - 29 404 

Volume fraction, 𝑓𝑣
𝑆𝑖 - - - 0.7% 3.8% 

Cr-rich clusters 

# of clusters measured, ∑ 𝑁𝑛𝑐
𝐶𝑟 0 0 0 0 1578 

Average Diameter, 𝐷𝐺
𝐶𝑟 (nm) - - - - 4.27 

Standard deviation for 𝐷𝐺
𝐶𝑟 - - - - 0.79 

Std. dev. of the mean for 𝐷𝐺
𝐶𝑟 - - - - 0.02 

Density, 𝑁𝑛𝑐
𝐶𝑟 (x 1021 m-3) - - - - 1273 

Volume fraction, 𝑓𝑣
𝐶𝑟 - - - - 5.7% 
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For the HT9 specimens, a total of 13 and 515 Si-Mn-Ni-P-rich nanoclusters were 

identified and analyzed in proton-irradiated (3 dpa), and neutron-irradiated (3 dpa) 

specimens, respectively. As with HCM12A, proton irradiation induced the coarsest 

distribution of nanoclusters, with an average diameter of 7.47 ± 2.92 nm and number 

density of 29 x 1021 m-3, while clusters following neutron irradiation were 5.09 ± 1.63 nm 

with a density of 404 x 1021 m-3. Cr-rich clusters found in the neutron-irradiated specimen 

averaged 4.27 ± 1.35 nm in diameter with a density of 1237 x 1021 m-3. A summary of 

average nanocluster diameter evolution upon each irradiation of HT9 is illustrated in 

Figure 5.32. 

 
Figure 5.32 Nanocluster diameter evolution in HT9 for Si-Mn-Ni-rich clusters. 
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CHAPTER SIX: MODELING NANOCLUSTER EVOLUTION 

This chapter contains the modeling work conducted in the context of this thesis to 

describe irradiation-induced nanocluster evolution. Through this effort, three primary 

objectives are accomplished: 1) provide context and understanding of the relative damage 

creation mechanisms of different irradiating particles, 2) determine whether an irradiation 

temperature shift is required to emulate nanocluster evolution with varying dose rate 

irradiations, and 3) provide the framework for developing an adaptive model applicable 

to any b.c.c. Fe-based alloy (and other systems) for predicting radiation-induced 

nanocluster evolution. The following sections will outline the modeling methodology 

used, its application to the Fe-9%Cr ODS, HCM12A, and HT9 alloys evaluated in this 

study, and summarize the consistent trends, key takeaways, and potential as a future 

predictive development tool. 

6.1 Modeling Methodology 

The modeling conducted for this thesis is primarily based on a calculation 

methodology development by Nelson, Hudson, and Mazey [57]. The basis of this model 

is the consideration of multiple radiation effects occurring simultaneously, and their 

combined influence on the relative size (i.e. radius) of the nanoclusters with the alloy 

matrix. The following sections will provide a more detailed overview of the Nelson-

Hudson-Mazey model, the development and selection of the input parameters for the 

model, and its application. It will be shown how the model is first used to simulate the 

observed cluster evolution for the Fe-9%Cr ODS alloy (the richest set of data) by initially 
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fitting two unknown parameters. Next, using these fit parameters, the model is used to 

simulate the cluster evolution in HCM12A (which contains several common solutes to 

ODS) and to refine the fit of each parameter. Finally, the predictability of the model will 

be tested against the observed irradiation-induced cluster evolution of the HT9 alloy. 

6.1.1 The Nelson-Hudson-Mazey Model 

The Nelson-Hudson-Mazey (NHM) model is briefly introduced in Section 2.4.6 

and is essentially a set of first-order differential equations describing the change in 

precipitate radius over a unit of time. For this thesis, the same equations are applied to 

describe nanoclusters in the alloys, which may not be true stoichiometric secondary 

phases. As discussed in Section 2.4.6, the NHM equation was derived to account for two 

separate alternative mechanisms for ballistic dissolution of nanocluster phases: a) recoil 

dissolution, and b) disordering dissolution. Given these mechanisms are theoretically 

mutually exclusive, the possibility is considered that each mechanism may both act 

simultaneously during the process of irradiation. As a result, the NHM equations (Eq. 

2.15 and 2.16) for each respective mechanism are combined into a single governing 

equation written as: 

𝑑𝑟

𝑑𝑡
= −

𝜙

𝑁
− 𝜓𝐾 +

3𝐷𝑖𝑟𝑟𝐶

4𝜋𝑝𝑟
− 𝐷𝑖𝑟𝑟𝑟2𝑛   (6.1)  

In this equation, the first two terms on the right hand side represent the effects of recoil 

and disordering dissolution, respectively. Each of these terms are preceded with a 

negative sign, representing the change in cluster radius resulting from these effects is a 

reduction. As outlined in Section 2.4.6, the third and fourth terms in Eq. 6.1 represent the 

balance of solute migration from the matrix to the nanocluster, resulting in a net growth 

in the cluster size. In its entirety, the calculation may result in either a positive change in 
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radius, or a negative change in radius over time, depending on the values used for each 

variable in the equation. 

With the more recent development and improvement of atom probe tomography 

techniques, the ability to precisely measure many of the variables in Eq. 6.1 has been 

greatly enhanced, making application of the NHM model much more feasible. One of the 

fundamental challenges is the measurement of the parameters C and p in the third term. 

The value of C represents the total combined concentration of solutes that are included in 

both the existing nanoclusters and within the matrix of the material. This value may not 

be the same as the overall composition of solutes in the material, as some of the solute 

species may also reside within existing carbide precipitates, which are excluded from this 

analysis. Given that the carbide precipitate size and number density are observed to be 

stable upon irradiation (Section 5.1), it is assumed the solutes within the carbide 

precipitates are also stable. As a result, C represents the total amount of non-carbide 

solutes. Meanwhile, the value for p represents the relative percentage of clustered atoms, 

which are identified as solute atoms. Combining chemistry analysis with the objective 

cluster analysis techniques outlined in Section 4.5.3 allows one to statistically measure 

these values at high precision over the entire collection of data sets and clusters available 

for each studied specimen. 

The NHM model for this thesis is executed using Microsoft Excel and structured 

as a series of inter-dependent workbooks. Each workbook represents a subroutine or 

individual variations of the calculation to enable comparison of dependencies such as 

irradiating particle dependence, temperature dependence, and solute species-specific 

dependence. The model is modularly designed, enabling the possibility to add calculation 
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variations as needed for sensitivity analysis of variables. It is also possible to add 

calculations utilizing data from different studies, such as those derived from the existing 

literature, for comparison of results. Finally, when attempting to apply the model to an 

alternative alloy system with differing species of clustering solutes, the model may be 

converted to a new file and all relative data inputs for the new system are adjusted 

accordingly. An overview of the model structure and logic is illustrated as a flowchart in 

Figure 6.1. The two primary subroutines of the model are: 1) estimation of the respective 

damage cascade effective diameter for each irradiating particle, and 2) estimation of the 

respective system parameters influencing the radiation-enhanced diffusion rates for each 

solute and respective irradiation. The logic and role for each of these subroutines are 

described in the following sections. 
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Figure 6.1 Flowchart of NHM model logic and approach for radiation-induced 

nanocluster evolution calculations. 

6.1.1.1 Cascade Effective Diameter Estimation 

Estimation of the respective volume for a damage cascade resulting from different 

irradiating particles is an important input to the model. Within the second term of Eq. 6.1 

is the disordering parameter, ψ, which is defined as product between the cascade relative 
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size (i.e. effective diameter), l, and the disordering efficiency, f. In Section 2.1.2, the 

methodology for estimating the value of l for each type of irradiating particle is provided. 

Within the model, the user provides inputs/estimates for the average energy transferred to 

the primary knock-on atom (PKA) for each cascade, T, and the respective atomic 

number, Z, and atomic weight, A, for both the irradiating particle and the target alloy (i.e. 

Fe for this study). The values for T used for this study are tabulated in Table 2.1 in 

Section 2.1.2. It is important to recognize the value of l is not only dependent upon the 

irradiating particle, but also depends on the target alloy system (e.g. displacement 

energies, interatomic potentials, nearest neighbor species). For this thesis, each alloy 

studied is based on the b.c.c. Fe system. However, if the model is adapted for a different 

alloy system (e.g. Zr-based), the values for l will be influenced even if the irradiation 

conditions are otherwise kept consistent. For the purpose of this thesis, the respective 

values for l are estimated to be ~2.3 nm for proton irradiation, ~6.8 nm for Fe2+ 

irradiation, and ~10.4 nm for neutron irradiation. 

6.1.1.2 Radiation-Enhanced Diffusion Parameters 

As discussed in Section 2.1, one of the primary effects of irradiation on a target 

alloy is the non-equilibrium generation of vacancy and interstitial defects in the material, 

thus enhancing the mobility of diffusing solutes [42]. This radiation-enhanced diffusion 

(RED) rate of solutes is generally expressed as [42]: 

𝐷𝑖𝑟𝑟 = 𝐷𝑣𝐶𝑣 + 𝐷𝑖𝐶𝑖     (6.2)  

where Cv and Ci are concentrations of vacancies and interstitials, respectively, and Dv and 

Di are the respective diffusion rates of vacancies and interstitials. In the context of solute 

atoms, Eq. 6.2 may be rewritten as: 
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𝐷𝑠𝑜𝑙
𝑖𝑟𝑟 = 𝐷𝑠𝑜𝑙

𝑣 𝐶𝑣
𝑖𝑟𝑟 + 𝐷𝑠𝑜𝑙

𝑖 𝐶𝑖
𝑠𝑜𝑙     (6.3)  

in which 𝐷𝑠𝑜𝑙
𝑖𝑟𝑟, is the total radiation-enhanced diffusion rate of the solute, while 𝐷𝑠𝑜𝑙

𝑣  and 

𝐷𝑠𝑜𝑙
𝑖  are the solute diffusion rates via vacancies and interstitials, respectively. The term 

𝐶𝑣
𝑖𝑟𝑟 is the total number of irradiation-induced vacancies in the microstructure (not 

limited to any specific solute) and 𝐶𝑖
𝑠𝑜𝑙 is the concentration of solutes that have been 

displaced to interstitial sites (predominantly due to irradiation). Since the total 

concentration of the solutes in F-M and ODS alloys in this study are low, the 

concentration of solutes displaced to interstitial sites upon irradiation will also be very 

low. By comparison, the concentration of vacancies (first term in Eq. 6.3) is not 

dependent on solute concentration. It follows the diffusion rate via vacancies will 

dominate for most solutes. 

Two exceptions to this logic are relevant in this study. First, the solute 

concentration of Cr in each of the alloys in this study range 9-12%, suggesting the 

concentration of irradiation-induced solute interstitials is likely to be a more significant 

amount. Wharry has demonstrated there is a crossover temperature at which the dominant 

diffusion mechanism changes from vacancy diffusion to interstitial diffusion [179]. The 

other exception is with O in the Fe-9%Cr ODS alloys, which is known to predominantly 

reside on interstitial sites in equilibrium [154], and thus predominantly diffuse 

interstitially. Therefore, the mobility of O will be much higher than other solutes, and 

thus not a limiting factor to the overall cluster evolution [4,59]. The same approach of 

assuming vacancy diffusion as the dominant mechanism for all other solutes is also taken 

in [59,60], where the irradiation-induced mobility of solutes (𝐷𝑠𝑜𝑙
𝑖𝑟𝑟) is expressed as 

[59,60]: 
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𝐷𝑠𝑜𝑙
𝑖𝑟𝑟 =

𝐶𝑣
𝑖𝑟𝑟

𝐶𝑣
𝑒𝑞 𝐷𝑠𝑜𝑙

𝑡ℎ      (6.4)  

in which 𝐶𝑣
𝑖𝑟𝑟 is the non-equilibrium concentration of vacancies due to irradiation, while 

𝐶𝑣
𝑒𝑞

 is the concentration of vacancies at thermal equilibrium when irradiation is not 

present. The value of 𝐶𝑣
𝑒𝑞

 may be estimated as [59]: 

𝐶𝑣
𝑒𝑞 = 𝑒𝑥𝑝 (−

𝐸𝑣
𝑓

𝑘𝑏𝑇
)     (6.5)  

in which 𝐸𝑣
𝑓
 is the formation energy for a vacancy (estimated to be 2.2 eV [59]), kb is the 

Boltzmann constant, and T is the temperature. Similarly, the thermal diffusion, Dth, may 

be written as: 

𝐷𝑠𝑜𝑙
𝑡ℎ = 𝐷0𝑒𝑥𝑝 (−

𝐸𝑠𝑜𝑙
𝑚

𝑘𝑏𝑇
)    (6.6)  

where D0 is the pre-exponential and 𝐸𝑠𝑜𝑙
𝑚  is the migration energy. These values may be 

retrieved for each respective solute in literature. Finally, the value for 𝐶𝑣
𝑖𝑟𝑟 may be 

estimated as [59]: 

𝐶𝑣
𝑖𝑟𝑟 = 𝐾𝜏     (6.7)  

in which K is the dose rate of the irradiation (in dpa/s), and τ is the characteristic time 

required for these vacancy defects to migrate to a sink in the microstructure, and is 

calculated as [59]: 

𝜏 =
1

𝑘𝑡𝑜𝑡𝑎𝑙
2 𝐷𝑣

     (6.8)  

In Eq. 6.8, τ is dependent upon both the sink strength of the microstructure for the target 

alloy (k2) and Dv, which is the diffusion coefficient for the vacancies. 

The total sink strength for the microstructure of an alloy may be estimated as the 

cumulative sum of the respective sink strengths for each microstructural feature [42]: 
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𝑘𝑡𝑜𝑡𝑎𝑙
2 = 𝑘𝑔𝑏

2 + 𝑘𝑑𝑖𝑠𝑙
2 + 𝑘𝑐𝑎𝑟𝑏

2 + 𝑘𝑛𝑐
2 + 𝑘𝑙𝑜𝑜𝑝𝑠

2 + 𝑘𝑣𝑜𝑖𝑑𝑠
2   (6.9)  

Furthermore, the sink strength contribution of each feature in the microstructure is 

calculated as follows: 

 Grain boundaries [180]:  𝑘𝑔𝑏
2 =

𝛾

𝑅𝑔
2    (6.10) 

where Rg is the mean effective radius of the grains, and γ is expressed as 

𝛾 =

3

2
〈3+4𝛽−

6𝛽(𝛽−1)

𝛼2 +{[3+4𝛽−
6𝛽(𝛽−1)

𝛼2 ]
2

−4(𝛽2−𝛼2)[2−
3(𝛽−1)

𝛼2 ]
2

}

1
2

〉

[2−
3(𝛽−1)

𝛼2 ]
2   (6.11)  

in which 𝛽 = 𝛼 coth (𝛼) and 𝛼 = 𝑘𝑠𝑏𝑅𝑔, where ksb is the sink strength of the bulk 

material (i.e. the microstructural features contained with the matrix of the material 

internal to the grains, including any nanoclusters, voids and dislocation loops). The value 

of ksb is estimated as [42]: 

𝑘𝑠𝑏 = √𝑘𝑛𝑐
2 + 𝑘𝑣𝑜𝑖𝑑𝑠

2 + 𝑘𝑙𝑜𝑜𝑝𝑠
2     (6.12)  

The estimates of the respective bulk microstructure features are calculated using: 

 Nanoclusters [180]: 𝑘𝑛𝑐
2 = 4𝜋𝑟𝑛𝑐𝑁𝑛𝑐(1 + 𝑟𝑛𝑐√4𝜋𝑟𝑛𝑐𝑁𝑛𝑐)  (6.13) 

 Voids [180]: 𝑘𝑣𝑜𝑖𝑑𝑠
2 = 4𝜋𝑟𝑣𝑜𝑖𝑑𝑠𝑁𝑣𝑜𝑖𝑑𝑠(1 + 𝑟𝑣𝑜𝑖𝑑𝑠√4𝜋𝑟𝑣𝑜𝑖𝑑𝑠𝑁𝑣𝑜𝑖𝑑𝑠) (6.14) 

where rnc and rvoids are the average radius of the nanoclusters or voids, respectively, and 

Nnc and Nvoids are the measured number density of nanoclusters or voids, respectively. 

 Dislocation loops [181]: 𝑘𝑙𝑜𝑜𝑝𝑠
2 =

4𝜋2𝑁𝑙𝑜𝑜𝑝𝑠(𝑅𝑙𝑜𝑜𝑝𝑠
2 −𝑟𝑡

2)
1/2

𝑙𝑛(
8𝑅𝑙𝑜𝑜𝑝𝑠

𝑟𝑡
)

  (6.15) 

in which Nloops is the measured number density of the dislocation loops, Rloops is the 

average major radius of the toroid shape of the loops and rt is the minor radius of the 

toroid and is estimated to be ~2x the lattice constant, a. 



182 

 

Once the bulk sink strength is calculated, the sink strength of the grain boundaries 

is determined. Next, the total sink strength is calculated via Eq. 6.9 by adding the 

respective sink strengths for the dislocations and carbide precipitates: 

 Dislocations [182]:  𝑘𝑑𝑖𝑠𝑙
2 =

2𝜋𝜌𝑑(1−
𝑅𝐷

2

ℛ2)

𝑙𝑛(
ℛ

𝑅𝐷
)−

3

4
+

𝑅𝐷
2

ℛ2(1−
𝑅𝐷

2

4ℛ2)

   (6.16) 

in which ρd is the density of dislocation lines, RD is dislocation radius (~2a), and ℛ =

√1/𝜋𝜌𝑑. Finally, the sink strength for carbides follows the formulism for incoherent 

precipitates: 

Carbide precipitates [180]: 𝑘𝑐𝑎𝑟𝑏
2 = 4𝜋𝑟𝑐𝑎𝑟𝑏𝑁𝑐𝑎𝑟𝑏(1 + 𝑟𝑐𝑎𝑟𝑏√4𝜋𝑟𝑐𝑎𝑟𝑏𝑁𝑐𝑎𝑟𝑏) (6.17) 

where rcarb and Ncarb are the average effective radius and number density of the carbides, 

respectively. 

Once the total microstructure sink strength is determined, the other key factor 

required to identify the characteristic time (τ) for vacancies to migrate to sinks (Eq. 6.8) 

is the diffusion rate of the vacancies (Dv), which is estimated as: 

𝐷𝑣 = 𝛼𝑎2𝑣 𝑒𝑥𝑝 (−
𝐸𝑣

𝑚

𝑘𝑏𝑇
)    (6.18)  

in which α is a geometric factor (equal to 1 [42] for a b.c.c. structure), a is once again the 

lattice constant (0.286 for the b.c.c. Fe system), v is the Debye frequency (1013 s-1), and 

𝐸𝑣
𝑚 is the migration energy for vacancies (estimated as 0.68 eV [183]). Once the value 

for τ is determined, the concentration of vacancies as a result of irradiation may be 

estimated (Eq. 6.7) and subsequently the radiation-enhanced diffusion rate of the solutes 

is estimated via Eq. 6.4. 
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6.1.1.3 Other Input Parameters 

The remaining inputs into the model are more directly identified. The first term on 

the right hand side of Eq. 6.1 represents the recoil dissolution, where ϕ is the irradiation 

flux, which may be estimated as 𝜙 = 𝐾 ∙ 1014[57]. Within both the recoil and disordering 

terms (1st and 2nd terms on right hand side of Eq. 6.1), the dose rate of irradiation is 

represented by the variable, K. This factor is dependent upon the irradiation experiment 

itself. For this study, the respective dose rates for the Fe2+, proton, and neutron irradiation 

are given in Table 4.2. The dose rate for Fe2+ irradiation is 2.2 x 10-4 dpa/s, while the 

dose rates for proton and neutron irradiation are 1.2 x 10-5 dpa/s and ~10-7 dpa/s, 

respectively. Furthermore, in the first term on the right had side of Eq. 6.1, the variable N 

represents the atomic density of the target alloy. Using the atomic radius of Fe (0.124 

nm) and the b.c.c. structure, the atomic density is estimated to be 85.2 atoms/nm3. 

Finally, the last two terms on the right hand side of Eq. 6.1 contain variables of r, 

n, p, and C. The value for the average cluster radius, r, is calculated as: 

𝑟 =
1

2
𝐷𝐺      (6.19)  

where DG is the average cluster Guinier diameter of the as-received alloy as defined by 

Eq. 4.11 and tabulated in Table 5.4 for the Fe-9%Cr ODS. Meanwhile, n represents the 

adjusted number density (as prescribed in Section 5.2.1) of the as-received alloy and is 

tabulated in Table 5.5 as 𝑁𝑛𝑐
𝑎𝑑𝑗

for the Fe-9%Cr ODS. The values for p and C are also 

acquired through the atom probe tomography analysis. From the composition data of the 

clusters, the value for p is calculated as: 

𝑝𝑐𝑙
𝑖 =

𝑁𝑐𝑙
𝑖

∑ 𝑁𝑐𝑙
     (6.20)  
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in which 𝑁𝑐𝑙
𝑖  is the total number of atoms of a specific species found in clusters and ∑ 𝑁𝑐𝑙 

is the total number atoms found in the clusters. Finally, the value of C is equal to the total 

non-carbide composition of each of the clustering species and is tabulated in Table 5.4 

for the Fe-9%Cr ODS. Since the HCM12A and HT9 alloys do not contain any pre-

existing nanoclusters in the as-received condition, the values for r, n, and p are initially 

equal to 0, and the values for C are estimated as the bulk concentration of each clustering 

solute, as tabulated in Table 4.1. 

At this point, the only remaining variable is the disordering efficiency, f, which is 

defined in Section 6.1.1.1. The value of this variable is accepted as unknown and will be 

used as the primary fitting parameter to calibrate the model against the measured data. 

6.1.2 NHM Model Execution 

Once all the input parameters are determined, the model is ready to proceed with 

a calculation to emulate the evolution of nanocluster size as a function of time (and dpa). 

Initially, Eq. 6.1 is applied to the as-received nanocluster morphology and the respective 

parameters of each irradiation (Fe2+, proton, and neutron) separately. A value for dr/dt is 

calculated for each irradiation and is applied over a finite amount of time, Δt, after which 

a new resulting nanocluster radius is determined. Using this revised nanocluster radius, a 

revised total sink strength of the microstructure is calculated following Eqs. 6.13 and 6.9. 

Subsequently, the characteristic time, τ, the radiation-induced concentration of vacancies, 

𝐶𝑣
𝑖𝑟𝑟, and the radiation-enhanced diffusion rate, 𝐷𝑠𝑜𝑙

𝑖𝑟𝑟, are all updated accordingly. This 

stepwise calculation is repeated over the same finite time intervals, incrementally 

accumulating more "dose" over increasing time. 
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To initiate the calculation, an estimate for the disordering efficiency, f, and the 

thermal diffusion rate of the respective solutes is required. Typically, initial values of 

~0.1 are a good starting estimate for the disordering efficiency. As the calculation is 

carried out to increasing dose, it will be shown how the predicted nanocluster evolution 

will approach and converge on a stable nanocluster size. Generally, the estimated value 

of f will influence the predicted stable nanocluster size, so this parameter is highly 

effective as a fitting parameter to enable the model calculation to predict nanocluster size 

evolution to match the empirically measured results. 

