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ABSTRACT 

This dissertation documents the computational modeling of skutterudite and two-

dimensional transition metal dichalcogenide (2D TMD) materials for energy and 

electronic applications by analyzing the effects of materials doping and heterostructure 

formation on structural, energetic, electrical, phonon, and thermal properties. These 

topics remain largely unexplored and can accelerate materials development by providing 

insight on structure-properties-performance relationships. 

Skutterudites are commonly studied for thermoelectric applications because they 

are low-cost, easy to process, and offer good intrinsic transport properties. They also exist 

as large, open structures which can be altered through filler atoms or substitutional 

dopants. A density functional theory (DFT)-based investigation of dopant effects on 

skutterudite compounds provided insight to advance the understanding of electrical and 

phonon properties that experiments could not measure. This also offered a good 

benchmark material for developing a modeling scheme that was employed for 2D TMD 

materials. 2D TMD nanosheets also exhibit large variability in structure type, 

dimensionality, and composition and have attracted much interest for their magnetic, 

electronic, optoelectronic, catalytic, and thermoelectric properties. Their low 

dimensionality makes them promising candidates for field-effect transistor (FET) device 

applications and introduces quantum confinement effects and diffusive boundary 

scattering, potentially improving their electrical and transport properties. The exploration 
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of composition, substitutional doping, and heterostructure effects is needed for further 2D 

TMD materials development and property improvement. 

This dissertation offers an analysis of the structure-property relationships for a 

wide range of properties on bulk skutterudite and 2D TMD materials. The three key 

outcomes of this work are: (1) a high throughput approach to compute and analyze 

electrical and phonon properties, (2) a screening method for investigating 2D TMD 

materials and highlighting preferred compositions, and (3) design principles for 

predicting structures and properties to guide experiments. The optimized high throughput 

approach encompasses: DFT-based total energy minimization calculations to investigate 

the geometric, energetic, and electronic structure data; Boltzmann transport theory, in 

combination with electronic band energies, to estimate electrical conductivity (σ), 

Seebeck coefficient (S), and power factor (S2σ) values; density functional perturbation 

theory (DFPT)-based second-order force constant calculations to determine phonon 

dispersion and density of states (DoS) spectra; and the atomistic Green’s function (AGF) 

method, using force constants as input, to compute interfacial heat flux, phonon 

transmission coefficients, and thermal boundary conductance (TBC). Error mitigation 

was handled by optimizing model parameters and validating results through comparison 

with literature and experimental data. Through the optimized high throughput approach, 

dozens of 2D TMD structures can now be analyzed within days, whereas initial 

optimization calculations for each structure took up to one week to compute. Overall, 

these materials offer great potential for materials-by-design exploration and 

understanding their structural, electrical, and phonon properties are essential for 

advancement towards commercial applications.
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h-BN   Hexagonal boron nitride 

J   On-site exchange potential 

κ   Thermal conductivity 

LDA   Local density approximation 

PAW   Projector augmented wave 

PBE   Perdew-Burke-Ernzerhof 

σ   Electrical conductivity 

S   Seebeck coefficient 

S2σ   Power factor 

τ   Relaxation time 

TBC   Thermal boundary conductance 

TMD   Transition metal dichalcogenide 

TMO   Transition metal dioxide 

μV   Micro-volts 

U   On-site Coulomb potential 

VASP   Vienna ab initio simulation package 

VBM   Valence band maximum 

vdW   van der Waals 

ZT   Thermoelectric figure of merit 
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CHAPTER ONE: INTRODUCTION 

1.1 Research Goal and Motivation 

To accelerate materials development, this dissertation aims to derive basic 

materials design principles through high-throughput computational screening methods. 

By generating large and rich data sets and analyzing the data to capture changes in trends 

and relationships between structure, properties, and performance, we can optimize 

materials’ properties and performance by tailoring their structures. 

This dissertation focuses on the area of electronic and energy applications and 

how they can be directly improved through the implementation and successful 

completion of this research goal. For the past fifty years, the semiconductor industry, for 

example, has been striving to maintain growth in line with Moore’s Law, which predicts 

that the number of transistors present in an integrated circuit would double every two 

years. The industry has managed to keep pace with this prediction through a number of 

innovations in chip design, photolithography, and processing techniques. Smaller feature 

sizes approach physical limitations as well as dimensionality constraints. Thus, it is 

crucial to understand electrical transport behavior in this regime as quantum effects take 

over. 

With reduction in the size of device features comes an increase in energy density 

within the chips. Joule heating, via the conversion of electrical power to thermal energy, 

causes internal temperatures to exceed that of safe, operable conditions. This leads to 

excessive wear, premature device failure, and safety hazards for people operating these 
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devices. The issue of understanding electrical and thermal properties is nontrivial and 

further work is needed to improve such devices. 

This work investigates the key parameters that influence electrical and thermal 

properties. They include the analysis of electron and phonon density of states (DoS) 

spectra and the calculation of electrical conductivity, σ, and the Seebeck coefficient, S, 

which is a material’s voltage response to a temperature gradient (useful for thermoelectric 

and thermocouple applications). Materials systems with potential applications in these 

fields include skutterudites and two-dimensional transition metal dichalcogenides (2D 

TMDs). These have good intrinsic electrical properties and tailorable structures, making 

them good candidates for energy and electronic applications, but more work is needed to 

further improve their properties. To achieve the research goal, the effects of two main 

structural changes have been investigated: (1) doping and (2) the formation of a 

heterojunction. 

1.2 Objectives 

This project has four research objectives. 

Objective 1: Understand dopant and filler atom effects on skutterudite materials 

(Chapter Four) This includes the analysis of bulk (Fe,Co)Sb3 skutterudites and how they 

are affected by Ca/Ce filler and Te/Ge substitutional dopants. This allows for the analysis 

of dopant effects on electrical and phonon properties in a three-dimensional material 

while also acting as a foundation for the development of the computational approach. 

Objective 2: Computationally screen 2D TMD material compositions (Chapter Five) The 

physical features of six different constituent metals (Mo, Ni, Sc, Ti, V, and W) are 
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compared with respect to three different chalcogenide (S, Se, and Te) compounds while 

translating the previous computational approach to a lower dimensionality. 

Objective 3: Understand the effects of substitutional dopants in 2D TMDs (Chapter Six) 

Each of the six transition metals from objective 2 are individually substituted into metal-

sites within the 2D MoX2 and WX2 (X = S, Se, or Te) structures. Structural, electrical, 

and phonon properties are analyzed, focusing on the effect of substitution concentration 

and type. 

Objective 4: Evaluate the impact of a lateral heterojunction between 2D TMDs (Chapter 

Seven) The effects of laterally joining 2D MoS2 with 2D MS2 (M = Cr, Sc, Ti, and W) to 

form a heterostructure are investigated. Structural, electrical, and phonon effects are 

compared. 

1.3 Dissertation Summary 

This dissertation includes the investigation of structural, electrical, and phonon 

properties of 3D skutterudite materials and 2D TMD nanosheets from first-principles. At 

the time this dissertation is being written, three peer-reviewed papers have been 

published from this work in the Journal of Applied Physics, JOM, and Chemical Physics 

Letters and another has been submitted to the Journal of Applied Physics. The chapters 

are arranged as follows. Chapter 2 gives a more in-depth explanation of the structure and 

current state of research for the skutterudite and 2D TMD materials systems while 

chapter 3 explains the methodology and theory behind the models employed in this work. 

Chapter 4 includes the investigation of Ca/Ce filler atoms in FeSb3 and Te/Ge 

substitutional dopants on the Sb site in CoSb3.
1 The work in chapter 5 screens a range of 

transition metals in 2D TMD materials comparing common oxidation states, atomic 
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masses, and atomic radii.2 Chapter 6 investigates the effects of metal-site substitutional 

dopants in 2D MoS2 and WS2 sheets. The work presented in this chapter is divided into 

two subsections: dopant concentration3 and dopant type.4 Chapter 7 investigates the effect 

of heterostructure formation between 2D MoS2 and MS2 (M = Cr, Sc, Ti, W). Chapter 8 

summarizes and concludes this dissertation. 

  



5 

 

References 

 (1) Williamson, I.; Her, L. J. Y.; Su, X. L.; Yan, Y. G.; Wong-Ng, W.; Li, L. 

Improved thermoelectric performance of (Fe,Co)Sb-3-type skutterudites from 

first-principles. J Appl Phys 2016, 119, 055101. 

 (2) Williamson, I.; Correa Hernandez, A.; Wong-Ng, W.; Li, L. High-

Throughput Computational Screening of Electrical and Phonon Properties of 

Two-Dimensional Transition Metal Dichalcogenides. JOM 2016, 68, 2666. 

 (3) Williamson, I.; Li, S.; Correa Hernandez, A.; Lawson, M.; Chen, Y.; Li, L. 

Structural, electrical, phonon, and optical properties of Ti- and V-doped two-

dimensional MoS2. Chemical Physics Letters 2017, 674, 157. 

 (4) Williamson, I.; Wilson, N.; Lawson, M.; Li, S.; Chen, Y.; Li, L. 

Computational Screening of Metal-Site Dopants in Two-Dimensional MX2 (M = 

Mo, W; X = S, Se, Te). J Appl Phys 2017, submitted. 

 

 



6 

 

CHAPTER TWO: MATERIALS SYSTEMS 

The materials of interest in this dissertation are bulk skutterudites and two-

dimensional transition metal dichalcogenides (2D TMDs). Both offer a variety of 

compositional options and tailorable structures and geometries which can significantly 

affect materials properties and performance, specifically in electronic and energy 

applications. High-throughput computational screening methods were employed to 

analyze the effects of doping (including filler atoms and substitutions) and 

heterostructures for the two materials that are of interest. 

2.1 Skutterudites 

Skutterudite compounds are low-cost and easy to process materials with 

intrinsically good electrical transport properties and tunable thermal transport 

properties.1-10 The term “skutterudite” refers to minerals that have a cobalt arsenide, 

CoAs3-type crystal structure. They form in space group Im3 and consist of cage-like 

structures with the general formula AB3, where A is a transition metal and B is a 

pnictogen atom. Figure 2.1 shows the crystal structure of a filled skutterudite featuring M 

filler atoms and B rings in an A sublattice, where M = La, Te, Ge, Ba, In, or Yb; A = Fe, 

Ru, Co, Ni, or Os; and B = Sb, P, or As. Sb-based skutterudites are extensively studied 

due to their high mobility, atomic masses, electrical conductivity, and Seebeck 

coefficients.11 
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Figure 2.1. Crystal structure of a filled M2A8B24 skutterudite with filler atom M in 

red, B in white, and A in black. The gray substructures outlined by B atoms are 

referred to as pnictogen rings.  

Specifically, these novel characteristics make skutterudites of great interest for 

thermoelectric applications. Thermoelectric devices can be used to recover waste heat by 

converting it back into electrical power. This is known as the Seebeck effect. The 

performance metric of thermoelectric materials is known as the thermoelectric figure of 

merit, 

𝑍𝑇 =
𝑆2𝜎

𝜅
𝑇     (2.1) 

where 𝑆 is the Seebeck coefficient, 𝜎 is the electrical conductivity, the combined 𝑆2𝜎 

term is referred to as the power factor, 𝜅 is the thermal conductivity, and 𝑇 is the absolute 

temperature. The implementation of thermoelectric devices has many promising 

commercial applications including in-home power and heating, automobile energy 

recovery, solar cells, and semiconductors. Unfortunately, it is difficult to obtain 

thermoelectric figures of merit that exceed unity (i.e., ZT > 1) in macroscale devices. In 

order to improve these devices and bring them into large-scale use, there are a number of 

issues left to resolve. A greater understanding of transport phenomena is needed to 
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overcome these obstacles. Skutterudite compounds generally have a ZT value around 1 

and maintain large carrier concentrations and moderate Seebeck coefficients.12,13 CoSb3 

is of particular interest because of its high power factor and moderately high temperature 

stability.12 The most important task for improvement then comes from the reduction of 

thermal conductivity (without affecting carrier mobility). 

Current State of Skutterudite Materials Research 

The structure of a skutterudite has large degrees of freedom for doping and 

alloying, making them attractive for customization and design studies. A promising 

approach to improving skutterudite performance is therefore to modify their crystal 

structure by either filling structural voids with guest atoms or through substitutional 

dopants.11,14 The introduction of filler atoms has been widely studied because they offer 

increased electrical conductivity with negligible effects on Seebeck coefficient and 

decreased thermal phonon conductivity through a “rattling effect.”15 Calculations 

performed by Feldman et al.,16 and eventually experimental work by Koza et al.,17 have 

since challenged the rattling effect. Nevertheless, filler atoms can modify the phonon 

dispersion and ab initio calculations have shown a reduction in thermal conductivity 

through an increase in anharmonic scattering rates and reduction of group velocities.18 

Alkaline earths have previously been used as fillers2 and Yang et al.19 have shown that a 

double-filled skutterudite, having one alkaline earth and one lanthanide (Ba and Ce) 

filler, is even more effective at reducing the lattice thermal conductivity than using two 

alkaline earths (Ba and Sr). Previous experimental work from our collaborators20 used Ca 

and Ce fillers (which have a greater mass difference, 71%, than that of Ba and Ce, 2%) 

and found that for the double-filled (CaxCe1-x)Fe4Sb12 series (x = 0, 0.25, 0.5, 0.75, and 
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1), only the x = 0.5 compound was stable. They also measured this compound to have a 

higher ZT value than that of the end members due to its decreased thermal conductivity. 

Alternatively, substitutional doping has been shown to improve skutterudite 

performance. Co site substitutions that have been investigated for the CoSb3 structure 

include Cr,21 Ni,22 or Fe.20 These substitutions reveal significant changes in transport 

properties such as an increase in electrical conductivity and a decrease in thermal 

conductivity; however, experimental and theoretical calculations have shown that 

substitution on the pnictogen rings (Sb site) is more effective for reducing thermal 

conductivity due to the rings’ dominance of the phonon thermal conductivity 

spectrum.16,23,24 Laser flash thermal diffusivity measurements on CoSb3-xTex compounds 

have shown a reduction in lattice thermal conductivity through atomic mass fluctuation 

and size strain.25 This effect is increased through the incorporation of electric-charge 

compensating Ge and Sn substitution on the Sb site which disrupt the bonding and 

symmetry of the rings.26  

Despite the amount of research conducted for this material system, there have not 

been major improvements in the thermoelectric figure of merit for skutterudites since the 

early 1990s. Therefore, a fundamental investigation of fillers and substitutions and their 

effects on the electrical and phonon properties of skutterudite compounds is important for 

materials development. 

2.2 Two-Dimensional Transition Metal Dichalcogenides (2D TMDs) 

The variability and interesting transport properties inherent in skutterudites makes 

them a great benchmark material for building a transport properties modeling scheme. 
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The approach can be translated to study similar phenomena in other materials. Here, we 

turned to a lower dimensionality and investigated 2D TMDs. 

TMDs, having the chemical formula MX2 (M = transition metal, X = chalcogen, 

e.g., S, Se, Te), have received attention over the years for having interesting magnetic27,28 

and photoelectric29 properties. Bulk three-dimensional transition metal dichalcogenides 

(3D TMDs) can exist as layered structures wherein each layer consists of a transition 

metal (M) sheet sandwiched between two chalcogen (X) sheets. These layers exist in one 

of two structure types: 2H-type having D6h point group symmetry and 1T-type having D3d 

point group symmetry (see Figure 2.2). Strong covalent bonding exists within the MX2 

layers (along the a and b axes) while much weaker van der Waals (vdW) interactions 

exist between the layers (along the c axis). This allows individual MX2 layers to be 

separated via mechanical exfoliation.30 

 
Figure 2.2. Top-down view of 2D TMD sheets having 2H- or 1T-type structures. 

Cyan and yellow spheres represent M and X atoms, respectively. Thin black lines 

frame the unit cell. Armchair and zigzag directions are depicted with bold black 

arrows. 
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The separated 2D TMD materials have recently attracted much interest for a 

variety of applications including electronics,31-35 optoelectronics,36-39 catalysts,40,41 and 

thermoelectrics.42-45 In addition, the quantum confinement effect and sharp features in the 

electronic density of states (DoS) are beneficial for improving thermoelectric properties, 

such as increasing the Seebeck coefficient, S, in 2D TMDs compared to that of the bulk 

structures.46-48 It is also predicted that the lower dimensionality increases diffusive 

boundary scattering, effectively reducing the thermal conductivity, κ. Lowering the 

dimensionality of Si, for example, has shown strong reductions in κ and implications for 

enhanced thermoelectric performance.49,50 With a large number of potential 2D TMD 

compounds, it is important to identify key structure–property–performance relationships 

in order to screen preferred materials. 

2D TMD materials are of particular interest for applications in electronic devices. 

With their wide compositional variety comes a variety of electronic structures including 

metals and direct or indirect bandgap semiconductors. The lower dimensionality further 

expands the range of properties beyond that of the bulk TMD materials. For example, 

bulk MoS2 has an indirect bandgap of 1.2 eV while 2D MoS2 has a direct bandgap of 1.8 

eV.51,52 Reduced dimensionality also offers the potential for smaller device features and 

has been shown to greatly reduce short-channel effects, increase the on–off ratio, and 

reduce switching voltage in field-effect transistors (FETs).33,36 With these characteristics, 

2D TMDs could potentially substitute for Si in electronic devices.53-55 Each of these 

factors contributes to the strong motivation for further understanding the behavior of 2D 

TMDs. 
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Current State of TMD Materials Research 

TMD studies focus on the stability and electronic structure of 2D TMDs and 

TMOs (transition metal dioxides) using density functional theory (DFT).31,32 These offer 

a general analysis of trends across a broad range of compositions and identify most 

structures to be semiconducting with small indirect bandgaps. Rasmussen et al.32 found 

that only CrX2, MoX2, and WX2 systems exhibit direct bandgaps. From these works, it is 

useful to identify more favorable 2D TMD compositions in terms of stability, electrical 

properties, and optical properties; however, none have been directed at what 

compositions are possible. Graedel et al.56 developed a method for quantifying the 

environmental implications, supply risk, and vulnerability to supply restrictions for 62 

transition metals and metalloids. These “criticality scores” can be used to identify 

preferred materials and narrow the focus for screening potential compositions in order to 

develop high-performance, cost-effective, and environmentally friendly materials. Along 

with reduced dimensionality and identification of novel compositions and structures, 

strategies for further improvement of 2D TMD properties and performance include 

doping and heterostructure formation.57,58 

Metal-site substitutional dopants yield interesting changes in the intrinsic 

properties of 2D TMDs. These dopants can cause enhancements such as inducing 

magnetism59-62 and tuning of the electrical conductivity.62 They also offer the ability to 

modify the bandgap and photoluminescence63 and control whether it is a p- or n-type 

semiconductor.64 Experimental work has shown that these dopants are stable in 2D 

TMDs and that they are a substitutional dopant rather than an interstitial impurity.65-68 
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This type of defect tends to be more stable because the dopant inherits the strong covalent 

bonds within the TMD sheet. 

The formation of lateral heterostructures is another promising approach for 

improving optical and electrical properties.57 Lateral epitaxy has been used to synthesize 

high quality heterostructures with type II (staggered) band alignment which has potential 

for optoelectronic applications.69,70 Raman spectroscopy techniques have been used to 

analyze both the physical and phonon structures of heterostructures.71 Experimental work 

reveals that 2D TMDs prefer to form heterostructures along the “zigzag” direction of the 

honeycomb structure (see Figure 2.2).72 First-principles calculations have found 

interesting electronic structure effects of these zigzag junctions. For example, the 

bandgap of the lateral MoS2-WS2 heterostructure has been calculated to be about 1.58 

eV, smaller than that of MoS2 and WS2.
73 Band offset calculations confirm type II band 

alignment between MoX2-WX2 heterostructures and reveal an increase in both the 

conduction band minimum (CBM) and valence band maximum (VBM) with increasing 

M and X atomic numbers.74 

A thorough investigation into the structural, electrical, and phonon properties of 

2D TMDs is crucial for the development of these materials. This can be achieved by 

identifying novel compositions and understanding the effects of substitutional dopants 

and heterostructures. 

2.3 Computational Modeling Approaches 

The choice of computational modeling technique can be based on a number of 

factors including: length scale, what variables are needed/relevant (e.g., time, 

temperature), and the governing physics of the properties in question. For example, an 
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investigation of bonding characteristics requires the use of quantum mechanics and a very 

small length scale (nanometer) whereas thermal energy propagation in a nuclear reactor 

core may be on the order of meters and involve a continuum modeling approach. For this 

dissertation, the scope is narrowed to smaller length scales and methods that can be used 

to investigate electrical and phonon properties. 

