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ABSTRACT 

This case study investigates three college instructors’ instructional approaches 

and their mathematical discourses in the context of calculus (e.g., concepts of limit and 

derivatives). The analyses focus on ways in which instructors communicate limit and 

derivative concepts that are observed in the classrooms, using Sfard’s discursive 

framework (a communicational approach). In particular, instructors’ use of mathematical 

words while introducing derivative and limit concepts are analyzed, as well as 

instructors’ ways of using visual mediators such as symbols, numbers, expressions, and 

graphs are investigated. The findings of the study indicate instructors’ different 

instructional approaches and differences in their mathematics discourses while teaching 

concepts of limit and derivatives.
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CHAPTER ONE: INTRODUCTION 

Calculus is an important mathematical topic and it is a difficult subject for 

students to learn and acquire its concepts. It is also especially difficult for teachers to 

communicate its concepts effectively (Bezuidenhout, 1998) in their teaching. The 

learning of calculus also builds on the understanding of the concepts of functions (Burns, 

2014; Tall, 1997; Park 2015; Orhun, 2012), and it requires students have a good 

understanding of the concepts of functions in order to apply with the concepts of calculus 

and to have success in advanced calculus courses (Burns, 2014). Discourse is key to 

effective teaching and learning calculus because learning is dependent on how the 

students and the teacher communicate their ideas in the classroom in order to acquire the 

necessary knowledge and information of the course. Therefore, study of how instructors 

introduce the concepts of calculus and ways they communicate with their students could 

help to add more information in this line of research and help improve classroom 

instruction in calculus.  

Recalling my own experience in my country, Saudi Arabia, calculus is taught at 

the college level. When I was a college student, I studied calculus for four semesters. 

Seven years ago, I took Calculus I in the first semester, and there were only two classes. 

Each class had approximately 50 students. The calculus class was taught in traditional 

ways. For example, the instructor taught the lessons by writing the notes on the board and 

students copied them into notebooks. I remember that we were not engaged in any kind 

of activities, group work, or discussions except for when the teacher asked questions and 
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anyone could participate by answering her questions while she was presenting the lecture. 

We did not spend class time working on online work or working in groups, so we had 

very little discussion of the concepts of the course during the class time. Furthermore, 

during my experience as a student at that time, technology was not incorporated in the 

classrooms as a tool for teaching and learning of calculus. 

As a college student, I memorized all the information I could in calculus classes 

to do well on the tests. For instance, I learned the derivatives and the differentiations, and 

memorized many of the rules and procedures such as the slope of the tangent lines, the 

rate of changes, and the velocity, without understanding the conceptual meaning of them. 

At the time, I knew that the slopes could be represented as the derivatives of given 

functions, and I knew the arithmetic when calculating them, but I could not visualize 

them graphically, nor relate to them numerically.  

In teaching of calculus courses, instructors’ instructional practices, materials, 

choices of textbooks, or other tools that are used to promote the learning are different 

from one classroom to another classroom. As Tall (1997) wrote, “This position between 

elementary and advanced mathematics allows it [calculus] to be approached in different 

ways, with a consequent variety of curricula” (pp. 1). Therefore, it is challenging for 

college instructors to teach Calculus I (introduction to calculus) classes that contain 

students who have learned pre-calculus in high school and students who are studying 

calculus for the first time. Thus, determining how to communicate the concept of 

Calculus I to a variety of students with different mathematical backgrounds is hard. 

Researchers have studied different instructional approaches in teaching calculus at both 

high school and college levels (e.g. Park, 2015; Kendal & Stacey, 2003; Bode, Drane, 
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Kolikant, and Schuller, 2009; Diković 2009; and Tall, Smith, and Piez, 2001). In 

particular, some studies showed that instructors’ mathematical discourse, questioning, 

discussing, thinking, and interactions (the way ideas are exchanged) influence students’ 

understandings of the concepts of derivatives and differentiation in calculus classes (e.g. 

Park, 2015; Park, 2016, Nardi, Ryve, Stadler, & Viirman, 2014; Kendal, & Stacey, 2003; 

Habre, & Abboud, 2006; Burns, 2014). Given these research results, I am interested in 

investigating and exploring how college instructors communicate the concept of Calculus 

I, as well as their mathematical thinking and understanding of derivatives in calculus.  

The necessity of learning the Calculus I content builds substantial skills in 

mathematics, which helps students to transfer and shift their knowledge to subsequent 

classes of calculus. Those skills include communication skills, technology skills, and 

collaboration skills (e.g., as group work) (Bressoud, Mesa, and Rasmussen, 2014). For 

instance, when calculus students face difficulties to determine graphs of functions, by 

drawing graphs or using graphing calculators, their lack of experience in the concepts of 

functions would cause difficulty in their advanced level calculus classes (Tall, 1992).  

Investigating the way instructors communicate their ideas with students is very 

important because effective mathematical communication in the classroom increases 

opportunities for expanding learning of the mathematical meanings (Moschkovich, 

2010). College instructors have become more aware of the importance of identifying 

effective classroom practices and they are facing challenges in doing so (Schleppegrell, 

2010; Park, 2016; Park, 2015; Ball, 1993; Bressoud, Mesa, and Rasmussen, 2014). 

Discourse practices in the classrooms are ways that instructors represent, discuss, and 

communicate their mathematical ideas with students through classroom interactions, and 
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such practices can help to elicit students’ mathematical thinking. To support effective 

mathematical teaching and learning, teachers’ discourse practices are important tools for 

developing effective classroom communication. 

Research in the mathematics education community makes progress on 

investigating factors influencing the teaching and learning of calculus (Bressoud, Mesa, 

and Rasmussen, 2014). For example, researchers have argued that the communicational 

approach (Sfard, 2008) plays a significant role in students’ understandings of the 

concepts of derivatives and differentiation by applying different representations, 

graphical and symbolic representations, to the concepts (Park, 2015; Nardi, Ryve, 

Stadler, & Viirman, (2014). There is an increase in studying the teaching and learning of 

calculus at the undergraduate level in the field of mathematics within the education 

research community (Park, 2015; Gücler, 2013; Nardi, Ryve, Stadler, & Viirman, 2014), 

however, how college instructors communicate their mathematical ideas with students in 

calculus is rarely studied. Therefore, this study focuses on exploring college instructors’ 

mathematical discourse in teaching derivatives and differentiation in Calculus I 

classrooms.   

To better understand how calculus is taught in the United States, this study is 

guided by the following questions using discourse analysis (Sfard, 2008) in context of 

Calculus I classes, particularly in two concepts, derivative and limit: 

1) What are the instructional approaches that college instructors use to emphasize 

the basic concepts of derivative and/or limit in Calculus I? 

2) How do college instructors communicate the concepts of the derivative in 

Calculus I classrooms? 
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In chapter 2, I review all relevant literature from existing studies about the 

teaching and learning of calculus in school and college level and studies addressing a 

discursive approach in teaching of calculus. In chapter 3, I introduce the theoretical 

framework adopting Sfard’s discursive framework (a communicational approach) and 

describing in detail the four features characteristic of her framework. In chapter 4, I 

describe the methodology of this study including participants and classroom 

observations. In chapter 5, I address findings on three cases of the analyses conducted 

from three instructors’ classroom observations. In chapter 6, I include a summary of the 

findings summarizing the classroom discourse and the instructional approaches among all 

three instructors. Finally, in chapter 7, I provide a discussion including limitations. 
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CHAPTER TWO: LITERATURE REVIEW 

In this chapter, I will provide brief reviews on how current research relates to my 

study in terms of how calculus is defined in the mathematics research community, 

connections between calculus, functions and graphs from the learning perspective, 

teaching and learning of calculus, use of technology in calculus classrooms, and how 

calculus is taught from existing literature as well as the research on mathematical 

discourse in the classrooms.  

Calculus is a common course that contains a variety of topics. Mathematicians 

have defined calculus in different ways. Tall (1992) described the meaning of calculus in 

two ways: informal calculus and formal analysis. The informal calculus includes the 

knowledge of informal information including differentiation rules, the rate of change, 

integration, and calculations of area and volume. Likewise, the formal analysis contains a 

formal idea of differentiation, Riemann integration, limits, continuity, completeness, and 

theorems such as the fundamental theorem of calculus, etc. Calculus curricula often differ 

from one country to another. Some countries present it dynamically in terms of intuitive 

form, introducing the concepts of the limit as a variable quantity or getting close to. In 

other places, calculus is studied by the formal theory of mathematical analysis which 

introduces the limit in terms of a formal definition of 𝜀 − 𝛿 𝑣𝑎𝑙𝑢𝑒𝑠 (Tall, 1997). 

2.1 What Calculus Is 

In this section, the concepts of calculus are discussed, and in particular, they are 

perceived as a limit concept and as a derivative concept within the calculus context. 
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2.1.1 Calculus as a Limit Concept 

The limit concept is normally about how a function 𝑓 behaves as 𝑥 approaches a 

number 𝑎. Also, it plays a key role in understanding rates of change. The limit concepts 

are usually taught and learned as definitions. However, limit could be addressed as a 

symbolic expression, algebraic expression, and graph of secant lines. Also, in many 

textbooks, the limit would be represented with numerical values. From a commonly used 

calculus textbook in the United States edited by Rogawski and Adams (2015) the limit 

concept is defined as the following two definitions:  

 lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 𝑖𝑓 |𝑓(𝑥) − 𝐿| can be made arbitrarily small by taking 𝑥 

sufficiently close (but not equal) to 𝑐. We say that  

- The limit of 𝑓(𝑥) as 𝑥 approaches 𝑐 is 𝐿, or  

- 𝑓(𝑥) approaches (or converges) to 𝐿 as 𝑥 approaches 𝑐 (p. 69).  

 The formal definition (called the 𝜀 − 𝛿 definition): lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 if, for all 𝜀 >

0, there exists a 𝛿 > 0 such that  

𝑖𝑓 0 < |𝑥 − 𝑐| < 𝛿,  than |𝑓(𝑥) − 𝐿| < 𝜀 (p. 108).  

For the first definition (see Figure 2.1), it indicates if the values of 𝑓(𝑥) do not converge 

to any number 𝐿 as 𝑥 → 𝑐, we say that lim
𝑥→𝑐

𝑓(𝑥) does not exist. 

 

Figure 2.1 Graphical interpretation for the first definition of the limit.  
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Therefore, according to the first definition, limit is an explicit expression in which 

students could just apply rules and find values, for example, find the limit in the 

following expression:    

lim
ℎ→0

(𝑥 + ℎ)2 − 𝑥2

ℎ
 

The second definition, also called the 𝜀 − 𝛿 definition, is often used to conduct 

mathematical proofs in real analysis, a key ingredient of proofs in calculus. The limit here 

in the formal definition depends on the values of 𝑓(𝑥) near 𝑐 but not on 𝑓(𝑐) itself, and 

the number 𝛿 shows just how close is “sufficiently close” for a given 𝜀. 

Mathematically, as Tall (1997) discussed the term of limit evaluated by “varying 

h dynamically to see what happens as [h goes to zero]” (p. 16). When h is not equal to 

zero, then “it simplifies to 2𝑥 + ℎ, and as h ‘tends to zero’, this expression visibly 

becomes 2𝑥” (p. 16). In terms of the concept of the derivative in calculus, the derivative 

is the limit of the difference quotients. In her study, Park (2016) argued that the limit was 

“applied to the [difference quotients] DQ as a process” (p. 398) and students focused on 

computing the average rate of change, the instantaneous rate of change, tangent line, and 

velocity. However, in calculus courses, limits arise in the study of the average rate of 

change and tangent lines (Rogawski and Adams, 2015). Introducing the limit concepts 

allow educators and learners to set the stage for the derivative concepts (Rogawski and 

Adams, 2015). 

2.1.2 Calculus as a Derivative Concept 

Mathematicians have defined the derivative in three important ways: as a rate of 

change, as the slope of a tangent line, and as the limit of the difference quotients. The 

derivative in the calculus textbook (see Figure 2.2) is defined as: 
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𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

 

Figure 2.2 Rogawski & Adams definition of the derivative.  

As a result of Park’s (2016) study, she reported that this definition consists of four 

components: “function, difference quotients (DQ), limit, and derivative” (p.398). The 

function can be seen as a process (connecting elements between two sets) and an object 

(the “relation”). Thus, the process is important for introducing the derivative as a 

function. Also, the DQ can be seen as a process in comparing the changes of x and y, or 

an object, “the ratio itself.” The limit is defined in her study as process when applying the 

DQ which is the object of the derivative at a point, and as a “final object” (the product of 

the limit process). Finally, the derivative also can be seen as a process (input and output 

values), or an object of finding the derivative in numbers, or of sketching the graph of it 

visually (Park, 2016). In a different study, Park (2015) has reported: “the derivative can 

also be viewed (1) as a point-specific object, (2) as a function at any point” (p. 237). At 

the first one, the point is clarified visually from a graph of some function “𝑦 = 𝑓(𝑥)” as 

the slope of the tangent line. In the second view, the point is denoted “with a letter (e.g., 
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𝑥) and is visually mediated with the notation 𝑦 = 𝑓′(𝑥) and the graph or equation of the 

derivative of a function” (p.237).  

The derivative concept can be communicated by words such as the slope of 

tangent line or average rate of change; and is visually mediated using symbols, numbers, 

and/or graphs (Park, 2015; Park, 2016). For example, Park (2015) stated that the word 

“slope” plays an important role connecting the graphical and symbolic mediators for both 

derivative and limit as a process and/or as final objects, “especially when these numerical 

values are not provided” (p. 237). In fact, among those concepts (limits and derivatives) 

the connection between calculus, functions and graphs would be recognized while they 

are being learned and applied. 

2.1.3 Connections Between Limits and Derivatives 

The study of calculus includes the concepts of functions, limits, and derivatives. 

Researchers and mathematicians had confirmed that the derivative concept is usually 

built on the limit and function concepts. For example, Zandieh (1997) argued that the 

fundamental understandings that lead to the derivative concepts can be described in 

diverse representations and in various tasks from the context of calculus. The average rate 

of change of any function can be computed using a difference quotient formula. Thus, 

this calculation of the average rate is itself a process because it calculates the changes in 

the output and the input values of the domain of a function. We could notate this by a 

standard notation, the Leibniz notation of a ratio 
Δ𝑓

Δ𝑥
. The process of calculating the 

average rate of change can be described as an object in finding the limit of a function at a 

certain point. Thus, we might represent the limit as a process in Leibniz notation, lim
∆𝑥→0

Δ𝑓

Δ𝑥
. 

From this point, the limit, described as a process or an object, is integrated to the 
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instantaneous rate of change, 
𝑑𝑓

𝑑𝑥
, which is the construction of the derivative of a function. 

The derivative concept as an object can be defined using certain rules depending on a 

task in which the learners are asked to find the derivative of some function at a specific 

point, or the derivative as a function at any point. Zandieh (1997) provided a diagram 

(see Figure 2.3) that shows how the derivative concept and the limit concept are related to 

each other. 

 

Figure 2.3 Zandieh’s layers illustrate the connection between limits and derivatives 

2.2 Learning of Calculus 

While learning calculus, students often need to apply their understanding of 

functions and graphs (Tall, 1997; Leinhardt, Zaslavsky, Stein, 1990) to be able to make 

connections between different representations of functions and how functions connect to 

the derivative graphs. In addition, in learning mathematics, many students do not focus 

on the meaning of mathematical concepts but use the processes in solving problems 

without having a deeper understanding of the conceptual meaning of mathematics (Porter 
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& Masingila, 2000). Calculus concepts were learned where students implemented the 

exact processes of solving problems, yet lack the understanding of the underlying specific 

concepts. When calculus students have learned of the concepts of the subject, they can 

extend and emphasize their knowledge when memorizing formulas. In this section, I will 

discuss the connections between calculus, functions and graphs, how students learned the 

calculus concepts, and difficulties students encountered. 

2.2.1 Calculus in Its Connections with Functions 

Functions are a necessary concept in learning mathematics, calculus in particular, 

and is a foundational concept in teaching and learning mathematics. Students must 

understand functions to succeed in the subsequent mathematics classes. Burns (2014) 

states: “It is of vital importance that students learn and come to a clear understanding of 

functions in order to succeed in mathematics courses” (p. 8). Researchers in the 

mathematics education community have done many studies on teaching and learning 

functions. Functions were beginning their notion in terms of describing the variables x 

and y. Then, Tall (1997) discussed in the twentieth century, the “set-theoretic definition” 

of function had been defined from a “visual idea of graph” (p. 9). Functions are difficult 

concepts for students and often cause conceptual difficulties. Researchers in mathematics 

education have studied function concepts and their relationships with calculus concepts. 

