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ABSTRACT

Comprised of a large number of low-cost, low-power, mobile and miniature sensors,

wireless sensor networks are widely employed in many applications, such as envi-

ronmental monitoring, health-care, and diagnostics of complex systems. In wireless

sensor networks, the sensor outputs are transmitted across a wireless communication

network to legitimate users such as fusion centers for final decision-making.

Because of the wireless links across the network, the data are vulnerable to security

breaches. For many applications, the data collected by local sensors are extremely

sensitive, and care must be taken to prevent that information from being leaked to

any malicious third parties, e.g., eavesdroppers. Eavesdropping is one of the most

significant threats to wireless sensor networks, where local sensors are tapped by an

eavesdropper in order to intercept information.

I considered distributed inference in the presence of a global, greedy and informed

eavesdropper who has access to all local node outputs rather than access. My

goal is to develop secured distributed systems against eavesdropping attacks using

a physical-layer security approach instead of cryptography techniques because of

the stringent constraints on sensor networks energy and computational capability.

The physical-layer security approach utilizes the characteristics of the physical layer,

including transmission channels noises, and the information of the source. Addi-

tionally, physical-layer security for distributed inference is scalable due to the low

computational complexity.

I first investigate secrecy constrained distributed detection under both Neyman-
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Pearson and Bayesian frameworks. I analyze the asymptotic detection performance

and proposed a novel way of analyzing the maximum performance trade-off us-

ing Kullback-Leibler divergence ratio between the fusion center and eavesdropper.

Under the Neyman-Pearson framework, I show that the eavesdropper’s detection

performance can be limited such that her decision-making is no better than random

guessing; meanwhile, the detection performance at the fusion center is guaranteed at

the prespecified level. Similar analyses and proofs are provided under the Bayesian

framework, where it was shown that an eavesdropper can be constrained to an error

probability level equal to her prior information. Additionally, I derive the asymptotic

error exponent and show that asymptotic perfect secrecy and asymptotic perfect

detection are possible by increasing the number of sensors under both frameworks if

the fusion center has noiseless channels to the sensors.

For secrecy constrained distributed estimation, I conducted similar analysis under

both a classical setting and Bayesian setting. I derived the maximum achievable

secrecy performance and show that under the condition that the eavesdropper has

noisy channels and the fusion center has noiseless channels, both asymptotic perfect

secrecy and asymptotic perfect estimation can be achieved under a classical setting.

Similarly, under a Bayesian setting, I derived the performance trade-off using Fisher

information ratio and show that the fusion center outperforms the eavesdropper

significantly in the simulation section.

Secrecy constrained in distributed inference with Rayleigh fading binary symmet-

ric channel is considered as well. Similarly, I derive the maximum achievable secrecy

performance ratio for both detection and estimation.

The maximum achievable trade-off turns out to be almost the same in distributed

estimation as in distributed detection. This suggests that a universal framework for
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generally structured inference problems are feasible. Further investigations are needed

to justify this conjecture for more general applications.
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1

CHAPTER 1

INTRODUCTION

1.1 Wireless Sensor Networks

Comprised of a large number of low-cost, low-power, mobile and miniature sensors,

wireless sensor networks (WSNs) are systems of detecting phenomena, estimating

parameters or measuring some physical properties of the environment, where sensors

are densely deployed to the region of interest [1, 5, 83, 88]. Many WSNs have a

dedicated node called sink node or fusion center (FC), of which the computational

capability is more powerful than other sensing nodes because of data fusion require-

ments. Due to energy constraints, time-delay, bandwidth and memory limitations,

the local nodes cannot send all the observed information directly to the FC where

the final decision is made. The data observed by local sensors must be quantized or

compressed before transmission over wireless channels to the FC. Therefore, one of

the essential problems in WSNs is to design and optimize the local quantization rule

for local nodes and fusion rule at the decision center in order to make the optimal

inference at the FC based on the transmitted data from senors [5, 83, 88, 100].

1.1.1 Topologies in WSNs

Different WSNs have different network topologies, which determines different ways of

communications within sensors and how the sensors send their data to the FC. The
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common topologies in WSNs include peer to peer networks, parallel (star) networks,

tree networks, and mesh networks [72].

Physical Property

Sensor 1 Sensor 3

X1 X3

Sensor 2

X2

Channel Channel

Channel

Figure 1.1: Peer-to-Peer Topology

In peer-to-peer network for three sensors shown in Figure 1.1, local sensors observe

the physical property and they are able to send the outputs to each other across their

respective channels. In this way, each sensor can be considered as the FC. Therefore,

this network topology is flexible in a sense that when one sensor fails, another sensor

could take over the job for decision making.

In Figure 1.2, we show the parallel (star) structure, where sensors observe phenom-

ena in parallel and send their outputs to a FC through parallel channels. Unlike the

peer-to-peer topology, each node cannot directly communicate with one another, and

the FC is a fixed receiver. Parallel network is one of the most widely used structure in
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X1 X2 Xi
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Channel

Fusion Center
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γ1 γ2 γi γN

Sensor i

...

Decision

...

Figure 1.2: Parallel Topology

WSNs due to its simplicity and robustness. Under such a setting, the failure of a small

portion of sensors will not deteriorate the performance of the network significantly.

Tree network, shown in Figure 1.3, however, is a hierarchical structure, where low
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Figure 1.3: Tree Topology

level sensors observe the physical properties and then send their outputs to the next

level and they keep doing so until the FC receives the output from high level nodes.

This multi-hop communication is expected to consume less power than the single hop

communication. Furthermore, the transmission power is low [97].

Mesh structured network with four sensors is shown in Figure 1.4. This setup

allows data to hop from sensor to sensor. Similar to peer-to-peer topology, mesh

network allows sensors to directly transmit the data to another sensor and the FC

does not need to be fixed. Another advantage of this structure is that data can be

transmitted from different routes to the desired location. The mesh network is the
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Figure 1.4: Mesh Topology

most complicated structure.

To sum up, the characteristics of common topologies for WSNs are summarized in

Table 1.1. The topology of a WSN does not necessarily remain the same because the

sensors could be mobile and their locations may change from one place to another.

1.1.2 Sensors Communication Protocol

With the topologies of WSNs defined, we know the structure of communications

in WSNs. However, without the definition of communication protocol, sensors still

could not communicate with each other. Such communication protocols are used



6

Table 1.1: Characteristics of Common Topologies for WSNs

Topology Name Advantages Disadvantages

Peer-to-Peer flexible not robust to sensor failures

Parallel
simple; robust in terms of sensor not flexible

failures and network performance

Tree
flexible; energy-efficient not robust to backbone

sensor failures

Mesh flexible; robust complicated

by sensor-to-sensor and sensor-to-FC. A protocol diagram is illustrated in Figure

1.5, which consists of the application layer, transport layer, network layer, data link

layer, physical layer, power management plane, mobility management plane, and task

management plane [1].

Each layer has their own functionalities and knows how to respond to the requests

from the layer below or above. The main functions are summarized as follows:

• The application layer interacts with the end users and specifies how the data

are requested.

• The transport layer sends and receives data upon request from the application

layer. It is especially needed when the system needs to access through external

networks.
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Figure 1.5: Wireless sensor network protocol stack. [1]

• The network layer routes the incoming data to the desired locations.

• The data link layer is responsible for the multiplexing of data streams, data

frame detection, medium access and error control.

• The physical layer is responsible for frequency selection, carrier frequency gen-

eration, signal detection, modulation, and data encryption.

Meanwhile, the power, mobility and task management planes in Figure 1.5 monitor

the power, movement and task among the nodes. The planes reduce the overall energy
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consumption and coordinate different tasks.

1.1.3 WSNs Applications

With topology and communication protocols in mind, the natural question is what

kind of applications we can apply with WSNs. In fact, WSNs are widely employed in

many applications such as environmental monitoring, cyber-physical systems, health-

care, diagnostics of complex systems and military applications and so on. We sum-

marize the main applications as the following categories.

• Environmental monitoring includes temperature monitoring (forest fire detec-

tion), flood detection, geophysical research and so on [69, 76, 91]. Take forest

fire detection as an example, where a large number of sensors are randomly

and densely deployed to a forest in order to collect data on weather conditions

including temperature, wind speed, rain and relative humidity. These sensors

need to be durable in that they are often exposed to harsh environments. They

send the compressed outputs to the FC through the wireless communication

module, then the FC combines the information collected by local nodes and

makes the final decision whether there is a fire or not in that forest [7].

• A cyber-phyiscal system is defined as the system where physical and software

components are deeply intertwined, each operating on different spatial and

temporal scales, exhibiting multiple and distinct behavioral modalities, and

interacting with each other in a myriad of ways that change with context

[40, 61]. WSNs play an important role in sensing and providing information

for such systems including smart grids and nuclear power plants [54, 95]. For

smart grids, a large number of sensors are distributed for monitoring long range
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power transmission lines in order to improve transmission efficiency, reliability

and sustainability [26, 29].

• Health related applications include tracking patients’ physiological conditions,

movements and behaviors. For this purpose, patients usually wear different

types of wireless sensors to collect data on body conditions [31, 102]. For real-

time applications such as telemonitoring of patients, sensors transmit to the

FC securely in real-time. For offline decision-making, such as future medical

diagnostics, drug administration in hospitals and so on, sensors collect data for

a long time and then securely transmit the data to the FC.

• For complex systems like vehicles, airplanes or nuclear plants, WSNs keep

monitoring the conditions of the parts, the environment or the function units,

once the fault or anomaly occurs, the sensors would report to the FC [46, 50, 64].

One example for this application is a WSN deployed in an airplane cabin to

monitor particulate matter, carbon dioxide, pressure and humidity to make

sure the environment is suitable for passengers [35].

• Military applications include battlefield surveillance and reconnaissance of op-

posing forces. WSNs can be deployed to detect, localize and track targets,

moreover, they can be used to assess damage conditions, monitoring equipment

and ammunition [62, 80].

From the above categories, we can see that WSNs have already changed our

lives in many aspects, more importantly, WSNs also have the potential for many

future applications, one of which is intelligent transportation systems, where sensors

mounted on vehicles wirelessly communicate with other vehicles or infrastructure
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sensor nodes in order to improve the overall quality of road transportations including

safety, congestion, emissions, and traffic waiting time [23, 42, 51]. The Internet of

things is another application of WSNs which aims at connecting home appliances,

smart phones and other Internet connected devices [4] in order to improve energy-

efficiency, convenience, safety and so on.

1.2 Cyber Attacks in WSNs

Wireless communication makes the aforementioned applications possible, on the other

hand, wireless communication allows local nodes to broadcast and all of their wireless

packets are potentially available to any other listeners. It also means WSNs are

vulnerable to all kinds of attacks. As the data collected by the aforementioned

applications could be extremely sensitive, care must be taken to prevent the collected

information from being leaked to any malicious third parties. Thus, we need to

understand the potential strategies of attackers against WSNs in order to defend

them effectively.

In [92], Wang et al. surveyed cyber threats in sensor networks, which is summa-

rized in Table 1.2. According to the security requirements in WSNs, these attacks

can categorized as [73]:

• Secrecy and authentication attacks where eavesdroppers either passively listen

to packets or modify packets in order to gain certain advantages.

• Network availability attacks where attackers keep communication channels busy

so that transmitters won’t be able to send anything through the channel to

receivers, e.g., jamming attackers, denial-of-service attackers (Table 1.2).
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• Stealthy attacks against service integrity where attackers falsify the data and

make the network accept it so that the decision center is confused, e.g., Byzan-

tine attackers.

Among all of these attacks, this dissertation concentrates on eavesdropping at-

tacks in that it forms the basis or starting point for a large number of different,

more malicious attack strategies. For example, if Byzantine attackers, jammers or

intruders have reliable information provided by the eavesdropper, their subsequent

attacks could be more efficient [65]. There are two types of eavesdropping attacks,

passive and active. Passive eavesdroppers detect the information by tapping the data

transmissions between the local sensors and the legitimate user; active eavesdroppers,

however, send queries to some local sensors by disguising themselves as friendly nodes

[20]. In this dissertation, we consider the general problem of passive eavesdropping

because it is the foundation of active eavesdropping and it is difficult to detect and

defend.

1.3 Cyber Defense Mechanisms

Since this dissertation focuses on eavesdropping attacks against WSNs, we need to

survey the available defending mechanisms against eavesdroppers and evaluate the

feasibility of applying the algorithms to WSNs. In [92], authors mentioned that

the standard cryptography algorithms may prevent eavesdroppers and protect the

secrecy of the system. To further investigate this issue, we discuss whether the current

research on cryptography for WSNs is fully practical due to the constraints on WSNs.
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Table 1.2: Denial-of-service Attacks in WSNs [92]

Layer Attacks Defense

Physical
Jamming Spread-spectrum, priority messages, lower

duty cycle, region mapping, mode change

Tampering Tampering-proofing, hiding

Link

Collision Error-correcting code

Exhaustion Rate limitation

Unfairness Small frames

Network

Spoofed, altered Egress filtering, authentication, monitoring

Selective forward-
ing

Redundancy, probing

Sinkhole Authentication, monitoring, redundancy

Sybil Authentication, probing

Wormholes Authentication, packet leashes by using geo-
graphic and temporal information

Hello food attacks Authentication, verify the bidirectional link

Acknowledgement
spoofing

Authentication

Transport
Flooding Client puzzles

Desynchronization Authentication
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1.3.1 Cryptography in WSNs

Cryptographic algorithms, which includes public key and symmetric key [37], have

been widely used for computer networks where the nodes (computers) are powerful

enough to implement the algorithms. However, due to the constraints in WSNs, where

sensors are often operated on a limited battery power and limited computational

power, many existing algorithms are not practical for use. Next, we discuss the

feasibility of implementing the recent research on public key and symmetric key in

WSNs.

Public Key Cryptography in WSNs

This asymmetric cryptography scheme uses pairs of keys: public keys which can be

distributed widely, and private keys which are known only to the owner. Anyone can

encrypt messages using the public key, however, only the owner of that paired private

key can decrypt the message.

