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ABSTRACT

When one thinks of objects with a significant level of symmetry it is natural

to expect there to be a simple classification. However, this leads to an interesting

problem in that research has revealed the existence of highly symmetric objects which

are very complex when considered within the framework of Borel complexity. The

tension between these two seemingly contradictory notions leads to a wealth of natural

questions which have yet to be answered.

Borel complexity theory is an area of logic where the relative complexities of

classification problems are studied. Within this theory, we regard a classification

problem as an equivalence relation on a Polish space. An example of such is the

isomorphism relation on the class of countable groups. The notion of a Borel reduction

allows one to compare complexities of various classification problems.

The central aim of this research is to determine the Borel complexities of various

classes of vertex-transitive structures, or structures for which every pair or elements

are equivalent under some element of its automorphism group. John Clemens has

shown that the class of vertex-transitive graphs has maximum possible complexity,

namely Borel completeness. On the other hand, we show that the class of vertex-

transitive linear orderings does not.

We explore this phenomenon further by considering other natural classes of vertex-

transitive structures such as tournaments and partial orderings. In doing so, we

discover that several other complexities arise for classes of vertex-transitive structures.
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CHAPTER 1

INTRODUCTION

Classification problems in Mathematics ask the question: “How can objects of a

given type be identified and distinguished from one another, up to some equivalence

relation?”

When one thinks of objects with a significant level of symmetry it is natural

to expect there to be a simple classification. However, this leads to an interesting

problem in that research has revealed the existence of highly symmetric objects which

are very complex when considered within the framework of Borel complexity. The

tension between these two seemingly contradictory notions leads to a wealth of natural

questions which have yet to be answered. In this thesis we will answer some of these

questions in an attempt to further understand where vertex-transitive structures lie

in terms of Borel complexity theory.

Borel complexity theory is an area of logic where the relative complexities of

classification problems are studied. Within this theory, we regard a classification

problem as an equivalence relation on a Polish space. An example of such is the

isomorphism relation on the class of countable groups.

More generally, we can instead consider any invariant Borel class of countable

structures, which we define below.
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Definition 1. Let L = {Ri : i ≤ I} be a finite relational language, where Ri has

arity ni. Denote the space of all countable L-models as Mod(L). Each element

of Mod(L) can be viewed as an element of the product space

XL =
∏
i≤I

2Nni .

That is, for every x ∈ XL let Mx ∈ Mod(L) be the countable model coded by x.

Then for any i ∈ I and (k1, . . . , kni
) ∈ Nni , it is the case that RMx

i (k1, . . . , kni
) ⇔

xi(k1, . . . , kni
) = 1. For the remainder of this paper we will identify Mod(L) and XL.

Definition 2. The logic action of S∞ on Mod(L) is defined by letting g ·M = N if

and only if

RN
i (k1, . . . , kni

)⇔ RM
i (g−1(k1), . . . , g

−1(kni
))

for all i ∈ I and (k1, . . . , kni
) ∈ Nni. Therefore, g ·M = N if and only if g is an

isomorphism from M onto N .

Definition 3. An invariant Borel class of countable L-structures is an S∞-

invariant Borel subset of Mod(L).

Note that for the purposes of this thesis we always study the orbit equivalence

relation, i.e. the isomorphism relation on either Mod(L) or on the invariant Borel

class.

The notion of a Borel reduction allows one to compare complexities of various

classification problems.
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Definition 4. Let E and F be equivalence relations on the Borel spaces X and Y

respectively. E is considered Borel reducible to F , denoted E ≤B F , if there exists

a Borel function f : X → Y such that, for x, y ∈ X, xEy if and only if f(x)Ff(y).

E and F are bireducible to each other, denoted E ∼B F , if both E ≤B F and

F ≤B E.

Borel reducibility allows for organization of complexities into a hierarchy. The

figure below shows the Borel reductions between the benchmark equivalence relations

which are relevant to this thesis.

Borel Complete

E0 Eω1

id(2ω)

id(ω)

Figure 1.1: Hierarchy of relevant benchmark equivalence relations

These equivalence relations are increasing in the sense of Borel reducibility from

bottom to top wherever there is an edge. We also note that there are many equivalence

relations that lie in between those shown which are omitted for the purpose of

readability.

At the “bottom” of the Borel hierarchy, we have id(ω) which is defined as the

equality relation on elements of ω. While this equivalence relation will not be used,

this gives one a good base as id(ω) is the least complex among equivalence relations

with infinitely many classes.
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We then see that there exists a Borel reduction from id(ω) to id(2ω), or equality

on an uncountable Polish space. Note that, for an equivalence relation E on a set X,

E is said to be smooth if it is the case that E is Borel reducible to id(2ω).

In addition, we see that id(ω) is less complex than Eω1 , or isomorphism on codes

for countable ordinals.

Increasing in complexity, we arrive at the equivalence relation E0 which is the

immediate successor to id(2ω), among the Borel equivalence relations.

Definition 5. The equivalence relation E0 is the relation of eventual equality on 2ω.

That is,

xE0y ⇔ ∃m∀n ≥ mx(n) = y(n).

At the “top” of our Borel hierarchy, we have Borel complete which is the maximum

possible complexity among isomorphism problems for countable structures.

Definition 6. Given C an invariant Borel class, C is Borel complete if and only

if, for every invariant Borel class B, B is Borel reducible to C.

Some commonly referenced examples of Borel complete classes include the class

of linear orders [3] and the class of directed graphs [4].

The central aim of this research is to determine the Borel complexities of vertex-

transitive structures. We say that a structure A is vertex-transitive if, for every

element x, y ∈ A, there exists an automorphism ϕ of A such that ϕ(x) = y. Interest

in such structures stems from their notable symmetry. In this thesis, we explore the

complexities of vertex-transitive graphs, partial orders, linear orders and tournaments

whose relationships can be seen below.
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Digraphs

Tournaments Partial Orders
Linear

Orders

Undirected Graphs

Figure 1.2: Structures studied in this thesis

It is important to remark that the class of vertex-transitive structures need not be

Borel. To say that the isomorphism relation for such structures is Borel complete, it

is sufficient to show that some Borel complete equivalence relation is Borel reducible

to it. Formally, we give the following definitions of the structures seen in the figure

above.