Equilibrium molecular dynamics (EMD) is one approach that can be used to 

calculate transport coefficients via the Green-Kubo formula (GKF).75,76 This is a widely 

studied approach due to its ability to yield accurate thermal properties of large 

materials;77-79 however, it does not account for electrical properties and is not well suited 

for 2D materials. For investigating the nanoscale regime, the use of density functional 

theory (DFT) is preferred because it incorporates electron density. 

In this dissertation, the quantum mechanics-based method of DFT was employed 

to investigate these materials. Within DFT, there are a number of options for calculating 

transport properties of a material. Traditionally, DFT has been shown to underestimate 

bandgaps80 so many approaches have been proposed for improving band structure 

calculations. Among the more rigorous calculations include the use of hybrid 

functionals81-84 which incorporate some exact exchange into the exchange correlation 

interaction term and the GW approximation85 which involves the expansion of self-

energies with respect to the single-particle Green’s function, G, and the screened 

Coulomb interaction, W. These calculations have the advantage of generating more 

accurate band structures without relying on empirical data; however, they greatly increase 

computational costs and are not easily suited for screening purposes. The semi-empirical 

method of DFT+U,86 which adds a Hubbard-like on-site Coulomb potential term to 
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account for strongly correlated electronic states, can be quickly and easily implemented 

to correct the overestimation and produce good quality band structures with negligible 

computational costs. 

The calculation of thermal conductivity from first-principles is made possible 

through the full linearization of the Boltzmann transport equation for phonons.87 This is a 

very rigorous approach and involves the calculation of third-order force constants to 

account for phonon anharmonicity within the material. The computational costs are too 

high for screening purposes and it is not yet fully implemented for 2D materials; 

however, second-order force constant calculations can account for normal processes with 

only moderate computational costs. The use of density functional perturbation theory 

(DFPT)88 allows for the calculation of necessary force constants and can produce phonon 

dispersion and density of states (DoS). This does not allow for the calculation of thermal 

conductivity but can provide useful phonon property information for materials screening. 

This dissertation employs the use of DFT to screen structural, bonding, electrical, 

and phonon properties of 3D skutterudite and 2D TMD materials focusing on the effects 

of doping and heterostructures. The problem of understanding electrical and thermal 

transport in these materials is one of multiscale and multiphysics. There remains a lack of 

general knowledge that must be addressed through the use of large-scale materials 

screening processes before more-rigorous calculations can be utilized. More information 

about the methods used in this work can be found in Chapter 3.  
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CHAPTER THREE: MODELING ELECTRICAL AND THERMAL PROPERTIES IN 

THE SOLID STATE 

The field of computational materials modeling is a fast growing area that offers a 

means of prediction and understanding beyond that of conventional research. By applying 

numerical models to emulate physical phenomena, we can analyze more wholly the 

relationships between structure, properties, and performance. Through the utilization of 

high-performance computing facilities, rigorous and complex calculations can be 

conducted on numerous materials systems faster than experiments. This work 

demonstrates how density functional theory (DFT), in conjunction with Boltzmann 

transport theory and density functional perturbation theory (DFPT), can be implemented 

to analyze structures, energetics, electrical, and thermal transport properties of 

skutterudite and two dimensional transition metal dichalcogenides (2D TMDs). 

The flowchart in Figure 3.1 is an overview of different computational methods 

used in this dissertation. All structure, energetic, electronic, and force calculations 

performed in this work begin with DFT and the total energy minimization calculation. 

After optimizing the appropriate DFT parameters (see the Approximations subsection in 

3.1 Density Functional Theory (DFT)), the energetic and structural ground state can be 

determined. Section 3.2 Electrical Transport Properties explains how the band energies 

can then be expanded to calculate semi-classic transport coefficients such as S, σ, and κe. 

Next, section 3.3 Thermal Transport Properties explains how the second-order force 

constants calculated with DFPT can be used to determine phonon dispersion and DoS 
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spectra. Finally, the incorporation of the recently developed atomistic Green’s function 

(AGF) method, along with the second-order force constants, can be used to calculate 

transmission coefficients across a 2D TMD heterojunction as well as thermal boundary 

conductance. 

 
Figure 3.1. Flowchart describing the computational approach used to calculate 

electrical and thermal transport properties in this dissertation. DFT is used to 

minimize the total energy of the system in order to determine the electronic ground 

state. This can then be used to calculate structural features, band energies, and DFPT 

force constants. The band energies can be expanded to calculate electrical transport 

coefficients such as S, σ, and κe. The second-order force constants can be used to 

calculate phonon DoS or combined with the AGF method to determine phonon 

transmission coefficients across a heterojunction. 

3.1 Density Functional Theory (DFT) 

The many-body problem describes the fact that wavefunctions needed to define a 

system having more than two electrons (up to infinity) range from extremely difficult to 

impossible to solve due to extensive particle interaction. DFT is an approach to handling 
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the many-body problem by approximating the energy of a system by means of the charge 

density which is a function of the electronic wavefunctions. Despite a number of 

approximations, DFT can reasonably estimate the geometry and structure of various 

materials. 

This approach revolves primarily around solving the Kohn-Sham (KS) equation, 

which is an adaptation of the Schrödinger equation for non-interacting particles. 

�̂�𝐾𝑆Ψ(𝒓) = 𝐸(𝒓)Ψ(𝒓)    (3.1) 

The symbol Ψ is the electron wavefunction, 𝐸 is the total energy of the system, and �̂�𝐾𝑆 

is the KS Hamiltonian operator defined by, 

�̂�𝐾𝑆 = 𝐸𝑘𝑖𝑛
𝑛𝑜𝑛 +𝑈𝑒𝑥𝑡 + 𝑈𝐻 + 𝑈𝑥𝑐   (3.2) 

Here, the energy terms are broken down into 𝐸𝑘𝑖𝑛
𝑛𝑜𝑛,– the kinetic energy of the non-

interacting electron (−
1

2
∇2), 𝑈𝑒𝑥𝑡 – the external potential felt by the electron from the 

nuclei, 𝑈𝐻 – the Hartree potential which assumes the electrons are independent and 

interact in an averaged way (alternatively known as the mean-field approximation), and 

𝑈𝑥𝑐 – the exchange correlation which approximates all interaction terms. This eigenvalue 

problem is solved self-consistently where a trial charge density is used to calculate a total 

energy for the system to compare with the starting value. The method is repeated until the 

energy is consistent within a given range. By calculating interatomic forces and 

iteratively translating atoms to minimize those forces, the ground state geometry can be 

determined.1 

Approximations 

There are four primary approximations considered in this dissertation that directly 

affect the calculations: supercell, exchange-correlation, pseudopotential theory, and the 



29 

 

self-consistent field (scf) approach. To minimize error in the calculations and validate the 

models, each approximation was investigated via convergence tests. In general, this is 

done by running calculations with various parameters and comparing results (e.g., lattice 

constants, bond lengths, cell volume, and electronic bandgaps). Each approximation 

affects different aspects of the calculation so each is addressed differently. 

The use of Bloch’s theorem in DFT treats materials systems as periodic and 

repeating. The supercell approximation is used to handle aperiodic configurations such as 

dopants and surfaces. 2D systems in this dissertation are treated as single- or few-layer 

atomic sheets separated by large (>20 Å) vacuum layers. The choice of vacuum thickness 

came from convergence tests which showed negligible interaction between repeating 

sheets with this thickness. 

Electron-electron interactions remain one of the most difficult aspects of DFT 

needed to accurately describe a system. Exchange-correlation is a term added to the �̂�𝐾𝑆 

operator that accounts for all electron interaction terms. The simplest approach to 

calculating this is through the local density approximation (LDA)2 which assumes the 

exchange-correlation energy per electron at a given point is equal to the exchange-

correlation energy for a homogeneous electron gas of the same density. Alternately, the 

generalized gradient approximation (GGA) accounts for semi-local information by 

adding an additional term to account for the rate of change in exchange-correlation 

energy at a given point. This is known to produce slightly more accurate structures than 

LDA and is generally better suited for more materials systems.1 There are many different 

forms of GGA, but the method of Perdew, Burke, and Ernzerhof (PBE)3 – which is 

commonly used for its simplicity, accuracy, and independence from empirical input – 
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was chosen for this dissertation. Convergence tests confirmed that it is useful for 

determining skutterudite and 2D TMD structures. 

The pseudopotential theory involves replacing the strong potential between 

electrons and ions with a much weaker pseudopotential, which are designed to maintain 

the features of the valence electrons while “freezing” and simplifying the core electrons. 

A graphical representation of the pseudopotential and pseudo wave function can be seen 

in Figure 3.2. A commonly used approach for generating pseudopotentials that is both 

efficient and accurate is called the projector-augmented wave (PAW) method,4,5 which 

uses a radial grid projection from the atom center to map the core wave functions while 

mapping the valence wave functions with the plane-wave expansion.1 The set of plane-

waves used in DFT is determined through the optimization of a “cutoff energy” (Ecut) 

which incorporates all valence electrons with kinetic energies at or below Ecut. Electrons 

with kinetic energies greater than Ecut are assumed to be associated with the core and are 

therefore not considered. Convergence tests are used to determine this value. The PAW 

pseudopotential approach was determined to be the most accurate and useful method for 

this dissertation work. 
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Figure 3.2. Schematic demonstrating the pseudo-electron (PE) (dotted lines) and 

all-electron (AE) (solid lines) wave function, Ψ, and potential, V. The PE and AE 

values must match at r ≥ rc where rc represents the core radius. 

The scf approach describes the method used to solve the KS equation and 

determine the final ground state energy. The approach, outlined in Figure 3.3, begins with 

rough estimates for the KS wave functions (taken from the pseudopotentials of each 

element) and uses them to calculate electron densities, which are used to calculate �̂�𝐾𝑆; 

and �̂�𝐾𝑆 is then used to generate new electron densities. This method is iterated until the 

input and output orbitals converge and “self-consistency” is reached. There are a number 

of parameters that govern the scf calculation. These include matrix diagonalization 

schemes, charge density mixing, and energy convergence thresholds. Once the first scf 

step is completed, the forces are calculated and atomic positions are updated to minimize 
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the total energy of the system. Then, new scf steps are performed and the cycle is 

repeated until a predetermined force convergence threshold is reached and the effective 

ground state is determined (i.e., the structure is “relaxed”). Convergence tests were 

conducted to determine necessary parameters involved for relaxing these structures. 
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Figure 3.3. Flowchart describing the scf and structural relaxation method 

performed during a DFT calculation. A single scf step is completed when the first 

“convergence” step is reached. By calculating the forces after an scf step and 

adjusting the atomic positions, the forces can be minimized until a “relaxed” ground 

state configuration is determined. 
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3.2 Electrical Transport Properties 

After the ground state is determined for a given system, the electronic density of 

states (DoS) and energy band diagrams can be calculated; however, a known shortcoming 

of DFT is its tendency to underestimate and even eliminate bandgaps. This effect is 

especially present with strong localized d- and f-orbitals. A method for correcting this 

involves the use of DFT+U which adds an on-site Coulomb potential term (U) and an on-

site exchange term (J).6 Though typically obtained semi-empirically, the application of 

these terms can greatly improve the accuracy of electronic structure calculations without 

increasing computational costs. As described in Figure 3.1, the optimized band energies 

can be used as input to Boltzmann transport property calculations.7 

Expansion of Band Energies 

The ground-state band energies of a material contain much information about 

various material properties. Madsen demonstrated that transport properties such as S, σ, 

and the Hall coefficient (RH) can be calculated from the band energies.7 Through the use 

of star functions, the band energies can be expanded in Fourier space according to 

𝜀�̃�(𝒌) = ∑ 𝑐𝑹,𝑖𝑆𝑹(𝒌)𝑹      (3.3) 

𝑆𝑹(𝒌) =
1

𝑛
∑ 𝑒𝑖𝒌∙Λ𝐑{Λ}      (3.4) 

where 𝐑 is the direct lattice vector and {Λ} are the 𝑛 point group rotations. 

The group velocity, 𝑣𝛼, and inverse mass tensor, 𝑀𝛽𝑢
−1, can be calculated from the 

first and second derivative of the band energies, respectively: 
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𝑣𝛼(𝑖, 𝒌) =
1

ℏ

𝜕𝜀𝑖,𝒌

𝜕𝑘𝛼
     (3.5) 

𝑀𝛽𝑢
−1(𝑖, 𝒌) =

1

ℏ2

𝜕2𝜀𝑖,𝒌

𝜕𝑘𝛽𝜕𝑘𝑢
     (3.6) 

Here, ℏ represents the reduced Planck’s constant while the symbol 𝜀𝑖,𝒌 represents the 

energy of band 𝑖 at a given 𝒌-point. Then the conductivity tensors can be found using 

𝜎𝛼𝛽(𝑖, 𝒌) = 𝑒
2𝜏𝑖,𝒌𝑣𝛼(𝑖, 𝒌)𝑣𝛽(𝑖, 𝒌)    (3.7) 

𝜎𝛼𝛽𝛾(𝑖, 𝒌) = 𝑒
3𝜏𝑖,𝒌
2 𝜖𝛾𝑢𝑣𝑣𝛼(𝑖, 𝒌)𝑣𝑣(𝑖, 𝒌)𝑀𝛽𝑢

−1   (3.8) 

where the latter tensor is written with respect to the Levi-Civita symbol, 𝜖𝛾𝑢𝑣.8,9 These 

can be expressed as a function of band energy, 𝜀 

𝜎𝛼𝛽(𝜀) =
1

𝑁
∑ 𝜎𝛼𝛽(𝑖, 𝒌)

𝛿(𝜀−𝜀𝑖,𝒌)

𝑑𝜀𝑖,𝒌     (3.9) 

𝜎𝛼𝛽𝛾(𝜀) =
1

𝑁
∑ 𝜎𝛼𝛽𝛾(𝑖, 𝒌)

𝛿(𝜀−𝜀𝑖,𝒌)

𝑑𝜀𝑖,𝒌     (3.10) 

with 𝑁 number of 𝒌-points. The resulting transport tensors can be calculated as functions 

of temperature and chemical potential 

𝑣𝛼𝛽(𝑇; 𝜇) =
1

𝑒𝑇𝛺
∫𝜎𝛼𝛽(𝜀)(𝜀 − 𝜇) [−

𝜕𝑓𝑢(𝑇;𝜀)

𝜕𝜀
] 𝑑𝜀  (3.11) 

𝜎𝛼𝛽(𝑇; 𝜇) =
1

𝛺
∫𝜎𝛼𝛽(𝜀) [−

𝜕𝑓𝑢(𝑇;𝜀)

𝜕𝜀
] 𝑑𝜀   (3.12) 

𝜎𝛼𝛽𝛾(𝑇; 𝜇) =
1

𝛺
∫𝜎𝛼𝛽𝛾(𝜀) [−

𝜕𝑓𝑢(𝑇;𝜀)

𝜕𝜀
] 𝑑𝜀   (3.13) 

along with the Seebeck coefficient 

𝑆𝑖𝑗 = 𝐸𝑖(∇𝑗𝑇)
−1
= (𝜎−1)𝛼𝑖𝑣𝛼𝑗   (3.14) 

The electron relaxation time, 𝜏𝑖,𝒌, is an important metric for calculating the 

transport properties as it describes the average time between scattering events. In 
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practice, this is a non-trivial variable to calculate. The total relaxation time, 𝜏𝑡, can be 

found using Matthiesen’s rule 

1

𝜏𝑡
= ∑

1

𝜏𝑗
𝑗      (3.15) 

where 𝜏𝑗 represents individual relaxation times from each different scattering 

mechanism.10 Rather than calculating this for each band and 𝒌 direction, we will use a 

constant relaxation time in this work. This approximation is favorable because the 

relaxation time has been shown to be relatively independent of direction, even in strongly 

anisotropic systems.11,12 

The electronic contribution to the thermal conductivity, 𝜅𝑒, can also be written in 

terms of the conductivity distribution 

𝜅𝑒,𝛼𝛽(𝑇; 𝜇) =
1

𝑒2𝑇𝛺
∫𝜎𝛼𝛽(𝜀)(𝜀 − 𝜇)

2 [−
𝜕𝑓𝑢(𝑇;𝜀)

𝜕𝜀
] 𝑑𝜀   (3.16) 

This term dominates the thermal conductivity for metals but is less impactful in 

semiconductors and insulators. For nonmetals, the thermal conductivity is dominated 

instead by the lattice thermal conductivity, 𝜅𝑙, where  

𝜅 = 𝜅𝑒 + 𝜅𝑙     (3.17) 

To calculate 𝜅𝑙, the phonon properties of the material must be investigated. 

3.3 Thermal Transport Properties 

In order to estimate the thermal transport properties of a material, it is necessary 

to analyze the phonon behavior. In general, the thermal conductivity is given in Equation 

3.17 where 𝜅𝑙 is the contribution from the lattice waves (phonons). For semiconductors, 

this term is expected to dominate as the contribution from electrons, 𝜅𝑒, would be 

negligible. There are a few different methods for modeling phonon behavior; however, 

the phenomenon of heat conduction is a problem of multiphysics and multilength scales. 
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Nevertheless, if one is drawing a comparison between similar systems, it is reasonable to 

identify trends via first-principles phonon property calculations. In this regard, DFT is 

often used as a calculator to estimate second- and third-order interatomic force constant 

matrices. These matrices are then used as input for phonon calculations which can be 

used to calculate phonon dispersion and DoS data (see Figure 3.1). Though third-order 

force constants are needed to account for Umklapp phonon scattering processes and 

determine 𝜅𝑙, the second-order force constants can provide useful information about the 

phonon properties with only a fraction of the computational cost. For the screening 

purposes of this dissertation, only the second-order force constants are calculated to 

compare phonon property effects of dopants and heterostructures. 

Second-Order Force Constants 

This work employs the method of DFPT to calculate the second-order force 

constants of a system. In this approach, an external perturbation is used to displace the 

atoms in order to determine the Hessian matrix. By defining the potential, 𝑉, of the 

phonon system as a function of atomic positions, the force, 𝐹, and second-order force 

constant, Φ𝛼𝛽, are given as 

𝐹𝛼(𝑗𝑙) = −
𝜕𝑉

𝜕𝑟𝛼(𝑗𝑙)
     (3.18) 

Φ𝛼𝛽(𝑗𝑙, 𝑗′𝑙′) =
𝜕2𝑉

𝜕𝑟𝛼(𝑗𝑙)𝜕𝑟𝛽(𝑗
′𝑙′)
= −

𝜕𝐹𝛽(𝑗
′𝑙′)

𝜕𝑟𝛼(𝑗𝑙)
   (3.19) 

where the indices 𝛼 and 𝛽 are Cartesian, 𝑗 and 𝑗′ represent atoms in a unit cell, and 𝑙 and 

𝑙′ represent the unit cell.13 

Through the implementation of the Phonopy software package,14 the force 

constants can be determined following the method of Parlinski, Li, and Kawazoe.15 In 

this approach, Equation 3.19 is given as the matrices, 
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𝐅 = −𝐔𝐏      (3.20) 

𝐅 = (

𝐹𝑥
𝐹𝑦
𝐹𝑧

)      (3.21) 

𝐏 =

(

 
 
 
 
 
 
 

Φ𝑥𝑥
Φ𝑥𝑦
Φ𝑥𝑧
Φ𝑦𝑥
Φ𝑦𝑦
Φ𝑦𝑧
Φ𝑧𝑥
Φ𝑧𝑦
Φ𝑧𝑧)

 
 
 
 
 
 
 

      (3.22) 

𝐔 = (

Δ𝑟𝑥 0 0
0 Δ𝑟𝑥 0
0 0 Δ𝑟𝑥

     

Δ𝑟𝑦 0 0

0 Δ𝑟𝑦 0

0 0 Δ𝑟𝑦

     
Δ𝑟𝑧 0 0
0 Δ𝑟𝑧 0
0 0 Δ𝑟𝑧

)  (3.23) 

where the 𝐔 matrix represents atomic displacements. Through the use of A (9x9 site-

point symmetry matrices) terms, the system can be solved by pseudo inverse via the 

following equation 

(

 
 
 
 

𝐅1
(1)

𝐅1
(2)

⋮

𝐅2
(1)

𝐅2
(2)

⋮ )

 
 
 
 

= −

(

 
 
 
 

𝐔1𝐀
(1)

⋮
𝐔1𝐀

(2)

𝐔2𝐀
(1)

𝐔2𝐀
(2)

⋮ )

 
 
 
 

𝐏    (3.24) 

where the superscript numbers indicate the index of site-symmetry operations.13 

Atomistic Green’s Function (AGF) Method 

Thermal transport across a boundary, such as the boundary between two 2D 

TMDs in a lateral heterostructure, is limited by the Kapitza, or thermal resistance of the 

interface,16 which determines the ratio of the boundary temperature difference to the 

interfacial heat flux. A higher thermal resistance corresponds to a greater temperature 
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difference at the interface for a given heat flux and can be useful for thermal insulation. 