They have investigated how they are taught and learned (e.g., Tall, 1997; Leinhardt, 

Zaslavsky, Stein, 1990; Park, 2015; Orhun, 2012). They found that students’ difficulties 

appeared when students made connections between functions and graphs, for example, 

finding the equation of a function given with graph. Also, the misconceptions of 

functions found in students’ grasping concepts of variables that are not actually shown on 
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a graph. They were not able to use the mathematical language of the graphs to describe 

the functions.       

A recent study of students’ misconceptions on functions and their derivatives by 

Burns (2014), focused on investigating students’ insights and “students’ understanding of 

the vertex of the quadratic function in connection to the concept of the derivative by use 

of the think-aloud method…” (p.9). He found that most of the students had lacked an 

understanding of the vertex of a quadratic function, and students did not fully understand 

how the vertex of a quadratic function shaped to the derivative concepts. Misconceptions 

were also found when the students applied the derivative in application problems. He 

suggested that educators should apply more effort to emphasizing the concept of 

functions, and that students need to understand these concepts fully before they learn 

about derivatives in calculus. He also stated students need to develop their understanding 

of the two concepts: the quadratic function and its derivative. Then, they would be able to 

think about the derivative of a quadratic function in terms of the graph as the slope of the 

tangent line, as instantaneous rate of change, or as velocity (Burns, 2014). According to 

Burns, “this emphasizes the importance of understanding quadratic functions and 

functions in general as a pre-requisite to understanding calculus” (p. 110). 

2.2.2 Calculus and Its Representations with Graphing  

Researchers have analyzed students’ understandings of the derivative concept 

with graphing manipulations, such as the ‘action-process-object-schema’, or APOS, 

theoretical framework used by Asiala, Cottrill, Dubinsky, & Schwingendorf, (1997). 

Also, studies in mathematics show that using graphing skills is a possible technique to a 

better understanding of calculus in general (Orhun, 2012; Tall, 1997; Leinhardt, 
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Zaslavsky, Stein, 1990). For example, when students experience multiple representations 

while learning derivative concepts they made the connections between algebraic 

expressions and their graphs of functions (Gravemeijer & Doorman, 1999; Tall, 1997; 

Park, 2016; Tall & Vinner, 1981; Orhun, 2012; Kendal & Stacey, 2003). Tall (1997) 

claimed that a graphing calculator is an alternative tool to help students understand 

functions and their derivatives better. For instance, when students learn the derivative of 

functions using visual representation such as graphs (e.g., from Rogawski’s & Adams 

(2015) calculus textbook), they can make visual connections between the original 

function and its derivative, such as the slope of the tangent line or the secant line on the 

curve (see Figure 2.4).  

 

Figure 2.4 Graph of a function and its derivative.  
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Recently, Park (2015) emphasized the derivative as a function on a graph. She concluded 

the following: 

In discussing the derivative as a function on the graph, the instructors quantified 

the derivative as a number mainly by using functions with limited graphical 

features such as linear functions or functions with horizontal tangents, they 

quantified the derivative as “positive” or “negative” on an interval rather than as 

numbers showing how the derivative changes as x changes (p. 246). 

 

2.2.3 How Students Learn Calculus 

Researchers have been investigating and exploring students’ learning of 

mathematics in general and calculus courses in particular. They have suggested a variety 

of ways to explore how students learn calculus. For instance, Tall & Vinner (1981) 

discussed students’ understanding of calculus in terms of concept images and concept 

definitions. On one hand, they stated that the concept definition is composed of “words 

used to specify that concept,” whereas the concept image is holding a certain concept of 

“all the mental pictures and associated properties and processes” (p. 2). Students can 

develop their mathematical understandings through a variety of representations when 

they apply them to solving problems. Furthermore, these representations might help 

students make connections between memorizing rules and understanding the conceptual 

meanings of Calculus I (Park, 2015; Tall & Vinner, 1981; Tall, 1997). Some students see 

the value of using technology such as a graphic calculator while other students may not 

use graphic calculators effectively. Nevertheless, some prefer to use one type of symbolic 

representation to learn; whereas, others prefer to use multiple-types of representations in 

learning concepts (Tall, 1997). 

Also, calculus can be learned by creating a deeper understanding of the 

conceptual meaning of mathematical concepts such as functions, limit, velocity, and 
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distance and by developing skills to apply these concepts. Asiala, Cottrill, Dubinsky, & 

Schwingendorf (1997) have studied students’ understandings of a function and its 

derivative. The authors in this study described the ‘instructional treatment’ that they 

designed to learn about and compare the performance of students receiving the 

researchers’ instructional methods, versus students receiving methods traditionally taught 

in calculus courses. They explored the effectiveness of the instructional approaches on 

the students’ outcome in learning functions and derivatives. Also, the researchers 

investigated the instructional approaches of teaching calculus concepts and discussed the 

conceptual/procedural understandings of the calculus courses by examining the effects of 

writing tasks in order to learn mathematics (Porter & Masingila, 2001; Habre & Abboud, 

2006).  

Porter & Masingila (2001) investigated students’ conceptual understanding and 

how they used the mathematical procedures in learning calculus by examining two 

different groups of students, the WTLM group “Write To Learn Mathematics” and a 

“non-writing” group. Porter and Masingila’s study focused on written tasks where 

students engaged to discuss their thinking. The written tasks were used to test students’ 

insights and thinking about calculus. The study showed that there were no significant 

differences between the two groups; no evidence showing different effects on the WTLM 

activities rather than the non-writing activities. However, students from both groups were 

able to communicate their understanding of the concept. In another study conducted by 

Habre and Abboud (2006), they explored on how students learn function and its 

derivative by two different approaches, a traditional Calculus I course and a reformed 

Calculus 1 course, which had more effort on visualization. The aim was to investigate 
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students’ understanding of a function and its derivative geometrically and analytically 

using the two curricula. Authors conducted interviews with students during the period of 

their experimental course and they found that most of the students had complete 

geometric understanding on the derivative concept, but they failed when they were asked 

to define the derivative.              

In the field of mathematics education research, researchers need to pay attention 

to the intellectual processes required rather than an emphasis on the mathematics to be 

taught. Some researchers focus on the students’ experiences of applying concepts such as 

velocity, distance, and acceleration (Tall, 1997). Furthermore, these concepts can be 

reproduced with computer simulations, as Tall (1997) stated that driving a car can be 

“linked to numeric and graphic displays of distance and velocity against time” (p. 3). 

Applying this process of learning will open the window to available representations of 

teaching and learning calculus according to Tall (1997):  

This widens the representations available in the calculus to include:  

 enactive representations with human actions giving a sense of change, 

speed, and acceleration,  

 numeric and symbolic representations that can be manipulated by hand or 

by computer, including the possibility of programming by the student,  

 visual representations that can be produced roughly by hand or more 

accurately and dynamically on computers, and formal representations in 

analysis that depend on formal definitions and proof (p. 3).   

These representations (e.g., symbolic, numeric, etc.) and other manipulations are useful 

tools for calculus students to enhance their learning of calculus concepts. Learning 

calculus has been developed from very traditional ways of solving problems symbolically 

to more sophisticated procedural ways of thinking and visualizing (Tall, 1997).  
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2.2.4 Challenges and Promises  

One of the challenges in learning calculus for students is when teachers are using 

new approaches to teach the courses, making changes in calculus curriculums, adopting 

unpopular practices, and/or using technology (Habre & Abboud, 2006). In fact, while 

students often do well on routine problems that are familiar to them and had practiced 

before in class, researchers have reported that students often struggle when they are faced 

with non-routine problems in calculus courses (Selden et al., 1994) (as cited in Habre & 

Abboud, 2006). For example, experts provided an unusual test for calculus students 

asking them to write down as many of their ideas as possible. These problems on the test 

were chosen to examine students’ understanding of the function and its derivative, how 

this could impact their answers as they had in their mind patterns of skills and procedures 

to solve problems. 

However, challenges may also occur in learning calculus when a student learns 

the concept of calculus negatively or without having a deeper understanding of what they 

have learned in the class. For instance, college students usually have misunderstandings 

of the prerequisite concepts of calculus, such as functions, which is due to their 

background knowledge. In a study reporting on students’ understandings of the chain 

rule, for example, the authors found a large number of students had difficulties in dealing 

with decomposition and composition functions (Clark et al., 1997). In addition, 

researchers have identified some calculus students’ misconceptions about the rate of 

change concepts as related to the idea of relations between concepts such as “average rate 

of change,” “average value of a continuous function,” and “arithmetic mean” 

(Bezuidenhout, 1998).  
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2.3 Teaching of Calculus 

Calculus is always a challenging area for college students and it is a requirement 

for many majors. It is a complex course with many connections in mathematics. 

Therefore, in this section, I will discuss the instructional methods and curricula materials 

for teaching calculus as well as the use of technology.  

2.3.1 Curricula Materials  

Contextual materials in teaching calculus play a significant role in students’ 

understandings of calculus concepts. For instance, in the past, Clark et al. (1997) studied 

two different groups of students; one taught traditionally, called, “lecture-recitation 

course”, which focused on students constructing the concepts of calculus from lectures, 

class group work, and assignments. The study showed that students from the traditional 

classes were not engaged in using computers or programs. The second group taught with 

a method known as ‘𝐶4𝐿’ “Caculus, Concepts, Computers, and Cooperative Learning”, 

which is used to help construct understanding and applying of the Chain Rule. Authors in 

this study explored students’ understanding of the chain rule by conducting interviews 

with students from both groups. As a result, they interpreted findings on understanding 

the chain rule involved the “building of a schema” (p. 31) through three stages called 

“Intra, Inter, and Trans”. Among these three stages: the Intra focused on a single object 

from other actions, processes, or objects, the Inter focused on recognizing relationships 

between different schemas, and finally the Trans focused on constructing the 

relationships discovered in the Inter stage. As result, they found many students did well 

using the algebraic way and they could realize rules and procedures for example, 

recognizing the power rule and providing general statement of the chain rule but “had not 
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yet constructed the underlying structure of the relationships” (p. 10). They also found that 

students from traditional classes did poorly in solving tasks than students from the other 

group. Also, a national survey conducted by the MAA (Mathematical Association of 

America) reported on instructor pedagogy and its impacts on students’ attitudes in 

calculus college courses (Bressoud, Carlson, Mesa, & Rasmussen, 2013). The survey 

reported on many different selected institutions conducted with STEM majors. According 

to the survey, the context of Calculus I provided in 17 selected institutions was offered 

and formatted based on the institutions’ goals and needs. Usually the Calculus I at college 

level in the United States covers basic concepts of differentiation and integral calculus, 

but the course contents in Calculus I have changed over time (Burn & Mesa, 2013). The 

classrooms’ size in many of the universities is about 30-40 students, and in some of them 

the use of technology such as CAS, online work, and graphing calculator were 

incorporated. Also, according to the survey, students in Calculus I classes engaged in 

practicing projects, presentations, and group works. Instructors who are teaching 

Calculus I among all the institutions range in background between PhD, Master, and 

Graduate Teaching Assistant (Selinski & Milbourne, 2013). More recently, Park (2015) 

reported how instructors taught the derivative as point-specific and as a function from her 

study. Park (2016) also analyzed calculus textbooks and their effectiveness on 

instructors’ teaching practices and students’ learning in specific topics in calculus such as 

with derivatives. Those studies demonstrated how instructional approaches of using 

curricula materials influence the students’ outcome and their understanding of the 

calculus concepts.   
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2.3.2 Classroom Instructional Methods  

Besides the importance of the curricula materials, instructors need to be careful 

when they apply their mathematical knowledge and to create efficient approaches that are 

relevant to their classroom. Therefore, the instructional approach is important because it 

is the key, for the instructors and students, to communicate their ideas in the classroom.  

Tall, Smith, and Piez (2008) argued that the subject of calculus serves not only to 

solve mathematics problems or mathematics applications, “but also [calculus serves] as a 

natural pinnacle of the beauty and power of mathematics for the vast majority of calculus 

students who take it as their final mathematics course” (p.2). They suggested how 

calculus should be taught based on the results of their study at that time. Calculus 

traditionally introduces the concepts of differentiation and integration in terms of 

symbolic manipulations and applies these concepts to solve problems. Tall (1997) 

indicated that there are different instructional methods used to teach calculus, and some 

methods are more appropriate for elementary versus advanced mathematics education. 

Furthermore, it is clear that students’ backgrounds and knowledge of calculus are the 

biggest challenges that may inform instructors when determining their instructional 

practices.   

In the past, researchers categorized different representations to teach and learn 

calculus and found that there were three ways to present calculus’ knowledge (e.g. 

functions). First is the numerical way for solving problems as functions, such as (𝑦 =

3𝑥2 + 𝑥 − 5). Second is the graphical way, which works for investigating the shape of 

functions (visual image of graphs of a function “𝑓(𝑥)”). The third is the symbolic way, 
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which is appropriate for the use of Computer Algebra Systems (CAS). These 

representations can be used independently or together (Ferrara, Pratt, & Robutti, 2006). 

Hardy (2009) showed that, at her college, the calculus course material was created 

collectively by committees who were responsible for designing and structuring the 

course. At the time of her study, the college, where she had conducted her study, had 

nineteen sections of the course and 14 instructors. The committees selected a beneficial 

textbook, practices, homework, tasks, and a final exam. Although the instructional 

methods varied among instructors, every student in each section learned the same topics 

and practiced the same information on the homework and for their test. Students in one 

section and in another section compared their notes and studied together in groups. This 

treatment of instructional materials, which were limited and given by the college, was 

also investigated. The study found that students depended on a set of steps and 

instructions when they solved problems, which caused a lack of understanding of the 

concept, and led students to fail when they apply to a non-routine problem. The routines 

tasks had a negative impact on the students when they generalized their understanding 

with practicing by norms instead of practicing by rules. According to Hardy (2009), 

“students' models are emphasized and validated by the tasks proposed by the institution” 

(p. 21).  

Researchers have found and adopted a framework for creating instructors’ 

teaching practices in teaching derivative concepts. For example, Asiala, Cottrill, 

Dubinsky, & Schwingendorf (1997) had addressed three elements of those constructions: 

“theoretical analysis, instructional treatments, and observations and assessments” (p. 2). 

The theoretical analysis had a place to suggest a “genetic decomposition” that the learner 
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has a mental construction (such as the ‘APOS theory’) to develop his or her 

understanding of the concepts. The instructional methods used depend on the basis of 

“genetic decomposition of mathematical concepts”. Moreover, this instructional method 

that helps students make connections between calculus concepts is called “the ACE 

teaching cycle (Activities, Class tasks, and Exercises)” (p. 2). As a result, from their 

study, authors found that students could use mathematical programs, engage in group 

work to discuss their results in problem-solving, and “investigate mathematical concepts 

using a symbolic computer system” (p. 2) while they were learning derivatives.   

  Even though there are a small number of studies about teaching derivatives in 

calculus courses, there is a study from Bezuidenhout (1998) who suggested that calculus 

teachers must consider students’ fundamental misconceptions concerning main concepts 

in first-year calculus such as “the rate of change” and other fundamental concepts of 

calculus; 

An important challenge to mathematics educators is to create innovative curricula 

and pedagogical approaches that will provide calculus students with the 

opportunity to construct relevant and powerful concept images and allow them to 

reflect on the efficacy and consistency of their mathematical thinking (p. 397).         

Researchers have noted that calculus is a difficult subject, and they have tried to 

study and explore efficient instructional strategies to help students acquire the 

foundational knowledge of calculus concepts.   

2.3.3 Technology in the Classroom  

 Using technology in college calculus courses is one didactic way to learn and 

teach calculus and it has been become more prevalent as its availability has increased. 

The use of technology, such as CAS, was discovered in calculus classes from the past, for 

example, Kendal & Stacey (2000) discussed how students acquire conceptual 
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understanding of differentiation incorporating graphical, numerical, and symbolic using 

computer algebra systems (CAS) in the classrooms. Researchers have responded to many 

questions and issues on the teaching of variables and expressions with technology. Below 

is an example from one group of those researchers (Ferrara, Pratt, & Robutti, 2006):  

Trends in emphasizing students’ learning and multiple views of concepts through 

multiple representations clearly appear, but so little, if not any, attention has been 

paid to curricular aspects and teachers’ knowledge or teaching practice up to now 

(p. 246). 