Definition 7. A graph is a pair of sets (V,E) where V is a set of vertices and E

is a set of edges formed by pairs of vertices in V . A directed graph, or digraph,

is a graph in which edges are ordered pairs, where edge (u, v) means that there is a

directed edge from vertex u to vertex v.

We note that, for our purposes, directed graphs have no self-loops and no bidi-

rectional edges. Further, we see that all other structures can be realized as directed

graphs. Narrowing our focus slightly, we find partial orders and tournaments.

Definition 8. A partial order is a binary relation ≤ on a set X which is:

i. reflexive: x ≤ x for all x ∈ X

ii. anti-symmetric: x ≤ y and y ≤ x implies that x = y

iii. transitive: x ≤ y and y ≤ z implies x ≤ z.
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Definition 9. A tournament is a directed graph in which every pair of distinct

vertices is connected by a single directed edge.

Finally, tournaments which satisfy the properties of partial orders are linear orders,

and vice versa.

Definition 10. A linear order is a partial order ≤ on a set X which also satisfies

the comparability axiom. That is, for every x, y ∈ X either x ≤ y or y ≤ x.

We begin by extending the results regarding vertex-transitive graphs in Clemens’

paper titled Isomorphism of homogeneous structures [1]. In this paper, Clemens

showed that the isomorphism relation on countable, connected, vertex-transitive,

undirected graphs is Borel complete. Morover, he suggested that one could also

prove this for the directed case. Here, we first cover the simpler directed case before

filling in the missing components needed to prove the original result for undirected

graphs. A consequence of this leads to the result that vertex-transitive partial orders

are Borel complete.

This analysis then leads us to ask about the complexity of a special case of

directed graphs: linear orders. We have shown that the class of vertex-transitive

linear orderings is, in fact, not Borel complete. Further, we see that there exists an

absolutely ∆1
2 reduction from isomorphism on codes for countable ordinals, denoted

Eω1 , to isomorphism on vertex-transitive linear orders.

We finish this paper by broadening our view slightly to consider vertex-transitive

tournaments. That is, linear orders are a special type of tournament and so it is

natural to see where tournaments lie in terms of Borel complexity. Here we show

that isomorphism of vertex-transitive tournaments is properly more complex than E0

however it remains a question as to whether or not this is Borel complete.
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Beyond the results given in this thesis it is natural to ask about other vertex-

transitive structures. For example, linear orders are a particular type of lattice,

which are partial orders. Since we know that isomorphism of linear orders is Borel

complete and isomorphism of partial orders is, in fact, Borel complete it is natural to

ask if the class of vertex-transitive lattices is Borel complete as well.

Further, instead of vertex-transitive structures we could consider structures with

larger automorphism groups. That is, an n-transitive structure is one in which its

automorphism group acts transitively on n-tuples of distinct elements. So, we could

instead ask the question: is the isomorphism problem for the class of n-transitive

structures Borel complete for a given value n?
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CHAPTER 2

VERTEX-TRANSITIVE GRAPHS AND PARTIAL

ORDERS

We begin by considering isomorphism of vertex-transitive graphs. The work

shown here is an extension of results from Clemens’s paper titled Isomorphism of

homogeneous structures [1] in which he first showed that the isomorphism problem

for countable, connected, vertex-transitive graphs is Borel complete.

The aim is to break up the proof that the isomorphism problems of countable

connected vertex-transitive graphs is Borel complete into several components in order

to uncover further results which follow from Clemens’s ideas. We will first show that

the class of extensional graphs is Borel complete. We then see that there exists a Borel

reduction from the isomorphism relation on countable graphs to the isomorphism

relation on countable, connected vertex-transitive graphs.

The original proof by Clemens focuses on the case where these graphs are undi-

rected with a comment that we could instead consider the directed case given an

additional edge restriction. Here, we first look at the directed case in which we form

the directed Cayley graph of H, a group generated by the vertices of a countable

graph, as directed Cayley graphs are always vertex-transitive.



9

Definition 11. A connected graph is a graph in which there exists a path between

every pair of vertices. A directed graph is weakly-connected if replacing all directed

edges with undirected edges results in a connected graph.

Theorem 12 (Extracted from [1]). There exists a Borel reduction from countable

graphs to countable, weakly-connected, vertex-transitive, directed graphs.

Proof. Let 〈vi〉i∈N enumerate the vertices of a countable graph G. Define H to be

the group generated freely by the the vertices of G with the stipulation that adjacent

vertices commute. That is, let Fω be the free group on generators gi and N be

the normal subgroup of Fω generated by {gigjg−1i g−1j : vi adj vj in G}. Then, define

H = Fω/N and form Γ, the directed Cayley graph of H with generators 〈gi〉i∈N. The

vertices of Γ are left cosets of N in Fω and two vertices w1N and w2N are adjacent

in Γ if giw1N = w2N with a directed edge from w1N to w2N . Note that each of the

generators gi are in distinct cosets.

In order to produce a code for this structure, we begin by fixing an enumeration

〈wi〉i∈N of words in Fω. For each coset of N we pick a representative for that coset

by picking the least i such that wi is in the given coset. This wi is the coset

representative. Then, enumerate the chosen representatives and define the binary

relation on N encoding Γ according to whether corresponding cosets are adjacent in

Γ.

We now aim to show that the map from G to our code Γ is the desired reduction

from the isomorphism relation on countable graphs G to the isomorphism relation

on vertex-transitive, countable, weakly-connected, directed graphs. To see that Γ is

vertex transitive let w1N and w2N be vertices of Γ and define the map
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ϕ(wN) = wNw−11 w2 = ww−11 w2N,

an automorphism of Γ sending w1N to w2N .

Now, suppose we have two isomorphic graphs G1 and G2 with f an isomorphism

between them. Let N1 and N2 be the normal subgroups in the construction of Γ1 and

Γ2 respectively and let

ϕ(wN1) = w̃N2

where, for w = gσnin . . . g
σ0
i0

, w̃ = gσnf(in) . . . g
σ0
f(i0)

. Well, f induces a partial map ϕ from

their respective Cayley graphs ,Γ1 to Γ2, such that ϕ(giN1) = gf(i)N2 which acts on the

cosets of the gi. We then extend this partial map to an isomorphism on the graphs as

a whole. Certainly, ϕ is a bijection. To see that it is well-defined, note that the map

taking w to w̃ is an automorphism of Fw which sends N1 to N2 and so w1w
−1
2 ∈ N1

if and only if w̃1w̃2
−1 ∈ N2.