Estimation of the initial thermal diffusion rate for the clustering solutes is also a 

non-trivial matter. The approach taken for this study is to initially calculate estimates for 

thermal diffusion for each of the individual clustering species (Y and Ti for Fe-9%Cr 

ODS, and Si, Mn, Ni, P, Cu, and Cr for HCM12A and HT9). Once the diffusion rate of 

each species is established, a combined thermal diffusion rate for solutes based on a 

weighted average of the matrix composition is calculated. A summary of the initial 

estimated thermal diffusion rates for each solute and groups of solutes are provided in 

Table 6.1. 
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Table 6.1 Initial estimates for thermal diffusion rates of solutes at 500°C. 

Solute(s) 
Pre-exponential, 

D0 (cm2/s) 

Migration energy, 

𝑬𝒔𝒐𝒍
𝒎  (eV) 

Calculated 

𝑫𝒔𝒐𝒍
𝒕𝒉  (cm2/s) 

Source 

Y 0.1 3.1 6.24 x 10-22 [10] 

Ti 2100 3.04 3.29 x 10-17 [184] 

Y-Ti* - - 1.33 x 10-18 - 

Si 0.735(1+0.124CSi) 2.27 ~1.2 x 10-15 [185] 

Mn 5.95 3.26 3.36 x 10-21 [185] 

Ni 0.56 0.70 1.54 x 10-5 [185] 

Si-Mn-Ni* - - 1.53 x 10-17 - 

Cu 6.1 2.78 4.63 x 10-18 [185] 

Cr 1.48 2.39 4.37 x 10-16 [185] 

*estimates based on weighted average of concentrations in Fe-9%Cr ODS (Table 6.2) 

 

Table 6.2 Measured values for non-carbide solute concentrations in Fe-9%Cr 

ODS, from APT. 

Solute 

Element 

Non-carbide 

concentration, 

Ci 

Y 0.0018 

Ti 0.0043 

Cr 0.0852 

Si 0.0017 

Mn 0.0022 

Ni 0.0004 

 

In the case of modeling nanocluster evolution of HCM12A and HT9, an 

additional challenge is present. In the as-received condition, these alloys do not contain 

any nanocluster morphology. As a result, the initial values for r, n, and p are all 

essentially equal to 0. Since the NHM model requires some inherent nanoclusters to be 
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present, the initial value of p is set to a small value of 0.001 and an artificial "nucleation" 

event is introduced by manually setting the value of r to ~1.0 nm. The timing at which 

this manual nucleation is introduced may depend on any empirical information available 

which provides information about the timing (i.e. approximate dose) at which cluster 

nucleation occurs. For example, in HCM12A, measured data after proton irradiation to 1 

dpa indicates only Cu-rich clusters are present, suggesting that Cu-rich clusters nucleate 

prior to 1 dpa. However, after proton irradiation to 3 dpa, both Cu-rich clustering and Si-

Mn-Ni-rich clusters are present, suggesting that Si-Mn-Ni-rich clusters nucleate 

sometime in between 1 and 3 dpa. As a result, Cu cluster nucleation is introduced in the 

model at approximately 0.5 dpa, while Si-Mn-Ni cluster nucleation is introduced at 

approximate 1.5 dpa. In the case when no such information is available, manual 

nucleation of clusters is initially introduced at approximately 1.5 dpa. It will be shown in 

subsequent sections of this thesis that after simultaneous model calibration to all three 

alloys, it is possible to deduce additional information about the nucleation point of 

different types of clusters and adjust accordingly. 

6.2 Nanocluster Evolution in Fe-9%Cr ODS 

The first system to be modeled is the Fe-9%Cr ODS alloy, which contains a high 

density of oxide nanoclusters in the as-received condition. A summary of the initial 

parameters used in modeling Fe-9%Cr ODS for each irradiation is provided in Table 6.3. 

The stepwise calculation is repeated over the same finite time intervals (Δt), 

incrementally accumulating more "dose" over increasing time. Each calculation is fitted 

to the experimental data as closely as possible. The following sections will review how 

the NHM model is informative with regards to: a) the relative disordering efficiencies of 
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each irradiating particle, b) whether a temperature shift is required to emulate nanocluster 

evolution using varying dose rate irradiations, and c) the relative clustering behavior of 

each solute species in the presence of irradiation. 

Table 6.3 Initial parameters in the NHM model setup for Fe-9%Cr ODS. 

Parameter 
Fe2+ 

irradiation 

Proton 

irradiation 

Neutron 

irradiation 
Source 

𝜙 = 𝐾 ∙ 1014 2.23 x 1010 1.20 x 109 1.00 x 107 K from Table 4.2 

N (atoms/nm3) 85.2 - 

l (nm) 6.8 2.3 10.4 Table 2.1 

f 
fitted 

parameter 

fitted 

parameter 

fitted 

parameter 
- 

k2 (cm-2) 2.70 x 1012 Eq. 6.9 

T (K) 773 K (500°C) - 

𝐷𝑠𝑜𝑙
𝑡ℎ  (cm2/s) 1.33 x 10-18 Table 6.1 

𝐸𝑣
𝑓
 (eV) 2.2 [59] 

𝐸𝑣
𝑚 (eV) 0.68 [183] 

Calculated Dirr(cm2/s) 2.30 x 10-16 1.24 x 10-17 1.03 x 10-19 Eq. 6.4 

r (nm) 2.855 Table 5.4 

n (m-3) 4.43 x 1023 Table 5.5 

pY,Ti 0.0873 Table 5.4 

CY,Ti 0.0062 Table 5.4 

Δt (s) 1200 14400 1440000 - 

 

For illustration purposes, the process for fitting the disordering efficiency, fp, 

against the Fe-9%Cr ODS alloy data after each proton irradiation will be shown. Using 

the initial parameters in Table 6.3 and an estimated fp = 0.1, it is quickly found the model 

predicts very rapid growth of the clusters to a diameter of 6.72 nm (calculation 1 on 

Figure 6.2), which does not represent the experimental observations (d = 5.40 nm at 7 



189 

 

dpa). This result suggests either the estimated value for fp is too low (i.e. not enough 

ballistic disordering), or the assumption for 𝐷𝑠𝑜𝑙
𝑡ℎ  is too high (favoring growth). Since fp is 

required to be a value between 0 and 1.0, the input for fp into the model is maximized to 

1.0. After this change, the model continues to predict very rapid growth of the clusters to 

a diameter of 6.63 nm (2 on Figure 6.2). Next, keeping fp = 1.0, the value for 𝐷𝑠𝑜𝑙
𝑡ℎ  is 

adjusted to enable the calculation to more closely simulate the stable cluster sizes 

measured. Using a value of 𝐷𝑠𝑜𝑙
𝑡ℎ  = 7.81 x 10-20 cm2/s, the calculation predicts a stable 

cluster size of d = 5.38 nm within the first 0.26 dpa, which is reasonably close to the 

stable value at 7 dpa, but does not necessarily represent the cluster evolution sizes 

observed at 1 dpa and 3 dpa (3 on Figure 6.2). For comparison of sensitivity, a value of fp 

= 0.01 is input and the value for 𝐷𝑠𝑜𝑙
𝑡ℎ  is adjusted to 4.43 x 10-22 cm2/s to enable the 

calculation to approximate the measured data (4 on Figure 6.2). In this case, the predicted 

size is a reasonable fit to the measurements, but does not show any trend toward a stable 

size. As a result, it is deduced that an intermediate combination of values for both fp and 

𝐷𝑠𝑜𝑙
𝑡ℎ  would likely provide a better fit to the full set of cluster size measurements from 1 to 

7 dpa. Using values of fp = 0.150 and 𝐷𝑠𝑜𝑙
𝑡ℎ  = 3.88 x 10-21 cm2/s provides a more 

representative fit to the data (5 on Figure 6.2). Henceforth, both f and 𝐷𝑠𝑜𝑙
𝑡ℎ  are treated as 

independent fitting parameters for the model. A different f value is fitted for each 

irradiating particle, while 𝐷𝑠𝑜𝑙
𝑡ℎ  is kept common within each model iteration, since the 

relative solutes are consistent. Generally, revising the thermal diffusion rate, and thus the 

calculated RED of the solutes, will influence the rate of evolution of the nanocluster 

sizes. A higher diffusion rate will predict the nanoclusters to evolve towards a stable size 

more quickly, while a slower diffusion rate will predict nanoclusters to evolve towards 
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the stable size more slowly. By contrast, adjusting the value for f only influences the 

magnitude of the predicted stable size. As a result, using a combination of the fitting 

parameters, f and 𝐷𝑠𝑜𝑙
𝑡ℎ , enables the user to calibrate the NHM model against empirical 

data, particularly when three or more separate data points are available. 

 
Figure 6.2 Calculations with the NHM model for proton-irradiated Fe-9%Cr 

illustrating the fitting method for fp and 𝑫𝒔𝒐𝒍
𝒕𝒉  (measured data from Table 5.4). 

6.2.1 Irradiating Particle Dependence 

Using the fitting procedure described above, the NHM model parameters are 

fitted with predictions plotted as solid lines against the measured cluster sizes following 

each irradiation experiment in Figure 6.3. For all three irradiating particles, the average 

cluster size approaches a steady state within the first few dpa. Each calculation is fitted to 

the experimental data as closely as possible using disordering efficiencies of fFe = 0.039, 

fp = 0.150, and fn = 0.046, respectively, and a common value of 𝐷𝑠𝑜𝑙
𝑡ℎ  = 3.88 x 10-21 cm2/s. 
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Figure 6.3 Stepwise calculations using the NHM model fitted against Fe-9%Cr 

ODS (measured data from 5.4). 

6.2.2 Temperature Shift 

To evaluate the sensitivity of this stepwise calculation, the input temperature is 

varied to determine the influence on the predicted stable cluster size. A lower irradiation 

temperature will directly reduce RED by lowering the equilibrium concentration of 

vacancies, increasing the time required for vacancy defects to migrate to sinks, and 

decreasing the thermal diffusion rate of the solutes. Keeping all other inputs into Eq. 6.1 

the same, a revised stepwise NHM calculation for Fe2+ irradiation at 380°C predicts 

steady-state nanocluster size equivalent to that predicted (and measured) for neutron 

irradiation at 500°C (Figure 6.4). This suggests that a downward temperature shift of -

120°C is required for Fe2+ irradiation to emulate the same cluster evolution as neutron 

irradiation at 500°C. The same approach is applied for proton irradiation, for which an 

irradiation temperature of 426°C (i.e. a temperature shift of -74°C) predicts the same 

stable cluster size as that of 500°C neutron irradiation. 
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Figure 6.4 Stepwise calculations of Fe2+ irradiation and p+ irradiation with 

implemented temperature shifts to fit the measured neutron irradiation nanocluster 

evolution. 

6.2.3 Solute Dependence 

One of the key observations in Fe-9%Cr ODS following irradiation is the 

variation of clustering behavior of the different solute species. In Section 5.2.1, it was 

noted that Ti appears to more readily dissolve during irradiation, while Y appears to be 

more stable, as evidenced by the evolution of the Y:Ti ratio. Additionally, in Section 

5.2.1, it was highlighted how additional solutes including Si, Mn, and Ni also exhibit 

enrichment at the oxide nanoclusters to varying degrees during irradiation. Because of 

this solute specific behavior, it is also informative to model the cluster evolution for each 

individual species independently. 

With the measured average size of the clusters (Section 4.5.3) and the values for 

pi of each solute, it is possible to derive the partial radius of the clusters, ri, for a given 

species i. First, the clustering volume fraction for each clustering species (𝑓𝑣
𝑖) is: 
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𝑓𝑣
𝑖 = 𝑓𝑣𝑝𝑖 ∙

𝑉𝑖,𝑎𝑡𝑜𝑚

𝑉𝑚,𝑎𝑡𝑜𝑚
     (6.21)  

Where fv is the overall volume fraction of the clusters (Section 4.5.3, Eq. 4.13). Since pi 

(Eq. 6.20) is only based on the relative count of solute atoms in the cluster (using APT 

data), the relative size contribution of each individual solute atom is must be considered. 

Therefore, in Eq. 6.21, Vi,atom is the effective volume of a solute specie atom and Vm,atom  is 

the effective volume of a matrix atom in the bulk material (in this case, Fe). Since volume 

fraction may also be written as 𝑓𝑣 =
4

3
𝜋𝑟3𝑛, where n is the cluster number density, the 

partial volume fraction is also written as: 

𝑓𝑣
𝑖 =

4

3
𝜋𝑟3𝑛𝑝𝑖

𝑉𝑖,𝑎𝑡𝑜𝑚

𝑉𝑚,𝑎𝑡
=

4

3
𝜋𝑟𝑖

3𝑛    (6.22)  

Equation 6.22 may then be simplified to: 

𝑟3𝑝𝑖
𝑟𝑖,𝑎𝑡

3

𝑟𝑚,𝑎𝑡
3 = 𝑟𝑖

3     (6.23)  

where ri,at is the atomic radius of the solute species (Table 6.4) and rm,at is the atomic 

radius of the matrix atoms (0.124 nm). Eq. 6.23 is rearranged to solve for the partial 

radius: 

𝑟𝑖 = 𝑟
𝑟𝑖,𝑎𝑡

𝑟𝑚,𝑎𝑡
√𝑝𝑖
3

    (6.24)  

Finally, the partial diameter of the clusters for each species, di, is calculated as: 

𝑑𝑖 = 2𝑟𝑖.     (6.25)  

Table 6.4 Atomic radius values used for solutes in this study, from [73]. 

Solute Element Atomic radius, ri,at (nm) 

Y 0.180 

Ti 0.145 

Cr 0.125 

Si 0.118 
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Mn 0.112 

Ni 0.125 

P 0.109 

Cu 0.128 

 

The partial diameter for each solute species is calculated using the APT measured 

data following each of the irradiation experiments (Table 6.5). Using these values, a 

separate NHM model calculation is executed for each solute species and each set of 

irradiation conditions. As before, each of these calculations are run to simulate the 

evolution of the overall oxide nanocluster radius over time/dose. However, in this case, 

the values for Ci and pi are substituted for C and p, respectively in Eq. 6.1 for the as-

received condition (i.e. at 0 dpa). As discussed in Section 6.2, the same approach is used 

for fitting the disordering efficiencies, fi, and the thermal rate of diffusion, 𝐷𝑖
𝑡ℎ, for each 

solute specie i. However, for solute specific cluster evolution, the circumstances for the 

model calculation are slightly different. Despite using the initial values for Ci and pi, the 

model still calculates a prediction of the overall cluster size evolution (not the partial 

diameter) in order to maintain an updating estimate for the overall sink strength of the 

microstructure at each time interval. As a result, the model requires additional 

information about the evolution of pi to make a continuing estimate of di according to Eq. 

6.24 and 6.25. To accommodate this, the values for pi are substituted at each data point 

for which a measurement is available, and the values for pi at each intermediate iteration 

of the calculation are linearly interpolated. With this in place, it is possible to plot both 

the overall cluster size evolution, and the partial diameter size evolution, simultaneously.



195 

 

Table 6.5 Summary of APT measurements of pi and the resulting partial diameter, di, for clustering of individual solutes in 

Fe-9%Cr ODS. 

Solute Element 
As 

Received 

Fe2+ ion-

irradiated 

(400°C) 

50 dpa 

Fe2+ ion-irradiated (500°C) Proton-irradiated (500°C) Neutron-

irradiated 

(500°C) 

3 dpa 

1 dpa 3 dpa 100 dpa 1 dpa 3 dpa 7 dpa 

Measurement of pi 

Y 0.0297 0.0402 0.0535 0.0518 0.0479 0.0671 0.0369 0.0407 0.0509 

Ti 0.0576 0.0696 0.0640 0.0537 0.0561 0.0846 0.0560 0.0645 0.0444 

Cr 0.1013 0.1152 0.1194 0.1145 0.1057 0.1253 0.1226 0.1112 0.1166 

Si 0.0022 0.0022 0.0034 0.0033 0.0025 0.0031 0.0031 0.0022 0.0725 

Mn 0.0009 0.0008 0.0009 0.0011 0.0006 0.0010 0.0009 0.0006 0.0367 

Ni 0.0006 0.0006 0.0013 0.0016 0.0013 0.0013 0.0011 0.0006 0.0275 

Calculation of partial diameter di (nm) 

Y 2.5652 2.6897 3.3884 3.0993 2.9409 3.2547 2.4867 2.6956 2.7045 

Ti 2.5762 2.6023 2.8985 2.5274 2.4969 2.8324 2.3025 2.5313 2.0821 

Cr 2.6810 2.6541 3.0758 2.8042 2.6587 2.7830 2.5767 2.6164 2.4761 

Si 0.7065 0.6697 0.8861 0.8093 0.7165 0.7620 0.7166 0.6661 1.9955 

Mn 0.4977 0.4537 0.5348 0.5279 0.4331 0.4979 0.4439 0.4199 1.5096 

Ni 0.4771 0.4601 0.6785 0.6808 0.6186 0.6058 0.5427 0.4520 1.5298 
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The same initial parameters from Table 6.3 are used, with the exception of solute 

specific values for Ci (Table 6.2) and pi (Table 6.5) and 𝐷𝑖
𝑡ℎ (Table 6.1). As with the 

overall clusters, the initial diffusivity values for each of the solutes do not allow the 

model to fit the data, so each 𝐷𝑖
𝑡ℎ is once again used as a fitting parameter. The fitting of 

fi, and 𝐷𝑖
𝑡ℎis done in the same manner as before. However, the analyst has an additional 

reference with plots of both the overall cluster size prediction and the partial diameter 

cluster prediction. Therefore, higher confidence in the fitted parameters results when the 

predicted cluster evolution matches both sets of data points. 

The NHM model predictions for each solute species are plotted as lines against 

the measured cluster sizes following each irradiation experiment in Figure 6.5 for Y and 

Ti, Figure 6.6 for Cr and Si, and Figure 6.7 for Mn and Ni. In each case, the partial 

diameter tends to track more closely to the measured values, due to entry of pi. In all 

cases, the model provides a reasonable fit to the overall cluster evolution and the partial 

diameter size evolution. 

 
Figure 6.5 Calculations of NHM model fitted against Fe-9%Cr ODS clusters (d) 

and partial diameters (di) from Table 6.5 for a) Y solutes, and b) Ti solutes. 
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Figure 6.6 Calculations of NHM model fitted against Fe-9%Cr ODS clusters (d) 

and partial diameters (di) from Table 6.5 for a) Cr solutes, and b) Si solutes. 

 
Figure 6.7 Calculations of NHM model fitted against Fe-9%Cr ODS clusters (d) 

and partial diameters (di) from Table 6.5 for a) Mn solutes, and b) Ni solutes. 

For each solute species, unique values for fi are fitted for each condition, while the 

fitted values for 𝐷𝑖
𝑡ℎ are consistent across all irradiation conditions. The fitted values for 

each solute are provided in Table 6.6 for comparison. For all the solutes, the respective 
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𝑓𝑖
𝐹𝑒 and 𝑓𝑖

𝑛are similar and consistently the lowest, while the 𝑓𝑖
𝑝
 are consistently the 

highest values. This result is consistent with the relative magnitudes of f fitted to the 

whole nanoclusters as reported in Section 6.2.1. Interestingly, the fitted thermal diffusion 

rates, 𝐷𝑖
𝑡ℎ, are all lower values than those found in Table 6.1 (with the exception of Y). 

Therefore, additional mechanisms are likely influencing the rate of diffusion of the 

solutes towards the nanoclusters. This subject is discussed further in Section 6.5.3. 

Table 6.6 Fitted values for fi and 𝑫𝒊
𝒕𝒉 for each solute species in Fe-9%Cr ODS. 

Solute 

Element 

Fitted 

𝑫𝒊
𝒕𝒉 (cm2/s) 

𝒇𝒊
𝑭𝒆 𝒇𝒊

𝒑
 𝒇𝒊

𝒏 

Y 6.86 x 10-21 0.048 0.180 0.060 

Ti 9.32 x 10-21 0.112 0.394 0.118 

Cr 3.88 x 10-22 0.106 0.388 0.089 

Si 5.31 x 10-22 0.129 0.410 0.107 

Mn 2.59 x 10-22 0.209 0.668 0.171 

Ni 3.88 x 10-22 0.089 0.284 0.076 

 

6.3 Nanocluster Evolution in HCM12A 

The next system to be modeled is the HCM12A alloy, which does not contain any 

pre-existing nanoclusters in the as-received condition. A summary of the unique initial 

parameters used in modeling HCM12A for each irradiation is provided in Table 6.7. All 

other parameters are the same as provided in Table 6.3. As with the ODS calculations, the 

stepwise calculation is repeated over the same finite time intervals (Δt), incrementally 

accumulating more "dose" over increasing time. However, in the case for HCM12A, two 

separate model calculations are conducted to simulate nanocluster evolution for the Si-

Mn-Ni-rich clusters and Cu-rich clusters. Also, since the initial values for cluster radius 
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are equal to zero at the onset of irradiation, a nucleation event is introduced into the 

calculation at a dose > 0 dpa via manually entry of a finite value for the radius. 

The model thus commences with predicting nanocluster evolution following this 

nucleation event. Each calculation is fitted to the experimental data available from this 

study and from complimentary data in literature conducted on the same heat of 

HCM12A. The following sections will detail: a) the approach to simulate nucleation of 

the different clustering species, b) the additional experimental data available from 

literature, c) the relative disordering efficiencies of each irradiating particle, d) whether a 

temperature shift is required to emulate nanocluster evolution using varying dose rate 

irradiations, and e) the relative clustering behavior of each solute species in the presence 

of irradiation. 

Table 6.7 Initial parameters in the NHM model setup for HCM12A. 

Parameter All irradiations Source 

k2 (cm-2) 2.90 x 1011 Eq. 6.9 

r (nm) 0 - 

n (m-3) 0 - 

pSi,Mn,Ni 0.001 - 

CSi,Mn,Ni 0.0212 APT data 

pCu 0.001 - 

CCu 0.0132 APT data 

 

6.3.1 Nucleation 

The nanocluster measurements following proton irradiation to 1 dpa and 3 dpa at 

500°C provide some insight into the timing of nanocluster nucleation. After proton 

irradiation to 1 dpa, only Cu-rich clusters exist, while after 3 dpa both Cu-rich and Si-

Mn-Ni-rich clusters are present. This information suggests that Cu-rich clusters nucleate 
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sometime between 0 and 1 dpa, while the Si-Mn-Ni-rich clusters nucleate between 1 and 

3 dpa upon proton irradiation. In the case of Fe2+ and neutron irradiation, the only data 

available is at 3 dpa, in which both Cu-rich and Si-Mn-Ni-rich clusters are present, 

confirming both sets of clusters nucleate between 0 and 3 dpa under these conditions. 

Based on this information available, nucleation events are manually introduced in 

the NHM calculation at differing points. For the Cu-rich clusters, an initial cluster radius 

of 1 nm is introduced for each calculation at an irradiation damage between 0.34 - 0.80 

dpa. The initial radius value is arbitrary and is found to have negligible influence on the 

end result of the NHM calculation. For the Si-Mn-Ni-rich clusters, an initial cluster 

radius of 1 nm is introduced at doses between 1.15 - 1.34 dpa. 