Nonetheless, much technology has evolved to be used in calculus classrooms, such as 

CAS, Mathematica, Maple, and Derive (Tall, Smith, and Piez, 2008). Experts have tried 

to explain the concept of calculus in a variety of ways, from the traditional methods and 

algorithm structures to using graphing software (Tall, Smith, and Piez, 2008; Ferrara, 

Pratt, & Robutti, 2006; and Habre & Abboud, 2006). To develop students’ 

understandings, Haber and Abboud (2006) examined an experimental calculus course, 

and focused on the use of “Autograph”, calculus software, and a calculator to help 

students comprehend the concepts of a function and its derivative. The results showed 

that a large number of students failed to find the derivative geometrically and used the 

mechanical methods, as a result of the fact that the “mathematical definitions are 

traditionally analytical, creating an obstacle in the minds of the students” (p. 68). They 

also concluded that the new approach of the technological approaches such as using the 

software Autograph was challenging for many students and benefitted few students.       

Using technology such as graphing calculators and online homework helped 

students to understand and grasp the concepts easily because it helped combine both the 

numerical and graphical approaches (Zandieh, 1997; Leinhardt, Zaslavsky, Stein, 1990; 

Kendal & Stacey, 2000). Technology, such as the use of a graphing calculator, allowed 
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entering texts or numbers, drawing a graph, and working while studying calculus 

concepts (Kendal & Stacey, 2000). For example, the use of graphing calculators could 

help students to visualize the relationship between the rate of change (tangent), or the 

slope of the tangent line, and the derivatives, thus, enhancing their understanding of the 

concepts rather than just relying on the algorithm and calculations by hand. When 

teachers use symbolic representations to find the derivative of a given function without 

providing graphical representations (i.e., drawing by hand, or using GeoGebra, graphical 

calculator, etc.), students may solve the problem using arithmetic without having a deeper 

understanding of the relationship between the value of the derivative and the slope at a 

specific point. The use of technology may help students to understand the concepts by 

visualizing them. Individualized learning could be developed when students learn and 

apply their mathematics concepts by using some helpful devices such as a graphing 

calculator. Researches have argued the impact of incorporating technology in calculus 

classrooms, for example Bressoud, Carlson, Mesa, & Rasmussen (2013) from the MAA 

National Study of College Calculus reported three different factors of pedagogical 

characteristics: “good teaching”, “technology”, and “ambitious teaching”; and have found 

the use of “technology” was not significant; whereas, “ambitious teaching” had a 

negative effect and “good teaching” had a positive effect on students. In the survey, they 

reported that most of the instructors use graphing calculators and online homework 

grading systems. They found an increasing use of graphing calculator in the classrooms 

and greater percentage of instructors’ permitting graphing calculator use on exams. 

When technology such as ‘WebAssign’ arrived in calculus, it allowed new 

methods and provided a new learning environment to develop in the mathematics 
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classroom and in calculus demonstrated tasks might be solved using graphing calculators 

(Tall, 1997). There are many advantages of using the technological way of teaching and 

learning calculus. For example, it is convenient that students can use them anytime and 

anywhere as needed. This technological way would encourage creativity and possible 

new strategies in the teaching of calculus. It is very important to increase emphasis on 

how to make calculus a more understandable subject for various students by helping 

students learn a variety of helpful ways (e.g., increase of visualizing graphs of functions 

and their derivatives) to comprehend calculus through the use of technology. 

2.4 Mathematics Classroom Discourse 

In every classroom, language is a powerful tool for social interaction and it is also 

a way to deliver concepts to the learners. Language in mathematics plays a critical role in 

establishing the learning environment in the classroom (Walshaw & Anthony, 2008; 

Moschkovich, 2010). The use of appropriate language in the mathematics classroom 

helps instructors to improve the learning and teaching of mathematical concepts, and 

researchers have reviewed the relationship between language and mathematics learning, 

asserting their complexity in classroom environment (e. g., Moschkovich, 2010). It is 

often seen that in mathematics and calculus classes, teachers usually do not give attention 

to the language used to deliver their ideas and concepts of mathematics (Schleppegrell, 

2010). For example, when instructors discuss any of the mathematical terms incompletely 

defined and shift the students’ attention toward the procedure rules instead forcing 

thinking and reasoning, students’ struggles will show up and meet a lack of establishing 

information foundation. Walshaw & Anthony (2008) noted that the use of language in the 

mathematics classroom supports the students to be more engaged in mathematical 
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discussions and helps the teachers to understand their students better. According to them, 

“Reframing student talk in mathematically acceptable language provides teachers with 

the opportunity to enhance connections between language and conceptual understanding” 

(p. 530). This creates an overall learning and contributory environment to engagement 

from both educators and learners.  

Mathematics is a difficult subject as compared to other subjects. Language itself 

is very important in mathematics. Sometimes, students use incorrect mathematics 

terminology, which leads to negative impact on students’ learning and makes a gap in 

their future learning (Gutiérrez, Sengupta-Irving, & Dieckmann, 2010; Schleppegrell, 

2010). There are a number of words that have a specific mathematical meaning such as 

“to cancel”, or “to eliminate”, but these have totally different meanings in daily life 

conversation. For example, in our daily life, we use ‘cancel’ when we cancel a meeting, 

but, in mathematics classroom, the word ‘cancel’ usually means to ‘simplify’ 

expressions. Discourse practice in the classrooms could shed light on how mathematical 

words are used. Instructors communicate the mathematical concept with vocabulary and 

students must learn that vocabulary to build a greater understanding of the mathematical 

meaning. Students must be able to think and reason mathematically when they learn 

mathematical ideas. Mathematicians aimed to investigate teacher practices and tried to 

make changes in their instructional approaches when they taught mathematics in 

secondary school. For example, (Ball, 1993) focused her study on the development of 

teaching practices when she was teaching mathematics at elementary level (8 – 9 years of 

age). According to her, “Students must learn mathematical language and ideas that are 

currently accepted. They must develop a sense of mathematical questions and activity” 
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(p. 376). “In the context of teacher development” Schleppegrell, (2010) declared that, “a 

focus on language can help address the difference between questions like do you know 

mathematics? and can you talk about mathematics?” (p. 105). Allowing instructors to 

communicate their ideas with students makes their students become involved in 

discussions and talk about their mathematical knowledge. Therefore, it is important to 

take account of instructors’ approaches and the ways they teach and communicate the 

Calculus I course.  

2.4.1 The Rule of Questioning in Classroom Discourse 

In classroom discourse practices, questioning plays an important role in 

understanding different concepts (Walshaw & Anthony, 2008) because it is the design of 

communications that math instructors must create in the classroom. Questioning is a way 

to guide instructors in useful discussions where students can engage in the mathematical 

discourse. The quality of interaction with students and the use of discursive approaches in 

classrooms has a special impact on the learning process. According to Walshaw and 

Anthony (2008), there are two critical techniques in the productive environment of 

mathematics classroom discourse. The main object of these techniques is to involve the 

students in active questioning by the use of conversations between students and teacher. 

These conversations include sharing of ideas and receiving feedback from instructors and 

other students. This helps improve student understandings of the mathematical 

knowledge. In another study conducted by Cazden & Beck (2003) “handbook of 

discourse process”, the authors made an emphasis on the ways instructors ask questions 

that help in keeping classroom discussions with students moving forward and make 

students think and reason about the mathematical knowledge, and asking them to explain 
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their answers and reasoning with their peers. According to Cazden & Beck (2003), 

“Instead of the traditional pattern of classroom talk in which teachers ask test-like 

questions and students give short, test-like answers, teachers are being asked to lead 

discussions that stimulate and support higher order thinking” (p. 165). In their study of 

classroom discourse, they also reported on how researchers and instructors believed the 

teacher’s questions could have powerful effects on students’ learning. 

Questioning in classroom discourse helps instructors understand their students 

and then inform their instructional approaches by determining what questions they should 

ask depending on students’ knowledge. The decisions that instructors make when they 

plan their lessons include questions that help the students engage in the mathematical 

discourse, exploring and reasoning. Discourse in classrooms also allows instructors to 

think not only about their students’ understanding, but also about the approaches they use 

in their everyday practices, and how well they understand the mathematical ideas and 

present them in productive ways. According to Walshaw & Anthony (2008), they argued 

about how the students’ outcome is influenced by teaching:  

In this conceptualization, teaching is influenced by adaptive rather than additive 

factors and by interactive rather than isolated variables. This means that the 

outcomes of teaching are contingent on a network of interrelated factors, 

conditions, and environments. These are the factors and conditions that shape 

how, and with what effect, mathematics is taught and learned (p. 542).   

2.4.2. Discourse in the Calculus Classroom 

Gaining effective mathematical communication in the classroom is complex when 

it is not clear to students and without explicit teaching. In the mathematical classroom, 

the discussions related to mathematical concepts are critical in developing proficiency in 

learning and teaching of mathematics (Ball, 1993). Discourse in the classrooms consists 
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of textbook definitions and approaches that mathematics instructors use to communicate 

their mathematical ideas. In the mathematics classroom, there is a close relationship 

between allowing the students to talk about math and their understandings of 

mathematics. In an effective learning environment, the teacher must be flexible and 

careful to encourage a safe and equitable space for classroom discourse. Discourse in 

mathematics and calculus classes is the way that describes student-instructor interactions, 

language, vocabulary, and communications skills. Nardi, Ryve, Stadler & Viirman (2014) 

stated that “In this sense, learning mathematics, or any other topic, is an initiation into a 

discourse, where discourse is meant as a type of communication that characterizes a 

particular community” (p. 184). Considering and examining mathematics through the 

discourse approach is a new line of inquiry in the area of mathematics education research, 

and studies that investigate teaching and learning of the calculus in the context of 

classroom discourses are very rare.  

In existing studies, researchers (e.g., Park, 2015; and Nardi, Ryve, Stadler & 

Viirman, 2014) explored the mathematics discourses in the teaching and learning of 

calculus. For example, in the study of the derivative as point-specific and as a function 

conducted by Park (2015), the researcher examined three college instructors in how they 

addressed the concept of the derivatives with word uses and visual mediators. Her study 

also found how instructors could make connections between visual mediators when 

introducing the derivative concepts with algebraic notations, graphing illustrations, and 

symbols. A study conducted by Nardi, Ryve, Stadler & Viirman (2014) showed students’ 

interactions and thinking about the concept of function through the communication 

approach. Results from their study found to expand the communication approach by 
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developing Sfard’s commognitive approch in analyzing the learning and teaching of 

mathematics.  

 According to Sfard (2008), discourse is defined in terms of mathematical 

thinking as “the commognitive vision of mathematics as a type of discourse – as a well-

defined form of communication, made distinct by its vocabulary, visual mediators, 

routines and the narratives it produces” (p. 433). In the following chapter, I will provide 

an explanation for Sfard’s commognitive framework with four features of the 

mathematical discourse: word use, visual mediator, routines, and narrative.
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CHAPTER THREE: THEORETICAL FRAMEWORK 

In this section, I discuss mathematical discourse through Sfard’s framework, the 

commognitive approach, in the context of calculus, and I adopted this framework in 

analyzing my data because it helps me to guide and discuss the instructional approaches 

and the way instructors teach Calculus I course. Also, Sfard’s framework contains useful 

tools for research designs and discussions; it allows me to observe classes and to take a 

deeper look into why and how instructors teach calculus in the United States. First, Sfard 

characterized mathematics discourse by four components: word use, visual mediators, 

routines, and endorsed narratives. Second, I describe in detail how to analyze the 

discourse with regards to the derivative/ limit concepts using primarily word use and 

visual mediators.  

3.1 Word Use 

Word use is an important key to teaching and learning in calculus courses. 

Mathematics discourse about calculus is a discourse in which we use a lot technical terms 

in the text of calculus. For example, in calculus discourse, we use words such as 

functions, limits, derivatives and integrals that would be addressed in any level of 

calculus classroom. In this study, the instructors’ words used in teaching limit and 

derivative concepts (and any related concepts such as Rate of Change (RC), 

Instantaneous Rate of Change (IRC), slope, slope of tangent lines, secant lines) are 

observed and their use of those words are investigated. The way instructors’ use words to 

explain what they mean by limit or derivative are important because students need the 
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opportunities to express themselves and make coherent sense of the relationship between 

the concepts of calculus. For example, there is a connection between the concepts of the 

average rate of change, the definition of limits as “approaches” and computing the 

derivative. The more clearly the instructor’s word use illustrates derivative connections 

with functions and derivative connections with limit concepts, the more students are able 

to grasp and articulate calculus concepts precisely.   

3.2 Visual Mediators 

Visual mediators are operationalized as objects that are considered as the 

instructors’ way of addressing the derivative concepts or limit concepts in calculus 

classrooms. In calculus discourse, visual mediators are often represented as graphs, 

diagrams, tables, symbolic notations such as [𝑓′(𝑥) 𝑜𝑟 
𝑑

𝑑𝑥
], algebraic expressions, 

numerical values, and equations that serve as tools for communication. For instance, 

visual representations which instructors used to find the derivatives from given functions 

or drawings of functions and their derivatives are considered as visual mediators. In this 

study, in the Calculus I classroom, the visual mediator is described as graphs of functions 

and their derivatives, notations, expressions, and numerical values of calculating the limit 

or the derivative of functions using differentiation rules. Visualizing graphs allows 

students to think about their understanding of the derivative concepts and encourages 

them to use multiple approaches to connect their understanding with symbolic 

representations while applying the process. 

3.3 Routines 

In a calculus class, routines are defined as the repetitive patterns in instructors’ 

communicating derivative concepts. Routines can be described as what kind of tasks 
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instructors are offering when they respond to the concepts underlying the derivative, or 

what the usual actions of computing the derivative are. It could also be the descriptive 

techniques of calculating the concept of derivative (e.g., average rate of change, 

instantaneous average rate, slope, etc.). In addition to the calculus classroom, routines are 

embedded in descriptive teaching practices that illustrate the derivative concepts (e.g., by 

the limit definition, slopes, graphing, finding the area, anti-derivative) while the 

instructors are introducing them in their classrooms. For example, while finding the 

derivative of a function by computation, an instructor might use a graph to illustrate the 

slope of tangent lines and to help connect the function and its derivative with the original 

one. Another instructor might use only the algebraic expressions or the symbolic notation 

of the definition to find the derivative without sketching graphs. Also, in calculus classes, 

routines could be found on the process of how instructors define velocity, rate of change, 

and slope at a point.                   

3.4 Endorsed Narratives 

In mathematical discourse, the endorsed narratives are the statements of the 

mathematical concepts as definitions, theorems, or identified justification. For example, 

in calculus, instructors may endorse a narrative about the derivative of a constant as zero 

by comparing the slope of the tangent line in a graph of a constant function (e.g., 𝑓(𝑥) =

𝑎) with horizontal line and showing that visually with a graphical interpretation.  

Using Sfard’s discursive framework, my study is designed to investigate 1) 

college instructors’ interactions with students in calculus classrooms, 2) the way college 

instructors communicate the concept of derivatives connecting the multiple 

representations of addressing the concepts from discourse perspective, 3) calculus 
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instructors’ instructional approach in terms of their use of technology and contextual 

materials, while communicating derivatives and differentiation. In this study, I focused 

my analysis primarily on the area of word use to have a better understanding of how 

instructors communicate the concepts of derivative and limit with their students in 

college classrooms. I will also include visual mediators in my analyses as they were used 

in different illustrations such as symbols, graphs, and expressions.
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CHAPTER FOUR: METHODOLOGY 

All classroom observations were completed in the spring of 2016 at a 

northwestern university in the United States. The classroom observation data and 

interview data were collected and analyzed.  