This phenomenon has also received attention for potential thermoelectric applications.17-

20 

In semiconductors and insulators, the interfacial heat flux consists of phonons 

which are transmitted at the interface in a manner analogous to conventional acoustic and 

optical wave transmission. The probability of each phonon propagating across the 

interface, given by its transmission coefficient, depends on the phonon dispersion of the 

constituent materials and the atomistic structure of the interface and varies between 0 and 

1 because of impedance to its transmission from the abrupt change in crystallographic 

structure at the interface. The interfacial heat flux, 𝑄, in the x-direction can be intuitively 

expressed as the sum of the total phonon population weighted by their transmission 

coefficients as well as their frequencies and group velocities in the direction of the flux, 

i.e., in a two-dimensional material, 

𝑄 =
1

4𝜋2𝑑
∫ 𝑑2𝑘∑ ℏ𝜔𝑛(𝑘𝑥, 𝑘𝑦)𝑁(𝜔𝑛, 𝑇)𝑡𝑛(𝑘𝑥, 𝑘𝑦)𝑣𝑛(𝑘𝑥, 𝑘𝑦)

9
𝑛=1𝐵𝑍

 (3.25) 

where the reciprocal (𝑘𝑥, 𝑘𝑦) space integral is taken over the entire Brillouin zone, and 𝑑, 

ℏ, 𝑇, and 𝑛 are the film thickness, reduced Planck constant, temperature, and phonon 

branch index, respectively. The variables 𝜔𝑛, 𝑁, 𝑡𝑛, and 𝑣𝑛 represent the phonon 

frequency, Bose-Einstein distribution function, transmission coefficient, and phonon 

group velocity in the direction of the flux, respectively. The expression in Equation 3.25 

can be simplified to obtain the expression 

𝑄(𝑇) =
1

4𝜋2𝑑
∫ 𝑑𝝎ℏ𝝎𝑁(𝜔, 𝑇) ∫ 𝑑𝑘𝑦Ξ(𝑘𝑦, 𝜔)

+𝜋/𝑎

−𝜋/𝑎

∞

0
   (3.26) 

where Ξ(𝑘𝑦 , 𝜔) is the Fourier (𝑘𝑦) component of the overall transmission function given 

by 
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Θ(𝜔) =
1

2𝜋
∫ 𝑑𝑘𝑦Ξ(𝑘𝑦, 𝜔)
+𝜋/𝑎

−𝜋/𝑎
.   (3.27) 

It is necessary to decompose the overall transmission function into its Fourier 

components because they can be computed piece-wise in a more computationally 

efficient fashion, especially if the interface has translational symmetry. 

Although it is a straightforward exercise to calculate the phonon frequencies and 

group velocities, the computation of the transmission function Ξ(𝑘𝑦, 𝜔) is decidedly 

more involved and requires the application of a more sophisticated numerical technique 

such as the atomistic Green’s function (AGF) method.21 The AGF method, developed 

from the nonequilibrium Green’s function (NEGF) theory for electrons, describes the 

lattice dynamics of a finite body, corresponding to the interface region and couple to two 

semi-infinite thermal reservoirs commonly referred to as leads, and determines how an 

incoming phonon propagates across the interface region from one lead to the other. 

Conceptually, the leads define the available bulk phonon channels while the lattice 

structure of the interface region determines the transition between each pair of channels 

(in-coming and out-going). 

The AGF for the interface region 𝐺𝐶(𝑘𝑦, 𝜔) can be written as 

𝐺𝐶(𝑘𝑦, 𝜔) = lim
𝜂→0
[𝜔2 + 𝑖𝜂 − 𝐻𝐶(𝑘𝑦) − Σ𝐿(𝑘𝑦) − Σ𝑅(𝑘𝑦)]

−1
  (3.28) 

where 𝐻𝐶(𝑘𝑦), Σ𝐿(𝑘𝑦), and Σ𝑅(𝑘𝑦) are the mass-normalized force constant, left-lead 

self-energy, and right-lead self-energy matrices for the Fourier component 𝑘𝑦, 

respectively. The self-energy matrix for the left lead is given by 

Σ𝐿(𝑘𝑦) = 𝐻𝐶𝐿𝑔𝐿(𝜔)𝐻𝐶𝐿
†

    (3.29) 
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where 𝐻𝐶𝐿 is the mass-normalized force constant matrix representing the interaction 

between the left lead and the interface region, and 𝑔𝐿(𝜔) is the uncoupled surface 

Green’s function for the left lead. The self-energy matrix for the right lead is similarly 

defined. The transmission function, Ξ(𝑘𝑦, 𝜔), which determines the total transmission for 

the given 𝜔 and 𝑘𝑦 is given by 

Ξ(𝑘𝑦, 𝜔) = trace[Γ𝐿(𝑘𝑦)G𝐶(𝑘𝑦, 𝜔)Γ𝑅(𝑘𝑦)G𝐶(𝑘𝑦, 𝜔)
†
].  (3.30) 

In Equations 3.28 and 3.29, the force constant matrices are calculated with DFT. A 

separate set of force-constant matrices is calculated for each lead and also for the 

interface region. At each frequency, the total transmission function in Equation 3.27 can 

be combined with the Landauer formula22,23 to yield the heat current and thermal 

conductance of the interface. 

Additional information on the distribution of the transmitted phonons can be 

obtained through the use of mode-matching24,25 combined with the AGF method to 

extract the transmission coefficients of individual phonon modes and identify the 

constituent phonon modes in the interfacial heat flux.26 This approach has already been 

used to analyze the lateral heterostructure of single-atomic layer graphene – hexagonal 

boron nitride (h-BN).26,27 This dissertation similarly uses this newly developed approach 

to investigate the phonon transmission across the 2D MoS2-WS2 heterostructure interface 

and to obtain insights into the microscopic physical processes underlying heat transfer at 

the interface.  
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Abstract 

Skutterudite materials have been considered as promising thermoelectric 

candidates due to intrinsically good electrical conductivity and tailorable thermal 

conductivity. Options for improving thermal-to-electrical conversion efficiency include 

identifying novel materials, adding filler atoms, and substitutional dopants. Incorporating 

filler or substitutional dopant atoms in the skutterudite compounds can enhance phonon 

scattering, resulting in reduction of thermal conductivity, as well as improving electrical 

conductivity. The structures, electronic properties, and thermal properties of double-filled 

Ca0.5Ce0.5Fe4Sb12 and Co4Sb12-2xTexGex compounds (x = 0, 0.5, 1, 2, 3, and 6) have been 

studied using density functional theory (DFT) based calculations. Both Ca/Ce filler atoms 

in FeSb3 and Te/Ge substitution in CoSb3 cause a decrease in lattice constant for the 

compounds. As Te/Ge substitution concentration increases, lattice constant decreases and 

structural distortion of pnictogen rings in the compounds occurs. This indicates a break in 

cubic symmetry of the structure. The presence of fillers and substitutions causes an 

increase in electrical conductivity and a decrease in electronic bandgap. A transition from 

direct to indirect band-gap semiconducting behavior is found at x = 3. Phonon density of 

states for both compounds indicate phonon band broadening by the incorporation of 

fillers and substitutional atoms. The acoustic phonon modes are assumed to dominate 

thermal transport for both systems. For the Co4Sb12-2xTexGex compounds, x = 3 exhibits 

the lowest phonon dispersion gradient and lattice thermal conductivity, agreeing well 

with experimental measurements. Our results present the improvement of thermoelectric 

properties of skutterudite compounds through fillers and substitutional doping. 
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4.1 Introduction 

The combustion of fuel in automobiles is strikingly inefficient where 

approximately 75% of energy produced during this process is lost as waste heat. 

Thermoelectric materials can be used to recover some of this waste heat by converting it 

to useful electrical power for the vehicle. The performance of these materials is 

determined by a dimensionless figure of merit ZT (see Equation 2.1). Materials with 

higher ZT values (ZT >1) have greater thermoelectric performance. Such materials must 

exhibit a high power factor while having low thermal conductivity. In order to meet these 

criteria, it is important to identify novel materials or substitute existing materials with 

different species to optimize the ZT value.1-11 

One class of materials that has potential for thermoelectric applications are 

skutterudite compounds. These are relatively low-cost and easy to process materials that 

intrinsically exhibit good electrical transport properties and tunable thermal transport 

properties with site substitutions.2,5,9-16 Skutterudites have the space group Im3 and 

consist of cage-like structures with the general formula AB3 where A is a transition metal 

and B is a pnictogen. Figure 2.1 shows the crystal structure of a filled skutterudite 

featuring M filler atoms and B rings within an A sublattice, where M = La, Te, Ge, Ba, 

In, or Yb; A = Fe, Ru, Co, Ni, or Os; B = Sb, P, or As. Skutterudite compounds generally 

have a ZT value around 1 and maintain large carrier concentrations and moderate 

Seebeck coefficients.17,18 The incorporation of filler atoms reduces their thermal 

conductivity through the “rattling motion.” Alkaline earths have previously been used as 

fillers5 and Yang et al.19 have shown that a double-filled skutterudite, having one alkaline 

earth and one lanthanide (Ba and Ce) filler, is even more effective at reducing the lattice 
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thermal conductivity than using two alkaline earths (Ba and Sr). The combination of Ca 

and Ce used in this report mimics this approach but for elements with greater mass 

difference (71% mass difference compared to just 2%). The structure of a skutterudite 

also has large degrees of freedom for doping and alloying. This makes it attractive for 

customization and design studies. 

In addition to incorporating filler atoms, substituting B sites with different species 

is another approach to improve the ZT value. Cobalt triantimonide (CoSb3) is a 

skutterudite of particular interest for power generation because it can operate at high 

temperatures (≈900 K). Substitutions that have been investigated for the CoSb3 structure 

include Cr,20 Ni,21 or Fe,22 on the Co site, and Ge or Te on the Sb site. These substitutions 

reveal significant changes in transport properties such as an increase in electrical 

conductivity and a decrease in thermal conductivity; therefore, a fundamental 

investigation of fillers and substitutions and their effects on the thermoelectric properties 

of skutterudite compounds is important for materials development. 

As a follow-up to our previous work,22 this paper investigates the effect of Ca/Ce 

filler atoms in FeSb3 and Te/Ge substitutions on the Sb site in CoSb3. The stoichiometry 

of the Ca/Ce double-filled system follows the form CaCeFe8Sb24 but the proper ordering 

of the Ca and Ce atoms follows that of Figure 4.1 which requires a supercell of 

Ca4Ce4Fe32Sb96 to describe the system. In Co4Sb12-2xTexGex, six compositions are 

considered where x = 0, 0.5, 1, 2, 3, and 6. This range of compositions offers a complete 

look at the substitution up to a complete replacement of the Sb atoms (Co4Te6Ge6). To 

investigate the atomic structure features, we calculated the lattice constant, a, for the 

Ca0.5Ce0.5Fe4Sb12 system and lattice constant, a, and cell angle, γ, as a function of x for 
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the Co4Sb12-2xTexGex system. The atomic, electronic, and phonon dispersion effects were 

also investigated for each compound. This work helps identify the (Fe,Co)Sb3-type 

compounds with a stable structure and optimized electrical and thermal conductivity 

properties, hence improved ZT values. 

 

 
Figure 4.1. Schematic of the Ca4Ce4Fe32Sb96 crystal structure where Ca (blue), Ce 

(green), Fe (black), and Sb (gray) atoms are represented by spheres. The preferred 

ordering of the filler atoms is to arrange all Ca atoms along (220) planes and all Ce 

atoms along (110) planes in this 4x4x2 supercell. 

4.2 Computational Methods 

Crystal structure and electronic structure calculations were performed within the 

DFT through implementation of the VASP code.23 The spin-dependent GGA functional 

was used with the Perdew-Burke-Ernzerhof (PBE) formalism.24 Projector augmented 

wave (PAW) pseudopotentials were employed with a plane wave expansion cutoff of 500 

eV and a 6x6x6 Γ-centered k-point mesh for Brillouin zone integration.25,26 Fermi surface 
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broadening was accounted for by a Gaussian smearing of 0.05 eV for the FeSb3 structures 

while 0.025 eV was used for the CoSb3 structures. Atomic positions and lattice vectors 

were relaxed until the residual forces were reduced to less than 0.01 eV/Å. Electronic 

structure calculations, including DoS and band structure calculations, were carried out on 

the DFT-optimized structures. A larger k-point mesh of 12x12x12 was used for the 

Brillouin zone integration. These calculations were performed in order to investigate the 

effects of Ca/Ce fillers and Te/Ge-Sb substitution on the electrical conductivity of the 

systems. Strong correlation effects were also tested via the DFT+U scheme for the Fe 

atoms and Co atoms (on-site Coulomb potential UFe = 4.5 eV and UCo = 7.8 eV; 

exchange potential JFe = 0.89 eV and JCo = 0.92 eV).27 This approach is often used to 

correct the bandgap which is underestimated with DFT alone. 

To estimate the thermal properties of each system, DFPT was used to calculate 

the necessary force constants by means of the Parlinski-Li-Kawazoe method.28 The 

phonon density of states and phonon dispersion relations were then generated using the 

PHONOPY software package.29 Force constant calculations were performed using an 

energy cutoff of 400 eV and a k-point mesh of 1x1x1 for each structure. To account for 

long-range phonon interactions, a supercell convergence test was performed for each of 

the Co4Sb12-2xTexGex structures. 

The use of these methods and input parameters comes from optimization tests 

which balance system accuracy with computation costs. For most parameters, this point is 

reached when a further reduction in total system energy is negligible yet computation 

time is greatly increased. Once the DFT environment has been optimized, resulting lattice 
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constants and cell volume data were compared with experimental results to ensure 

accuracy in the models. 

4.3 Results 

Structural Effects 

The FeSb3 skutterudite has a cubic crystal structure with the Im3 space group and 

consists of Fe and Sb at A and B sites, respectively (Figure 2.1). It has a cage-like 

structure with two icosahedral voids filled with guest atoms M. Previous work indicated 

that Ca and Ce atoms as fillers with a 1:1 ratio form Ca0.5Ce0.5Fe4Sb12 and exhibit a 

higher ZT value than that of other (CaxCe1-x)Fe4Sb12 compounds where x = 0, 0.25, 0.75, 

and 1.22 This is the consequence of large mass difference between Ca and Ce, generating 

a wider range of resonant rattling frequencies and leading to phonon scattering 

enhancement and thermal conductivity decrease. 

This work further studies the Ca0.5Ce0.5Fe4Sb12 compound. DFT structural 

calculations indicate a decrease in lattice constant from 9.1805 Å for the unfilled 

compound to 9.1777 Å (~0.03%) for the double-filled compound, which agrees well with 

the experimental lattice constant of 9.149056 Å for Ca0.5Ce0.5Fe4Sb12. As shown in Figure 

4.1, a large 136 atom 4x4x2 supercell (i.e., Ca4Ce4Fe32Sb96) was used where the Ca and 

Ce were arranged with each occupying alternating (110) planes (defined using the 2x2x2 

supercell). The structure has average Ca-Sb and Ce-Sb bond lengths of 3.353 Å and 

3.361 Å, respectively; Sb-Ca-Sb bond angles of 52.00° and 66.85°; and Sb-Ce-Sb bond 

angles of 52.09° and 66.82°. 

The effects of B-site substitution in skutterudites were also investigated using the 

CoSb3 system where two Sb atoms are incrementally replaced with Te and Ge atoms, 
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resulting in the formula Co4Sb12-2xTexGex, where x = 0, 0.5, 1, 2, 3, and 6. Our optimized 

crystal structures and calculated lattice constants, a, were compared with experimental 

values, determined by the Rietveld refinement technique and a Rietveld pattern 

decomposition technique.30,31 Table 4.1 shows the calculated and experimental lattice 

parameters for Co4Sb12-2xTexGex to illustrate the structural effects of B-site substitutions 

Te/Ge. The lattice constant a appears to decrease almost linearly as x increases, with the 

exception of x = 2. These results are expected, given that the covalent radius of Sb (1.40 

Å) is larger than that of the substituents Te (1.36 Å) and Ge (1.21 Å).32 Cell angle γ 

slightly shrinks at x = 0.5, 1, and 3, but it enlarges at x = 6. These changes indicate that 

the symmetry of the Co4Sb12-2xTexGex compound is no longer cubic with Te/Ge 

substitution. Our DFT results agree well with experimental XRD structural analysis 

results (< 1.0% error). 

Table 4.1 Calculated cell angle γ in degrees and lattice parameter a in units of Å 

for Co4Sb12-2xTexGex (x = 0, 0.5, 1, 2, 3, and 6). The experimentally determined 

lattice parameter aexp and the percent error between calculated and experimental 

values is also given (subscript exp denotes experimental values).31 The symbol θ 

represents the smallest distortion angle in the pnictogen rings. Superscript a denotes 

values taken for the structure with the highest dopant site order (configuration 3). 

x γ (°) a (Å) aexp (Å) Error % θ (°) 

0 90.00 9.11086 9.03662 0.82 90.00 

0.5 89.90 9.08122 9.01633 0.72 88.72 

1 89.83 9.06154 8.99555 0.73 85.62 

2 90.00 8.88705 8.94781 -0.68 86.40 

3 89.96 8.96417 8.89584 0.77 80.87a 

6 90.26 8.79712 -- -- 81.84a 
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In order to better understand the atomic structures, we measured the distances 

between Co atoms and the rings consisting of Sb/Te/Ge. In experiments, the Co-

Sb/Te/Ge distance decreases from 2.53 Å to 2.49 Å as x increases from 0 to 3. While the 

average Sb/Te/Ge-Sb/Te/Ge distances in the 4-member rings also decreases from 2.91 Å 

to 2.86 Å, they are longer than the typical Sb-Sb distance of 2.80 Å.32 DFT calculations 

reveal that the average Co-Sb/Te/Ge bond distances decrease from 2.54 Å to 2.47 Å from 

x = 0 to 3 and even further decreased to 2.41 Å at x = 6, which is consistent with 

experimental results. From x = 0.5 to 2, the Co-Ge bond distance is the shortest compared 

to the Co-Sb and Co-Te bonds; however, in the x = 3 compound, the Co-Te bond distance 

decreases rapidly and becomes the shortest. Te/Ge substitution at x = 3 results in a unique 

structure. Due to different Co-Sb/Te/Ge bond distances and large Te/Ge substitution 

concentration, the 4-member rings consisting of Sb/Te/Ge are distorted, and turn into the 

parallelogram rings shown in Figure 4.2. The distortions depend on the concentration of 

Te/Ge substitution in the rings. Its angles range from 81° to 93°. 

 
Figure 4.2. Model depicting pnictogen rings within the filled skutterudite 

structure. Upon Te/Ge substitution, the ring distorts to an angle of down to 81° for 

Co4Sb12-2xTexGex at x = 3. 

Electrical Properties 

The Ca and Ce filler atoms in FeSb3 affect the electronic structure as well as the 

crystal structure. As shown in Figure 4.3, the electronic DoS for the Fe8Sb24 structure 
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shows that the material is already electronically conductive because, at the Fermi level, 

there is low DoS for the spin-up (positive y-values) and relatively large DoS for the spin-

down. The difference in spin-up and spin-down DoS is caused by the magnetism of Fe in 

the system. The Ca/Ce-filled structure, having the proper Ca-Ce ordering as shown in 

Figure 4.1, is also electronically conductive but with a more subtle difference between 

spin-up and spin-down DoS than the unfilled structure. Experimentally, it is shown that 

this particular Ca-Ce ordered structure is not necessarily the most electronically 

conductive type of Ca/Ce-filled FeSb3 but is conductive enough to allow for high ZT 

values.22 Indeed, in Figure 4.3 the presence of a zero-DoS point near the Fermi level 

could indicate potential for this material to exhibit semi-metallic behavior. 

 
Figure 4.3. Electronic density of states for the unfilled (black line) and CaCe-filled 

(red line) FeSb3 structure. In order to account for the correct Ca-Ce ordering as 

shown in Figure 4.1, a large Ca4Ce4Fe32Sb96 supercell structure was used. For the sake 

of comparison, the DoS magnitude for the unfilled structure is increased by a factor 

of four. Dotted lines depict the zero values on both axes and the x-axis is shifted so the 

zero-point represents the Fermi level (depicted by the blue dotted line). The up- and 

down-spin DoS are given by positive and negative values, respectively. The difference 



57 

 

in shape between spin-up and spin-down is primarily caused by the magnetism of the 

Fe atoms in the system. The unfilled Fe8Sb24 (black) results show a bandgap only for 

the positive DoS while neither the up- nor down-spin CaCe-filled (red) DoS has a 

significant bandgap. 