6.3.2 Consideration of Literature Data 

For the purpose of calibrating the NHM calculation model, it is desirable to have 

as much experimental data as possible to most accurately fit the parameters f and Dth. 

Jiao, et al. have conducted prior experiments on the same production heat of alloy 

HCM12A as the one used for this thesis [24]. Several proton-irradiation experiments 

were conducted at both 400°C and 500°C to doses ranging from 3-10 dpa, and atom 

probe tomography is used to characterize the average size of the Si-Mn-Ni-rich, Cu-rich, 

and Cr-rich nanoclusters following each irradiation experiment. A summary of this data 

is provided in Table 6.8, and is considered to be complimentary to the data from this 

study (Table 5.6). As a result, the data from both studies will be used to provide a more 

complete picture of nanocluster evolution and enable a more complete analysis using the 

NHM calculation model. 
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Table 6.8 Summary of cluster analysis of HCM12A for each irradiation 

condition in Ref [24]. 

Nanocluster Analysis 

Proton-irradiation 

(400°C) (500°C) 

3 dpa 7 dpa 10 dpa 7 dpa 

Si-Mn-Ni-P rich clusters 

Average Diameter, 𝐷𝐺
𝑆𝑖(nm) 4.2 4.6 5.0 7.2 

Std. dev. of the mean for 𝐷𝐺
𝑆𝑖 0.2 0.2 0.4 0.4 

Cu-rich clusters 

Average Diameter, 𝐷𝐺
𝐶𝑢(nm) 3.4 4.0 3.8 6.6 

Std. dev. of the mean for 𝐷𝐺
𝐶𝑢 0.4 0.2 0.4 0.4 

Cr-rich clusters 

Average Diameter, 𝐷𝐺
𝐶𝑟(nm) 3.0 3.6 3.4 - 

Std. dev. of the mean for 𝐷𝐺
𝐶𝑟 0.2 0.2 0.4 - 

 

6.3.3 Irradiating Particle Dependence 

The NHM model predictions are plotted as lines against the measured cluster 

sizes following each irradiation experiment in Figure 6.8. For all three irradiating 

particles, the average size of Si-Mn-Ni-rich and Cu-rich clusters grow quickly after 

nucleation and evolve toward a steady state within the first few dpa. Each calculation is 

fitted to the experimental data point which represents the cluster size at the highest 

known dose. For the Si-Mn-Ni clusters, the fitted disordering efficiencies are 𝑓𝑠𝑖
𝐹𝑒 = 

0.095, 𝑓𝑠𝑖
𝑝
 = 0.342, and 𝑓𝑆𝑖

𝑛= 0.123, respectively, with 𝐷𝑆𝑖,𝑀𝑛,𝑁𝑖
𝑡ℎ = 2.59 𝑥10−24𝑐𝑚2/𝑠. 

For the Cu-rich clusters, the disordering efficiencies are 𝑓𝐶𝑢
𝐹𝑒= 0.220, 𝑓𝐶𝑢

𝑝
= 0.688, and 

𝑓𝐶𝑢
𝑛 = 0.229, respectively, with 𝐷𝐶𝑢

𝑡ℎ = 6.76 𝑥10−24𝑐𝑚2/𝑠. 
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Figure 6.8 NHM model calculations fitted against HCM12A measured data from 

Table 5.6 and Table 6.8 for a) Si-Mn-Ni-rich clusters, and b) Cu-rich clusters. 

6.3.4 Temperature Shift 

As with the calculation for ODS, the sensitivity of the stepwise calculation for 

HCM12A is evaluated by varying the input temperature to determine the influence on the 

predicted stable cluster size. Keeping all other inputs into Eq. 6.1 the same, a revised 

stepwise NHM calculation for Fe2+ irradiation at 370°C predicts a steady-state Si-Mn-Ni-

rich nanocluster size equivalent to that predicted (and measured) for neutron irradiation at 

500°C (Figure 6.9a). This suggests that a downward temperature shift of -130°C is 

required for Fe2+ irradiation to emulate the same cluster evolution as neutron irradiation 

at 500°C for Si-Mn-Ni-rich clusters. The same approach is applied for proton irradiation, 

for which an irradiation temperature of 400°C (i.e. a temperature shift of -100°C) predicts 

the same stable Si-Mn-Ni-rich cluster size as that of 500°C neutron irradiation. 

Similarly, a revised stepwise NHM calculation for Fe2+ irradiation at 400°C 

predicts a steady-state Cu-rich nanocluster size equivalent to that predicted (and 

measured) for neutron irradiation at 500°C (Figure 6.9b). This suggests that a downward 
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temperature shift of -100°C is required for Fe2+ irradiation to emulate the same cluster 

evolution as neutron irradiation at 500°C for Cu-rich clusters. The same approach is 

applied for proton irradiation, for which an irradiation temperature of 410°C (i.e. a 

temperature shift of -90°C) predicts the same stable Cu-rich cluster size as that of 500°C 

neutron irradiation. It can also be seen in Figure 6.9 how a temperature shift of -100°C 

(i.e. at 400°C) would also reasonably simulate the measured data from the Jiao, et al. 

study of nanoclusters after proton irradiation at 400°C [24]. 

 
Figure 6.9 Calculations of Fe2+ irradiation and p+ irradiation with implemented 

temperature shifts to fit the measured neutron irradiation nanocluster evolution for 

a) Si-Mn-Ni-rich clusters, and b) Cu-rich clusters. 

6.3.5 Solute Dependence 

In the HCM12A alloy, irradiation-induced clustering has been observed for 

solutes of Si, Mn, Ni, P, Cu, and Cr. Using the atomic radius values provided in Table 

6.4, the partial diameter for each of these species is calculated using the APT measured 

data following each of the irradiation experiments and provided in Table 6.9. With these 

values, a separate NHM model calculation is executed for each solute species, and each 
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set of irradiation conditions, to simulate the evolution of the overall nanocluster radius 

over time/dose. 

Table 6.9 Summary of APT measurements of pi and the resulting partial 

diameter, di, for clustering of individual solutes in HCM12A. 

Nanocluster 

Analysis 

Fe2+ ion-irradiated 

(500°C) 

Proton-irradiated 

(500°C) 

Neutron-

irradiated 

(500°C) 

3 dpa 
3 dpa 100 dpa 1 dpa 3 dpa 

Measurement of pi 

Si 0.0186 - - 0.0673 0.0579 

Mn 0.0212 - - 0.0520 0.0426 

Ni 0.0450 - - 0.0543 0.0292 

P 0.0022 - - 0.0033 0.0034 

Cu 0.2060 - 0.2628 0.4448 0.1540 

Cr - - - - 0.3542 

Calculation of partial diameter di (nm) 

Si 1.4397 - - 3.7274 1.6060 

Mn 1.4278 - - 3.2477 1.3765 

Ni 2.0487 - - 3.6776 1.3536 

P 0.6553 - - 1.2615 0.5762 

Cu 3.7678 - 3.3228 5.3719 2.4169 

Cr - - - - 2.2603 

 

The long-term vision of the NHM model is for use as a predictive tool for the 

evolution of nanoclusters. In the case of the HCM12A alloy, there are three solute species 

which are common with the ODS alloy modeled in the prior section (Si, Mn, and Ni). 

Therefore, it is possible to use the same respective disordering efficiencies found in the 

ODS study and evaluate their effectiveness in modeling the solute clustering behavior in 

HCM12A. In the case of modeling these solutes in HCM12A, the same values for fi are 
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used (Table 6.6) in the model, while continuing to allow 𝐷𝑖
𝑡ℎ to be fitted for each species 

following the same approach as in Section 6.2.3. However, once a new 𝐷𝑖
𝑡ℎ is fitted, it is 

kept consistent across all irradiation conditions. The remaining new species in HCM12A 

is P, for which unique values for fi and 𝐷𝑖
𝑡ℎ are fitted, with 𝐷𝑖

𝑡ℎ once again kept consistent 

across all irradiations. The resulting NHM model predictions in HCM12A for each solute 

species are plotted as lines against the measured cluster sizes following each irradiation 

experiment in Figure 6.10 for Si and Mn, and Figure 6.11 for Ni and P. 

 
Figure 6.10 Calculations of NHM model fitted against HCM12A clusters (d) and 

partial diameters (di) from Table 6.9 for a) Si solutes, and b) Mn solutes. 
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Figure 6.11 Calculations of NHM model fitted against HCM12A clusters (d) and 

partial diameters (di) from Table 6.9 for a) Ni solutes, and b) P solutes. 

For all four solutes, nucleation is introduced at approximately 1.5 dpa, and the 

model predicts clustering of the solutes at 3 dpa, consistent with experimental 

observation. Although the predicted cluster sizes at 3 dpa are not a perfect match for all 

three irradiation conditions, the predictions are reasonable considering the constraints 

placed on the model: a) all the disordering efficiencies, fi, for Si, Mn, and Ni are 

consistent with those found modeling ODS, and b) all of the thermal diffusion rates, 𝐷𝑖
𝑡ℎ, 

are consistent across all irradiation conditions. With only minor adjustments to these 

values, the predictions may be brought into alignment with the measured values. It is also 

worth noting the clustering behavior measured at 3 dpa may not be indicative of the 

longer-term clustering behavior which would be present at higher doses. An example of 

this is illustrated in Figure 6.8 and Figure 6.9, in which the measured cluster size values 

at 3 dpa are much higher than those measured at 7 dpa. Unfortunately, solute specific 

data is not available for the irradiations conducted by Jiao, et al. to 7 dpa [25]. 
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An overall summary of the fitted values for each solute are provided in Table 6.10 

for comparison. As with the ODS alloy, the respective 𝑓𝑖
𝐹𝑒 are 𝑓𝑖

𝑛 are similar and the 

lowest, while the 𝑓𝑖
𝑝
 are consistently the highest values. Once again, the fitted thermal 

diffusion rates, 𝐷𝑖
𝑡ℎ, are all lower values than those found in Table 6.1. 

Table 6.10 Fitted values for fi and 𝑫𝒊
𝒕𝒉 for each solute species in HCM12A. 

Solute 

Element 

Fitted 

𝑫𝒊
𝒕𝒉 (cm2/s) 

𝒇𝒊
𝑭𝒆 𝒇𝒊

𝒑
 𝒇𝒊

𝒏 

Si 1.11 x 10-23 0.129 0.410 0.107 

Mn 1.81 x 10-23 0.209 0.668 0.171 

Ni 6.76 x 10-24 0.089 0.284 0.076 

P 1.04 x 10-20 0.180 0.180 0.220 

Cu 6.76 x 10-24 0.220 0.560 0.216 

 

A unique set of circumstances exist for modeling of the Cr-rich clusters in 

HCM12A. In the Results section of this thesis (Sections 5.2.2), it was outlined how Cr-

rich clusters were visually observed only after neutron irradiation to 3 dpa. Using the 

NHM model and the disordering efficiencies from Table 6.6, it is possible to fit a 

combination of 𝑓𝐶𝑟
𝑛  and 𝐷𝐶𝑟

𝑡ℎ parameters to predict the clustering behavior of Cr upon 

neutron irradiation. However, by taking this same approach for modeling irradiation with 

Fe2+ ions or protons, the NHM model predicts Cr-rich clusters to evolve to sizes larger 

than those from neutron irradiation, which is not consistent with experimental 

observation. The explanation of this disconnect may reside in the relative phases in 

equilibrium, as predicted by thermodynamics, at the temperature of irradiation. At 500°C, 

The Fe-Cr phase diagram (Figure 6.12) predicts Cr to be fully soluble in Fe. With the 

addition of irradiation upon the system, the mobility of Cr solutes increases, thus 
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kinetically increasing the rate at which the system will evolve towards equilibrium (i.e. 

remain in dissolution). On the other hand, the irradiation durations for the self-ion, 

proton, and neutron irradiations are ~4 hours, ~3.5 days and ~1 year, respectively. Thus, 

Cr clustering only in the neutron-irradiated specimens may be largely influenced by 

thermal aging at 500°C over ~1 year. This topic will be further discussed in Section 7.4.3. 

 
Figure 6.12 Phase Diagram for the Fe-Cr alloy system, from [186]. 

6.4 Nanocluster Evolution in HT9 

The final system to be modeled is the HT9 alloy, which also does not contain any 

pre-existing nanoclusters in the as-received condition. The clustering solutes in HT9 are 

also Si, Mn, Ni, and P, similarly to both the ODS and HCM12A. Therefore, based on the 

common fitted values of fi for each of these species and the values of 𝐷𝑖
𝑡ℎ fitted with the 

HCM12A, it is possible to fully evaluate the NHM model as a predictive tool for the 

clustering behavior in the HT9 alloy. A summary of the unique initial parameters used in 

modeling HT9 for each irradiation is provided in Table 6.11. All other parameters are the 
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same as provided in Table 6.3. Once again, the stepwise calculation is repeated over the 

same finite time intervals (Δt), incrementally accumulating more "dose" over increasing 

time, and a nucleation event is introduced into the calculation at approximately 1.5 dpa 

via manual entry of a finite value for the radius. The model thus commences with 

predicting nanocluster evolution following this nucleation event. The following sections 

will detail: a) the additional experimental data available from literature, b) the resulting 

cluster evolution following each irradiation, c) whether a temperature shift is required to 

emulate nanocluster evolution using varying dose rate irradiations, and d) the relative 

clustering behavior of each solute species in the presence of irradiation. 

Table 6.11 Initial parameters in the NHM model setup for HT9. 

Parameter All irradiations Source 

k2 (cm-2) 3.28 x 1011 Eq. 6.9 

r (nm) 0 - 

n (m-3) 0 - 

pSi,Mn,Ni 0.001 - 

CSi,Mn,Ni 0.0197 APT Data 

 

6.4.1 Consideration of Literature Data 

Several studies in literature have evaluated secondary phase evolution in HT9. 

However, most of these studies rely only on TEM/STEM techniques for characterization 

of the small nanoscale phases, which are limited in their ability to detect nanoclusters 

smaller than 5 nm. One study conducted by Jiao, et al. evaluated proton-irradiation to 7 

dpa at 400°C on the same production heat of alloy HT9 as the one used for this thesis 

[25], and used atom probe tomography to characterize the average size of the Si-Mn-Ni-

rich, and Cr-rich nanoclusters. A summary of this data is provided in Table 6.12, and is 
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considered to be complimentary to the data from this study (Table 5.7) for analysis using 

the NHM calculation model. 

Table 6.12 Summary of cluster analysis of HT9 for each irradiation condition in 

Ref [25]. 

Nanocluster Analysis 

Proton irradiation 

(400°C) 

7 dpa 

Si-Mn-Ni-P rich clusters 

Average Diameter, 𝐷𝐺
𝑆𝑖(nm) 4.6 

Std. dev. of the mean for 𝐷𝐺
𝑆𝑖 0.8 

Cr-rich clusters 

Average Diameter, 𝐷𝐺
𝐶𝑟(nm) 3.8 

Std. dev. of the mean for 𝐷𝐺
𝐶𝑟 0.8 

 

6.4.2 Irradiating Particle Dependence 

For the Si-Mn-Ni clusters, the values for the disordering efficiencies and thermal 

diffusion rates are the same as fitted with the HCM12A modeling effort, so no empirical 

fitting of these parameters is required. To recap, the disordering efficiencies for the Si-

Mn-Ni-rich clusters are 𝑓𝑠𝑖
𝐹𝑒 = 0.095, 𝑓𝑠𝑖

𝑝
 = 0.342, and 𝑓𝑆𝑖

𝑛= 0.123, respectively, with 

𝐷𝑆𝑖,𝑀𝑛,𝑁𝑖
𝑡ℎ = 2.59 𝑥10−24𝑐𝑚2/𝑠. The NHM model predictions are plotted as lines against 

the measured cluster sizes following each irradiation experiment at 500°C in Figure 6.13. 

Experimentally, no clusters were observed after Fe2+ irradiation, so only proton and 

neutron irradiation are modeled for comparison to the measured values. For each 

irradiating particle, the Si-Mn-Ni-rich clusters grow quickly after nucleation and evolve 

toward a steady state within the first few dpa. However, when compared to the measured 

data points at 3 dpa, the model predicts slightly smaller clusters than those measured. 
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But, this is also consistent with the model fits for HCM12A, in which the measured 

values after 3 dpa are also much larger than the model predicted values (Figure 6.8). In 

this case, more experimental data at higher doses would be helpful to understand the 

validity of this model prediction, but such information is not currently available. A data 

point from Jiao, et al. is available at 7 dpa at 400°C and is discussed in more detail in the 

next section. 

 
Figure 6.13 Predicted nanocluster evolution using the NHM model in HT9 

compared to measured data from Table 5.7 for Si-Mn-Ni-rich clusters. 

6.4.3 Temperature Shift 

As with the other alloys, the sensitivity of the stepwise calculation for HT9 is 

evaluated by varying the input temperature to determine the influence on the predicted 

stable cluster size. Keeping all other inputs into Eq. 6.1 the same, a revised stepwise 

NHM calculation for proton irradiation at 400°C predicts a steady-state Si-Mn-Ni-rich 

nanocluster size to that predicted (and measured) for neutron irradiation at 500°C (Figure 

6.14). This calculation is also a very good fit to the cluster measurements of Jiao, et al. 

[25] following 7 dpa irradiation with protons at 400°C. 
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Figure 6.14 Calculations of p+ irradiation with temperature shift to fit the 

predicted neutron irradiation nanocluster evolution for Si-Mn-Ni-rich clusters. 

6.4.4 Solute Dependence 

In the HT9 alloy, irradiation-induced clustering has been observed for solutes of 

Si, Mn, Ni, and P, and Cr. Using the same atomic radius values provided in Table 6.4, the 

partial diameter for each of these species is calculated using the APT measured data 

following each of the irradiation experiments and provided in Table 6.13. With these 

values, a separate NHM model calculation is executed for each solute species upon 

proton and neutron irradiation to predict the evolution of the overall cluster partial 

diameter for each solute over time/dose.  
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Table 6.13 Summary of APT measurements of pi and the resulting partial 

diameter, di, for clustering of individual solutes in HT9. 

Nanocluster 

Analysis 

Fe2+ ion-irradiated 

(500°C) 

Proton-irradiated 

(500°C) 

Neutron-

irradiated 

(500°C) 

3 dpa 
3 dpa 100 -dpa 1 dpa 3 dpa 

Measurement of pi 

Si - - - 0.0776 0.0398 

Mn - - - 0.0578 0.0319 

Ni - - - 0.0752 0.0327 

P - - - 0.0206 0.0038 

Cr - - - - 0.2281 

Calculation of partial diameter di (nm) 

Si - - - 3.0311 1.6537 

Mn - - - 2.6077 1.4572 

Ni - - - 3.1766 1.6407 

P - - - 1.7995 0.6998 

Cr - - - - 2.6276 

 

In the case of predicting the solute-specific behavior in HT9, the same values for 

fi and 𝐷𝑖
𝑡ℎ are used from HCM12A (Table 6.10) in the model for each species. And, as 

before, 𝐷𝑖
𝑡ℎ is kept consistent across all irradiation conditions for each solute. As with 

ODS and HCM12A, the model will predict the overall cluster size evolution, but 

additional information is still required about the evolution of pi to make a continuing 

estimate of di according to Eq. 6.24 and 6.25. For both ODS and HCM12A, the values for 

pi are substituted at each data point for which a measurement is available, and the values 

for pi at each intermediate iteration of the calculation are linearly interpolated. However, 

since the current interest is for the model to make a prediction of the solute clustering 



214 

 

without any prior knowledge, input of pi is more challenging. It is important to 

acknowledge this limitation of the model when attempting to make individual predictions 

about the clustering behavior of individual solutes – some prior knowledge of the solute 

clustering behavior is still required. 

Based on this limitation, two potential approaches are possible to move forward: 

1) use the measured values for pi measured at each data point for HT9 (interpolating 

values at intermediate time intervals), or 2) use the respective pi values measured at each 

data point for HCM12A (with interpolated values). With option 1, the model is no longer 

a predictive calculation, but is rather a comparison of the model fit to the measured data. 

On the other hand, with option 2, the pi values are estimated based on information known 

about another alloy, not the HT9 in question. The justification for using the same pi 

values as HCM12A is based on the knowledge from literature that both alloys are known 

to form Si-Mn-Ni-rich clusters (G-phase) upon irradiated. Therefore, it is reasonable to 

hypothesize the resulting G-phase clusters will have similar composition, and thus similar 

pi values. This is a not a perfect scenario, but provides a means to test the NHM model as 

a “predictive” tool for the solute behavior in HT9. Using this latter approach, the 

resulting NHM model predictions in HT9 for each solute species are plotted against the 

measured cluster sizes and solute partial diameters following each irradiation experiment 

in Figure 6.15 for Si and Mn, and Figure 6.16 for Ni and P. 
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Figure 6.15 Predictions of NHM model fitted against HT9 clusters (d) and partial 

diameters (di) from Table 6.13 for a) Si solutes, and b) Mn solutes. 

 
Figure 6.16 Predictions of NHM model fitted against HT9 clusters (d) and partial 

diameters (di) from Table 6.13 for a) Ni solutes, and b) P solutes. 

For all four solutes, nucleation is introduced at approximately 1.5 dpa, and the 

model predicts clustering of the solutes at 3 dpa, consistent with experimental 

observation. The predicted cluster sizes at 3 dpa are not a perfect match for all three 

irradiation conditions, but are still reasonable considering no empirical fitting is 

conducted for these calculations. Plus, as with HCM12A, the clustering behavior 
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measured at 3 dpa may not be fully indicative of the longer-term clustering behavior at 

higher dose. 

As was the case for HCM12A, the same set of circumstances apply for Cr-rich 

clustering in HT9. In the Results section of this thesis (Sections 5.2.3), Cr-rich clusters 

were only observed after neutron irradiation to 3 dpa. Using the NHM model and the 

disordering efficiencies from Table 6.6, it is possible to fit a combination of 𝑓𝐶𝑟
𝑛  and 𝐷𝐶𝑟

𝑡ℎ 

parameters to emulate the clustering behavior of Cr upon neutron irradiation. However, 

taking this same approach for modeling irradiation with Fe2+ ions or protons as with 

HCM12A, the same disconnect between the model and empirical results persists. The 

same explanation provided in Section 6.3.5 is also applicable here. 

6.5 Overall Summary of Trends 

In the previous sections, the NHM model is applied systematically to simulate the 

nanocluster evolution in a model Fe-9%Cr ODS alloys and the commercial F-M alloys 

HCM12A and HT9, respectively. These modeling efforts are conducted sequentially to 

progressively gain insight into the influence of each set of irradiation conditions on the 

evolution of cluster size. Through this activity, new information about the mechanism of 

nanocluster evolution has been elucidated including: a) a need for a downward 

temperature shift when using higher dose rate irradiations to emulate low dose rate 

irradiation, b) the relative disordering efficiencies of each irradiating particle and their 

damage cascades, and for each individual solute species, and c) the rate at which solutes 

tend to migrate toward nanoclusters. The following sections will further discuss each of 

these trends observed in the modeling of each alloy. 
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6.5.1 Temperature Shift 

For each alloy, the relative sensitivity of the model to the irradiation temperature 

was evaluated. In all cases, a downward temperature shift is required for higher dose rate 

irradiations to predict equivalent nanocluster evolution which matches the cluster 

evolution upon neutron irradiation for all nanocluster types (oxides, Si-Mn-Ni-rich, and 

Cu-rich). A summary of the temperature shifts determined are provided in Table 6.14. 