4.1 Setting 

The classroom observations were conducted in Calculus I classes. This course 

was chosen because it offers knowledge and concepts that are related to differentiations 

and derivatives, such as the slope of the tangent line, and the limit of the average rate of 

change, etc. The calculus textbook (Rogawski and Adams, 2015) that the instructors used 

includes seventeen chapters with a variety of topics such as Functions and Models 

(Chapter 1), Limits and Derivatives (Chapter 2), Differentiation Rules (Chapter 3), 

Application of Differentiation (Chapter 4), Integrals, etc. (Stewart, 2015). Derivatives 

and differentiation are generally introduced early in the semester because they appear 

early in the textbook. The mathematics department of the university offers seven sections 

of Calculus I each semester. The classroom observations focus on Chapter 2 (Limits and 

Derivatives), Chapter 3 (Differentiation Rules), and Chapter 4 (Applications of 

Differentiation). Calculus I instructors usually spend two to three weeks covering those 

topics, which is around six to seven class meetings (I obtained this information in my 

personal communications with instructors during the pilot study). The class size of each 

Calculus I class was about 30-40 students. 



37 

 

 

4.2 Participants 

The participants in the study were mathematics instructors who teach Calculus I at 

the university. Usually, these mathematics instructors have received their Master’s 

degrees or Ph.D. in mathematics. In this study, I recruited three instructors, Henry, Dina, 

and Jack, and their participation in the study was completely voluntary. To learn more 

about their instructional approaches and ways they communicate with their students in 

calculus, I conducted a 15-20 minute one-on-one informal interview with each of them 

after their first or second classroom observations. 

4.3 Data Collection 

The data sources included field notes, recordings from interviews with instructors, 

and classroom recordings (video recordings with students’ permission). I conducted a 15-

20 minute informal interview with each instructor to get some information about their 

educational background, the challenges of teaching and learning derivatives and 

differentiations, the instructional approaches they use to teach these topics, and their 

plans to include technology such as computers and graphing calculators. All interviews 

are recorded and transcribed. I have six class observations from each instructor across 

two to three weeks to investigate their instructional approaches and to observe their 

interactions with students. All classroom video recordings are transcribed and coded. I 

compiled all the data to identify themes and to analyze their mathematical discourse.
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CHAPTER FIVE: FINDINGS 

As described earlier in the literature review, the teaching and learning of calculus 

primarily focuses on functions, limits, and derivatives. Therefore, my analyses in 

observing calculus classrooms included analyzing instructors’ use of mathematical words 

(word use) that relate to the concepts of limits and derivatives, as well as their 

instructional approaches of introducing those concepts and the way instructors 

communicate these concepts. 

5.1 Case 1: Henry’s Calculus Class Observation 

Henry was one of the three participating instructors in this study. In my interviews 

with Henry, I learned that he has a Master’s degree in mathematics, and he has been 

teaching the Calculus I course for three semesters, since spring of 2015. Henry is the 

newest instructor among the three instructors in the study with teaching experience with 

Calculus I. He is part of a collaborative group in which the mathematics department 

supports and guides in teaching Calculus I. Instructors in this group meet regularly to 

discuss their course material and they provide the same exam for all of their students. 

They have a similar class setting, where the students are distributed in groups of 4-5 

students. Generally, the instructors give 20-30 minute lectures and then the students are 

mandated to work in groups or individually to complete online work on a required 

website that is called “WebAssign”. 

I observed his Calculus I classes (n = 6) during the spring of 2016 on Mondays 

and Wednesdays. Each lesson is labeled as “L” with the lesson number 1, 2...6. Each 
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class observation took place for about 105 minutes (one hour and 45 minutes). The class 

size consisted of about 30 students. The students in this classroom were sitting in nine to 

eleven groups of 2 -5 students. Each student had his/ her laptop because he or she had to 

work on his or her online homework at the end of each class time. Henry usually lectured 

for about 40 minutes and the remainder of the class time was spent doing the online 

homework on “WebAssign”. My analyses, in this case, will focus on how the instructor 

introduced the concepts of limits and derivatives and the way he communicated his 

thinking to his students during the 30-40 minutes of discourse instruction. 

5.1.1 Word Use 

First, in this section, I will show a list of quotes from Henry’s classroom 

observations. These quotes were chosen to highlight the word use when he discussed the 

concept of limit and derivative, and to recognize how he used the same words such as 

“slope” or “rate of change” in the contexts of the derivative and limit. The quotes are 

verbal narratives from the classroom observations while he was discussing the concepts 

of derivatives and limits. 

Henry’s verbal narratives about the limit concept  

“What does the section say here [he is gesturing on the board] how do we read 

that? The derivative, yeah the derivative of h at t equal 2. Yeah, t equals two. 

Let’s write it in terms of stuff here. We know the limit of [he is writing on the 

board] we know the limit in the average rate of change is what? as u approaches 

2? How would we shrink that interval [he is gesturing to the board] we’d like to 

actually to calculate the instantaneous rate of change in 2 rather than the average 

rate of change in the interval? We need to shrink the interval, right? That kind of 

procedures we’ve been doing” [observation L1].  

“What makes this interval skinnier; you just let u get closer and closer to 2 [S1]. 

Yeah! And that’s how we write that…we write what happens to our average slope 

formula as u approaches 2. In other words, what is the limit of that calculation, 

secant slopes as u approaches 2” [observation L1].  
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“… That is our instantaneous rate of change or our velocity this space, right? 

Let’s think about a distinct, yeah, that’s our instantaneous velocity at t equal 2. 

So, this is an important part, right? [he is gesturing to the board] This is, this is 

what we mean by derivative. This is by definition is true; let’s put this means [he 

wrote 
∆ℎ

∆𝑡
]𝑡=2]” [observation L1].   

“If you want to find the derivative or the instantaneous rate of change at generic t, 

another notation, prime notation [
𝑑ℎ

𝑑𝑡
= ℎ′(𝑡)] means the same thing the derivative 

of h at t. that’s gonna be the limit of our secant slope formula, which is [he is 

writing] (50-16(u+t)) as u approaches t” [observation L1].   

In analyzing word use, I include the analysis of how Henry used mathematical 

words such as limit, derivative, rate of change, slope, velocity, as well as how he 

communicated those concepts using symbols, expressions, graphs and other visual 

mediators. In Henry’s case, I focus my analysis, first, on the word “limit” as it was used 

to articulate the concept in two categories: limit as a process and limit as an object.  

As noted earlier, limit as a process is defined as the mathematical calculations of 

computing the average rate of change, instantaneous velocity, difference quotient, or 

slope numerically or symbolically (Park, 2015). For example, when students were asked 

to find the limit of a function h when t approaching to 2, given a function h in height 

ℎ(𝑡) = 100𝑡 + 50𝑡 − 16𝑡2, they applied 2 to the function in order to calculate the limit 

and found a particular value of function, h, at this point, when 𝑡 = 2. First, Henry 

discussed what a student had written on the board calculating the average rate of change 

Δℎ

Δ𝑡
 on the interval [2, n] and then he evaluated the limit of that average rate of change at 

t=2, as he was talking to the whole class: 

...What does this section say here [he is gesturing on the board] how do we read 

that? The derivative, yeah the derivative of h at t equal 2. Yeah, t equals two. 

Let’s write it in terms of stuff here. We know the limit of [he is writing on the 

board] we know the limit in the average rate of change is what? as u approaches 

2? How would we shrink that interval [he is gesturing to the board] we’d like to 

actually to calculate the instantaneous rate of change in 2 rather than the average 
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rate of change in the interval? We need to shrink the interval, right? That kinds of 

procedures we’ve been doing what makes this interval skinnier; you just let u get 

closer and closer to 2 [S1]. Yeah! And that’s how we write that, we write what 

happens to our average slope formula as u approaches 2. In other words, what is 

the limit of that calculation, secant slopes as u approaches 2 [observation L1].   

In this case, Henry used the word “slope” explicitly with terms “secant slope” 

when he discussed verbally the limit as a process. In the process of his calculating the 

limit he mediated the limit by words such as “How would we shrink that interval” and 

“what makes this interval skinnier,” or for by describing the location in the computation 

as when he said “you just let u get closer and closer to 2.”  

The limit as a process was also observed when Henry was graphing secant lines as 

to what he did (as a process) to highlight the concept of limits. For instance, when Henry 

discussed the slope of the secant line over the integral [2, n], he interpreted the average 

rate of change on that interval in terms of a graph. Verbally, he said: 

We were working to compute the what we are calling the average rate of change 

delta t over delta h [he is writing on the board] the average rate of change on [2, 

n] [he wrote it] Think what it is? In terms of lines maybe. In terms of graph, this 

number corresponds to [he is gesturing on the board 
∆ℎ

∆𝑡
𝑜𝑛 [2, 𝑛]] number secant 

lines, yah, response to the slope of the secant lines. That’s what we gonna come 

up with the whole number of secant sloped. This interval [2,u] and by definition 

we know that f of h minus f of 2 over u minus 2, so delta h over delta t. we simply 

plugged in …… [observation L1].     

Limit as A Process  

From all of my observations in Henry’s classroom, the limit as a process was 

addressed with calculations of numbers and communicated with key words such as rate 

of change, average rate of change, instantaneous rate of change, instantaneous velocity, 

and slope. The following is the analysis of where these words were used in Henry’s 

classroom when he introduced limits as process.  
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Average Rate of Change/ Rate of Change. Mathematically, the average rate of 

change is defined as 
∆𝑦

∆𝑥
=

𝑓(𝑥1)−𝑓(𝑥0)

𝑥1−𝑥0
, (Adams & Rogawski, 2015), where ∆𝑦 is the 

change in y and ∆𝑥 is the change in x. In this case, the limit as a process was 

communicated using the words ‘rate of change’ or ‘average rate of change’ when 

computing the limit of a given function by calculating the ratio of the average rate of 

change, 
∆𝑓

∆𝑥
=

𝑓(𝑥1)−𝑓(𝑥0)

𝑥1−𝑥0
 over the interval [𝑥𝑜 , 𝑥1]. For instance, when Henry 

demonstrated the limit of the function ℎ(𝑡) = 100𝑡 + 50𝑡 − 16𝑡2 over the interval [2, 𝑢] 

where 2 was the fixed point, he calculated the average rate of change and then he took the 

limit of that calculation as u approached 2, lim
𝑢→2

(
Δℎ

Δ𝑡
) = lim

𝑢→2
(−16𝑢 + 18) = −16(2) + 18. 

Another example of limit as a process was when Henry was calculating the limit for the 

same function but over the interval [𝑡, 𝑢] where was t the fixed point, lim
𝑢→𝑡

(50 −

16(𝑢 + 𝑡)) = 50 − 32𝑡. In a different case, Henry provided a proof of a differentiation 

rule when introducing it. For example, he calculated the average rate of change as a 

process, given a function 𝑓(𝑥) = 𝑥2over [𝑥, 𝑥 + ℎ], as x was the fixed point and h went 

to zero, and the limit of the rate change calculation was, lim
ℎ→0

(
Δ𝑓

Δ𝑥
) =  lim

ℎ→0
(2𝑥 + ℎ) = 2𝑥. 

He then explained: 

Let’s calculate the average rate of change of the function [𝑓(𝑥) = 𝑥2] umm, I’m 

goanna pick like this [x, x+h] Ok! So, how we should shrink this interval, I guess 

figure it out. x is fixed, what we should do with h? Yeah, we should get in closer 

and closer to zero. Good. Let’s do that average rate calculation [observation L1].   

Instantaneous Rate of Change/ Instantaneous Velocity. Henry also used phrases 

such as ‘instantaneous rate of change’ or ‘instantaneous velocity’ when he was solving 

the limit as a process in a problem that gave a height of an object by a function at a 
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generic time (t) and thinking about it as a distance. Henry was computing the limit by 

using these phrases as noted words to describe the process of the limit computations. 

Mathematically, the instantaneous rate of change is defined by the following rule, 

𝑓′(𝑥0) = lim
∆𝑥→0

∆𝑦

∆𝑥
= lim

𝑥1→𝑥0

𝑓(𝑥1)−𝑓(𝑥0)

𝑥1−𝑥0
 (Adams & Rogawski, 2015). Based on this 

definition, Henry illustrated that when students had calculated the limit of the average 

rate of change in the previous function, where (𝑡 = 2), they actually were calculating the 

instantaneous rate of change or the velocity at a distance in 2. Thus, after the calculations, 

it provided a value in terms of feet per second, 

𝑑ℎ

𝑑𝑡
|𝑡=2 ≈ lim

𝑢→2
(

Δℎ

Δ𝑡
) = lim

𝑢→2
(−16𝑢 + 18) = −16(2) + 18 = −14 

𝑓𝑡
𝑆𝑒𝑐⁄ . 

Slopes. The limit as a process was also communicated with the word ‘slopes’ 

when calculating the basic algebraic calculation of the average slope formula, 
𝑓(𝑥1)−𝑓(𝑥0)

𝑥1−𝑥0
, 

the slope of the secant line through the points (𝑥0, 𝑓(𝑥0)) and (𝑥1, 𝑓(𝑥1)). For example, 

when Henry addressed the limit of the function ℎ(𝑡) = 100𝑡 + 50𝑡 − 16𝑡2 at 𝑡 = 2, he 

was calculating the slope of the secant line on h as u approaches 2, 
Δℎ

Δ𝑡
𝑜𝑛 [2, 𝑢] =

 
ℎ(𝑢)−ℎ(2)

𝑢−2
=

100+50𝑢−16𝑢2−(236)

𝑢−2
. Thus, in this case, the limit calculations of the average 

rate of change of any function h were completed as a process of finding the slope of a 

secant line between two points. 

To sum up, introducing the limit as a process was evident in Henry’s case, and it 

followed in two ways: calculating the difference quotients, the average rate of change, 

instantaneous velocity, or slopes, and graphing the secant lines.  

Limit as an object is defined as the mathematical recognition of estimating the 

value of the limit of the average rate of change visually (e.g., on a graph) and the 
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visualizing slope of the tangent lines from graphs of a function. For example, when 

finding the rate of change at some point that has a zero slope because it is a horizontal 

line, we can see the rate of change or the slope is zero from the graph of the function. 

In my analysis, the word use of “limit” as a process includes concepts of average 

rate of change, instantaneous velocity, and slopes. For example, when the instructor 

mentioned the limits, he used key words (e.g., rate of change, slope of a secant lines, 

etc.), to calculate the limit of the difference quotient. In contrast, the use of the word 

“limits” as objects includes images of graphs of tangents lines and the mathematical 

symbols and expressions of limit notations. For example, ℎ′(2), as mentioned earlier, the 

derivative (h prime) of the function h when 𝑡 = 2 (The limit of the average rate of change 

can also be notated as lim
𝑢→2

(
Δℎ

Δ𝑡
), when u approaches 2).  

The limit as an object was addressed with graphs of slopes, and communicated 

with key words such as ‘slope’ and ‘slope of the tangent lines’. The following is the 

analysis of the graph of slopes discussed in Henry’s classroom when he represented the 

limit as objects.  

Limit as An Object  

My observation from Henry’s calculus classroom found that he introduced the 

limit concept as objects with graphs. For example, Henry used graphs of sine functions 

on the projector to discuss how the graphs of the functions changed by paying attention to 

the slope of tangent lines as the rates of change to address the limit of the sine functions. 

In this context, Henry used graphs for the sine functions to show students how the slopes 

of tangent lines of the sine functions changed. He also compared the slopes of the sine 

functions as they approach zero. Thus, in this case, the visual images of the slope of the 
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tangent lines of the sine functions and their values at those points were considered as 

objects to communicate the idea of “limit”. The following is an example of the sine 

function and it tangent lines after transformations, where the transformations of the sine 

function is shown, using a graphing calculator (see Figure 5.1, a & b): 

 

Figure 5.1 (a) Henry’s approach of using graphing calculator to discuss the slope of 

tangent line for a sine function. 

 

Figure 5.1 (b) Henry’s approach of using graphing calculator to discuss the slope of 

tangent line for a sine function. 

The two graphs illustrated the concepts of the limit as objects by estimating the 

slopes of the tangent lines of the sine functions as the rate of change, as Henry described 
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it, “so this solves for that purple tangent line and that’s actually the fastest sine change is 

1; is grade of one okay. Steepest, steepest tangent line we can find” [observation L3].    

Another example I observed was when the instructor discussed limit as an object 

while he was introducing the limit of constant functions. He argued that the rate of 

change of a constant function, on a graph at that point, was zero and had no change 

because the slope of the secant line corresponded to the line itself (Figure 5.2).  

 

Figure 5.2 Henry’s writing of the constant function and its derivative. 