There are several popular public key algorithms such as the Diffie-Hellman key

agreement protocol [21] or RSA signatures [67], however they are undesirable for

WSNs due to the computational intensity and power consumption. One possible

solution is elliptic curve cryptography algorithm [43, 57], which appears to offer equal

security for a far smaller key size, thereby reducing processing and communication

overhead. Some of the researchers implemented different ECC cryptography algo-

rithms on microprocessors such as Atmel ATmega128 [30, 49, 90], however, the public

key operations are still expensive for these processors, not to mention less powerful

devices as the nodes of WSNs.
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Symmetric Key Cryptography in WSNs

Unlike public key cryptography, symmetric key scheme uses the same cryptography

keys for both encryption and decryption. The keys can be identical or a simple

transformation applied between the two keys. This scheme consumes much less com-

putational energy. In order to investigate the feasibility of symmetric key for WSNs,

several popular algorithms including RC4 [56], RC5 [68], IDEA [56], SHA-1 [25] and

MD5 [56, 66] were implemented on different microprocessors ranging in word size

from 8-bit to 16-bit. The researchers compared the operation time and energy with

these algorithms and they concluded that symmetric key cryptography is preferred in

a WSN. The measurements on average execution time and energy consumption with

different algorithms on Atmel ATmega128 processor are summarized in Table 1.3 and

Table 1.4, respectively.

Table 1.3: Symmetric Key Cryptography: Average Execution Times on
Atmel ATmega128 [38]

Algorithm Operation Time (ms)

RC5 [68] 0.26ms

Skipjack [59] 0.38ms
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Table 1.4: Symmetric Key Cryptography: Average Energy Consumption
on Atmel ATmega128 [90]

Algorithm Energy

SHA-1 [25] 5.9 mJ/byte

AES-128 Enc/Dec [19] 1.62/2.49 mJ/byte

1.3.2 Physical-Layer Security Approach

Even though the symmetric key cryptography algorithms presented in section 1.3.1

consume low-power, they may not be low enough for long term WSNs operations,

furthermore, they do require the devices to have the computational capability to per-

form the required tasks which may not be true for some of the nodes [98]. Therefore,

it is not always possible to completely rely on cryptographic techniques. Besides, key

distribution brings another problem to WSNs, especially for dense WSNs. To address

these issues, information-theoretic (physical-layer) security approaches, utilizing the

characteristics of the physical layer, including transmission channels noises, and the

information of the source, have gained considerable attention on this method to

enhance the security, secrecy and privacy of WSNs [3, 55, 78, 103]. Additionally,

physical-layer security for distributed detection is scalable due to the low computa-

tional complexity [74]. Physical-layer security approaches can be used along with

cryptosystems to further enhance WSNs and make the systems even more secure.

Based on a physical-layer security approach, several attempts were made to com-

bat eavesdropping attacks for WSNs under the assumption that an attacker has partial

or full access to sensor outputs [36]. Nadenla et al. considered the secrecy problem in
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distributed detection against eavesdropping attacks for WSNs in parallel networks,

where the goal was to maximize Kullback-Leibler Divergence (KLD) at the FC for one

sensor, DF , under the constraint that KLD at an eavesdropper for one sensor, DE,

is no more than a pre-specified threshold TE [58]. For a two-sensor network, where

the attacker has the access to one of the sensors output, Li et al. jointly designed

sensor decision rules and fusion rules to maximize the FC detection probability by

constraining both the FC’s probability of false alarm and eavesdropper’s detection

probability [48]. For privacy issues, Li and Oechtering formulated privacy-constrained

and privacy-concerned optimization problems under Bayesian framework and derived

the optimal privacy detection rule under a privacy guarantee constraint [47].

As for the secrecy constrained distributed estimation in WSNs, Aysal et al. pro-

posed to solve the problem by adding a stochastic cipher as a security module, to

randomly change the sensor outputs and disguise them from the eavesdropper [2].

Guo et al. considered using multiple-input multiple-output beamforming strategies

to combat eavesdroppers, where local sensors use the analog amplify and forward

scheme to communicate with the FC over a slow-fading orthogonal multiple access

channel [28]. In [41], Khan and Stanković proposed to securely estimate distributed

data in cyber-physical systems by verifying statistical consistency on the nodal, local

information and physical layer feedback.

Notice that the aforementioned efforts did not focus on the maximum achievable

inference performance trade-off, nor did they explore the possibility of asymptotic

perfect secrecy. For a specific channel model, Marano et al. designed sensor rules for

WSNs under the perfect secrecy constraint such that the eavesdropper gains no infor-

mation from the observations on the channel activities without direct access to sensors

outputs [53]. However, the channel model considered in that paper is constrained and
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cannot be directly employed under more general noisy channel models.

1.4 Contributions and Overview of the Thesis

This dissertation focuses on using a physical-layer security approach to address the

distributed inference problems with secrecy constraints in a sense that a WSN with

parallel topology is eavesdropped by a global, greedy and informed eavesdropper,

which has access to all the sensors outputs. The reason we consider parallel structure

for WSNs lies in that it is simple and robust to sensor failures, when a small portion

of sensor dies, the performance of the network would not be deteriorated. As a

malicious user, this eavesdropper passively listens to the sensor outputs and aims at

making informative decisions. However, the data collected by sensors are extremely

sensitive, our goal is to prevent a malicious third party (eavesdropper) from stealing

information from local nodes. Therefore, the ideal design for a sensor network is

perfect secrecy where an eavesdropper does not obtain any useful information. We

will discuss the possibility of (asymptotic) perfect secrecy. Moreover, we investigate

performance trade-offs between the FC and eavesdropper, where the performance of

the attacker is constrained to a level such that she could not make an informative

inference; meanwhile, the performance of the legitimate user (FC) is guaranteed to

perform well at the desired level. Utilizing the metrics of measuring secrecy in both

detection and estimation problems, we provide results on the maximum achievable

inference performance trade-off between the FC and eavesdropper.

This dissertation is organized as follows,

Chapter 2: Background and Fundamental Concepts

In this chapter, we introduce the key concepts in understanding the materials
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in the following chapters. The fundamental concepts include distributed detection,

distributed estimation and secrecy metrics under different frameworks.

Chapter 3: Secrecy Constrained Distributed Detection in WSNs

We first investigate detection problems under secrecy constraints. The main

contributions of secrecy constrained distributed detection in WSNs are summarized

as follows:

1. Analyze the detection performance at the FC and eavesdropper, respectively.

For the case where the sensor outputs are binary, we evaluate the quality of

the received sensor decisions when the sensors employ likelihood ratio quantizer

(LRQ) close to the extreme points on receiver operating characteristics (ROC)

curve.

2. Utilizing performance analysis, we propose a novel approach of analyzing the

performance trade-off between the FC and eavesdropper using the maximum

achievable detection performance ratio between the FC and eavesdropper, given

both a noise free and noisy FC channel. Additionally, we show that both

asymptotic perfect secrecy and asymptotic perfect detection are possible by

increasing the number of sensors when the FC has noiseless channels under the

Neyman-Pearson framework.

3. Under the Bayesian framework, we analyze the performance in terms of prob-

ability of error, where the detectability of an eavesdropper can be limited to a

level where she can only rely on her prior information. The limit of optimal FC

detection performance is derived for the performance trade-off analysis. Using

the approximated asymptotic error exponent we obtained for both the FC and

eavesdropper, we show that both asymptotic perfect secrecy and asymptotic
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perfect detection are possible. The results contradict the idea that network

security tends to decrease as the number of sensors increases.

Chapter 4: Secrecy Constrained Distributed Estimation in WSNs

In this chapter, we investigate the secrecy constrained distributed estimation

problem and the main contributions are summarized as follows:

1. Under classical settings, where the parameter to be estimated is fixed but

unknown, we analyze the estimation performance at the FC and eavesdropper

using Fisher information, respectively. In order to investigate the possibility of

perfect secrecy, we propose the Fisher information ratio between the FC and

eavesdropper. Furthermore, for Gaussian noise, we show how to design the

threshold in order to achieve asymptotic perfect secrecy and asymptotic perfect

estimation.

2. Under the Bayesian framework, where the parameter is a random variable,

we analyze the performance trade-off between the FC and eavesdropper using

Fisher information and show that the secrecy constraints can be satisfied for

both the FC and eavesdropper under Gaussian noise case.

Chapter 5: Secrecy Constrained Distributed Inference with Parallel Fading Binary

Symmetric Channel Models

In this chapter, we consider secrecy constrained detection and estimation prob-

lem with binary phase-shifting keying modulation in parallel Rayleigh fading binary

symmetric channels. Similarly, we investigate the performance ratio between the FC

and eavesdropper. We analyze the maximum achievable performance ratio and show

that the number of sensors does not affect this ratio.
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Chapter 6: We conclude in this chapter and discuss future research related to

secrecy constrained distributed inference.
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CHAPTER 2

BACKGROUND AND BASIC CONCEPTS

2.1 Statistical Inference

In the classical statistical inference, all the data is collected and processed in a

centralized fashion. Distributed inference, however, detects signal presence, estimates

parameters and tracks targets based on distributed data from local sensors [83, 86].

It has been the focus of multiple disciplinary research in the past several decades

[6, 10–12, 81, 85, 89]. One of the essential problems in distributed inference is to

optimize decision-making at the information center by the design of local decision

sensor rules for each sensor and global decision rules at an information center [83].

Without constraints on “distributed” settings, the problems of inference share much

in common with many centralized statistical inference and learning problems such as

signal detection and estimation, dimension reduction and feature extraction [60]. Due

to the additional condition on “distributed”, the complexity of the inference problem

is increased significantly [82].

Distributed inference includes distributed detection, distributed estimation and

tracking. One of the main differences between detection and estimation is the phe-

nomenon to be inferred by sensors. In distributed detection, the phenomenon ob-

served by sensors is discrete, e.g., binary hypothesis testing, where one aims to decide

between two potential hypotheses, H ∈ (H0, H1). In distributed estimation, the
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phenomenon is often a parameter in a continuous set [36]. In the following sections,

we introduce the basic settings in distributed detection and distributed estimation.

2.2 Distributed Detection

Hypotheses H

Sensor 1 Sensor 2

...

Sensor N

X1 X2 Xi
XN

Channel

Fusion Center

...
γ1 γ2 γi γN

Sensor i

...

Decision

...
U1 U2 Ui UN

V1 V2 Vi VN

V0

Figure 2.1: Distributed Detection
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As one of the essential aspects of distributed inference, distributed detection is

often the initial goal of a pattern recognition system and aims at detecting signals

or events as accurately as possible [86] with the distributed data collected by various

sensors, where the data can be generated from the underlying binary or M-ary

hypotheses. Distributed detection can be widely used for both military and civilian

applications including distributed array radar, intruder detection, anomaly detection

and intelligent transportation system where the infrastructure sensors detect pedes-

trians, vehicles and anomaly events [23, 42, 51]. For instance, N sensors are densely

deployed in forests to observe the temperatures, and through a channel, these nodes

send the quantized outputs to the FC where the final decision is made about whether

there is forest fire or not [69]. For WSNs, detecting the presence of an event is the

priority of all the other tasks including estimation, tracking and learning [11]. Hence,

as a key function in WSNs, distributed detection has been an important and active

research area over the past several decades [6, 10–12, 14, 77, 81, 85, 89].

In Figure 2.1, we show the structure of distributed detection in a parallel WSN,

where local sensors observe the hypotheses H and obtain their data Xi, (i = 1 . . . N).

With the decision rules for each sensor, γi, sensor i compresses the data to the outputs

Ui, which is transmitted across a channel. In the end, the FC makes the decision V0

based on the received Vis, the output of channels from the input Uis.

2.3 Distributed Estimation

If the presence of an object, a signal or an event is determined by the detection

function in WSNs, more complicated tasks such as estimation and tracking can be

performed. For instance, if a vehicle is detected by an intelligent transportation
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Parameter θ
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Channel
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Sensor i
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Figure 2.2: Distributed Estimation

system, the following task would be estimating how fast the vehicle is moving and

where it is moving.

Aiming to estimate the values of a group of parameters based on a network

of collaborating sensors, distributed estimation has been an important and active

research area over the past several decades [9, 13, 27, 94].
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Similar to the distributed detection setting, in Figure 2.2, we present the structure

of distributed estimation, where sensors observe a scalar or vector parameter θ, sensors

quantized outputs Ui (i = 1 . . . N) are sent to the FC through a channel. Then the

parameter θ̂ is estimated at the FC based upon received Vi.

2.4 Performance and Secrecy Metrics

From the aforementioned applications about distributed detection and distributed

estimation, we can see that the information collected by the systems is very sensitive

and care must be taken to prevent them from being leaked to any malicious third

parties. Hence, we focus on secrecy constrained inference in WSNs where the ultimate

goals are restricting the ability of eavesdropping from attackers and maintaining high

performance at the FC. Hence, we first introduce secrecy.

Secrecy in WSNs against eavesdropping attacks means that any malicious listeners

should not be able to make informative decisions based on messages from local sensors

that are supposed to go to the FC. In other words, in distributed inference, secrecy

measures the inference performance at the FC and eavesdropper respectively. For

instance, if the inference performance at the FC is higher than the specified level while

eavesdropper’s performance is lower than a random guess, the WSN is considered as

secure in terms of secrecy. For this purpose, we introduce the performance metrics

for distributed detection and distributed estimation, respectively, in this section.

2.4.1 Distributed Detection under Neyman-Pearson Framework: Infor-

mation Divergence

For secrecy constrained distributed detection under Neyman-Pearson framework, we

consider information divergence as the performance metric. Information divergence
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maps the dissimilarity between two probability distributions to nonnegative values.

It is also extended to machine learning problems where the goal is to minimize the

approximation error between the observed data and the approximated model [22].

There are several information divergences and they are summarized in Table 2.1,

where x > 0 is the observed data and µ is the approximation given by the model.

For γ-divergence and Rényi-divergence, the input data needs to be normalized, where

x̃i = xi/
∑

j xj and µ̃i = µi/
∑

j µj.

