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ABSTRACT

A major winter storm brought up to 42 inches of snow in parts of the Mid-

Atlantic and Northeast United States for January 22−24, 2016. The blizzard of

January 2016 impacted about 102.8 million people, where at least 55 people died

due to the snowstorm and it caused economic losses in a range of $500 million to $3

billion. This thesis studies two important aspects of extreme snow events: maximum

snowfall and maximum snow depth. We apply extreme value methods to extreme

snowfall and snow depth data from the New York City area to examine if there are

any significant linear trends in extreme snow events and understand how likely the

winter storm was in terms of return levels. We find that 87.5-th percentile snowfall

and 75-th percentile snow depth have increased by 0.564 inches and 0.559 inches

decade−1, respectively, whereas the annual maximum snowfall and snow depth series

show insignificant increases. Our analysis shows that the 2016 blizzard was indeed

an extreme snow event equivalent to about a 40-year return level in the New York

City area. Our methods are thoroughly illustrated with details and expressions for

practitioners wishing to use extreme value methods in applications.
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σ∗ with the assumption that ξ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Non-stationary GP estimates for non-zero snowfall data and their as-

sociated standard errors in parentheses (left : näıve, right : corrected)
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CHAPTER 1

INTRODUCTION

Extreme weather and climate events greatly impact human beings, societies,

and ecosystems. In the United States, there have been 203 weather and climate

related disasters from 1980 to 2016, each with at least $1 billion in damages (NCEI,

2017). Among these extreme weather and climate events, extreme snow events

can disastrously affect urban life in particular. Recently, the blizzard of January

2016 brought an all-time record snowfall of 26.8 inches in Manhattan, resulting in

significant damages/losses to many urban areas and life in the northeastern United

States (National Weather Service, 2016). The 2016 blizzard raises an important

question: Are we experiencing disastrous snowstorms more often than before? In

contrast, many authors have reported decreasing trends in snowfall in various regions.

Kunkel et al. (2009) found that snowfall is strongly decreasing in the mid-Atlantic

coast. Burakowski et al. (2008) obtained a decreasing trend of 1.81 inches decade−1

in average winter snowfall in the northeastern United States. Huntington et al.

(2004) verified a statistically significant decreasing trend in the ratio of snow to total

precipitation (S/P) in the northeastern United States, concluding that the decreasing

trend in S/P is mostly related to decreasing snowfall. According to these findings,

the 2016 blizzard appears to be arguably contradictory to a common perception of

global climate change: increasing temperature reduces snowfall.
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We consider less-studied – but very critical to our life – questions, such as: are

extreme snow events changing or not? If extreme snow events change, are they

decreasing or increasing? How many snow events will we experience in the next 25 or

50 years? One should not necessarily conjecture that extreme snow events would show

the same pattern as average snow events. In fact, extreme and mean statistics are

statistically independent in large samples under some mild conditions (McCormick

and Qi, 2000). This implies that the analysis of extreme statistics can exhibit different

results from that of mean statistics. Furthermore, O’Gorman (2014) showed that for

most land regions in the northern hemisphere, changes in extreme snowfall were very

little even though mean snowfall decreased significantly based on climate simulations

under high carbon dioxide emission scenarios.

Extreme value analysis requires the use of extreme value methods. Since extreme

values usually do not follow the Gaussian distribution, the use of Gaussian-based

methods does not produce accurate results for extreme values. Fawcett and Walshaw

(2007) used the generalized Pareto (GP) distribution to model extreme sea surge

heights in Newlyn, U.K., and compared methods dealing with temporally depen-

dent data. Northrop and Jonathan (2011) used a quantile regression technique to

model non-stationary thresholds of their extreme value model for hurricane-induced

wave heights in the Gulf of Mexico. Lee et al. (2014) used the generalized extreme

value (GEV) distribution with non-stationary location parameters and a changepoint

technique to quantify linear trends for maximum and minimum temperatures in the

contiguous United States. Panagoulia et al. (2014) used GEV and model selection

criteria to analyze extreme precipitation in a mountainous Mesochora catchment in

Greece. Rust et al. (2011) used GEV and bootstrap to estimate confidence intervals

of return levels for floods in the southern Germany. Fawcett and Walshaw (2012) used
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extremal index estimation and bootstrap to obtain confidence intervals of return levels

for sea surge heights in Newlyn, U.K., and wind speeds in Bradfield, U.K.

More specifically, researchers have used extreme value methods to analyze ex-

treme snowfall. For example, Blanchet et al. (2009) used a Poisson point process

representation to analyze extreme snowfall data collected from 1999 to 2008 in the

Swiss Alpine region. Makkonen et al. (2007) used climate simulations and GEV to

compute 50-year return levels for snowfall in the Nordic area. López-Moreno et al.

(2011) used climate simulations and GP distribution to analyze extreme snowfall in

the Pyrenean mountain range located on the border of Spain and France.

We aim to evaluate whether the blizzard of January 2016 in the New York City

area can be explained by using appropriate extreme value models, or if it was too

much of an extreme event to be explained by such models. For a more comprehensive

understanding of extreme snow events, we study two important aspects, namely

snowfall and snow depth. We estimate return levels for extreme snowfall and snow

depth in the New York City area and quantify trends in these characteristics, if any

noticeable trends are identified.

The rest of this thesis proceeds as follows: Chapter 2 describes the snowfall and

snow depth data used in our analysis, Chapter 3 explains the extreme value theory

and methods applied to the data, Chapter 4 summarizes our findings on extreme

snow events, and in Chapter 5 we conclude with some further comments.
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CHAPTER 2

DATA

We study maximum snowfall and maximum snow depth in the New York City

area to gain deeper insight into extreme snow events. The snowfall and snow depth

data in this study were downloaded from the website of the Northeast Regional

Climate Center (NRCC) in Ithaca, New York. We selected four weather stations

from the study area: Central Park, Newark, La Guardia, and JFK. Table 2.1 shows

the geographical descriptions of these four weather stations, and Figure 2.1 displays

their spatial locations. We used the most recent 56 years of the NRCC’s snowfall and

snow depth data of the four stations, starting from July 1, 1959 and ending on June

30, 2015.

Table 2.1: Selected weather stations in the New York City area

Station Full station name Latitude Longitude Elevation
Central Park NEW YORK CNTRL PK TWR 40.7789◦ -73.9692◦ 132 ft
Newark NEWARK LIBERTY INTL AP 40.6825◦ -74.1694◦ 29 ft
La Guardia LA GUARDIA AP 40.7794◦ -73.8803◦ 39 ft
JFK JFK INTL AP 40.6386◦ -73.7622◦ 11 ft

NRCC’s snowfall data contain daily maximum snowfall observations, where the

maximum snowfall for a day is defined as the maximum amount of new snow and ice

that have accumulated prior to melting or settling (National Weather Service, 2013).
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Figure 2.1: Spatial location of selected weather stations

NRCC’s snowfall measurements are recorded in inches and rounded to the nearest

tenth of an inch. The snowfall measurements of less than 0.1 inches are typically

recorded as “trace.” We treat these nearly zero snowfall amounts as zero inches, which

results in 3.9% of daily snowfall data as meaningful snowfall records (≥0.1 inches).

Although the NRCC data contain daily observations, many extreme snowfall events

tend to last more than one day, producing multiple daily snowfall observations from

a single snowstorm event. For example, a snowstorm in 2010 brought Central Park

9.4 inches of snow on February 25 and 11.5 inches of snow on February 26, totaling

20.9 inches of snow for the two consecutive days. To properly assess the snowfall

amount from each snowstorm, we merged daily non-zero snowfall observations within

each continuous snow event. If consecutive snowfall observations of greater than zero

inches are not separated by a snowfall record of zero inches, we consider them to be

from the same snow event.

Another important characteristic of snow events is daily snow depth, which is the
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amount of snow, sleet, or ice present on the ground at 7 a.m. as measured with

a measuring stick (National Weather Service, 2013). NRCC’s snow depth data are

measured in inches and rounded to the nearest inch. If less than half of the exposed

ground is covered by snow or the measured depth is less than 0.5 inches, snow depth

is recorded as “trace.” We convert these observations to zero inches, yielding 6.0%

of daily snow depth observations as meaningful records (≥1 inch). We note that the

snow depth observation for a given day tends to be affected by the temperature of

the previous day. Therefore, we use the maximum temperature on the previous day

as a predictor for snow depth. The maximum temperature data for the four locations

are recorded in degrees Fahrenheit and rounded to the nearest degree.

NRCC’s snow data contain missing values, but its missing rates are very low. For

snowfall data, La Guardia has no missing days, Central Park and Newark both have

two missing days, and JFK has seven missing days. For snow depth data, La Guardia

and Newark both have no missing days, and JFK has four missing days. We find

that the Central Park station has 1248 missing days, with most of the missing days

occurring between 1996 and 2003. These account for about 6% of the daily data for

the study period of 1959–2016. We do not know the reason why there are this many

missing observations in Central Park during this seven-year period. With this stated,

we exclude all missing data from our analysis as the overall missing rates are minimal.

We define a “snow year” as July 1 to June 30. For instance, the snow records

from July 1, 1999 to June 30, 2000 are treated as the observations in the snow year of

1999. The observations up to June 30, 2015 are first used in our analysis to determine

if our extreme value model could adequately predict the 2016 blizzard. Results from

partial data up to June 30, 2015 are later compared to the results from the full data

up to June 30, 2016, which includes observations from the January 2016 blizzard.