As I described earlier in the literature review, derivative concepts are usually built 

on the concepts of limit. Teaching limit, as a process or object, involves the teaching of 

the derivative concept, as it was the calculation of derivative definition of the limit in the 

difference quotient form. For example, findings in this case show the basics of 

differentiation rules (Power Rule, Chain Rule, Product Rule, and Quotient Rule) were 

addressed and applied to articulate the concept of the derivative as well as using its 

notations. The following analysis of the derivative concepts includes the analysis of how 

Henry communicated and addressed the rules of differentiation using symbols and words.   

The Derivative Concepts 

Mathematically, the derivative is defined as a function 𝑓′ whose value at 𝑥 = 𝑎 is 

the derivative 𝑓′(𝑎), and it has several different notations of 𝑦 = 𝑓(𝑥): 
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𝑦′, 𝑦′(𝑥), 𝑓′(𝑥),
𝑑𝑦

𝑑𝑥
, 𝑜𝑟 

𝑑𝑓

𝑑𝑥
. The value of the derivative at 𝑥 = 𝑎 is written: 

𝑦′(𝑎), 𝑓′(𝑎),
𝑑𝑦

𝑑𝑥
|𝑥=𝑎, 𝑜𝑟 

𝑑𝑓

𝑑𝑥
|𝑥=𝑎 (Adams & Rogawski, 2015).  

In this study, the concepts of derivative were addressed in all six observations, 

and Henry used the word “derivative” with different meanings. In Henry’s classroom, the 

derivative concept was communicated using constant functions, linear functions, 

exponential functions, etc. and in determining what rule needed to be used in finding the 

derivative of given functions. Henry also wrote the derivatives of a given function in 

different notations such as third derivatives of a function could be written as 
𝑑3

𝑑𝑥
(𝑒𝑘𝑥). My 

analyses show that Henry addressed the concept of derivatives in three different areas of 

contexts: differentiation rules with very different types of functions, notations, and anti-

derivatives as they were used for applying the general rules. The following are quotes 

from Henry’s classroom when he was introducing the derivatives:  

Henry’s verbal narratives about the derivative concept 

“If you’d like very quickly to recognize the patterns in the differentiations in the 

sort of things we get. The derivative of power, thing like that so, let’s start 

something like the derivative of a constant function.” [observation L1].   

“Yah. It’s a constant function, so it doesn’t change, right? Yah, so the rate of 

change should be zero, the outputs have no the input. Maybe think of graph 

what’s the slope of a tangent line in this graph at that point. The tangent line and 

the line itself correspond whole the secant line whole the tangent line directly the 

same line. [he is drawing on the board and writing, in general 
𝑑

𝑑𝑥
(𝑎) =

0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎]” [observation L1].   

“Think about the derivative of a linear function in general, why the derivative and 

what they are? In terms of a graph, think about that is should be just a [right]? But 

what is a? In terms of the graph in this function? Think about it, yeah this 

corresponds to the slope. That makes perfect sense; the rate of change in the 

function is the slope of constant slope of the tangent line, slope of the secant 

line…” [observation L1].   
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“… of course that’s our rules Power rule in general. The derivative of n as the 

[…] is constant, not changing so, no changes the […] respect to x; all the secant 

lines all the tangent lines have slopes zero” [observation L2].   

“That’s [he pointed to the 
𝑑

𝑑𝑥
(𝑥2 + 1)2] a pretty general form of us. In other 

words, stuff to the power [he wrote 𝑦 = (𝑠𝑡𝑢𝑓𝑓)𝑛]” [observation L2].   

“Okay! now our chance to apply the chain rule, right? let’s name the insides in 

this case. [what’s insides?]  2x+4 [student said] yeah, stuff inside the parentheses. 

We can call that u… outside is 𝑦 = 𝑢2, so what’s chain rule say? Chain rule says 

𝑑𝑦 by 𝑑𝑥 = 
𝑑𝑢

𝑑𝑥
 
𝑑𝑦

𝑑𝑢
. So, the derivative of the insides times the derivative outsides, 

or the derivative of outsides times the derivative of insides” [observation L2].   

“…Of course notice the insides in terms of antiderivative are always, always with 

us, [not ever go away]” [observation L2].   

“What about this [𝑓′(𝑡)] is that make sense? Yeah, really [this is] just, just 

another notation for this [
𝑑

𝑑𝑡
(𝑓(𝑡))] and are really the same so we didn’t say 

anything else. We just [noted it]” [observation L5].   

Now, in the following, I focus my analysis on the word “derivative” when it was 

used to find the derivatives of given functions using differentiation rules. 

Differentiation Rules 

Power, Constant, and Linearity Rules. The power rule and constant rule were 

communicated with words (word use) such as “slopes”, “rate of changes”, “exponents” 

and symbols (visual mediators) in the first three lessons of my observation in Henry’s 

classroom. The constant rule was explained as a process with use of the words “slope,” 

“secant line,” “tangent line,” and “the rate of change” and generated with use of the 

words “the derivative of a constant function” and they represented the visual mediator 

with symbol “
𝑑

𝑑𝑥
(𝑎) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎.” Henry stated: 

…let’s start something like the derivative of a constant function. So the question 

is how the constant function change the input change[s]… zero…zero! … Isn’t 

the rate of change zero? That makes sense. Yeah. It’s a constant function, so it 

doesn’t change right? Yeah, so the rate of change should be zero. The outputs 

have no; no … the input…. Maybe think of graph what’s the slope of a tangent 
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line in this graph at that point [he is pointing on the graph on the board]. The 

tangent line and the line itself correspond to the secant line to the tangent line 

directly the same line [observation L1] 

The power rule was introduced with the use of words, symbols, and numbers in 

the first lessons. For instance, the instructor used the word “exponents” to help determine 

and be explicit about recognizing the power rule. He also explained this rule in general 

using symbols such as “
𝑑

𝑑𝑥
(𝑥𝑛) = 𝑛𝑥𝑛−1” and numbers. For example, he used 

𝑑

𝑑𝑥
(𝑥2) =

2𝑥2−1 = 2𝑥, and directly talked about the power rule that is used in the function 𝑓(𝑥) =

𝑥2 after he had found the derivative of that function by the definition and he was explicit 

in saying that “of course you don’t have to go back to the definition of derivative when 

talking about taking the derivative, so we need to recognize the pattern very quickly…” 

Chain Rule. The chain rule was communicated with words, symbols, and numbers 

in four lessons. He used words such as the derivative of “stuff,” “insides” function, 

“outsides” function, “linear stuff,” “inside parenthesis,” “stuff to the power,” and/ or 

“insides stuff.” Mathematically, the chain rule in Leibniz notation says (Adams & 

Rogawski, 2015), let 

𝑦 = 𝑓(𝑢) = 𝑓(𝑔(𝑥)) 

Then, by the Chain Rule,  

𝑑𝑦

𝑑𝑥
= 𝑓′(𝑢)𝑔′(𝑥) =

𝑑𝑓

𝑑𝑢

𝑑𝑢

𝑑𝑥
 

or 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢

𝑑𝑢

𝑑𝑥
 

When Henry was introducing the chain rule by reading it, he stated, “the 

derivative of y respect to x, derivative of u respect to x multiply by the derivative of y 
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respect to u” or “the derivative of the insides times the derivative of the outsides, or the 

derivative of the outsides times the derivative of the insides.” The chain rule was 

communicated with visual mediators using symbols such as “𝑦 = (𝑠𝑡𝑢𝑓𝑓)𝑛” or “𝑦 =

𝑢2,” by “𝑑𝑦 by 𝑑𝑥 = 
𝑑𝑢

𝑑𝑥
 
𝑑𝑦

𝑑𝑢
,” and numbers such as 

𝑑

𝑑𝑥
(𝑥2 + 1)2 =  2(𝑥2 + 1) (2𝑥).  

Product and Quotient Rule. The product and the quotient rule were communicated 

with symbols (visual mediators), words (word use) about symbols and numbers. For 

example, in one of Henry’s lessons, he used the symbols “
𝑑

𝑑𝑥
 (𝑓𝑔) = 𝑓′𝑔 + 𝑓𝑔′” when 

he discussed the answer for computing the derivative of the function 
𝑑

𝑑𝑥
 (sin(𝑥) cos(𝑥)) 

using the product rule. Also, the quotient rule was used with symbols that were written as 

𝑑

𝑑𝑥
(

𝑓

𝑔
) =  

𝑓′𝑔−𝑓𝑔′

𝑔2 . 

Henry’s Derivative Notations 

The derivatives of functions were communicated with three kinds of notations: 

“prime notations,” 
∆ℎ

∆𝑡
 “delta h over delta t” when calculating the rate of change, or 

𝑑𝑦

𝑑𝑥
 “dy 

by dx”/ 
𝑑

𝑑𝑥
 “d by dx”. Henry showed all kinds of notations that would be possible when 

taken the derivative of functions. For instance, he compared the notations of the first 

derivative and third derivative by symbols; the notations of the following function:  

𝑑

𝑑𝑥
(

𝑑

𝑑𝑥
(

𝑑

𝑑𝑥
(𝑒𝑘𝑥))) 

are the same as the notations of 
𝑑3

𝑑𝑥3
(𝑒𝑘𝑥) which is generated by 

𝑑𝑛

𝑑𝑥𝑛
(𝑒𝑘𝑥). 

Henry’s Examples of Anti-derivative 
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An anti-derivative is defined as: a function F is an antiderivative of f on an open 

interval (a,b) if  F'(x) = f (x) for all x in (a,b) (Adams & Rogawski, 2015). In other 

words, F is an anti-derivative of f if F' = f. In Henry’s case, the antiderivative was 

addressed with numbers and symbols (visual mediators) in one observation in the context 

of reversing the chain rule of derivatives. For example, when he showed the following 

example of a given function written in terms of the power rule (𝑓(𝑥) = 𝑥2), he addressed 

the concept with symbols using letters. He mentioned that in the following statement: 

“We know if 
𝑑𝑓

𝑑𝑥
= 𝑥𝑛, then 𝑓(𝑥) =

𝑥𝑛+1

𝑛+1
,” and then, he applied anti-derivative on this 

specific form of a function with numbers, for instance: 

Say 
𝑑𝑓

𝑑𝑥
= 𝑥5𝑛  then 𝑓(𝑥) =

𝑥5+1

5+1
=

𝑥6

6
 

𝑑

𝑑𝑥
(

𝑥6

6
) =

1

6

𝑑

𝑑𝑥
(𝑥6) 

=
1

6
(6𝑥5) 

= 𝑥5 

He also gave another example that addressed the concept of anti-derivative using 

the chain rule to compute the anti-derivative. He addressed the concepts with symbols 

(visual mediators), for example, 
𝑑𝑓

𝑑𝑥
= (𝑎𝑥 + 𝑏)𝑛 then 𝑓(𝑥) =

1

𝑎(𝑛+1)
(𝑎𝑥 + 𝑏)𝑛+1, and 

then he applied the anti-derivative with a function, 𝑔(𝑥) = (2𝑥 + 4)3 using numbers. He 

wrote: 

 

 

let 
𝑑𝑔

𝑑𝑥
(2𝑥 + 4)3 then 𝑔(𝑥) =

1

2

(2𝑥+4)3+1

(3+1)
=

(2𝑥+4)4

8
,  
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𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
[

(2𝑥+4)4

8
]                 “inside”: 2𝑥 + 4 = 𝑢 

=
1

8

𝑑

𝑑𝑥
[(2𝑥 + 4)4]              “outside”: 𝑦 = 𝑢4 

=
1

8
8(2𝑥 + 4)3                    

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢

𝑑𝑢

𝑑𝑥
 

= (2𝑥 + 4)3                        = 2(4𝑢3) = 2(4)(2𝑥 + 4)3 

In general, in his case, the anti-derivative was addressed with formulas of a given 

function, 
𝑑𝑓

𝑑𝑥
= (𝑎𝑥 + 𝑏)𝑛 then 𝑓(𝑥) =

1

𝑎(𝑛+1)
(𝑎𝑥 + 𝑏)𝑛+1, and 

𝑑𝑓

𝑑𝑥
= 𝑥𝑛 then 𝑓(𝑥) =

𝑥𝑛+1

𝑛+1
. He would then compute examples of functions step by step to find the anti-

derivative. 

5.1.2 Summary of Henry’s Case 

Henry’s use of words and visual mediators were found in the context of limits and 

derivatives. The limit concepts were addressed as two categories: limit as a process and 

limit as an object, and they were communicated with words such as “rate of change”, 

“average rate of change”, “slope”, “instantaneous rate of change”, and “instantaneous 

velocity”, as were explained in the previous analysis; the diagram below shows a 

summary of analyzing the limits concept as processes and objects [see Figure 5.3]. 
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Figure 5.3 Illustration of Henry’s approach in the limit concepts. 

 However, the derivative concepts were found in three areas: differentiation rules, 

notations, and anti-derivatives. The words such as “rate of change” and “slope” were 

found in both the limit and the derivative concepts, and the table below [Table 5.1] shows 

all of Henry’s words used in his case; you can see the way he discussed the limit concept 

and derivative concept fit too large a category.   

Table 5.1 Henry's Words Used in Derivative and Limit Concepts  

Word Use  

 

     Limit 

Rate of change, Average rate of change, Instantaneous rate of change  

Instantaneous velocity  

Slope, Slope of tangent lines 

 

Derivative 

Slope, Secant line, Tangent line 

Rate of change 

Limit as a process

computing: ARC, IV, DQ, or 
slope (ex. finding the limit of 
h(t) when approaching to 2). 

can be observed by graphing 
of secant lines (in this case 
was verbally, ex. discussing 
the slope of the secant line 
over [2,n], interpreted the 

ARC on that interval in term 
of graph).  

Limit as an object 

estimating the value of the 
limit of the ARC visually and 
visual the slope of tangent 

lines from graphs. 

Ex. finding the RC at some 
point its slope has zero 

slope. 
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Inside and outside function, Inside parenthesis 

Stuff to the power, Inside stuff 

 

 Table 5.1 illustrates Henry’s word used in the two concepts: limit concepts and 

derivative concepts. As you see, Henry has used the same mathematical terms in both 

these concepts, such as the word “slope” and “rate of change”. That information here can 

tell us how Henry could communicate his ideas of derivative concept by integrating his 

ideas of the limit concept using same words. Also, in communicating the differentiation 

rules, Henry used his own word such as the word “stuff” of describing the chain rule to 

help students recognizing the new rule from previous rules they had learned.   

In this study, visual mediators are mathematical symbols (such as notations), 

expressions, and graphs and they are identified to support the meaning of the words used 

in that context. For example, when Henry communicated the concepts of the derivatives 

and the limits in contents of differentiation rules, derivatives, rate of change, slope, and 

velocity using symbols (e.g., 
ℎ(𝑢)−ℎ(2)

𝑢−2
), expressions, graphs and other visual mediators. 

In this study, the visual mediators and word use are considered and observed as two 

features that are connected to each other. For example, when Henry introduced the 

derivative of a function using the chain rule, he communicated the concepts with 

mathematical symbols and his word used of explanations of the new rule, as he stated that 

by writing: 𝑦 = (𝑠𝑡𝑢𝑓𝑓)2. 

5.2 Case 2: Dina’s Calculus Class Observation 

During my interviews with Dina, I learned that she has a Master’s degree in 

mathematics and she has been teaching the Calculus I course (Math 170) for three years 
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at the university in which I conducted my study. Dina has also been teaching Math 160, 

Survey of Calculus for business and biology majors, for 28 years. She was a part of the 

collaborative group that the mathematics department supports and guides in teaching 

Calculus I. Students in her class were sitting in groups, and she had a Learning Assistant 

who helped her with checking the students’ work. Generally, this instructor gave 20-30 

minute lectures or discussions on a selected problem from the warm up, and then the 

students worked on WebAssign for the rest of the class time.  

Dina’s Calculus I classes were observed (n = 6) during the spring of 2016 on 

Mondays, Wednesdays, and Fridays. Each class observation took place for about 75 

minute (or one hour and 15 minutes.) Dina’s class size consisted of about 40 students. 