Now, suppose that w1N1 → w2N1 in Γ1 or, in other words, gkw1N1 = w2N1. Then

ϕ gives that (̃gkw1)N2 = w̃2N2. Notice that g̃kw1 = gf(k)w̃1 and so gf(k)ϕ(w1N1) =

ϕ(w2N1). The argument in the other direction is the same and so w1N1 → w2N1 in

Γ1 if and only if ϕ(w1N1)→ ϕ(w2N1) in Γ2.

Finally, suppose that Γ1 and Γ2 are isomorphic. We want to show that G1
∼= G2

which can be achieved by seeing that one can recover G (up to isomorphism) from the

isomorphism class of Γ. Recalling that Γ is vertex-transitive, without loss of generality

we can fix a vertex in Γ corresponding to N and identify its adjacent vertices, gkN .

Enumerate these adjacent vertices as 〈ui〉i∈N. Let R be the binary relation on this set

such that, for ui 6= uj,
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uiRuj ⇔ ∃b 6= N such that ui = giN → b and uj = gjN → b.

The aim is to show that uiRuj if and only if there exist p, q ∈ N with ui = gpN and

uj = gqN such that vp adj vq in G. Well, if such a pair p, q exists, then gp and gq

commute in H. Then ui and uj are opposite corners of the square including N and

gqgpN = gpgqN . Thus uiRuj. Suppose now that uiRuj, with ui 6= uj. Let ui = gpN

and uj = gqN with N and b = gngqN = gmgpN as the other two vertices of the

square.

gpN gqN

b

N

Figure 2.1: Depiction of uiRuj with ui = gpN and uj = gqN

Thus it must be that

g−1p g−1m gngq ∈ N. (2.1)

Recalling that words in N must have the sum of the exponents of each generator

equal to 0, it must be that p = q and m = n or p = n and m = q. As ui 6= uj then

gpN 6= gqN and so it cannot be the case that p = q and m = n. Therefore, gp = gn

and gm = gq and so

g−1p g−1q gpgq ∈ N
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which means that vp adj vq ∈ G. Thus we can recover from Γ an isomorphic copy of

G by taking the out-neighbors of N as the vertices and R as the edge relation and so

the desired Borel reduction exists.

With this, we have that the isomorphism relation on countable, connected, di-

rected vertex-transitive graphs is Borel complete. The proof of the undirected case

is very similar and so we exclude the redundancies. We also point out the additional

cases required by not knowing whether the powers of the gi in equation (2.1) are 1 or

−1. Additionally, this proof requires that the graph G be extensional.

Definition 13. An extensional graph is one in which, for any vertices v1 6= v2,

there exists a third vertex v3 such that v1 adj v3 and not v2 adj v3.

Fortunately, the following Lemma due to Mekler [8] tells us that the isomorphism

relation on extensional graphs is also Borel complete. To prove this, note that the

isomorphism relation of countable L0-structures is Borel complete [3], where L0 is the

language containing a single binary relation symbol. We then show that there exists a

Borel reduction from the isomorphism relation on L0-structures to extensional graphs

which gives the desired conclusion.

Lemma 14 (Mekler). There exists a Borel reduction from the isomorphism relation

on L0-structures to the isomorphism relation on extensional graphs. Thus, the class

of extensional graphs is Borel complete.

Proof. Let A be an L0-structure. First, build G′(A) such that its vertices are elements

of A and there are two nodes adjacent to each. If A satisfies a1Ra2, introduce two new

vertices (a1,2)1 and (a1,2)2 such that a1 adj (a1,2)1, (a1,2)1 adj (a1,2)2, and (a1,2)2 adj a2.

Further, insert three new vertices adjacent to (a1,2)1 and four new vertices adjacent
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to (a1,2)2. The graph of M constructed up to this point can be seen in the figure below.

Figure 2.2: Graph of M as constructed by Mekler, [8]

Finally, insert three new vertices adjacent to one another and to each of the

previous vertices of G′(A). Once G′(A) is constructed, let each element of G′(A) be a

vertex of G(A). G(A) is constructed by inserting a new vertex in the middle of each

edge. Let 〈vi〉i∈N enumerate the vertices of G(A). We note that G(A) is extensional.

In order to show that this Borel map is, in fact, a Borel reduction we must show

that A1
∼= A2 if and only if G(A1) ∼= G(A2). If A1

∼= A2, then there exists an

isomorphism ϕ : A1 → A2 such that if a1Ra2 in A1 then ϕ(a1)Rϕ(a2) in A2. As a1Ra2,

we obtain the resulting encoding G(A1). Applying ϕ to the vertices representing a1

and a2, we achieve an isomorphism ϕ′ sending vertices in G(A1) to vertices in G(A2)

and so G(A1) ∼= G(A2).

Suppose now that G(A1) ∼= G(A2). That is, there exists an isomorphism

ϕ′ : G(A1) → G(A2) sending structures representing adjacent vertices in A1 to

structures representing adjacent vertices in A2. Consider any pairs of elements

a1 adj a2 in A1 and a3 adj a4 in A2. Then there exists an encoding in G(A1) of a1 adj a2

and similarly for G(A2).
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To see that we can recover the two vertices representing elements in A1, one can

locate all vertices which are a distance of two from vertices of degree four in G(A).

From these, one can identify v1 and v2 representing a1 and a2 respectively as follows:

v1 and v2 have five vertices in between them, where v1 is a distance of two from a

vertex of degree eight and v2 is a distance of two from a vertex of degree nine. Thus,

by our encoding, we can recover that a1 adj a2.

As these graphs are isomorphic, we get that there exists an isomorphism ϕ such

that v1Rv2 with respect to the encoding if and only if ϕ(v1)Rϕ(v2) or, equivalently,

v3Rv4. Thus, we arrive at a1 adj a2 if, and only if a3 adj a4 and so A1
∼= A2 as expected.

Theorem 15 (Clemens). There exists a Borel reduction from extensional graphs G

to countable, connected, undirected, vertex-transitive graphs.

Proof. The proof of this result very closely parallels the proof of Theorem 12, except

we form Γ, the undirected Cayley graph of H, where two vertices w1N and w2N are

adjacent in Γ if there exists a generator gi such that giw1N = w2N or giw2N = w1N .