Since there are so many choices of information divergence, which one should we

consider? According to Stein’s lemma [12] and large deviation theory [8, 16], when

the decision center observations are i.i.d., the error exponent of probability of missed

detection (Pm) is bounded, a special case of γ-divergence, Kullback-Leibler divergence

(KLD), D(p0(·)||p1(·)), where p0, p1 are the pdf under H0 and H1 hypotheses, respec-

tively. Specifically, − lim
N→∞

1
N

logPm ≤ D(p0(·)||p1(·)) (N is the number of sensors in a

WSN) when the false alarm probability (Pf ) is constrained to be less than a constant,

and the equality can be achieved by the optimal LRT or other asymptotic optimal

detectors such as type based detectors so that [18],

Pm ≈ e−ND(p0(·)||p1(·)). (2.1)

For binary sensor decisions with P (Ui = 1;H0) = α and P (Ui = 1;H1) = β, we

have P (Ui = 0;H0) = 1−α and P (Ui = 0;H1) = 1− β, the KLD [44] for each sensor

is

D (p0||p1) = α log
α

β
+ (1− α) log

(1− α)

(1− β)
= D (α, β) . (2.2)

It is also true when Pm is constrained to be a constant,
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Pf ≈ e−ND(p1(·)||p0(·)). (2.3)

The corresponding KLD is

D (p1||p0) = β log
β

α
+ (1− β) log

(1− β)

(1− α)
= D (β, α) . (2.4)

2.4.2 Distributed Detection under Bayesian Framework: Probability of

Error

Under Bayesian framework, prior information needs to be taken into consideration.

Let the risk function λ(ai|Hj) be the risk or loss incurred for taking action ai when the

actual hypothesis is Hj, where i ∈ [0, . . . , N ], and N indicate the number of possible

actions, and j ∈ [0, . . . , C], C is the number of states of nature (categories) [24]. The

overall risk is

r =
N∑
i=0

C∑
j=0

λ (ai|Hj)P (ai|Hj)P (Hj),

where P (ai|Hj) is the probability of action i given the state of nature Hj, P (Hj) is the

probability of category Hj. For C = 1, two-category case, to simplify the notation,

let λij = λ (ai|Hj), P (Hj) = Pj and the actions be,

a0 : decide H0

a1 : decide H1

The overall risk is
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Table 2.1: Information Divergence [22]

Name Definition Special Cases

α-divergence

Dα (x||µ)

∑
i x
α
i µ

1−α
i −αxi+(α−1)µi
α(α−1)

Dα=2 (x||µ) = 1
2

∑
i

(xi−µi)2
µi

Dα→1 (x||µ) =
∑

i

(
xi ln

xi
µi
− xi + µi

)
Dα= 1

2
(x||µ) = 2

∑
i

(√
xi −√µi

)2

Dα→0 (x||µ) =
∑

i

(
µi ln

µi
xi
− µi + xi

)
Dα=−1 (x||µ) = 1

2

∑
i

(xi−µi)2
xi

β-divergence

Dβ (x||µ)

∑
i x
β+1
i +βµβ+1−(β+1)xiµ

β
i

β(β+1)

Dβ=1 (x||µ) = 1
2

∑
i (xi − µi)

2

Dβ→0 (x||µ) =
∑

i

(
xi ln

xi
µi
− xi + µi

)
Dβ→−1 (x||µ) =

∑
i

(
xi
µi
− ln xii

µi
− 1
)

Dβ=−2 (x||µ) =
∑

i

(
xi

2µ2i
− 1

µi
+ 1

2xi

)

γ-divergence

Dγ (x||µ)

1

γ(1 + γ)
ln

(∑
i

xγ+1
i

)

+
1

(1 + γ)
ln

(∑
i

µγ+1
i

)

− 1

γ
ln

(∑
i

xiµ
γ
i

) Dγ→0 (x̃||µ̃) =
∑

i x̃i ln
x̃i
µ̃i

Rényi-divergence

Dρ (x||µ)
1
ρ−1

ln
(∑

i x̃
p
i µ̃

1−p
i

)
where x̃i = xi/

∑
j xj,

µ̃i = µi/
∑

j µj
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r = λ00P (decide H0|H0)P0 + λ01P (decide H0|H1)P1+

λ10P (decide H1|H0)P0 + λ11P (decide H1|H1)P1

= λ00 (1− Pf )P0 + λ01PmP1 + λ10PfP0 + λ11 (1− Pm)P1

= λ00P0 + λ11P1 + (λ10 − λ00)PfP0 + (λ01 − λ11)PmP1

Since λ00P1 and λ11P0 are constant, we can put them aside. Therefore, the overall

risk function is reduced to

r = (λ10 − λ00)PfP0 + (λ01 − λ11)PmP1

Then we normalize r by

r

(λ10 − λ00)P0 + (λ01 − λ11)P1

=
(λ10 − λ00)P0

(λ10 − λ00)P0 + (λ01 − λ11)P1

Pf

+
(λ01 − λ11)P1

(λ10 − λ00)P0 + (λ01 − λ11)P1

Pm

Let

π0 =
(λ10 − λ00)P0

(λ10 − λ00)P0 + (λ01 − λ11)P1

π1 =
(λ01 − λ11)P1

(λ10 − λ00)P0 + (λ01 − λ11)P1

,

we have

Pe = π0Pf + π1Pm (2.5)

With the detection performance KLD and probability of error, we can investigate

secrecy constrained detection in Chapter 3.
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2.4.3 Distributed Estimation under Classical Setting: Mean Squared Er-

ror and Fisher Information

For estimation problems under a classical setting, a natural criterion for evaluating

the performance is the mean squared error (MSE), which is defined in Equation (2.6).

MSE = E
(
θ̂ − θ

)2

(2.6)

where, θ is a scalar parameter and θ̂ is the estimated parameter. We will use MSE

evaluation as the performance metric when feasible.

However, sometimes computing MSE is not straightforward and even intractable

for some cases. Instead, Cramér-Rao lower bound (CRLB) [39, 79] is often used which

is equivalent to evaluating the Fisher information (FI),

I(V; θ) , EV

(
∂2 log p(V; θ)

∂2θ

)
(2.7)

where V is the data transmitted from local sensors across the channel (Figure 2.2),

p(V; θ) is probability density function (PDF) of parameter θ given V [39]. And the

MSE is bounded away from CRLB for scalar parameter θ is,

MSE ≥ CRLB(V; θ) =
1

I(V; θ)
.

2.4.4 Distributed Estimation under Bayesian Setting: Bayesian Cramér-

Rao Lower Bound

Under Bayesian framework, however, we have to take the prior information into

consideration, therefore, Bayesian CRLB is defined as,
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MSE ≥ BCRLBF (V; θ) = (I (V; θ))−1 =

(∫ ∞
−∞

NI(η, θ, ρF )p (θ) dθ + I(λ)

)−1

(2.8)

where

I(λ) =

∫ (
∂ log p (θ)

∂θ

)2

p(θ)dθ,

and V is the same with the one defined in (2.7) and p (θ) is the prior density about

the random variable θ.

Similarly, using estimation performance metrics, we can study the performance

trade-off, asymptotic perfect secrecy and asymptotic perfect estimation in Chapter

4.
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CHAPTER 3

SECRECY CONSTRAINED DISTRIBUTED DETECTION

IN WSNS

This chapter is organized as follows. In Section 3.1 and Section 3.2, we introduce

the system model, detection performance metric, and set the secrecy constraints

under both frameworks in WSNs, respectively. In Section 3.3, we solve the secrecy

constrained problem under Neyman-Pearson framework and explain how to achieve

asymptotic perfect secrecy in detection. We then analyze the secrecy constrained

distributed detection problem under the Bayesian framework in Section 3.4. In

Section 3.5, we provide simulation results to further support our proofs.

3.1 Distributed Detection in Sensor Networks

3.1.1 WSN Model

We consider a distributed detection problem with binary hypotheses, H0 and H1, in

a parallel WSN as shown in Figure 3.1. The key components of our research problem

are described as follows:

1. Network topology. The SN consists of N sensors connected in parallel to a

FC via a set of parallel accessible channels. Instead of considering a multi-hop

network, we adopt a parallel structure because even for a multi-hop network,
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Phenomena H

Sensor 1 Sensor 2

...

Sensor N

X1 X2 Xi
XN

U1 U2 Ui UN

Fusion Center’s Channel with ρF,i

Fusion Center

Eavesdropper’s

Channel with

ρE,i

Global

...
γ1 γ2 γi γN

Sensor i

...

...

......

Eavesdropper

Decision W0 Decision V0

W1 WN V1 VNViV2

Figure 3.1: The model of a parallel sensor network under the attacks of an
informed and greedy eavesdropper who eavesdrops on all the sensors de-
cisions (i = 1 . . . N) that are transmitted wirelessly via a binary symmetric
channel with bit error rate ρE,i. The legitimate user receives sensor i data
through another binary symmetric channel with bit error rate ρF,i < ρE,i.

the parallel structure can still be carried out virtually by leaving relay nodes to

forward all sensor outputs.

2. Sensor observations and sensor outputs. X = [X1, . . . , XN ] are the

sensor observation, for each Xi, can be a random variable or a random vector.

Next, pk(Xi) = p(Xi;Hk) is the probability density function (pdf) under Hk



34

at sensor i, respectively, where k = 0, 1 and i = 1, 2, . . . , N . We assume that

p0(Xi) and p1(Xi) are continuous pdfs with no point mass. The log-likelihood

ratio ln (p1(Xi)/p0(Xi)) is assumed to be unbounded. Sensor i makes a binary

decision Ui ∈ {0, 1} based on its decision rule γi, such that P (Ui = 1|Xi) =

γi(Xi) ∈ [0, 1] , ∀i.

3. Channel model. The communication channel between sensor i and its target

receiver is assumed to be a binary symmetric channel (BSC), a channel model

widely employed in SN communications for binary coding schemes such as

binary phase-shift keying (BPSK) [45, 71, 101]. This model also serves as a

good starting point to study other more complicated channel models. Sensor i

sends its quantized output Ui to the FC over a BSC with bit error rate (BER)

ρF,i <
1
2
, with a received decision, Vi.

4. Attack model. All of the sensors outputs are eavesdropped by Eve via a set

of parallel wiretapping channels. Eve receives Wi (i = 1, . . . , N), from sensor

i as an output of a BSC channel with BER ρE,i <
1
2
. We assume that Eve’s

channel is noisier than the FC’s such that ρE,i > ρF,i, which can be achieved by

using directional antennas to improve the FC SNR, resulting in a lower BER

[52, 75, 99]. Note, an analysis similar to what follows can be employed for

different channel models. Other than receiving a set of different observations

W = [W1, . . . ,WN ], Eve is assumed to have the same information about the

detection algorithm as the FC does, including the sensor observation model,

sensor decision rule, channel status and the prior probabilities of hypotheses,

P (H0) = π0 and P (H1) = π1.

5. Identical and conditional independence assumption. We assume that
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sensors observations and the communication channels are conditionally inde-

pendent and identically distributed (i.i.d.). Specifically,

p(X1, X2, . . . , XN ;Hj) =
N∏
i=1

p(Xi;Hj), j = 0, 1,

for the sensor observations, and ρE = ρE,i with ρF = ρF,i for all i for the

communication channels.

3.1.2 Received Decision Qualities

For its simplicity and robustness, we employ identical sensor design in this chapter.

That is, the decision rule γi(·) at sensor i is a likelihood ratio quantizer such that

γi(x) = γ(x) =


1 p1(x)

p0(x)
≥ η

0 p1(x)
p0(x)

< η.

(3.1)

Under the conditional i.i.d. assumption, it has been shown that the identical sensor

decision rule design, where each sensor uses the same likelihood ratio test (LRT) with

the same threshold, is at least asymptotically optimal at the FC (i.e., no eavesdropper)

[17, 81, 93].

At the ith local sensor, the resulting probability of false alarm αi, and the proba-

bility of detection βi are given by [84]

αi = P (Ui = 1|H0) = P

(
p1 (Xi)

p0 (Xi)
≥ η|H0

)
,
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βi = P (Ui = 1|H1) = P

(
p1 (Xi)

p0 (Xi)
≥ η|H1

)
.

and

dβi
dαi

= η. (3.2)

Therefore, since ln (p1(Xi)/p0(Xi)) is unbounded, then η → ∞ as αi, βi → 0, or

η → 0 as αi, βi → 1. Because of the i.i.d. assumption on the observations, decision

rules and channels, we have

α = α1 = α2 · · · = αN

β = β1 = β2 · · · = βN .

Due to the binary symmetric channel between the local sensors and the FC, the

received decision, Vi, from sensor i at the FC, has the following performance,

P (Vi = 1|H0) = αF = α(1− ρF ) + (1− α)ρF

= ρF + (1− 2ρF )α,

P (Vi = 1|H1) = βF = β(1− ρF ) + (1− β)ρF

= ρF + (1− 2ρF )β.

(3.3)

Similarly, the received decision, Wi, at eavesdropper, has the following perfor-

mance,
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P (Wi = 1|H0) = αE = ρE + (1− 2ρE)α,

P (Wi = 1|H1) = βE = ρE + (1− 2ρE)β.

(3.4)

3.2 Secrecy in Distributed Detection

With the model of the WSN, we introduce the performance metrics that lead to

secrecy constraints in distributed detection under both frameworks. The first perfor-

mance metric applicable under the Neyman-Pearson framework is the KLD.

3.2.1 Performance Metric and Secrecy Constraints under Neyman-Pearson

framework

When the decision center’s observations are i.i.d. and the probability of false alarm,

Pf = (decide H1|H0), is constrained to be no greater than a fixed constant, it is known

that the error exponent of the probability of missed-detection, Pm = (decide H0|H1),

is bounded by the corresponding KLD, D (p0(·)||p1(·)) [44], between the p0, the pdf

under H0, and p1, the pdf under H1, such that [8, 12, 16]

− lim
N→∞

1

N
lnPm ≤ D (p0(·)||p1(·)) = Ep0(·)

(
dp0(·)
dp1(·)

)
(3.5)

Notice that equality in (3.5) can be achieved via optimal LRT detectors or other

asymptotically optimal detectors such as type based detectors [18]. Similarly, D (p1(·)||p0(·))

is the error exponent rate for Pf when Pm is constrained to be no more than a certain

threshold.

For binary sensor decisions with P (Ui = 1|H0) = ᾱ and P (Ui = 1|H1) = β̄, we

have P (Ui = 0|H0) = 1 − ᾱ and P (Ui = 0|H1) = 1 − β̄, the KLD at the decision

center for one sensor is
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D
(
ᾱ, β̄

)
, ᾱ ln

ᾱ

β̄
+ (1− ᾱ) ln

1− ᾱ
1− β̄ , (3.6)

where ᾱ and β̄ are generic notations of probability of false alarm and probability of

detection, respectively, for both the FC and eavesdropper.