Students in this classroom were sitting in 10 groups of 3 -5 students. The students were 

required to bring laptops because they had to work on their online homework at the end 

of class time. Each lesson labeled as “L” with the lesson number 1, 2...6. My analysis will 

focus on four lessons of classroom observations (L1, L3, L4, L6) because the topics 

introduced on the other two lessons were not relevant for this study. In one lesson, Dina 

did not lecture, she only provided a warm-up sheet, Scratch Off, for teamwork. The class 

engaged in work and the instructor was checking students’ work and helping them. The 

other lesson was about ‘unit analysis', which were determining units of a different form 

of functions. Unlike Henry, the topic of the concept limit was not addressed. Thus, in this 

case, my analysis will focus only on how Dina introduced the concept of derivative and 

the ways she communicated her thinking to her students during her 20-30 minutes of 

instruction.  
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5.2.1 Word Use 

I observed six class meetings and the following is a list of quotes from Dina’s 

classroom observations. Those quotes were chosen to highlight the word use when she 

discussed the concept of the derivative. They show Dina’s approaches of communicating 

these concepts using words such as ‘slope’ or ‘rate of change’. As you will see, the fourth 

quote showed us how Dina described the derivative concept by the mathematical idea of 

the slope of the tangent line.  

“..If you did take a step on your paper to rewrite it, [writing on board] then you 

would want to label that f(x) because we’re not actually taking the derivative yet 

and so this would 3x½ plus 2ex” [observation L1].    

“Remember, in both of these cases, the reason that we are rewriting it is so that it 

puts it in the form of one of our derivative rules. Specifically, the derivative rule 

that is xn” [observation L1].    

“…When I say compare the slopes of the tangents, I don’t mean calculate them, I 

mean just visualize what they would be and compare them, which ones bigger, 

that kind of thing. Okay” [observation L1].    

Now, slopes of tangents, remember in calculus, slopes of tangents are called? 

Students:  derivative [observation L1].    

Teacher:  Derivative, right. You take a derivative to find the slope of a tangent. So 

if this inside function changes the slopes of the tangents, then that means it’s 

going to change the derivative [observation L1].    

“Okay, so on number two, there’s three different ways that you can estimate these 

rates, these derivatives” [observation L3].    

“So to do that you had to know that each prime of one means not only the 

derivative of one but the slope of the tangent line at one” [observation L3].     

“Now, one word of caution about using the idea that if it looks like a parabola 

then your velocity is going to be a straight line or if your function, like on number 

one the function is a cube function, so some people learned that, your derivative 

would always be squared, which makes sense because you lower the power by 

one when you take a derivative, but keep in mind that we’re going to focus on 

finding these derivative graphs from the original graph you’re usually not going to 

have a function to work with and you’re not going to be given the whole function 
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so you can’t depend on that. You need to be able to look at the characteristics of 

the graph and draw the derivative graph from that” [observation L3].    

“Remember, the slopes of the tangents, which is what you were estimating here, 

those are the outputs on the derivative graph. So, when you graph the derivative, 

those should be the outputs that you’re graphing out here” [observation L4].    

Okay, so one last thing, make sure that you can infer or find things from this 

graph to help you graph this one [gestures to board]. Also, you should be able to 

go in reverse. You should be able to take a derivative graph and that will tell you 

about the function itself” [observation L4].    

“We’re going to call it the rate of change because the same concept applies. This 

is saying something about changes, just flat, the change in something, and we’re 

going to apply that concept to rate of change, and in calculus, the rate of change is 

the derivative, so we’re going to apply it to that” [observation L6].    

“Now, to extend this, to the rate of change, we could say the rate of change 

[writing on board] of a product is not equal to the product of the rate of changes. 

And go one step further, the rate of change is the derivative, so we can say the 

derivative of a product…” [observation L6].    

In Dina’s case, the analysis of word use focused only on the word “derivative” as 

it was used to articulate the concept of derivatives, and the way she communicated these 

concepts using different approaches of visual mediators such as algebraic explanations, 

and/or graphing.  

The concepts of derivatives were communicated with key words such as “slope,” 

“slope of the tangent,” and “rate of change,” and they were addressed with graphs to 

interpret reasons for using such different rules in other functions when finding the 

derivative of those functions. For example, she asked her students to sketch with a 

calculator two given functions, (e.g., 𝑓 (𝑥) = 𝑥2, 𝑓(𝑥) = (3𝑥 + 2)2, or 𝑓 (𝑥) =

𝑒𝑥, 𝑓 (𝑥) = 𝑒0.5𝑥). My analysis focuses on how Dina communicated the concept in three 

sections: differentiation rules, applications of derivatives, and anti-derivatives.  

The following is a diagram illustrating how the analysis of the derivative concept 

in Dina’s classes was addressed:  
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Figure 5.4 Illustration of a diagram for Dina's analysis of the derivative concept. 

Figure 5.4 illustrates Dina’s words used in the different context of derivatives: 

Rules, anti-derivatives and its applications. For each context, she used graphs to make a 

connection between representations, for example, connecting the graphs of a function and 

its derivative to the symbolic representation in explicit way of making sense of the rules. 

In the following I will give more detailed analyses in these area. 

Differentiation Rules 

This section addresses the analysis of how Dina addressed the basic 

differentiation rules using graphing and algebraic illustrations (visual mediators) with 

words (word use) such as “slopes” and “rate of changes.” 

Differentiation Rules with Graphing Illustration. The analysis in the following 

focuses on two differentiation rules: first Chain Rule from graphs of slopes, and second 

Product Rule from rates of change of a rectangle by computing the changes in x, in y, and 

in the product (xy).  

First, the Chain Rule was communicated with words such as “slope,” and “slope 

of the tangent line” when it was addressed by graphs. For example, when Dina compared 

the slopes of the tangent lines at 𝑥 = 1 on the graph of the two given functions: 1) 𝑦 =

Derivative concept

Rules

graphing (slopes, 
rates)

algebric 
explaination 

Anti-derivative

Applications in 
derivatives 

the derivative 
behavior of graphs 
(slopes of tangent)
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𝑥2 and 2) 𝑦 = (3𝑥 + 2)2 with “window” [-5, 5] [see Figure 5.5], she illustrated that the 

second function, 𝑦 = (3𝑥 + 2)2, which is the less narrower one on the figure 5.5, had a 

larger slope at 𝑥 = 1.  

 

Figure 5.5 Dina’s graphs of two functions 𝒚 = 𝒙𝟐 and 𝒚 = (𝟑𝒙 + 𝟐)𝟐. 

Dina illustrated the graphs of the two functions, 𝑦 = 𝑥2 and 𝑦 = (3𝑥 + 2)2 on the board 

(see Figure 5.5), as noted, the graph of  𝑦 = (3𝑥 + 2)2 was incorrect. Dina acknowledge 

her error, and continued to explain the connections of the slopes of the two functions at 

one, as she explains, “this one [𝑦 = (3𝑥 + 2)2], which would be the narrower one, would 

be shifted to the left a little bit. So, let’s pretend that mine’s shifted to the left.” As a 

result, the slope of the tangent line of the second function changed from the first function 

which was 𝑦 = 𝑥2 because the variable position had changed from being just a variable, 

x, to being a function of a variable, x, (the inside function). Thus, the inside function 

which was (3𝑥 + 2) had affected the slope of the tangent line as well as it had changed 

the derivative with a different rule, as Dina explained: 

 If that inside function changes the slopes of the tangents, it’s got to change the 

derivative as well. So, that’s why this takes a different derivative rule and this 

derivative rule is called the chain rule [observation L1].    

Slope of the tangent line of 

𝑦 = (3𝑥 + 2)2, at 𝑥 = 1. 
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In addition, the chain rule was described from the graphs of functions, and it was 

represented with words such as “something squared,” “variable,” “function of x instead 

of just x,” “function of/on a variable,” and “variable position.” For example, when Dina 

introduced the concept of the chain rule and explained how her students could recognize 

it from the function using these two functions as discussion points, 𝑦 = (3𝑥 + 2)2and 

𝑓 (𝑥) = 𝑒0.5𝑥, Dina said; 

So, if you look at this, [gesturing to board] we talked last time about that this is a 

variable, squared, or something squared, but I want you to see that this is the same 

form, it’s something squared. So, this right here, the variable position (writing on 

board) has now just changed to be a function of x instead of just x. And the same 

thing applies here. On our basic function the variable position was in the 

exponent, though, on this one, because it’s an exponential function, and it 

changed from being just a variable to being a function of a variable….. And the 

two things we need to see is that the basic form of the function is something 

squared, something squared. That determines the shape, that’s why these had the 

same shape because they both were something squared…[observation L1].    

 The chain rule was represented and interpreted by graphing and comparing the 

slopes of the tangent line between a parent function (e.g., in the form of power rule that 

they learned its derivative before) and another function that is a transformed version of 

the same parent function.  

Second, the product rule was communicated with words such as “rates” and “rate 

of change” when considering the rate of changes in an object with changes in width x, 

∆𝑥, changes in height y, ∆𝑦, and the changes in the area ∆(𝑥𝑦). For instance, when Dina 

applied the concept of the changes, in x and y, to the rate of change that was addressed as 

the derivative, she determined that the changes or (the rates of change) ∆𝑥 and ∆𝑦 were 

not equal to the change in a product (or the rate of change of a product) ∆(𝑥𝑦). This was 

proven when we multiplied ∆𝑥 by ∆𝑦, it would not give us the change in ∆(𝑥𝑦), 0.8 ×
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 0.5 ≠ 10.2. The following shows this actual situation with pictures of the rectangles [see 

Figure 5.6 (a) & (b)] and Dina’s quote illustrating the product rule with these diagrams: 

Suppose you have an elastic rectangle. Width, x, and height, y, are both variable. At 

first the rectangle is 6 cm by 10 cm, but then both sides stretch to 6.5 cm by 10.8 cm. 

 
(a)  

(b) 

Figure 5.6. The diagrams of rectangles used by Dina 

The product rule was represented and described by estimating the rate of changes 

in two products of changes in x and changes in y. Dina introduced what the product rules 

were from the diagram [see Figure 5.6] when she visually addressed the concept saying: 

Now, we can see from this diagram [Figure 5.6] why there is so much more to the 

product rule because if I was looking back up here [gestures to board] this thing 

we said was not equal, the change in x times the change in y, we said that was 0.5 

times 0.8 was 0.4 square centimeters, that is just this little white rectangle right 

there [gestures to screen] [see Figure 5.6 (b)], and what we wanted on this side of 

the equation was the change in the area, which was this, plus that, plus that, so 

there’s a lot more to it to get that change. So, this is what you have to do with a 

product [observation L6].    

Differentiation Rules with Algebraic Illustration. In the following, my analyses 

focus on how differentiation rules are presented algebraically in the context of Power 

Rule, Constant Rule, Chain Rule, Product and Quotient Rule.  

Among all my observations in Dina’s classes, the power rule and constant rule 

were discussed with words (word use) and symbols (visual mediators) using expressions 

of she called, ‘thinking steps’ or ‘rewriting step’. For example, when she was finding the 
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derivative of the function, 𝑓(𝑥) = 3√𝑥 + 2𝑒𝑥, she took a rewriting step to put the given 

function in the form of the power rule which was addressed as the “derivative rule that is 

𝑥𝑛”, and in the same example she applied the constant rule with the second term (2𝑒𝑥)  

(see Figure 5.7).  

 

 

Figure 5.7 Dina’s example of finding the derivative of the function, 𝒇(𝒙) = 𝟑√𝒙 +

𝟐𝒆𝒙. 

Chain Rule. The chain rule was communicated with words (word use) and 

symbols (visual mediators). It was observed with words such as “inside function,” 

“outside function,” “something to a power,” “the base is something other than x,” and 

“something squared.” Mathematically, as noted earlier, the chain rule is defined in 

Leibniz notation by, 
𝑑𝑦

𝑑𝑥
=

d𝑦

d𝑢

𝑑𝑢

𝑑𝑥
, so are the inside function is 

d𝑦

d𝑢
 and the outside function is 

𝑑𝑢

𝑑𝑥
. In Dina’s case, the chain rule was explained using these words, for example, when her 

students were finding the derivative of the function, y =  (3x +  2)2, she represented the 

rule by saying:  

The next thing we’re going to do after you identify the inside and the outside 

functions and write them down, the next thing you just take the derivative of each 

of these… Then the chain rule says this: if I take these two things [gestures to 

board] and multiply them together, then I will get the derivative of my original 

[observation L1].    
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The chain rule was also communicated with symbols (visual) such as “𝑦 = 𝑢2”, 

and “
𝑑𝑦

𝑑𝑥
=

d𝑦

d𝑢

𝑑𝑢

𝑑𝑥
”, and was represented with numbers (visual). For instance, when Dina 

found the derivative of the previous function y =  (3x +  2)2, she ended up with 
𝑑𝑦

𝑑𝑥
=

6(3𝑥 + 2).  

Product and Quotient Rule. The product and the quotient rule were communicated 

with symbols (visual mediators), words for the symbol (word use), and numbers when 

were applied with examples. For example, in one of the lessons, Dina used the symbols 

“
𝑑

𝑑𝑥
 (𝑓𝑔) = 𝑓′𝑔 + 𝑓𝑔′” when she was introducing the product rule, and she used words 

for this symbol according to her “the derivative of a product, it is equal to the derivative 

of 𝑓times 𝑔 plus 𝑓times the derivative of 𝑔.” Also, she used the symbols “
𝑑

𝑑𝑥
(

𝑓

𝑔
) =

 
𝑓′𝑔−𝑓𝑔′

𝑔2 ” when she was showing the quotient rule using words as she explained, “the 

quotient rule says take f prime g minus f g prime.”   

Applications in Derivative  

In a different class meeting, Dina communicated the concept of the derivative 

using graphs while using the words used such as “slopes of the tangent lines,” “rate of 

changes”. In this section, I provide findings on how Dina addressed the derivative 

concept using the behaviors of a graph in two ways: graphs of a given function and 

graphs with no function. 

Graph with a Given Function. The concept of the derivative was addressed with 

words such as “slopes of tangent,” “rate of change” and with graphs (visual mediator) 

when finding the derivative at certain points and then plotting those points to graph the 

derivative of the given function. For example, Dina discussed the graph of a given 
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function, ℎ(𝑡) =
1

3
𝑡3 − 2𝑡2 − 5𝑡 + 50, where h was in meters and t was in seconds, and 

she sketched the graph of ℎ′(𝑡) using the information by finding the derivative of ℎ′(2), 

ℎ′(5), and ℎ′(8) and from the graph of ℎ(𝑡). By visualizing some slopes of the tangent 

lines or the rate of changes, the students could sketch the derivative graph using the 

behavior of the actual graph (e.g., looking for “negative” or “positive” slopes). For 

instance, from the previous example, when students looked at the slope of important 

points such as at 5 by visualizing the graphs where the slope of the tangent line is zero 

[see Figure 5.8 (a)] because the slope is horizontal. As a result, they could sketch the 

derivative of that function using extrema and inflection points [see Figure 5.8 (b)].   

 

 

 

 

 

Figure 5.8 Dina’s graph of the function 𝒇 and its derivative 𝒇′. 

Graphs with no Function Given. The concept of the derivative was communicated 

with words such as “slopes”, “tangent line”, “secant line”, and “instantaneous rate”, and 

it was communicated by graphing a function (visual mediators) that was not given when 

estimating the graph of the derivative. For example, the instructor showed three different 

 

 
(a) 

 

 
(b) 
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ways on how to estimate the derivative and its graph when there is a graph with no 

equation, e.g., Figure 5.9 (a). 

 

 
(a) 

 

 
(b) 

 

Figure 5.9 Graph of function f and its derivative 𝒇′. 

The first way was by drawing the tangent lines and estimating the slopes of those 

tangent lines by pulling points on the graph, and it was done verbally. The second way 

was by finding the average of two secant lines. For example, Dina found the slopes of the 

secant lines from [0,1] and from [1,2] by estimating the instantaneous rate of that change 

(as earlier defined). The third way was by finding the slope of one secant line. For 

example, Dina found the secant line at [0,2]. From the ideas of the graph behaviors where 

student can look at slopes (negative or positive) and the extrema and inflection points, 

Dina used that information of the graph of the function to sketch the derivative graph as 

shown in Figure 5.9 (b).  

 Another example was when Dina reversed the idea of finding the derivative using 

information from a graph with no given function to finding the graph of a function by a 

given graph of a derivative. For instance, when Dina had communicated with her students 
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on how they could find “things” from the derivative graph to help them sketch the graph 

of that function, she drew a graph of 𝑓′ [see Figure 5.10 (a)]  

 

 
(a) 

 

 
(b) 
 

Figure 5.10 Dina’s graph of 𝒇′and graphs of three functions 

and then she asked them which graph of the following is the graph of 𝑓 [Figure 5.10 (b)], 

the conversations between Dina and her students is as follows: 

Dina: What’s happening on the graph of f at b?  