We then continue to show that the map G 7→ Γ is the desired reduction. Showing

that G1
∼= G2 implies Γ1

∼= Γ2 is the same as in the proof of Theorem 12.

In order to see that Γ1
∼= Γ2 gives G1

∼= G2 requires showing that G can be

recovered from Γ. This becomes slightly more involved than in the directed case.

The argument begins the same; however, instead of the definition of the relation R

given above, for two distinct elements ui and uj in Γ we define R as

uiRuj ⇔ ∃a∃b, a 6= b, such that ui and uj are each adjacent to both a and b
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We then aim to show that uiRuj if and only if there exist k1, k2 ∈ N and σ1, σ2 ∈

{−1, 1} with ui = gσ1k1N and uj = gσ2k2N such that vk1 adj vk2 in G.

Well, if such a pair k1, k2 exists then gk1 and gk2 commute in H. Thus ui and uj

are at opposite corners of a square shared with N and gσ1k1 g
σ2
k2
N = gσ2k2 g

σ1
k1
N and so

uiRuj.

ui = gσ1k1N uj = gσ2k2N

gσ1k1 g
σ2
k2
N = gσ2k2 g

σ1
k1
N

N

Figure 2.3: Resulting square if there exist k1, k2 ∈ N with vk1 adj vk2 ∈ G

Now, suppose that uiRuj with ui = gσ1k1N and uj = gσ2k2N and a, b the other

two vertices of the square. Thus there must exist generators gn1 , gn2 , gm1 , gm2 and

τ1, τ2, ρ1, ρ2 ∈ {−1, 1} such that

a = gτ1n1
gσ1k1N = gτ2n2

gσ2k2N and b = gρ1m1
gσ1k1N = gρ2m2

gσ2k2N.

So we have

g−σ1k1
g−τ1n1

gτ2n2
gσ2k2 ∈ N and g−σ1k1

g−ρ1m1
gρ2m2

gσ2k2 ∈ N.
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As words in N must have the sum of the exponents of each generator equal to

0, then it must be that k1 = k2, k1 = n1, or k1 = n2. If k1 = k2 then it must be

that −σ1 = σ2. Otherwise, ui = gσ1k1N and uj = gσ2k2N would be the same. Further,

this would require that n1 = n2 = k1 = k2 and so σ2 − σ1 + τ2 − τ1 = 0. Well, then

we would need −σ1 = τ1 and so a = g−σ1k1
gσ1k1N = N . In the case that k1 6= k2 and

k1 = n1, we get that −σ1 = τ1 and so, once again, a = g−σ1k1
gσ1k1N = N . Finally, for

the case where k1 6= k2 and k1 = n2 it also must be the case that k2 = n1, σ1 = τ2,

and σ2 = τ1. Well, then g−σ1k1
g−σ2k2

gσ1k1 g
σ2
k2
∈ N and so vk1 adj vk2 in G.

Repeating the same argument for b, we see that either b = N or vk1 adj vk2 in G.

Recalling that a 6= b it must be the case that vk1 adj vk2 in G. Thus we can identify

pairs of elements {ui, uj}, so that they are R-related to all of the same elements. That

is, we have identified pairs {gkN, g−1k N}. By extensionality, this will not identify any

other pairs as, given gi and gj, i 6= j, there exists a gk which commutes with gi but

not with gj and vice versa.

Therefore, we form the graph with these pairs as its vertices where two vertices

are set adjacent if each element in the first pair is R-related to each element in the

second pair. The relation R then gives that this graph is isomorphic to G.

Therefore, the isomorphism relation on countable, connected, vertex-transitive

graphs is Borel complete. A further consequence is that vertex-transitive partial

orders are also Borel complete. This can be seen by taking the transitive closure of

the directed graph from Theorem 12 which will result in a partial order, as we will

do below. First, we recall the definition of a partial order:

Definition 16. A partial order is a relation which is reflexive, antisymmetric, and

transitive.
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Definition 17. The transitive closure of a directed graph G, denoted C(G), is a

graph which contains an edge {u, v} whenever there is a directed path from u to v, for

u, v ∈ G as well as a path of length 0 from u to u.

It is important to note that the transitive closure of a directed graph does not

always yield a partial order. For this to be the case, it must be that the directed

graph has no cycles. For the following statement, we remind the reader that, in this

paper, directed graphs have no cycles of length one or two.

Proposition 18. If G a directed graph, then the transitive closure C(G), is a partial

order if, and only if, G has no directed cycles.

Proof. For the forward direction, suppose C(G) satisfies the requirements of a partial

order. Further, suppose towards a contradiction that G contains a cycle such that

x1 ≤ x2 ≤ · · · ≤ xn ≤ x1 for x1, x2, . . . , xn vertices of G(A). However, as C(G) is

antisymmetric, x1 ≤ xi and xi ≤ x1 gives x1 = xi for 1 ≤ i ≤ n. Therefore, it cannot

be the case that G has a cycle.

Now, suppose there exist no cycles in G. To show that C(G) satisfies the require-

ments of a partial order, we first note that the transitive closure is, in fact, transitive.

Further, we assumed the relation on A was reflexive and so C(G) remains transitive,

as this does not affect single vertices but the relationship between two vertices. And

finally, as there are no cycles in G it must be that there are no cycles in C(G) and so

we achieve antisymmetry. Thus the transitive closure of G admits a partial order.

Corollary 19. There exists a Borel reduction from the isomorphism relation on

extensional graphs G to the isomorphism relation on countable vertex-transitive partial

orders.
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Proof. Recalling Proposition 18, note that the directed graph Γ of Theorem 12 has

no directed cycles and so the transitive closure, C(Γ), is a partial order. To see that

Γ has no directed cycles, note that Γ is the directed Cayley graph of H in which, for

all words w = w1 . . . wk having generators g1, . . . , gk, if w = 1 in H then the sum of

all exponents of each of the corresponding gi must equal 0. Therefore, the sum is not

positive and so there cannot be a directed cycle.

Therefore, given Γ one can produce its transitive closure, C(Γ), which is a partial

order. The aim is to show that Γ1
∼= Γ2 if and only if C(Γ1) ∼= C(Γ2). If Γ1

∼= Γ2 then

we certainly have that C(Γ1) ∼= C(Γ2) as transitive closure is isomorphism invariant.