Similarly, the electronic conductivity for the CoSb3 structure is affected by the 

concentration of Te/Ge substitution. Through electronic structure calculations, we studied 

the Te/Ge substitution effect on the bandgap of each Co4Sb12-2xTexGex compound (x = 0, 

0.5, 1, 2, and 3), which allowed us to predict the electrical conductivity change. 

Comparison with experimental data30 validated the computational prediction. Further 

studies of local density of states provided insight into Co-Te/Ge bonding. 

Figure 4.4a shows DoS for Co4Sb12-2xTexGex. Fermi energy is shifted to 0 eV. At 

x = 0, the compound is semiconducting with a bandgap of ~0.16 eV. As x increases to 

0.5, the bandgap decreases. Interestingly, when Te/Ge concentration continues 

increasing, the bandgap first opens wider but then completely closes at x = 3. Such 

bandgap changes reveal the effect of Te/Ge substitution on the electrical conductivity of 

the compound. The compound at x = 0 is expected to have the smallest electrical 

conductivity while the highest electrical conductivity occurs at x = 3 due to the absence 

of a bandgap. From x = 0.5 to 1, the electrical conductivity should slightly decrease due 

to the wider bandgap. These computational predictions are consistent with experimental 

measurements which show that increasing Te concentration in Ge-doped CoSb3 increases 

the electrical conductivity.33,34 
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Figure 4.4. Electronic density of states for Co4Sb12-2xTexGex, Fermi energy = 0 eV: 

(a) Total DoS for x = 0, 0.5, 1, 2, and 3; and (b) local DoS (LDoS) for Co8Sb22 (black), 

Te (red), and Ge (blue) in Co8Sb22TeGe (i.e., Co4Sb11Te0.5Ge0.5 with x = 0.5). DoS 

results in (a) indicate that the bandgap decreases with increasing x. Part (b) shows an 

interaction between the local Te and Ge densities indicating orbital hybridization. 

We further studied the local DoS (LDoS), which projected the density on each 

metal site. Through this approach, the density of states can be split into contributions 

from each individual atom. When these corresponding plots overlap, it suggests that each 

atom is contributing to the density of states at that given energy level, implying orbital 

hybridization. Figure 4.4b illustrates the orbital hybridization through the energy bands of 

-13 eV to 5 eV between Co and Te/Ge substitution at x = 0.5. It indicates the covalent 

characteristics of Co-Te/Ge bonds due to the overlap of orbital energies. As the Te/Ge 

concentration increases, the average Co-Te/Ge bond distance decreases because of the 

stronger covalent nature of the bond. 

Further analysis of band alignment facilitates the engineering of the skutterudite 

compounds for specific thermoelectric applications. The band structures of Co4Sb12-

2xTexGex for x = 0, 0.5, and 3 were calculated along lines connecting high symmetry 

points in the Brillouin zone as shown in Figure 4.5. The perfect CoSb3 (x = 0) is a direct 
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bandgap semiconductor with a calculated gap of 0.16 eV. The valence band maximum 

(VBM) and conduction band minimum (CBM) are both located at the Γ point. There also 

exists an indirect gap at some lower-symmetry point having a local maximum between M 

and Γ that is separated from the CBM by 0.50 eV. As Te/Ge substitutions are introduced 

(x = 0.5), the material remains a direct bandgap semiconductor but with a narrower size 

of 0.13 eV. This is caused by the decrease in the CBM at the Γ point from 0.084 eV to 

0.066 eV. Also, the local maximum at the M point increases (from -0.536 eV to -0.355 

eV), giving rise to a shorter indirect gap of 0.42 eV that now exists from M → Γ high-

symmetry points. This implies that with adjusting x values, the compound could shift 

from a direct to an indirect bandgap semiconductor, creating more potential applications 

for the compounds. To confirm our prediction, we observed x = 3 (Figure 4.5c) which 

shows the smaller bandgap of 0.11 eV, suggesting a high electrical conductivity. Both the 

VBM peak and CBM trough at the Γ point split, forming an indirect gap. 
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Figure 4.5. Electronic band structure diagrams of Co4Sb12-2xTexGex for (a) x = 0, 

(b) x = 0.5, and (c) x = 3. Blue arrows indicate the changes in the direct and indirect 

bandgaps. As substitution increases, the bandgap decreases from (a) 0.16 eV to (b) 

0.13 eV, and eventually to (c) 0.11 eV for the highest-doped structure investigated (x 

= 3). Also note the transition from direct to indirect bandgap semiconducting 

behavior in (c). 

The electronic structure results indicate a strong Te/Ge substitution dependence in 

Co4Sb12-2xTexGex, motivating us to investigate further increasing x to the full substitution 

of Sb with Te/Ge (x = 6 or Co4Te6Ge6). Figure 4.6 shows electronic DoS for x = 6 (full 

substitution) in comparison with that for x = 3 (half substitution) and different atomic 

arrangements for Sb, Te, and Ge. In Figure 4.6b, the black line depicts the electronic DoS 

for x = 6, where there is no bandgap and the local minimum in DoS at the Fermi level 

also has a higher value than that of x = 3 (see Figure 4.6a). This suggests a generally 

increasing conductivity with increasing x. Interestingly, we found that atomic 

arrangements for Sb, Te, and Ge in the pnictogen rings affect the bandgap size. As seen 
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in Figure 4.6c, configuration 1 involves the least amount of “order” where the Sb, Te, and 

Ge atoms are randomly arranged throughout the Sb sites. This is the configuration used 

for all substituted structures in Figure 4.4a. Ordering refers to having some pnictogen 

rings composed of entirely Sb and/or having some only 2Te/2Ge rings arranged such that 

the Te and Ge atoms are at alternating sites around the ring. Configuration 2 is an 

example of this for the x = 3 system. Finally, configuration 3 involves no randomly 

ordered rings, demonstrating that all Sb atoms are only sharing Sb rings at x = 3 and all 

Te and Ge atoms are only sharing 2Te/2Ge rings arranged as explained above. As a 

result, pnictogen ring “ordering” increases from configuration 1 to configuration 3. We 

found that increasing the ring ordering opens up a bandgap and further increases the gap 

to as much as 0.32 eV and 0.33 eV for x = 3 and x = 6, respectively (see Figure 4.6a and 

Figure 4.6b). Our computational results emphasize the importance for understanding the 

atomic structure of these materials and the atomic structure-electrical property 

relationships. 
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Figure 4.6. Density of states plots for Co4Sb12-2xTexGex where (a) x = 3 and (b) x = 

6. Fermi energy is zero. The black, green, and blue plots depict the randomly ordered 

(configuration 1), the partially ordered (configuration 2), and fully ordered 

(configuration 3) pnictogen ring configurations. The pnictogen ring ordering 

increasingly opens up the bandgap. An example of each pnictogen ring configuration 

(depicted using the x = 3 structure) is shown in part (c) where the blue line shows Co-

Co bonds and the gray, yellow, and red spheres depict Sb, Te, and Ge atoms, 

respectively. 

Phonon Properties 

The scattering of phonon modes in a material hinders thermal transport, which 

results in reduced lattice thermal conductivity κl. There are a variety of methods for 

increasing phonon scattering, including nanostructuring, alloying, introducing more 

disorder or interfaces, and changing the structure or composition.35 By analyzing the 

phonon dispersion relations of a material, one can estimate the effects of fillers or 

substitutions on the resulting phonon properties. For example, the phonon group velocity 
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vkλ can be estimated by observing the slopes or gradients of the phonon dispersion data 

through the equation 

𝑣𝑘𝜆 =
𝜕𝜔

𝜕𝑘
,      (4.1) 

where ω is the phonon frequency and k is the wave vector. The phonon group velocity is 

then related to the lattice thermal conductivity through the following equation: 

𝜅𝑙 =
1

3𝑉𝑁𝑘
∑ 𝑐𝑘𝜆𝑣𝑘𝜆

2 𝜏𝑘𝜆𝑘𝜆 ,     (4.2) 

where V is the volume of the unit cell, Nk is the number of k-points, c is the heat capacity, 

and τ is the phonon relaxation time for the given phonon branch, λ.36,37 From this, the 

lattice thermal conductivity can be estimated qualitatively by analyzing the slope of the 

phonon dispersion results. Figure 4.7 shows phonon DoS data for the large 136-atom 

Ca4Ce4Fe32Sb96 compound compared to that of Fe8Sb24. Phonon dispersion data were also 

calculated but due to the large number of modes (136 x 3 = 408 modes) for the CaCe-

filled system, the results were more clearly displayed via the phonon DoS instead. We 

found that the incorporation of Ca and Ce filler atoms broadens the phonon bands, 

implying an increase in phonon scattering typically observed in filled skutterudite 

systems. The optical modes are also significantly flatter than the acoustic modes, 

suggesting that the lattice thermal conductivity for this material is dominated by the 

acoustic modes. 
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Figure 4.7. Phonon density of states for unfilled Fe8Sb24 (black) and CaCe-filled 

Ca4Ce4Fe32Sb96 (blue). To account for the proper Ca/Ce filler atom ordering which 

provides the most stable structure (and most promising thermoelectric performance) 

of the Ca0.5Ce0.5Fe4Sb12 system, the larger 136-atom supercell was used for the “CaCe-

filled” structure. 

Similarly, the effects of substitution on lattice thermal conductivity were also 

estimated by analyzing the phonon properties. Figure 4.8a shows the phonon dispersion 

relation for the Co4Sb12-2xTexGex compound at x = 0. Figure 4.8b compares the acoustic 

modes for the Co4Sb12-2xTexGex compounds at x = 0, 3, and 6, where the x-axes for each 

data set is normalized to the values of the compound at x = 6 (for the purpose of 

comparison). The compound at x = 3 has the lowest phonon dispersion gradient which 

could indicate that it has the lowest lattice thermal conductivity. Figure 4.8c compares the 

phonon density of states for the three compounds. It shows a broadening of the phonon 

bands, particularly for the higher-frequency band, for the compounds with Te and Ge 

substitutions at x = 3 and 6. Ge substitutions contribute to the higher frequency modes 

since Ge has a lower atomic weight than Sb. In contrast, the modes at the lower 
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frequencies are associated with the heavier Te substitutions. x = 0 exhibits a sizable gap 

between the higher-frequency band and the lower band. As substitution increases, this 

gap decreases and is eventually eliminated at x = 6. This spreading of optical modes 

indicates a reduction in lattice thermal conductivity. For either x = 3 or x = 6, the optical 

modes are significantly flatter than the acoustic modes, suggesting that the lattice thermal 

conduction is likely dominated by the acoustic modes in these compounds. 

 
Figure 4.8. Phonon property calculations. (a) Phonon dispersion relation for 

Co4Sb12-2xTexGex at x = 0. Similar plots were made for x = 3 and x = 6 but for brevity, 

only their acoustic modes (along with those of x = 0) are given in (b), and (c) total 

phonon density of states for each compound, projected across the full range of mode 

frequencies. 

4.4 Conclusion 

We have investigated the crystal structures, electrical properties, and thermal 

properties of filled Ca0.5Ce0.5Fe4Sb12 and substituted Co4Sb12-2xTexGex compounds (x = 0, 
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0.5, 1, 2, 3, and 6) using a DFT-based approach. The stable Ca/Ce ordering required the 

use of a large Ca4Ce4Fe32Sb96 supercell with each filler atom occupying alternating (110) 

planes. For the Co4Sb12-2xTexGex compounds, structural distortion occurs with Te/Ge 

substitution. At x = 3 (i.e., 1:1 Sb:Te/Ge ratio), four-member pnictogen square rings have 

the largest distortion and become parallelograms with an angle of 81°. Electronic 

structure calculations indicate that the Ca/Ce double-filled FeSb3 is conductive with no 

bandgap. The bandgap of Co4Sb12-2xTexGex varies with Te/Ge substitution concentration 

leading to a reduction in bandgap and therefore an increase of electrical conductivity. The 

covalent characteristics of Co-Te/Ge bonds account for orbital hybridizations between Co 

and Te/Ge. Band structures exhibit the change of band alignments near the Fermi energy 

as x increases. At x = 3, the compound transfers from a direct to indirect band-gap 

semiconductor. We also found a strong correlation between the ordering/configuration of 

pnictogen rings and the electronic bandgap for these compounds. We predicted the 

thermal conductivity change through the analysis of phonon DoS and phonon dispersion 

relations for the compounds. The phonon bands are broadened with the incorporation of 

either fillers or substitutions. Lattice thermal conductivity change is controlled by the 

acoustic phonon modes in both cases. For the Co4Sb12-2xTexGex compounds, phonon 

scattering and acoustic mode gradient change are evident as substitution increases. The 

compound at x = 3 is expected to have the lowest lattice thermal conductivity. Our work 

predicts improved thermoelectric properties via filler and substitutional doping. More 

work will be conducted to confirm the predictions through further ZT calculations and 

measurements. 
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The overall approach for analyzing these skutterudite systems and investigating 

their filler and substitution effects can be used to facilitate research on 2D TMD systems 

in the following chapters. Similar DFT calculations were performed to relax and analyze 

the structure of 2D TMD materials. Both the methodology for calculating electron and 

phonon dispersion spectra and the analysis of electrical and phonon properties were 

applied to our 2D TMD research. The supercell approach for investigating dopants was 

also used to build metal-site substituted MX2 structures for Chapter Six and lateral 

heterostructures for Chapter Seven. 
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Abstract 

Two-dimensional transition metal dichalcogenides (2D TMDs) are of broadening 

research interest due to their novel physical, electrical, and thermoelectric properties. 

Having the chemical formula MX2, where M is a transition metal and X is a chalcogen, 

such materials present many possible combinations to consider for materials-by-design 

exploration. By identifying novel compositions and utilizing the lower dimensionality, 

which allows for improved thermoelectric performance (e.g., increased Seebeck 

coefficients without sacrificing electron concentration), MX2 materials are potential 

candidates for electronic and energy applications; however, to develop these materials for 

wide-scale use, it is crucial to comprehensively understand the compositional affects. 

This work investigates the structure, electronic, and phonon properties of 18 different 

MX2 material compositions as a benchmark to explore the impact of various elements. 

There is significant correlation between properties of constituent transition metals 

(atomic mass and radius) and the structure/properties of the corresponding 2D TMDs. As 

the mass of M increases, the n-type power factor and phonon frequency gap increases. 

Similarly, increases in the radius of M lead to increased layer thickness and Seebeck 

coefficient, S. Our results identify key factors to optimize MX2 compositions for desired 

performance. 

5.1 Introduction 

TMDs, having the chemical formula MX2 (M = transition metal, X = chalcogen, 

e.g., S, Se, Te), have received attention over the years for having interesting magnetic1,2 

and photoelectric3 properties. Bulk three-dimensional transition metal dichalcogenides 

(3D TMDs) can exist as layered structures wherein each layer consists of a transition 
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metal (M) sheet sandwiched between two chalcogen (X) sheets. These layers exist in one 

of two structure types: 2H-type having D6h point group symmetry and 1T-type having D3d 

point-group symmetry. Strong covalent bonding exists within the MX2 layers (along the a 

and b axes) while much weaker van der Waals (vdW) interactions exist between the 

layers (along the c axis). This allows individual MX2 layers to be separated via 

mechanical exfoliation.4 The separated 2D TMD materials have recently attracted much 

interest for a variety of applications including electronics,5-9 optoelectronics,10-13 

catalysis,14,15 and thermoelectrics.16-19 Thermoelectrics convert waste heat into electric 

power, governed by figure of merit, ZT (see Equation 2.1). Common thermoelectric 

materials include clathrates,20 half-Heusler alloys,21 and skutterudites.22-25 Reduced 

dimensionality offers the potential for smaller device features and has been shown to 

greatly reduce short-channel effects, increase the on–off ratio, and reduce switching 

voltage in field-effect transistors (FET).7,10 In addition, the quantum confinement effect 

and sharp features in the electronic DoS are beneficial for greatly improving 

thermoelectric properties, such as increasing S in 2D TMDs compared to that of the bulk 

structures.26-28 It is also predicted that the lower dimensionality increases diffusive 

boundary scattering, effectively reducing the thermal conductivity, κ. Lowering the 

dimensionality of Si, for example, has shown strong reductions in thermal conductivity 

and implications for enhanced thermoelectric performance.29,30 Each of these factors 

contributes to the strong motivation for further understanding the behavior of 2D TMDs. 

With a large number of potential 2D TMD compounds, it is important to identify 

key structure–property–performance relationships in order to screen preferred materials. 

A few studies have been performed to analyze the stability and electronic structure of 2D 
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TMDs and TMOs (transition metal dioxides) using DFT.5,6 These offer a general analysis 

of trends across a broad range of compositions and identify most structures to be 

semiconducting with small indirect bandgaps. Rasmussen et al.6 found that only CrX2, 

MoX2, and WX2 systems exhibit direct bandgaps. From these works, it is useful to 

identify more favorable 2D TMD compositions in terms of stability, electrical properties, 

and optical properties; however, none have been directed at what compositions are 

possible. Graedel et al.31 developed a method for quantifying the environmental 

implications, supply risk, and vulnerability to supply restrictions for 62 transition metals 

and metalloids. These ‘‘criticality scores’’ can be used to identify preferred materials and 

narrow the focus for screening potential compositions in order to develop high-

performance, cost-effective, and environmentally friendly materials. 

In this work, we used existing stability reference data in conjunction with 

criticality scores to identify transition metals and resulting 2D TMD compounds to 

represent a narrowed scope of feasible options for MX2 materials screening purposes. A 

list of six transition metals was selected to offer a range of common oxidation states, 

atomic masses, and atomic radii. Combined with three chalcogens—S, Se, and Te—this 

amounted to 18 total compounds. The geometries, electrical properties, and phonon 

properties of these compounds were investigated through first-principles calculation and 

analyzed with respect to physical properties of the transition metals. This unique 

approach offers a means of identifying general trends in constituent elements in order to 

predict structure–properties–performance relationships in resulting 2D TMDs. 
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5.2 Computational Methods 

Structural and electronic structure calculations were conducted using the PAW 

method32,33 within the framework of DFT via the VASP code.34 The PBE35 formalism 

was employed within the spin-dependent GGA. A plane-wave expansion cutoff of 500 

eV was used along with an automatic Γ-centered 12x12x1 k-point mesh Brillouin zone 

integration for the initial geometry optimizations. A Gaussian smearing of 0.025 eV was 

used to account for Fermi surface broadening while atomic positions and basis vectors 

were relaxed to within 0.01 eV/Å. To avoid image interaction, MX2 sheets were 

separated by a distance >20 Å. After geometry optimizations, the electronic structure 

calculations were performed with an increased k-point mesh of 24x24x1 while strong 

correlation effects were accounted for using the DFT+U scheme for all transition metals. 

The on-site Coulomb potentials of U = 4.38, 8.0, 3.0, 8.0, 6.0, and 8.0 eV were used for 

Mo, Ni, Sc, Ti, V, and W, respectively.36 The on-site exchange potential, J = 1.0 eV, was 

used for all metals. 

Force constants used to estimate phonon properties were calculated using DFPT 

following the method of Parlinski-Li-Kawazoe.37 To calculate the real-space force 

constants, long-range effects were accounted for by using a converged supercell size of 

3x3x2 and a corresponding k-point mesh of 4x4x2. The resulting force constants were 

used to generate phonon DoS and partial phonon DoS.38 

In bulk TMD structures, it is necessary to employ vdW corrections to account for 

the inter-sheet interactions as they are determined to be largely controlled by vdW forces. 

Indeed, our own comparison of bulk MoS2 (using the Grimme DFT-D2 method39 and a 

12x12x4 k-point mesh) with that of reported experimental values40 revealed that 
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accounting for vdW forces increases the accuracy by about 24.5 % and 11.9 % for sheet 

separation distance and cell volume, respectively; however, since the bonding within the 

2D TMD sheets is primarily strongly covalent, it may not be necessary to include such 

corrections for calculations involving the isolated sheets. We tested for 2D MoS2 and 

found that incorporating vdW corrections gave the same lattice constant and layer 

thickness values (to within 0.3 % error) yet produced an indirect bandgap of 1.65 eV. 

Since 2D MoS2 is known to be a direct bandgap semiconductor,41 it would seem that 

DFT-D2-based vdW corrections actually have a negative impact on 2D TMD systems. 

Due to the minimal difference in geometry and potential error in the electronic structure 

calculations, we did not employ vdW in this work. 

Similar to the skutterudite modeling approach, each of the DFT parameters in this 

chapter were optimized through convergence tests. These tests are meant to provide the 

most accurate ground state that can be reasonably obtained while investigating eighteen 

different compounds. Our calculated lattice constants, bond lengths and angles, and 

electronic bandgaps were compared with literature values where available5,6 to validate 

our results. 