With Fe2+ irradiation, a negative temperature shift (i.e. temperature reduction) between 

100-130°C is required to achieve comparable nanocluster evolution with neutron 

irradiation. Meanwhile, with proton irradiation, the reduction is between 74-100°C to get 

equivalent nanocluster evolution. 

Table 6.14 Summary of temperature shifts required to enable calculations for 

Fe2+ and proton irradiation to simulate nanocluster evolution upon neutron 

irradiation. 

Alloy Cluster Type 

Fe2+  neutron 

irradiation 

Temperature shift 

p+  neutron 

irradiation 

Temperature shift 

Fe-9%Cr ODS Y-Ti-O-rich -120°C -74°C 

HCM12A Si-Mn-Ni-rich -130°C -100°C 

HCM12A Cu-rich -100°C -90°C 

HT9 Si-Mn-Ni-rich - -100°C 

Average Temperature Shift -117°C -91°C 

 

The most important aspect of these calculated temperature shifts is the downward 

direction. The model suggests irradiation at higher dose rates (e.g. charged particle 

irradiations) need to be conducted at a lower temperature than the corresponding neutron 

irradiation to achieve comparable evolution of any nanoscale phases. As dose rate 

increases, the downward temperature shift must be greater in order to suppress radiation-
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enhanced diffusion of the solutes leading to cluster growth and coarsening. This 

temperature shift is opposite that predicted by Mansur [187,188], which indicates 

increasing dose rate requires a simultaneous increase in irradiation temperature to 

emulate lower dose rate evolution of defect clusters (i.e. voids). The Mansur theory is 

discussed further in Section 7.6.2. For solute clusters, a negative temperature shift is also 

consistent with two other models, which will be reviewed in the following sub-sections. 

microstructures. 

6.5.1.1 The Martin Model 

It is possible to estimate the temperature shift using Martin’s theories (see Section 

2.4.6), which calculate the irradiation-induced dilated temperature (T') as [60]: 

𝑇′ = 𝑇(1 + ∆)     (6.24)  

where T is actually irradiation temperature, and Δ is a temperature dilation factor, which 

can be estimated as [60]: 

∆=
𝐶𝑣

0

𝐷𝑡ℎ
(𝜙𝐷𝑣)1/2𝑔      (6.25)  

in which 𝐶𝑣
0 is the thermal concentration of vacancies (without irradiation), Dth is the 

thermal diffusion rate of solutes (without irradiation), ϕ is the irradiation flux, and Dv is 

the thermal diffusion rate of vacancies. Based on this dependency on the irradiation flux, 

higher dose rate irradiation will lead to a larger temperature dilation. The geometric 

factor, g, is written as [60]: 

𝑔 = 𝜎𝑟𝑏2 (
4𝜋𝑟𝑐𝑁𝑣

𝜎𝑑
)

1/2

     (6.26)  

where σr, and σd are the replacement and displacement cross sections, respectively, b is 

the average length of each ballistic displacement, rc is the recombination radius [rc = 

(3/4πNnc)
1/3 = 8.1 nm] [42], and Nv is the atomic density of the target material (85.2 



219 

 

atoms/nm3). Estimates for b are determined following a method outline by Heinig, et al. 

[58] in which a probability distribution function is fit against a SRIM calculation of 

atoms displaced from a flat oxide composition layer with a surrounding Fe matrix. 

Estimated values ranging from 0.25-0.35 are obtained for both Fe2+ and proton 

irradiation, and are consistent with those reported in Refs. [59] and [189] using the same 

methodology; an average value of 0.3 is used. One of the challenges with this calculation 

is the estimation of the cross-section terms, particularly σr, which is difficult to estimate 

for this system. However, another way Martin looked at the dilation factor is as [60]: 

∆= ∆0𝑒𝑥𝑝 (
𝐸∆

𝑘𝑏𝑇
)     (6.27)  

with EΔ = Ed - Ef - Em/2, where Ed (0.31 eV [10]), Ef (2.2 eV [59]) and Em (0.68 eV [183]) 

are the activation energies for solute diffusion, vacancy formation, and vacancy 

migration, respectively. Meanwhile, the Δ0 is a function of ϕ1/2g, and kb and T are the 

Boltzmann constant at the temperature, respectively. Because there are too many 

unknowns, we can instead carry out this calculation for Fe2+ irradiation at a shifted 

temperature of 383°C (based on the average temperature shift in Table 6.14) the dilation 

factor is estimated to be ΔFe = 0.206, with ∆0
𝐹𝑒= 1.46𝜙1/2𝑔, yielding T' = 518°C. Next, 

we can estimate the pre-exponential of the dilation factor for neutron irradiation as: 

∆0
𝑛= ∆0

𝐹𝑒 𝑓𝑛

𝑓𝐹𝑒      (6.28)  

in which fn and fFe are the disordering efficiencies of neutrons and Fe2+ ions, respectively 

(Section 6.2.1). The dilation factor for neutron irradiation at 500°C is estimated as Δn = 

0.023, and T' also becomes 518°C. Finally, following the same approach for proton 

irradiation to achieve the same T' = 518°C, the proton irradiation temperature T would 

need to be 388°C, which yields a Δp = 0.197. This predicted proton irradiation 
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temperature (388°C) to yield comparable nanocluster evolution as neutron irradiation is 

reasonably close to the average temperature of 409°C estimated by the NHM model 

(Table 6.14). 

6.5.1.2 The Wagner Model (via Chen) 

Another model similar to the NHM model (developed by Wagner [80]) is 

advanced by Chen, et al. [79] to predict nanocluster cluster evolution in ODS alloys 

(Section 2.4.6). The governing equation for this model is: 

𝑑𝑟

𝑑𝑡
= −𝐾𝜓 +

𝐷𝑖𝑟𝑟

𝑟
∙

𝑐−𝑐𝑟

𝑐𝑝−𝑐𝑟
    (6.29)  

in which the first term on the right hand side is identical to the second term on the right 

hand side of Eq. 6.1. The last term in Eq. 6.29 captures the growth of nanoclusters, in 

which c is concentrations of solutes in the matrix, and cp is the solute concentration in the 

clusters. The term cr is the concentration of solutes at the interface of the cluster and 

matrix and is expressed as [79]: 

𝑐𝑟 = 𝑐∞𝑒𝑥𝑝 (
2𝛾𝑖𝑣𝑎𝑡

𝑘𝑇𝑟
)     (6.30)  

where 𝑐∞ is the solubility limit of solutes at a flat interface between cluster and matrix, γi 

is the interfacial energy between the two phase (estimated as 0.016 J/m2 [41]), vat is the 

atomic volume of the target material (𝑣𝑎𝑡 =
1

𝑁
= 0.01174 𝑛𝑚3), k is the Boltzmann 

constant, T is the temperature, and r is the radius of the nanocluster(s). The remaining 

variable, 𝑐∞, is not readily available, but it may be used as a fitting parameter as was 

done for the disordering efficiency, f, in the NHM model. By the same justification as the 

NHM model, Eq. 6.29 is modified to account for possible recoil dissolution acting in 

parallel to disordering dissolution and is rewritten as: 
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𝑑𝑟

𝑑𝑡
= −

𝜙

𝑁
− 𝐾𝜓 +

𝐷𝑖𝑟𝑟

𝑟
∙

𝑐−𝑐𝑟

𝑐𝑝−𝑐𝑟
    (6.31)  

which is formatted similarly to Eq. 6.1. 

Using these parameters and the same disordering efficiencies fitted for Fe-9%Cr 

ODS (Section 6.2.1), the Chen, et al. model is applied to the Fe-9%Cr ODS system for 

each irradiation condition. In the same manner as the NHM model, the stepwise 

calculation is repeated over the same finite time intervals (Δt), incrementally 

accumulating more "dose" over increasing time. Each calculation is fitted to the 

experimental data as closely as possible using 𝑐∞ as a fitting parameter. The Chen model 

predictions are plotted as solid lines against the measured cluster sizes following each 

irradiation experiment in Figure 6.17. For all three irradiating particles, the average 

cluster size approaches a steady state within the first few dpa. Each calculation is fitted to 

the experimental data as closely as possible using disordering efficiencies of 𝑐∞
𝐹𝑒 =

0.0019, 𝑐∞
𝑝 = 0.0018, and 𝑐∞

𝑛 = 0.0018, respectively. 

 
Figure 6.17 Stepwise calculations using the Chen, et al. model fitted against Fe-

9%Cr ODS measured data from Table 5.4. 
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Once more, the sensitivity of the stepwise Chen model calculation for Fe-9%Cr 

ODS is evaluated by varying the input temperature to determine the influence on the 

predicted stable cluster size. Keeping all other inputs into Eq. 6.31 the same, a revised 

stepwise N calculation for Fe2+ irradiation at 383°C predicts steady-state oxide 

nanocluster size equivalent to that predicted (and measured) for neutron irradiation at 3 

dpa and 500°C (Figure 6.18). Likewise, the same approach is applied for proton 

irradiation, for which an irradiation temperature of 409°C predicts cluster size which 

approaches that of 500°C neutron irradiation. These results are consistent with both the 

NHM and Martin theories in identifying the need for a downward temperature shift when 

using higher dose irradiations (i.e. charged particles) to emulate cluster evolution with 

lower dose irradiation (i.e. neutron irradiation). 

 
Figure 6.18 Stepwise calculations of Fe2+ irradiation and p+ irradiation with 

temperature shifts to emulate neutron irradiation nanocluster evolution. 

6.5.2 Disordering Efficiency 

In its original introduction, the authors of the NHM theory [57] acknowledge the 

disordering efficiency of the irradiation, f, is the most uncertain variable in the model. 
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However, by using this factor as a fitting parameter and comparing the results of several 

experiments to the theory, it is possible to deduce some useful information about this 

variable. For this thesis, the theoretical values of f for each irradiation condition on 

multiple alloys is evaluated, as well as the theoretical values for fi for each of the 

clustering solute species within the alloys. A summary of the respective f values for each 

type of nanocluster is provided in Table 6.15 and each type of solute in Table 6.16. For 

all the clusters and solutes in this thesis, the disordering efficiencies are consistently 

lowest for Fe2+ and neutron irradiation and highest for proton irradiation. Interestingly, 

This relative pattern is also consistent with the estimated displacement efficiencies 

published in [42]. 

Table 6.15 Comparison of disordering efficiency (f) values fitted for each type of 

cluster and irradiating particle. 

Irradiating 

Particle 

Fe-9%Cr ODS HT9 / HCM12A HCM12A Displacement 

efficiency in [42] Y-Ti-O-rich Si-Mn-Ni-rich Cu-rich 

Fe2+ ions 0.039 0.095 0.220 0.04 

Protons 0.150 0.342 0.688 0.25 

Neutrons 0.046 0.123 0.229 0.02 

 

Table 6.16 Fitted values for solute disordering efficiency (fi) and displacement 

energy (Ed) for each solute species in this thesis. 

Solute 

Element 

Disordering efficiency Displacement energy 

𝒇𝒊
𝑭𝒆 𝒇𝒊

𝒑
 𝒇𝒊

𝒏 Reference Ed (eV) 

Y 0.048 0.180 0.060 [190] 57 

Ti 0.112 0.394 0.118 [191] 30 

Cr 0.106 0.338 0.089 [191] 40 

Si 0.129 0.410 0.107 - - 

Mn 0.209 0.668 0.171 [191] 40 
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Ni 0.089 0.284 0.076 [191] 40 

P 0.180 0.180 0.220 - - 

Cu 0.220 0.560 0.216 [191] 30 

 

The mechanism of disordering involves the localized disruption of the atomic 

structure of the target material (via irradiation damage), thus enabling solute atoms to 

more readily disassociate from their parent cluster (i.e. diffuse into the matrix) [57]. As 

such, it follows that substitutional solute atoms are displaced from their lattice positions 

(upon irradiation) when this localized disordering occurs. On this basis, the relative 

disordering efficiencies of each solute element are compared to the respective 

displacement energy, Ed, for each of the solute elements (Table 6.16) in Figure 6.19. 

These values for Ed are acknowledged to be only estimates [191], as the displacement 

energy is likely dependent upon the nature of the bonding with its surrounding species. 

Even so, a notable trend appears to exist for all three types of irradiating particles - 

solutes with higher displacement energy tend to have a lower cascade disordering 

efficiency. The identification of this trend itself may be informative for using the model 

as a predictive tool for systems with a variety of solutes. The potential usefulness of this 

will be discussed in more detail on Section 7.6. 
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Figure 6.19 Comparison of fitted disordering efficiencies and literature values for 

solute displacement energies for each solute species. Linear trend lines fitted for each 

respective irradiating particle. 

6.5.3 Solute Diffusion Rates 

In the previous sections describing the NHM model and its application to 

individual solutes, the fitted values for the thermal diffusion, 𝐷𝑖
𝑡ℎ, for each of the solutes 

are identified to be much lower than typical values found in archival literature (with the 

exception of Y) for diffusion in a b.c.c. Fe-matrix (Table 6.1). As a result, these fitted 

values (summarized in Table 6.17) likely only represent the rate of diffusion of the 

solutes toward the solute clusters, enabling the clusters to grow. Therefore, any solutes 

migrating toward clusters (which are already rich in the same solute) are diffusing against 

the solute concentration gradient. Considering this "uphill" migration, it is not surprising 

the fitted values for diffusion toward the clusters are consistently lower than traditional 

values for thermal diffusion, where solute flux is from higher to lower concentrations (i.e. 
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"downhill"). As a result, the magnitude of this fitted diffusion rate may reflect the relative 

"affinity" of each solute to the clusters of interest. This would explain why common 

solutes between the ODS and the F-M alloys have slightly different rates of diffusion 

toward different types of clusters (Y-Ti-O-rich oxides vs. G-phase). 

Table 6.17 Solute thermal diffusion rates fitted using the NHM model. 

Solute 

Element 

Fe-9%Cr ODS HCM12A / HT9 

Fitted 

𝑫𝒊
𝒕𝒉 (cm2/s) 

Fitted 

𝑫𝒊
𝒕𝒉 (cm2/s) 

Y 6.86 x 10-21 - 

Ti 9.32 x 10-21 - 

Cr 3.88 x 10-22 - 

Si 3.11 x 10-22 1.11 x 10-23 

Mn 2.59 x 10-22 1.81 x 10-23 

Ni 3.88 x 10-22 6.76 x 10-24 

P - 1.04 x 10-20 

Cu - 6.76 x 10-24 

 

Furthermore, in comparing the fitted rates of the solutes within the ODS alloy, the 

solute element with the highest rate toward the oxide nanoclusters is Ti, followed by Y. 

Although these elements typically exhibit lower mobility in b.c.c. Fe than the other 

solutes, an additional thermodynamic driving force for clustering is likely present. 

Barnard et al. modeled the behavior of oxide precipitation in NFAs [192], concluding that 

precipitation is driven by strong thermodynamic driving forces and kinetics which favor 

rapid nucleation. Barnard et al. attribute this behavior to a large enthalpy of formation for 

the oxides phases and the low solubility of Y in the Fe-Cr matrix. This low solubility of 

Y may also explain why the fitted thermal diffusion rate of Y (Table 6.17) is actually 
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slightly higher than the literature value for thermal diffusion (Table 6.1). The Y atoms 

appear to have a high affinity for the oxide clusters, which may also explain why the 

fitted disordering efficiencies for Y are also the lowest of all of the solutes (Table 6.16) 

The formation enthalpies for the several relevant oxide compounds may be 

compared (Table 6.18). The enthalpies of formation for Y2O3 and TiO2 are -1907 kJ/mol 

and -889 kJ/mol, respectively [22] (Note: the exact structure of the nanoclusters may not 

be a simple mixture of Y2O3 and TiO2), suggesting both will have a high affinity for 

oxygen. In addition, Ti and Y have a low solubility limit in b.c.c. Fe due to their larger 

atomic radius (Table 6.4), although Ti is less oversized and generally has a higher 

mobility [184]. It follows that Ti would likely have a slightly higher mobility overall, 

consistent with the fitted values (Table 6.17). 

Table 6.18 Comparison of enthalpy of formation for various oxide phases, from 

[185]. 

Element 
Oxide 

Composition 

ΔHf
298 

(kJ/mol) 

Fe Fe3O4 -1118 

Cr Cr2O3 -1130 

Y Y2O3 -1907 

Ti TiO2 -889 

Si SiO2 -911 

Mn Mn3O4 -1388 

Ni NiO -241 

W WO3 -839 

 

Meanwhile, the clustering of Si, Mn, and Ni elements are likely a result of 

radiation-induced segregation (RIS) in both the ODS and F-M alloys. Si, Mn, and Ni are 

known to segregate toward grain boundaries in commercial F-M and austenitic stainless 
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steels [23,193,194]. This also explains why clusters with these species are not present in 

the as-received condition. As a result, the mechanism of RIS is likely to be a weaker 

driving force for solute cluster than the formation of Y- and Ti-rich oxides. 
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CHAPTER SEVEN: DISCUSSION 

Charged particle irradiations, including protons and heavier species have 

increasingly been utilized to emulate neutron irradiation effects in F-M and ODS alloys, 

especially at irradiation damage levels 100 dpa [30,36–39]. Ions can deliver high 

irradiation damage rates in short experimental time frames, at lower costs, and with little 

to no residual radioactivity, enabling a much quicker turnaround time for conducting 

verification experiments on candidate materials. However, questions remain about the 

ability of ions to comprehensively emulate the damage introduced by neutrons in a 

reactor environment. 

With the advancement of the NHM model in this thesis, it is possible to create a 

baseline estimate for how nanoclusters will evolve under different irradiation conditions. 

With this information, the appropriate temperature shift required to simulate nanocluster 

evolution using higher dose rate, charged particle irradiations may be determined. 

Furthermore, with the capability to isolate the clustering behavior of individual solutes in 

a given alloy, the model may be used as an informative tool for the elemental tailoring of 

existing or new alloys to be more radiation-resistant. 

In this chapter, Sections 7.1-7.3 will review the limitations of both TEM and APT 

techniques, and discuss the relevance of other nanocluster measurements found in 

archival literature. Sections 7.4 - 7.5 will review the analysis and interpretation of results 

to evaluate the ability of Fe2+ and proton irradiation to successfully emulate neutron 

irradiation in the context of: a) the overall microstructure and defect cluster evolution, b) 
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the evolution of various nanocluster types in ODS and F-M alloys, respectively. Finally, 

Section7.6 will review the advanced NHM model developed for this thesis and its 

potential for broader use as an informative and predictive tool to engineer radiation-

resistant alloys for future nuclear reactor applications. 

7.1 Limitations of TEM/STEM Measurements 

Transmission electron microscopy (TEM) is a unique and powerful technique 

which is used ubiquitously in the field of nuclear materials. TEM enables microstructural 

imaging of small samples and is powerful enough to resolve features in the 

microstructure at or below 2 nm in size. As a result, it is fundamental for studying 

features which are highly relevant in the study of nuclear materials such as grain 

structure, carbide and other secondary phases, dislocation line density, and smaller 

nanoscale phases as well as irradiation-induced features including dislocation loops and 

voids or cavities. However, when reviewing published data resulting from TEM analysis, 

it is important to recognize the inherent challenges, limitations, and subjectivity involved 

with the technique. The following sections provide an overview of these considerations. 

7.1.1 Image Quality 

The quality (or resolvability) of the TEM images from one sample to the next are 

rarely exactly the same. The primary influence on the ability to resolve microstructural 

features in a given sample is the relative thickness of the TEM lamellae. Generally, the 

thickness of a lamellae needs to be less than 100 nm to achieve high quality images when 

using a TEM operating at 200-300 keV. For this thesis, a consistent focused ion beam 

(FIB) technique is used for fabrication of the TEM lamellae from each specimen; 

limitations of FIB will be discussed in the next section. In all cases, thinning of the 
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lamellae at 30 keV was conducted until the samples were measured to be less than 100 

nm. Then, the samples are further thinned using lower energy ions (5 keV) until an 

opening in the lamellae is visually seen (see Section 4.3.1). With this technique, the entire 

sample is expected to be between 0 and 100 nm in thickness, enabling high quality 

imaging throughout. 

Upon inspection of each sample in the TEM, the thickness is measured by 

electron energy loss spectroscopy (EELS) in several locations and an average thickness is 

calculated (Section 4.4.3). Despite utilizing a consistent approach in the FIB for 

fabricating each of the samples, the average thickness of the TEM lamellae for each 

sample ranges from 29 nm to 104 nm, with the majority of the sample thicknesses falling 

between 50-98 nm. The differences in sample thickness can influence the detectability of 

microstructural features within the samples, particularly in alloys such as the Fe-9%Cr 

ODS and F-M alloy in this thesis due to their relative small grain/lath sizes and high 

dislocation density. In particular, the detectability of dislocation loops in STEM is 

directly influenced by the sample thickness. Examples of this influence are evident in 

Figure 7.1. Both images utilize the same STEM imaging technique to image dislocation 

loops. The image in Figure 7.1a is taken from an irradiated ODS sample with an average 

thickness of 51 nm, while the image in Figure 7.1b is from an irradiated ODS sample 

with average thickness of 104 nm. In the former image, the contrast appears more 

distinct, thus making detectability of the dislocation loops clearer. It is believed this is the 

primary reason for the high number density measurement in the proton-irradiated 

specimen to 3 dpa (10.2 ± 8.0 x 1021 m-3), in which the FIB lift-out sample produced the 

highest quality image, enhancing the visibility of the loops. 
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Figure 7.1 Representative STEM Images of dislocation loops in Fe-9%Cr ODS. 

The sample in a) is ~51 nm thick, while the sample is b) is ~104 nm thick. 

7.1.2 FIB Damage 

Fabrication of the TEM lamellae using the FIB technique is a versatile method for 

quickly creating a sample of an irradiated specimen without grossly disrupting the 

irradiated portion of the bulk material. In the case of Fe2+ irradiation, the damage layer is 

only ~1.2 μm deep, while with the proton irradiation, the damage layer is ~20 μm deep 

(Section 2.1.2). In both cases, it is imperative that the damage layer of the sample be 

preserved as much as possible during the fabrication process to enable the most 

representative analysis of the irradiated microstructure. 

In the FIB process, material is removed from the sample via a beam of heavy Ga+ 

ions, which impact the surface atoms of the material, displacing them from the bulk. In a 

sense, this bombardment of Ga+ ions is essentially another form of irradiation upon the 

sample. As a result, care is taken during the sample preparation to minimize the amount 

of time the sample is exposed to the ion beam. Additionally, during the final thinning of 

the sample with the ion beam, the incident angles of the beam are minimized (typically 
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1.5°) to minimize the Ga+ ion penetration into the sample. Even with these precautions in 

place, elimination of any damage caused by the milling process is very difficult. This 

damage can manifest in the TEM imaging as additional ion beam-induced defects [195], 

making accurate characterization of irradiation-induced defects more challenging. 