So, now suppose that C(Γ1) ∼= C(Γ2). Given C(Γ) we want to show that we can

recover the original b ∈ Γ such that N → b in Γ from any point p ∈ C(Γ).

The claim is that the out-neighbors of N are all of the b ∈ Γ such that N → b in

C(Γ) and there does not exist a directed path of length greater than one from N to

b in C(Γ). This is the case as, if there did exist such a path in C(Γ) then we would

have

b = gjN and b = gi1 . . . ginN

which would mean that gi1 . . . ging
−1
j = 1 in H which contradicts that words in N

must have the sum of the exponents of all generators equal to 0. Thus we have

recovered Γ from C(Γ) and so there exists a Borel reduction from extensional graphs

to countable partial orders.
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CHAPTER 3

VERTEX-TRANSITIVE LINEAR ORDERINGS

After classifying directed graphs in the previous chapter it is natural to ask about

the complexity of special cases of directed graphs such as linear orders. The main

theorem of this chapter isolates the complexity of vertex-transitive linear orders, in

particular. Before presenting this result, it is necessary to discuss the condensation

of linear orders. Condensation will be used in the main theorem in order to classify

vertex-transitive linear orders by countable ordinals (refer to [9] for more details).

First, let us recall that a linear order is a partial order ≤ on a set X which also

satisfies comparability: for every x, y ∈ X, either x ≤ y or y ≤ x.

Definition 20. Let L be a linear ordering and let L′ be a collection of non-empty

intervals of L which partitions L, ordered by

I1 � I2 if, for all x1 ∈ I1, x2 ∈ I2, x1 < x2.

L′ is called a condensation of L.

Intuitively, we think of the condensation as whole intervals of L being condensed

to single points in L′. It is also important to note that the condensation of a vertex-

transitive linear ordering remains vertex-transitive. That is, if L is vertex-transitive

then there exists an automorphism ϕ such that ϕ(x) = y for every pair x, y ∈ L
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and this automorphism extends to C[L]. For our purposes, we will make use of finite

condensation maps, where discrete intervals are condensed.

Definition 21. The finite condensation map of L is denoted

cF (x) = {y|[x, y] or [y, x] is finite}

for x ∈ L. Let cF [L] denote the condensation of L determined by the intervals cF (x)

for all x ∈ L.

Note that cF (x) can be finite or, otherwise, has order type ω, ω∗ or Z. We

call cF (x) the equivalence class of x. This condensation map will be used implicitly

throughout this chapter. Considering more than a single condensation leads to the

following iterative definitions.

Definition 22. We define an iterated condensation map with c1 = c as

(i) cα+1(x) = {y | c(cα(x)) = c(cα(y))}

(ii) Assume that λ is a limit ordinal and that for each β < λ we have defined for each

linear ordering A the condensation map cβ. Then we define the condensation

map cλ by

cλ(x) =
⋃
{cβ(x) | β < λ}

With the above definition of iterated condensations we note that, given a linear

order L, the condensation map stabilizes after a bounded number of iterations. The

following proposition shows that this is, in fact, the case.
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Proposition 23. Let L be a linear ordering of cardinality κ. Then there exists an

ordinal α < κ+ such that cβ(x) = cα(x) for all x ∈ L and for all β ≥ α.

Proof. If cα+1(x) = cα(x) for every x ∈ L, then cβ(x) = cα(x) for every β ≥ α.

Thus, for some set S = {α|cα+1(x) 6= cα(x) for some x ∈ L}, S is an initial segment

of ordinals.

Further, for each α ∈ S, there exists a pair {x, y} of elements of L such that

cα(x) 6= cα(y) but cα+1(x) = cα+1(y). So S is an initial segment of the ordinals which

is in a one-to-one correspondence with a subset of L× L. Thus S has cardinality at

most κ.

Therefore, α has cardinality κ and so κ ≤ α ≤ κ+ [9]. Thus we have an α < κ+

such that cβ(x) = cα(x) for every x ∈ L and for every β ≥ α.

Recalling that our aim is to understand vertex-transitive linear orders, we will

show that there are two such classes of vertex-transitive linear orders, namely powers

of Z and Q copies of powers of Z. This leads us to the following definition:

Definition 24. Given an ordinal β, Z0(β) consists of all β-sequences of elements of

Z which have only finitely many non-zero entries. That is

Z0(β) = {s : β → Z | {α : s(α) 6= 0} is finite} ,

ordered by s � t if s(µ) < t(µ) where µ is the largest ordinal γ < β for which

s(γ) 6= t(γ).
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For a more intuitive definition of powers of Z, one can recursively construct a

definition of Z0(β), which we will call Zβ, as follows:

Definition 25. (i) Z0 = 1

(ii) Zβ+1 = Zβ · ω∗ + Zβ + Zβ · ω = Zβ · Z

(iii) Zλ = (
∑
{Zγ · ω | γ < λ})∗ + 1 +

∑
{Zγ · ω | γ < λ} for limit ordinals λ.

Note that we define the sum of arbitrarily many linear orderings as follows. Let

〈I, R〉 be a linear ordering and, for each i ∈ I, let 〈Ai, Si〉 be a linear ordering. Then∑
i∈I Ai is defined to be the linear ordering 〈C, T 〉 with C =

⋃
i∈I Ai and, for any two

c1, c2 ∈ C

c1 <T c2 if (c1 ∈ Ai and c2 ∈ Aj and i <R j) or

(c1 ∈ Ai and c2 ∈ Ai and c1 <Si
c2 for some i ∈ I).

Further, we define the product of two linear orders, 〈I, R〉 and 〈A, S〉 as

A · I =
∑
i∈I

A

where addition is as defined above.

The following proposition tells us that the previous definitions of powers of Z are,

in fact, equivalent.

Proposition 26. For any ordinal β, Z0(β) ∼= Zβ.

Proof. This is proved by induction on β. First, consider the case Z0(0) ∼= Z0. By

definition Z0 = 1 and so now Z0(0) = {s : 0→ Z|∃N∀n ≥ Ns(n) = 0} ∼= {∅} ∼= 1.

Thus Z0 = 1 ∼= Z0(0).
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Now, suppose we have that Z0(β) = Zβ and let us show that the successor case

holds, i.e. Z0(β + 1) ∼= Zβ+1 below:

Zβ+1 = Zβ · Z

∼= Z0(β) · Z (by assumption)

∼= {(s : (β)→ Z, t ∈ Z) |∃N∀n ≥ Ns(n) = 0}

= Z0(β + 1).