7

CHAPTER 3

METHODS

3.1 Block Maxima Methods

Suppose D1, . . . , Dm are independent and identically distributed random variables

taken from a population with a common distribution function F (·). Define Mm =

max{D1, . . . , Dm} to be the maximum statistic of these m random variables. If there

are sequences of constants {am} and {bm}, with bm > 0, that rescale Mm such that

P

(
Mm − am

bm
≤ x

)
−→ G(x) as m→∞,

where G(·) is a non-degenerate distribution function, then G(·) belongs to one of the

following extreme value distribution families (Fisher-Tippett-Gnedenko Theorem):

(Gumbel) G(x) = exp

{
− exp

[
−
(
x− a
b

)]}
, −∞ < x <∞,

(Fréchet) G(x) =

{
0, if x ≤ a;

exp
{
−
(
x−a
b

)−α}
, if x > a,

(Weibull) G(x) =

{
exp

{
−
[
−
(
x−a
b

)α]}
, if x < a;

0, if x ≥ a
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for some constants a, b > 0, and α > 0. These extreme value distribution families can

be further unified into the following generalized extreme value (GEV) distribution

(cf. Coles, 2001):

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ

+

}
, (3.1)

where z+ = max{z, 0}, −∞ < µ < ∞, σ > 0, and −∞ < ξ < ∞. The unknown

constants µ, σ, and ξ are called location, scale, and shape parameters, respectively.

Block maxima methods use a sequence of these maximum statistics. To elaborate,

we express data {D1, . . . , DN} as a set of n blocks of block size m:

{
(D1, . . . , Dm), (Dm+1, . . . , D2m), . . . , (D(n−1)m+1, . . . , Dnm)

}
,

where N = nm. We then take a maximum statistic within each block and denote

the maximum statistic as Mm,i for i-th block. The previous extreme value theorem

implies that if block size m is large enough, the GEV distribution can be an approxi-

mate probability distribution for the maximum statistics {Mm,1, . . . ,Mm,n} regardless

of the distribution function F (·) from which the original sample {D1, . . . , Dnm} is

taken. In practice, the maximum statistic Mm,i is taken as the maximum of data

values recorded for a meaningful period, most often years. The maximum likelihood

estimates of GEV parameters are found by maximizing the log likelihood function:

`(µ, σ, ξ) =



−n log(σ)−
∑n

i=1

(
1 + ξ

(
xi − µ
σ

))−1/ξ

−
(

1 +
1

ξ

)∑n
i=1 log

(
1 + ξ

(
xi − µ
σ

)) , if ξ 6= 0;

−n log(σ)−
∑n

i=1

(
xi − µ
σ

)
−
∑n

i=1 exp

(
−
(
xi − µ
σ

))
, if ξ = 0,

(3.2)
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using numerical methods.

Return levels are crucial quantities in many extreme value studies. The return

level associated with the return period of K years, denoted by xK , is the expected

level that is to be exceeded on average once over following K years. For annual

maximum data, the K-year return level is expressed as

xK =

{
µ− σ

ξ

[
1− {− ln(1−K−1)}−ξ

]
, if ξ 6= 0;

µ− σ ln{− ln(1−K−1)}, if ξ = 0.
(3.3)

Substituting the GEV parameters (µ, σ, ξ) in (3.3) with their maximum likelihood

estimates finds the maximum likelihood estimate for the return level xK .

3.2 Threshold Exceedances Methods

Suppose X1, . . . , XN are independent and identically distributed random variables

with distribution function F (·). Let X be any of these Xi’s, and assume F (·) satisfies

the Fisher-Tippett-Gnedenko Theorem. For a predetermined high threshold u, one

considers the exceedance over u, denoted by Y = X−u. It is known from the extreme

value theory that, for large enough u, if the exceedance Y is positive (Y > 0, or

equivalently X > u), the conditional distribution function of Y can be approximated

by the generalized Pareto (GP) distribution:

H(y) =

{
1−

(
1 + ξy

σ∗

)−1/ξ
, if ξ 6= 0;

1− exp
(
− y
σ∗

)
, if ξ = 0,

where y > 0, 1 + ξy/σ∗ > 0, and σ∗ = σ + ξ(u− µ).

Threshold exceedances methods use all observations above the threshold u. To
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elaborate, suppose n data values are greater than u and denote them by X∗
1 , . . . , X

∗
n

(that is, X∗
i > u). Then, consider the exceedances by Yi = X∗

i − u. Extreme value

theory implies that, if u is large enough, the GP distribution can be an approximate

probability distribution for the exceedances {Y1, . . . , Yn} regardless of F (·) from which

the original sample {X1, . . . , XN} is taken.

Choice of an adequate threshold is very important in the threshold exceedances

methods. A threshold that is too low may lead to bias, as it is likely to violate the

asymptotic basis of the model (Coles, 2001). Conversely a threshold that is too high

would result in high variance, as there would be fewer observations that can be used

in the model estimation process. A common practice is to find the lowest threshold

for which the GP model provides an appropriate fitting. Mean residual life (MRL)

plots or parameter stability plots are commonly used in practice to visually find such

a threshold.

The MRL plot is constructed by plotting all possible thresholds against the mean

of exceedances from the corresponding threshold. To elaborate, let u1 < · · · < uj <

max{X1, . . . , XN} be all possible thresholds for Xi. The MRL plot will consist of

points (
ui,

1

n(i)

n(i)∑
k=1

Y
(i)
k

)
,

where ui is a threshold for i = 1, . . . , j, X∗
1
(i), . . . , X

∗(i)
n(i) are n(i) data values greater

than ui, and Y
(i)
k = X∗

k
(i) − ui for k = 1, . . . , n(i) are exceedances from ui. The

parameter stability plot is constructed by plotting all possible thresholds against the

maximum likelihood estimate of σ∗ and ξ obtained from Y
(i)
1 , . . . , Y

(i)
n(i) for i = 1, . . . , j.

For the thresholds u∗ < . . . < uj on which the GP model is appropriate, the MRL

plot should be approximately linear and the parameter stability plot should be stable
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(Coles, 2001). Such threshold u∗ is usually considered as an adequate choice for the

threshold of the given data.

Threshold exceedances methods are different from block maxima methods in that

threshold methods use all observations above a certain threshold, instead of using only

the maximum statistics within preset blocks. Because a larger number of extreme

data is often used, threshold exceedances methods can perform better than block

maxima methods. This is very important for extreme value studies due to the limited

frequency of extreme events in many practices. The two GP parameters, σ∗ and ξ,

are often estimated by maximizing the log likelihood function:

`(σ∗, ξ) =


−n log(σ∗)−

(
1 +

1

ξ

)∑n
i=1 log

(
1 + ξ

(
xi − µ
σ∗

))
, if ξ 6= 0;

−n log(σ∗)− 1

σ∗

∑n
i=1 xi, if ξ = 0,

(3.4)

using numerical methods.

Denote m as the number of observations per year and p∗u = P (X > u) as the

over-threshold probability for a threshold u. Based on the GP distribution, the return

level xK is expressed as

xK =

{
u+ σ∗

ξ
[(Kmp∗u)

ξ − 1], if ξ 6= 0;

u+ σ∗ ln(Kmp∗u), if ξ = 0,

if K is large enough such that xK > u. The probability p∗u is often estimated by an

empirical probability p̂∗u = n/N .



12

3.3 Bias Correction for Temporal Correlation

While most daily climate data are correlated over time, their annual maxima

observations are weakly correlated in many cases, not inducing biased estimation

caused by temporal dependence. However, the threshold exceedance series is more

noticeably correlated. For example, snow depth threshold exceedances, as will be

explained in Section 4.2, exhibit strong temporal dependence. Since the asymptotic

result in Section 3.2 is supported under the assumption that each Xi is independent

and identically distributed, return level estimates will be biased if the data are

dependent.

To correct this bias caused by temporal dependence, past authors have incor-

porated an additional parameter. Suppose D1, . . . , Dm are independent and identi-

cally distributed random variables and D∗
1, . . . , D

∗
m are stationary random variables

from the same distribution function F (·). Define Mm = max{D1, . . . , Dm} and

M∗
m = max{D∗

1, . . . , D
∗
m}. Under some mild conditions,

P

(
Mm − am

bm
≤ x

)
−→ G(x) as m→∞,

if and only if

P

(
M∗

m − am
bm

≤ x

)
−→ Gθ(x) as m→∞,

for sequences of constants {am} and {bm} > 0, and a constant θ such that 0 < θ ≤ 1

(cf. Coles, 2001). The unknown constant θ is called extremal index. Leadbetter

(1983) interprets this parameter as the reciprocal of the limiting mean cluster size for

stationary series, equating to 1 for perfectly independent series and converging to 0

for completely dependent series.
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To estimate the extremal index, we use the intervals estimator (Ferro and Segers,

2003), although we do not particularly favor one single estimation method. Fawcett

and Walshaw (2012) showed that this estimator performs very well compared to

other methods in their simulation study. To elaborate, define 1 ≤ τ1 < · · · < τn ≤ N

to be the times when threshold exceedances {X∗
1 , . . . , X

∗
n} were observed. Denote

∆i = τi+1 − τi to be the interexceedance time for i = 1, . . . , n − 1. Ferro and Segers

(2003) derived the limiting distribution of the interexceedance times from a strictly

stationary sequence of random variables and used the moment-based approach to

obtain the estimator of θ as follows:

θ̂ = min{θ̂∗, 1}

where

θ̂∗ =


2(
∑n−1

i=1 ∆i)
2

(n− 1)
∑n−1

i=1 ∆2
i

, if max{∆i} ≤ 2;

2(
∑n−1

i=1 (∆i − 1))2

(n− 1)
∑n−1

i=1 (∆i − 1) (∆i − 2)
, if max{∆i} > 2.

Ferro and Segers (2003) also introduced a bootstrapping scheme to construct an

approximate distribution of θ̂. Since θ̂−1 represents the limiting mean cluster size,

one can assume that there are approximately independent L = dθne clusters. The

bootstrap scheme then divides interexceedance times into two categories: intracluster

and intercluster times. Intracluster times are defined as a set of the top L− 1 largest

entries from ∆i, expressed as {∆(1), . . . ,∆(L−1)}. In case of ∆(L−1) = ∆(L), reduce

L until ∆(L−1) > ∆(L). Then, intracluster times would be a collection of L sets of

approximately independent interexceedance times, each divided by intercluster times.