S1:  It has no rate of change, it’s flat.    

Dina:   Okay, so that means, what kind? 

S1:  Zero slope. 

Dina:  Yeah, the tangent is horizontal, has zero slope. So what does it tell you about 

what’s happening there? I can’t remember your name, sorry… David? 

S2:  Yes. It’s turning around?  

Dina:  Yes, usually it means it’s turning around. The tangent will be a slope of zero, 

sometimes it’s not, you can get a graph that looks like this [writing on board] and right 

here, if this is flat enough, you can have a horizontal tangent there, as well, but more 

often than not, it’s either this or this, it’s either a relative maximum or relative minimum. 
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So how do we tell which one? This is the derivative [gestures to the board]. What do we 

know about our slopes to the left of b? They’re negative. So, if they’re negative, which 

one of these does that fit?  

S1:  The right one [see Figure 5.10 (b)] [observation L4].    

From this conversation between Dina and her students, we learned that by using 

slope features and visualizing slopes of derivative function given in a graph, students 

could determine the original function and its graph. That means we can look at the graphs 

forth and back from a graph of function 𝑓 to the graph of 𝑓′, and from graph of 𝑓′ to the 

graph of 𝑓. 

Dina’s Examples of Anti-derivative  

The anti-derivative was addressed and communicated by reversing the 

differentiation rules using symbols (visual mediators). For example, in one observation, 

Dina discussed the anti-derivatives in contexts of reversing power and constant rule while 

finding derivatives of functions. She explained the anti-derivative in terms of reversing 

the differentiation rules by saying: 

Remember that you can just reverse the rules on the derivatives. For example, on 

a derivative we multiply the power times the coefficient and lower the power by 

one. Now if you listen to those two steps and reverse them, instead of lowering 

the power by one, on the anti-derivative we’re going to raise the power by one. 

And instead of multiplying the power, we’re going to divide. So, we divided by 

the new power. We’re just reversing them [observation L1].    
 

She also addressed the anti-derivative using numbers from different examples, as is 

shown in the figure 5.11 [see Figure 5.11]: 
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 Figure 5.11 Dina’s examples of finding anti-derivatives of different functions. 

5.2.2 Summary of Dina’s Case 

The findings of Dina’s case focused on the derivatives, and how she 

communicated the concepts by using words and visual mediators. The analysis of word 

use and visual mediators was found in three groups of derivative concepts: differentiation 

rules, application in derivatives, and anti-derivatives. In introducing the differentiation 

rules, Dina presented the concept of the chain rule and the product rule using graphical 

illustrations and algebraic explanations. She also communicated the derivative concepts 

with graphs when she provided applications in derivative; finding the derivative by using 

the graphs’ behaviors with given functions and the graph with no equations. The table 

below summarized her words used when she communicated the derivative concepts, and 

how she used the same words such as slopes and rate of change in different context of 

derivative.  

Table 5.2 Dina’s Word Use of the Derivative Concepts  

Word Use 



69 

 

 

 

 

 

Chain Rule 

Slopes  

Something squared, Something to the power, The base is 

something other than x 

Variable, Function on a variable, Function of x instead of 

just x, Variable position 

Inside/ outside functions 

Product Rule  Rates, Rate of change 

 

Applications 

in Derivative 

Slopes, Slope of tangent 

Rate of change 

 

Table 5.2 summarizes Dina’s words used when she discussed the concepts of 

derivative. When introducing differentiation rules, she used words such as “slopes”, “rate 

of change”, “something to the power”, and “variable position” to discuss the chain rule 

and product rule. She also used the words “slope”, “slope of tangent”, and “rate of 

change” while communicating the concepts in different applications in derivatives.  

As for visual mediators, in Dina’s case, graphing illustrations, expressions, and 

symbols were used to facilitate explaining her words used (e.g., “slope” and “rate of 

change”) when introducing differentiation rules and addressing the mathematical ideas of 

derivative concepts. My analysis also showed that the visual mediators such as calculus 

notations, graphs of the functions, and other algebra expressions were served as visual 

tools in communicating the concept of derivatives. Therefore, the visual mediators were 

identified to support the mathematical meaning of derivative concepts in those areas 

(differentiation rules and applications in derivatives).  
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5.3 Case 3: Jack’s Calculus Class Observation 

Jack’s calculus classroom observation was a little bit different from the other two 

instructors. He was the third participating instructor in this study. In my interviews with 

Jack, I learned that he has a Master’s degree in mathematics and has been teaching the 

Calculus I course (Math 170) for six and a half years; three of those years at the 

university where I conducted my study and three years at another college. Interestingly, 

Jack was not engaged in the collaborative group, in which the mathematics department 

supported and guided in teaching Calculus I. He was applying his own instructional 

methods and materials for teaching Calculus I. From Jack’s perspective for teaching 

Calculus, I learned that he preferred to do the “flip classroom” where he used his own 

videos to introduce the concepts of Calculus I; however, he was lecturing most of the 

time during the class and provided group work once a week on Fridays. Students in his 

class were sitting in the traditional arrangement, where they were in straight rows facing 

the front of the classroom and the instructor. 

I observed his Calculus I classes (n = 6) during the spring of 2016 on Mondays, 

Wednesdays, and Fridays. Each class observation took place for about 75 minutes (or for 

one hour and 15 minutes). On Fridays, the students had to have “quiz makeup”. 

According to Jack, he liked to make ‘makeup point’ in quizzes in order to consume extra 

time and effort. Also, the students in his classroom on Fridays were allowed to make 

presentations from their answers on their previous quizzes, in which they put them on the 

board for other students to help the presenters gain clarification. Jack’s class size was 

around 40 students. Students were required to use a calculus textbook, and they had 

homework once a week from “WebAssign”. Jack believed that his students were using 
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“WebAssign” as “a tool to learn” the concept of calculus, and they worked on required 

problems from the textbook. Each lesson labeled as “L” with the lesson number 1, 2...6. I 

will provide findings on three lessons from my observations (L1, L2, L3) because Jack’s 

other three lessons had different topics other than the derivative concepts focused on this 

study. Also, whenever Jack had presentations from students on Fridays, he had more 

interactions with individual students, so I could not observe most of the teacher-student 

interactions. My observations were mostly based on whole class discussion from his 

classes, and showed that the topic of “limit” was not addressed during that time and the 

rules of differentiation had previously been addressed. Even though Jack said he was 

teaching derivative and integral concepts at the same time, unfortunately, I missed his 

classes when he introduced the differentiation rules for taking derivatives from basic 

functions (e.g., polynomials…etc.). As a result, my analysis on Jack’s class observations 

will focus on how the instructor communicated the concept of the derivative using visual 

mediators (graphs and expressions) with words such as “slopes”, “tangent line”, 

“position”, “velocity”, and “acceleration” and how he introduced the concepts of anti-

derivatives.  

5.3.1 Word Use 

In this section, I highlighted the words used in the following quotes from Jack 

when he introduced the concept of the derivative, to show how he communicated the 

derivative concept using words such as tangent lines, slopes, and velocity connecting 

these concepts graphically.   

“The calculus concept is very small. There is very little calculus going on here. 

Very little calculus. Take a derivative; derivatives of polynomials use the power 

rule, that’s it” [observation L1].    
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“You’re going to find all points where the tangent line is horizontal. What’s the 

slope of the horizontal line?” [observation L1].    

“What’s the slope of the function? What’s the slope of the function, f-prime, 

right? [writing on board] That’s the slope of the function?” [observation L1].    

“Okay, so the function is f of x [writing on board] equals ten minus x-squared. So, 

what’s the slope of the tangent line at any x? Negative 2x, right? So, what’s the 

slope of the tangent line on a? [writing on board] Negative 2a. What’s the slope of 

the tangent line at negative a? Negative two, negative a, right, which is 2a” 

[observation L1].     

“So, perpendicular lines have negative reciprocal slopes. [writing on board] Let’s 

say this is maybe m1 and m2, slope one and slope two, so, what I’m saying is m1 is 

equal to negative one over m2, that’s it. That’s a factor from previous classes. 

Okay, so now we can solve this equation for a” [observation L1].    

“Teacher:  Okay, problem two. The concept here is that the tangent line for a 

straight line [writing on board] is itself (always). Okay, so the tangent line, f(x) = 

2x + 3, the tangent line for any point on the line is y = 2x + 3. Is itself” 

[observation L1].     

“Right, that’s what a line is, it’s all points that are related by this equation, where 

the y-coordinate is equal to 2 times x plus three. That’s what a line is, right? So, 

all of these points, [writing on board] all of these points are on the line 2x + 3. So, 

that’s why you put them all in points slope form, just get all, all I’ve done is I’ve 

written the same line five times, just in different ways” [observation L1].     

“All of this revolves around the fact that the tangent line for a straight line is 

itself. It all revolves around that fact. The tangent line for a straight line is itself. 

So immediately you can see that the slope is going to be the same …” 

[observation L1].    

“So the derivative of position is velocity, the derivative of velocity is acceleration, 

is acceleration” [observation L2].    

“Acceleration [writing on board]…. So acceleration is the, this is just our 

definition, acceleration is the derivative of velocity, so acceleration is the slope of 

the velocity. We could really see, we could see a lot from this by looking at the 

graph, so, now think about slopes of tangent lines. Okay, now are the slopes of 

those, are these lines getting steeper or are they getting flatter?”[observation L2].     

What’s the derivative of five? 

S1:  Zero 

Teacher:  Zero, right? Remember that we can look at that in two different ways, 

right, think of the, what’s the slope of the function at five, function at five, the 

constant function, the constant function [gestures to board] here. The slope is 

zero, you can also look at it like [writing on board]. So, five is the same as five 
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times one, 5 times zero times x to the zero minus one equals zero. Anyway, so the 

derivatives and constants are zero, right, ... [observation L2].    

In this case, the analysis of word use will focus on the word “derivative” as it was 

discussed in contexts of slopes and rate of change using graphs, expressions, notations, 

definitions and other visual mediators.   

The Derivative Concepts 

The derivative concepts were communicated with key words such us “slope”, 

“slope of the tangent”, “tangent line” “slope of the function f-prime” and “position, 

velocity, acceleration”, and they were addressed using graphs, symbols, and definitions. 

For example, when Jack calculated the slope of a tangent line on the graph of a function, 

he took the derivative of that function and then solved the equation for x depending on 

the type of tangent lines, whether were horizontal, straight, or perpendicular line. Also, 

Jack presented the concepts of the derivative in the form of definitions when he 

introduced “position, velocity, acceleration” using words and symbols. The findings 

focus on how the instructor communicated the concept of derivative as two contexts: 

derivatives and anti-derivatives.  

In the following analysis, the derivative concept is defined, first, as finding the 

equations of a tangent line to a function 𝑓(𝑥) at point (𝑥, 𝑦) using the slopes equation. 

For example, mathematically, according to Adams & Rogawski (2015) it is defined that 

the “Point-slope form of the line trough P= (a, b) with slope m is the following: 

𝑦 − 𝑏 = 𝑚(𝑥 − 𝑎)  

Second, derivative concept is defined as finding the area of triangles formed by a 

tangent line to a function at given points. Note that what I learned from Jack’s interviews 

concerning his teaching of derivatives and integrals (which was about areas) at the same 
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time was that it was often in indirect ways or circuitous ways. Then, third, analyzing the 

derivative concepts as “velocity”, according to Jack, from physics, velocity was about 

speed and directions, so acceleration was the slope of velocity. My analyses show that the 

word use of “slope” appeared in all three areas described above, as well as in how Jack 

introduced the concept and used it.     

Slope and Slope of the Tangent. The derivative was communicated in the word 

use of “slopes” or “slope of tangent line” when the instructor was solving an equation of 

‘f-prime’ for a variable x calculating the slope of that tangent line. For example, when 

Jack was finding all the points that were on the graph of function 𝑓(𝑥) = 𝑥3 − 𝑥 where 

the tangent line was a horizontal line, first Jack took the derivative of that function using 

the power rule, 𝑓′(𝑥) = 3𝑥2 − 1, and then he solved that equation for x as the slope of 

the horizontal line as zero, which is solving f-prime 3𝑥2 − 1 = 0 for x. In this case, Jack 

used the word “slope” to get his students to know the main concept of how they could 

solve the problems on a classwork worksheet because the slope of the horizontal line was 

zero. He taught them to take the derivative 𝑓’ of the function 𝑓 using differentiation rules 

and then wrote the equation in term of 𝑓′(𝑥) = 0 saying: “When the slope of the function 

is equal to zero, solve that equation for x using algebra”. In another example, dealing 

with a trigonometric function 𝑓(𝑥) = cos(𝑥) + sin(𝑥), Jack found all the points on the 

graph of that function where the tangent line was horizontal which meant the slope of the 

function, 𝑓′(𝑥) = − sin(𝑥) + cos (𝑥), equals to zero [0 = − sin(𝑥) + cos (𝑥)]. Jack 

explained the points using the unit circle [Figure 5.12]: 

And so just using that sine and cosine, it’s that right there … zero [writing on 

board] … So when is sine x equal cosine x it’s the same as saying when is the, for 

what angles, for what angles is the x equal to the y…For what angle is the x-
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coordinate equal to the y-coordinate. And there’s that one and that one [writing on 

the board 𝑥 =
𝜋

4
0𝑟 𝑥 =

5𝜋

4
 𝑜𝑣𝑒𝑟 [0,2𝜋] [observation L1].    

 

Figure 5.12 Jack’s writing of the unit circle. 

Also, the derivative concept was communicated with the word use of “slope of 

tangent line at a point” when Jack introduced the slopes [𝑚1, 𝑚2] of the tangent line, 

perpendicular lines, of the graph of the function 𝑓(𝑥) = 10 − 𝑥2. He used the formula 

“Point-slope form” [𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1)] to calculate the equation of the line where the 

two slopes cross at that point in [Figure 5.13].  

 

Figure 5.13 Jack’s graph of slopes at the two points (m = a) and (m = -a) on the 

graph of the function 𝒇(𝒙) = 𝟏𝟎 − 𝒙𝟐. 
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He explained the concept using the phrase “slope of the tangent line at…”, and he stated: 

So, what’s the slope of the tangent line at any x? Negative 2x, right? So, what’s 

the slope of the tangent line on a? [writing on board] Negative 2a. What’s the 

slope of the tangent line at negative a? Negative two, negative a, right, which is 

2a…Now what do we know about the slope of perpendicular lines? Negative 

reciprocals, right? So, then we know that the slope of this line is the negative 

reciprocal of this line, so we know that 2a is equal to negative one over negative 

2a [writing on board]. All right, so, perpendicular lines have negative reciprocal 

slopes. [writing on board] Let’s say this is maybe m1 and m2, .. Okay, so now we 

can solve this equation for a” [observation L1].     

Tangent line and Finding Areas. The derivative concepts were communicated 

with the word “tangent line” when finding the area of triangles in a variety of functions 

(given in several tasks) by the tangent line to that functions 𝑓(𝑥) at specific points (𝑥, 𝑦), 

the x-axis and the y-axis. For instance, the instructor was finding the area of the triangle 

shown in Figure 5.14 when calculating the slope of the tangent line at 2 to the function 

𝑓(𝑥) =
1

𝑥
. After he took the derivative of the function f, he wrote 𝑓′(𝑥) = −𝑥−2 = −

1

𝑥2, 

and found the slope at 2, he then wrote on the board, 𝑚 = 𝑓′(2) = −
1

4
. He used the 

“point-slope form” to find the equation of the line, 𝑦 −
1

2
=

1

4
(𝑥 − 2). He explained the 

previous example by saying:  

Ok, so, let’s graph f of x equal 1 over x…we look at the point, we look at 2. Umm 

[he is drawing the tangent line on the graph] so the tangent line at 2 forms the 

triangle [he is shading the area of the triangle] with x and y axis’s. We want to 

find the area of that triangle. What is the area of triangle…[observation L3].       
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Figure 5.14 Jack’s graph of a triangle by tangent line on the graph of 𝒇(𝒙) =
𝟏

𝒙
. 