Finally, for a limit ordinal λ, we claim that Z0(λ) = {s : λ→ Z|{α : s(α) 6= 0} is finite}

and Zλ = (
∑
{Zγ · ω | γ < λ})∗ + 1 +

∑
{Zγ · ω | γ < λ} are isomorphic.

To see this, let � ∈ Z0(λ) denote the sequence s(α) = 0 for all α. This �

corresponds to the “1′′ in the definition of Zλ. Next, the s ∈ Z0(λ) such that s(0) > 0

and s(α) = 0 for all α > 0 are a copy of Z0 · ω = ω.

In general, the elements s ∈ Z0(λ) with s(γ) > 0 and s(α) = 0 for all α > γ are a

copy of Zγ · ω. Thus, we account for the sum
∑
{Zγ · ω | γ < λ} in the definition of

Zλ.

There is an analogous correspondence between sequences in Z0(λ) and the sum

(
∑
{Zγ · ω | γ < λ})∗. Thus, Z0(λ) ∼= Zλ for λ a limit ordinal.

Therefore we conclude that, for any ordinal β, Z0(β) ∼= Zβ.

To understand how condensations of power of Z behave, let us first look at a single

condensation of Zβ+1 where β + 1 is finite.
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Proposition 27. A single condensation of Zβ+1, for β + 1 < ω, reduces to Zβ.

Proof. By definition of finite condensation, we see that

c
[
Zβ+1

]
=
{
{(a, b)|b ∈ Z}|a ∈ Zβ

} ∼= Zβ

and so a single condensation of Zβ+1 reduces to Zβ in the case that β + 1 < ω.

Moreover, given sequences in Zλ for some limit ordinal λ we see that condensations

of such sequences behave as described in the following proposition.

Proposition 28. For Zλ = {s : λ→ Z | {α : s(α) 6= 0} is finite}, given two sequences

s, t ∈ Zλ

(i) c(s) =
{
t | s �[1,λ)= t �[1,λ)

}
(ii) cγ(s) =

{
t | s �[γ,λ)= t �[γ,λ)

}
for each ordinal γ.

Proof. Let Zλ = {s : λ→ Z | {α : s(α) 6= 0} is finite} and consider two sequences

s, t ∈ Zλ.

(i) First, suppose s �[1,λ)= t �[1,λ) and, without loss of generality, let s � t. Then

we must have s(0) < t(0). If there exists a third r ∈ Zλ and r differs at a latter

point γ then it does from both s and t so either r � s � t or s � t � r. If

s � r � t then it must be that s(0) < r(0) < t(0) and there are only finitely

many r such that this is the case. Therefore [s, t] is finite and so c(s) = c(t).

Now, if we suppose that s �[1,λ) 6= t �[1,λ) then there exists a last ordinal γ such

that 1 ≤ γ < λ where s(γ) 6= t(γ). Without loss of generality, let s(γ) < t(γ).

Let rn ∈ Zλ be defined as rn = n _ s �[1,λ) for any n ∈ Z. Then s� rn � t for
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n > s(0) and there are infinitely many rn which satisfy this. Therefore, [s, t] is

infinite and so c(s) 6= c(t).

Therefore, we conclude that c(s) =
{
t | s �[1,λ)= t �[1,λ)

}
.

(ii) This case follows using a similar argument to (i) and induction on γ.

As we alluded to earlier in the chapter, there are two classes of vertex-transitive

linear orders. In order to prove this, we require the following definitions about single

elements of L.

Definition 29. Given a linear ordering L,

(i) x ∈ L is left dense if x is not the least element in L and if there is no greatest

element y < x

(ii) x ∈ L is right dense if x is not the greatest element in L and if there is no

least element y > x

(iii) x ∈ L is left discrete if there exists a greatest y ∈ L such that y < x or if x is

the greatest element of L

(iv) x ∈ L is right discrete if there exists a least y ∈ L such that y > x or if x is

the least element of L.

Note that, given some element x ∈ L, x will be either left/right dense or left/right

discrete. This leads us to the following lemma, where we will see that Zβ and Zβ ·Q,

for countable ordinals β, (along with the trivial linear order 1) are the only possible

classes of vertex-transitive linear orders.
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Lemma 30. If a linear ordering L is vertex-transitive, then

(i) if one point is left or right dense then every point is and, in fact, L ∼= Q

(ii) if one point is left or right discrete then every point is, and every equivalence

class is a copy of the integers or L = 1.

Proof. By vertex-transitivity, if one point is left or right dense then every point must

also be left or right dense, respectively.

(i) First, let a < b. If b is left dense then, given a sequence {bi}i∈N approaching

b from the left, there must eventually be some n ∈ N such that a < bn < b.

Therefore, L is dense. Similarly, let b < a be right dense. Then, given a sequence

{bi}i∈N approaching b from the right, there must eventually be some n ∈ N such

that b < bn < a. Once again, L is dense.

As L is a dense linear ordering, then L is isomorphic to Q, Q∪{∞}, {−∞}∪Q,

or {−∞} ∪ Q ∪ {∞}. However, as L is also vertex-transitive there can be no

first/last element and so it must be the case that L ∼= Q.

(ii) Similar to above, vertex-transitivity tells us that if one point is left or right

discrete then every point must be left or right discrete. Thus L is discrete and

so every equivalence class is either a single point, a finite number of points, ω,

ω∗, or Z. As before, the vertex-transitivity of L requires that there exists no

first/last element of any class and so we must have that every equivalence class

is a copy of the integers in the case that L has more than one element.

Following Proposition 23, which states that we reach a condensation fixed-point

after a bounded number of iterations, and the discussion of iterated condensations of
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vertex-transitive linear orders, it is natural to ask what happens when we reach such

a fixed-point.

Proposition 31. Given a vertex-transitive linear order L, if c(x) = {x} for every

x ∈ L then L is isomorphic to either Q or 1.

Proof. Let L be a vertex-transitive linear order and c(x) = {x} for every x ∈ L.

There are two cases to consider:

(i) If one point is left/right dense then, by Lemma 30, L ∼= Q.