Each set of intracluster times is expressed as Aj = {∆ij−1+1, . . . ,∆ij+1}, where i0 = 0
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and iC = n, and Aj = { }, if ij−1 + 1 = ij + 1. To form a bootstrap replication of

interexceedance times, the scheme randomly samples L−1 elements from intercluster

times and L sets from intracluster times. Then, the estimated extremal index θ̂(b) is

found from the b-th bootstrap sample for b = 1, . . . , B.

If exceedances are clustered (θ < 1), the frequency of each cluster of exceedances,

instead of each individual exceedance, should be taken into account in computing

return levels (Coles, 2001). For large enough K such that x∗K > u, the return level

x∗K for dependent series is expressed as

x∗K =

{
u+ σ∗

ξ
[(Kmp∗uθ)

ξ − 1], if ξ 6= 0;

u+ σ∗ ln(Kmp∗uθ), if ξ = 0.
(3.5)

Note that x∗K = xK when θ = 1. The estimate for x∗K is obtained by using the

associated GP parameter estimates in (3.5).

3.4 Uncertainty Correction for Spatial and Temporal Corre-

lation

Snow data recorded from one station are spatially correlated with its neighboring

stations. In practice, the maximum likelihood estimation often uses a log-likelihood

function constructed under the assumption that the data are independent and iden-

tically distributed, and finds the values of the unknown parameters by equating the

first partial derivatives of log-likelihood function to zero. Although this assumption

could not be perfectly met in real-world data, a common practice is to use these score

function equations as a set of the estimating equations for the unknown parameters.

Using this approach, Smith (1990) developed a method that finds the maximum
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likelihood estimates under the independent and identical distribution assumption

and then adjusts the standard error of the maximum likelihood estimates for spatial

dependence. We propose extending this approach to our data with spatial and

temporal dependence.

Now, since Smith’s method is a basis of our treatment for spatial and temporal

dependence, we illustrate this method. Suppose that there are multiple stations in

a region and each station has n years’ of data recorded. Assume the log-likelihood

function for a p-dimensional vector of unknown model parameters, θ = (θ1, . . . , θp)
T,

from all stations’ data is expressed as

`n(θ) =
n∑
i=1

hi(θ), (3.6)

where hi is the contribution of all stations’ i-th year data to the log-likelihood function

`n. Note that hi’s are treated as independent in (3.6). Let θ̂ = (θ̂1, . . . , θ̂p)
T denote

the maximum likelihood estimate of θ, and θ0 = (θ1,0, . . . , θp,0)
T be the true value of

θ. Applying Taylor expansion to the estimating equation ∇`n(θ̂) = 0 produces

θ̂ − θ0 ≈ −[∇2`n(θ0)]
−1∇`n(θ0),

where ∇ and ∇2 represent gradient and Hessian

∇`n(θ0) =


∂`n(θ0)

∂θ1,0
...

∂`n(θ0)

∂θp,0

 , ∇2`n(θ0) =


∂2`n(θ0)

∂θ21,0
· · · ∂2`n(θ0)

∂θ1,0∂θp,0
...

. . .
...

∂2`n(θ0)

∂θp,0∂θ1,0
· · · ∂2`n(θ0)

∂θ2p,0

 ,

respectively. Approximating each entry in the Hessian by its expected value gives



16

θ̂ − θ0 ≈ H−1∇`n(θ0), (3.7)

where H = −E[∇2`n(θ0)] is the Fisher information. Taking variance to both sides of

(3.7) produces the variance of maximum likelihood estimators:

Cov(θ̂) ≈ H−1V H−1, (3.8)

where V = Cov(∇`n(θ0)). If the assumed model is correct (that is, if the data

are spatially independent), then one obtains V = H, resulting in the conventional

approximation Cov(θ̂) ≈ H−1. The Fisher information H then can be approximated

by the observed information matrix H ≈ −∇2`n(θ̂), which is typically calculated

from software by using a quasi-Newton or similar algorithm.

Now, suppose the data, which construct `n in (3.6), are spatially dependent among

stations, but the contribution hi’s are independent from each year i. This assumption

can make sense in practice. For example, consider annual maximum snowfall series

observed at several stations in a study region. Maximum snowfall values are spatially

correlated among the stations each year but are nearly uncorrelated over years at

each station. Under the assumption that hi’s have an identical distribution, V is

reexpressed as

V = Cov (∇`n(θ0))

= Cov

(
n∑
i=1

∇hi(θ)

)

=
n∑
i=1

Cov (∇hi(θ))

= nCov (∇h1(θ)) .
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Here, Cov(∇h1(θ)) can be estimated by the empirical covariance matrix of the

observed gradient values {∇h1(θ̂), . . . ,∇hn(θ̂)} as follows:

Ĉov
(
∇h1(θ)

)
=

1

n


∑n

i=1(ui,1 − ū·,1)2 · · ·
∑n

i=1(ui,1 − ū·,1)(ui,p − ū·,p)
...

. . .
...∑n

i=1(ui,p − ū·,p)(ui,1 − ū·,1) · · ·
∑n

i=1(ui,p − ū·,p)2

 ,

where ui,j = ∂
∂θj
hi(θ) and ū·,j = 1

n

∑n
i=1 ui,j. Therefore, using V̂ as an estimate of V

in (3.8) produces the estimated variance of maximum likelihood estimators:

Ĉov(θ̂) = Ĥ−1V̂ Ĥ−1, (3.9)

where Ĥ is the approximation of H using a quasi-Newton algorithm and is usually

calculated by software under independent and identically distributed assumption.

Smith (1990) shows that if data are spatially correlated, the variance in (3.9) is more

accurate than the variance under independent and identically distributed assumption.

Temporal dependence in extreme values can be a negligible issue for block maxima

methods when block size is large enough. Our block maxima method uses annual

maxima, which represents a large block size of 365 days, and the autocorrelation in

annual maxima at lag 1 (one year) are in fact very low (−0.041 in Central Park,

0.014 in Newark, −0.045 in La Guardia, and −0.188 in JFK for annual snowfall

maxima). However, threshold exceedances methods must take into account temporal

dependence to obtain accurate results. When the exceedances over a given threshold

are considered, these exceedances can be significantly autocorrelated for a short period

of time. Fitting the independence-assumed GP distribution to these autocorrelated

threshold exceedances can be problematic.
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To address temporal dependence in threshold exceedances, decorrelation tech-

niques have been developed. These techniques aim to extract a set of independent val-

ues from all threshold exceedances. Past studies often applied the “runs-declustering”

algorithm that considers all exceedances within a user-specific parameter to be a

cluster and used only the maximum value of all exceedances within each cluster

(Davison and Smith, 1990). However, Fawcett and Walshaw (2007) showed that

the declustering method can systemically incur bias in model parameter estimates,

producing underestimated return levels when threshold exceedances are strongly

autocorrelated. They instead used all threshold exceedances and proposed modi-

fying the standard error of the maximum likelihood estimates for autocorrelation in

the threshold exceedances by incorporating Smith’s method. Fawcett and Walshaw

(2012) showed that using all threshold exceedances with Smith’s adjustment method

performs better than the declustering method for return level estimation, provided

that the extremal index is appropriately estimated.

Extremes are rare by their nature. With the temporal correlation in threshold

exceedances taken into account, we can further improve estimation accuracy by

incorporating all neighboring, spatially correlated stations into a threshold exceedance

model. Thus, this approach can use the maximum possible number of extreme

observations available to us. We propose extending Smith’s method to this spatially

and temporally dependent extreme data, as Smith’s method has been shown to

perform well under spatial dependence and under temporal dependence. In our study,

the log-likelihood function for θ in (3.6) is reexpressed as

`n(θ) =
n∑
i=1

hi(θ) =
n∑
i=1

m∑
j=1

nij∑
t=1

gijt(θ), (3.10)
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where gijt is a contribution from the t-th observation from station j in i-th year to `n,

m is the number of weather stations, and nij is the number of observations in station

j for i-th year. We assume in (3.10) that each contribution hi, which is constructed

from observations with some dependence, is independent of each other. If the data are

spatially and temporally dependent but independent in each year, we can construct

each hi and proceed as usual.

3.5 Confidence Intervals for Return Levels

The delta method is often used to construct asymptotic confidence intervals for a

function of parameters. Denote θ̂ by a vector of maximum likelihood estimators and

θ0 a vector of true values of the unknown parameters. Suppose
√
n(θ̂−θ0)→ N(0,Σ)

in distribution. For a given function g(·), if the p-dimensional ∇g(θ0) exists and is

non-zero, then
√
n(g(θ̂)− g(θ)) −→ N(0,∇g(θ0)

TΣ∇g(θ0))

in distribution (cf. Casella and Berger, 2001). Rust et al. (2011) obtained the asymp-

totic variance of the return level xK in (3.3) for the Gumbel distribution (equivalently

a GEV distribution with ξ = 0) as follows:

V ar(x̂K) ≈ β11 − (β12 + β21) log

(
− log

(
1− 1

K

))
+ β22

[
log

(
− log

(
1− 1

K

))]2
,

where βij is the (i, j)-th element of the Fisher information matrix inverse H−1.

However, the asymptotic confidence intervals based on the delta method often fail to

reach targeted coverage probabilities, inadequately capturing the sampling variability

of the maximum likelihood estimators (Rust et al., 2011). In addition, finding the
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asymptotic distribution for the return level is very difficult for the GEV distribution

with ξ 6= 0 or GP distribution settings.