The KLD is always non-negative and equals 0 if and only if ᾱ = β̄. Similarly, for

a bounded Pm, the error exponent of Pf decays exponentialy in the number of sensors

at the rate of D
(
β̄, ᾱ

)
such that Pf ∝ e−ND(β̄,ᾱ), where,

D
(
β̄, ᾱ

)
, β̄ ln

β̄

ᾱ
+
(
1− β̄

)
ln

1− β̄
1− ᾱ . (3.7)

For example, the KLD of each received sensor decision Vi at the FC is Di (αF , βF )

with αF , βF defined in Equation (3.3) and KLD of each received sensor decisions Wi at

the eavesdropper is Di (αE, βE). Owing to i.i.d. condition, Di (αF , βF ) = D (αF , βF ),

Di (αE, βE) = D (αE, βE), and the KLD at the FC and at eavesdropper for all N are,

DF =
N∑
i=1

Di (αF , βF ) = ND (αF , βF ) ,

DE =
N∑
i=1

Di (αE, βE) = ND (αE, βE) ,

(3.8)

respectively.

The detection performance in terms of the probability of missed-detection at the

FC and at eavesdropper decays exponentially such that

Pm,F ∝ e−DF ,
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and

Pm,E ∝ e−DE .

Therefore, to limit eavesdropper’s detectability, one needs to make DE as small

as possible, and DF as large as possible, to maximize the FC detection performance,

which leads to the following secrecy constraints.

Secrecy Constraints under the Neyman-Pearson framework
DE = ND (αE, βE) ≤ TE,

DF = ND (αF , βF ) ≥ TF ,

(3.9)

where TE and TF are the KLD thresholds for eavesdropper and the FC, respectively,

and DE and DF are defined in Equation (3.8).

• Feasibility: Is it possible to design a sensor network for the targeted TE and

TF ?

• Secrecy and detection trade-off: minimize TE under fixed TF or maximize

TF under fixed TE. For non-asymptotic cases, we want the detectability at

eavesdropper to be as low as possible and the detection performance at the FC

to be as high as possible. However, in practice, a performance trade-off between

the FC and eavesdropper must be considered.

• Asymptotic perfect secrecy: TE → 0 as the number of sensors, N → ∞,

for example, TE ∝ N−µ, 0 < µ < 1. In this case, eavesdropper’s detection

capability diminishes as N increases.

• Asymptotic perfect detection: TF →∞ as the number of sensors, N →∞.
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3.2.2 Performance Metric and Secrecy Constraints under Bayesian frame-

work

To measure the detection performance under Bayesian framework, we consider the

overall probability of error, Pe,

Pe = π0Pf + π1Pm, (3.10)

where π0 and π1 = 1 − π0 are known to both the FC and an informed and greedy

eavesdropper. Without loss of generality, we assume π1 ≤ 1
2
≤ π0, which is known by

both the FC and eavesdropper. Note, π0 and π1 = 1− π0 are the prior probabilities

of H0 and H1, respectively.

Thus, for the binary hypotheses testing problem secrecy constraint, the goal is to

minimize the probability of error at the FC and to increase the Pe at eavesdropper

as much as possible. We formulate the optimization problem as follows:

Secrecy Constraints under Bayesian framework
Pe,E ≥ ΘE

Pe,F ≤ ΘF ,

(3.11)

where Pe,E and Pe,F are the probability of error for eavesdropper and the FC respec-

tively, and ΘE and ΘF are the probability of error thresholds for eavesdropper and

the FC, respectively.

• Secrecy and detection trade-off: ΘE = min(π0, π1) = π1 and min{ΘF}. Here, we

desire to constrain the detection performance at eavesdropper to a level where

she can only use the prior information, and maximize the performance at the

FC.
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• Asymptotic perfect secrecy: ΘE → min(π0, π1) = π1 and Pe,E → min(π0, π1) =

π1 as N → ∞. In this case, observations do not provide any useful or critical

information and all that eavesdropper can do is rely on the prior information

and decide H0 regardless of any Wi. Similar to the perfect secrecy constraint,

as the number of sensors increases, eavesdropper receives vanishingly useful

information from the observations.

• Asymptotic perfect detection: ΘF → 0 as N →∞.

Knowing the secrecy definition and constraints, we will now solve the optimization

problems in the following sections.

3.3 Performance Analysis Under Neyman-Pearson Frame-

work

3.3.1 Maximum Achievable Performance

In order to analyze the detection performance at both the FC and eavesdropper, as

well as the performance trade-offs, we derive the following approximated KLD at the

receiver with BER, ρ̄ (a generic notation of BER for both the FC and eavesdropper),

when the sensors operate in the vicinity of the extreme points, i.e., if the local sensors

log-likelihood ratio ln ((p1(x)/p0(x)) is unbounded, (α, β) ≈ (0, 0) or (α, β) ≈ (1, 1)

in Table 3.1. Detailed proofs and analysis are shown in Appendix A.
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Table 3.1: Approximated KLD

(α, β) ≈ (0, 0) (α, β) ≈ (1, 1)

ρ̄ = 0
D(ᾱ, β̄) β (1− α)

(
ln 1−α

1−β − 1
)

D(β̄, ᾱ) β
(
ln β

α
− 1
)

1− α

ρ̄ > 0
D(ᾱ, β̄) 1

2
β2(1−2ρ̄)2

(1−ρ̄)ρ̄
1
2

(1−α)2(1−2ρ̄)2

(1−ρ̄)ρ̄

D(β̄, ᾱ) 1
2
β2(1−2ρ̄)2

(1−ρ̄)ρ̄
1
2

(1−α)2(1−2ρ̄)2

(1−ρ̄)ρ̄

3.3.2 Noiseless Channel at the FC, where, ρE > 0 and ρF = 0

Based on the defined secrecy constraints and Table 3.1, we investigate two different

scenarios for the FC; one is when the channel is perfect, the other is with an imperfect

channel.

For N i.i.d sensors with total KLD at eavesdropper is constrained at TE by,

DE = ND (αE, βE) = TE. (3.12)

Since ρE 6= 0 and from Equation (A.3), we approximate the threshold at eavesdropper,

N

2

β2 (1− 2ρE)2

(1− ρE) ρE
≈ TE.

Therefore, at all the sensors, the operating point should be

β ≈
√

2TE (1− ρE) ρE

N (1− 2ρE)2 , (3.13)
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which indeed goes to 0 as TE/N → 0. Because ρF = 0, from Equation (3.3) and

(A.4), it can be shown that the per sensor KLD is

D (αF , βF ) ≈ β ≈
√

2TE (1− ρE) ρE

N (1− 2ρE)2 ,

and the total KLD is

DF = ND (αF , βF ) ≈ Nβ

≈
√

2NTE (1− ρE) ρE

(1− 2ρE)2 .
(3.14)

This can be utilized to design the secrecy against eavesdropper and the detection

performance at the FC. For example, if we let TE be N−µ, (0 < µ < 1), which results

in β ≈
√

2N−µ(1−ρE)ρE
N(1−2ρE)2

, then

DF ≈ N
1−µ
2

√
2 (1− ρE) ρE

(1− 2ρE)2 .

Therefore, the performance and secrecy of the SN improves as the increment of

the number of sensors, N , such that,


DE ∝ N−µ

DF ∝ N
1−µ
2 ,

(3.15)

when µ ≈ 0, eavesdropper’s performance is constant, the performance at the FC

improves at the order of
√
N ; when µ ≈ 1, the FC has a guaranteed performance,

eavesdropper’s performance diminishes at the order of 1/N . when N →∞, DF →∞,

which results in asymptotic perfect detection [18] at the FC and DE → 0, asymptotic
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perfect secrecy. We summarize the findings in the following theorem.

Theorem 1. Asymptotic Perfect Secrecy and Asymptotic Perfect Detec-

tion under Neyman-Pearson Framework: When eavesdropper has a noisy

channel, ρE > 0, and the FC has a noiseless channel, ρF = 0, the secrecy constraints

(DE ≤ TE; DF ≥ TF ) can be satisfied for any arbitrary constants TE and TF , given a

sufficiently large number of sensors, N.

3.3.3 Noisy Channel, where, ρF > 0 and ρE > 0

Rarely does a perfect communication channel exist in practice, so we investigate the

case where the FC has a noisy channel. Since ρF 6= 0, from Table 3.1, we know that

D (αF , βF ) ≈ 1

2

β2 (1− 2ρE)2

(1− ρE) ρE
.

Under the secrecy constraint in Equation (3.9), after applying β from Equation (3.13),

we obtain

DF ≈
TEρE(1− ρE)(1− 2ρF )2

ρF (1− ρF )(1− 2ρE)2
. (3.16)

To measure the performance trade-off, we define the KLD ratio between the FC and

eavesdropper as,

R =
DF

DE

=
D (αF , βF )

D (αE, βE)
=
D (βF , αF )

D (βE, αE)
(3.17)

Therefore, if we plug Equation (3.16) into Equation (3.17), we have the following

result for the performance trade-off between the FC and eavesdropper.

Theorem 2. Maximum Achievable Performance Trade-off under Neyman-

Pearson Framework When both eavesdropper and the FC have noisy channels,
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ρF > 0 and ρE > 0, the secrecy constraints can only be achieved for certain TE and

TF such that TF/TE is no more than the ratio, R = (1−ρE)ρE
(1−ρF )ρF

(
1−2ρF
1−2ρE

)2

.

(See Appendix B for the detailed proof).

For example, if ρF = 0.1, ρE = 0.3, and the required DF > 10, the resulting infor-

mation leakage is DE > 1.07. In other words, the information leakage is inevitable, no

matter how one increases the number of sensors in the network. On the other hand,

when ρF is much smaller than ρE by using the techniques mentioned in [32–34, 99],

then the performance ratio can still be large enough to maintain high detectability

at the FC and poor performance at eavesdropper. This point is expanded upon in

Section 3.5. The ratio can also serve as a performance design protocol for the SN, for

instance, the desired performance at the FC and at eavesdropper are TF and TE, we

can compute the corresponding ρF when ρE is fixed or the other way round.

3.4 Performance Analysis Under Bayesian Framework

Recall that the goal under Bayesian framework is to minimize the probability of error

in Equation (3.10) at the FC and constrain that at eavesdropper at a certain level.

3.4.1 Detection Performance Trade-off under Perfect Secrecy Constraint

Since both the FC and eavesdropper know the exact prior probabilities and π0 ≥ π1,

the detection eavesdroppers probability of error bound is π1 achieved by accepting

H0 regardless of the observations. The constraints on eavesdropper are that obser-

vations should not be of any help in her decision making ability and the Pe,E at the

eavesdropper should remain at π1. When this is true, eavesdropper still makes the

decision H0 regardless of the observations Wi, i = 1, 2, . . . , N . That means,
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P (H1|W ) ≤ P (H0|W ), ∀Wi

=⇒ P (W |H1)π1 ≤ P (W |H0)π0, ∀Wi

=⇒ p(W |H1)

p(W |H0)
≤ π0

π1

∀Wi

=⇒ argmax
W

(
p(W |H1)

p(W |H0)

)
≤ π0

π1

∀Wi.

The maximum of the LRT is achieved when W1 = W2 = · · · = WN = 1 such that

max
(
p(W |H1)
p(W |H0)

)
= (βE/αE)N with αE and βE defined in Equation (3.4). That is, in

order to limit eavesdropper’s detectability to the prior information,

(
βE
αE

)N
≤ π0

π1

. (3.18)

In this case, the wirelessly tapped sensors observations can provide some information,

but not enough to overcome the prior information to make any difference in the final

decision making.

Meanwhile, for the performance at the FC, we derive the following theorem,

Theorem 3. Maximum Achievable Performance Trade-off under Bayesian

Framework When the FC has a noiseless channel and eavesdropper has a noisy

channel, 0 < ρE < 0.5, the minimum achievable Pe,F at the FC is given by ,

limN→∞ Pe,F = Pfπ0 = π1

(
π0
π1

)− ρE
1−2ρE .

Pe,F is a function of prior probabilities and the eavesdropper’s channel qualities

ρE, and it is also strictly greater than 0 for any ρE < 0.5. The details of proofs are

shown in Appendix C.
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Remark 1. When π0 = π1 = 0.5, then Pe,F = 0.5, that means, it is impossible to

achieve perfect secrecy, while providing the FC with any useful information.

For the case that the FC does not have a perfect channel, where ρF > 0, the

detection performance becomes worse, and the corresponding probability of error at

the FC increases as well.

3.4.2 Asymptotic Perfect Secrecy and Asymptotic Perfect Detection

We know that asymptotic perfect secrecy and asymptotic perfect detection can be

achieved under N-P framework from Theorem 1, here we investigate the same problem

under the Bayesian framework, requiring

Pe,E → min (π0, π1) , N →∞.

To evaluate the asymptotic error rate, we need to establish the error decay rate

bound for the FC and eavesdropper respectively. First, from large deviation theory,

for any decision center with conditionally i.i.d., Bernoulli observations Yi with P (Yi =

1|H0) = ᾱ and P (Yi = 1|H1) = β̄, i = 1, 2, . . . , N , the decision rule is

∑N
i=1 Yi
N

H1

≷
H0

T.

Based on the work in [16] and the Chernoff inequality

Pf ≈ e−ND(T,ᾱ),

Pm ≈ e−ND(T,β̄),

where T is the decision rule threshold. Notice that
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max (lnPf + ln π0, lnPm + ln π1) ≤ lnPe,

lnPe ≤ max (lnPf + ln π0, lnPm + ln π1) + ln 2.

(3.19)

Hence, for a sufficiently large N ,

− lnPe
N
≈ min

(
− lnPf

N
,− lnPm

N

)
,

≈ min
(
D(T, ᾱ), D(T, β̄)

)
.

(3.20)

Therefore, the optimal T for large N is chosen such that D(T, ᾱ) = D(T, β̄). In

Appendix D, we show that

T =
D(ᾱ, β̄)β̄ +D(β̄, ᾱ)ᾱ

D(β̄, ᾱ) +D(ᾱ, β̄)
, (3.21)

which reveals the relationship between T and the KLD distances D(ᾱ, β̄) and D(β̄, ᾱ).