Examples of TEM micrographs of unirradiated HT9 are provided in Figure 7.2, 

comparing the imaging after sample preparation using electro-polishing (Figure 7.2a) and 

FIB lift-out (Figure 7.2b) [195]. 

 
Figure 7.2 TEM  micrographs of unirradiated HT9 following sample preparation 

using a) electro-polishing, and b) FIB fabrication [195]. 

Aitkaliyeva, et al. developed a post-FIB fabrication technique to reduce the 

amount of FIB damage present in the samples [195] using a Gatan PIPS-2 system or a 

Fischione NanoMill. These systems use a lower energy beam (<1000 eV) of Ar ions for 

final thinning and removal of the FIB damage layer from the sample. In their study, 

positive results in removing FIB beam damage in a Fe-12Cr alloy were realized using the 

PIPS-2 system and sample preparation recommendations using the PIPS-2 system are 

provided. In the case of this thesis, the post-FIB processing system available for use at 
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the Center for Advanced Energy Studies (CAES) is a Fischione Model 1040 NanoMill. 

This instrument was used for several of the TEM lamellae fabricated for this thesis. In 

each case, beam energy was set to 900 eV at 130 pA, with a incidence angle of only 9 

degrees. The milling time was initially set for 20 minutes on each side of the TEM 

lamellae for the sample of Fe-9%Cr ODS irradiated with Fe2+ ions to 3 dpa at 500°C. The 

milling time was subsequently increased to 45 minutes on each side of the TEM lamellae 

for the sample of Fe-9%Cr ODS irradiated with Fe2+ ions to 100 dpa at 500°C and for 

subsequent samples of HCM12A and HT9 irradiated with Fe2+ ions to 3 dpa at 500°C 

each. In all cases, the post-FIB nanomilling process was successful in eroding the 

majority of the Pt deposit placed at the surface of the sample, but did not result in any 

noticeable improvement in reducing FIB damage in the bright field or STEM images. 

Given the consideration for the presence of potential FIB damage, it is important 

for the analyst to utilize a consistent approach and threshold for how microstructural 

features are identified and measured within TEM images. The significance of this will be 

further discussed in the following section. 

7.1.3 Subjectivity 

Despite the best practices and precautions in place to systematically characterize 

microstructures using TEM imaging, some inherent subjectivity still remains. For the 

identification and measurement of each feature within the microstructure, each analyst 

may define their own thresholds for when to make a positive identification. For example, 

grain and lath boundaries are often difficult to differentiate from the “forest” of 

dislocations in the microstructure. In some cases, a survey of the surrounding 

microstructural context is required to deduce where grain boundaries are most likely 
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located. Therefore, each analyst may apply their own interpretation of the grain 

morphology. Similarly, identification of carbides and other secondary phases in TEM is 

largely accomplished by looking for areas of different Z-contrast, indicating localized 

variation is the material composition. Smaller areas of Z-contrast may be more difficult to 

positively identify, particularly in alloys which contain high dislocation density and 

imaging contrast as those evaluated in this study. It has also been previously highlighted 

that dislocation loop identification may be influenced by the sample thickness and the 

subjective differentiation of loops from the surrounding dislocation forest. Finally, the 

positive identification of small voids, particularly in the presence of nanoscale phases 

(such as ODS oxides) is also subjective using the through focus technique, as highlighted 

in Section 4.4.1. 

Given the inherent subjectivity of microstructural characterization using TEM and 

STEM imaging, it is difficult to draw definitive conclusions when comparing the results 

of one study to those from a different study conducted by a different analyst. However, it 

is informative to evaluate the results measured by the same analyst, in which consistent 

interpretation and identification thresholds are applied for all specimens, as is the case for 

this study. As a result, in the context of microstructure characterization via TEM/STEM, 

the most useful information from this thesis is the comparison of microstructure within 

each specimen studied to evaluate the evolution trends and dependencies on different 

irradiation parameters such as dose rate, temperature, and irradiation damage (dpa). 

7.1.4 Analysis Regions 

For each form of irradiation (i.e. Fe2+ ions, protons, or neutrons) a different 

resulting damage profile results, as illustrated in Figure 2.2. For neutron irradiation, the 
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damage profile is essentially uniform throughout the irradiated specimen, suggesting that 

microstructural analysis may be conducted in any region of the sample. With proton 

irradiation, the damage profile peak is at a depth of ~19 μm (Figure 2.2), which is well in 

excess of the relative depth of the TEM lamellae fabricated for this study (~7 μm), and 

the target analysis region is located between ~1 - 10 μm. Therefore, the full lamellae, 

with the exception of the top ~1 um layer, may be analyzed for characterization of the 

microstructure (Figure 7.3a). On the other hand, with Fe2+ ion irradiation, the damage 

peak is ~1.0-1.2 μm deep into the bulk material (Figure 2.2), while the target analysis 

region is at ~400 - 600 nm in depth. Due to this limitation, characterization of the 

microstructure for Fe2+ irradiated samples much be conducted within this very narrow 

"band" on each lamella (Figure 7.3b). With smaller volumes available for analysis, it 

becomes more difficult to maximize counting statistics of microstructural features. 

 
Figure 7.3 Representative FIB/SEM micrographs of TEM lamellae fabricated via 

FIB with indication of the relative analysis regions available for a) proton-irradiated 

samples, and b) Fe2+ irradiated samples. 

7.1.5 Summary 

Although TEM is a proven and productive technique for analyzing irradiated 

microstructures, the inherent limitations and subjectivity associated with TEM are real 
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and should always be considered. As a result, most studies employ a complimentary 

technique to analyze microstructures, reducing the subjectivity and increasing confidence 

in the measured results. Since the primary thrust of this thesis is the study of nanocluster 

evolution, the complimentary technique of atom probe tomography (APT) is used to 

obtain a more objective measurement of the nanocluster morphologies in each alloy. 

However, some inherent limitations and artifacts in APT also exist and should be taken 

into consideration when interpreting the results. Section 7.3 will review each of these 

considerations as well. 

7.2 Microstructure and Defect Clusters using TEM 

Historically, ion irradiation conditions have been selected to emulate a defined 

neutron irradiation condition based on the invariance theory [188], which purports that 

the accelerated irradiation damage rate from ions can be made up for with temperature 

adjustments, to produce equivalent void microstructures. Recent studies using modern 

computational techniques [196,197], have corroborated the invariance theory. But they 

have also found the development of an irradiation damage cascade to be a critical factor 

in the accumulation of local defect and defect cluster morphologies. Experimental 

evidence for the role of temperature and damage cascades specifically in F-M and ODS 

alloy microstructure evolution, is somewhat limited, however, because of the challenge of 

comparing neutron to ion irradiations on identical heats of archival alloys. 

One of the seminal studies on this topic has been conducted by Was, et al. [36], 

who characterized F-M alloy HT9 under neutron and ion irradiation conditions. The 

irradiation temperatures were selected based on the invariance theory; neutron 

irradiations were carried out to 155 dpa at 443C, while 5 MeV Fe2+ self-ion irradiations 



238 

 

were carried out to 188 dpa at 460C. While Was, et al. [36] is able to obtain a relatively 

consistent void morphology between neutron and ion irradiations, the G-phase and 

dislocation loop morphologies are markedly different between neutron and ion 

irradiations. Ions produce smaller G-phases at a higher number density than do neutrons. 

The opposite is observed with dislocation loops:  ions produce larger loops at a lower 

number density, although the resultant total loop line length is relatively constant 

between the irradiation types. These differing trends for loops and G-phases are 

consistent with the conclusions of Getto, et al. [198], which suggest that G-phases do not 

influence the evolution of loops. 

In the next sections, the ability of charged particle irradiations to emulate neutron 

irradiation will be evaluated on the basis of the overall microstructure and defect cluster 

(i.e. voids and dislocation loops) evolution upon each irradiation. 

7.2.1 Grains, Carbides, and Dislocation Lines 

For all three alloys studied for this thesis, the morphology of grains, carbide 

precipitates, and dislocation line density are measured. After common irradiation 

conditions of 3 dpa dose at 500°C, these morphologies are found to be statistically 

invariant upon irradiation with Fe2+ ions, proton, and neutron irradiation. Additionally, 

the morphologies of grains, carbides and dislocations are also invariant with dose under 

Fe2+ and proton irradiation, including up to doses as high as 100 dpa with Fe2+ ions. 

These results are illustrated in Figure 7.4 for Fe-9%Cr ODS and Figure 7.5 for HCM12A 

and HT9 and suggest these features are stable upon irradiation. 



239 

 

 
Figure 7.4 Comparison of microstructure measurements of grains, carbides, and 

dislocation lines in each specimen of Fe-9%Cr ODS. 

 
Figure 7.5 Comparison of microstructure measurements of grains, carbides, and 

dislocation lines in each specimen of a) HCM12A and b) HT9. 
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7.2.2 Voids 

Some void nucleation and growth are detected in each of the alloys. In the Fe-

9%Cr ODS alloy, any voids present in each of the specimens are scarce and relatively 

small (between 2.5 and 5.5 nm) making them difficult to positively identify. Most 

notably, no voids are identified upon any of the Fe2+ irradiation, including up to doses of 

100 dpa at 500°C. This result suggests the ODS is likely successful at suppressing void 

swelling up to higher doses. Most literature studies of ODS alloys focus primarily on the 

nanocluster evolution upon irradiation. One study by He, et al. [9] briefly reports 

evolution of dislocation loops, but makes no mention of any observed voids after proton 

irradiation to 3.7 dpa at 400°C. 

Similarly, in the HCM12A and HT9 alloys, voids are not detected in any of the 

irradiation conditions at lower doses of 1 to 3 dpa. However, larger faceted voids (up to 

~20 nm) are clearly evident after Fe2+ irradiation up to 100 dpa in both alloys, although 

the number density remains relatively low. This result suggests the resistance of the 

HCM12A and HT9 to void swelling may be less effective than the ODS alloy at higher 

dose. Getto, et al. [199] have also shown how pre-implantation of He is needed to induce 

nucleation of voids at lower doses in HT9. Some prior evaluations of void evolution in 

HT9 are published in literature and plotted in Figure 7.6, along with the results herein. 

Getto, et al. [30] conducted irradiations with Fe2+ ions at 460°C up to doses ranging from 

75-650 dpa. In this study, voids were characterized using STEM bright field and high-

angle annular dark-field (HAADF) imaging. After 75 dpa, no voids were detected, but 

beginning at a dose of 130 dpa, voids were observed to increase in average diameter from 

15 nm up to ~60 nm at 650 dpa, while number density slightly declined from ~14 x 1020 
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m-3 to ~7 x 1020 m-3 in the same dose range, resulting in an approximately linear swelling 

rate observed in this range of doses. Sencer et al. [29] also observed voids in HT9 with an 

average diameter ~28 nm and number density of ~2.5 x 1020 m-3 after Fe2+ irradiation to 

155 dpa at 443°C. Both of these results are reasonable and consistent with those found in 

this study after Fe2+ ion irradiation to 100 dpa at 500°C (average diameter of 12.8 nm and 

density of 2.4 x 1020 m-3). 

 
Figure 7.6 Results from literature indicating average size of irradiation-induced 

voids in F-M alloys. Size of bubbles represent relative size of voids. 

7.2.3 Dislocation Loops  

Using the STEM imaging technique, dislocation loops are readily visible and 

measurable. In the Fe-9%Cr ODS alloy, dislocation loops are present after 1 dpa upon 

irradiation with either Fe2+ ions or protons. In all specimens, dislocation loops were 

relatively small, generally measuring below 20 nm, with the majority of them between 6-

10 nm. As dose increases, loops exhibit only marginal growth, suggesting the size of 

loops are largely stable up to higher doses. This result is consistent with loop growth 
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observations in various ferritic-martensitic alloys [16,23,138] and austenitic stainless 

steels [42], and it supports the theory of defect cluster saturation developed by Whapham 

and Makin [136,137]. It is also reasonably consistent with a study by He et al. [9] on the 

same ODS alloy, where dislocation loops averaged 15.4 nm after proton irradiation to 3.7 

dpa at 400°C. The three irradiations to 3 dpa at 500°C have consistent dislocation loop 

sizes and number densities, suggesting that Fe2+, protons, and neutrons can all produce 

comparable loop microstructures, at least up to a dose of 3 dpa. Similar trends are 

observed for both the HCM12A and HT9 alloys. Dislocation loops are present after 1 dpa 

of proton irradiation, yet exhibit minimal growth up to 3 dpa. Some prior evaluations of 

dislocation loop evolution in F-M alloys are published in literature and plotted in Figure 

7.7, along with the results herein. At low dose, the average size of dislocation loops is 

consistently smaller than 20 nm, regardless of irradiation temperature. With doses 

increasing up to 200-300 dpa, the loops get much larger, but the size appears to plateau 

up until > 500 dpa, when the sizes get substantially larger again. The results also suggests 

defect cluster saturation, up to a point, or perhaps saturation plateaus. The reason for 

these potential plateaus is not clear, and would be worth further investigation to 

determine if an additional mechanism takes over, particularly at higher doses above >500 

dpa. 
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Figure 7.7 Results from literature indicating average size of irradiation-induced 

dislocation loops in F-M alloys. Size of bubbles represent relative size of loops. 

7.2.4 Temperature Shift Theory for Defect Clusters  

Mansur [187,188] theorized a temperature shift is necessary in order to produce 

consistent microstructures with respect to defect clusters when the irradiation dose rate 

increases. The desired microstructures are bound by two mechanisms of point defect loss:  

1) mutual recombination in the matrix, and 2) diffusion to sinks. The temperature shift for 

recombination-dominant and diffusion-dominant regimes is calculated for a reference 

condition of 500°C at 10-7 dpa/sec (Figure 7.8), conditions comparable to the neutron 

irradiation experiment in the present study. The vacancy migration and formation 

energies are taken to be 0.68 eV and 2.2 eV, respectively, for a b.c.c. Fe-9%Cr steel 

[179]. But since the temperature is fixed at both dose rates in the present irradiation 

experiments, the temperature shift curve must have a slope ~0 in order for the Fe2+ ion-, 

proton-, and neutron-irradiated void and dislocation loop microstructures to be consistent 

with one another, as observed in this work. It thus follows that void and loop nucleation 
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and growth are recombination-driven processes (red line, Figure 7.8), so their evolution 

will be relatively independent of dose rate at a fixed temperature. Overall, Proton and 

Fe2+ irradiation provide a meaningful simulation of the recombination-driven 

microstructural processes, such as dislocation loop and void nucleation and growth, 

resulting from neutron irradiation at a fixed dose and temperature. 

 
Figure 7.8. Comparison of calculated temperature shifts required for diffusion-

driven (blue line) and recombination-driven (solid line) mechanisms to produce 

consistent defect clusters, from [187,188]. 

7.3 Limitations of APT Reconstruction and Cluster Analysis 

Atom probe tomography (APT) is an emerging technique which is increasingly 

being utilized in the field of nuclear materials. APT enables atomic-level resolution and 

provides capability for more objective chemical analysis and characterization of any 

nanoscale phases present. However, as with other techniques, some inherent limitations 

and artifacts may be present or introduced during APT analysis which need to be 
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considered when interpreting data. Also, when reviewing published data resulting from 

APT analysis, it is important to recognize the inherent limitations and artifacts involved 

which may influence the conclusions. The following sections will provide a review of 

these considerations and some context for analysis and interpretation of the results of this 

study and those found in archival literature. 

7.3.1 LEAP Analysis 

The procedure for conducted analysis using the local electrode atom probe 

(LEAP) involves the fabrication of very fine needle-shaped samples with a tip radius of 

<50 nm. Subsequently, each of the surface atoms at the tip of the needle are sequentially 

evaporated and collected on a detector. Although the total LEAP process of evaporation 

may encompass several hours of instrument time, the resulting amount of analysis 

volume which is typically collected is on the order of 100,000 to 1,000,000 nm3.The 

largest data set collected for this thesis had a total volume of 1,465,928 nm3, which is the 

equivalent to the volume of a cube with sides ~114 nm in length. As result, each collected 

data set is only a very small sampling of the overall bulk material, making each data set 

sensitive to inhomogeneities within the microstructure. It is not uncommon for a data set 

from one specimen to contain a grain boundary or secondary phase, while the next data 

set from the same specimen does not. Based on this, it is recommended to always collect 

as many data sets as possible for each specimen so that the combined analysis volume 

may be maximized, reducing the vulnerability to any inhomogeneities in the 

microstructure. For this thesis, every possible data set was used for analysis, with the 

exception of those which clearly encompassed a secondary phase or clearly intersected 

with a network of grain boundaries. 
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 Another important consideration is the detector efficiency, which typically ranges 

from 0.36 to 0.50 for most modern LEAP systems. For this thesis, the Cameca LEAP 

4000X-HR at CAES, which has a detector efficiency of 0.36, was used for all the sample 

analyses. This means only 36% of the evaporated atoms from each sample needle were 

collected at the detector following evaporation. Fortunately, the reconstruction within 

IVAS accounts for the efficiency when approximating the original location of atoms. The 

net result is a reduced atomic density within the 3D reconstruction. For the b.c.c. Fe 

crystal structure, the atomic density is estimated to be 85.2 atoms/nm3. Therefore, 

theoretically, the 3D reconstruction atomic density is expected to be ~85.2*0.36 = 30.7 

atoms/nm3.This is consistent with the measured atomic density within each data set of 

this study, which range from 28.0 to 31.6 atoms/nm3. Any additional discrepancies 

between the theoretical and experimental atomic densities are explained by further loss of 

collected atoms to background noise. Background is evident in the mass spectrum as a 

level of noise amidst the mass-to-charge ratio peaks. This noise is typically caused by 

evaporated atoms which departed from the source sample at a time in between the LEAP 

laser pulses. As a result, the measurement of the time-of-flight of the ion from the sample 

to the detector is no longer accurate and these ions are typically unable to be identified. 

During the evaporation of the sample needles, atoms of different species often 

evaporate at different rates, depending on the evaporation field (F in Eq. 4.9) present. 

This difference is relevant when the evaporation sequence encounters an interface 

between the bulk matrix atoms (i.e. primary Fe atoms) and a secondary phase or 

nanoparticle. Depending on the relative fields between the matrix and the particle, the 

surrounding matrix atoms may evaporate more readily than the particle, or vice versa, 
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leading to local magnification effects [170,177]. One of the known side effects of this 

phenomenon are trajectory aberrations between the original location of the source ions 

and their eventual impact location on the detector. These trajectory aberrations can 

manifest in some of the matrix atoms (i.e. Fe and Cr) surrounding the nanoparticle to be 

reconstructed in a location within the nanoparticle. As expected, these errantly placed 

atoms will influence the measurement of chemical composition of the nanoparticle(s) 

when conducting cluster analysis in IVAS. Some authors have suggested methods to 

remove Fe from the nanoparticle composition [176], while others publish the composition 

data as-measured [8,9], or publish both the “uncorrected” and “matrix corrected” 

compositions [59]. For ODS alloys, observations in archival literature indicate that 

smaller oxides tend to have non-stoichiometric chemistry, while larger oxides have a 

pyrochlore Y2Ti2O7 or orthorhombic Y2TiO5 crystal structure [124,130–134]. In this 

study, none of the Y:Ti or (Y+Ti):O ratios reflect either of these crystal structures, so 

there is no evidence to suggest the oxide nanoparticles are single crystals void of any Fe 

atoms. Therefore, all composition data for the nanoparticles in this thesis have been kept 

as-measured, without any composition altering. This approach is kept consistent 

throughout this work, enabling a “like-for-like” comparison between each data point and 

an evaluation of nanocluster evolution across different irradiation conditions, doses, and 

temperatures. 

7.3.2 Reconstruction and Cluster Analysis in IVAS 

One of the most critical parameters to define during the reconstruction of the 

sample data is the image compression factor (ICF). When using IVAS, the default value 

for the ICF is 1.65. In addition to the procedure outlined in Section 4.5.2, where an 
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effective ICF for each data set is selected, an additional iteration of cluster analysis was 

conducted for all specimens of the Fe-9%Cr ODS and HCM12A alloys using this default 

ICF value, while all other aspects of the cluster analysis were maintained consistent. 

Atom distribution maps showing clustering in Fe-9%Cr ODS for each iteration of 

reconstruction are shown in Figure 7.9 for the same sample with the voltage history in 

Figure 4.14. In the initial reconstruction using ICF = 1.65 (Figure 7.9a), clusters appear to 

be more horizontally elongated, particularly towards the outer extremes of the 

represented volume. This result is inconsistent with the observation of TEM-resolution 

nanoclusters [8] and in the archival literature [12,84,96,110], in which oxide nanoclusters 

tend to take a spherical shape. On the other hand, clusters in this latter iteration (Figure 

7.9b) appear to be more consistently spherical in shape. The cluster “stretching” effect 

can be explained by the IVAS reconstruction algorithm, which limits the researcher to 

utilizing a single ICF value for a data set having an evolving collection voltage history. 

As the IVAS software is reconstructing the sample, it is attempting to reconcile the 

detector location of source ions and the prescribed shape of the original sample (as 

defined either by collection voltage, shank angle, or tip profile). Inevitably, these separate 

inputs will not match perfectly and the software reconciles these differences by locally 

varying the atomic density of the source atoms to most closely fit the inputs. These 

variations are most pronounced at the outer extremes of the represented volume, where 

the detector ion locations and the user-defined shape of the reconstruction are the most 

mis-matched. 
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Figure 7.9 Atom distribution maps of Ti, TiO, O, YO, Y, FeO, and CrO atoms in 

an Fe-9%Cr ODS sample reconstructed with a) ICF = 1.65, and b) ICF = 1.42 selected 

via the effective voltage (Section 4.5.2). 

The default ICF value of 1.65 is most accurate for a collection voltage of ~2800 

V, which is well below the collection voltage history of all the samples collected in this 

study. As a result, the width of the data sets reconstructed using the default ICF tends to 

be overestimated (Figure 7.9), which then requires the software to overly “decompress” 

the atomic density (and thus the cluster dimensions) in the lateral direction. This effect is 

illustrated in Figure 7.10, where the effects of different ICF values on a given sample are 

illustrated. It is worth noting that selecting an effective ICF based on Veff also does not 

produce a perfect reconstruction. Nevertheless, the effective ICF method outlined herein 

produces a more accurate reconstruction than the constant ICF method, with fewer 

clusters appearing elongated or stretched in any direction. Ideally, if the reconstruction 

software allowed variation of the ICF as a function of the voltage history (i.e. ICF 

evolves along with the voltage history during reconstruction), an even more reliable 

reconstruction of the original cluster geometry would likely result. However, this is not a 

trivial algorithm to implement within the IVAS software. 
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Figure 7.10 Simplified illustration of how selecting different ICF values will 

influence the reconstruction of clusters within a data set with larger overall ion 

counts, with ICF values of a) 1.65, and b) 1.42. 

The resultant average Guinier diameter for each specimen condition for Fe-9%Cr 

ODS and HCM12A using ICF = 1.65 and using an “effective” ICF for each data set 

(Section 4.5.2) are listed in Table 7.1, with values after normalization also provided. 