We consider bootstrap confidence intervals. To obtain a bootstrap confidence

interval, B number of replications, each of size n, need to be obtained from the

data. The simple resampling method would be to select a random sample of size n

with replacement from the data for each iteration. However, this simple resampling

method often fails to approximate the true distribution of data when the data is

not independent and identically distributed (cf. Givens and Hoeting, 2013). There

are many techniques available to address this problem. We choose the moving block

bootstrap, first introduced by Künsch (1989), due to its effectiveness and simplicity.

To implement the moving block bootstrap, n − l − 1 overlapping boxes, each sized

at l, needs to be defined from the data. n/l boxes of length l are then randomly

sampled from these boxes to obtain a bootstrap sample. For example, if we have data

{x1, x2, x3, x4, x5, x6, x7, x8, x9} with sample size n = 9 and choose l = 3, a possible

bootstrap sample would be {x3, x4, x5, x4, x5, x6, x1, x2, x3}. From the b-th bootstrap

sample for b = 1, . . . , B, maximum likelihood estimates of the model parameters are

found to compute the return level estimate, x̂
(b)
K .

The classical percentile bootstrap method uses the α/2-th lower and upper quan-

tiles of the return level bootstrap estimates {x̂(1)K , . . . , x̂
(B)
K } as confidence intervals’

endpoints. However, the percentile bootstrap method often produces biased confi-

dence intervals if the bootstrap distribution is skewed (DiCiccio and Efron, 1996).

Efron (1987) developed the bias-corrected and accelerated (BCa) bootstrap method

to correct bias due to skewness. The BCa method first computes the bias-correction

constant zBC by
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zBC = Φ−1

(
1

B

B∑
b=1

I(x̂
(b)
K < x̂K)

)
,

where Φ(·) is the standard normal cumulative distribution function, I(E) is an indi-

cator function which returns 1 if E is true and 0 otherwise, and x̂K is the estimated

return level from the original data. Next, the acceleration constant cA is computed

by

cA =

∑n
i=1(x̃

(−i)
K − x̃(·)K )3

6
[∑n

i=1(x̃
(−i)
K − x̃(·)K )2

]3/2 ,
where x̃

(−i)
K is the delete-1 jackknife estimate of xK with i-th observation deleted

from the data and x̃
(·)
K = 1

n

∑n
i=1 x̃

(−i)
K (cf. Givens and Hoeting, 2013). Then, the

(1−α)×100% BCa confidence interval uses the following quartiles of the return level

bootstrap estimates as the interval endpoints:

Φ

(
zBC +

zBC − zα/2
1− cA(zBC − zα/2)

)
, Φ

(
zBC +

zBC + zα/2
1− cA(zBC + zα/2)

)
,

where zα/2 is the α/2-th upper quantile of the standard normal distribution. We used

this method to obtain confidence intervals for return levels.
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CHAPTER 4

RESULTS

4.1 Annual Maximum Snowfall Results

We apply the block maxima method to the annual maximum snowfall series for

each of the four stations selected from the New York City area. To elaborate, let Mit

be the maximum snowfall observation at station i during snow year t. In order to

account for possible geographical location effects on snowfall, we assume that {Mit}

follows a GEV(µi, σi, ξi) distribution, with µi as the GEV location parameter for each

of the Central Park, Newark, La Guardia, and JFK stations. For model selection, we

use the corrected Akaike information criterion (AICC), defined as:

AICC = 2k − 2`+
2k(k + 1)

n− k − 1
,

where ` is the maximum log likelihood value for model, k is the number of model

parameters, and n is the sample size. The model with the lowest AICC value is

preferred. We find that a GEV model with different σi’s and ξi’s does not significantly

improve a GEV model fit. Specifically, a model with different µi’s, σi’s, and ξi’s

returned the AICC value of 1376.398, whereas a model with different µi’s but σ and ξ

fixed returned the AICC value of 1362.943. Hereafter, we consider only those models

with different µi’s but σ and ξ fixed for all four stations.
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Our GEV estimation results are summarized in Table 4.1. We consider four

different GEV models with varying number of µi’s by iteratively merging closest µi’s.

We choose Model 3 for further analysis as it has the lowest AICC value. We then

compute the standard errors of GEV maximum likelihood estimates. The näıve stan-

dard errors (ignoring spatial dependence among the four stations) and the corrected

standard errors by Smith’s method (including spatial correlation for the stations)

are displayed in the table next to the parameter estimates. The spatial correlation

corrected standard errors are greater than the corresponding näıve standard errors,

implicating that there are more uncertainty in the GEV parameter estimates once

the spatial correlation is considered.

Table 4.1: Stationary GEV estimates for annual maximum snowfall data with
their associated standard errors in parentheses (left : näıve, right :
corrected)

Model 1 Model 2 Model 3 Model 4

µ

µ1 6.952 (0.484, 0.545)
6.863 (0.375, 0.589)

6.748 (0.322, 0.577)
6.556 (0.293, 0.571)

µ2 6.760 (0.512, 0.658)
µ3 6.526 (0.491, 0.578) 6.535 (0.491, 0.573)
µ4 5.981 (0.488, 0.578) 5.988 (0.489, 0.574) 5.990 (0.489, 0.573)

σ 3.788 (0.229, 0.482) 3.793 (0.228, 0.481) 3.797 (0.228, 0.480) 3.823 (0.230, 0.473)
ξ 0.168 (0.059, 0.085) 0.165 (0.058, 0.084) 0.165 (0.058, 0.084) 0.162 (0.059, 0.081)
` -674.212 -674.254 -674.426 -675.487
AICC 1362.943 1360.895 1359.127 1359.157

Snowfall data could show non-stationary characteristics, such as long-term trends.

We consider this issue by including adequate parameters into our models. Specifically,

to quantify a possible long-term linear trend in the annual maximum snowfall series

at station i, we reparameterize the GEV location parameter µ in (3.1) to have a linear

trend:



24

µit = µi + β

(
t− 1958

10

)
for snow year t = 1959, . . . , 2015. Here, the trend parameter β is interpreted as the

expected change in maximum snowfall over a decade:

E(Mi,t+10)− E(Mi,t) =

[
µi,t+10 +

σ

ξ
(Γ(1− ξ)− 1)

]
−
[
µi,t +

σ

ξ
(Γ(1− ξ)− 1)

]
= β,

when ξ < 1. We assume that the geospatial trends in maximum snowfall series are

the same for the four stations. Results from the GEV maximum likelihood estimation

are summarized in Table 4.2. We will only consider Model 3 for further analysis as

this model is parsimonious and still a good fit for the data based on the AICC values.

The estimated linear trend in Model 3 is 0.232 inches decade−1. Based on 56 annual

maximum snowfall observations from each of the four stations, the trend estimate β

is not significantly different from zero with the corrected standard error 0.292 used

for significance test. However, we note that this estimate could be more statistically

meaningful when we have more snow year data.

Table 4.2: Non-stationary GEV estimates for annual maximum snowfall data
with their associated standard errors in parentheses (left : näıve,
right : corrected)

Model 1 Model 2 Model 3 Model 4

µ

µ1 6.281 (0.656, 0.911)
6.214 (0.562, 0.950)

6.114 (0.523, 0.929)
5.962 (0.514, 0.927)

µ2 6.181 (0.656, 1.010)
µ3 5.953 (0.639, 0.911) 5.918 (0.632, 0.905)
µ4 5.287 (0.677, 0.930) 5.288 (0.671, 0.926) 5.293 (0.671, 0.923)
β 0.246 (0.154, 0.298) 0.231 (0.152, 0.293) 0.232 (0.152, 0.292) 0.213 (0.153, 0.297)

σ 3.796 (0.233, 0.473) 3.768 (0.229, 0.459) 3.772 (0.230, 0.458) 3.807 (0.230, 0.454)
ξ 0.156 (0.061, 0.083) 0.169 (0.061, 0.081) 0.169 (0.061, 0.080) 0.162 (0.060, 0.077)
` -673.136 -673.121 -673.263 -674.523
AICC 1360.791 1358.629 1356.801 1357.229
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Estimated return levels for 25, 50, 75, and 100 years based on the selected

stationary and non-stationary GEV models are summarized in Table 4.3. For interval

estimation of return levels, the typical confidence interval based on asymptotic theory,

expressed as an estimate ± 1.96 standard error, can be considered. However, as the

shape parameter estimate is positive, the GEV distribution is right skewed, resulting

in that the return level distribution to be also right skewed. We instead consider

bootstrap confidence intervals to approximate this right skewness. To further correct

bias in conventional percentile bootstrap methods, we compute the BCa bootstrap

confidence intervals with 10000 replications, producing 95% BCa bootstrap intervals

as shown in Table 4.3. Although maximum likelihood estimates of return levels

calculated with and without trends are different, it is worth mentioning that their

95% confidence intervals are almost identical. We believe this further verifies that

there are no significant long term linear trends in the annual maximum snowfall series

at this point. We find that the total amount of snowfall brought by the January 2016

snowstorm is about equivalent to a 50-year return level for Central Park, Newark, and

Table 4.3: GEV annual maximum snowfall return level estimates and their
associated 95% BCa bootstrap confidence intervals

Without trend Actual K25 K50 K75 K100

Central Park 27.5
22.753

(20.296, 26.057)
27.561

(24.184, 33.624)
30.622

(26.547, 39.103)
32.918

(28.259, 43.536)
Newark 24.5
La Guardia 28.2

JFK 30.4
22.996 26.802 29.864 32.160

(19.440, 25.147) (23.364, 32.635) (25.782, 38.017) (27.502, 42.378)

With trend Actual K25 K50 K75 K100

Central Park 27.5
24.000

(20.849, 26.885)
29.421

(25.093, 34.080)
33.090

(27.721, 39.199)
35.990

(29.727, 43.316)
Newark 24.5
La Guardia 28.2

JFK 30.4
23.178 28.599 32.269 35.169

(19.993, 26.171) (24.240, 33.256) (26.966, 38.400) (28.922, 42.522)
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La Guardia; and 75-year return level for JFK when linear trends are not considered.