(ii) If one point is left/right discrete then Lemma 30 tells us that there are two

possibilities. The first is that L = 1. Otherwise, every equivalence class of

L is a copy of the integers. However, if this is the case then, for any x ∈ L,

c(x) = {y|[x, y] or [y, x] is finite} 6= {x} as every x ∈ Z is a finite distance from

at least one other y ∈ Z. Thus we reach a contradiction and so if one point is

left/right discrete at c(x) = {x} for every x ∈ L then L = 1.

By Proposition 23 we are able to conclude that for countable, vertex-transitive

linear orders it takes countably many steps to arrive at a condensation fixed point.

Further, by Proposition 31 the possible condensation fixed points are either 1 or Q.

In summary, we arrive at the following theorem.

Theorem 32. If L is a countable vertex-transitive linear order then L is isomorphic

to either Zβ or Zβ ·Q for some β < ω1.

To conclude this chapter, we find that there exists an absolutely ∆1
2 reduction

from isomorphism of codes for countable ordinals to isomorphism of vertex-transitive

linear orders.
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Theorem 33. There exists an absolutely ∆1
2 reduction from isomorphism on codes

for countable ordinals to isomorphism on vertex-transitive linear orders.

Proof. The aim is to show that there exists a ∆1
2 map from codes for ordinals α to

codes for Zα. We can construct such a map by recursion on α. Given a code <L on

ω for L we define, for n,m ∈ L · Z where n = 〈n0, n1〉 and m = 〈m0,m1〉, n <L·Z m

if and only if n0 <Z m0 or n0 = m0 and n1 <L m1. For limit stages, given a code for

a limit ordinal λ, together with a λ-sequence of codes for Zα, α < λ, we can produce

a code for Zλ = (
∑
{Zγ · ω|γ < λ})∗ + 1 +

∑
{Zγ · ω|γ < λ} in a similar manner.

It is not difficult to check that each step of this recursive construction is Borel.

Further, it is well known that this implies we can construct a code for Zβ in an

absolutely ∆1
2 fashion. For example, an infinite time turing machine (ITTM) can

easily be programmed to carry out the recursive construction, and ITTM-computable

mappings are always absolutely ∆1
2 (for the definition of ITTM and the statement of

this fact, see [5]).
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CHAPTER 4

VERTEX-TRANSITIVE TOURNAMENTS

We now shift focus to the classification problem for vertex-transitive tournaments.

As tournaments are a broader class than linear orders, but still a subset of the class of

directed graphs it makes sense to consider the complexity of these structures as well.

While the exact complexity of vertex-transitive tournaments is yet to be determined,

the main result in this chapter states that isomorphism of vertex-transitive tourna-

ments is properly more complex than E0, or eventual equality on 2ω. A remaining

question is to determine whether this is, in fact, Borel complete.

Definition 34. A tournament is a directed graph in which every pair of vertices is

connected by an edge.

Recall that a tournament is vertex-transitive if its automorphism groups acts

transitively on the set of vertices. We denote the isomorphism relation over vertex-

transitive tournaments as ∼=V TT .

Further, we note the following two relations which will be necessary in the proof

of the main theorem. First, eventual equality on 2ω is denoted E0. More formally, we

say

xE0y ⇔ ∃m∀n ≥ mx(n) = y(n)
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We will find that, instead of working with E0 directly, we will need to work with

a subset of the domain of EZ, or the shift equivalence on 2Z. That is,

xEZy ⇔ ∃m∀nx(n+m) = y(n)

In order to show that isomorphism of vertex-transitive tournaments is more com-

plex than E0 we will see that the necessary reduction only works on a subset of the

domain of EZ. However, this makes it necessary to check that the restriction of EZ

to this subset remains as complex as E0 which leads us to the following proposition.

Proposition 35. E0 on 2ω is Borel bireducible to EZ �C on 2Z for any comeager set

C.

Proof. First, we claim that EZ has a dense orbit. To see this, note that 2Z has the

topology with basic open sets Vt =
{
x ∈ 2Z | t ⊂ x

}
. Recall that 2<ω is countable and

let {si}i∈ω enumerate 2<ω. Further, we define x = � _ s1 _ s2 _ · · · _ si _ . . .

where � denotes the sequence of all 0 on ω∗. This x is certainly in 2Z and contains

an instance of every finite binary sequence. That is, given s ∈ 2<ω, there exists some

i such that s = si = x(j) �|si| where |si| denotes the length of the sequence si.

Further, given s ∈ 2<ω as before, we know that s ⊂ z · x as s = x(j − z) �|s|.

Therefore, shifts of x also contain an instance of every finite binary sequence.

The aim is to show that, given [x]Z = {z · x|z ∈ Z} where z · x = x(n+ z) for all

n ∈ Z, every Vt contains an element of [x]Z.

That is, given any Vt, we know that t ⊂ z · x for some z ∈ Z and so t ∈ [x]Z.

Therefore t ∈ Vt ∩ [x]Z and so there exists a dense orbit. As this is the case, we know

that EZ is generically ergodic, meaning that every EZ-invariant Borel subset of 2Z is

either meager or comeager (Proposition 6.1.9, [4]).
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As EZ is generically ergodic, we also know that EZ �C is generically ergodic

(Proposition 6.1.9, [4]). As this is the case and all orbits of Z are countable, hence

meager, we find that EZ �C is not smooth (Proposition 6.1.10, [4]). As EZ �C is not

smooth, one can conclude that E0 is Borel reducible to EZ �C (Proposition 6.3.1, [6]).

On the other hand, we know that any Z-orbit relation is Borel reducible to E0 [2] and

therefore EZ �C is Borel bireducible with E0.

Thus we arrive at the main result for vertex-transitive tournaments. That is, the

isomorphism relation for vertex-transitive tournaments is more complex than E0.

Theorem 36. There exists a Borel reduction from E0 to isomorphism of vertex-

transitive tournaments.

Proof. Given x ∈ 2Z, we construct a tournament, Tx, with vertices in Z×Z as follows.

Given two vertices at positions (m,n) and (m′, n′) where m,n,m′, n′ ∈ Z, we

define

(m,n)→ (m′, n′)⇔


m = m′ and n > n′ or

m′ = m+ 1 and x(n′ − n) = 1 or

|m−m′| ≥ 2 and m < m′

where, otherwise, there is an edge (m′, n′) → (m,n). An example of this can be

seen in the figure below, where we focus on a pair of columns which are “one apart”.