Coupling the effective ICF reconstruction technique with normalization of the cluster size 

measurements (Section 5.2) provides a more credible assessment of the influence of each 

irradiation condition on the cluster sizes in both ODS and HCM12A. In specimens having 

data set sizes relatively evenly distributed over a wide span of ranged ions, the average 

cluster diameter changes very little. In specimens having a narrow range of data set sizes, 

with one exceptionally large or exceptionally small data set, the normalization changes 

the average cluster diameter more significantly. This effect is readily observed by 

comparing the oxide nanocluster diameter in the as-received ODS to that in the Fe2+ self-

ion irradiated ODS at 3 dpa and 500°C. Using a fixed ICF and without normalization, the 

irradiation seemingly results in a statistically-significant cluster dissolution (diameters 

reduce from 5.96 ± 0.14 nm to 5.06 ± 0.13 nm). But using the effective ICF 

reconstruction technique with normalization to 20 million ions, the average cluster 
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diameter in the irradiated specimen (5.73± 0.11 nm) is now comparable to that in the as-

received specimen (5.71 ± 0.09 nm) within measurement error. This suggests oxide 

nanoclusters do not dissolve, but rather are relatively stable upon self-ion irradiation up to 

3 dpa. In the example just presented, the change from irradiation dissolution to irradiation 

stability is most considerably influenced by the normalization procedure. The combined 

effective ICF selection and normalization step thus enables a more reliable measurement 

of the oxide nanocluster irradiation evolution. 
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Table 7.1 Average cluster Guinier diameter measurements for two ICF selection 

approaches, then with normalization (± values are standard deviation of the mean). 

ICF 1.65 (default) Effective Effective 

Data set size Not normalized Not normalized 

Normalized 

to 20 

million 

Material & 

cluster type 
Irradiation conditions 

# of 

clusters 

Average 

Guinier 

diameter 

(nm)  

# of 

clusters 

Average 

Guinier 

diameter 

(nm) 

Average 

Guinier 

diameter 

(nm) 

Fe-9%Cr ODS 

Y-Ti-O 

nanoclusters 

As-Received 486 5.96 ± 0.14 413 5.74 ± 0.09 5.71 ± 0.09 

Neutron (3 dpa, 500°C) 355 3.41 ± 0.09 169 4.84 ± 0.08 5.03 ± 0.08 

Proton (3 dpa, 500°C) 964 4.77 ± 0.06 975 4.83 ± 0.04 5.15 ± 0.05 

Fe2+ (3 dpa, 500°C)  232 5.06 ± 0.13 188 5.50 ± 0.11 5.73 ± 0.11 

Fe2+(100 dpa, 500°C) 1578 5.35 ± 0.07 1474 5.47 ± 0.06 5.58 ± 0.06 

Fe2+(50 dpa, 400°C) 93 4.38 ± 0.23 63 5.30 ± 0.24 5.41 ± 0.25 

HCM12A 

Si-Mn-Ni-P 

nanoclusters 

Neutron (3 dpa, 500°C) 335 3.51 ± 0.08 228 4.00 ± 0.05 4.36 ± 0.06 

Proton (3 dpa, 500°C) 73 9.22 ± 0.42 66 10.28 ± 0.43 9.63 ± 0.40 

Fe2+(3 dpa, 500°C) 73 4.65 ± 0.15 75 5.41 ± 0.23 5.71 ± 0.25 

HCM12A 

Cu-rich 

nanoclusters 

Neutron (3 dpa, 500°C) 249 3.61 ± 0.06 213 4.02 ± 0.06 4.37 ± 0.07 

Proton (3 dpa, 500°C) 70 6.69 ± 0.29 66 7.26 ± 0.32 6.82 ± 0.30 

Fe2+(3 dpa, 500°C) 100 5.27 ± 0.14 87 5.91 ± 0.13 6.18 ± 0.14 

 

7.3.3 Archival Studies using APT 

Atom probe tomography (APT) is increasingly being used to complement 

transmission electron microscopy (TEM) to characterize microstructures, particularly for 

nanofeatured materials containing phases below TEM resolution limits 

[6,8,9,24,25,40,59,86]. Local electrode atom probe (LEAP) tomographic cluster analysis 

algorithms provide an objective means to identify and measure the size and number 

density of these nanoscale phases [167]. However, there is a lack of standardized 
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methodology for quantifying average cluster size, which presents ambiguities and 

challenges when attempting to compare nanocluster morphology between different 

specimens and the results from different studies in archival literature. 

In recent years, much effort has been placed on developing a standardized 

methodology for “best practices” of cluster analysis within the IVAS software, 

particularly by appropriate selection of analysis parameters dmax and Nmin [171–

173,175,200–203] (see Section 4.5.3). However, some aspects of the reconstruction 

process prior to the cluster analysis still lack standardization. In particular, there are 

currently no standardized guidelines for selecting the image compression factor (ICF) for 

each sample reconstruction, and no standard methods to quantify the average size of 

clusters when the available data sets vary in number and size. 

Several studies have been found in archival literature which are aimed at 

characterizing the morphology of clusters with the alloys and evaluating the evolution of 

such clusters upon irradiation. A summary of the known publications for such studies on 

alloys similar to those in this study are listed in Table 7.2. For each study, a survey is 

conducted to itemize the respective information provided regarding how the 

reconstruction and cluster analysis parameters were determined. In most cases limited 

information is available.  
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Table 7.2 Summary of the APT analysis studies in archival literature and the 

provided information in each respective publication.  

Material Ref. 
Number 

of Tips 

Analysis 

Volume 

Number 

of 

clusters 

ICF 

selection 

dmax 

selection 

Nmin 

selection 

Normal-

ization? 

MA957 [86] - - - -  - - 

9Cr ODS [6] - -  - * * - 

14YWT [5] -   -   - 

14YT [89] - - - - - - - 

14YWT [8] - - - - * * - 

9Cr ODS [9] - - - - * * - 

18Cr ODS [59] - - - -   - 

MA957 [102] - - - - * * - 

12YWT [105] - - - - * - - 

14LMT [107] - - - -   - 

Eurofer 97 

ODS 

[67,1

14] 
- - - - * * - 

Eurofer 97 

ODS 
[115] - - - - * * - 

Eurofer 97 

ODS 
[116] - - - - * * - 

13.5Cr 

ODS 
[116] - - - - * * - 

Eurofer 97 

ODS 
[122] - - - - - - - 

Fe-Cr 

alloys 
[31] - - - -    

T91, 

HCM12A, 

HT9 

[204] - -  - - - - 

HCM12A [24] - -  -   - 

*Used the same values for all data sets. 
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First, the majority of these studies do not provide any information about the 

quantity of samples analyzed, nor the total analysis volume considered. It has been shown 

how both factors will influence the relative confidence one may have in the results. For 

example, the ODS alloy is this study exhibits evidence of an inhomogeneous distribution 

of oxide nanoclusters (Section 5.2.1). As a result, multiple tips and a higher analysis 

volume is desirable to achieve more statistical confidence in the results. Similarly, only a 

handful of the publications in Table 7.2 identify the number of clusters measured in 

achieving the results. This is also an important consideration when establishing statistical 

confidence in such measurements. It is not the author's intent to suggest a lack of 

confidence in each of the studies in Table 7.2, but merely to point out the information is 

not available in the publication, so it is difficult to compare results of those studies to the 

results herein. 

Next, it is evident that none of these studies have published any description about 

how the ICF for each reconstruction was selected. It has been shown in Section 7.3.2 how 

this factor can influence the end result of the nanocluster size measurements, and how 

this factor should be selected independently for each data set. Since no information is 

provided for the studies in Table 7.2, it is possible many of these studies are simply using 

the default ICF value of 1.65 in IVAS. However, this is only speculation, as no additional 

information is available. Regardless, it is difficult to be certain of an "apples-to-apples" 

comparison between the results of this thesis to those from an archival study in which a 

different method of reconstruction was potentially used. 

Furthermore, each study in literature provides no information about any means for 

how the measured cluster sizes are compared between different sizes of data sets. It is 



256 

 

shown in Section 5.2.1 how the size of the data set may also influence the measured size 

of the clusters, making it potentially misleading to compare clusters measured from one 

small data set to those measured from a different larger data set. On a different note, one 

study by Bachav, et at. [31] does acknowledge the influence of the magnification effect in 

measuring Cr-rich α' clusters due to the varying evaporation fields of Cr and the Fe 

matrix atoms and takes mitigating steps to ensure cluster size comparisons are still more 

representative of reality. 

Finally, as previously discussed, more effort has recently been placed on the 

selection of dmax and Nmin for cluster analysis using the maximum separation method. As 

a result, most publications are providing some indication of how these values were 

determined and sometimes providing the exact values in the manuscripts. However, many 

of these studies also indicate the same values of dmax and Nmin have been used for all data 

sets and specimens studied (indicated by an asterisk in Table 7.2). However, it is shown 

in Section 4.5.3 how these values should be determined for each individual data set, and 

certainly for each specimen. The ramifications of this are most evident in the APT data 

for the Fe-9%Cr ODS alloy in this thesis. In comparing the results across Fe2+, proton, 

and neutron irradiation to a common dose of 3 dpa at 500°C, the APT results show 

notable differences in nanocluster enrichment and matrix chemistry between each 

condition studied (Table 5.5 and Table 5.4, respectively). The optimized selection of dmax 

for cluster analysis in the LEAP data sets (per the procedure in Section 4.5.3) for each 

condition also provides a cursory indication of the differences in the clustering of the 

oxide elements. In the as-received ODS data sets, the objective selections for dmax ranged 

from 0.7 to 0.9 nm. Meanwhile, dmax selections for Fe2+-, proton-, and neutron-irradiated 
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specimens were 0.75-0.9 nm, 0.70-0.85 nm, and 0.65-0.70 nm, respectively. A 

comparison of these figures with the relative average enrichment (fen
i ) and the matrix 

compositions for Y, Ti, and O in these specimens is illustrated in Figure 7.11. The most 

dramatic change in the optimized dmax parameters occurs for the neutron-irradiated 

specimens. Correspondingly, the most dramatic reduction of cluster enrichment and 

increase in matrix composition of Y, Ti, and O also occurs in the neutron-irradiated 

specimen. 

 
Figure 7.11 Comparison of optimized dmax values, solute enrichment of Y and Ti 

and clusters, and the matrix composition of Y and Ti in Fe-9%Cr ODS in the as-

received specimen and after each respective irradiation to 3 dpa at 500°C. 

The evolution of solutes migrating between the matrix and the nanoclusters within 

the matrix clearly has an influence on the resulting optimized dmax required for cluster 

analysis. This principle is further illustrated in Figure 7.12 showing two different plots 

generated by IVAS showing how the resulting cluster count depends on the selection of 

dmax. For specimens which have high solute enrichment in the clusters, there is a 

negligible second "hump" in the data plot (Figure 7.12a), indicating low solute content in 

the matrix is present. On the other hand, for specimens with higher matrix content, a 
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bimodal distribution is present (Figure 7.12b). In this latter case, the appropriate dmax is 

selected at the lowest point between these two peaks [175]. If the selected value for dmax 

is too large, additional clusters in the matrix will be spuriously identified, thus 

overinflating the number density of clusters and potentially influencing the measured 

average size. On this basis, it is further emphasized that optimization of dmax (and Nmin) is 

necessary for every sample and data set. It is not always appropriate to use the same dmax 

and Nmin across all conditions for experimental control, as this may counter-intuitively 

lead to spurious measurement or detection of clusters. 

 

 
Figure 7.12 Contrasting "Cluster Count Distribution Analysis" results with a) a 

single mode distribution, and b) a bimodal distribution. Appropriate selection for 

dmax is indicated. 
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7.3.4 Summary and Recommendations for APT Cluster Analysis 

In light of the limited information provided in each of the publications in Table 

7.2, one should use some discernment in analyzing each set of respective results and 

comparing them to the results of this thesis. 

To carry out credible APT reconstruction and cluster analysis, it is recommended 

to use the following methodology to analyze APT data and compare the average cluster 

size amongst multiple specimens: 

1) Collect LEAP data from as many sample tips as possible for each specimen 

(ideally > 3 samples) and include data from a variety of data set sizes. 

2) For the reconstruction of each data set in IVAS, establish the “effective” 

collection voltage, Veff, at or near the midpoint of the ion collection (similar to 

Figure 4.15). Use Veff to select the “effective” ICF, for reconstruction (Figure 

4.20 as a guideline). 

3) Reconstruct each sample in “Voltage” mode for data consisting of gradually 

evolving voltage history. Avoid sample regions where major fracture events have 

occurred as these events create localized distortion of the reconstruction data. 

Consider using “Shank” or “Tip profile” mode for larger samples to ensure the 

reconstruction most accurately matches the expected tip geometry. Regardless of 

method, use the “effective” ICF determined in step 2. 

4) Confirm the ranging of all peaks in each mass-to-charge ratio histogram are 

consistent across all data sets for comparison. 
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5) For an initial estimate of the number of clusters in each data set, construct 

isosurfaces using the clustering elements in question. Ensure these isosurfaces 

visually correspond to visible clusters in the reconstruction data. 

6) Use the cluster analysis module in IVAS to formally analyze the cluster 

morphology in the sample. For the selection of the analysis parameters, dmax and 

Nmin, follow the procedure prescribed by Williams, et al. [173], in which the 

selected dmax yields a minimum number of counted clusters by the analysis. For 

confidence, confirm the total number of clusters identified through this process is 

comparable to the total number identified via isosurfaces in step 5. 

7) Calculate the average cluster diameter from each data set using Eq. 4.10 and 4.11 

(Section 4.5.3) and plot the trend of cluster diameter relative to the number of 

ranged ions for each data set (similar to Figure 5.22). 

8) Normalize the average cluster diameter for each specimen by interpolating (or 

extrapolating) to a common data set size to create a more dependable comparison 

of average cluster diameter from one specimen to another. 

Furthermore, the following information is recommended for inclusion in future 

publications involving cluster analysis and diameter measurements, in order to facilitate 

relevant data comparison between studies by different researchers: 

 The method for selecting the ICF for each data set reconstruction. 

 The overall number of clusters measured for each specimen and the relative 

certainty of the mean value reported. 

 The method for normalizing data to ensure a robust comparison may be drawn, 

such as the procedure outlined in this study. 
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7.4 Nanocluster Evolution 

One of the objectives of this study is to evaluate the effects of dose rate and 

cascade morphology on nanocluster evolution in a model Fe-9%Cr ODS steel and the F-

M alloys HCM12A and HT9. Complimentary irradiation types using neutrons, protons, 

and Fe2+ self-ions enable a meaningful investigation. The following sections provide a 

qualitative description of the measured results for nanocluster evolution in Fe-9%Cr ODS 

and the commercial F-M alloys HCM12A and HT9, respectively. 

7.4.1 ODS Oxides 

After applying the procedures to normalize the nanocluster size measurements 

and accounting for the adjusted volume fraction and number density (Section 5.2.1), one 

important trend to recognize in the ODS alloy is the evolution of nanocluster size and 

number density over increasing dose for both Fe2+ and proton irradiation (Figure 5.25 and 

Table 5.5). In both cases, average nanocluster size decreases while number density 

increases with dose above 1 dpa. The inverse relationship between size and number 

density has been observed elsewhere in literature [72,84,88,101], and is akin to inverse 

Ostwald ripening, which has been previously described in the context of ion beam-

induced size refinement of embedded metallic nanoparticles [58,75,77,78,205], an 

emerging research area in nanoelectronics. Through inverse Ostwald ripening, smaller 

nanoclusters nucleate and grow at the expense of larger nanoclusters, due to the 

competing mechanisms of ballistic dissolution and diffusion-driven nanocluster growth, 

with the net result being a reduced average cluster size and increased number density. 

Finally, it is observed that upon both Fe2+ and proton irradiation, the average sizes of the 
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oxide nanoclusters appear to asymptotically approach steady-states at doses >3 dpa, 

consistent with previous modeling [57,74,79] and experimental [5,79,84,107,206] efforts. 

7.4.2 G-phase and Cu-rich clusters 

A common trait in the irradiated HCM12A specimens is the Si-Mn-Ni-rich 

clusters and Cu-rich clusters are located adjacent to one another. Jiao, et. al [24,25] and 

Wharry et. al [23] also observed similar behavior in HCM12A and T91, respectively, 

after irradiation with protons at 400°C and 500°C. However, it is interesting to note after 

only 1 dpa of proton-irradiation of HCM12A, only Cu-rich clusters are present. This 

result suggests that Cu-rich clusters first nucleate homogeneously, followed by 

heterogeneous nucleation of Si-Mn-Ni-P clusters at or near the interface of the Cu-rich 

clusters and the surrounding matrix. Anderoglu, et. al [20] and Sencer, et. al [18] have 

also observed evidence suggesting that Si-Mn-Ni clusters nucleate heterogeneously. 

Additionally, Allen, et. al [16] observed a similar result in HCM12A and estimated the 

incubation time for Si-Mn-Ni-rich clusters to be between ~1-3 dpa for proton irradiated 

specimens. 

Unlike HCM12A, the HT9 alloy has very low Cu content, and thus none of the 

irradiated specimens contain any Cu-rich clusters. Consequently, Si-Mn-Ni clusters will 

either heterogeneously nucleate on alternative interfaces (i.e. dislocations and grain 

boundaries) or they can nucleate homogeneously within the matrix, which is generally 

less favorable. However, upon Fe2+ irradiation, no clusters are observed after 3 dpa. This 

result may seem counterintuitive, but is likely related to the relative incubation period for 

nucleation of Si-Mn-Ni clusters for each irradiation. Contrary to proton-irradiation, the 

same Allen, et al. [16] study observed an incubation period for Si-Mn-Ni-rich clusters in 
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HCM12A under self-ion irradiation to be ~7 dpa. The contrast in incubation dose 

between proton and self-ion irradiations is consistent with the observed low dose Si-Mn-

Ni clustering in this study. This discrepancy in the incubation period between Fe2+ and 

proton irradiation is unclear. Nucleation and growth of Si-Mn-Ni clusters are limited by 

diffusion, so the incubation period is likely related to the relative duration of each of the 

irradiations. With Fe2+ irradiation to 3 dpa, the total irradiation time is only ~4 hours, but 

is extended to ~9 hours when irradiated to 7 dpa. This increase in duration at which the 

specimens are held at an elevated temperature enables more solutes to thermally diffuse 

towards nuclei. 

At a higher dose of 100 dpa with Fe2+ irradiation, there are no clusters present in 

either HCM12A or HT9. This result is somewhat inconsistent with the results of Jiao, et. 

al [25], in which Fe2+ irradiation of HCM12A to 100 dpa at 500°C induced clusters with 

an average radius of 3.9 ± 0.1. However, in the Jiao study, only 2 Si-Mn-Ni clusters and 

only 19 Cu-rich clusters are identified, with evidence that these clusters formed on grain 

boundaries, potentially influenced by radiation induced segregation [25]. Although no 

matrix clusters were found in our study, similar grain boundary segregation was observed 

in both HCM12A and HT9 after 100 dpa (Figure 5.27 and Figure 5.29). The explanation 

for clustering in HCM12A following self-ion irradiation to 3 dpa, but not at 100 dpa is 

not clear. One possible explanation may involve the balance of clustering and radiation-

induced segregation to sinks such as grain boundaries, dislocations, or irradiation-induced 

dislocation loops. At low dose, matrix solutes are readily available to cluster, and likely 

also begin to segregate towards other sinks. Over longer-term irradiation, it is possible 

that segregation to other sinks is more favorable due to the higher dose rate of self-ion 
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irradiation. As more solutes segregate towards other sinks, the matrix is depleted of 

solute, thus swinging the balance away from favoring clustering, leading to dissolution of 

the clusters. 

7.4.3 α' precipitates 

Neutrons are the only irradiating particles that have produced any Cr-rich clusters 

in both HCM12A and HT9. These alloys contain 10.5 and 12.1 wt% Cr, respectively, 

which is above the ~9% solubility limit of Cr in α-Fe. In these materials, then, if given 

enough energy and time, Cr will partially precipitate out of solution. For each of the 

irradiations conducted in this study, the temperature was kept consistent at 500°C. 

Therefore, the thermal diffusion rates of Cr would have been consistent across all 

experiments. Approximate irradiation times were 4 hours, 3.5 days and ~1 year for the 

self-ion, proton, and neutron irradiations, respectively. Thus, Cr clustering only in the 

neutron-irradiated specimens may be largely influenced by thermal aging at 500°C over 

~1 year. 

According to various models summarized in  [20], the prediction of α-α' 

separation is typically around 450-475°C. To the author's best knowledge, irradiation-

induced α' separation has only previously been observed in HT9 up to temperatures of 

466°C [20]. However, Mathon et al. [165] have also found the kinetics of precipitation 

are further increased by irradiation over the kinetics of purely thermal aging, supporting 

the possibility of irradiation-induced precipitation at 500°C. In addition, Mathon et al. 

also highlights the how increased solute content (such as Mo and Ni) may also influence 

α-α’ phase separation. The temperature dilation theory of Martin [60] also provides an 

explanation for why α' precipitation is not observed upon Fe2+ or proton irradiation. The 
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higher dose rate of the charged particle irradiations results in a higher configurational 

entropy of the system, increasing the solubility limit of Cr in the surrounding Fe matrix. 

7.5 Sensitivity of the Advanced NHM Model 

The advanced NHM model introduced in this thesis involves a number of 

parameters which are entered as inputs by the analyst. Each of these parameters require 

some prior knowledge about the target alloy or the specific irradiation conditions present. 

Using these parameters, the model conducts a stepwise calculation over finite increments 

of time, simulating accumulating dose. It has been repeatedly shown in Chapter 6 how 

the model predicts the evolution of the average size of the nanoclusters asymptotically 

toward a stable cluster size. Since the desired outcome in developing NFAs such ODS 

alloys is long-term nanocluster stability, the model calculation stable cluster size, dss, is 

one of the key outputs of the routine. Since several input parameters are used to generate 

this output (Table 7.3), it follows if any one of these parameters are altered, the output is 

likely to be affected as well. 
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Table 7.3 Summary of input parameters for the advanced NHM model.  

Parameter, P Definition Units 

K Dose rate dpa/s 

a Lattice parameter nm 

�̅� Transferred energy to primary knock-on atom eV 

f Disordering efficiency - 

r Initial average cluster radius (at 0 dpa) nm 

k2 Alloy sink strength cm-2 

𝐸𝑣
𝑓
 Vacancy formation energy eV 

𝐸𝑣
𝑚 Vacancy migration energy eV 

𝐷𝑖
𝑡ℎ Solute thermal diffusion rate cm2/s 

nnc Nanocluster number density m-3 

pi  - 

Ci Solute concentration in target alloy (non-carbide) - 

T Irradiation temperature K 

 

To gain a better understanding of how each of these parameters influence the 

NHM model calculation, a sensitivity analysis is conducted to identify the relative 

influence of each input parameter, P, and identify those parameters with the greatest 

sensitivity. The sensitivity of the model is specified as the derivative of the output cluster 

stable size as a function of the input parameter (𝛿𝑑𝑠𝑠/𝑑𝑃). To simplify the calculation for 

sensitivity, the approach taken is to vary the input parameter about its reference value and 

solve for the sensitivity using: 

𝛿𝑑

𝛿𝑃
=

𝑑𝑠𝑠
′ −𝑑𝑠𝑠

𝑟𝑒𝑓

𝑃′−𝑃𝑟𝑒𝑓
     (7.1)  

where 𝑑𝑠𝑠
𝑟𝑒𝑓

is the calculated steady-state cluster diameter when the reference input 

parameter, Pref, is used. Similarly, with P' as the varied parameter, 𝑑𝑠𝑠
′  is the new steady-

state cluster diameter when P' is used in the calculation. It is possible to express the 
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sensitivity as a significance, which gives a more straightforward comparison of the 

relative influence of each input variable. The significance, 𝑆𝑃
𝑑, is determined by: 

𝑆𝑃
𝑑 =

𝑑𝑠𝑠
′ −𝑑𝑠𝑠

𝑟𝑒𝑓

𝑃′−𝑃𝑟𝑒𝑓 ∙
𝑃𝑟𝑒𝑓

𝑑𝑠𝑠
𝑟𝑒𝑓     (7.2)  

Using this calculation, the variables which exhibit the highest significance are those to 

which the advanced NHM model is most sensitive. 