However, if linear trends are included, the actual snow observations are between 25

and 50-year return levels for Central Park, Newark, and La Guardia; and between 50

and 75-year return levels for JFK, respectively.

4.2 87.5-th Percentile Snowfall Results

Now, we apply the threshold exceedances method for the four selected stations.

As discussed in Sections 3.1 and 3.2, the block maxima methods use only block

maximum observations whereas the threshold exceedances methods use all extreme

observations above a certain threshold. Due to a lack of enough extreme events,

threshold exceedances methods can provide additional meaningful information in

understanding extreme events. To apply the threshold exceedances method, we first

need to determine an adequate threshold u for the daily non-zero snowfall series. The

MRL plot in Figure 4.1 and parameter stability plots in Figure 4.2 suggest that a

threshold of 87.5-th percentile of all non-zero snowfall observations (around 6 inches)

could be an adequate threshold when all observations are considered. As the National

Weather Service Forecast Office in New York City issues a winter storm warning when

6 inches or more of snow is expected in a 12 hour period, or at least 8 inches for a 24

hour period, this threshold choice can also be justified on practical viewpoints. We

choose thresholds for non-zero snowfall series to be 87.5-th percentile so that 12.5%

of observations would exceed it.

We then fit a GP distribution to all exceedances over a threshold. For this, let Xit

be the snowfall observation for day t at station i. Assume that ui is the predetermined

threshold associated with station i. If Xit > ui, we denote such Xit by X∗
it. The

exceedance over threshold ui is then expressed as Yit = X∗
it − ui. By extreme value
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Figure 4.1: Mean residual life plot for all non-zero snowfall observations (ver-
tical line: 87.5-th percentile, u: threshold)
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Figure 4.2: Parameter stability plots for GP fit to all non-zero snowfall obser-
vations (vertical line: 87.5-th percentile, u: threshold)
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theory, we assume that these positive Yit’s have a GP(σ∗
i , ξi) distribution for each

station i. As in the previous GEV-based block maxima method, we further assume

that the GP scale and shape parameters, σ∗
i ’s and ξi’s, are identical within each i,

since these four stations are located close to each other. In fact, our GP estimation for

different scale and shape parameters does not produce a significantly improved model.

Also, our estimates of ξi’s are not significantly different from zero for all model cases

(Models 1, 2, 3, and 4), leading to set ξi’s to be zero in our GP analysis. We consider

only those GP models with identical σ∗
i = σ∗ and ξi = 0. We also comment that since

non-zero snowfall observations are clustered during various periods from one day to

five days and since we combined consecutive snowfall events in a single duration, an

adjustment is needed to calculate the over-threshold probability p∗u = P (X > u). We

estimate p∗u by n∗/N∗, where n∗ is the total number of days that threshold-exceeding

snowfall events occurred and N∗ is the total number of days that any nonzero snowfall

events occurred. Furthermore, since we combined consecutive snowfall events, serial

correlation is negligible and the independence assumption therefore appears to be

valid.

Our threshold exceedances method proceeds by following two steps. First, a

quantile regression model is applied to obtain an optimal threshold. Second, GP-based

maximum likelihood estimation is performed for over-threshold exceedances. Quantile

regression methods estimate the conditional quantiles for the probability distribution

of a response variable, producing a fitted curve that corresponds to various percentage

points for the response variable (Koenker, 2005). We obtain stationary thresholds by

fitting a 87.5-th quantile regression with different intercepts, ui, from all non-zero

snowfall observations. Different quantile regression models are fitted by merging

similar ui’s, and their corresponding GP parameters, σ∗
i , are estimated under the
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assumption that ξi = 0. Table 4.4 summarizes our two-step estimation results. We

choose Model 3 for further analysis among the four models we considered, as this

model is parsimonious and still produces a good fit for the data. We comment that

since all four models have different sample observations, the log-likelihood values

for each model should not be interpreted in the same manner as the GEV cases.

Thus, it would be unreasonable to compare AICC values. The standard errors for

quantile regression parameters are computed using the “se=boot” option within the

“summary.rq” function in the R package “quantreg,” which implements one of the

bootstrap approaches (Koenker, 2016). The default “xy-pair” method is used in

our studies. The standard errors for the maximum likelihood estimate of GP scale

parameter σ is computed using two different approaches. The first approach is the

näıve method that ignores spatial and temporal dependences in snowfall observations

of the four locations. The second approach is the corrected method, which extends

Smith’s method to account for both spatial and temporal dependences. The corrected

method inflated the GP standard errors by a factor of two, which is similar to

our finding in the GEV cases. This implies that spatial and temporal dependence

contributes to larger uncertainty in GP parameter estimates.

Table 4.4: Stationary GP estimates for non-zero snowfall data and their asso-
ciated standard errors in parentheses (left : näıve, right : corrected)
for σ∗ with the assumption that ξ = 0

Model 1 Model 2 Model 3 Model 4

u u1 6.000 (0.384) 6.000 (0.384)
5.900 (0.205)

5.800 (0.181)
u2 5.700 (0.455)

5.800 (0.314)
u3 5.900 (0.408)
u4 5.500 (0.483) 5.500 (0.483) 5.500 (0.483)

σ∗ 4.652 (0.280, 0.493) 4.601 (0.275, 0.491) 4.555 (0.272, 0.487) 4.542 (0.270, 0.486)
` -702.831 -707.339 -707.047 -708.760
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Under climate change scenarios, use of constant thresholds can cause inaccurate

results. For example, a constant threshold that is adequate for observations from 1960

could be too low or too high for observations from 2010. Recent studies (Kyselỳ et al.,

2010; Northrop and Jonathan, 2011; Jonathan et al., 2014) used quantile regression

methods to obtain time-dependent thresholds for threshold modeling. Therefore, we

consider non-stationary thresholds to quantify a possible long-term linear trend in

the over-threshold snowfall exceedances in the New York City area. We assume that

the trends in non-zero snowfall series are identical for the four stations. We estimate

the time-dependent threshold uit by fitting a 87.5-th quantile regression model with

different intercepts ui’s and a linear trend β as follows:

uit = ui + β

(
t

365.25× 10

)
.

Here, t denotes the day t∗ in which X∗
it∗ > 0. Note t∗ = 1, . . . , 20454 with t∗ = 1 as

July 1, 1959 (the first day of snow year 1959), and t∗ = 20454 as June 30, 2016 (the

last day of snow year 2015 and last day of the study period). If a snowfall event had

lasted for more than one day, the average of corresponding t∗ is used as the value for t.

This time-dependent threshold uit can more likely keep the over-threshold probability

p∗u constant over the entire study period. Table 4.5 summarizes our quantile regression

and GP-based maximum likelihood estimation results. Similar to the stationary case,

we only consider Model 3 for further analysis. The estimated linear trend in Model

3 is 0.564 inches decade−1, which is about 2.4 times greater than the GEV estimated

trend for annual maximum snowfall series. In addition, the standard error for Model

3 with all exceedances is much smaller than the standard error for the GEV trend

estimate with annual maximum series. This is possibly due to the fact that the
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quantile regression and GP model uses all non-zero observations, whereas the GEV

model uses only annual maxima, therefore contributing to the reduction of variance.

The estimated trend in all exceedances is determined to be statistically significant,

implying that 87.5-th percentile snowfall have increased by 0.564 inches decade−1.

This is in contrast to the annual maximum snowfall, which shows an insignificant

increase by 0.232 inches decade−1. For further analysis, only non-stationary GP

models are considered as they have shown to offer significantly improved fitting over

stationary GP models.

Table 4.5: Non-stationary GP estimates for non-zero snowfall data and their as-
sociated standard errors in parentheses (left : näıve, right : corrected)
for σ∗ with the assumption that ξ = 0

Model 1 Model 2 Model 3 Model 4

u u1 4.652 (0.559) 4.644 (0.600) 4.633 (0.607)

4.109 (0.363)
u2 4.044 (0.487)

4.112 (0.395)
3.986 (0.381)u3 4.232 (0.490)

u4 3.919 (0.512) 3.850 (0.455)
β 0.525 (0.122) 0.541 (0.110) 0.564 (0.116) 0.548 (0.111)

σ∗ 4.582 (0.272, 0.500) 4.529 (0.268, 0.499) 4.527 (0.269, 0.502) 4.618 (0.275, 0.513)
` -713.739 -717.976 -712.870 -716.002

Estimated return levels for 25, 50, 75, and 100 years from the selected non-

stationary GP model along with their 95% confidence intervals computed from the

BCa bootstrap method with 10000 replications are shown in Table 4.6. Since serial

correlations on our 87.5-th percentile snowfall series are negligible, a standard paired

bootstrap is employed in lieu of the moving block bootstrap. Return level estimates

computed from non-stationary GP models align fairly well with those from GEV

models. We find that the actual snowfall observations from the blizzard are about

equivalent to a 25-year return level for Central Park, less than a 25-year return level

for Newark, and between 25 and 50-year return levels for La Guardia and JFK.
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Table 4.6: Non-stationary GP snowfall return level estimates and their associ-
ated 95% BCa bootstrap confidence intervals

Actual K25 K50 K75 K100

Central Park 27.5
27.216 31.809 35.070 37.789

(24.199, 30.121) (28.224, 35.319) (31.008, 39.097) (33.256, 42.308)
Newark 24.5

27.365
(24.701, 30.196)

31.958
(28.717, 35.416)

35.219
(31.543, 39.242)

37.938
(33.799, 42.426)

La Guardia 28.2
JFK 30.4

4.3 Annual Maximum Snow Depth Results

To study a more comprehensive characteristic of snow events, we now consider

snow depth. The block maxima method is first applied to the annual maximum snow

depth series recorded at the four selected stations. Let Mit be the maximum snow

depth observation at station i during snow year t. Since the snow depth measurement

in a day is affected by the temperature of the previous day, we include temperature

data in our analysis. Let Tit be the maximum temperature observation at station i

in the previous day when Mit was observed. Specifically, the Central Park station

had its maximum snow depth observation for the snow year 2014 recorded on March

6, 2015. We use the maximum temperature observation on March 5, 2015 as the

corresponding temperature observation for the March 6 snow depth. We assume that

{Mij} follows a GEV(µit, σ, ξ) distribution with µit modeled as

µit = µi + ν(Tit − 32).