Table 3.2: Decision Rule Threshold T

(α, β) ≈ (0, 0) (α, β) ≈ (1, 1)

ρ̄ = 0 β−α
ln β
α

+ α β + α−β
ln 1−α

1−β

ρ̄ > 0 ᾱ+β̄
2

= ρ̄+ (1−ρ̄)(α+β)
2

ᾱ+β̄
2

= ρ̄+ (1−ρ̄)(α+β)
2
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By plugging the decision rule threshold into the approximated KLD in Table 3.1,

we summarize the approximated asymptotic error exponent in Table 3.3.

Table 3.3: Approximated Asymptotic Error Exponent

(α, β) ≈ (0, 0) (α, β) ≈ (1, 1)

ρ̄ = 0
(
β−α
ln β
α

+ α
)

ln
(
β−α
α ln β

α

) (
1− β − α−β

ln 1−α
1−β

)
ln

(
α−β

(1−β) ln 1−α
1−β

)

ρ̄ > 0 1
8
β2(1−2ρ̄)2

(1−ρ̄)ρ̄
1
8

(1−α)2(1−2ρ̄)2

(1−ρ̄)ρ̄

According to Table 3.3, when (α, β)→ (0, 0) and ρF > 0, the asymptotic error rate

at FC can be approximated as β2(1−2ρF )2

8ρF (1−ρF )
. Similarly, for eavesdropper with ρE > 0,

the error exponent D (TE, αE) = D (TE, βE) ≈ β2(1−2ρE)2

8ρE(1−ρE)
. Since Pe,E ∝ e−ND(TE ,βE),

in order to achieve the asymptotic perfect secrecy under the Bayesian settings, it is

required that

Nβ2(1− 2ρE)2 → 0, N →∞ =⇒ β = o
(√

N−1
)
, (3.22)

where f = o(g) denotes that function f grows strictly slower than function g, whereas

f = O(g) means f grows slower than or equal to g.

Meanwhile, when the FC channel is noise free and (α, β) → (0, 0), we have

TF = β−α
ln β
α

+ α and the resulting asymptotic error exponent D(TF , α) = D(TF , β) ≈(
β−α
ln β
α

+ α
)

ln
(
β−α
α ln β

α

)
= o(β). Hence, Pe,F ∝ e−Nβ. With the constraint of asymptotic

perfect secrecy (3.22), we know that Nβ = O
(√

N
)

, i.e., the probability of error at
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the FC decays no faster than e−
√
N . In practical applications, β can be chosen as

c(1/(
√
N lnN)), where c is a constant. This result leads to Theorem 4.

Theorem 4. Asymptotic Perfect Secrecy and Asymptotic Perfect Detec-

tion under Bayesian Framework When eavesdropper has a noisy channel, ρE > 0

and the FC has a noiseless channel, ρF = 0, the secrecy constraint (Pe,E ≥ ΘE,

Pe,F ≤ ΘF ,) can be satisfied for any arbitrary constants ΘE < min (P (H0), P (H1))

and ΘF > 0 given a sufficiently large number of sensors, N.

In summary, we showed that under Bayesian framework, eavesdropper’s detectabil-

ity can be limited to the level where she can only rely on the prior information, but

this induces a performance cost at the FC. Additionally, it was shown that both

asymptotic perfect secrecy and asymptotic perfect detection are possible.

3.5 Experimental Results

In this section, we compare the detection performance at eavesdropper and the FC

via the canonical distributed detection problem of a constant signal with zero mean

additive white Gaussian noise. Specifically, the sensor observations are given by


H1 : Xi = A+ Zi

H0 : Xi = Zi,

where Zi ∼ N (0, 1) is the normalized observation noise following a standard Gaus-

sian distribution, A > 0 is a fixed constant signal to be detected with signal-to-

noise ratio, SNR = 20 log10A dB. In this setting, the sensor log-likelihood ratio

ln (p1(xi)/p0(xi)) = Ax− A2

2
, is unbounded from above and below, and the detection
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probability is given by β(α) = Q(Q−1(α)− A), where Q(x) = 1√
2π

∫∞
x

exp(−u2

2
)du is

the tail probability of a standard Gaussian distribution.

3.5.1 Simulations under Neyman-Pearson Framework

We first examine the system secrecy when the FC has a non-perfect channel, ρF > 0

and ρE > 0. The upper figures of Figure 3.2 and Figure 3.3, show the performance

comparison between the FC and eavesdropper in terms of KLD for both cases, D(ᾱ, β̄)

and D(β̄, ᾱ) when N = 1, SNR = 0 dB (A = 1), ρF = 0.01, and ρE = 0.35. The

bottom figures show the ratio between KLD at the FC and KLD at eavesdropper for

one sensor. In this case, the maximum achievable KLD ratio defined in Equation

(3.17), R = 250 and the marker star in the bottom figure indicates the actual

maximum ratio. We can see that when probability of false alarm, α, is close to 0

or 1, the ratio D(αF , βF )/D(αE, βE) = D(βF , αF )/D(βE, αE) and they are close to

the theoretical value in Theorem 2, which is represented by the horizontal line in

each figure. Given the secrecy constraint such that DE ≤ TE is bounded, then the

maximum achievable DF ≤ RTE is also bounded, however, since ρF is small here, the

ratio R is still a large number, which reflects the detection performance gap between

eavesdropper and the FC. In other words, this ratio can be utilized in sensor network

design to improve secrecy at the physical-layer.

In order to show the achievable asymptotic perfect detection at the FC and

asymptotic zero detection at eavesdropper, we compare the detection performance

at eavesdropper and the FC in terms of their KLDs for all N sensors, DE and DF ,

which are under the conditions that SNR = 0 dB, ρF = 0, ρE = 0.35 and we set

DE → 0.1√
N

, which is monotone decreasing in N . From Figure 3.4 and Figure 3.5,

the trends of KLDs at the FC and KLD at eavesdropper show that both asymptotic



52

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
K

LD

D(αF , βF )

D(αE, βE)

0.0 0.2 0.4 0.6 0.8 1.0

pf

0

50

100

150

200

250

D
(α
F
,β
F

)
D

(α
E
,β
E

)

Actual Max Ratio
Theoretical Max Ratio

Figure 3.2: The maximum achievable detection performance trade-off
under Neyman-Pearson framework using KLD for one sensor.

perfect detection and asymptotic perfect secrecy are possible by increasing the number

of sensors. In the figure, D̃F and D̃E denote the approximated KLDs at the FC and

at eavesdropper, respectively, where D̃F is computed using Equation (3.14). We can

see that the approximated KLDs approach to the actual KLDs for both cases when

(α, β)→ (0, 0) and (α, β)→ (1, 1).

ROC curves shown in Figure 3.6, are obtained under the same settings in Figure

3.4 with 10 and 50 sensors. The corresponding eavesdropper curves are approaching

a diagonal line which implies no detectability. When the number of sensors is 50, the

corresponding detection performance of the FC is almost perfect. The ROC curves
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Figure 3.3: The maximum achievable detection performance trade-off
under Neyman-Pearson framework using KLD for one sensor.

show again that asymptotic perfect secrecy can be achieved by increasing the number

of sensors and adjusting sensor optimality points accordingly.

3.5.2 Simulations under Bayesian Framework

Under Bayesian framework, we illustrate the secrecy and detection performance trade-

off with relative to the total number of sensors, N , in Figure 3.7. We set π0 and

π1 as 0.7 and 0.3 respectively, SNR = 3 dB, and ρE = 0.3, ρF = 0. From the

figure, we can see that the simulated data approaches the FC theoretical probability

of error value of 0.159, computed using Theorem 3. Meanwhile, the probability of
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Figure 3.4: When (α, β) ≈ (0,0), the asymptotic secrecy and detection
performance using approximated and actual KLD (D(ᾱ, β̄)) at the FC and
at eavesdropper for N sensors. DF and DE denote the actual KLDs at the
FC and at eavesdropper, respectively. D̃F and D̃E denote the approximated
KLDs at the FC and at eavesdropper, respectively.

error at eavesdropper remains fixed at π1 = 0.3. In other words, the detectability of

eavesdropper is constrained at her prior information and observations do not improve

her decision-making. Meanwhile, the detection performance at the FC does not exceed

the bound derived in Theorem 3.

For asymptotic performance analysis, we first plot the asymptotic error exponent

for the FC with noiseless channels in Figure 3.8, the SNR and prior probabilities

are the same with the ones in Figure 3.7. Meanwhile, the sensor’s probability of
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Figure 3.5: When (α, β) ≈ (1,1), the asymptotic secrecy and detection
performance using approximated and actual KLD (D(ᾱ, β̄)) at the FC and
at eavesdropper for N sensors. DF and DE denote the actual KLDs at the
FC and at eavesdropper, respectively. D̃F and D̃E denote the approximated
KLDs at the FC and at eavesdropper, respectively.

detection is selected as β = 1.5√
N lnN

, and the corresponding probability of false alarm

is α = Q (Q−1(β) + A). We can see the estimated error exponent of the FC in Figure

3.8, approaches the actual error exponent when the number of sensors is 100.

We then plot the probability of error for the FC and eavesdropper in Figure

3.9 under the above conditions and ρE = 0.35. As the number of sensors increase,

probability of error for eavesdropper stays at π1, which means the reported sensor

observations do not improve eavesdroppers detection ability. As for the FC, the
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probability of error quickly diminishes to zero with a few hundred sensors. In other

words, asymptotic perfect secrecy is possible under Bayesian framework.
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CHAPTER 4

SECRECY CONSTRAINED DISTRIBUTED

ESTIMATION IN WSNS

This chapter is organized as follows. In Section 4.1, we introduce the estimation

system model with secrecy constraints and in 4.2, we introduce estimation perfor-

mance metric, FI and explain how to achieve asymptotic perfect secrecy. We continue

analyzing the case where the parameter is fixed but unknown and the observation

noise follows Gaussian distribution in Section 4.3. For Bayesian cases where the

parameter is a random variable, we show that the secrecy constraints for the FC and

eavesdropper can be satisfied as well in Section 4.4. Simulation results are provided

to further support our proofs in Section 4.5.

4.1 Distributed Estimation Model

The parallel WSN model with a global and greedy eavesdropper who has access to all

sensors outputs is shown in Figure 4.1, where sensors observe parameter θ, quantize

their observations, then send them to the FC across channels. In many applications,

the sensors are deployed to monitor the environment. In such scenarios, the sensor

observations can often be assumed to be conditionally independent and identically

distributed (i.i.d) given the underlying parameter θ. Under this assumption, the

sensor observations X = [X1, X2, . . . , XN ] can be written as follows,
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Figure 4.1: Parallel sensor network model under eavesdropper attack, who
eavesdrops on the output of sensor i, transmitted wirelessly via a binary
symmetric channel with bit error rate ρE,i. The FC receives sensor i data
through another binary symmetric channel with bit error rate ρF,i < ρE,i.

f(X|θ) =
N∏
i=1

f(Xi|θ),

where f(X|θ) and f(Xi|θ) are known probability density functions (pdfs) and Xi is

the observation of sensor i.

We consider the estimation problem, where the ith sensor observation Xi is,
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Xi = θ + Zi, i = 1, 2, . . . , N, (4.1)

where Zi is an additive i.i.d zero mean observation noise with pdf f(·). Due to

the bandwidth constraint between local sensors and the FC, we assume the Xi are

quantized to a single bit of compressed data, Ui, via the quantization rule

Ui =


1, Xi > ηi

0, Xi ≤ ηi

∀i, (4.2)

where the threshold, ηi, is fixed and known to both the FC and eavesdropper. To

reduce the system complexity and improve system robustness, we assume that the

sensors employ identical quantization rules such that η1 = η2 = · · · = ηN = η.

Because the sensors observations are conditionally i.i.d., we have

Pr(Ui = 1|θ) = β = Pr(θ + Zi > η) = Q(η − θ),

Pr(Ui = 0|θ) = 1− β = 1− Pr(Ui = 1|θ),

where Q(t) =
∫∞
t
fZ(x)dx is the complementary distribution function of Z.

The communication channels between sensors and the receivers are assumed to be

BSCs. Sensor i sends decision Ui to the FC over a BSC with BER ρF,i <
1
2
, with the

received decision Vi. All of the sensors outputs are eavesdropped by eavesdropper via

a set of parallel wiretapping channels. eavesdropper receives Wi, from sensor i as an

output of a separate BSC channel with BER ρE,i <
1
2
. We assume that eavesdropper’s

channel is noisier than the FC’s such that ρE,i > ρF,i [32, 99]. Assuming that the
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sensors are within similar distances to eavesdropper and the FC, then the channels

can be assumed to be independent and identical, i.e., ρF = ρF,1 = · · · = ρF,N and

ρE = ρE,1 = · · · = ρE,N .

As a result, the observations at the FC and eavesdropper possess the following

quality,

Pr(Vi = 1|θ) = (1− 2ρF ) Pr(Ui = 1|θ) + ρF ,

Pr(Wi = 1|θ) = (1− 2ρE) Pr(Ui = 1|θ) + ρE.

For the purposes of this chapter we analyze identical channels, although non-

identical channels can be treated in a similar fashion.

4.2 Estimation Performance and Asymptotic Perfect Secrecy

under Classical Setting

We now evaluate the estimation performance at the FC and eavesdropper under

a classical setting, using the widely employed Mean Squared Error (MSE) metric

under some wild conditions [15, 39]. The Cramér-Rao inequality given observations

V = [V1, . . . , VN ]T and known quantization rules [84, 87], establishes a MSE lower

bound for any unbiased estimator of θ̂F , εF such that ,

εF , E
(
θ̂F − θ

)2

≥ CRLB(V; θ) =
1

I(V; θ)
, (4.3)

where CRLB is Cramér-Rao lower bound [39] and I(V; θ) is the FI, given by,
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I(V; θ) , EV

[(
∂ log p(V; θ)

∂θ

)2
]

(a)
=

N∑
i=1

EVi

[(
∂ log p(Vi; θ)

∂θ

)2
]

(b)
= NI(η, θ, ρF ),

where p(V; θ) is the pdf of parameter θ given V [39]. Note, (a) and (b) follow from the

sensors observations conditionally i.i.d property, the identical channels assumption,

and

I(η, θ, ρ) =
f 2(η − θ)(1− 2ρ)2

(ρ+ (1− 2ρ)Q(η − θ))(1− ρ− (1− 2ρ)Q(η − θ)) (4.4)

is the per sensor FI when the sensor observation is received over a BSC with BER ρ.