5.3 Results 

Structure Screening 

The unique physical, electrical, and thermal properties of 2D TMDs are of great 

research interest for a wide range of applications. However, there are many possible MX2 

combinations to consider. Work by Graedel et al. highlights the “criticality scores” for 

transition metals, allowing for the comparison of three important factors to consider for 

materials design: environmental implications, supply risk, and vulnerability to supply 
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restrictions.31 By comparing this list with the stability results from Ataca et al.5 and 

Rasmussen et al.,6 we have narrowed the list of favorable transition metals to six: Mo, Ni, 

Sc, Ti, V, and W. These metals offer a broad range of atomic masses (44.96–183.85 u),42 

atomic radii (0.62–0.885 Å),43 and most common oxidation state (+2 to +6). The 

comparison of the calculated properties with regard to these factors offers an effective 

approach towards identifying key relationships between constituent elements and desired 

structural, electrical, and thermal properties. 

Table 5.1 Oxidation state, atomic mass (u), and atomic radius (Å) for each 

transition metal. The 2D TMDs (MX2), consisting of a transition metal (M) and 

chalcogen (X), have either 2H- or 1T-type structures. Lattice parameter a (Å), layer 

thickness t (Å), and electronic bandgap Eg (eV) of the corresponding TMD are also 

given. aReference.41 bReference.42 Values taken from list of crystal radii with +4 

charge and six-fold coordination. cValue for +3 charge. dEF sits on mid-gap state. 

M 
Oxidation 

state 

Atomic 

massa (u) 

Atomic 

radiusb (Å) 
X Type a (Å) t (Å) Eg (eV) 

Mo +6 95.94 0.79 S 2H 3.182 3.128 1.69 

    Se 2H 3.319 3.338 1.46 

    Te 2H 3.549 3.611 1.10 

Ni +2 58.69 0.62 S 1T 3.351 2.336 0.01 

    Se 1T 3.545 2.479 – 

    Te 2H 3.720 2.927 – 

Sc +3 44.956 0.885c S 2H 3.777 2.708 1.72d 

    Se 2H 3.512 3.635 – 

    Te 2H 3.728 4.009 – 

Ti +4 47.88 0.745 S 1T 3.398 2.854 1.18 

    Se 2H 3.485 3.239 0.92 

    Te 2H 3.736 3.571 0.30 

V +5 50.942 0.72 S 1T 3.174 2.938 – 

    Se 2H 3.335 3.197 0.72 

    Te 2H 3.596 3.502 0.02 

W +6 183.85 0.80 S 2H 3.181 3.139 1.85 

    Se 2H 3.317 3.355 1.58 

    Te 2H 3.552 3.623 1.07 
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The complete list of eighteen 2D TMDs used in this study is given in Table 5.1. 

The most common oxidation state, atomic mass, and atomic radius are listed for each 

transition metal (M). The resultant TMD forms either a 2H- or 1T-type phase. The TMD 

lattice parameter, a, is typically similar to the layer thicknesses except in the case of ScS2 

and the NiX2 system (with layer thicknesses about 1 Å smaller than a). Also, both the 

lattice parameter and layer thickness increase with the atomic number of X. The range of 

values for both the lattice parameter and layer thickness noticeably decreases with 

increasing oxidation state of the transition metal. Similarly, this range also decreases with 

increasing atomic mass of the transition metal down to within < 0.5 Å for both the MoX2 

and WX2 systems (mMo = 95.94 u, mW = 183.85 u). Figure 5.1 shows how the lattice 

parameter and layer thickness of the resulting 2D TMD are influenced by the atomic 

mass and atomic radius of the constituent transition metal. Interestingly, the layer 

thickness increases with atomic radius of the transition metal while the lattice parameter 

remains constant. The results reveal some materials design principles that lattice 

mismatch – causing a large instability in the formation of heterostructures – is minimal or 

negligible, even though 2D TMDs have large layer thickness differences. 
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Figure 5.1. Effects of (a) atomic mass and (b) atomic radius of the transition metal 

on the lattice constant, a, and layer thickness of the resulting 2D TMD structure. 

Circles and diamonds refer to lattice constant and layer thickness values, respectively. 

Open and filled data points refer to 1T- and 2H-type MX2 structures, respectively. 

Solid and dashed linear trend lines have been added to plot (b) to guide the eye for 

lattice constant and layer thickness data, respectively. 

Electrical Property Screening 

Electronic structure calculations were performed for the 2D TMDs and 

determined that many of the systems exhibit semiconducting behavior. The MoX2, TiX2, 

and WX2 systems all have nonzero bandgaps with Fermi levels just above their respective 

VBM. The magnitude for each bandgap decreases with the increasing atomic number of 

X. Specifically, the MoX2 and WX2 systems have bandgaps similar to each other, and 

they are the only systems with direct bandgaps. These results are consistent with the 

findings of Rasmussen et al.6 In contrast, the NiX2, ScX2, and VX2 systems all exhibit p-

type semiconducting behavior with Fermi levels below the VBM. The only member of 

the VX2 system with a mid-gap Fermi level is VSe2 – a semiconductor with an indirect 

bandgap of 0.72 eV. Generally speaking, the compounds exhibiting the largest bandgaps 

are the ones that involve mid-level transition metal radii. The most conductive 
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compounds have either very large (Sc) or very small (Ni) atomic radii, implying a 

Gaussian distribution of bandgaps across the range of atomic radii. 

To further investigate electrical properties, the power factor 𝑆2σ (a crucial metric 

for the performance of thermoelectric materials, see Equation 2.1) and S were also 

calculated for each TMD. The BTE was solved in order to calculate semi-classic 

transport coefficients.44 The S data is shown in Figure 5.2 as a function of carrier 

concentration. Each calculation was evaluated for the temperature of 300 K. Consistent 

with the bandgaps, the MoX2, TiX2, and WX2 systems show the largest-magnitude S 

values (nearly 1000 μV/K for the given carrier concentration range) while the other 

systems produced much smaller values (< 50 μV/K). Also, the MoX2 and WX2 systems 

yield similar plots for all cases except the n-type S calculation for the MTe2 structures 

(see Figure 5.2f). The TiTe2 results show a noticeable peak in the S of about 450–500 

μV/K for both p- and n-type calculations. It suggests a bipolar conduction for carrier 

concentrations below 1011 carriers/cm2 and an optimum S value for this system. This 

bipolar effect could cause degradation in the thermoelectric performance. 
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Figure 5.2. Seebeck coefficient, S (μV/K), calculated as a function of carrier 

concentration N (e/cm2) for 2D TMDs. Plots (a)-(c) show the p-type S values while 

plots (d)-(f) depict n-type values. The first (a, d), second (b, e), and third (c, f) columns 

compare the MS2, MSe2, and MTe2 systems, respectively. The MoX2, TiX2, and WX2 

systems all exhibit semiconducting behavior and are distinguished by lines with 

diamonds (Mo diamonds-solid line, Ti diamonds-dashed line, and W diamonds-dot-

dashed line). The more-conductive NiX2, ScX2, and VX2 systems all exhibit low S 

values and are depicted using lines (Ni dotted line, Sc dot-dot-dashed line, and V dash-

dash-dotted line). All calculations were performed at the temperature of 300 K. 

The S values were combined with electrical conductivity (σ/τ) calculations, and 

using the constant relaxation time approximation,45,46 the S2σ values were calculated. The 

choice of relaxation time (τ) comes from the work of Kaasbjerg et al.47 who used DFT to 

calculate the effective electron mass (𝑚∗ = 0.48 𝑚𝑒) and electron mobility in single 

layer MoS2. At 300 K, and for carrier densities between 1011 and 1013 cm-2, they 

calculated an electron mobility of about μ = 400 cm2V-1s-1. Using the equation 𝜇 =
𝑞

𝑚∗
τ, 

where q is the electronic charge, the average relaxation time equates to about τ ≈ 10-13 s. 

This value was used for each system and the resulting first-peak maximum S2σ values are 

given in Table 5.2. The n-type results indicate a correlation between the magnitude of the 
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S2σ and the mass of the constituent transition metal. The heaviest metals, W and Mo, 

produce the largest S2σ of 7.90*10-3 and 5.82*10-3 W/m/K2, respectively, while the 

lightest metal, Sc, has the smallest S2σ (0.78 to 1.39)*10-3 W/m/K2. The type of 

chalcogen does not have a large impact on the S2σ of the resultant TMD. For example, 

the TiX2 system has a range of only 0.04*10-3 W/m/K2. This could be useful for design 

purposes, where necessary restrictions on the use of chalcogen would likely not affect the 

overall performance of the material. The p-type S2σ results, however, are not as 

consistent. Many of the systems exhibit large dependence on the type of chalcogen used. 

For example, the NiX2 system has a range of values exceeding 7.83*10-3 W/m/K2. 

Table 5.2 Power factor (S2σ) values for the 18 2D TMDs. Values are reported as 

103 times larger than actual for the purpose of clarity in the table. Each value, when 

multiplied by 10-3, yields units of W/m/K2. These are calculated at 300 K for both n- 

and p-type. 

   S2σ*10-3 (W/m/K2) 

M X Type n–type p–type 

Mo S 2H 5.82 5.09 

 Se 2H 5.49 3.70 

 Te 2H 5.26 3.26 

Ni S 1T 3.36 8.62 

 Se 1T 2.97 0.79 

 Te 2H 0.45 3.03 

Sc S 2H 1.16 0.75 

 Se 2H 1.39 0.96 

 Te 2H 0.78 2.81 

Ti S 1T 2.07 9.32 

 Se 2H 2.11 3.16 

 Te 2H 2.10 6.05 

V S 1T 1.29 0.86 

 Se 2H 5.18 1.68 

 Te 2H 4.25 0.79 
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W S 2H 7.39 5.14 

 Se 2H 7.90 5.05 

 Te 2H 6.10 4.21 

 

Phonon Property Screening 

A thorough understanding of heat transfer is important for device design. In 

particular, 2D TMDs have attracted much interest in this regard for the unique transport 

of thermal energy at the low dimension. Developing high-performance thermoelectric 

materials, for example, requires a large ZT which is dependent upon having low thermal 

conductivity. Thermal conductivity calculations involve a detailed investigation of the 

Boltzmann transport equation, namely second- and third-order solutions to account for 

both normal and Umklapp phonon modes. Here, we focus primarily on phonon DoS 

calculations as a means of qualitatively comparing phonon properties for 2D TMDs in 

order to identify trends. Figure 5.3 shows the projected phonon DoS calculation results 

for the MS2 system. The total phonon DoS is shown with a solid black line in each case 

while contributions from the transition metal and sulfur atoms are represented by dot-

dashed red and dashed black lines, respectively. Figure 5.3a-f lists each MS2 in order of 

increasing atomic mass of the constituent transition metal. As the mass difference 

between transition metal and sulfur atoms (32.066 u) increases, the frequency gap 

between the acoustic and optical phonon bands generally increases, suggesting that, 

although mass difference can be beneficial for increased phonon scattering (and therefore 

decreased thermal conductivity), there might be an optimum mass difference before the 

different modes no longer scatter one another. If the mass difference is too large, the 

impurity (or defect) scattering term decreases. The WS2 results, for example, have the 

largest mass difference (151.784 u) and consequently show the least amount of overlap 
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between M and S modes. Such features imply minimal phonon scattering and thus a 

larger thermal conductivity, κ. It has been evidenced by Gu et al. that WS2 does indeed 

have a larger κ than that of MoS2.
19 In addition, their results reveal a monotonically 

increasing lattice thermal conductivity with increasing acoustic-optical frequency 

bandgap. Sc, Ti, and V sulfides have negligibly small frequency gaps while Ni, Mo, and 

W sulfides have substantial gaps. In this regard, Sc, Ti, and V sulfides should exhibit the 

lowest lattice thermal conductivity. 

 
Figure 5.3. Projected phonon DoS for each member of the MS2 system. Each plot 

depicts the total phonon DoS with a solid line, the contribution from the transition 

metal with a dot-dashed line, and the contribution from the S atoms with a dashed 

line. Plots (a)-(f) are shown in order of increasing atomic mass of the transition metal 

as follows (a) ScS2, (b) TiS2, (c) VS2, (d) NiS2, (e) MoS2, and (f) WS2. 

5.4 Conclusion 

A list of eighteen 2D TMD compounds, having the chemical formula MX2 (M = 

Mo, Ni, Sc, Ti, V, and W; X = S, Se, Te), were chosen based on their potential stability 
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and on the criticality scores of the constituent transition metals. First-principles geometry, 

electrical property, and phonon property calculations were performed. Results were 

compared with features of the transition metals in order to identify predictive property 

trends. The atomic radius of the transition metal correlates with the 2D TMD properties. 

While the layer thickness of the compounds increases linearly with the transition metal 

radius, the lattice parameter remains constant. The electronic bandgaps of TMDs follow a 

Gaussian-like distribution across the range of transition metal radii wherein the smallest 

and largest constituent metals yield negligibly small bandgaps. In contrast, the mid-sized 

metals yield bandgaps of greater than 1 eV. MoX2, TiX2, and WX2 compounds have the 

largest S. TiTe2 compound exhibits bipolar conduction behavior with a noticeable S peak 

of about 450 to 500 μV/K for both p- and n-type calculations. The atomic mass of 

constituent metals also affects the compound properties. The heaviest metals, W and Mo, 

produce the largest n-type S2σ. Mass difference between transition metal and sulfur atom 

enlarges the frequency gap between acoustic and optical phonon bands, indicating 

decreased phonon scattering. The Sc, Ti, and V sulfides have the smallest mass 

differences and the largest interaction between the metal and sulfur contributions to 

phonon DoS, so they should exhibit a lower lattice thermal conductivity than the other 

MX2 compounds. Our work provides a new approach to draw correlations between 

physical properties of constituent transition metals and resultant 2D TMDs. 

Expanding on the methodology from the skutterudite work in Chapter Four, this 

chapter explored the calculation of semi-classic transport coefficients as another metric 

for investigating electrical properties. The method of calculating S2σ and S was employed 

in Chapters Six to further study dopant effects. 
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CHAPTER SIX: IMPROVEMENT OF 2D TMD MATERIALS THROUGH METAL-

SITE SUBSTITUTIONAL DOPANTS* 

This chapter is comprised of two works: the first is published by Elsevier in the Chemical 

Physics Letters and the second is submitted for publication in the Journal of Applied 

Physics. These works should be referenced appropriately. 
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Abstract 

2D TMDs, having the chemical formula MX2 (M = transition metal, X = 

chalcogen), have received a lot of attention recently for their unique properties and 

potential for materials-by-design applications. Having notable electrical, magnetic, 

optical, and thermoelectric properties, 2D TMDs can be further tuned through the 

implementation of substitutional dopants. This work utilizes first-principles DFT 

calculations to explore the effects of metal-site dopant concentration and type on 

structural, energetic, electrical, transport, and phonon properties. These effects decrease 

with concentration until they converge at a dopant concentration of 2.083 at.%, where the 

dopants are effectively isolated. Electronic bandgap calculations reveal W-doped MoX2 

and Mo-doped WX2 to be among the only observed semiconductors while Boltzmann 

transport properties confirm that these six structures have the largest power factors. This 

work offers an extensive investigation of metal-site dopants and how their concentration 

and type impact 2D TMD materials, identifying factors for tailoring their performance. 

6.1 Introduction 

There are a variety of potential uses for transition metal dichalcogenides (TMDs) 

stemming from their unique and tunable properties. Recently, these materials have 

attracted much interest due to novel magnetic,1,2 electrical,3-7 thermoelectric,8-11 and 

optical7,12-14 properties. The structure of a TMD is a large contributor to the material’s 

versatility and wide range of interesting properties. The chemical formula is MX2 where 

M is a transition metal and X is a chalcogen. The structure is composed of offset stacked 

layers where each layer is made up of M atoms sandwiched between two X sheets. For 

the 2H-type MX2 system, it is arranged such that D6h point group symmetry exists about 
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the M atoms. The layers are held together through strong covalent bonds while the forces 

between the layers are much weaker van der Waals interactions, much like that of 

graphite and graphene. Through mechanical exfoliation,15 the layers can be separated into 

few-layer or single-layer structures. These nanostructures offer even more interesting 

opportunities for materials-by-design exploration. 

A large advantage for two-dimensional (2D) MX2 structures comes from the 

reduced dimensionality which can extend the limitations of bulk TMD properties. In 

field-effect transistors (FETs), for example, the smaller device features have greatly 

reduced short-channel effects, reduced switching voltage, and increased the on-off 

ratio.5,12 Another example of significant changes in the electronic structure comes in the 

case of MoS2 which undergoes a transition from having an indirect bandgap of 1.2 eV in 

bulk16 to a direct bandgap of 1.8 eV in 2D.17 This effect is useful for electronic and 

optoelectronic applications.18 Under the photoexcitation condition, the direct bandgap 

semiconductor would have a high absorption coefficient and efficient electron–hole pair 

generation, suggesting promising application as photonic and optoelectronic devices. For 

example, photoluminescence has been found to increase with decreasing thickness of 

MoS2,
19 and the luminescence quantum efficiency of a freestanding monolayer is four 

orders of magnitude stronger than in its bulk counterpart.17 The 2D MoS2 was also 

reported as ultrasensitive phototransistors because of the improved device mobility and 

on current.13 Furthermore, the photoresponsivity of 2D MoS2 phototransistors was found 

to exceed that of a graphene-based device.20 Additionally, the quantum confinement 

effect at lower dimensionalities enhances thermoelectric properties by increasing the 

Seebeck coefficient, S, (the measure of a material’s voltage response to temperature 
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change) where the thermoelectric performance is determined using the figure of merit, ZT 

(see Equation 2.1).21-23. Another factor that contributes to thermoelectric enhancement in 

2D materials is the increase in power factor, 𝑆2σ, due to the change in shape of the 

density of modes (DoM).24,25 Through increased diffusive boundary scattering, it is 

expected that the thermal conductivity could decrease, further enhancing thermoelectric 

properties.26,27 Such a large potential for properties and transport behavior emphasizes the 

need to fully understand 2D MX2 materials. 

A number of screening methods have been implemented through first-principles 

density functional theory (DFT) calculations in order to identify more favorable MX2 

compositions and potentially highlight a narrower list of promising candidates. The 

works of Ataca et al.3 and Rasmussen et al.4 have explored various compositions, 

focusing on stability, electrical, and optical properties. Our previous work28 combined 

these findings with transition metal “criticality scores”29 in order to highlight the 

environmental impact and materials availability as well as the more stable and promising 

compositions. Our narrowed list of eighteen 2D MX2 structures (M = Mo, Ni, Sc, Ti, V, 

and W; X = S, Se, and Te) was then investigated for structural, electrical, and phonon 

property effects. This identified trends in the structure-property relationship which can 

lead to the identification of novel compositions and facilitate materials design. 

Further property improvements and tuning can be achieved through the use of 

metal-site substitutional dopants which yield interesting changes in the intrinsic 

properties of 2D TMDs. These dopants can cause enhancements such as inducing 

magnetism30-33 and tuning of the electrical conductivity.33 They also offer the ability to 

modify the bandgap and photoluminescence34 and control whether it is a p- or n-type 
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semiconductor.35 Previous work has shown that these dopants are stable in 2D TMDs and 

that they are a substitutional dopant rather than an interstitial impurity.36-39 This type of 

defect tends to be more stable because the dopant inherits the strong covalent bonds 

within the TMD sheet. 

In this work, we investigate the effect of dopant concentration and type in 2D 

TMD materials. We investigated substitutional Ti dopants on Mo sites in 2D MoS2 at 

concentrations of 0.926, 1.333, 2.083, 3.704, and 8.333 at.% Ti (or 2.78, 4.0, 6.25, 11.11, 

and 25.0 Mo-site % Ti) to determine its effect on various properties. Next, six different 

transition metals (M’ = Mo, Ni, Sc, Ti, V, and W) were incorporated at the metal-site in 

MoX2
 and WX2 (X = S, Se, or Te), according to the chemical formula M’M15X32. These 

six were chosen based on the screening criteria of previous work.28 The structural, 

energetic, electrical, transport, and phonon properties were analyzed with respect to the 

physical features of the dopant atoms (e.g., atomic radius, preferred oxidation state) to 

better understand the doping effects of these 2D TMD structures. This approach offers a 

means of extensively analyzing the effects of dopant concentration and type in MoX2 and 

WX2 to identify key factors in improving novel 2D TMD materials. 

6.2 Computational Methods 

All calculations were performed within DFT implemented via the VASP code.40 

The PBE formalism was employed with spin-polarized GGA.41 PAW pseudopotentials 

were used to expand the plane-wave basis set to a cutoff energy of 500 eV.42,43 For the 

Brillouin zone integration, a Γ-centered 12x12x1 mesh was used for the 2x2x1 supercell 

(corresponding to 8.333 at.% Ti). All other structures used k-point meshes proportional to 

this depending on their supercell size (rounded to the nearest integer). Fermi surface 



102 

 

broadening was handled using a Gaussian smearing of 0.05 eV. Geometries were relaxed 

until residual forces were reduced to 0.01 eV/Å. To minimize interlayer interaction, MX2 

single-layer sheets in the neighboring cells were separated by a distance of at least 20 Å. 