Here, the parameter ν represents the expected change in maximum snow depth for

every one degree increase of the previous day’s maximum temperature starting from

32◦F. Geographical proximities influence snow depth by this model for µit. We assume
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that all four stations have identical σ, ξ, and ν, as verified in our preliminary analysis.

Four different models are fitted by combining µi’s, producing the results in Ta-

ble 4.7. Of these models, we choose Model 3 for our analysis as this model balances

well between goodness-of-fit and parsimoniousness based on the AICC values. Both

näıve standard errors and corrected standard errors by Smith’s method are reported

along with maximum likelihood estimates of model parameters. Overall, these results

are similar to those from GEV snowfall analysis, but the shape parameter estimates

in annual maximum snow depth series are greater than the corresponding estimates

in annual maximum snowfall series.

Table 4.7: Stationary GEV estimates for annual maximum snow depth data
with their associated standard errors in parentheses (left : näıve,
right : corrected)

Model 1 Model 2 Model 3 Model 4

µ

µ1 6.514 (0.490, 0.705) 7.112 (0.521, 0.887)
6.440 (0.366, 0.674)

6.119 (0.290, 0.706)
µ2 6.370 (0.459, 0.627) 6.848 (0.487, 0.781)
µ3 5.883 (0.455, 0.584)

6.090 (0.366, 0.644) 5.816 (0.347, 0.595)
µ4 5.748 (0.453, 0.594)
ν -0.215 (0.039, 0.069) -0.235 (0.043, 0.077) -0.217 (0.039, 0.070) -0.217 (0.039, 0.237)

σ 3.586 (0.241, 0.444) 3.779 (0.252, 0.517) 3.585 (0.240, 0.461) 3.614 (0.241, 0.945)
ξ 0.240 (0.075, 0.102) 0.182 (0.072, 0.107) 0.238 (0.074, 0.105) 0.232 (0.073, 0.351)
` -655.275 -656.408 -655.330 -656.429
AICC 1325.081 1325.212 1320.942 1321.045

We estimate a long-term linear trend in snow depth data by modeling the GEV

location parameter µ in (3.1) as

µit = µi + β

(
t− 1958

10

)
+ ν(Tit − 32)

for snow year t = 1959, . . . , 2015. The parameter β is interpreted as the expected

change in maximum snow depth over a decade under the assumption that temperature
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remains unchanged. We further assume that the trends in the maximum snow depth

series are the same for the four stations. Table 4.8 summarizes our GEV estimation

results. Overall, the results are similar to ones from models without trends. Model 3 is

selected for further analysis since it has the lowest AICC value. The estimated linear

trend from Model 3 is 0.157± 1.96 (0.165 näıve, 0.292 corrected) inches decade−1.

Although this estimate is not significantly different from zero, we note that this trend

will be also used to estimate return levels.

Table 4.8: Non-stationary GEV estimates for annual maximum snow depth
data with their standard errors in parentheses (left : näıve, right :
corrected)

Model 1 Model 2 Model 3 Model 4

µ

µ1 6.471 (0.618, 0.769) 6.317 (0.608, 0.757)
6.378 (0.579, 0.824)

5.733 (0.458, 0.709)
µ2 6.206 (0.618, 0.838) 6.321 (0.595, 0.881)
µ3 5.273 (0.615, 0.650)

5.674 (0.493, 0.718) 5.612 (0.559, 0.737)
µ4 5.421 (0.616, 0.691)
β 0.098 (0.151, 0.264) 0.143 (0.144, 0.277) 0.157 (0.165, 0.292) 0.155 (0.146, 0.280)
ν -0.221 (0.045, 0.078) -0.225 (0.042, 0.077) -0.241 (0.048, 0.085) -0.225 (0.043, 0.079)

σ 3.721 (0.262, 0.519) 3.634 (0.237, 0.485) 3.891 (0.274, 0.565) 3.644 (0.243, 0.478)
ξ 0.234 (0.083, 0.129) 0.179 (0.070, 0.112) 0.142 (0.074, 0.116) 0.212 (0.075, 0.116)
` -655.587 -655.343 -655.764 -665.825
AICC 1327.860 1325.217 1323.924 1341.932

As snow depth for a day is dependent on the temperature reading on that day,

return levels also depend on temperatures. Here, we consider three different temper-

ature scenarios: (1) the lowest temperature ever recorded during the study period in

each station (9◦F for Central Park, 5◦F for Newark, and 8◦F for both La Guardia and

JFK), (2) 32◦F, and (3) 40◦F. Each scenario is chosen for its own reason. The lowest

temperature (minimum) scenario considers return levels under the most extreme

temperature case. The 32◦F scenario is a reasonable choice as it is a freezing point.
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The 40◦F scenario is chosen as this is approximately the average daily maximum

temperature for the days with non-zero snow depth observed.

Under the three temperature scenarios, return levels for 25, 50, 75, and 100 years

are calculated from the selected stationary and non-stationary GEV models. Table 4.9

summarizes these return level results along with their associated 95% BCa bootstrap

confidence intervals from 10000 replications. Similar to snowfall, the fitted GEV

distribution is right-skewed as the shape parameter is positive. To take into account

the right skewness in the GEV return level distribution, bootstrap confidence intervals

are used instead of the asymptotic confidence interval. We find that maximum

likelihood estimates of return levels and their respective 95% confidence intervals

calculated with linear trends are consistently lower than ones calculated without

linear trends. This results seem to be contradictory because the estimated linear

trend β, although statistically not significant, is positive. We believe this is due to

the fact that the estimated ξ from non-stationary Model 3 is much smaller than the

estimated ξ from stationary Model 3, which contributed to fitted return levels from

non-stationary models to be smaller, even with a positive slope. Regardless, we do

find results from stationary and non-stationary models are similar and we believe

that this further supports our finding that a significant long term linear trend in

the annual maximum snow depth series does not exist at this point. Lastly, we find

that the maximum snow depth observation recorded from the 2016 snowstorm is less

than a 25-year return level for Central Park and Newark; and about equivalent to a

75-year return level for La Guardia and JFK under the 32◦F temperature scenario.

However, if we consider the 40◦F temperature scenario, the actual snow observations

are about equivalent to a 25-year return level for Central Park and Newark; and less

than a 50-year return level for La Guardia and JFK. Furthermore, the actual snow
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Table 4.9: GEV annual maximum snow depth return level estimates and their
associated 95% BCa bootstrap confidence intervals under three dif-
ferent temperature scenarios

Without Trend
Minimum

Actual K25 K50 K75 K100

Central Park 22
28.622 34.495 38.388 41.381

(25.184, 31.802) (29.749, 39.618) (32.561, 45.540) (34.599, 50.400)

Newark 20
29.492 35.365 39.258 42.251

(25.924, 32.785) (30.501, 40.425) (33.391, 46.314) (35.479, 51.145)
La Guardia 27 28.216 34.088 37.981 40.975
JFK 28 (24.779, 31.502) (29.331, 39.273) (32.122, 45.158) (34.161, 50.083)

With Trend
Minimum

Actual K25 K50 K75 K100

Central Park 22
28.955 33.883 37.127 39.640

(25.379, 32.594) (28.329, 37.605) (29.168, 41.251) (31.429, 44.261)

Newark 20
29.920 34.848 38.092 40.605

(26.199, 33.841) (29.121, 38.689) (30.895, 42.233) (32.265, 45.229)
La Guardia 27 28.431 33.359 36.603 39.116
JFK 28 (24.688, 31.979) (27.675, 37.017) (29.629, 40.677) (31.052, 43.626)

Without Trend
32◦F

Actual K25 K50 K75 K100

Central Park 22 23.621 29.493 33.386 36.379
Newark 20 (20.558, 27.102) (24.788, 35.615) (27.394, 41.739) (29.311, 46.734)
La Guardia 27 22.997 28.869 32.762 35.755
JFK 28 (19.906, 26.473) (24.121, 35.001) (26.733, 41.133) (28.663, 46.040)

With Trend
32◦F

Actual K25 K50 K75 K100

Central Park 22 23.404 28.332 31.576 34.089
Newark 20 (20.060, 26.394) (23.049, 32.032) (24.894, 35.863) (26.251, 38.970)
La Guardia 27 22.639 27.566 30.811 33.324
JFK 28 (19.191, 25.444) (22.217, 31.099) (24.053, 34.998) (25.437, 38.100)

Without Trend
40◦F

Actual K25 K50 K75 K100

Central Park 22 21.881 27.753 31.646 34.640
Newark 20 (18.669, 25.840) (22.871, 34.445) (25.477, 40.616) (27.403, 45.577)
La Guardia 27 21.257 27.129 31.022 34.015
JFK 28 (17.991, 25.187) (22.161, 33.753) (24.816, 39.956) (26.694, 44.769)

With Trend
40◦F

Actual K25 K50 K75 K100

Central Park 22 21.473 26.401 29.645 32.158
Newark 20 (17.930, 24.578) (20.983, 30.278) (22.786, 34.233) (23.079, 37.248)
La Guardia 27 20.708 25.636 28.880 31.393
JFK 28 (17.130, 23.630) (20.068, 29.384) (21.817, 33.237) (22.891, 36.323)
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observations are significantly less than a 25-year return level for Central Park and

Newark; and about equivalent to a 25-year return level for La Guardia and JFK under

the minimum temperature scenario.