The significance is calculated for each input variable using the NHM model for 

proton-irradiation on the Fe-9%Cr ODS alloy at 500°C. The predicted steady-state cluster 

diameter for this set of conditions is 𝑑𝑠𝑠
𝑟𝑒𝑓

= 5.33 𝑛𝑚. The input for each variable was 

altered individually by entering values higher than the reference value for the parameter. 

With this P' input, the revised steady-state cluster diameter is recorded and the 

significance of the varied input is calculated. The significance results for each parameter 

are provided in Table 7.4 and illustrated in Figure 7.13. The direction of the significance 

represents the directional influence on the steady-state cluster size. Variables with a 

negative significance value indicates an increase in the variable value will result in a 

decrease in the predicted steady-state cluster size. 
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Table 7.4 Significance of varied input parameters for the NHM model.  

Parameter, P Units Pref P' 𝒅𝒔𝒔
′  (nm) Significance 

K dpa/s 1.2 x 10-5 5 x 10-5 5.33 0 

a nm 0.286 0.35 5.30 -0.025 

�̅� eV 200 500 5.01 -0.040 

f - 0.15 0.25 4.74 -0.166 

r nm 2.86 3.50 5.33 0 

k2 cm-2 2.7 x 10-12 5.12 x 10-12 4.34 -0.208 

𝐸𝑣
𝑓
 eV 2.2 2.3 6.34 4.169 

𝐸𝑣
𝑚 eV 0.68 0.9 6.66 0.771 

𝐷𝑖
𝑡ℎ cm2/s 3.88 x 10-21 3.88 x 10-20 6.55 0.025 

nnc m-3 443 x 1021 600 x 1021 4.76 -0.302 

pi - 0.0873 0.1 5.05 -0.361 

Ci - 0.0062 0.01 6.43 0.332 

T K 773 873 5.63 0.435 

 

 
Figure 7.13 Significance of input parameter in the advanced NHM on the outcome 

of the predicted stable size of nanoclusters. 



269 

 

Some interesting observations are made from this simple exercise. First, the initial 

cluster size does not have any influence on the irradiation-induced predicted stable cluster 

size. The model predicts a stable size based on the balance of the other input parameters 

and will predict evolution toward this stable size, regardless of the initial starting point. 

This finding is notable because it suggests that in ODS alloy design and development, 

beginning with an ultrafine oxide nanoparticle distribution may not be necessary if other 

alloy and irradiation parameters are chosen so as to lead to the desired steady-state 

particle size. 

Similarly, the steady-state particle size is also independent of the irradiation dose 

rate, although it is dependent on other aspects of the irradiation conditions. This 

significance seems counterintuitive, and is different than the Martin model (Eq. 6.27). In 

the NHM model, the dose rate (K) appears in the numerator of each term on the right 

hand side of Eq. 6.1. In the first term, the flux (ϕ) is directly proportional to K (Section 

2.4.6). In the third and fourth terms of Eq. 6.1, the dose rate is proportional to the 

radiation-enhanced diffusion rate (Eq. 6.4 and 6.7). For the steady-state condition, the 

influence of these terms are directly offsetting and the dose rate does not directly 

influence the steady-state cluster size. Therefore, the differences in steady-state cluster 

size due to different irradiating particle is determined only by its corresponding cascade 

morphology and efficiency in the NHM model (ψ in Eq. 6.1). The Martin theory takes a 

different approach in its treatment of the flux (Eq. 6.27). Its impact will be further 

discussed in Section 7.6.2. 

Furthermore, the model is only minutely sensitive to �̅�, the transferred energy to 

the primary knock-on atom. The value for this parameter is based on literature estimates 
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for all three irradiating particle in consideration. In the case of neutron irradiation, a 

single value for �̅� is used for all NHM model calculations, reflecting an assumption of a 

mono-energetic spectrum of neutron irradiation. The author recognizes the neutron 

spectrum is likely to not be mono-energetic in a nuclear reactor environment. Therefore, 

the value for �̅� (Table 2.1) used for the neutron irradiation NHM calculations is taken as 

an estimated average. 

The two parameters with the most significance in the NHM model (Figure 7.12) 

are the energies for vacancy formation (𝐸𝑣
𝑓
) and vacancy migration (𝐸𝑣

𝑚), respectively. 

Both terms directly influence the calculation for the radiation-enhanced diffusion of the 

respective solutes of interest (Eq. 6.5 and Eq. 6.18). Since these values are retrieved from 

literature, it is important to have reasonable confidence in these numbers, particularly 

since just a small increase in the formation energy (from 2.2 eV to 2.3 eV) results in a 

relative large increase in steady-state diameter (from 5.33 nm to 6.34 nm). However, in 

the context of this study, if an alternate vacancy formation energy is used in the NHM 

model, different fitted values for fi and 𝐷𝑖
𝑡ℎ would result, which would be carried over to 

the HCM12A fitting procedure, and so on. The model doesn't become invalid, but the 

resulting fitted values would be different. This fact emphasizes the need for clear 

communication of the values used for each parameter, as well as underscores the 

importance of benchmarking the fitting parameters against a robust experimental data set 

such as that presented herein. Subsequently, consistent input and fitting parameter values 

may be used for studies of similar alloys systems (i.e. b.c.c. Fe) to enable a direct 

comparison between the results. 
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7.6 Advanced NHM Model - Potential as a Predictive Tool 

One of the objectives of the modeling effort in this thesis is to provide the 

framework for developing an adaptive model applicable to any b.c.c. Fe-based alloy (and 

other systems) for predicting radiation-induced nanocluster evolution. Ideally, the model 

may be used in the future as a development tool for the morphology or elemental 

tailoring of alloys to maximize radiation resistance. It is believed the model (in its current 

state) has the opportunity to serve this objective in the following capacities: 1) as a means 

to estimate the temperature shift required when conducting high dose irradiations (i.e. 

charged particles) to emulate the irradiation-induced nanocluster evolution with low dose 

irradiations (i.e. neutron irradiation), 2) as a means to estimate optimum as-manufactured 

cluster morphology to maximize long-term irradiation resistance, 3) as a means to 

estimate the individual clustering behavior of specific solutes in an alloy, and 4) a means 

to conduct similar cluster evolution analysis on other systems based on elements other 

than Fe. The following sections will review how the current model emulates cluster 

evolution found in archival literature, then outline the potential application of the 

advanced NHM model developed in the context of each of these goals. 

7.6.1 Comparison of Model with Literature Results 

As discussed in Section 7.5.2, most studies in archival literature provide basic 

information regarding the results of their respective APT analyses, which is certainly 

valid and useful to the greater research community. However, most of these studies did 

not publish all the information necessary to use the advanced NHM model introduced in 

this thesis. In most cases, the following information is generally not available: a) specific 

information about the sink strength of the material, b) the fraction of the clusters which 
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are solute items (variable p in Eq. 6.1), and c) the total composition of solutes not 

included in any other secondary phases such as carbide precipitates (variable C in Eq. 

6.1). On some occasions, the respective compositions of the clusters and the matrix are 

provided for conditions before and after irradiation. In such cases, the values of p and C 

may be estimated, where p is approximated as the composition of the solutes in the 

clusters, and C is calculated using [57]: 

𝐶 =
4

3
𝜋𝑟3𝑛𝑝 + 𝑐     (7.1)  

in which r is the average cluster radius, n is the number density of clusters, and c is the 

matrix composition of the solutes. 

One such study in which all of the above information is available was published 

by Lescoat, et al. [59], evaluating the stability of oxide nanoclusters upon Fe+ ion 

irradiation up to 150 dpa at 500°C in an Fe-18%Cr ODS alloy. In this study, the oxides 

were observed to coarsen as a result of the irradiation, and this effect is attributed to 

radiation-induced Ostwald ripening, considering the influence of both the ballistic effects 

of the irradiation and the growth kinetics due to radiation-enhanced diffusion. The 

parameters provided from this study are used as inputs in the advanced NHM model 

developed for this thesis (Table 7.5) to confirm if the model predicts a similar result to 

that measured. 
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Table 7.5 Initial parameters in the NHM model setup for Fe-18%Cr ODS 

irradiated in Ref. [59]. 

Parameter Fe2+ irradiation Source 

𝜙 = 𝐾 ∙ 1014 6.4 x 1011 K = 6.4 x 10-3 dpa/s [59] 

N (atoms/nm3) 85.2 b.c.c. Fe 

l (nm) 6.8 Table 2.1 

f 0.039 Table 6.13 

k2 (cm-2) 4.3 x 1011 [59] and Eq. 6.7 

T (K) 773 K (500°C) [59] 

𝐷𝑠𝑜𝑙
𝑡ℎ (cm2/s)* 3.88 x 10-21 fitted 

𝐸𝑣
𝑓
 (eV) 2.2 [59] 

𝐸𝑣
𝑚 (eV) 0.68 [183] 

Calculated 

Dirr(cm2/s) 
1.75 x 10-14 Eq. 6.2 

r (nm) 1.50 [59] 

n (m-3) 2.3 x 1023 [59] 

pY,Ti 0.079 [59] 

CY,Ti 0.0040 [59] 

Δt (s) 90 - 

* Used as a fitting parameter 

Since the relevant solutes in this alloy (Y and Ti) are the same as those in the Fe-

9%Cr ODS alloy of this thesis, the values for the disordering efficiency, f, and the 

thermal diffusion, 𝐷𝑠𝑜𝑙
𝑡ℎ , are initially kept consistent (Table 7.5). A plot of this initial 

NHM prediction of the cluster evolution compared to the published oxide measurements 

in [59] is provided in Figure 7.14 (solid line). As with all the calculations in Chapter 6, 

the predicted average cluster size quickly approaches a steady state value at low dose. 

The model successfully predicts the direction of the cluster evolution, resulting in an 

increase in the average size of the clusters. However, the model overestimates the size of 
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the measured nanoclusters after both 75 and 150 dpa. As a second iteration, the value of 

the thermal diffusion, 𝐷𝑠𝑜𝑙
𝑡ℎ , is reduced by a factor of 4 to a value of 9.71 x 10-22 cm2/s and 

is plotted in Figure 7.14 (dashed line). This prediction is a much closer match to the 

cluster size measurements at 150 dpa.  

 
Figure 7.14 Calculations using the NHM model for Fe-18%Cr compared to 

measured cluster size data in Ref. [59]. 

The reason for a reduced 𝐷𝑠𝑜𝑙
𝑡ℎ  value providing a better fit may lie in the nature of 

the existing oxide nanoclusters of Lescoat’s alloy. In Section 6.5.3, the values for each 

fitted 𝐷𝑠𝑜𝑙
𝑡ℎ  are hypothesized as a means to characterize the relative affinity for the solutes 

to diffuse towards the clusters. Since the average initial cluster size in the Fe-18%Cr 

ODS alloy in the Lescoat, et al. study (3.0 nm) are smaller than those in the Fe-9%Cr 

ODS alloy of this thesis (5.71 nm), it is plausible that solutes Y and Ti have a slightly 

weaker affinity for diffusion towards smaller ODS clusters. Larger clusters are also likely 

to be have higher affinity for solutes due to their reduced surface energy, which results 

from their larger radius, reducing their respective wetting angle. Observations in the 
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archival literature also suggest that smaller oxides tend to be more coherent than larger 

oxides; smaller oxides tend to have non-stoichiometric chemistry with Y:Ti ratio ≈ 0.5 

[9,13], while larger oxides trend toward a Y:Ti ≈ 1.3 [9,13] with a pyrochlore Y2Ti2O7 or 

orthorhombic Y2TiO5 structure [124,130–134]. As a result, larger clusters with a more 

incoherent structure may provide slightly more impetus for the Y and Ti solutes to 

migrate towards the clusters. 

Regardless, based on the exercise using the data from the Lescoat, et al. 

experiment [59], it may be concluded that the advanced NHM model is capable of 

predicting either oxide dissolution or growth, depending on the target alloy and the 

irradiation conditions. However, it appears the parameters f and 𝐷𝑠𝑜𝑙
𝑡ℎ  fitted from one alloy 

(i.e. Fe-9%Cr ODS) may not necessarily be directly transferred to another alloy. Instead, 

the advanced NHM alloy likely requires a baseline set of experimental data to calibrate 

the fitted values for 𝐷𝑠𝑜𝑙
𝑡ℎ , and possibly for f as well. Even with this limitation, it is 

believed the advanced NHM model still offers some predictive capability, which will be 

outlined in the next sections. 

7.6.2 Temperature Shift 

Mansur [187,188] theorized a temperature shift is necessary in order to produce 

consistent defect cluster microstructures when the irradiation dose rate increases. The 

desired microstructures are bound by two mechanisms of point defect loss: 1) mutual 

recombination in the matrix, and 2) diffusion to sinks. The temperature shift for 

recombination-dominant and diffusion-dominant regimes is calculated for a reference 

condition of 500°C at 10-7 dpa/sec (Figure 7.15), conditions comparable to the neutron 

irradiation experiment in the present study. The vacancy migration and formation 
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energies are taken to be 0.68 eV [183] and 2.20 eV [59] , respectively, for a b.c.c. Fe-

9%Cr steel. But since the temperature is fixed at both dose rates in the present irradiation 

experiments, the temperature shift curve must have a slope ~0 in order for the proton- and 

neutron-irradiated void and dislocation loop microstructures to be consistent with one 

another, as observed in this work. It thus follows that void and loop nucleation and 

growth are recombination-driven processes (solid purple line, Figure 7.15), so their 

evolution will be relatively independent of dose rate at a fixed temperature. 

Conversely, the evolution of oxide, Si-Ni-Mn-rich, and Cu-rich nanoclusters are 

all inconsistent between neutron and the charged particle irradiations conducted for this 

thesis, suggesting that cluster formation and dissolution may not simply be 

recombination-driven processes. Multiple authors [57,60,74] have hypothesized that 

oxide nanocluster stability is governed by a balance between two competing effects:  1) 

ballistic dissolution due to irradiation damage cascades, and 2) thermal diffusion driving 

solute atoms to re-form into clusters (i.e. Ostwald ripening). The combination of these 

effects is manifested in the rate of radiation-enhanced diffusion (RED) of solutes. Since 

the increased solute mobility due to the irradiation-induced vacancy supersaturation is a 

primary mechanism of solute diffusion in the matrix [42,60], it follows that the highest 

dose rate will induce the highest rate of RED for vacancy diffusing solutes (per Eq. 6.5 

and Eq. 6.2). From this, Martin [60] developed a model to describe nanocluster evolution 

in the presence of irradiation with differing flux and dose rates. One of the key 

conclusions from Martin’s model is the damage effects resulting from increased 

irradiation flux lead to an increase in the configurational entropy of the system, which 

can be equated to a rise in temperature of the system. Consequentially, this theory 
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suggests that higher dose rate irradiations would need to be conducted at lower 

temperatures than lower dose rate irradiations in order to attain consistent nanocluster 

morphologies. 

Using Martin's theory, comparable temperature shift estimates are calculated 

using the same approach as in Section 6.5.1.1 for each type of irradiating particles 

(neutrons, protons, Fe2+ ions) at a range of dose rates. Each irradiating particle follows a 

slightly different path due to the relative disordering efficiencies for each type of 

irradiation. The model suggests an increase in downward temperature shift is required as 

the dose rate increases for all three irradiating particles. 

 
Figure 7.15 Comparison of calculated temperature shifts required for defect 

clusters with diffusion-driven (dashed orange line) and recombination-driven (solid 
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purple line) mechanisms [187,188] and for solute clusters depending on the respective 

irradiating particles [60] in Fe-9%Cr ODS. 

The ramifications of these separate temperature shifts for defect clusters and 

solute clusters are significant in the context of using charged particle irradiations (at 

higher dose rates) to emulate the irradiation effects of neutron irradiation on the 

microstructure. It suggests multiple charged particle irradiation experiments at varying 

temperatures are required to fully emulate and verify the microstructural evolution of a 

nanofeatured alloy containing solute nanoclusters. For example, a high dose rate 

irradiation is required at a higher temperature to isolate and emulate defect cluster (loops 

and voids) evolution by controlling the concentration of vacancies as defined by the 

Mansur theory. Another high dose rate irradiation is required at a lower temperature to 

isolate and emulate solute cluster evolution by controlling the RED of solutes as defined 

by the Martin theory. 

At first glance, these opposing temperature shifts seem counterintuitive, as the 

common practice for higher dose rate irradiation experiments currently follow the 

Mansur theology. However, it is important to recognize the Mansur theory is developed 

in the context of defect clusters (i.e. voids) only. The basis of Mansur's theory is to equate 

the concentration of vacancies within the microstructure so that formation of defect (i.e. 

vacancy) clusters will be comparable, despite differences in irradiation dose rate. As a 

result, since higher dose rate irradiations will result in a denser concentration of defects 

(with respect to time), this effect must be offset by increasing the temperature. The 

temperature increase enables the defects to diffuse more rapidly, resulting in more 

trapping and annihilation at sinks in the microstructure, offsetting the increase in defect 

production rate. 
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In Section 6.1.1.2, it was discussed how the majority of solute atoms will migrate 

by the vacancy diffusion mechanism. This mechanism is thus limited by the 

concentration of vacancies within the lattice by limiting the amount of opportunities each 

atom has to make a "jump" from site to site. When irradiating at a higher dose rate and 

increasing the concentration of vacancies, solutes will have more opportunity to migrate 

via these vacancies (i.e. radiation-enhanced diffusion). Furthermore, since the solutes 

migrate via vacancies, their diffusion direction is directly opposite that of the vacancies. 

Therefore, while vacancies are migrating more quickly toward sinks, the solutes are also 

migrating more quickly, including toward existing nanoclusters. It follows that, in order 

to offset the radiation-enhanced diffusion of solutes (and vacancies), higher dose rate 

irradiations must be conducted at a lower temperature to reduce the mobility of both the 

defects and solutes, enabling a more comparable influence on the irradiation-induced 

evolution of the nanoclusters. 

7.6.3 Cluster Morphology Tailoring 

The extreme performance of ODS steels is attributed to their high density of Ti-

Y-O-rich nanoparticles, which: 1) act as localized sinks for point defects, providing 

resistance to irradiation swelling [4–6,8–10,12], and 2) strengthen the material without 

significantly compromising ductility. Since the properties and performance of 

nanofeatured ferritic alloys (NFAs) such as ODS steels are highly dependent upon their 

nanoparticles, it is desirable for the nanoparticles to remain stable under high temperature 

irradiation in a nuclear reactor environment. The advanced NHM model introduced in 

this thesis has the potential to be used as a predictive to aid in the design and optimization 

of the oxide nanocluster morphology to improve or maximize oxide stability. A flowchart 
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illustrating an iterative methodology is shown in Figure 7.16, incorporating use of the 

NHM model to: 1) predict a stable cluster morphology, 2) estimate the temperature shift 

required for verification using charged particle irradiation(s), and 3) comparing measured 

results to model predictions to inform future experiments. In this proposed process, 

theoretical development of an optimized microstructure is coupled with process 

development for consistently manufacturing an alloy with the target microstructure. 
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Figure 7.16 Flowchart of process to optimize cluster morphology to maximize 

cluster size stability upon neutron irradiation. 

The application of this process may be illustrated using a hypothetical scenario 

with the Fe-9%Cr ODS alloy studied in this thesis as a starting point with the following 

approach: a) use the same solute composition as the Fe-9%Cr ODS in this thesis, b) a 

target stable nanocluster diameter of 6 nm, c) a target irradiation reactor environment of 
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500°C, and d) using Fe2+ irradiation to conduct initial verification of irradiation-stability 

of the nanoclusters. Based on the modeling effort in this thesis, the values for fn, and fFe 

are tabulated in Table 6.15 and are 0.046, and 0.039, respectively, and 𝐷𝑠𝑜𝑙
𝑡ℎ  is determined 

to be 3.88 x 10-21 cm2/s. Therefore, it is reasonable to start with these inputs into the 

NHM model. 

Using the NHM model results illustrated in the Figure 6.2 for neutron irradiation, 

the average cluster size is predicted to evolve from the as-received average size of 5.71 

nm to an irradiation-induced stable size of 4.97 nm (rst = 2.485 nm). This calculation was 

conducted using the as-received cluster number density of n = 4.43 x 1023 m-3. Based on 

this, a stable volume fraction (𝑓𝑣
𝑠𝑡) of nanoclusters in this alloy is estimated to be: 

𝑓𝑣
𝑠𝑡 =

4

3
𝜋𝑟𝑠𝑡

3 𝑛     (7.2)  

Once this stable volume fraction is established, the NHM model predicts the nanoclusters 

will remain stable, with very little sensitivity to the initial size of the nanocluster in the 

as-received alloy (Figure 7.17). 
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Figure 7.17 NHM model calculations of cluster evolution upon neutron irradiation 

at various starting cluster size using the stable volume calculated in Eq. 7.2. 

Establishing the target diameter of the nanoclusters is also a non-trivial matter. 

This requires some knowledge of the strengthening mechanisms of the alloy under 

development and an optimization of the mechanical and other properties, which is 

beyond the scope of this thesis. Therefore, for the sake of this hypothetical illustration, it 

is arbitrarily assumed the target oxide diameter, dt, is 6 nm (rt = 3 nm). With the stable 

volume fraction calculated in Eq. 7.2 and the target diameter, one may calculate a target 

number density (nst) as: 

𝑛𝑠𝑡 =
3𝑓𝑣

𝑠𝑡

4𝜋𝑟𝑡
3     (7.3)  

In this scenario with dt = 6 nm, nst is calculated to be ~2.52 x 1021 m-3. Of course, 

developing the process to manufacturing an alloy with this target morphology is not a 

trivial matter. The intent here is that the NHM model predictions are coupled with efforts 
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to develop such manufacturing processes. As a result, the calculations and processing 

steps may need to be iterative to verify an alloy design. 

Now, given the target cluster morphology, it is possible to conduct an NHM 

model calculation to predict the cluster evolution response to a higher dose irradiation 

such as Fe2+ ions. An NHM model prediction of these irradiation conditions on the target 

alloy are illustrated in Figure 7.18, along with the respective temperature shift required 

for the Fe2+ irradiation to yield stable nanocluster size similar to neutron irradiation. In 

this case, the calculated temperature shift is -120°C. 