Note that x is bi-infinite, but for illustration purposes we highlight five consecutive

terms in x and the five corresponding vertices in relation to vertex (0, 0).

It is important to note that these Tx are, in fact, vertex-transitive as the auto-

morphism carrying the vertex at position (0, 0) to position (m,n) is given by the map

(a, b) 7→ (a+m, b+ n) preserves the definition of edge direction given above.
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...

(0, 0)

...

...

(1, 2)

(1, 1)

(1, 0)

(1,−1)

(1,−2)

...

n . . . −2 −1 0 1 2 . . .
x(n) . . . 1 1 0 0 1 . . .

Figure 4.1: Directed edges from vertex (0, 0) to vertices one column to the right.

Now that we have developed the construction of Tx given x, the aim is to show

that there exists a comeager subset C ⊆ 2Z, which will be defined later, such that, for

all sequences x, x′ ∈ C,

xEZx
′ ⇔ Tx ∼= Tx′ .

To begin, suppose that xEZx
′. That is, there exists some k ∈ Z such that, for

every n ∈ Z, x(n) = x′(n + k). Now, construct two vertex-transitive tournaments,

Tx and Tx′ , from x and x′ respectively as described above. In order to see that Tx

and Tx′ are isomorphic, choose any column in Tx and similarly for Tx′ . We claim that

ϕ(m,n) = (m,n+ km) is an isomorphism between Tx and Tx′ .

To see this, note that ϕ sends m to m and n to m+kn, both of which are linear, so
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we certainly have that ϕ is bijective. Further, we notice that adjacency of vertices is

preserved as, if (m,n)→ (m′, n′) in Tx then we claim that (m,n+km)→ (m′, n′+km′)

in T ′x. To check this, we refer to the above cases where (m,n)→ (m′, n′).

If m = m′ and n > n′ then ϕ(m,n) → ϕ(m′, n′) as m = m′ and so n + km >

n′ + km′. If m + 1 = m′ and x(n′ − n) = 1 then we arrive at the same conclusion

as m + 1 = m′ and x′ ((n′ + km′)− (n+ km)) = x′(n′ − n + k) = x(n′ − n) = 1.

Finally, if |m−m′| ≥ 2 and m < m′ then it still remains that ϕ(m,n)→ ϕ(m′, n′) as

ϕ leaves m and m′ unchanged. Thus, we are able to conclude that ϕ : Tx → T ′x is an

isomorphism.

For the other direction, consider Tx ∼= Tx′ . That is, ϕ : Tx → Tx′ gives an

isomorphism as described. To see that xEZx
′, we must first see that we can recover

x from Tx. In order to do so, we require that x have sufficiently many 0 and 1 values.

To be precise, we require at least one of the following conditions:

(i) For every n there exists some k < n such that x(k − n) = 1 and x(k) = 0

(ii) For every n there exists some k such that x(−k) = 0 and x(k − n) = 0

Note that, excluding the trivial case where w = (−1, n), each of these conditions

on x are Gδ and dense, hence comeager. With these requirements, we now come to the

definition of the comeager set C containing all x ∈ 2Z satisfying the above conditions.

By the above conditions, for any vertex v, we can identify the five columns

surrounding v which we will denote as Sv. More specifically, Sv is the set of points

involved in a three-cycle with v.

To see this, let v = (0, 0) and consider a second vertex w. In the case that

w = (0, n), n < 0 is in the same column as v then condition (i) ensures that there

is a third vertex u such that w → u and u → v. Condition (i) ensures the same in
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the case that w = (−1, n) or w = (1, n), n ∈ Z. On the other hand, if w = (−2, n)

or w = (2, n) then condition (ii) ensures that there exists a third vertex u such that

w → u and u→ v.

We note that it is impossible for there to be a three-cycle involving two vertices

that are more than two columns apart. To see that this is the case, suppose that

v = (0, 0) and w = (m,n) for |m| ≥ 3 and for some n ∈ Z. Further, suppose there is

a third vertex u such that w → u. If m ≤ −3 then w → v and, by assumption w → u.

Therefore w cannot be involved in a three-cycle with v. So now, if we consider m ≥ 3,

we certainly have v → w. Since w → u then it must be that m′ ≥ m − 1 and so

m′ ≥ 2. That is, |0−m′| = |m′| ≥ 2 and so v → u. Once again, we see that w cannot

be involved in a three-cycle with v based on our construction.

Further, we can determine distinct columns within Sv as follows:

(i) Let Cv denote the set of all vertices w ∈ Sv such that Sw = Sv

(ii) Let C−2,v denote the set of all vertices w ∈ Sv such that v does not arrow anyone

in Cw

(iii) Let C2,v denote the set of all vertices w ∈ Sv such that v is in C−2,w

(iv) Let C−1,v denote the set of all vertices w ∈ Sv such that w 6∈ C−2,v and every

z ∈ C2,v is contained in Sw

(v) Let C1,v denote the set of all vertices w ∈ Sv such that for every z ∈ C−1,v,

w ∈ C2,z.

Focusing on C1,v, we can recover the sequence x by choosing any v and looking

at edges between v and each w ∈ C1,v. If we repeat this process for Tx′ we then
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have x and x′. Well, as ϕ is an isomorphism between Tx and Tx′ , ϕ must map C1,v

(a Z-ordered subgraph) in Tx to C1,ϕ(v) in Tx′ in an order preserving way. The only

possible map is a shift. That is, the edges from v to vertices in C1,v in Tx are a shift

of the edges from ϕ(v) to vertices in C1,ϕ(v) in Tx′ . Well, as x and x′ were used to

define these edges respectively it must be the case that x is a shift of x′ and so xEZx
′

as expected.

Finally, we note that the ∼=V TT is strictly more complex than E0. That is, we

recall the existence of a ∆1
2 reduction from Eω1 to the isomorphism relation on vertex-

transitive linear orders. As linear orders are tournaments we also get that there is a

∆1
2 reduction from Eω1 to the isomorphism relation on vertex-transitive tournaments.

If it were the case that E0 ∼B∼=V TT then there would exist a Borel reduction from

∼=V TT to E0. But that would mean Eω1 was reducible to E0 which cannot be the case

as E0 and Eω1 are incomparable (refer to the remark following Corollary 3.3 in [7])

and so we reach a contradiction.
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