4.4 75-th Percentile Snow Depth Results

The threshold exceedances method is now applied to snow depth series recorded at

the four stations. To determine an adequate threshold, an MRL plot is again examined

as shown in Figure 4.3. The MRL plot suggests that 75-th percentile of all non-zero

snow depth observations (around 6 inches) could be an adequate threshold. We

choose the 75-th percentile as thresholds for non-zero snow depth series so that 25%

of observations would exceed it. Similar to the snowfall case, this is again consistent

with the practical viewpoint. A GP distribution is then fitted to all exceedances over

the threshold. Scale and shape parameters, σ∗ and ξ, respectively, are assumed to be
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Figure 4.3: Mean residual life plot for all non-zero snow depth observations
(vertical line: 75-th percentile, u: threshold)
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identical across all stations. Also, ξ is set to be zero since our maximum likelihood

estimate of ξ is very close to zero. We assume that the exceedances Yit over ui for

day t at station i have a GP(σ∗, ξ = 0, θi) distribution. Since each observation here

is equally weighted at one day each, no adjustment is needed for the over-threshold

probability p∗. Since there are strong serial correlations up to around lag 50 (50 days),

extremal indexes are also estimated using the intervals estimator.

To obtain different thresholds for the four stations, we fit a 75-th quantile regres-

sion model with different intercepts ui’s and a regression coefficient ν as follows:

uit = ui + ν(Tit − 32),

where t denotes the day t∗ in which non-zero snow depth observation was recorded

(X∗
it∗ > 0 for t∗ = 1, . . . , 20454 with t∗ = 1 as July 1, 1959 and t∗ = 20454 as

June 30, 2016). Models 1–4 are fitted by iteratively merging smallest differences

in ui’s and θi’s. Results are summarized in Table 4.10. We choose Model 3 for

further analysis since it appears to be the most parsimonious and providing an

adequate fit for the data. The estimated coefficient associated with temperature

in Model 3 is −0.1, implicating that maximum snow depth decreases by 0.1 inches

on average as temperature increases by 1◦F from 32◦F. The standard errors for

quantile regression parameters are computed using the “se=boot” option within the

“summary.rq” function in the R package “quantreg.” Again, the default “xy-pair”

method is used in our studies. The standard errors for extremal indexes are computed

using the bootstrapping strategy from Section 3.3. Here, the threshold exceedance

series {Yit} exhibit both spatial and temporal dependences. For maximum likelihood

estimate of scale parameter, näıve standard error (ignoring both spatial and temporal
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dependences) and corrected standard error using Smith’s method to account for

both spatial and temporal dependences are reported. We note that the corrected

GP standard errors are about three times larger than their näıve standard errors,

implicating that both temporal dependence and spatial dependence contribute to

additional uncertainty to GP parameter estimates.

Table 4.10: Stationary GP estimates for non-zero snow depth data with their
associated standard errors in parentheses (left : näıve, right : cor-
rected) for σ∗ with the assumption that ξ = 0

Model 1 Model 2 Model 3 Model 4

u u1 6.400 (0.209) 6.323 (0.211) 6.300 (0.209)

5.700 (0.102)
u2 5.600 (0.170) 5.613 (0.169)

5.500 (0.112)u3 5.300 (0.219)
5.355 (0.155)

u4 5.400 (0.232)
ν -0.100 (0.012) -0.097 (0.012) -0.100 (0.012) -0.100 (0.012)

σ∗ 4.149 (0.119, 0.381) 4.147 (0.119, 0.377) 4.113 (0.118, 0.373) 4.215 (0.122, 0.370)
θ θ1 0.149 (0.038) 0.149 (0.038)

0.152 (0.027)
0.175 (0.024)

θ2 0.155 (0.031) 0.155 (0.031)
θ3 0.203 (0.038)

0.204 (0.029) 0.204 (0.029)
θ4 0.206 (0.035)

` -2950.912 -2957.669 -2954.969 -2928.933

To quantify a possible long-term linear trend in the threshold exceedances of snow

depth series in the New York City area, we include a linear slope term in our quantile

regression model. Different thresholds are obtained for the four stations by fitting a

75-th quantile regression model with different intercepts ui’s, a linear trend β, and a

regression coefficient ν as follows:

uit = ui + β

(
t

365.25× 10

)
+ ν(Tit − 32).

It is assumed that β and ν are the identical across all stations. Results from
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quantile regression, GP-based maximum likelihood estimation, and intervals esti-

mator for extremal indexes are summarized in Table 4.11. For a similar reason to

the stationary case, only Model 3 is considered for further analysis. The estimated

temperature term in Model 3 is −0.102 inches per 1◦F increase from 32◦F, which is

about two-fifths of the GEV temperature parameter estimate for the annual maximum

snow depth series, paired with the previous day’s maximum temperature series. This

result implies that annual maximum snow depth observations are more susceptible

to temperature changes than 75-th percentile snow depth observations. The trend

estimate is 0.559 inches decade−1, which is about 3.5 times greater than the GEV

trend estimate. Unlike the GEV trend estimate, the quantile regression trend estimate

is statistically significant, implying that the 75-th percentile snow depth has increased

by 0.559 inches decade−1. This is in contrast to the annual maximum snow depth,

which shows an insignificant increase of about 0.157 inches decade−1. Similar to

Table 4.11: Non-stationary GP estimates for non-zero snow depth data and
their associated standard errors in parentheses (left : näıve, right :
corrected) for σ∗ with the assumption that ξ = 0

Model 1 Model 2 Model 3 Model 4

u u1 4.725 (0.248) 4.755 (0.245) 4.767 (0.233)

3.924 (0.142)
u2 4.031 (0.175) 4.035 (0.175)

3.769 (0.143)u3 3.464 (0.214)
3.612 (0.182)

u4 3.727 (0.209)
β 0.572 (0.046) 0.565 (0.045) 0.559 (0.042) 0.577 (0.044)
ν -0.103 (0.009) -0.103 (0.009) -0.102 (0.009) -0.101 (0.011)

σ∗ 4.081 (0.117, 0.408) 4.126 (0.120, 0.405) 4.109 (0.118, 0.407) 4.178 (0.120, 0.402)
θ θ1 0.188 (0.040) 0.188 (0.040)

0.173 (0.024)
0.193 (0.022)

θ2 0.161 (0.030) 0.161 (0.030)
θ3 0.220 (0.043)

0.219 (0.031) 0.219 (0.031)
θ4 0.218 (0.034)

` -2928.777 -2844.294 -2932.307 -2954.788
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snowfall, non-stationary GP models offer significantly improved fitting over stationary

GP models. For this reason, only non-stationary GP models are considered for further

analysis.

Estimated return levels for 25, 50, 75, and 100 years from the selected non-

stationary GP model are obtained under the three different temperature scenarios

as explained in the Section 4.3. These return level estimates are accompanied by

their 95% confidence intervals computed from the BCa bootstrap method with 10000

replications. Estimation results are summarized in Table 4.12. All zero and nonzero

observations are resampled using moving block bootstrap with the block size 50 in

each bootstrap iteration due to high serial correlation. Furthermore, Ferro and Segers

(2003) showed that θ̂ obtained by the intervals estimator converges in probability to

true θ under some mild conditions. For this reason, the mean of B = 10000 samples

of θ̂(b) where b = (1, . . . , B) are used in place of extremal index in each BCa bootstrap

replication (i.e., standard bootstrap and delete-1 jackknife) of return levels. Return

levels along with the 95% confidence intervals estimated from GEV and non-stationary

GP models aligned fairly well. We do note that non-stationary GP models returned

consistently lower return levels than GEV models which we believe is because we

explicitly corrected serial correlation using extremal index in non-stationary GP

settings. Finally, we find that the maximum snow depth observation recorded from the

blizzard is less than a 25-year return level for Central Park and Newark; and between

50 and 75-year return levels for La Guardia and JFK under the 32◦F temperature

scenario. However, if we consider the 40◦F temperature scenario, the actual snow

observations are about equivalent to a 25-year return level for Central Park and

Newark; and a 75-year return level for La Guardia and JFK. Furthermore, the actual

snow observations are noticeably less than a 25-year return level for Central Park and
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Newark; and between 25 and 50-year return levels for La Guardia and JFK under the

minimum temperature scenario.

Table 4.12: Non-stationary GP snow depth return level estimates and their
associated 95% BCa bootstrap confidence intervals under three
different temperature scenarios

Minimum Actual K25 K50 K75 K100

Central Park 22
24.595 28.881 31.958 34.544

(21.826, 26.918) (25.689, 31.590) (28.357, 35.025) (30.506, 37.978)

Newark 20
23.870 28.157 31.234 33.819

(21.613, 25.806) (25.443, 30.499) (28.108, 33.930) (30.320, 36.916)
La Guardia 27 24.524 28.811 31.888 34.473
JFK 28 (22.194, 26.544) (26.016, 31.234) (28.662, 34.689) (30.894, 37.696)

32◦F Actual K25 K50 K75 K100

Central Park 22
22.249 26.535 29.612 32.198

(19.438, 24.586) (23.235, 29.294) (25.852, 32.806) (28.032, 35.804)

Newark 20
21.116 25.403 28.479 31.065

(18.859, 23.036) (22.588, 27.808) (25.218, 31.335) (27.391, 34.417)
La Guardia 27 22.076 26.363 29.439 32.025
JFK 28 (19.749, 24.101) (23.465, 28.880) (26.127, 32.387) (28.300, 35.422)

40◦F Actual K25 K50 K75 K100

Central Park 22
21.432 25.719 28.796 31.382

(18.564, 23.773) (22.311, 28.517) (24.949, 32.021) (27.154, 35.061)

Newark 20
20.300 24.587 27.663 30.249

(18.000, 22.271) (21.706, 27.072) (24.341, 30.598) (26.515, 33.685)
La Guardia 27 21.260 25.547 28.623 31.209
JFK 28 (18.883, 23.328) (22.612, 28.117) (25.250, 31.642) (27.424, 34.718)



43

CHAPTER 5

DISCUSSION

5.1 Comments

To illustrate the necessity of using appropriate extreme value analysis techniques

for extreme data, we fit a gamma distribution model to the NRCC’s snow data. Only

non-zero daily snowfall and snow depth observations are used to fit gamma distribu-

tion models. Then, the return period Kx, which is an inverse of return levels based

on the actual observations from the blizzard, are computed. Table 5.1 summarizes

the estimates of shape parameter α and rate parameter β for Gamma models and

the corresponding return periods Kx in years. We note that Gamma models produce

unrealistic return periods for the actual observations from the blizzard, therefore

Gamma models do not provide adequate fits for snow data. This result illustrates

why appropriate extreme value distributions need to be used for the snow data.