 
Figure 7.18 NHM model calculations of cluster evolution upon Fe2+ irradiation 

and the respective temperature shift to emulate neutron irradiation evolution. 

Using this information, an Fe2+ irradiation experiment may be designed to be 

conducted at an irradiation temperature 380°C to a single high dose or to a range of 

doses. Once these irradiations are completed, the analyst would characterize the 

microstructure following each irradiation to confirm if the nanoclusters are successfully 
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stable as predicted. If the clusters exhibit stability over a range of doses, the model has 

been successful. If the clusters do not exhibit stability, the NHM model may be refined 

using the newly available experimental data and another iteration of development may 

begin. In the end, the expectation is that eventually the NHM model predictions, the alloy 

manufacturing process, and the physical irradiation results will converge onto a cluster 

morphology which exhibits stability and meets all other requirements and mechanical 

properties for the alloy. Once this is the case, the alloy and the respective stability of the 

nanoclusters may be tested in a test nuclear reactor environment for validation of its 

performance. 

7.6.4 Elemental Tailoring 

Within the background review for this thesis (Chapter 2), the role of different 

solutes on the processing and mechanical properties of F-M and ODS alloys was 

discussed. In Section 2.2.2, it was outlined how the alloying solutes influence such 

important factors as the:  a) austenite solubility limit of Cr, b) the transformation 

temperatures of different phases, c) resulting phases and relative amounts of each phase 

formed during tempering, d) solid solution strengthening, e) dispersed precipitate 

strengthening, and f) activation in an irradiation environment. As a result, much effort is 

underway to tailor the alloying elements of F-M and ODS alloys for an optimized balance 

of performance and properties. As with any design, this process involves a system of 

trade-offs as various properties are influenced (either favorably or adversely) by any 

alloying elements which are added or removed. 

The advanced NHM model introduced in this thesis is intended to serve as 

another informative tool for the elemental tailoring process of F-M and ODS alloys. 
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However, it is important to recognize some key limitations when attempting to use the 

NHM model to isolate individual solute species. Most notably, it is required for the 

analyst to have some prior knowledge of the "clusterability" of different species in the 

alloy system being modeled. For instance, in the case of analyzing HT9 in this study, the 

analyst already has prior knowledge of the alloying elements Si, Mn, Ni, and Cr, which 

have all demonstrated clustering behavior in the Fe-9%Cr ODS and HCM12A, so they 

may infer these same solutes will also cluster in HT9. In which case, the analyst may use 

the fitted values for fi and 𝐷𝑠𝑜𝑙
𝑡ℎ  of each respective solute (from ODS and HCM12A), 

along with an estimated value for p (from HCM12A), and make a "semi-prediction" of 

the projected size evolution of the resulting clusters after each irradiation. It is only when 

experimental results are available following irradiation that the analyst may confirm such 

assumptions. 

Another limitation of the NHM model is that it provides no information or 

indication for when the nucleation point for irradiation-induced solute clusters will occur. 

This is also evident in the analysis of HT9, in which no solute clusters were observed in 

the specimen irradiated with Fe2+ ions to 3 dpa at 500°C, despite the NHM model 

"prediction" that clustering of Si, Mn, Ni, and P will occur, just as in the proton- and 

neutron-irradiated specimens experiencing the same dose of 3 dpa at 500°C. This 

inconsistent result is therefore hypothesized to be due to the relative incubation period of 

solute clusters in HT9, which has also been observed in literature [16] (Section 7.4.2.1). 

However, at this time, there is no experimental evidence to yet confirm this hypothesis. 

Regardless, the NHM model is not capable of predicting when nucleation is likely to 
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occur. In all cases for HCM12A and HT9, the nucleation of clusters was manually 

introduced in to the model. 

Despite these limitations, the model has shown some remarkable consistency with 

the results for individual solutes across the alloys evaluated in this study. For all three 

alloys, the observed clustering of each solute element is able to be replicated by the 

model, and in each case, realistic values for fi are fitted. Most notably, these efficiency 

values all follow a consistent trend, in which fi
Fe is the lowest values, while fi

n is the 

highest efficiency (Table 6.14). Furthermore, the fitted disordering efficiency values are 

shown to follow a generally pattern in Figure 6.19, in which solutes with higher 

displacement energy, Ed, also tend to have lower disordering efficiencies. These trends 

may be informative in tailoring alloying solutes and may also explain why heavier solute 

elements such as W and Mo are not observed to cluster in any of the alloys in this thesis. 

These solutes are heavier and are estimated to have higher displacement energies of ~90 

eV and 60 eV for W and Mo, respectively [191]. As a result, it is expected that the 

disordering efficiencies for these solutes would be low, while the relative mobility of 

these solutes would also be low, due to their relative size compared to the surrounding 

matrix Fe atoms. 

Possibly the most valuable insight the advanced NHM model is able to provide is 

the relative sensitivity of clustering behavior to the composition of each solute species. 

For each species which favors irradiation-induced clustering, it would be natural to 

hypothesize how a higher concentration of the solute would result in either larger clusters 

and/or higher volume fraction. Using the NHM model, a sensitivity study on the 

clustering evolution prediction of solutes in Fe-9%Cr ODS and HCM12A upon neutron 
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irradiation at 500°C is illustrated in Figure 7.19 and Figure 7.20, respectively. As 

expected, the model predicts higher solute content will favor larger clusters to result upon 

irradiation. It would be further informative to collect experimental data to confirm this 

trend with solute concentration, as it would be informative to an alloy designer who is 

considering the trade-offs of adding and removing different solute concentrations to 

engineer the desired properties of the alloy.  

 
Figure 7.19 NHM model calculations of species specific cluster evolution upon 

neutron irradiation at 500°C for solutes in Fe-9%Cr ODS:  a) Y, and b) Ti. 
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Figure 7.20 NHM model calculations of species specific cluster evolution upon 

neutron irradiation at 500°C for solutes in HCM12A:  a) Si, b) Mn, c) Ni, and d) Cu. 

7.6.5 Different Systems 

Up to this point, the context of this thesis has been confined to the b.c.c. Fe-based 

alloy system for F-M and ferritic ODS alloys. Moving forward it is believed the advanced 

NHM model may be adapted for other b.c.c. Fe-based alloys containing different solute 

elements. Some logical choices would be to evaluate the clustering behavior of solutes of 
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Zr and Al in such systems. In ref. [191], the estimated displacement energies for Zr and 

Al are 40 eV and 25 eV, respectively. This information gives some inclination about their 

relative disordering efficiencies (i.e. Al should have a higher disordering efficiency based 

on the relationship illustrated in Figure 6.19), but there is insufficient information to 

establish a credible estimate for both the disordering efficiencies, fi, or the relative 

thermal diffusion rates these solutes would have towards the clusters, 𝐷𝑠𝑜𝑙
𝑡ℎ . As a result, 

some prior knowledge about the clustering behavior of these solutes, in the form of 

experimental data, is required to model these systems. When experimental data 

measuring cluster evolution of such solutes upon irradiation is available, it is then 

possible to use the advanced NHM model to fit values for fi and 𝐷𝑠𝑜𝑙
𝑡ℎ  for each solute 

element. Once this is accomplished, the calculation may be calibrated and capable of 

providing some informative insight (as discussed in the prior sections). 

Inherently, the advanced NHM model could also be adapted to other systems 

besides b.c.c. Fe-based alloys. In doing so, a whole new set of basic input parameters 

would need to be calculated. For illustration purposed, an f.c.c. Cu-based alloy system 

will be considered. As with the Fe-based system, each of the parameters in Eq. 6.1 are to 

be calculated or estimated. One could use SRIM to estimate the relative damage rate (ϕ) 

and target analysis region for each respective charged particle irradiation. The atomic 

density for h.c.p. Zr is estimated as NZr = 44.0 atoms/nm3 (assuming an atomic radius of 

0.159 nm [73]). Next, following the same approach as outlined in Section 2.1.2, the 

values for each respective variable and a total estimated effective damage cascade 

diameter, l, may be calculated for each type of irradiating of interest. A summary of such 

values are given in Table 7.6. Despite the relative differences in the atomic density and 



291 

 

mass of the target Zr atoms, the estimated effective cascade diameters are still quite 

similar to those calculated for Fe (see Table 2.1). In addition to these parameters, an 

analyst would need to estimate all the inputs influencing diffusion rates, including 

vacancy formation and migration energies, and the respective solute migration energies to 

calculate the respective RED diffusion rates for solutions (Dirr). 

Table 7.6 Summary of calculation variables and estimated effective diameter for 

different irradiating particles upon an h.c.p. Zr-based target alloy. 

Irradiating 

particle 

PKA 

Energy,T 

(eV), 

from [42] 

Screening 

Radius,   

a (nm) 

𝜺𝑵 𝒌𝑵 g 

Cascade 

Damage 

Energy, 

ED (eV) 

Estimated 

effective 

cascade 

diameter,   

l  (nm) 

1 MeV electrons 60 0.0137 60.00 0.000 75.4 60 1.65 

2 MeV protons 200 0.0133 0.014 0.134 1.7 163 2.30 

5 MeV Fe2+ 5000 0.0087 0.003 0.157 1.26 4173 6.78 

Fast neutrons 35000 0.0133 2.442 0.134 7.17 17865 11.01 

 

These steps to get the model functioning are practical. However, the same 

limitations as previously discussed remain - the analyst requires some prior experimental 

observation and measured data of cluster evolution upon irradiation. This data enables 

calibration of the model, through fitting values for f and 𝐷𝑠𝑜𝑙
𝑡ℎ  for each respective 

irradiating particle upon the target alloy. Once these values are deduced with reasonable 

confidence, a more informative analysis may commence including: a) evaluation of 

potential temperature shifts required using higher dose irradiations (Section 7.6.2), b) 

Optimization of existing cluster morphology to enhance stability upon irradiation 
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(Section 7.6.3), or c) tailoring of alloying elements and their respective concentrations 

(Section 7.6.4).
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CHAPTER EIGHT: CONCLUSIONS AND FUTURE WORK 

For this thesis, a series of irradiation experiments are conducted on a model Fe-

9%Cr ferritic ODS alloy and the commercial F-M alloys HCM12A and HT9. Irradiations 

with Fe2+ ions, protons, or neutrons were executed to damage doses ranging 1-100 dpa, 1-

7 dpa, or 3 dpa, respectively. All irradiations are conducted at 500°C, with one exception: 

irradiation with Fe2+ ions to 50 dpa at 400°C on the Fe-9%Cr ODS alloy. Transmission 

electron microscopy is conducted on each specimen to characterize the overall 

microstructure, including evaluation of defect cluster evolution after each irradiation. 

Atom probe tomography is used to characterize the morphology and evolution of any 

nanoscale phases present in each alloy after irradiation. For the ODS alloy, each 

specimen is also compared to the nanocluster morphology of the as-received specimen to 

evaluate cluster stability upon irradiation. Utilizing theoretical calculation models 

developed by Nelson, Hudson, and Mazey [57] and Martin [60], an advanced model is 

developed to simulate the observed nanocluster evolution following each irradiation. As a 

result of this work, the following key trends and conclusions are reported: 

1) When using higher dose rate charged particle irradiations to emulate lower dose rate 

neutron irradiation, two separate irradiation experiments are required to fully verify 

the microstructural evolution of a nanofeatured alloy containing solute nanoclusters. 

First, a high dose rate irradiation is required at a higher temperature to isolate and 

emulate defect cluster (loops and voids) evolution. A second high dose rate 
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irradiation is required at a lower temperature to isolate and emulate solute cluster 

evolution. 

a. Dislocation loops are present after 1 dpa upon both Fe2+ and proton 

irradiation, with only limited growth at higher doses. This result is consistent 

with loop growth observations in various ferritic-martensitic alloys 

[16,23,138], and it supports the theory of defect cluster saturation developed 

by Whapham and Makin [136,137]. 

b. The average size and number density of dislocation loops and voids are 

similar in Fe2+, proton- and neutron-irradiated specimens at 3 dpa. Charged 

particle irradiations can reproduce the neutron-irradiated loop microstructure 

with a Mansur-type recombination-driven temperature shift. For the high sink 

density of the subject alloys, this temperature shift happens to be ~0°C. 

c. Changes to nanocluster number density correlate with damage cascade size, 

while changes to nanocluster size correlate with damage cascade efficiency. 

This is most clearly evidenced with ODS oxide nanoclusters irradiated with 

neutrons, protons, and Fe2+ ions at 3 dpa, 500°C. The reduction in nanocluster 

number density is most dramatic upon neutron irradiation; larger cascades (i.e. 

those produced by neutron irradiation) are more likely to have a footprint that 

overlaps or entirely envelops the oxides, promoting ballistic dissolution of 

whole nanoclusters. The average nanocluster sizes are largest after Fe2+ 

irradiation (as compared to proton or neutron irradiation), correlating with the 

low cascade efficiency of heavy ion species such as Fe2+. Hence, although 

proton irradiation is less effective at dissolving whole clusters, they may be 
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more effective than Fe2+ ions at reducing cluster size by ejection or 

disordering of clustered atoms. 

2) The advanced NHM model developed may be used as an informative tool to predict 

the evolution of cluster morphology in ODS and other nanofeatured alloys. Cluster 

evolution is governed by the competing influences of ballistic dissolution and 

diffusion-driven growth of the nanoclusters. For the ODS alloy in this study, the 

oxide nanocluster diameters converge on steady-state values at doses ⪆3 dpa for all 

irradiating particles and experience the phenomenon of inverse Ostwald ripening over 

the examined irradiation envelope of 1-100 dpa at 400-500°C (i.e. decrease in size 

while increasing in density). However, alloys with different cluster morphology will 

experience differing cluster evolution based on the relative balance of these two 

mechanisms. Coupled with alloy processing development and physical irradiation 

experiments, the model can be used to assist alloy composition and process tailoring 

to optimize morphology and design verification experiments for higher dose 

irradiations. 

3) The advanced NHM model provides some insight into the relative clusterability of 

specific solute species, including their respective cascade disordering efficiencies and 

their rate of diffusion toward existing clusters. However, for the model to provide 

such information, some prior cluster evolution measurements from physical 

irradiation experiments are required to enable fitting of such parameters to calibrate 

the model. 

4) For publications reporting APT cluster analysis data, key information is required to 

enable a robust comparison of results between different researchers. At a minimum, 
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the following information should be provided: a) the method for selecting the ICF for 

each data set reconstruction, b) the overall number of clusters measured for each 

specimen and the relative certainty of the mean value reported, and c) the method for 

normalizing data to ensure a robust comparison may be drawn, such as the procedure 

outlined in this study. 

5) In HCM12A, Cu-rich clusters first nucleate homogeneously (prior to 1 dpa with 

proton irradiation), followed by heterogeneous nucleation of Si-Mn-Ni clusters at or 

near the Cu cluster-matrix interface (occurs between 1 and 3 dpa with proton 

irradiation). Meanwhile, in HT9, no clusters are observed after Fe2+ irradiation to 3 

dpa. This result is likely related to the relative incubation period for nucleation of Si-

Mn-Ni clusters for each irradiation. 

6) Neutrons are the only irradiating particles producing any Cr-rich (α') clusters in both 

HCM12A and HT9. Cr clustering in the neutron-irradiated specimens may be largely 

influenced by thermal aging at 500°C over ~1 year. Furthermore, temperature dilation 

resulting from higher dose rate of the charged particle irradiations results in a higher 

configurational entropy of the system, likely increasing the solubility limit of Cr in 

the surrounding Fe matrix. 

Although a significant amount of new insights have been accomplished as a result 

of the work for this thesis, additional opportunities have emerged for future research to 

gain further insight into the mechanisms of irradiation-induced nanocluster evolution. 

The following is a brief overview of items meriting future attention: 

A) Conduct charged particle irradiation experiments on each alloy (Fe-9%Cr ODS, 

HCM12A, and HT9) at lower temperatures to validate the predicted downward 
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temperature shift theory (e.g. Fe2+ irradiation at ~380°C) to emulate neutron 

irradiation-induced cluster evolution. 

B) Conduct a series of Fe2+ irradiations of HCM12A and HT9 at intermediate doses 

(between 3 and 100 dpa) to confirm the nucleation and incubation behavior of Si-Mn-

Ni-rich clusters and identify the turning point between cluster growth and cluster 

dissolution. In HCM12A, clustering was observed after 3 dpa, but absent after 100 

dpa. In HT9, clustering was absent after 3 dpa, but is hypothesized to be favorable at 

a higher dose to the relative incubation period of higher dose Fe2+ irradiation. 

C) Acquire irradiation-induced cluster evolution data for other b.c.c. Fe-based alloys and 

verify the transferability of the NHM model predictions. Is there consistency in the 

cascade disordering efficiencies for each solute and the relative rates of diffusion 

toward existing clusters? Estimate the temperature shift required for high dose 

irradiations to inform future charged particle irradiation experiments. 

D) Acquire irradiation-induced cluster evolution data for different alloy systems (e.g. Zr-

based or Cu-based). Evaluate the required temperature shifts for higher dose 

irradiations to emulate neutron irradiation induced cluster evolution using the 

advanced NHM model and validate predictions via further charged particle irradiation 

experiments.
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 Transmission Electron Microscopy Image Analysis
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TEM Data Files 

All measurements and calculations for sizes and number density of 

microstructural features are captured in Microsoft Excel files. The doi numbers for TEM 

image sets and links to the analysis file for each specimen are provided in Table A.1. 

Table A.1 Summary of specimens analyzed with TEM, with links to data files. 

Alloy 
Irradiating 

Particle 
Dose 

Irradiation 

Temperature 

(°C) 

doi number for 

TEM image sets 

Link to 

Analysis 

File 

Fe-9%Cr ODS 

As-received - - doi:10.18122/B20K5C A/R 

Fe2+ ions 

50 400 doi:10.18122/B2730T Fe50-400 

1 

500 

doi:10.18122/B2R30G Fe1-500 

3 doi:10.18122/B2GK5Q Fe3-500 

100 doi:10.18122/B2ZK52 Fe100-500 

Protons 

1 doi:10.18122/B2FK5D P1-500 

3 doi:10.18122/B2630H P3-500 

7 doi:10.18122/B2XK5R P7-500 

Neutrons 3 doi:10.18122/B2Q305 N3-500 

HCM12A 

Fe2+ ions 
3 

500 

doi:10.18122/B2P30V Fe3-500 

100 doi:10.18122/B2DK53 Fe100-500 

Protons 
1 doi:10.18122/B2WK5F P1-500 

3 doi:10.18122/B2N30J P3-500 

Neutrons 3 doi:10.18122/B25306 N3-500 

HT9 

Fe2+ ions 
3 

500 

doi:10.18122/B2CP4F Fe3-500 

100 doi:10.18122/B24590 Fe100-500 

Protons 
1 doi:10.18122/B2M59B P1-500 

3 doi:10.18122/B2BP44 P3-500 

Neutrons 3 doi:10.18122/B2VP4S N3-500 

https://drive.google.com/file/d/0B6htu26yrr_sMUVqOTMtLXJjRGM/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sekppN2pfU0RRb00/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sTEhYRDVQSk9PbFE/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sUTRMcDZDUmplQ3M/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sZl9yZzBuMGlsWlU/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sbVR0bE53eGM4UEU/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sMld2UEZZLWRzYzQ/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sSmYtVFdESGkybHc/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sbHJXeHZXR191c1E/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sQW9Ec0JaSFYwOWc/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sckZEOVB1LVdsZGs/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sdG9mVGFVWlJfaXM/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sMHltUHJSSFpqVlk/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sVHd3RE40X2ctVTg/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_seHNkcjN5TmFZc0E/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sLWdjeWhSVTM3SEk/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_scm0tdU1xMDllYXM/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sc1pEREZLWWpwT2c/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_seHk3bHUzREFDVzA/view?usp=sharing
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APPENDIX B: 

Atom Probe Tomography Analysis
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APT Data Files 

All outputs from cluster analysis in IVAS are exported into Microsoft Excel files 

for morphology and chemical analysis microstructural. The doi number for LEAP data 

sets and links to the analysis files for each specimen are provided in Table B.1. 

Table B.1 Summary of specimens analyzed with APT, with links to data files. 

Alloy 
Irradiating 

Particle 
Dose 

Irradiation 

Temperature 

(°C) 

doi number for 

LEAP data sets 

Link to 

Analysis 

File 

Fe-9%Cr ODS 

As-received - - doi:10.18122/B2488N A/R 

Fe2+ ions 

50 400 doi:10.18122/B2BS3S Fe50-400 

1 

500 

doi:10.18122/B2VS3F Fe1-500 

3 doi:10.18122/B2M880 Fe3-500 

100 doi:10.18122/B2388B Fe100-500 

Protons 

1 doi:10.18122/B2K88P P1-500 

3 doi:10.18122/B29W24 P3-500 

7 doi:10.18122/B22C7P P7-500 

Neutrons 3 doi:10.18122/B2TS34 N3-500 

HCM12A 

Fe2+ ions 
3 

500 

doi:10.18122/B2SW2G Fe3-500 

100 doi:10.18122/B2JC71 N.M. 

Protons 
1 doi:10.18122/B21C7C P1-500 

3 doi:10.18122/B2RW25 P3-500 

Neutrons 3 doi:10.18122/B28W2T N3-500 

HT9 

Fe2+ ions 
3 

500 

doi:10.18122/B2HC7Q N.M. 

100 doi:10.18122/B27W2H N.M. 

Protons 
1 doi:10.18122/B2QW2V N.M. 

3 doi:10.18122/B2GC7D P3-500 

Neutrons 3 doi:10.18122/B20C72 N3-500 

N.M. = None measured 

https://drive.google.com/file/d/0B6htu26yrr_sTlhGemRRX2JhYlU/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sY3NKcG8tbzY3Uzg/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sNzhpeUp3alk0TWM/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sZENSZGhMb1ZQdUE/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_seHVkT3dVZ25vbms/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sSlJCa0duOV8tWWM/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sdHVucFV2eDl4cTg/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sUUM0WGNyeDByNXM/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sWXA3YWp1MTBzR1U/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sTHJucWFiTkwxU2M/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sMmlFazNsSEtxRGc/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sODhHSXJtQzJka1k/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sSzVQd0cxNWRuc0U/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sLUVhUVAzU1NvLVk/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sV2YxM2NWMC1pdGs/view?usp=sharing
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For each APT sample, the average size and number density is calculated and 

tabulated. Using this information, the measured cluster sizes were tabulated and plotted, 

enabling the normalization process (Section 7.3.2) for comparison between multiple 

specimens. The files listed in Table B.2 provide a summary of the data which informed 

the normalization. 

Table B.2 APT data summary and normalization of cluster size files. 

Alloy Link to File 

Fe-9%Cr ODS ODS-APT 

HCM12A HCM12A-APT 

HT9 HT9-APT 

 

 

 

https://drive.google.com/file/d/0B6htu26yrr_senpxWjR2T0kxTzA/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sQUpYWXhrczcxLTA/view?usp=sharing
https://drive.google.com/file/d/0B6htu26yrr_sWjNVSnZPa2dMWkU/view?usp=sharing