Similarly, at eavesdropper with W = [W1, . . . ,WN ]T , the MSE lower bound, εE,

for any unbiased estimator θ̂E is

εE , E
(
θ̂E − θ

)2

≥ CRLB(W; θ)

=
1

I(W; θ)
=

1

NI(η, θ, ρE)
.

4.2.1 Fisher Information Ratio

Based on the CRLB, the secrecy design problems can be framed as maximizing the FI

at the FC while minimizing the FI at eavesdropper. Therefore, we introduce the FI

ratio R as an intermediate step to achieve these secrecy requirements, with a higher

R indicating a better secrecy. The FI ratio is defined as follows,
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R(η, θ) ,
I(η, θ, ρF )

I(η, θ, ρE)

=
(1− 2ρF )2(ρE + (1− 2ρE)Q(η − θ))
(1− 2ρE)2(ρF + (1− 2ρF )Q(η − θ))

× (1− ρE − (1− 2ρE)Q(η − θ))
(1− ρF − (1− 2ρF )Q(η − θ))

=

(
ρE

1−2ρE
+Q(η − θ)

)(
1−ρE
1−2ρE

−Q(η − θ)
)

(
ρF

1−2ρF
+Q(η − θ)

)(
1−ρF
1−2ρF

−Q(η − θ)
)

=
−Q2(η − θ) +Q(η − θ) + ρE(1−ρE)

(1−2ρE)2

−Q2(η − θ) +Q(η − θ) + ρF (1−ρF )
(1−2ρF )2

= 1 +

ρE(1−ρE)
(1−2ρE)2

− ρF (1−ρF )
(1−2ρF )2

−Q2(η − θ) +Q(η − θ) + ρF (1−ρF )
(1−2ρF )2

= 1 +

ρE(1−ρE)
(1−2ρE)2

− ρF (1−ρF )
(1−2ρF )2

−
(
Q(η − θ)− 1

2

)2
+ 1

4
+ ρF (1−ρF )

(1−2ρF )2

.

(4.5)

Notice that the function ρ(1−ρ)
(1−2ρ)2

is a monotone increasing function for ρ < 0.5, and

since ρF < ρE < 1
2
, then ρE(1−ρE)

(1−2ρE)2
− ρF (1−ρF )

(1−2ρF )2
> 0. Therefore, R(η, θ) is a decreasing

function of Q(η − θ) when Q(η − θ) ∈ (0, 0.5] and increasing function of Q(η − θ)

when Q(η − θ) ∈ [0.5, 1). The supremum of the FI ratio,

sup(R) =
ρE(1− ρE)(1− 2ρF )2

ρF (1− ρF )(1− 2ρE)2
, (4.6)

is achieved when Q(η − θ) approaches to 0 or 1. However, such choices of Q are not

desirable in that they result in f(η − θ) = −dQ(η−θ)
dη

= 0 and further the FI at the

FC, NI(θ, η, ρF )=0, indicating that the FC does not obtain any useful information

for estimation either. Nevertheless, as R is a continuous function of Q, to achieve

the design goal, we can choose Q(η − θ) close to 0 or 1 and increase the number of

sensors N . In other words, we need to design η and N jointly to realize maximum
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achievable performance at the FC and secrecy against eavesdropper. Meanwhile, we

discuss the minimized FI ratio in Appendix E.

Also notice that the FI ratio limit in Equation (4.6) is exactly the same with the

KLD ratio derived in distributed detection in Section 3.3.3.

4.2.2 Asymptotic Perfect Secrecy

In order to achieve APS against eavesdropper, we require

I(W; θ) = NI(η, θ, ρE)→ 0, N →∞. (4.7)

Naturally, we also require the WSN to have an asymptotic perfect estimation at

the FC, i.e.,

I(V; θ) = NI(η, θ, ρE)→∞, N →∞. (4.8)

Notice that when the FC has noiseless channels such that ρF = 0, the maximum FI

ratio sup(R) =∞, indicating it is possible to simultaneously achieve both asymptotic

perfect estimation and asymptotic perfect secrecy by choosing the appropriate η as a

function of N . Next, we demonstrate how to do so for the case where the observation

noises are Gaussian distributed, with similar design approaches employed for other

noise distributions.

4.3 Estimation in Gaussian Noise under Classical Settings

We now consider the case where the observation noise, Zi, follows the standard

Gaussian distribution with zero mean and unit variance, where f(x) = 1√
2π
e

−x
2 .
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According to the bounds on Mills ratio [70], x + 1 > f(x)
Q(x)

> x, for x > 0, we

have

f(x)

xQ(x)
→ 1, as x→∞. (4.9)

For the FC with noiseless channel, the total FI is

I (V; θ) ∝ N(η − θ)f(η − θ)

= N(η − θ) 1√
2π
e

−(η−θ)2
2 .

For the noisy eavesdropper, the corresponding FI is

I (W; θ) ∝ Nf 2(η − A)

= N

(
1

2π
e

−(η−θ)2
2

)2

.

By choosing η =
√

(1 + µ) logN , where η � θ and µ ∈ [0, 1], for a fixed but

unknown θ, and N sufficiently large, e
−(η−θ)2

2 ∝ N−
1+µ
2 .

For the FC,

I (V; θ) ∝ N
√

(1 + µ) logN N−
1+µ
2

= N
1−µ
2

√
(1 + µ) logN.

(4.10)

For eavesdropper,
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I (W; θ) ∝ N
(
N−

1+µ
2

)2

= N−µ.

(4.11)

Now, the problem becomes how to choose µ such that I(V; θ)→∞ for asymptotic

perfect estimation and I(W; θ)→ 0 for asymptotic perfect secrecy.

If µ = 0,

I (V; θ) ∝ N
1
2

√
logN →∞, when N →∞.

I (W; θ) ∝ N
(
N−

1
2

)2

→ O(1), when N →∞.

In this case, the secrecy at eavesdropper can be constrained to a constant, however,

the performance of the FC can still be guaranteed to be asymptotic perfect at the

rate of O
(√

N
)

.

If we choose µ = 1
3
,

I (V; θ) ∝ N
1
3

√
4

3
logN →∞, when N →∞.

I (W; θ) ∝ N
−1
3 → 0, when N →∞.

Hence, both asymptotic perfect secrecy and asymptotic perfect estimation can

be achieved under standard Gaussian observation noise. Similarly, when µ = 2, the

constraints can be satisfied as well.

When µ = 1, the performance of the FC is guaranteed, however, eavesdropper’s

performance diminishes at the rate of 1/N .
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4.3.1 Performance Comparison in Detection and Estimation

In Section 3.3.2, we summarized the detection performance for the FC and eaves-

dropper, as


DE ∝ N−µ,

DF ∝ N
1−µ
2 .

where (0 < µ < 1).

And in this section, we derived the estimation performance as,


I (W; θ) ∝ N−µ,

I (V; θ) ∝ N
1−µ
2

√
(1 + µ) logN.

where (0 ≤ µ ≤ 1). We can see that the inference performance trade-off for the FC

and eavesdropper under detection and estimation are almost the same.

4.4 Estimation under Bayesian Framework

We analyzed the case where the parameter θ is fixed but unknown, now we continue

to investigate the case where θ is a random variable. In this case, the prior density

about parameter θ should be considered in estimation. Similar to the classical case,

the Bayesian CRLB (BCRLB) at the FC and at eavesdropper are defined, respectively,

as
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BCRLBF (V; θ) = (I (V; θ))−1 =

(∫ ∞
−∞

NI(η, θ, ρF )p (θ) dθ + I(λ)

)−1

BCRLBE (W; θ) = (I (W; θ))−1 =

(∫ ∞
−∞

NI(η, θ, ρE)p (θ) dθ + I(λ)

)−1
(4.12)

where

I(λ) =

∫ (
∂ log p (θ)

∂θ

)2

p(θ)dθ,

and p (θ) is the prior density of the parameter θ and I (η, θ, ρ) is from Equation (4.4).

4.4.1 θ ∼ N (0, 1)

For the case that θ ∼ N (0, 1) such that p (θ) = 1√
2π

exp
(
− θ2

2

)
and because the

channel of the FC is noiseless, we can simplify the FI at the FC for one sensor as

follows,

I (η, θ, ρF ) =
f 2 (η − θ)

Q (η − θ) (1−Q (η − θ))

Assume the observation noise has unit variance, I (η, θ, ρF ) is maximized when

η − θ = 0, therefore, Q (η − θ) = 1
2
.

I (η, θ, ρF ) =

(
1√
2π

)2

1
2

1
2

=
2

π
.

Therefore, the total FI at the FC is NI (η, θ, ρF ) = 2N
π

, which indicates that the

total FI at the FC is O(N) at most.
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However, what if Q(η − θ) 6= 1
2
? How should we choose η to satisfy the secrecy

constraints under Bayesian framework? Similarly, utilize Mills ratio in Equation (4.9)

and set η as
√

(1 + µ) logN , where 0 ≤ µ ≤ 1. Hence, the total FI at the FC,

I (V; θ) =

∫ ∞
−∞

N (η − θ) f (η − θ) p (θ) dθ

∝
∫ ∞
−∞

N
√

(1 + µ) logNN−
1+µ
2 p (θ) dθ

= N
1−µ
2

√
(1 + µ) logN →∞, as N →∞.

For eavesdropper, the total FI,

I (W; θ) =

∫ ∞
−∞

Nf 2 (η − θ) p (θ) dθ

∝
∫ ∞
−∞

N
(
N−

1+µ
2

)2

p (θ) dθ

= N−µ.

Therefore,


I (W; θ)→ 0; 0 < µ ≤ 1

I (W; θ)→ O (1) ; µ = 0

Similar to the classical setting case, the equations show that the secrecy constrains

can be satisfied by choosing the appropriate threshold under Bayesian framework.
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4.5 Experimental Results

In this section, we compare the estimation performance under two settings, one is a

classical setting where the parameter is fixed but unknown; the other is a Bayesian

setting where θ is a random variable.

4.5.1 Fixed but Unknown Parameter in Gaussian Noise

We first compare the estimation performance at eavesdropper and at the FC via the

distributed estimation of a fixed but unknown parameter with zero mean additive

white Gaussian noise. Specifically, the sensor observations are given in Equation

(4.1), where Zi ∼ N (0, 1) is the normalized observation noise following a standard

Gaussian distribution. Both the FC and eavesdropper employ Maximum Likelihood

Estimation (MLE) to obtain θ̂F and θ̂E based on V and W, respectively. The two

MSE estimates are

θ̂F =

(
η −Q−1

(
V̄ − ρF
1− 2ρF

))
θ̂E =

(
η −Q−1

(
W̄ − ρE
1− 2ρE

))
,

(4.13)

where V̄ , W̄ are the mean of received outputs for the FC and eavesdropper, respec-

tively.

We first examine the system secrecy when the FC has a perfect channel, ρF = 0,

eavesdropper has a noisy channel, ρE = 0.40, and the threshold η =
√

4
3

logN . First,

the FI as a function of N for θ = 1 is displayed in Figure 4.2. We see that the FI

at the FC is increasing with the number of sensors, while the FI at eavesdropper is

close to zero, consistent with the proofs for Equation (4.10) and (4.11).
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Figure 4.2: Total Fisher Information for the FC and eavesdropper with

different number of sensors given θ = 1, η =
√

4
3

logN under classical setting.

As the number of sensors grow, the FI at the FC increases significantly
while the FI at eavesdropper is close to zero.

Under the same conditions of η, ρE and ρF , via Monte-Carlo simulation with 1000

trials, we plot the resulting mean and MSE of the estimated parameters θF and θE by

the FC and eavesdropper in Figure 4.3 and Figure 4.4, respectively, where θ ∈ [0, 1.4],

and the number of sensors is fixed at N = 100. In both figures, the trends show that

eavesdropper, with a larger BSC BER, cannot accurately estimate θ. Meanwhile,

the FC can almost perfectly estimate the parameter, where the estimated parameter

mean is close to the ground truth in Figure 4.3 and the MSE is close to zero in Figure
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Figure 4.3: Mean of estimated signal by the FC and eavesdropper with dif-

ferent bit error rates under classical setting, where η =
√

4
3

logN , N = 100.

The FC’s estimation is close to the ground truth, while for eavesdropper,
the estimations are off even the one with small bit error rate.

In Figure 4.5, we plot the exact MSE against the number of sensors for both

the FC and eavesdropper, where the channel of the FC is noiseless, ρF = 0, and

eavesdropper’s channel is noisy, ρE = 0.4. Meanwhile, SNR = 0 dB, the threshold η

is set as
√

logN . We can see that the MSE of the FC diminishes close to zero while the

MSE of eavesdropper are much higher than the FC’s as the number of sensors increases

from 10 to 100. As the performance metric, the MSEs of the FC and eavesdropper in
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Figure 4.4: MSE of estimated signals by the FC and eavesdroppers with
different bit error rates under classical setting, where the threshold, η =√

4
3

logN , N = 100.

this figure indicate that the FC significantly outperforms eavesdropper in estimating

the parameter θ with merely 10 to 100 sensors.

4.5.2 Simulations under Bayesian Framework

We continue comparing the performance at the FC and eavesdropper under Bayesian

setting where the parameter θ is a random variable. Here, we assume that the

parameter, θ, follows standard Gaussian distribution, N (0, 1), and the observation

noise also follows Gaussian distribution,N
(
0,
√

2
)
. The FC channel is set to noiseless,



76

101 102

Number of Sensors N

0

1

2

3

4

5

6

7

8
M

ea
n

S
qu

ar
ed

E
rr

or
FC
Eve

Figure 4.5: Exact Mean squared error for both the FC and eavesdrop-
per with different number of sensors under classical setting, where the
parameter, θ = 1 and the threshold, η =

√
logN .

ρF = 0 and ρE = 0.4, the threshold η =
√

logN .