Electronic structure calculations were performed with denser k-point meshes 

(doubled in x and y directions with respect to the geometry optimization calculations). 

For the systems with dopant concentrations of 2.083 at.% (M’Mo15S32), a denser 24x24x1 

k-point mesh was used. The DFT+U scheme44 was also implemented to account for 

strong correlation effects of the transition metals. Convergence-tested values for the on-

site Coulomb potentials of U = 4.38, 8.0, 3.0, 8.0, 6.0, and 8.0 eV were used for Mo, Ni, 

Sc, Ti, V, and W, respectively while an on-site exchange potential of J = 1.0 eV was used 

for all metals. The resulting band energies were used to calculate semi-classic transport 

coefficients using the BoltzTraP software package.45 

Phonon structure calculations were performed following the method of Parlinski-

Li-Kawazoe where second-order force constants were determined using DFPT.46,47 

Convergence tests indicated that long-range phonon effects were adequately accounted 

for by means of the following supercells: 3x3x1, 3x3x1, 2x2x1, and 2x2x1 for the dopant 

concentrations of 0, 8.333, 3.704, and 2.083 at.%, respectively. The 1.333 and 0.926 at.% 

systems were found to be sufficiently large to contain long-range effects without the need 

of further supercell sizes. The k-point meshes were likewise adjusted based on supercell 

sizes for the systems. 

Error mitigation was handled for the DFT input parameters through convergence 

tests similar to those performed in Sections 4.2 and 5.2. The supercell sizes were chosen 

to represent various dopant concentrations and their affects are discussed in the following 
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section. Unlike Sections 4.2 and 5.2, the work of metal-site substitution is relatively new 

and there were no literature values to compare with at the time the work was conducted. 

The structures in this chapter initially came from the pure 2D TMD screening work in 

Chapter Five. The error handling in Section 5.2 helped minimize errors in this chapter. 

6.3 Results 

Structure 

Dopant Concentration 

In order to determine the substitution concentration effect, we incorporated Ti 

substitution with 8.333 at.% Ti (i.e., Ti1Mo3S8), 3.704 at.% Ti (Ti1Mo8S18), 2.083 at.% Ti 

(Ti1Mo15S32), 1.333 at.% Ti (Ti1Mo24S50), and 0.926 at.% Ti (Ti1Mo35S72). The presence 

of Ti dopants in 2D MoS2 causes minimal structure distortion. An example of the doped 

2D TMD structure is depicted in Figure 6.1. 

 
Figure 6.1. Top-down view of M’-doped MX2 where the M’ dopant atom is 

depicted with a black sphere, the M atoms are gray spheres, and the X chalcogens are 

yellow spheres. 
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The value auc (shown in Table 6.1) represents the average lattice parameter with 

respect to the unit cell of pure 2D MoS2 and increases with Ti concentration. This minor 

expansion suggests the presence of small compressive forces around the Ti dopant. To 

further investigate this distortion, the M-S and S-S bond lengths were also measured, 

given as dM-S and dS-S, respectively (see Figure 6.2). Note that the S-S distance value is 

equivalent to the sheet thickness. The superscript M’ indicates values taken near the 

dopant atom, while the superscript Mo indicates those taken about the Mo atoms farthest 

from the dopant. For each bond distance calculated, there is less than 1% difference 

between any of the doped structures. The S-M-S bond angle is given as θ and its values 

differ by no more than 2%. As Ti concentration decreases, each of the Mo values approach 

that of the pure MoS2. For instance, the dS−S
Mo  and θMo values for the high concentration 

system (8.333 at.% Ti) are much smaller than pure MoS2 values but increase with 

decreasing concentration until convergence is reached by 2.083 at.% Ti. Likewise, the 

dMo−S
Mo  value for the high concentration system is larger than pure MoS2 and decreases 

with concentration until converging at 2.083 at.% Ti. This means that for this 

concentration, the area between neighboring dopants is sufficiently large for the 

surrounding MoS2 structure to mimic the undoped structure, effectively isolating the 

dopants from each other. Also, the auc and dMo−S
Mo  values increase with Ti concentration 

while the dS−S
Mo  and θMo values decrease. The expansion in the x- and y-directions and 

compression in the z-direction indicate anisotropic strain. This could be a result of the 

difference in oxidation state between the Mo and Ti metals. 
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Table 6.1.  Geometric structure results for pure and M’-doped (M’ = Ti) 2D 

MoS2. The average lattice parameter with respect to the original unit cell, auc, the 

M-S and S-S bond distances, dM-S and dS-S, S-M-S bond angles, θ, and binding 

energies, Eb, are given. All distances are given in angstroms (Å) and all angles are 

given in degrees (°). Superscripts M’ and Mo indicate values taken at the dopant site 

and at the Mo site farthest from the defect, respectively. 

 at.% M’ auc 𝑑𝑀′−𝑆
𝑀′  𝑑𝑀𝑜−𝑆

𝑀𝑜  𝑑𝑆−𝑆
𝑀′  𝑑𝑆−𝑆

𝑀𝑜  𝜃𝑀
′
 𝜃𝑀𝑜 Eb (eV) 

pure 

MoS2 
0 3.182 -- 2.413 -- 3.128 -- 80.81 -- 

Ti-

doped 

0.926 3.191 2.428 2.414 3.056 3.128 78.00 80.79 -7.45 

1.333 3.196 2.428 2.413 3.055 3.129 77.98 80.84 -7.45 

2.083 3.203 2.428 2.413 3.056 3.127 78.00 80.80 -7.44 

3.704 3.216 2.429 2.414 3.057 3.103 77.99 79.97 -7.31 

8.333 3.236 2.420 2.429 3.060 3.098 78.43 79.25 -6.94 

 

 
Figure 6.2. Schematic of an MS2 octahedron where the violet and yellow spheres 

represent M and S atoms, respectively. In this work, the M atom depicts either the 

dopant, M’ (Ti or V), or the constituent, Mo. The bond lengths are represented by red 

arrows where dS-S and dM-S depict the distance between two S atoms and between the 

M and S atoms, respectively. The S-M-S bond angle is represented by the blue lines 

and the symbol θ. 

 



106 

 

In order to compare defect stability and confirm the structure convergence for the 

Ti-doped system, the binding energy (𝐸𝑏) was calculated according to the following 

equation: 

𝐸𝑏 = 𝐸𝑡𝑜𝑡
𝑑𝑜𝑝𝑒𝑑 − 𝐸

𝑛𝑜 M′
𝑢𝑛𝑑𝑜𝑝𝑒𝑑

− 𝐸M′    (6.1) 

Here, the symbol 𝐸𝑡𝑜𝑡
𝑑𝑜𝑝𝑒𝑑

 represents the total energy of the doped system, 𝐸
𝑛𝑜 M′
𝑢𝑛𝑑𝑜𝑝𝑒𝑑

 

represents the energy of the undoped system where the dopant atom, M′, was removed, 

and 𝐸M′ is the chemical potential of the dopant taken from its unary bulk structure. Our 

approach is similar to that of Zhou et al.,30 except they also account for the strain energy 

associated with the dopant-MoS2 bonds. Our 𝐸
𝑛𝑜 M′
𝑢𝑛𝑑𝑜𝑝𝑒𝑑

 term is not relaxed, so the 

resulting 𝐸𝑏 only accounts for the energy associated with the M′–S bond. Furthermore, 

our 𝐸M′ term is taken from the bulk M′ system rather than isolated M′. These results are 

given in Table 6.1. The system with the highest 𝐸𝑏 (i.e., the least negative value) is the 

least stable, occurring at the highest dopant concentration, 8.333 at.% Ti (𝐸𝑏 = -6.94 eV). 

As Ti concentration decreases, the 𝐸𝑏 decreases until it converges at 2.083 at.% Ti (-7.44 

eV), consistent with the structural convergence. 

Dopant Type 

To explore a wide range of dopant effects on 2D MoX2 and 2D WX2 systems, six 

different transition-metal-site dopants were considered: Mo, Ni, Sc, Ti, V, and W. The 

chemical formula for these compounds is M’M15X32 (M = Mo or W; X = S, Se, or Te). 

DFT-based structural relaxation calculations were employed to obtain ground state 

configurations for each doped system. Structural property results are given in Table 6.2. 

In most cases, the structural distortion is minimal for 2.083 at.% dopant on 2D MoX2 and 

2D WX2. For both structures, the Ni and Sc dopants cause the largest distortions (as 
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much as 10.66% and 12.78% reductions in monolayer thickness (X-X bond lengths) for 

Ni in MoTe2 and WTe2, respectively). These two dopants have the lowest oxidation states 

of any metals investigated (+2 for Ni and +3 for Sc) and have respectively, the smallest 

and largest atomic radii. The tellurides consistently exhibit larger distortions than the 

other dichalcogenides. These distortions are most noticeable in the layer thickness, 

corresponding to X-X bond length (dX-X), and X-M-X bond angle (θ). The least distorted 

structures are W-doped MoX2 and Mo-doped WX2. This is consistent with the fact that 

Mo and W have similar atomic radii (0.79 Å and 0.80 Å, respectively) and tend to have 

similar oxidation states (+6). Overall, the lattice constant, auc, experiences the least 

distortion of all measured geometries (≤ |1.00%| change). This implies that differences in 

layer thickness, rather than lattice mismatch, would be the primary cause for any 

potential dopant instability. 

Table 6.2. Structure properties of metal-site doped MX2 (having the formula 

M’M15X32 where M’ = dopant atom Mo, Ni, Sc, Ti, V, or W; M = Mo or W; and X = 

S, Se, or Te) compared to the undoped values. The average lattice parameter per 

unit cell (4x4 unit cells per structure), auc, M’-X bond length, X-X bond length, and 

X-M-X bond angle are given in units of either angstroms (Å) or degrees (°). The 

percent difference from the corresponding undoped value is listed as Δ%. 

MX2 

matrix 
M’ 

dopant 

auc (avg./unitcell) dM-X dX-X θ 

Å Δ% Å Δ% Å Δ% ° Δ% 

MoS2 

undoped 3.182 -- 2.413 -- 3.128 -- 80.81 -- 

Ni 3.189 0.23% 2.417 0.16% 3.078 -1.60% 79.10 -2.11% 

Sc 3.213 0.97% 2.526 4.70% 3.115 -0.40% 76.13 -5.79% 

Ti 3.203 0.66% 2.428 0.63% 3.056 -2.30% 77.99 -3.48% 

V 3.188 0.17% 2.362 -2.11% 3.043 -2.71% 80.21 -0.74% 

W 3.182 0.00% 2.409 -0.14% 3.128 0.00% 80.94 0.17% 
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MoSe2 

undoped 3.319 -- 2.541 -- 3.338 -- 82.12 -- 

Ni 3.327 0.25% 2.480 -2.41% 3.190 -4.45% 80.05 -2.52% 

Sc 3.341 0.68% 2.649 4.25% 3.375 1.11% 79.15 -3.62% 

Ti 3.329 0.33% 2.557 0.61% 3.301 -1.11% 80.42 -2.07% 

V 3.316 -0.08% 2.492 -1.93% 3.278 -1.79% 82.27 0.18% 

W 3.318 -0.01% 2.541 0.01% 3.341 0.07% 82.19 0.08% 

MoTe2 

undoped 3.549 -- 2.731 -- 3.611 -- 82.76 -- 

Ni 3.564 0.40% 2.595 -4.99% 3.226 -10.66% 76.87 -7.12% 

Sc 3.570 0.59% 2.853 4.46% 3.653 1.17% 79.63 -3.79% 

Ti 3.556 0.18% 2.757 0.94% 3.599 -0.34% 81.49 -1.53% 

V 3.549 -0.02% 2.693 -1.41% 3.547 -1.78% 82.39 -0.45% 

W 3.550 0.01% 2.734 0.12% 3.614 0.08% 82.72 -0.05% 

WS2 

undoped 3.181 -- 2.416 -- 3.139 -- 81.03 -- 

Mo 3.182 0.02% 2.420 0.14% 3.138 -0.06% 80.84 -0.24% 

Ni 3.191 0.30% 2.419 0.13% 3.075 -2.06% 78.92 -2.61% 

Sc 3.213 1.00% 2.525 4.49% 3.114 -0.81% 76.16 -6.02% 

Ti 3.202 0.64% 2.432 0.65% 3.066 -2.35% 78.15 -3.56% 

V 3.186 0.15% 2.369 -1.94% 3.058 -2.60% 80.37 -0.82% 

WSe2 

undoped 3.317 -- 2.546 -- 3.355 -- 82.43 -- 

Mo 3.316 -0.01% 2.545 -0.02% 3.351 -0.13% 82.33 -0.13% 

Ni 3.326 0.27% 2.528 -0.68% 3.258 -2.89% 80.22 -2.69% 

Sc 3.348 0.94% 2.649 4.04% 3.326 -0.85% 77.80 -5.62% 

Ti 3.329 0.36% 2.559 0.51% 3.304 -1.50% 80.44 -2.42% 

V 3.315 -0.07% 2.497 -1.93% 3.290 -1.93% 82.43 0.00% 
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WTe2 

undoped 3.552 -- 2.736 -- 3.623 -- 82.91 -- 

Mo 3.552 0.00% 2.732 -0.13% 3.618 -0.13% 82.91 0.01% 

Ni 3.566 0.39% 2.592 -5.26% 3.160 -12.78% 75.10 -9.42% 

Sc 3.578 0.74% 2.848 4.08% 3.608 -0.41% 78.61 -5.18% 

Ti 3.561 0.25% 2.755 0.69% 3.567 -1.53% 80.69 -2.67% 

V 3.551 -0.01% 2.693 -1.58% 3.541 -2.24% 82.23 -0.82% 

 

The resulting Eb values for each of the doped 2D MoX2 and 2D WX2 systems, 

given in Figure 6.3, are depicted graphically versus the dopant atom. The dopant atoms 

are listed in order of increasing atomic radius. Here we can see that the Ni dopant has the 

least negative binding energy among all systems (ranging from -1.60 eV in WTe2 to -2.50 

eV in MoS2), indicating that it is the least stable dopant observed. This could be due to a 

number of factors including: Ni is the only magnetic dopant investigated, it has the 

lowest average oxidation state (+2), and it has the smallest atomic radius (0.62 Å). 

Alternatively, the Sc and Ti dopants consistently exhibit among the most negative 

binding energies, suggesting good stability in each system. These values range from -4.58 

eV (Sc) and -4.37 eV (Ti) in both telluride systems to -6.98 eV (Sc) and -7.44 eV (Ti) in 

MoS2. This is in contrast to the fact that the Sc-doped systems have among the largest 

distortions, suggesting that atomic radius of the dopants plays a larger role in its stability 

than the oxidation state. All dopants in MoS2, except Ni, have large negative binding 

energies (around -7 eV) suggesting high stability. However, the dopants show noticeably 

decreasing stability with increasing chalcogen atomic number. Also, the difference in 

binding energy between the MoX2 and WX2 systems is less than 1 eV. The largest 

difference is 0.86 eV, occurring between the V-doped MSe2 systems. 
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Figure 6.3. Dopant atom binding energy (Eb) for each system listed in order of 

increasing dopant atomic radius. Solid black, dashed blue, and dotted red lines 

represent MS2, MSe2, and MTe2 systems, respectively. Circle-lines depict MoX2 

structures while diamond-lines depict WX2 structures. More-negative Eb values 

(greater absolute values) correspond to greater stability. 

Electrical Properties 

The incorporation of Ti dopants has a significant impact on the electrical 

properties of 2D MoS2. Figure 6.4 depicts the electronic density of states (DoS) for pure 

MoS2 (black line), plotted against the DoS for Ti-doped MoS2 (colored lines). In each 

case, Ti dopants decrease the conduction band minimum (CBM) – although not by much 

for the case with largest Ti concentration – and introduces a mid-gap peak just above the 

Fermi level (EF) making the system behave as a p-type semiconductor. The DoS plots 

also converge as Ti concentration decreases. Each of the three relatively low 

concentrations (0.926, 1.333, and 2.083 at.% Ti) have very similar results, implying that 

dopant concentrations at or below 2.083 at.% Ti exhibit similar electronic behavior. This 

result is consistent with what we found in the structural results. The lowest concentration 
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of Ti (0.926 at.% Ti) has a negligible DoS at EF, yet as Ti concentration increases, this 

value increases until 3.704 at.% Ti when the mid-gap peak has essentially blended into 

the valence band. These results could suggest an increase in electrical conductivity for the 

Ti-doped system when compared to the pure. The system with the highest Ti 

concentration (8.333 at.% Ti) deviates the most from the pure 2D MoS2 data and has a 

valence band maximum (VBM) that extends well beyond EF. With such a high 

concentration, the dopant-dopant separation is only about 6.47 Å and the Ti is more of a 

constituent atom than a dopant. 

 
Figure 6.4. Electronic DoS for 2D MoS2 having increasing atomic percentage 

concentrations of Ti dopants. These concentrations include 0.926 (blue), 1.333 (red), 

2.083 (green), 3.704 (orange), and 8.333 (violet) at.% Ti. The pure MoS2 data is shown 

for comparison and depicted with a black line. All data is shifted to align each plot’s 

respective Fermi levels (EF’s) to x = 0 (represented by the vertical dashed black line). 

Inset focuses on the area immediately surrounding EF. 
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Similarly, the electronic structure for the V doped system was calculated for 

comparison. Figure 6.5 depicts the local density of states (LDoS) for the individual 

atomic species’ contribution to the DoS. These were plotted against the DoS for pure 

MoS2 (black) for comparison. Both dopants have similar effects on the DoS such as a 

slight reduction in the CBM position and the addition of a mid-gap peak near the VBM. 

The V-doped system has more DoS near EF, but the mid-gap peak is less substantial than 

that of the Ti-doped system. The LDoS results show that while this peak is primarily 

contributed by the dopant atom for both systems, there are still significant contributions 

from the Mo and S atoms. This implies a change in electronic structure for the overall 

system. These results indicate a p-type semiconducting behavior for both dopant types 

but the effect will likely be more prominent for Ti. 
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Figure 6.5. LDoS calculated as a function of electron energy (shifted to EF = 0 eV) 

for the Mo15M’1S32 system (2.083 at.% M’ where M’ = Ti or V). The black line 

represents pure MoS2 while the blue and red lines depict Ti-doped and V-doped MoS2 

systems, respectively. The top plot has the total DoS for each system while the bottom 

three show local contributions per atom  (avg.) from each of the Mo, S, and M’ atoms, 

respectively. The vertical dashed black line indicates EF. 

The electronic structures were calculated for each doped system and compared 

with that of the undoped systems. All undoped 2D MX2 systems were found to be direct 

bandgap semiconductors with gaps of 1.69, 1.84, 1.09, 1.84, 1.57, and 1.07 eV for MoS2, 

MoSe2, MoTe2, WS2, WSe2, and WTe2, respectively. In Figure 6.6, the electronic density 

of states (DoS) is plotted for each dopant in each system while the undoped DoS data is 
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included for comparison. For both MoX2 and WX2 systems, the bandgaps generally 

decrease with increasing chalcogen atomic number. In all cases, the presence of the 

transition metal dopant reduces the effective bandgaps by some amount. For some doped 

MoS2 and all doped MoSe2, there is a reduction in the conduction band minimum (CBM) 

whereas the dopants in WS2 and WSe2 have CBMs at or above that of the undoped 

structures (see Figure 6.6a - Figure 6.6d). Both telluride structures have a wide range of 

CBM values (see Figure 6.6e and Figure 6.6f). Most dopants also introduce mid-gap 

states which would increase electrical conductivity. In each system, these states are most 

prevalent near the top of the valence band, suggesting p-type semiconducting behavior. 

The Ni- and Sc-doped systems have the most mid-gap states while the Ti- and V-doped 

systems typically only show small mid-gap peaks. All Mo- and W-doped systems exhibit 

direct bandgap semiconducting behavior. In fact, with the exception of Sc-doped MoSe2 

(which has a small gap of about 0.14 eV), these were the only doped systems found to be 

semiconducting. 
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Figure 6.6. Electronic DoS for each doped system. Column 1 (a, c, and e) contains 

the MoX2 data while column 2 (b, d, and f) contains the WX2 data. The rows depict 

sulfide (a and b), selenide (c and d), and telluride (e and f) systems, respectively. 

Undoped, Ni-, Sc-, Ti-, and V-doped systems are represented by black, blue, red, 

green, and orange lines, respectively. Both the W-doped systems in column 1 (a, c, 

and e) and the Mo-doped systems in column 2 (b, d, and f) are shown as violet lines. 