Table 5.1: Gamma estimation results and return years

Snowfall Snow depth
α β Kx α β Kx

Central Park 0.847 0.286 444 years 1.472 0.321 93 years
Newark 0.701 0.264 135 years 1.543 0.359 70 years
La Guardia 0.788 0.302 926 years 1.536 0.394 738 years
JFK 0.780 0.320 3547 years 1.513 0.374 1195 years
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We now consider return periods of the 2016 blizzard. To obtain useful return

period scenarios, we use the three extreme value models as illustrated in Chapters 3

and 4: (1) stationary GEV block maxima method, (2) non-stationary GEV block

maxima method with linear trend, and (3) non-stationary GP threshold exceedances

method with extremal index and linear trend. We estimate return periods based

on the actual snowfall observations from January 22, 2016 to January 24, 2016.

Additionally, we estimate return periods based on the actual snow depth observations

on January 24, 2016 paired with the maximum temperatures recorded on January

23, 2016. Table 5.2 summarizes these estimated return periods. All three methods

returned very similar return years, suggesting that they all provide adequate fits

to the data. Results indicate that snow depth observations from the blizzard were

generally not as extreme compared to snowfall observations, which can be explained

by increasing trends in temperatures paired with extreme snow depth observations.

Table 5.2: Return periods for the actual snowfall and snow depth observations
from the January 2016 blizzard

Snowfall
Actual GEV GP

Observation Stationary Non-stationary Non-stationary
Central Park 27.5 inches 50 years 40 years 26 years
Newark 24.5 inches 32 years 27 years 18 years
La Guardia 28.2 inches 55 years 43 years 32 years
JFK 30.4 inches 80 years 56 years 45 years

Snow depth
Actual GEV GP

Observation Stationary Non-stationary Non-stationary
Central Park 22 inches & 35◦F 22 years 23 years 25 years
Newark 20 inches & 36◦F 17 years 17 years 21 years
La Guardia 27 inches & 36◦F 45 years 48 years 57 years
JFK 28 inches & 35◦F 49 years 53 years 64 years
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Central Park and Newark had much lower snow depth observations recorded for the

January 2016 blizzard (22 and 20 inches, respectively) compared to La Guardia and

JFK (27 and 28 inches, respectively). This resulted in Central Park and Newark

having much lower return periods computed from all three methods than La Guardia

and JFK. Similarly, JFK had higher snowfall records (30.4 inches) than any of the

other three stations (27.5, 24.5, and 28.2 inches), which resulted in JFK having the

highest return periods for snowfall.

For comparison purposes, all data up to June 30, 2016 are now applied to the three

selected extreme value models. For stationary and non-stationary GEV models, the

addition of maximum snowfall and snow depth observations from snow year 2015

resulted in about a 20% increase of the maximum likelihood estimate of ξ. For

non-stationary setting, although the estimated linear trends did increase by 16% for

snowfall and 64% for snow depth, they were still not significantly different from zero

with the corrected standard errors. Overall, these changes resulted in an increase of

up to four inches in return levels all across stations. For non-stationary GP models,

maximum likelihood estimates of σ and linear trends saw little to no increase after

the addition of non-zero snowfall and snow depth observations from snow year 2015.

However, it was still enough to cause an increase of up to three inches in return levels

all across stations.

5.2 Conclusion

We found insignificant upward trends for both annual maximum snowfall and

annual maximum snow depth series in the New York City area. It would be possible

to obtain more significant trends in annual maxima when more data become available.
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Even with this, we found that 87.5-th percentile for snowfall and 75-th percentile for

snow depth series have significantly increased using the quantile regression and GP

models.

It is evident that the blizzard of January 2016 in the New York City area was

indeed an extreme event; however, this was only about a once-in-forty-years event

in terms of return periods, and conventional extreme value analysis techniques were

adequate enough in explicating the event. Our findings indicate that although mag-

nitudes of snow events that are strong enough to be annual maxima may not increase

over time, we may observe even higher 87.5-th percentile snowfall and 75-th percentile

snow depth in the next 50 years or so.

5.3 Future Work

In this thesis, we focused on the analysis of extreme snow data using established

statistical methodologies. There are several research topics originating from our work

in this thesis that we can consider in the future.

We fitted extreme value models under the assumption that data are independent

and identically distributed, then merged similar model parameters for simplicity. We

extended Smith’s method to adjust underestimated standard errors for model parame-

ters due to spatial and temporal dependence. This approach is fairly straightforward

and much easier to implement than directly accounting for spatial and temporal

dependence in the modeling processes. We may consider comparing how this approach

performs compared to approaches directly modeling spatial and temporal dependence.

When more weather stations from wider geographical regions are considered, our

setting may lead to overfitting. The spatio-temporal modeling techniques, with some
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region segmentation scheme, can be insightful in avoiding this overfitting problem

for a possible extension of this study covering a wider geographical region (e.g., Le

and Zidek, 2006; Cressie and Wikle, 2015). Some approaches that can be used to

directly model for spatial and temporal dependence are max-stable process (e.g.,

Buishand et al., 2008; Blanchet and Davison, 2011; Reich and Shaby, 2012) and

Bayesian hierarchical modeling (e.g., Cooley, Nychka, and Naveau, 2007; Sang and

Gelfand, 2009; Eastoe, 2009; Banerjee, Carlin, and Gelfand, 2015).

As discussed in Section 3.2, choosing appropriate thresholds in GP models is

important, and the process of making those choices can be subjective. Northrop et al.

(2017) used a Bayesian cross-validation method to quantify the bias-variance tradeoff

when selecting a stationary threshold under the assumption that data are independent

and identically distributed. We may consider developing a method applicable for the

selection of non-stationary thresholds for identically distributed data with spatial and

temporal dependence.

Frequency and severity of extreme snowfall and snow depth can be affected by

various factors, such as elevation, spatial region, temperature, humidity, or sunshine

duration. Although temperature was included in snow depth analysis, it was only

considered in the location parameter estimation process. Multivariate extensions of

this thesis can provide additional meaningful information in gaining deeper under-

standing in extreme snow events (e.g., Coles and Tawn, 1991; Schlather and Tawn,

2003; Blanchet and Davison, 2011).

Rust et al. (2011) showed that weakly correlated series also satisfy the Fisher-

Tippett-Gnedenko theorem. This means that block maxima methods can be applied

to not only uncorrelated series but also weakly correlated series. Furthermore, ex-

tremal index can be used to allow GEV and GP distributions to be applied to the



48

short memory time series (Leadbetter, 1983; Coles, 2001). However, whether or not

similar results can be obtained when dealing with the long memory time series has

not been well studied at this point. We leave these explorations for future work.
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APPENDIX A

GRADIENTS OF GEV AND GP DISTRIBUTIONS

In Section 3.4, the empirical covariance matrix of the observed gradient values are

used to estimate V in (3.8) to obtain the estimated corrected variance of maximum

likelihood estimates in (3.9). We show the expressions for gradients of GEV and GP

distributions in this Appendix.

Gradient of the log likelihood function for GEV distribution is obtained by taking

partial derivatives of (3.2) in terms of each unknown parameter as:

∂l(µ, σ, ξ)

∂µ
= − 1

σ

n∑
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[
1 + ξ
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σ
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if ξ 6= 0, and

∂l(µ, σ)

∂µ
=

1

σ

n∑
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{
1− exp

[
−
(
xi − µ
σ

)]}
,
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= −n

σ
+

n∑
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(
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σ2

){
1− exp

[
−
(
xi − µ
σ

)]}
,

if ξ = 0.

Gradient of the log likelihood function for GP distribution is obtained by taking

partial derivatives of (3.4) in terms of each unknown parameter as:

∂l(σ∗, ξ)
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xi,

if ξ = 0.
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APPENDIX B

QUANTILE-QUANTILE PLOTS FOR GEV AND GP

MODELS

To visually examine if the snow data follow appropriate extreme value distri-

butions, Quantile-Quantile plots of fits of (1) stationary GEV, (2) non-stationary

GEV, (3) stationary GP, and (4) non-stationary GP distributions from Chapter 4

to snowfall and snow depth data are produced. Figures B.1 and B.2 suggest that

annual maximum snowfall and annual maximum snow depth series follow the GEV

distribution, and exceedances over the 87.5-th percentile snowfall and exceedances

over the 75-th percentile snow depth series follow the GP distribution.
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Figure B.1: Quantile-Quantile plots of fit of GEV to annual maximum snowfall
and GP to exceedances over the 87.5-th percentile snowfall
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Figure B.2: Quantile-Quantile plots of fit of GEV to annual maximum snow
depth and GP to exceedances over the 75-th percentile snow depth