In Figure 4.6, we plot Fisher information with respect to the number of sensors

for the FC and eavesdropper. Similar to the case of classical setting, the FI at the

FC is increasing as the number of sensors increases from 10 to 100, meanwhile the FI

at eavesdropper is close to zero. The growth rate at the FC is proportional to
√
N ,

which is consistent with the proof in Section 4.4.1.
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Figure 4.6: Total Fisher Information for both the FC and eavesdropper
with different number of sensors under Bayesian framework, where η =√

logN .
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CHAPTER 5

SECRECY CONSTRAINED DISTRIBUTED INFERENCE

WITH FADING CHANNEL MODELS

In Chapter 3 and 4, we consider the secrecy constrained distributed detection and

distributed estimation, respectively, where local sensors and the FC are connected

through a parallel binary symmetric channel. In this chapter, we take fading channel

into consideration because fading channels are also widely used in wireless communica-

tions for modeling scattered signals that reach a receiver by multiple paths. Hence, in

this chapter, we consider the distributed inference problems under secrecy constraints

with Rayleigh fading with BPSK signaling. This chapter is organized as the follows.

In Section 5.1, we consider the secrecy constrained distributed detection with Rayleigh

fading with BPSK signaling. Similar analysis are given in Section 5.2 for distributed

estimation. We present simulations results in Section 5.3.

5.1 Secrecy Constrained Distributed Detection with Parallel

Rayleigh Fading Binary Symmetric Channel

Similar to the case in Chapter 3, the network consists of N sensors connected in

parallel to a FC via a set of parallel accessible channels. Xi and pk (Xi) = p (Xi;Hk)

are the sensor observation and the pdf under hypothesis Hk at sensor i, respectively,

where k = 0, 1 and i = 1, 2, . . . , N . Sensors employ the same quantization rule as set
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in Equation (4.2). The wireless communication channels between each sensor and the

FC are assumed to be Rayleigh fading BSCs, where the channel gain for the FC and

eavesdropper are hF,i and hE,i, respectively, and the corresponding BERs are ρF,i and

ρE,i. The sensors observations and the channels are assumed to be conditionally i.i.d..

For each sensor, the probability of false alarm is α and the probability of detection is

β, where

α = P (Ui|H0) = P

(
p1 (Xi)

p0 (Xi)
≥ η|H0

)
β = P (Ui|H1) = P

(
p1 (Xi)

p0 (Xi)
≥ η|H1

)

At the FC level, the received decisions are,

P (Vi = 1|H0) = αF = ρF + (1− 2ρF )α

P (Vi = 1|H1) = βF = ρF + (1− 2ρF ) β

where hF is the channel gain for the FC and Zi is the observation noise. Similarly for

eavesdropper,

P (Wi = 1|H0) = αE = ρE + (1− 2ρE)α

P (Wi = 1|H1) = βE = ρE + (1− 2ρE) β

Assume the average SNR between local sensors and the FC to be ξF and the

average SNR between sensors and eavesdropper be ξE, according to the derivation in

[63] and since the channels are independent and identical, the bit error rate of the
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fading channel with binary phase-shift keying (BPSK) modulation (with coherent

detection) is

ρE = ρE,i =
1−ΨE

2

ρF = ρF,i =
1−ΨF

2
,

(5.1)

where,

ΨE =

√
ξE

1 + ξE

ΨF =

√
ξF

1 + ξF

(5.2)

Recall from Chapter 3.3, we analyze the maximum achievable performance trade-

off between the FC and eavesdropper using the KLD ratio under Neyman-Pearson

framework. Here, we use the same technique with Rayleigh fading channel model.

According to Appendix B, the KLD ratio for parallel channel is

R =
D(αF , βF )

D(αE, βE)

=
(1− 2ρF )2(1− ρE)ρE
(1− 2ρE)2(1− ρF )ρF

(5.3)

Plugging in ρF and ρE in Equation (5.1), we have
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R =

(
1− 21−ΨF

2

)2 (
1− 1−ΨE

2

)
1−ΨE

2(
1− 21−ΨE

2

)2 (
1− 1−ΨF

2

)
1−ΨF

2

=
Ψ2
F (1−ΨE)2

Ψ2
E(1−ΨF )2

=

ξF
1+ξF

(
1− ξE

1+ξE

)
ξE

1+ξE

(
1− ξF

1+ξF

)
=

ξF
1+ξF

(
1

1+ξE

)
ξE

1+ξE

(
1

1+ξF

)
=
ξF
ξE
.

(5.4)

Similar to the case of parallel binary symmetric channel, when ρF 6= 0 and ρE 6= 0,

shown in Section 3.3.3, we derive the maximum achievable ratio and we summarize

it as the following theorem.

Theorem 5. Maximum Achievable Performance Trade-off with Rayleigh

Fading Channel When both eavesdropper and the FC have noisy Rayleigh fading

channels, with the average SNRs ξE and ξF , respectively, the secrecy constraints can

only be achieved for certain thresholds TE and TF such that TF/TE is no more than

the ratio, R = ξF
ξE

, regardless of the number of sensors, N .

Remark 2. To improve the secrecy in WSNs, one needs to either decrease SNR of

eavesdropper, ξE, by using directional antenna or keys, or one can increase ξF . For

example, if secrecy requirements for a WSN are TF = 10 and TE = 1, then ξF/ξE ≥

TF/TE = 10 dB. It means that the SNR of the FC needs to be at least 10 dB better

than eavesdropper’s, which requires the FC to have high communication quality.
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5.2 Secrecy Constrained Distributed Estimation with Paral-

lel Rayleigh Fading Binary Symmetric Channel

Similarly for the distributed estimation with parallel Rayleigh fading binary symmet-

ric channel, sensors observes one parameter θ. Here, we consider the classical setting,

where θ is fixed but unknown,

Xi = θ + Zi, 1 = 1, 2, . . . , N,

where Zi is an additive i.i.d zero mean observation noise. We assume the sensor

observations to be conditionally i.i.d given the underlying parameter θ, which results

in

f(X|θ) =
N∏
i=1

f(Xi|θ),

where f(X|θ) and f(Xi|θ) are known probability density functions (pdfs) and Xi is

the observation of sensor i.

Same with the assumption in Chapter 4, the sensors employ identical quantization

rules such that

η1 = η2 = · · · = ηN = η,

where the sensors observations are quantized to a single bit Ui according to the

threshold ηi.
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Ui =


1, Xi > ηi

0, Xi ≤ ηi

∀i. (5.5)

At the local sensor level, the

Pr (Ui = 1|θ) = β = Pr (θ + Zi > η) = Q (η − θ)

Pr (Ui = 0|θ) = 1− β = 1− Pr (Ui = 1|θ) .

Meanwhile the received decisions at the receiver level are

Pr(Vi = 1|θ) = (1− 2ρF ) Pr(Ui = 1|θ) + ρF ,

Pr(Wi = 1|θ) = (1− 2ρE) Pr(Ui = 1|θ) + ρE.

Again, we consider the FI as the performance metric for the FC, I (V; θ) =

NI(η, θ, ρF ) and eavesdropper, I (W; θ) = NI(η, θ, ρE), where

I(η, θ, ρ) =
f 2(η − θ)(1− 2ρ)2

(ρ+ (1− 2ρ)Q(η − θ))(1− ρ− (1− 2ρ)Q(η − θ)) ,

and we compute the FI ratio . From Section 4.2, we have the FI ratio, which is

exactly the same with Equation (5.3). In other words, the supremum of the FI ratio

is
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sup (R) =
ρE(1− ρE)(1− 2ρF )2

ρF (1− ρF )(1− 2ρE)2

=
ξF
ξE
.

Similarly, the secrecy of the network can be improved by either increasing the FC

SNR or decreasing eavesdropper SNR.

This ratio is of help in achieving asymptotic perfect secrecy and asymptotic perfect

estimation in that the requirements are

I (W; θ) = NI (η, θ, ρE)→ 0, N →∞,

I (V; θ) = NI (η, θ, ρF )→∞, N →∞,

If ξE is zero, the maximum FI ratio is infinity, which means it is possible to achieve

asymptotic perfect secrecy and asymptotic perfect estimation.

5.3 Experimental Results

In this section, we plot and evaluate the performance trade-off between the FC and

eavesdropper for both the detection and estimation problems.

5.3.1 Secrecy Constrained Distributed Detection

For distributed detection problems, we consider a constant signal with zero mean

additive white Gaussian noise. The sensor observations are given by


H1 : Xi = A+ Zi

H0 : Xi = Zi,
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Figure 5.1: The maximum achievable KLD ratio for secrecy constrained
distributed detection, ξF = 0 dB and ξE = −7 dB.

where Zi ∼ N (0, 1) is the normalized observation noise following a standard Gaussian

distribution, A > 0 is a fixed constant signal to be detected with signal-to-noise ratio,

SNR = 20 log10A dB.

We first plot the maximum achievable KLD ratio, DF/DE, in Figure 5.1. SNR

for the FC and eavesdropper are set as, ξF = 0 dB and ξE = −7 dB, respectively.

From the figure, we can see that the simulated maximum KLD ratio is very close to

the theoretical one derived in Equation (5.4).

In Figure (5.2), the actual KLD is plotted against the number of sensors N . As

we expected, as the number of sensors grows, the FI at the FC increases faster than
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Figure 5.2: The actual KLD for the FC and eavesdropper with different
number of sensors, ξF = 0 dB and ξE = −7 dB.

eavesdropper FI.

We show the maximum KLD ratio in Figure 5.3. The SNR of eavesdropper is

fixed to −7 dB (corresponds to 0.2 in the figure), and the SNR of the FC increases

to 20. We can see that it is linear between the maximum KLD ratio and SNR of the

FC.

5.3.2 Secrecy Constrained Distributed Estimation

The estimation performance at eavesdropper and at the FC via the distributed esti-

mation of a fixed but unknown signal with zero mean additive white Gaussian noise.
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Figure 5.3: The maximum KLD ratio for the FC and eavesdropper with
ξE = −7 dB.

Specifically, the sensor observations are given in Equation (4.1), where Zi ∼ N (0, 1)

is the normalized observation noise following a standard Gaussian distribution. Both

the FC and eavesdropper employ Maximum Likelihood Estimation (MLE) to obtain

θ̂F and θ̂E based on V and W, respectively. The two MSE estimates are

θ̂F =

(
η −Q−1

(
V̄ − ρF
1− 2ρF

))
θ̂E =

(
η −Q−1

(
W̄ − ρE
1− 2ρE

))
,

(5.6)
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Figure 5.4: The actual FI for secrecy constrained distributed estimation
with ξE = −7 dB, the number of sensors, N = 100.

where V̄ , W̄ are the mean of received outputs for the FC and eavesdropper, respec-

tively.

We show the actual estimation performance of the FC and eavesdropper in Figure

5.4. The SNR of eavesdropper is fixed to −7 dB, the number of sensors is 100, the

threshold η =
√

logN and the SNR of the FC increases from 0.2 to 20. We can see

that the FI at the FC is increasing with the increment of the SNR, which means the

secrecy of the network can be improved by increasing the FC SNR.
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CHAPTER 6

CONCLUSION

6.1 Summary

Comprised of a large number of low-cost, low-power, mobile and miniature sensors,

WSNs are widely employed in many applications, such as environmental monitoring,

health-care, and diagnostics of complex systems. For these applications, the data

collected by local sensors are extremely sensitive, and care must be taken to prevent

that information from being leaked to any malicious third parties, e.g., eavesdroppers.

In WSNs, the sensor outputs are often transmitted across a wireless communication

network to legitimate users such as a fusion center for final decision-making. However,

because of wireless links across the network, data are vulnerable to security breaches.

Eavesdropping on wireless links between the sensor and the legitimate user by a

third party (eavesdropper) is defined as an eavesdropping attacks. The reason we

focus on eavesdropping attack is that it forms the basis or starting point for a large

number of different, more malicious attack strategies. For example, if Byzantine, jam-

ming attackers or intruders have reliable information provided by the eavesdropper,

their subsequent attacks can be more efficient.

Hence, we focus on security issues for WSNs especially on secrecy constrained

distributed inference in WSNs. The off-the-shelf solution for eavesdropping attack

is cryptography techniques, public-key and symmetric key algorithms. However, due
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to the constraints on computational power, bandwidth, and time constraints, these

algorithms could hardly be implemented for WSNs. Even though the symmetric keys

algorithm consume relatively low-power, they do require the nodes to have the com-

putational capability to perform the required tasks which may not be true for some

of the nodes. Therefore, we resort to a physical-layer security approach which utilizes

the characteristics of the physical layer, including transmission channels noises, and

the information of the source. Additionally, physical-layer security for distributed

detection is scalable due to the low computational complexity. Physical-layer security

approaches can be used along with cryptography techniques to further enhance WSNs

and make systems even more secure.

Chapter 3 considered the secrecy constrained distributed detection in WSNs under

both the Neyman-Pearson and Bayesian frameworks using physical-layer security

approaches by adjusting sensor optimality points. We analyzed the asymptotic de-

tection performance and proposed a novel way of analyzing the maximum perfor-

mance trade-off using KLD ratio between the FC and eavesdropper. Under the

N-P framework, we showed that eavesdropper’s detection performance can be limited

such that her decision-making is no better than random guessing; meanwhile, the

detection performance at the FC is guaranteed at the prespecified level. Similar

analyses and proofs are provided under the Bayesian framework, where it was shown

that eavesdropper can be constrained to an error probability level equal to her prior

information. Additionally, we derived the asymptotic error exponent and showed that

asymptotic perfect secrecy and asymptotic perfect detection are possible by increasing

the number of sensors under both frameworks if the FC has noiseless channels to the

sensors. The numerical results showed that with reasonable number of sensors, we

can guarantee the detection performance of the FC to achieve the desired level, while
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the detectability at eavesdropper deteriorates significantly as the number of sensors

increases. These results in this chapter can be applied to improve the secrecy of

WSNs against eavesdropping attacks at the physical-layer.

Chapter 4 concentrated on the secrecy constrained distributed estimation in WSNs

which are subject to an eavesdropping attack under both classical setting and Bayesian

framework. The eavesdropper has access to all sensors outputs instead of partial

access. The maximum achievable secrecy performance was derived and it was proved

that under the condition that eavesdropper has a noisy channel and the FC has a

noiseless channel, both APS and APE can be achieved. The secrecy design method

in this dissertation might greatly enhance the secrecy in distributed estimation for

large sensor networks.