Electrical Transport Properties 

The semi-classic transport properties were calculated by solving the Boltzmann 

transport equation.45 The resulting p-type S, electrical conductivity, σ, and power factor 
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𝑆2σ are plotted in Figure 6.7. With the electronic density of states suggesting p-type 

behavior, we focused these calculations on p-type properties as holes are likely the 

majority carrier for these doped materials. For the sake of brevity, we focused on the only 

doped systems to have a sizeable bandgap with no mid-gap peaks which are W-doped 

MoX2 and the Mo-doped WX2. The difference in S between Mo (Figure 6.7a) and W 

(Figure 6.7b) systems is small, thus they have comparable 𝑆2σ values (Figure 6.7e and 

Figure 6.7f). The largest difference between these two systems comes from their σ values 

which were found to be larger for Mo-doped WX2 (Figure 6.7d) than for W-doped MoX2 

(Figure 6.7c). In all cases, 𝑆2σ is significantly reduced upon doping. This is largely due 

to S which is reduced by as much as 15% for the MoX2 system (Figure 6.7a) and 24% for 

the WX2 system (Figure 6.7b). In the case of the sulfides, the σ is also reduced which 

leads to further reductions in S. For the selenides and tellurides, however, the σ of the 

doped systems increases (by as much as 60% for the Mo-doped WSe2 compound at 

carrier concentration, N = 1014 holes/cm2) which offsets the reduction in S. Therefore, the 

selenides and tellurides experience less of a reduction in 𝑆2σ upon doping than the 

sulfides for these systems. The systems that experience the least reduction are W-doped 

MoSe2 and MoTe2 which have 𝑆2σ values only 13% and 10% lower than undoped, 

respectively. 
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Figure 6.7. Boltzmann transport properties calculated as a function of carrier 

concentration, N, for W-doped MoX2 (plots a, c, and e) and Mo-doped WX2 (plots b, 

d, and f). The Seebeck coefficient, S, electrical conductivity, σ/τ, and power factor, 

S2σ/τ, are shown in rows (a-b), (c-d), and (e-f), respectively. Sulfide, selenide, and 

telluride systems are represented by solid black, dashed blue, and dotted red plots, 

respectively, while diamond-line plots and circle-line plots depict W- and Mo-doped 

systems, respectively. 
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Phonon Properties 

In semiconductors, heat conduction is typically dominated by phonon transport. 

Therefore, it is necessary to investigate the effects of dopants on the phonon properties of 

2D MoS2. The phonon DoS was calculated for each of the Ti-substituted 2D MoS2 

systems and plotted in Figure 6.8. Like the geometric and electronic structure results, the 

general shape, peak positions, and frequency gaps for the three lowest Ti concentrations 

are similar. Each of these has a mid-gap peak, effectively reducing the gap between 

acoustic and optical bands. The phonon DoS for the relatively high concentrations of Ti 

(3.704 and 8.333 at.% Ti) start to deviate from that of the other systems. The reason for 

that is the significant structural distortion where the dopants are not adequately isolated. 

Similar to the electronic DoS results, the system with 8.333 at.% Ti deviates the most and 

even has a larger frequency gap than the pure MoS2. 

 
Figure 6.8. Phonon DoS calculated for various concentrations of Ti dopants in 2D 

MoS2. Data is shown normalized per formula unit. The black line represents pure 
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MoS2 with 0 at.% Ti while the colored lines represent 0.926 (blue), 1.333 (red), 2.083 

(green), 3.704 (orange), and 8.333 (violet) at.% Ti. 

To compare the phonon properties of doped and undoped MoS2, the 

corresponding phonon spectra are qualitatively analyzed. This approach allows the 

effects of these dopants to be screened without necessitating rigorous Boltzmann 

transport equation (BTE) calculations. The results in Figure 6.8 show three primary 

alterations to the MoS2 phonon DoS upon Ti-doping: smoother features in the acoustic 

region, a reduced frequency gap, and a reduction in optical phonon mode frequency. For 

all concentrations of Ti, the acoustic region of the phonon DoS is smoother than that of 

the pure MoS2 which has several peaks and deep valley-shaped curves. These peaks 

broaden and fill in valleys upon Ti-doping. In the work of Zhang et al., they suggested 

that phonon mode broadening indicated a reduction in phonon lifetimes and subsequently 

shorter mean free paths for modes in this region.48 The mid-gap peak causes the gap 

between acoustic and optical bands to decrease from 1.45 THz for pure MoS2 down to 

1.11 THz for 2.083 at.% Ti. Previous first-principles calculations showed a correlation 

between smaller frequency gaps and reduced lattice thermal conductivity, κl, which is 

attributed to an increase in both the number and strength of scattering events between 

acoustic and optical phonon modes.11 Therefore, it is reasonable to assume that the 

presence of substitutional Ti here is likewise increasing acoustic-optical phonon 

scattering. Finally, in the optical band, the highest frequency modes decrease with 

increasing Ti concentration from about 14.3 THz (at 0, 0.926, and 1.333 at.% Ti) down to 

about 13.1 THz (at 8.333 at.% Ti). This implies a lower dispersion gradient and therefore 

lower phonon group velocities for these modes. These alterations to the phonon 
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properties of 2D MoS2 indicate potential alterations to phonon transport in the material 

due to Ti doping. 

The phonon DoS was also calculated for the V-doped system in comparison with 

the Ti-doped system (see Figure 6.9). The acoustic band region is smooth for both 

substitutions, implying an increase in phonon-phonon interaction. However, the optical 

band is not shifted to the lower frequencies as in the Ti case. The most significant 

difference between the Ti- and V-doped phonon DoS results is in the mid-gap peak which 

is shifted to higher frequencies for the V case. This shift causes the V-doped system to 

have effectively the same frequency gap (1.43 THz) as that of the pure MoS2 (1.45 THz). 

Therefore, it might be expected that V dopants do not increase acoustic-optical phonon 

scattering in 2D MoS2 as greatly as the Ti dopants. However, the bond lengths about the 

V dopant differ from that of both the Ti dopant and the Mo in the matrix. The work of 

Yildirim et al. showed a correlation between differing bond lengths and increased 

anharmonicity of phonon modes.49 This suggested that the V has greater anharmonicity 

than Ti. The V dopant also has a weaker binding energy than Ti (-7.15 eV compared to -

7.44 eV) implying a lower sound velocity. For these reasons, we expect the nature of 

phonon transport in these two systems to differ. 
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Figure 6.9. Total phonon DoS calculated for MoS2 doped with 2.083 at.% Ti (blue) 

and 2.083 at.% V (red). The black plot represents pure MoS2. Data is shown 

normalized per formula unit. Insert compares these results against the partial 

contributions from the dopant atoms (dashed lines) and S atoms bonded to the 

dopants (circles), focusing on the frequency gap region. 

Interestingly, the source of the mid-gap state is actually not the V and Ti atoms 

but instead the S atoms immediately neighboring the dopant site. The insert in Figure 6.9 

shows the partial phonon DoS contributions from the dopant atoms individually as well 

as the 6 S atoms coordinated about the dopant. In both cases, the mid-gap peak is 

predominantly composed of those neighboring S atoms. This indicates that the nature of 

the M’-S bond differs from that of the Mo-S bond. Each of these results reveals 

significant alterations to the phonon properties of 2D MoS2 upon Ti-/V-doping. With the 

potential increase in phonon mode scattering and reduction in phonon lifetimes, one 

could infer a corresponding reduction in κl. 
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6.4 Conclusion 

DFT-based calculations were conducted to investigate the effects of metal-site 

substitutional dopants on structural, energetic, electrical, transport, and phonon properties 

of 2D MX2. The supercell approach was employed to simulate various concentrations of 

Ti dopants on MoS2. We found that increasing dopant concentration (8.333 at.% Ti) does 

not greatly distort the 2D MoS2 structure. The defects were found to be effectively 

isolated at a concentration of 2.083 at.% Ti when their separation was about 12.8 Å. The 

effect of various dopants were screened at this concentration having the chemical formula 

M’M15X32 (M’ = Mo, Ni, Sc, Ti, V, or W; M = Mo or W; and X = S, Se, or Te). The 

dopants mostly exhibit minimal structural distortion on 2D MX2 with the exception of Ni 

and Sc. Comparison of their geometry effects and binding energies suggests that their 

atomic radii may have a larger impact on dopant stability than their oxidation states. 

Binding energy results also indicate decreasing overall dopant stability with increasing 

chalcogen atomic number. Electronic bandgaps generally decrease with increasing Ti 

concentration, suggesting an increase in electrical conductivity. The general shape of the 

electronic DoS and phonon DoS results converge with decreasing Ti concentration until 

2.083 at.% Ti. Only the W-doped MoX2 and Mo-doped WX2 are direct bandgap 

semiconductors. All other doped systems (with the exception of Sc-doped MoSe2 which 

has a very small bandgap) introduce mid-gap states on and above EF implying p-type 

semiconducting behavior and an increased electrical conductivity. This goes against the 

doping propensity of MoS2 which is experimentally determined to be n-type. Even the 

semiconducting Mo- and W-doped systems mostly have reduced bandgap sizes compared 

to the undoped systems. The p-type Boltzmann transport properties reveal a significant 
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reduction in 𝑆2σ upon doping, despite many of these structures having small increases in 

σ. This is due to their reduced S values. Features of the phonon DoS, e.g., acoustic region 

peak-broadening and narrower frequency gaps, indicate that Ti dopants cause more of a 

reduction in the lattice thermal conductivity of 2D MoS2 than the V dopants. However, 

the shorter bond lengths about the V dopant and weaker covalent bonds suggest greater 

phonon anharmonicity, reducing the lattice thermal conductivity. This work explores 

various dopants and their effects on 2D MX2 structures which is useful for guiding 

development of these materials for electronic and energy applications. 
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CHAPTER SEVEN: HETEROSTRUCTURE EFFECTS ON STRUCTURAL, 

ELECTRICAL, AND PHONON PROPERTIES OF TWO-DIMENSIONAL 

TRANSITION METAL DICHALCOGENIDES 

 

The formation of a lateral heterostructure between 2D TMDs has promising 

optical and electronic applications and remains a relatively unexplored area for materials-

by-design.1 First-principles calculations2 and experimental results3,4 show a type II 

(staggered) band alignment between 2D MoS2 and WS2 which has potential for 

optoelectronic applications. In this chapter, the heterostructure interface between 2D 

MoS2 and 2D MS2 (M = Cr, Sc, Ti, and W) are investigated for structural, energetic, 

electronic, and phonon effects. The physical features of the transition metals along with 

the geometric and electronic structures of the pure constituent 2D TMDs play large roles 

in the stability of the heterostructure and the interfacial properties. 

7.1 Computational Methods 

 Structural and energetic calculations were performed using VASP within the 

framework of DFT.5 PAW pseudopotentials6,7 were used along with spin-dependent 

GGA exchange correlation functionals defined by the PBE formalism.8 The plane-wave 

basis sets were expanded to a cutoff of 400 eV. Fermi surface broadening was handled 

with a Gaussian smearing of 0.05 eV and structures were relaxed until residual forces 

were reduced to 0.01 eV/Å. To replicate the ideal 2D structure and avoid spurious image 

interaction, a vacuum space > 16 Å was inserted between periodic sheets. DFT+U9 was 
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employed to handle strong correlation effects in the electronic structure calculations. On-

site Coulomb potentials of U = 5.0, 4.38, 3.0, 8.0, and 8.0 eV were used for Cr, Mo, Sc, 

Ti, and W, respectively, while 1.0 eV was used for all J values. Brillouin zone integration 

was handled using a Γ-centered 3x9x1 k-point mesh for electronic structure calculations. 

To calculate the phonon properties of a material, second-order force constants 

must first be generated. This was handled using DFPT within the VASP code.10 These 

force constants were then used to generate phonon DoS plots11 and used as inputs into the 

Atomistic Green’s Function (AGF) code. The AGF code calculates the phonon 

transmission function Ξ(𝜔) for the interface of two materials and the transmission 

coefficient for individual phonon modes. To calculate the phonon transmission function, 

the system is partitioned into three components: the semi-infinite left lead, the interface 

region and the semi-infinite right lead. The AGF describes phonon propagation across the 

interface region and is calculated from the force constant matrices associated with the 

aforementioned components. The transmission function Θ(𝜔), which corresponds to the 

total phonon transmission across the interface region, is computed from the AGF and 

depends on the phonon dispersion of the leads and the atomistic structure of the interface. 

Given Θ(𝜔), the thermal boundary conductance (TBC) can be computed using the 

following expression12 

𝐺(𝑇) =
1

2𝜋
∫ 𝑑𝝎ℏ𝝎

𝑑𝑁(𝜔,𝑇)

𝑑𝑇

∞

0
Θ(𝜔)    (7.1) 

where N and T are the Bose-Einstein function and the temperature, respectively. In 

addition, recent extensions to the AGF method by Ong and Zhang12 have also enabled the 

efficient computation of transmission coefficients for individual phonon modes. These 

extensions allow for a more detailed and deeper analysis of the distribution of transmitted 
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phonon modes and its connection to the phonon dispersion of the constituent materials on 

both sides of the interface. 

To minimize error in this chapter, DFT input parameters were optimized through 

convergence tests similar to that of Sections 4.2, 5.2, and 6.2. The only literature values 

available for result validation came from pure MS2 band alignments13,14 and MoS2-WS2 

heterostructure bandgap type.15 

7.2 Results 

To broaden the understanding of 2D TMD heterostructures and the factors that 

contribute to their structural stability, electronic properties, and phonon properties, each 

result in this work was compared to the physical features of the transition metals. Similar 

to our previous work,16 we focused on the most common oxidation state, atomic 

masses,17 and atomic radii18 of the individual transition metals. By comparing these 

physical features between Mo and M, and analyzing their effects on structure, electronic, 

and phonon properties, we identified key parameters that govern 2D TMD lateral 

heterostructures. 

Structural Features 

DFT-based calculations were conducted to determine the structural effects of 

forming a heterostructure between 2D MoS2 and 2D MS2 (M = Cr, Sc, Ti, and W), see 

Figure 7.1Figure 7.. Table 7.1 lists the structural mismatch values, Δa and ΔdS-S, between 

adjacent structures. Each of these values were derived from the pure 2D TMD lattice 

constant, a, and S-S separation distance, dS-S (refer to Figure 6.2), according to the 

following equations. 

∆𝑎 = |
𝑎𝑀𝑜𝑆2−𝑎𝑀𝑆2

𝑎𝑀𝑜𝑆2
|*100%    (7.2) 
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∆𝑑𝑆−𝑆 = |
𝑑𝑆−𝑆
𝑀𝑜𝑆2−𝑑𝑆−𝑆

𝑀𝑆2

𝑑𝑆−𝑆
𝑀𝑜𝑆2 |*100%    (7.3) 

The W system has the lowest Δa and ΔdS-S values meaning its interface will have the least 

amount of strain compared to the other transition metals in this work. The Cr and Ti 

systems each had similar Δa values and the Cr had lower ΔdS-S (6.09% compared to 

8.74%) so the MoS2-CrS2 interface has slightly less strain than that of the MoS2-TiS2. 

The pure ScS2 system has a large difference in lattice constant and S-S distance compared 

to MoS2 and likewise has the largest mismatch values. Sc has the lowest atomic mass and 

largest atomic radius of all transition metals investigated. However, compared to the 

features of Mo, W has a larger mass difference and Cr has a larger radius difference than 

Sc suggesting that the size and mass of the metal are not the critical features for 

minimizing mismatch. The Sc does have the largest difference in oxidation state (+3 

compared to Mo’s +6) which is likely a dominant factor for finding a stable 

heterostructure. 

 
Figure 7.1. Schematic of the MoS2-MS2 (M = Cr, Sc, Ti, or W) heterostructure 

where the Mo, S, and M atoms are depicted using gray, yellow, and black spheres, 

respectively 
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Table 7.1. Physical features of the transition metals, M, in 2D MoS2–MS2 lateral 

heterostructures. The lattice, Δa, and S-S distance, ΔdS-S, mismatches are based off 

of the pure 2D MoS2 and MS2 structures. The formation energy and electronic 

bandgap of the heterostructure is given as Ef and Eg, respectively. 

M Mismatch 

Ef (eV) Eg (eV) 
symbol 

common 

oxidation 

state 

atomic 

massa (u) 

atomic 

radiusb (Å) 
Δa ΔdS-S 

Cr +6 51.996 0.69 4.44% 6.09% -0.02 0.97 

Sc +3 44.956 0.885c 18.73% 13.42% 4.29 -- 

Ti +4 47.88 0.745 4.80% 8.74% 1.54 -- 

W +6 183.85 0.80 0.03% 0.38% -0.32 1.59 

Mo +6 95.94 0.79     
        

aReference [14] 
bReference [15]. Values taken from crystal radii with +4 charge and 6-fold coordination. 
cValue for +3 charge 

To analyze the thermodynamic stability of these heterostructures, the formation 

energy, Ef, was calculated for each system. This was done according to the following 

equation: 

𝐸𝑓 = 𝐸𝑡𝑜𝑡
ℎ𝑒𝑡. − 𝑛𝑢𝑐

𝑀𝑜𝑆2𝐸𝑢𝑐
𝑀𝑜𝑆2 − 𝑛𝑢𝑐

𝑀𝑆2𝐸𝑢𝑐
𝑀𝑆2   (7.4) 

where 𝐸𝑡𝑜𝑡
ℎ𝑒𝑡. is the total energy of the MoS2-MS2 heterostructure, 𝐸𝑢𝑐

𝑀𝑜𝑆2 and 𝐸𝑢𝑐
𝑀𝑆2 are the 

energies of a single unit cell of pure 2D MoS2 and MS2, respectively, and 𝑛𝑢𝑐
𝑀𝑜𝑆2 and 

𝑛𝑢𝑐
𝑀𝑆2 are the number of unit cells of each material present in the heterostructure. The 

system with the largest Ef value is the Sc with 4.29 eV. This indicates that the individual 

pure substances are more stable than the heterostructure, which requires energy in order 

to form. This is expected given the large difference in oxidation state between Mo and Sc 

as well as large mismatch in both lattice constant and S-S distance. With a negligible Ef 

value, the MoS2-CrS2 heterostructure is predicted to be stable whereas MoS2-TiS2, which 
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has an Ef of 1.54 eV, is not. With relatively similar mismatch values and atomic mass and 

weight, the improved stability of the Cr system is likely due to its oxidation state. The 

only heterostructures that do not yield positive Ef values are Cr and W which are also 

those that have the same oxidation state as Mo (+6). These results indicate that the 

formation of stable 2D MS2 lateral heterostructures is strongly dependent on the 

oxidation states between transition metals in two compositions. 

Electronic Properties 

Electronic DoS calculations were performed for each MoS2-MS2 (M = Cr, Sc, Ti, 

and W) heterostructure and their bandgaps are listed in Table 7.1. The two most stable 

structures, the systems having Cr and W, are also the only heterostructures that have a 

bandgap. A more detailed view is provided in Figure 7.2 which depicts the electronic 

band structure diagrams for the Cr and W systems. The VBM for both structures is 

similar while the CBM for the W system is about 0.6 eV higher. The MoS2-WS2 

heterostructure is also a direct bandgap semiconductor with VBM and CBM both 

occurring at the Γ point. Alternatively, the CBM in the MoS2-CrS2 system shifts away 

from the Γ point (as indicated by the blue arrow in Figure 7.2) towards the K point. This 

transition from direct to indirect semiconducting behavior must originate from the 

interface since the pure 2D MoS2, WS2, and CrS2 are all direct bandgap 

semiconductors.14,16 
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Figure 7.2. Electronic band structure diagrams for MoS2-CrS2 and MoS2-WS2 

lateral heterostructures. The y-axis for both plots has been shifted to EF = 0 eV. The 

MoS2-WS2 structure is determined to be a direct semiconductor at the Γ point 

whereas the lowest conduction band in the MoS2-CrS2 structure has shifted slightly 

towards the K point exhibiting indirect semiconducting behavior (as indicated by the 

blue arrow). 