This example of discussing the derivative concepts as finding area of triangles 

tells as about Jack’s approach in teaching Calculus I. As you can see the way he 

connected his mathematical ideas of the derivative concepts with context of finding areas 

relaying on the ideas of calculating slope of the tangent lines by slopes’ formulas to find 

the equations.      

Velocity and Slope. The derivative concept was introduced with the ideas of 

“velocity” and it was used to articulate the concept that Jack had addressed in class 

“(Acceleration) = 𝑎(𝑡) = 𝑣’(𝑡) = (slope of velocity)”, using the word “slope” and 

recognizing it from graphs. For example, when he presented the concept in the example 

function 𝑣(𝑡) = 𝑡3 − 3𝑡2 + 2𝑡, 0 ≤ 𝑡 ≤ 2, v(t) is in feet/sec.; he was graphing [see 

Figure 5.15] the “slopes” of tangent lines and looking for their behavior to see if the lines 

were “getting steeper” or getting flatter. He addressed those ideas of slopes with no more 

detail. He went on to say: 

 … So the slope of the steeper lines would be more than the slope of the flatter 

lines, right? So the slope is, so the slope is going down, the slope is going down. 

Here you can see that we’re going faster here than we are there, right. So, we’re 

slowing down, right, we’re slowing down and then we’re, and then, over here, 

right, okay, you can see things like that, you know, we’re slowing down, um, 

[pause] let’s see now, what happened there, we’re getting steeper, but in the 

negative. So, okay, right, anyway, okay, all right, good enough [observation L2].     
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Figure 5.15 Jack's graph of a function 𝒗(𝒕). 

Jack’s Example of Anti-derivative  

The anti-derivative was introduced using polynomial functions and addressed 

with numbers and definitions. Jack started introducing the concept with an example of 

“inverse operations” in addition and multiplication, then he gave a definition for anti-

derivative: 

… So the overall point here is that [writing on board] the inverse undoes the 

original...The same is true for derivatives. More or less true, not entirely true, but 

you can think of it that way, it’s fine. The same is true for derivatives. [writing on 

board] Say “an” because there’s more than one, right, an anti-derivative of f of x 

is a function whose derivative is f of x [observation L2].     

Also, the anti-derivative was addressed with numbers and symbols in a table. See 

Figures 5.16 (a) and (b) where Jack created a table with columns of functions, their anti-

derivatives, and why. 
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Figure 5.16 (a) Jack’s table of functions and their anti-derivatives. 

At this point, he generalized those examples of anti-derivatives of the function 𝑓(𝑥) =

𝑥𝑛, using the symbol of 𝐹(𝑥) =
𝑥𝑛+1

𝑛+1
, and the definition: “The anti-derivative of 𝑓(𝑥) =

𝑥𝑛 is 𝐹(𝑥) =
𝑥𝑛+1

𝑛+1
+ 𝐶, where C is any constant (number).” [see Figure 5.16 (b)].  

 

Figure 5.16 (b) Jack’s table of the function 𝒇(𝒙) = 𝒙𝟑and its anti-derivative with 

constant 𝑪. 

5.3.2 Summary of Jack’s Case 

The derivative concepts were communicated with words such as “slopes”, 

“tangent lines”, and “velocity” when the instructor addressed the concept of derivatives in 
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three definitions: the derivative as finding the equations of tangent lines using slopes’ 

formula, the derivative as finding the area of triangles formed by tangent lines, and the 

derivative as velocity. The table below shows Jack’s words used when he discussed the 

concept of derivatives. 

Table 5.3 Jack's Word Use of the Derivative Concepts 

Word Use 

Derivative 

Slopes  
Slope, Slope of tangent, Slope of the tangent line, 

Slope of the function f-prime 

Tangent 

lines  

Tangent lines, Slope of tangent line, Slope of the 

tangent line at a point 

Velocity  
Position, velocity, and acceleration, Slopes 

Table 5.3 illustrates Jack’s words used of the concepts of derivatives when they 

were addressed in three rows of different areas: words were used (in first row) in 

communicating the ideas of slopes when talking about derivatives, words were used (in 

the second row) in discussing the tangent lines, and words were used (in the last row) in 

introducing the velocity. It is shown that in all three areas of derivative concepts, the 

word “slope” has appeared. 

In this case, the visual mediators such as graphs and expressions were used to 

explain the conceptual meaning of derivative concepts in terms of “slope” and “velocity”. 

The analysis of visual mediators addressed the concept of derivatives by using graphs, 

symbols (e.g. 𝑓(𝑥) = cos(𝑥) + sin(𝑥)), and expressions (𝑓′(𝑥) = −𝑥−2 = −
1

𝑥2) when 

Jack communicated the concept of the derivatives in different areas. For example, 
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applying the derivative in finding the equations of a tangent line to a function 𝑓(𝑥) at 

points using the slopes equation and graphs, and in finding the area of triangles in 

different type of given functions by the tangent line of functions 𝑓(𝑥) at specific points 

(x, y).
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CHAPTER SIX: SUMMARY OF FINDINGS 

6.1 Discussion 

This study investigated how three college instructors communicated the concepts 

of derivatives using the concepts of limits, slopes of tangent lines, rates of changes, and 

anti-derivatives. In this study, I applied Sfard’s communicational approach to analyze my 

data with its two characteristics, word use and visual mediators from calculus classrooms. 

I explored three college instructors’ mathematical discourse and the ways they 

communicate the concepts of derivative or limit. The findings have highlighted the 

instructors’ word use when presenting the concepts of limit and derivative using different 

expressions, symbols, and graphs in which they were identified to aid the meaning of the 

words used in discussing these concepts. Regarding my research questions, the findings 

of the study summarized their instructional approaches and ways instructors 

communicate their knowledge in calculus from discourse perspective as follows:  

 Overall, instructors’ discussions of derivative or limit concepts highlighted the 

variation of their word use to communicate these concepts. For example, the 

derivative concepts were addressed with various words use such as “velocity”, 

“slopes of tangent lines”, and “the limit of the average rate of changes”.  

 Also, the way that the three instructors represented the derivative concepts were 

very different. For example, when Dina was explained the mathematical meaning 

of the slopes of tangent lines of given functions while introducing the 

differentiation rules, she used graphing illustrations to connect the concepts with 
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expressions and symbols, whereas, Henry communicated his mathematical ideas 

of the slopes of the secant lines verbally, when calculating the average rate of 

change, and he did not use graphs in introducing the rules. The graphing 

illustrations were also found in Jack’s mathematical discourse, when he discussed 

the derivative concepts (e.g., solving slope equations).  

 The differentiation rules were addressed and communicated differently from one 

instructor to another. In introducing new rules, only one of the three instructors 

(Dina) made explicit connections between the visual mediators, expressions and 

graphs of functions, and how the functions affected the slopes of the tangent lines 

when graphing the functions of a parent function to a function with multiple 

transformations. But Henry had not made connections between graphs and 

symbols in introducing differentiation rules; he explained the rules by applying 

them in examples, symbolically and numerically.    

 Instructors’ discourse practices while introducing the anti-derivatives were very 

different. They communicated their mathematical ideas of anti-derivative by 

definitions and applying the anti-derivative in context of chain rule (as in Henry’s 

class), reversing constant and power rule (as in Dina’s class), or creating tables to 

generalize definitions in context of power rule (as in Jack’s class).   

 The two instructors Henry and Dina, who were participating in using the group 

materials of teaching Calculus I course in the university, had very different 

instructional approaches when they discussed the concept of derivatives or limits. 

For example, Dina provided various activities that involved discussions in 

graphing explanation, and Henry lectured more and provided similar problems 
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that just asked for finding the derivative algebraically. However, Jack focused on 

lecturing and discussing the concepts on the board using visualization meaning, 

for example, every time he talked about the derivative concepts, he mainly drew 

graphs of the original functions to discuss slopes of tangents line.    

 Dina and Jack were more eager to use a graph function and its derivative than 

Henry was. For example, Dina provided examples of applications using 

derivatives to show the derivative behaviors related to graphs of a function f and 

the derivative of that function f-prime.  

 Among the three instructors, Henry and Dina followed the calculus textbook to 

introduce the topics in which the concept of the derivatives was taught and 

addressed, whereas Jack was applying different teaching approaches as he was 

teaching derivative and integral indirectly at the same time. For example, when he 

asked questions about finding the area of the triangles formed by tangent lines of 

a function at the point (x, y), his discussions with students focused on how they 

could find the area using the triangle area formula and slopes formula. 

To sum up, this study found that when three instructors taught Calculus I courses, 

they all address the concepts of derivative, and always communicated the concepts using 

the words “slopes” and “slopes of the tangent lines”. Although the three instructors’ 

classrooms were observed at different times, the use of the word “slopes” appeared in the 

three instructors’ classroom observations in a variety of contexts. As a result, in all of the 

three instructors’ classrooms, the derivative concepts were addressed with various words 

use such as “velocity”, “slopes of tangent lines”, “the limit of the average rate of 

changes”, and were illustrated with graphing explanations besides expressions and 
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symbols as in Jack and Dina’s cases. For example, when Dina was estimating the 

derivatives of functions with a graph of those functions, she used the function’s graph to 

sketch the derivative’s graph. She communicated her mathematical ideas of derivatives 

using graphing behaviors by paying attention to the important points on graphs and 

slopes as negative or positive slopes. However, in Jack case, he always used graphs of 

original functions when he discussed the ideas of derivatives in terms of velocity, slopes, 

or slopes of tangent lines at points. Whereas in Henry case, he rarely used graphs to 

communicate his ideas, for example, when he discussed, verbally, the concepts of the 

limit of the function 𝑓(𝑡)as average rate of change and instantaneous velocity, then and 

computing it.               

When the three instructors addressed the derivative and or limit concepts, 

sometimes they did not make explicit connections between their use of words and their 

visual mediators. For instance, when Henry addressed the concepts of the derivatives 

when he was finding the derivative of a function over an interval or at point “a” by 

definition, he communicated the concept using words such as “limit of the average rate of 

change”, “velocity”, or “instantaneous velocity” without making clear connections with 

graphs of the function (visual mediators) and explaining the mathematical meaning of his 

words used. However, in Dina’s case, the connections between representations 

(graphical, symbolic, and numerical) were found when she explicitly introduced the chain 

rule and the product rule. She started her communication about the new rules by graphs 

first and then she connected the ideas of the graphs to set up the rules symbolically. After 

that, she provided examples to apply these rules numerically using expressions. Also in 

the discussion of the differentiation rules in Henry and Dina’s cases, they had different 
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approaches. For example, on one hand, whenever Henry presented the new rules, he 

explained them during the lecture time with symbols and numbers providing examples 

for applying the new rules, verbally. On the other hand, Dina addressed the 

differentiation rules with symbols and graphs to help students connect the concepts of the 

new rules, the slopes of the tangents lines, and how the graph of the functions affected the 

slope of the tangent lines. She used graphs (visually) in an explicit way to discuss and 

differentiate the new rules with the ones that students had learned in previous classes, 

connecting that with symbols and numbers by applying the rules.  

The derivative concepts were addressed and communicated in variety ways from 

the instructors’ calculus classrooms. First, Henry used the same type of warm-up 

questions each class time when he introduced the concept of derivatives, after students’ 

discussion as groups he discussed the warm-up in more detail on the board. Second, Dina 

provided a variety of activities when she introduced the derivative concepts using 

graphing explanations to communicate her mathematical ideas about the concepts. For 

example, on one day, she asked her students to use the graphing calculator to help them 

sketch graphs of functions and discuss their answers. Finally, in Jack’s case, he addressed 

the concept of derivatives using more algorithmic approaches, and he interpreted the 

concepts by the use of graphs and calculations. For instance, when he had computed the 

slope of the tangent lines on graphs, he solved the equations using the mathematical 

process of the slopes formulas. 

Connecting to what Park (2015) had found, some of the key communication skills 

are “leaving some fairly difficult steps implicit for the students” (p. 249) in instructors’ 

teaching and students’ learning. Student difficulties may arise from the instructors’ lack 
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of explicit connections between representations in the classroom discourse. When 

instructors provide good communications to guide and direct their mathematical 

discussions, students could receive the greatest benefit possible. Moreover, discourse in 

the classroom also helps students to have the opportunity to use the mathematical 

language including symbols or notations and share their ideas with the teachers (by 

asking questions) or with peers (by thinking and reasoning). For example, in the calculus 

classroom, the notations of calculus concepts have different meanings, such as ‘f-prime’ 

or 𝑓′(𝑥), 𝑓 (𝑥), 
𝑑𝑓

𝑑𝑥
, 

𝑑𝑓3

𝑑3𝑓
, and 

𝑑

𝑑𝑥
. Therefore, instructors must put more emphasis and effort 

on presenting all the possible notations when talking about the derivative due to its 

importance in learning calculus in subsequent classes. Instead, using only common 

notations such as f-prime notation, students lack a good sense of using different notations 

when they study calculus.  

 The connections made here between the results from this study and studies found 

in teaching and learning of the Calculus I courses emphasize the instructional approaches 

and the ways that instructors communicate the course in order to provide a discursive 

environment in their classrooms. However, the communication approaches of learning 

and teaching mathematics are encouraging the productive roles of instructors to explain 

their ideas, and making excellent progress in students’ development (Park, 2015; Sfard, 

2008; Nardi, Ryve, Stadler, & Viirman, 2014).  

6.2 Limitations 

There are few limitations in the study. In this study, I focused on how instructors 

teach or communicate the concepts of derivatives or limits. Due to recruitment 

challenges, I was not able to collect student data, and it has been helpful to have students’ 
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learning data as responses to their instructors’ teaching approaches. Thus, when the 

instructors provided group work at the class time, it was challenging to record student-

instructor discussions. Only three instructors participated in this study, and their 

instructional approaches were not observed at the same time when they addressed same 

topics. The focus of the study, however, was to document and explore the ways in which 

the concepts of derivatives and differentiation were communicated by a small group of 

college instructors (the three instructors), and how their approaches would help me to 

teach the same concepts in the near future. Finally, the instructors’ classroom discourses 

and instructional approaches depend on the students’ background because the instructor’s 

instructional approaches are influenced by his or her students and will not often clarify 

the teaching practices in highly differentiated calculus classes.     

6.3 Future Study 

This study, in documenting an analysis emphasizing some of the instructors’ 

mathematical discourses when teaching Calculus I courses, in particular, derivative 

concepts, analyzing students’ interactions with their instructors, and focusing on their 

understandings of the concepts, could help educators and learners in assessing the 

discourse itself. It would be beneficial if we look at how students’ respond to what they 

have learned in the classroom and how they communicate their mathematical ideas with 

peers and instructors. It would be also important to study different instructors who teach 

the same mathematical topics from the same institution, different institutions, and 

institutions across different countries. There is a need to promote mathematics education 

research in Saudi Arabia in order to increase development in teaching and learning of 

mathematics or of any subjects in general. Exploring and investigating mathematics 
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classrooms discourse will benefit both instructors’ and students’ learning. We need to 

support our education in how instructors integrate their traditional approaches in teaching 

mathematics to the communication approach, discussion, reasoning, thinking, and sharing 

ideas with others. This study suggests a mathematical education researcher’s 

investigation include the following questions: How do instructors and students 

communicate the concepts of derivatives with comprehensive approaches? How does the 

use of words in the instructor’s classroom discourse affect a student’s understanding of 

particular topics in mathematics, particularly in Calculus I?
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Instructor Interview Protocol 

1- How long have you been teaching Calculus I? And at BSU? 

2- As an instructor, what are the challenges (if any) in teaching Calculus I? What 

about in teaching derivatives and differentiation rule?  

3- As an instructor, what are the challenges (if any) do you anticipate in learning 

Calculus I? What about in learning derivatives and differentiation rule? 

4- What are the instructional methods do you use when teaching derivatives and 

differentiation rule?  

5- Can you describe a typical Math 170 class meeting in your classroom such as the 

setting, the design of the class, etc.? 

6- When teaching differentiation rules and derivatives, what are your instructional 

plans? 

7- Do you usually incorporate technology such as laptops, computer Apps, 

calculators, … etc.) when teaching Math 170? Do you plan to use technology 

when teaching derivatives and differentiation rule? Can you say more about how 

the technology will be used in teaching the topics? 

8- Have you participated in any workshops or training that are related to teaching in 

Calculus? If so, what are they? Are they helpful? 

 

Research for this project was conducted under the review of the Institutional Review 

Board at Boise State University, Prototcol #020-SB15-174. 