Chapter 5 considered secrecy constrained distributed inference with Rayleigh

fading binary symmetric channel models. We derived the maximum achievable per-

formance ratio and show that the number of sensors does not affect this ratio. We

showed that for both detection and estimation problems, asymptotic perfect secrecy

cannot be achieved.

6.2 Future Research Topics

We investigated distributed detection and estimation under secrecy constraints for

parallel channels and a few other research topics within this framework can be

investigated as well.

• The design of distributed inference algorithms depends on the underlying sensor

network topology. Different topologies requires different algorithms in designing

secrecy rules for sensors and the FC. Therefore we considered parallel topology
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in this dissertation; however, the results can be extended to distributed inference

with generalized topology, such as tree topology shown in Figure 1.3. The

structure can be balanced or unbalanced. In a balanced structure, sensors at the

same level have equal numbers of children where an unbalanced structure does

not have such restriction. For tree-structured systems, each sensor observes the

same phenomenon, quantizes their observations and then transmits the decision

to their parent node [96], and the parent node keeps doing the same until the

decisions are reached by the FC. Then global decision rule is designed so that

the FC could make the final decision.

• In this dissertation, we considered the scenario that the eavesdropping attacker

has a noisier channel than the FC, and has access to all the sensors outputs.

We could also consider situations such that the attacker could have only partial

access to the sensor decisions; however, the channel quality is not necessarily

worse than the FC’s.

• We could also consider the scenario where the FC and eavesdropper may have

access to side information that allows them to improve their performance. In

such a scenario, the same approach in this dissertation can still be employed.

Special treatment utilizing the side information may help further improve the

inference performance.

• We did not consider the model uncertainty in this dissertation. Considering real

data at the sensors in a real application would make it more applicable. In such

case, we may have to divide the data into training and testing sets, and apply

machine learning algorithms to the problem. , Machine learning in distributed

systems itself is an interesting topic and awaits to be further pursued.
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• In this dissertation, we considered eavesdroppers, other more sophisticated

cyber threats to WSN, such as intrusion, jamming or Byzantine, should also

be investigated in the future. The interaction and relation among cyber attacks

bring new dimensions to the distributed inference problem.
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We first analyze (α, β) ≈ (0, 0),

D
(
ᾱ, β̄

)
= ᾱ ln

ᾱ

β̄
+ (1− ᾱ) ln

1− ᾱ
1− β̄

= ᾱ ln

(
1 +

ᾱ− β̄
β̄

)
+ (1− ᾱ) ln

(
1 +

β̄ − ᾱ
1− β̄

)
.

Because of the properties of binary symmetric channel, we have

ᾱ = ρ̄+ (1− 2ρ̄)α

β̄ = ρ̄+ (1− 2ρ̄)β.

Given the following Taylor series expansion

ln(1 + x) =
∞∑
n=1

(−1)n−1x
n

n
,

and setting x ≈ 0, then ln(1 + x) ≈ x− 1
2
x2.

A.0.1 (α, β) ≈ (0, 0) and ρ̄ 6= 0

It can be shown that if ρ̄ 6= 0,
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ᾱ− β̄
β̄
≈ 0

β̄ − ᾱ
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1− β̄ ≈ 1

(A.1)

D
(
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(1− β̄)2
+
ᾱ
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Because of Equation (A.1),
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When (α, β) ≈ (0, 0) and β
α
→∞,
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.

Using the same procedure, it is straightforward to show that
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A.0.2 (α, β) ≈ (0, 0) and ρ̄ = 0

If ρ̄ = 0, one needs to use a different approximation as follows,
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)( ᾱ− β̄
1− ᾱ

)
≈ β̄ ln

β̄

ᾱ
+ ᾱ− β̄

= β̄

(
ln
β̄

ᾱ
+
ᾱ

β̄
− 1

)
≈ β̄

(
ln
β̄

ᾱ
− 1

)
.

Since, ρ̄ = 0, β̄ = β, ᾱ = α,

D(β̄, ᾱ) ≈ β

(
ln
β

α
− 1

)
. (A.5)
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The proof for (α, β) ≈ (1, 1) relative to D(ᾱ, β̄) and D(β̄, ᾱ) can be shown in a

similar fashion.
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APPENDIX B

PROOF OF MAXIMUM ACHIEVABLE PERFORMANCE

TRADE-OFF UNDER NEYMAN- PEARSON

FRAMEWORK
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If ln (p1(x)/p0(x)) is unbounded below, then as α→ 1, η → 0, applying L’Hopital’s

rule to the ratio R(α),

R(1) = lim
α→1

d
dα
D (αF , βF )

d
dα
D (αE, βE)

= lim
α→1

dαF
dα

(
d

dαF
D (αF , βF )

)
dαE
dα

(
d

dαE
D (αE, βE)

)
= lim

α→1
β→1
η→0

(1− 2ρF )
(
η βF−αF

(1−βF )βF
+ log αF (1−βF )

βF (1−αF )

)
(1− 2ρE)

(
η βE−αE

(1−βE)βE
+ log αE(1−βE)

βE(1−αE)

) =

lim
α→1
β→1
η→0

(1− 2ρF )2 (β − α)

(
η

(1−βF )βF
+

log

(
1+

αF−βF
βF (1−αF )

)
βF−αF

)

(1− 2ρE)2 (β − α)

(
η

(1−βE)βE
+

log

(
1+

αE−βE
βE(1−αE)

)
βE−αE

) .

Since

lim
x→0

log(1 + x)

x
= 1,

lim
α→1
β→1

log
(

1 + αF−βF
βF (1−αF )

)
βF − αF

= lim
α→1
β→1

−1

βF (1− αF )
,

Therefore,

R (1) = lim
α→1
β→1
η→0

(1− 2ρF )2
(

η
(1−βF )βF

− 1
βF (1−αF )

)
(1− 2ρE)2

(
η

(1−βE)βE
− 1

βE(1−αE)

)
=

(1− 2ρF )2 (1− ρE) ρE

(1− 2ρE)2 (1− ρF ) ρF
.
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Similarly, if ln (p1(x)/p0(x)) is unbounded above, then as α→ 0, η →∞,

R(0) =
(1− 2ρF )2 (1− ρE) ρE

(1− 2ρE)2 (1− ρF ) ρF
= R(1). (B.1)
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APPENDIX C

SECRECY AND DETECTION TRADE-OFF UNDER

BAYESIAN FRAMEWORK
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Plug βE, αE from Equation (3.4) in Equation (3.18), we have

(
(1− 2ρE)β + ρE
(1− 2ρE)α + ρE

)N
=

β +
(

ρE
1−2ρE

)
α +

(
ρE

1−2ρE

)
N

≤ π0

π1

.

Let τ = ρE
1−2ρE

, then

(
β + τ

α + τ

)N
≤ π0

π1

,

⇒β + τ ≤
(
π0

π1

) 1
N

(α + τ),

⇒β ≤
(
π0

π1

) 1
N

(α + τ)− τ,

(C.1)

or

α ≥
(
π0

π1

) 1
N

(β + τ)− τ. (C.2)

In this case, we can choose the randomization between A = (αA, βA) and B =

(αB, βB) in Figure C.1, where the region of operation is the region inside the two red

curves. However, it is not ideal for Bayesian framework in that it does not consider

the prior information. We only need to consider the limiting property of A and B.

Utilizing the fact that A → Ã and B → B̃ as N → ∞ where Ã = (0, βÃ) and

B̃ = (αB̃, 1) and Pe(A,B) > Pe(Ã, B̃), we consider Ã and B̃ instead.

C.0.1 Case1: At Point Ã = (0, βF )

In this case, the probability of false alarm of the FC is zero, since αF = 0, from

Equation (3.3), we know that α = 0, and after inserting in Equation (C.1)
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Figure C.1: Operation Region is the inside area of two ROC curves.

βF = β =

((
π0

π1

) 1
N

− 1

)
τ. (C.3)

Therefore, the FC decision rule should be
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
decides H0 when receiving all zeros,

decides H1 otherwise.

The probability of error of the FC is

Pe = αNF π0 + (1− βF )N π1,

= (1− βF )N π1.

Pm = 1− Pd, where Pd = βF from Equation (C.3), with

lim
N→∞

lnPm = lim
N→∞

N ln

(
1−

((
π0

π1

) 1
N

− 1

)
τ

)

= lim
N→∞

ln

(
1−

((
π0
π1

) 1
N − 1

)
τ

)
1
N

.

Apply L’Hopital’s rule, and let x = 1
N

we have

lim
x→0

lnPm = lim
x→0

(
1−

((
π0
π1

)x
− 1
)
τ
)′

1−
((

π0
π1

)x
− 1
)
τ

= lim
x→0

(
−τ
((

π0

π1

)x
− 1

))′
= lim

x→0

(
−τ
(
π0

π1

)x)′
= lim

x→0

(
−τ ln

π0

π1

(
π0

π1

)x)
= −τ ln

π0

π1

.

Therefore,
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Pm =

(
π0

π1

)−τ
=

(
π0

π1

)− ρE
1−2ρE

.

The probability of error of the FC at operating point Ã is

Pe = Pmπ1 = π1

(
π0

π1

)− ρE
1−2ρE

.

This shows that as long as ρE < 0.5, the probability of error of the FC at Ã is not

zero.

C.0.2 Case2: At Point B̃ = (αF , 1)

The detection probability of the FC is one, plug β = 1 in Equation (C.2), we have

αF = α = (1 + τ)
(
π1
π0

) 1
N − τ . Thus, the FC decision rule should be


decides H1 when receiving all ones,

decides H0 otherwise.

The probability of error of the FC is

Pe = αNF π0 + (1− βF )Nπ1,

= αNF π0.

With
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lim
N→∞

lnPf = lim
N→∞

N ln

(
(1 + τ)

(
π0

π1

) 1
N

− τ
)
,

= lim
N→∞

ln

(
(1 + τ)

(
π0
π1

) 1
N − τ

)
1
N

.

Apply L’Hopital’s rule with x = 1
N

we have

lim
x→0

lnPf = lim
x→0

(
(1 + τ)

(
π1
π0

)x)′
(1 + τ)

(
π1
π0

)x
− τ

,

= lim
x→0

(
(1 + τ)

(
π1

π0

)x)′
,

= lim
x→0

(1 + τ) ln

(
π1

π0

)(
π1

π0

)x
,

= (1 + τ) ln
π1

π0

.

Therefore,

Pf =

(
π1

π0

)1+τ

=

(
π1

π0

)(
π1

π0

) ρE
1−2ρE

.

Similarly, the probability of error of the FC given operation point B̃ is

Pe = Pfπ0 = π1

(
π0

π1

)− ρE
1−2ρE

,

which is equivalent to the probability of error at Ã.
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APPENDIX D

DECISION RULE THRESHOLD UNDER BAYESIAN

FRAMEWORK
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In Equation (3.20), we have D(T, ᾱ) which is an increasing function of T ∈ (α, 1)

and D(T, β̄) is a decreasing function of T ∈ (0, β).Therefore, Pe is minimized when

D(T, ᾱ) = D(T, β̄). This leads to

D(T, ᾱ)−D(T, β̄) = 0 =⇒

T ln
T

ᾱ
+ (1− T ) ln

1− T
1− ᾱ − T ln

T

β̄
− (1− T ) ln

1− T
1− β̄ = 0

=⇒ T =
ln 1−ᾱ

1−β̄

ln β̄
ᾱ

+ ln 1−ᾱ
1−β̄

, ∀(α, β).

Alternatively, notice that

T − ᾱ =
ᾱ ln ᾱ

β̄
+ (1− ᾱ) ln 1−ᾱ

1−β̄

ln β̄
ᾱ

+ ln 1−ᾱ
1−β̄

=
D(ᾱ, β̄)

ln β̄
ᾱ

+ ln 1−ᾱ
1−β̄

,

and

β̄ − T =
D(β̄, ᾱ)

ln β̄
ᾱ

+ ln 1−ᾱ
1−β̄

.

Thus

β̄ − T
T − ᾱ =

D(β̄, ᾱ)

D(ᾱ, β̄)
,

or

T =
D(ᾱ, β̄)β̄ +D(β̄, ᾱ)ᾱ

D(β̄, ᾱ) +D(ᾱ, β̄)
,

According to the approximation in Table 3.1, if ρ̄ > 0, when (α, β) → (0, 0) or

(α, β)→ (1, 1), D(ᾱ, β̄) = D(β̄, ᾱ), therefore
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T ≈ ᾱ + β̄

2

= ρ̄+
(1− ρ̄) (α + β)

2
.

When ρ̄ = 0, (α, β)→ (0, 0), β̄ ≈ β and ᾱ = α, then

T =
D(ᾱ, β̄)β +D(β̄, ᾱ)α

D(ᾱ, β̄) +D(β̄, ᾱ)
,

≈ β2 + β(ln β
α
− 1)α

β + β(ln β
α
− 1)

,

=
β + (ln β

α
− 1)α

ln β
α

=
β − α
ln β

α

+ α.

Similarly, we can calculate the corresponding threshold when (α, β)→ (1, 1),

T =
D(ᾱ, β̄)β +D(β̄, ᾱ)α

D(ᾱ, β̄) +D(β̄, ᾱ)
,

≈
(1− α)

(
ln 1−α

1−β − 1
)
β + (1− α)α

(1− α)
(

ln 1−α
1−β − 1

)
+ (1− α)

,

= β +
α− β
ln 1−α

1−β
.

We summarize the decision rule threshold T in Table 3.2.
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APPENDIX E

MINIMIZED FISHER INFORMATION RATIO
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From Equation (4.5), we can see that the minimized FI ratio is achieved when the

CDF Q (η − θ) = 1
2
, therefore, plug that into equation (4.5), we have

R =
(1− 2ρF )2(ρE +

(
1− 2ρE)1

2

)
(1− 2ρE)2(ρF + (1− 2ρF )1

2
)

(1− ρE − (1− 2ρE)1
2
)

(1− ρF − (1− 2ρF )1
2
)

=
(1− 2ρF )2

(1− 2ρE)2

This minimized ratio can also be used to guarantee the performance of the FC

due to channel disparity.