The bandgap for the MoS2-CrS2 system (0.97 eV) is similar to that of the pure 2D 

CrS2 compound (0.95 eV) while the MoS2-WS2 system (1.59 eV) is smaller than either 

the pure 2D MoS2 (1.69 eV) or pure 2D WS2 (1.85 eV). To clarify this, the band 

alignments for each of the pure 2D MS2 systems were plotted in Figure 7.3. The VBM for 

both CrS2 and MoS2 are about -5.80 eV while the CBM of the CrS2 is significantly lower 

than that of the MoS2 (-4.84 eV compared to -4.13 eV). This suggests that the CrS2 layer 

in the heterostructure contributes more to the CBM than the MoS2 layer. It also explains 

how the bandgap for MoS2-CrS2 heterostructure is limited by the bandgap of the pure 

CrS2. The MoS2-WS2 heterostructure exhibits type II (staggered) band alignment with a 

bandgap of 1.58 eV.2,15 This means that the CBM and VBM of one system are each 

higher than that of the adjacent system. In this case, the CBM/VBM levels for WS2 (-

3.50/-5.35 eV) are each higher than that of MoS2 (-4.13/-5.82 eV). The VBM of the 

resulting heterostructure is contributed mostly from the WS2 layer while the CBM is 
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contributed from the MoS2 layer. This results in a reduced bandgap for the 

heterostructure compared to the individual layers. The difference between the pure WS2 

VBM (-5.35 eV) and the pure MoS2 CBM (-4.13 eV) is only 1.22 eV, so it was expected 

that the calculated bandgap of the heterostructure would be around 1.22 eV. However, we 

calculated a bandgap for the MoS2-WS2 heterostructure of 1.59 eV. The orbital overlap 

for the interface is likely different from that of the pure substances – which have a CBM 

and VBM originating from the repulsion between anion p and cation d orbitals.15 The 

bonding character at the interface plays a crucial role in the electrical properties of the 

heterostructure. Understanding the correlation between physical features of constituent 

atoms and the resulting 2D TMD band alignments can guide materials design. 
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Figure 7.3. Band alignments for each of the pure 2D MS2 (M = Cr, Mo, Sc, Ti, and 

W) structures shifted to the vacuum level. Horizontal black lines represent the Fermi 

level (EF) for each structure. 

Phonon Properties 

Phonon DoS spectra, plotted in Figure 7.4, reveals that the Sc and Ti systems 

have significant negative (imaginary) phonon frequencies suggesting instability in the 

structures. These findings are consistent with our Ef results in Table 7.1. Alternatively, 

the Cr and W heterostructures have negligible negative frequencies and are stable. The Cr 

has the highest-frequency optical bands among the heterostructures investigated in this 

work. The W has sharper features and is the only system that has a significant gap 

between acoustic and optical phonon bands. Previous first-principles calculations have 

shown a correlation between phonon frequency gaps and high thermal conductivity.19 

This is attributed to fewer and weaker scattering events between acoustic and optical 

phonon modes that have a large separation in frequency. By this reasoning, the Cr system 
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which has no frequency gap would be expected to have greater acoustic-optical phonon 

scattering than W. The calculation of third-order force constants would be required to 

estimate lattice thermal conductivity and confirm this observation. 

 
Figure 7.4. Phonon density of states calculated for each 2D MoS2–MS2 

heterostructure where the yellow (Cr), green (Sc), blue (Ti), and black (W) plots 

represent each respective transition metal, M. Negative (imaginary) phonon 

frequencies are found for the two least stable (lowest formation energy) 

heterostructures: M = Sc and Ti. 

Atomistic Green’s Function (AGF) Results 

Another approach for determining the thermal effects of a heterostructure is 

through the investigation of the interfacial thermal resistance. This is dependent on the 

transmission of phonons across the heterojunction. We use the extended AGF to 

investigate interfacial thermal transport at the MoS2-WS2 interface and the underlying 
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phonon mechanisms. Using second-order force constants as input into the AGF code, the 

phonon transmission coefficients can be calculated for each phonon mode in the first 

Brillouin zone. Each data point in Figure 7.5, which shows the transmission coefficient 

spectra for the acoustic phonons in MoS2 and WS2, represents a phonon mode while the 

color indicates the transmission coefficient or fraction of energy transmitted across the 

interface. The gray-shaded points correspond to phonon modes that do not contribute to 

the interfacial head flux because their group velocities are in the direction away from the 

interface. Most of the transmission in this heterostructure is contributed by the acoustic 

phonon modes so, for the sake of brevity, only the transmissions from the three acoustic 

modes are provided. The left column in Figure 7.5 represents the rightward interfacial 

heat flux contribution from MoS2 phonons while the right column represents the leftward 

interfacial heat flux contribution from WS2 phonons. 

 



140 

 

 

 

Figure 7.5. Phonon transmission coefficients across the MoS2-WS2 interface for the 

ZA (a and b), TA (c and d), and LA (e and f) acoustic phonon modes. The left column 

(a, c, and e) represents MoS2 phonons contributing to leftward interfacial heat flux 

whereas the right column (b, d, and f) represents WS2 phonons contributing to 

rightward interfacial heat flux. 
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In general, the transmission coefficients converge to unity when the wave vectors 

for the phonons are small, corresponding to long wavelengths and low frequencies. This 

implies that the interface is highly permeable to the low-frequency, long-wavelength 

acoustic phonons. However, as we move radially away from the center of the Brillouin 

zone towards the zone boundaries, the phonon frequencies increase and the associated 

phonon transmission coefficients become smaller since higher-frequency phonons are 

strongly scattered by the interface. In addition, a ‘critical angle’ is observed for phonon 

transmission from the WS2 phonons while no such phenomenon is observed for MoS2 

phonons. Beyond this angle, there is no transmission on the WS2 side. This manifestation 

of the critical angle is analogous to the critical angle in the refraction of light between 

two media of different refractive indices and is due to the lower acoustic phonon group 

velocity in WS2 which is denser because of the heavier W atoms. The transmission 

coefficient also depends on the frequency alignment of phonons with similar 

polarizations in MoS2 and WS2. In MoS2, because its phonon velocities are generally 

higher, a wider angular distribution of phonon modes contribute to the heat flux while in 

WS2, a lower angular distribution of phonon modes are involved in interfacial thermal 

transport because of the critical angle. Although, a larger portion of the phonon modes 

with the arc defined by that critical angle are transmitted across the interface. 

The TBC, G, relates the interfacial heat flux, Q, to the temperature drop across a 

boundary, ΔT, according to the following equation: 

𝑄 = 𝐺𝛥𝑇     (7.5) 

For large values of G, the temperature drop across the boundary is small. In Figure 7.6, 

the total TBC is plotted as a function of temperature up to 500 K. We note that the TBC 
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increases as a function of temperature because more phonon modes become populated 

and contribute to interfacial thermal transport at higher temperatures. One advantage of 

our use of the extended AGF method is that it also allows us to distinguish and quantify 

the contribution of the phonons by their band indices. In MoS2 and WS2, there are 3 

atoms in the primitive unit cell and thus a total of 3x3=9 phonon bands (3 acoustic and 6 

optical) since each band corresponds to an atomic degree of freedom. Acoustic phonons 

are expected to contribute more disproportionately to interfacial thermal transport 

because they have much higher group velocities and are more easily transmitted across 

the interface. To verify this, we computed the TBC from only the acoustic phonons and 

from the acoustic and optical phonons (see Figure 7.6). The contribution from the 

acoustic phonon modes dominates the TBC for all temperatures. At room temperature 

(300 K), the contribution from the optical phonons, which accounts for the difference 

between the two curves in Figure 7.6, only comprises about 16% of the TBC, confirming 

the commonly held assumption that interfacial heat flux is primarily mediated by acoustic 

phonons.20 Nonetheless, the optical phonon contribution is not insignificant and can be a 

source of discrepancy if not included in the computation of the TBC, especially at high 

temperatures. We also note that the TBC for the MoS2-WS2 interface is much lower than 

that of the graphene/h-BN interface.12,21 At room temperature, the MoS2-WS2 TBC is 

~351 MWK-1m-2 while the graphene/h-BN TBC is 2.5 GWK-1m-2, almost an order of 

magnitude larger. This is due to the lower acoustic phonon velocities in MoS2 and WS2, 

which limit their maximum interfacial heat flux, compared to graphene and h-BN. 

The use of this extended AGF method allows for a thorough analysis of the heat 

flux across a heterojunction and can further the understanding of transport properties 
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within these nanostructures. The expansion of this technique towards other 2D TMD 

heterostructures will be crucial to develop these materials for energy applications. 

 
Figure 7.6. Thermal boundary conductance (TBC) for MoS2-WS2 lateral interface. 

The dotted black plot represents the total TBC for the system and the dotted pink 

plot represents the TBC contribution from the acoustic phonon modes. 

7.3 Conclusion 

DFT calculations were performed to analyze the structural, energetic, electronic, 

and phonon effects of a lateral heterostructure formation between 2D MoS2 and 2D MS2 

(M = Cr, Sc, Ti, or W). The choice of transition metals having similar oxidation states 

had a much greater effect on the stability of the heterostructure than the atomic mass, 

atomic radius, or mismatch between the TMDs (Δa or ΔdS-S). The MoS2-ScS2 and MoS2-

TiS2 heterostructures were determined to be the least stable systems due to their positive 

formation energies (Ef) and negative phonon frequencies. The Ef values for both the 

MoS2-CrS2 and MoS2-WS2 heterostructures are low and neither exhibit significant 

negative phonon frequencies, suggesting that both heterostructures are stable. The Cr and 
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W systems are also the only systems to exhibit an electronic bandgap. The heterostructure 

bandgaps are determined by the VBM and CBM values from the constituent pure TMDs. 

The VBMs for both pure CrS2 and MoS2 are aligned but the CrS2 CBM is lower than the 

MoS2, so the resulting heterostructure has a bandgap that matches that of the pure CrS2. 

However, the MoS2-WS2 forms a type II (staggered) alignment so the resulting 

heterostructure bandgap is smaller than that of either TMD. The MoS2-WS2 phonon DoS 

was found to be the only system with a frequency gap between acoustic and optical 

bands, suggesting that it experiences the least amount of acoustic-optical phonon 

scattering among these heterostructures. 

Our simulation of the thermal boundary conductance at the MoS2-WS2 interface 

shows that the TBC is dominated by the acoustic phonons and primarily limited by the 

differences in acoustic phonon velocities between MoS2 and WS2. Our results also 

indicate that the optical phonons have a small but significant contribution to the TBC 

especially at high temperatures. Compared to the graphene/h-BN interface, our calculated 

TBC for the MoS2-WS2 system is almost an order of magnitude smaller. This is due to 

the lower acoustic phonon velocities in MoS2 and WS2. This may potentially be a source 

of impediment to efficient heat dissipation in nanoelectronic devices with such interfaces. 
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CHAPTER EIGHT: CONCLUSIONS 

The research goal for this dissertation is to generate large data sets and analyze 

trends and relationships between structure, properties, and performance of skutterudite 

and 2D TMD compounds for electronic and energy applications. By understanding these 

design principles, we can tailor the structures to enhance and optimize material properties 

and performance. These materials are known to have good intrinsic electrical properties 

and tailorable structures making them excellent candidates for a number of energy and 

electrical applications. First-principles DFT calculations were employed to investigate 

skutterudites and 2D TMDs and how their electrical and phonon properties can be 

enhanced by two main structural changes: (1) doping and (2) the formation of a 

heterojunction. 

Chapter One provides an overview of the goal and motivation for this dissertation. 

Four main objectives were used to achieve the goal including: (1) understanding dopant 

effects on skutterudite materials, (2) screening 2D TMD materials compositions, (3) 

understanding the effects of substitutional dopants in 2D TMDs, and (4) evaluating the 

impact of a lateral heterojunction between 2D TMDs. A summary of the dissertation, 

including the published works produced from this work, is also included in this chapter. 

Chapter Two explains the background for each materials system investigated and 

highlights their applications and current state of research. Skutterudites are a widely 

studied class of materials because of their low-cost, easy processing, and intrinsic 

transport properties. Currently of interest for thermoelectric applications, their open, 
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cage-like structures offer a unique opportunity for materials-by-design exploration. Much 

work has been done to investigate the effects of single-, double-, and multi-filled 

skutterudites which show promising enhancement in electrical and thermal properties. 

Substitutional doping has been shown to further enhance these properties, yet a 

fundamental investigation of fillers and substitutions is still required to fully optimize 

skutterudite compounds. TMDs also have large degrees of freedom in their structure 

including structure type, dimensionality, and composition. Single-layer, 2D TMD sheets 

have attracted interest as candidates for magnetics, electronics, optoelectronics, catalysis, 

and thermoelectric applications. Quantum confinement effects and diffusive boundary 

scattering can be exploited for improved electrical and transport properties. Smaller 

device features have shown promising enhancement of FETs. There remain three key 

areas for property improvement for these materials: identification of optimum 

compositions, substitutional doping, and heterostructure formation. A thorough 

investigation of these factors is necessary for further development of 2D TMD materials. 

Chapter Three reviews the theoretical and computational methods employed in 

this dissertation. It explains how DFT is used to calculate the electronic and geometric 

ground state of a material through total energy minimization calculations. The resulting 

geometric, electrical, and phonon structures can be used to investigate the effects of 

dopants and heterostructures. Band energies can be expanded through the use of star 

functions to determine semi-classic transport coefficients while DFPT-based force 

constant calculations can be used to calculate phonon DoS, transmission coefficients 

across an interface, and thermal boundary conductance. 
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Chapter Four investigates the structural, electrical, and thermal properties of two 

dopant types in skutterudite compounds: filler atoms and Sb-site substitution. Both the 

incorporation of Ca/Ce filler atoms in FeSb3 and Te/Ge substitution in CoSb3 decrease 

the lattice constant for the compounds. Te/Ge substitution leads to distortion in the 

pnictogen rings and a break in the cubic symmetry of the compound. Both dopants cause 

an increase in electrical conductivity through the reduction in electronic bandgap while 

Te/Ge substitution also causes a transition from direct to indirect semiconducting 

behavior for x = 3. Phonon band broadening is observed in both doped systems and each 

are assumed to exhibit acoustic-mode dominated lattice thermal conductivity. Of the 

substitution concentrations, x = 3 has the lowest acoustic phonon dispersion gradient 

implying that it experiences the lowest lattice thermal conductivity. This is consistent 

with experimental measurements. The presence of either dopant has shown enhancements 

in the thermoelectric properties of these skutterudite compounds. This computational 

study provided insight into experimental observations, advanced the understanding of 

dopant effects on skutterudite materials. 

Chapter Five covers high throughput screening of 2D TMD compositions based 

on electrical and phonon properties. With the large number of potential compositions, 

focus was narrowed to three chalcogens (S, Se, Te) and six transition metals (Mo, Ni, Sc, 

Ti, V, and W) based on environmental implications, supply risk, and vulnerability to 

supply restrictions known as “criticality scores.” These scores allowed for the exploration 

of compositional effects while focusing on materials that are better-suited for 

development. The physical features of constituent transition metals (e.g., atomic mass, 

atomic radius, and oxidation state) have significant impact on the overall properties of the 
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2D TMD. For instance, as the metal mass increases, the n-type power factor, 𝑆2σ, and 

phonon frequency gap increases. Also, increasing the radius causes an increase in 2D 

TMD layer thickness and Seebeck coefficient, S. The results of Chapter Five help 

identify principles for optimizing 2D TMD compositions for desired performance. 

Chapter Six investigates the metal-site substitution effects on 2D TMD properties. 

These were analyzed with respect to their effect on structural, energetic, electrical, 

transport, and phonon properties. The overall dopant effect was found to decrease with 

concentration until they converge at 2.083 at.% where the dopants are effectively 

isolated. Structural distortion, dopant binding energy, electron DoS, and phonon DoS 

confirm this convergence at 2.083 at.%. Therefore, this concentration was used to 

investigate dopant type with a large number of different compositions corresponding to 

the formula, M’M15X32 (M’ = Mo, Ni, Sc, Ti, V, or W; M = Mo or W; and X = S, Se, or 

Te). Most structures exhibit minimal distortion upon doping except those doped with Ni 

or Sc. These are also the metals with the lowest oxidation states (+2 and +3, respectively, 

compared to the host metals’ +6). Only the W-doped MoX2 and the Mo-doped WX2 

compounds consistently exhibit semiconducting behavior and have the largest p-type 

𝑆2σ. Also, the presence of W and Mo dopants in the selenide and telluride compounds 

increase σ by as much as 60% (at carrier concentration N = 1014 holes/cm2). However, 

due to the reduction in S, the S2σ decreases for each doped system investigated. Phonon 

DoS results show acoustic region peak-broadening and narrower frequency gaps for Ti-

doped MoS2 suggesting a reduction in phonon lifetimes and increased acoustic-optical 

phonon scattering. A large amount of information on doping effects was discussed in this 

chapter which is useful for guiding the development of doped 2D TMD materials. 



152 

 

Chapter Seven highlights the formation of a lateral heterostructure between 2D 

MoS2 and 2D MS2 (M = Cr, Sc, Ti, and W). The structural, energetic, electronic, and 

phonon effects of this interface were investigated. The difference in oxidation state 

between the Mo and the M atoms plays a larger role in the heterostructure stability than 

the atomic mass or radius. The least stable systems – the ones having the highest 

formation energy and presence of negative (imaginary) phonon frequencies – involved Sc 

(+3) and Ti (+4) which had the largest difference in oxidation state compared to Mo (+6). 

Alternatively, the Cr and W, which both have +6 oxidation states, had low formation 

energies and no significant negative phonon frequencies suggesting mechanical stability. 

These were also the only systems to exhibit semiconducting behavior. The VBM and 

CBM for the heterostructures were found to be determined by the band alignment of the 

pure 2D TMD constituents. For the Cr system, the pure CrS2 VBM is aligned with that of 

the pure 2D MoS2 while the CrS2 CBM is significantly lower. This causes the resulting 

bandgap of the heterostructure to be equivalent to the pure CrS2. The W system, however, 

forms a type II (staggered) alignment making the resulting heterostructure bandgap (1.59 

eV) smaller than the bandgap of either constituent (1.69 eV for 2D MoS2 and 1.85 eV for 

2D WS2). The phonon DoS results for the W system are also the only ones that exhibit a 

frequency gap between acoustic and optical phonon bands, suggesting that the MoS2-WS2 

heterostructure experiences the lowest acoustic-optical phonon mode scattering among 

these heterostructures. The TBC of the MoS2-WS2 interface was found to be dominated 

by the acoustic phonons and limited by the difference in acoustic phonon velocities 

between the MoS2 and WS2. Our calculated TBC for this system is almost an order of 
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magnitude smaller than that of the graphene/h-BN heterostructure due to the reduced 

acoustic phonon velocities of the TMDs. 

This dissertation offers an analysis of the structure-property relationship for a 

wide range of properties on bulk skutterudite and 2D TMD materials. An investigation of 

filler and substitutional dopant effects on skutterudite compounds provide insight to 

advance the understanding of electrical and phonon properties that experiments could not 

measure. This also offered a good benchmark material for developing a modeling scheme 

that was employed for 2D TMD materials. The three key outcomes of this work are: (1) a 

high throughput approach to compute and analyze electrical and phonon properties, (2) a 

screening method for investigating 2D TMD materials and highlighting preferred 

compositions, and (3) design principles for predicting structures and properties to guide 

experiments. The high throughput approach include: DFT-based total energy 

minimization calculations to investigate the geometric, energetic, and electronic structure 

data; Boltzmann transport theory, in combination with electronic band energies, to 

estimate σ, S, and S2σ values; DFPT-based second-order force constant calculations to 

determine phonon dispersion and DoS spectra; and the AGF method, using force 

constants as input, to compute interfacial heat flux, phonon transmission coefficients, and 

TBC. The input parameters and structures for each model were optimized prior to 

calculation. DFT-based input parameters include cutoff energies, k-point meshes, partial-

occupancy smearing widths, and on-site DFT+U terms. For phonon calculations, 

supercell sizes were similarly determined through convergence tests. Literature values 

were used where available to compare resultant lattice constants, bond lengths/angles, 

bandgaps, and phonon dispersion data. This approach mitigated errors in the model, 
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which can now be used to analyze electrical and phonon properties of similar systems, in 

a fraction of the time. Due to this work, dozens of 2D TMD structures can be analyzed 

within days, whereas initial optimization calculations for each structure took up to one 

week to compute. The design principles determined in this dissertation compare known 

literature values for common oxidation states, atomic masses, and atomic radii of 

constituent transition metal atoms to the properties of resulting 2D TMD compounds. 

These principles include: 

 Metal-site dopant stability is dependent on matching atomic radii between the 

dopant and solvent metal 

 Dopants can increase electrical conductivity in TMD selenides and tellurides but 

decrease 𝑆2σ 

 The choice of similar oxidation states between transition metals in adjacent TMDs 

is crucial for lateral heterostructure stability. 

 

Future work includes a broader investigation of 2D TMD heterostructures and the 

effects of structure, composition, and transition metal physical features on stability, 

electrical, and phonon properties. The primary areas of interest for this investigation 

include the effects of: (i) structure type (i.e., 2H- vs. 1T-type), (ii) composition – 

including choice of transition metal and chalcogen, (iii) heterostructure interface between 

TMDs and other 2D structures such as graphene, and (iv) alternate heterostructure 

interfaces such as vertical 2D TMD stacking. Further property improvements can be 

achieved by combining these structures with substitutional doping. Overall, these 

materials offer great potential for materials-by-design exploration and understanding their 
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structural, electrical, and phonon properties are essential for advancement towards 

commercial applications. 


