
LATIN SQUARES AND THEIR APPLICATIONS TO

CRYPTOGRAPHY

by

Nathan O. Schmidt

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Mathematics

Boise State University

December 2016

© 2016
Nathan O. Schmidt

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Nathan O. Schmidt

Thesis Title: Latin Squares and Their Applications to Cryptography

Date of Final Oral Examination: 28 October 2016

The following individuals read and discussed the thesis submitted by student Nathan
O. Schmidt, and they evaluated his presentation and response to questions during the
final oral examination. They found that the student passed the final oral examination.

Liljana Babinkostova, Ph.D. Chair, Supervisory Committee

Samuel Coskey, Ph.D. Member, Supervisory Committee

Marion Scheepers, Ph.D. Member, Supervisory Committee

Jyh-Haw Yeh, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Liljana Babinkostova, Ph.D.,
Chair, Supervisory Committee. The thesis was approved by the Graduate College.

I dedicate this work to my family, and especially to my Marissa!

iv

ACKNOWLEDGMENTS

A special thanks to my adviser Dr. Liljana Babinkostova for her invaluable

knowledge, insight, and guidance on this great subject. I am honored to have worked

under her advisement and have learned much.

Thanks to Will Unger for helping to design and implement the software for

generating latin squares and counting their transversals. Our joint research operations

primarily consisted of eating pizza, drinking coffee, programming computers, and

solving math problems, which led us to consider super-symmetric latin squares and

Conjecture 2.100. Good times.

Thanks to Dr. Samuel Coskey, Dr. Marion Scheepers, and Dr. Jyh-Haw Yeh for

their helpful comments that improved the thesis.

Thanks to Sam Dworetzky for his collaboration during the “Square Bandits”

project.

Thanks to Dr. Ian Wanless for answering my questions on latin square transver-

sals.

And last, but surely not least, thanks to my wife Marissa, for everything.

v

AUTOBIOGRAPHICAL SKETCH

Nathan Schmidt was born and raised in Kenai, Alaska. He has always enjoyed

doing activities with family and friends, such as fishing, hunting, snowboarding, and

competitive athletics. His upbringing led him to develop a strong appreciation of the

significance of family, the mathematical sciences, hard work, and the great outdoors.

Through discipline, perseverance, and creativity, he firmly believes that the tools of

science and mathematics can be used to build a successful future.

The first computer that Nathan used was his family’s Apple Macintosh 128K.

In those early days, one of his favorite things to do on the computer was to draw

black-and-white pictures using MacDraw. At age 13 he began to teach himself the

basics of HTML, computers, networking, the Internet, and cyber security. At age 15

his friend handed him the Red Hat 7 Linux install disk during biology class and he

has been addicted to Linux ever since.

In 2004 Nathan graduated high school after being recognized as Science Student

of the Year, an All-State Football Player, and the new record holder in the 200-meter

dash. Thereafter, he attended Eastern Oregon University. While doing research

in robotics and artificial intelligence, he tutored in computer programming, helped

maintain the Linux lab, and sprinted for the track and field team. He was on the

school-record breaking 4x100-meter dash relay team that provisionally qualified for

the USA NAIA Championships. In 2008 he earned a B.S. in computer science and a

minor in mathematics.

vi

Thereafter, Nathan pursued a M.S. in computer science at Boise State University

to study bioinformatics and artificial intelligence. He worked as a research assistant

on the DNA Safeguard Project and as a teaching assistant. Since then he has also

published research work in disciplines such as quantum gravity and sustainable energy.

He has also worked various jobs as a computer technician, computer programmer, con-

struction laborer, teacher, and commercial fisherman. In 2014 he married his beloved

wife Marissa. Thereafter, he pursued a M.S. in mathematics to study cryptography

and cyber security, while researching and teaching at Boise State.

Today Nathan continues to program computers, solve math problems, research,

teach, and train in Jeet Kune Do and Kali in Idaho while commercial fishing in

Alaska. He continues to be firm believer in the methods of science and mathematics,

the power of creativity, freedom of speech, privacy, and self-defense.

vii

ABSTRACT

A latin square of order-n is an n × n array over a set of n symbols such that
every symbol appears exactly once in each row and exactly once in each column.
Latin squares encode features of algebraic structures. When an algebraic structure
passes certain “latin square tests”, it is a candidate for use in the construction of
cryptographic systems. A transversal of a latin square is a list of n distinct symbols,
one from each row and each column. The question regarding the existence of transver-
sals in latin squares that encode the Cayley tables of finite groups is far from being
resolved and is an area of active investigation. It is known that counting the pairs
of permutations over a Galois field Fpd whose point-wise sum is also a permutation
is equivalent to counting the transversals of a latin square that encodes the addition
group of Fpd . We survey some recent results and conjectures pertaining to latin
squares and transversals. We create software tools that generate latin squares and
count their transversals. We confirm previous results that cyclic latin squares of prime
order-p possess the maximum transversal counts for 3 ≤ p ≤ 9. Furthermore, we
create a new algorithm that uses these prime order-p cyclic latin squares as “building
blocks” to construct super-symmetric latin squares of prime power order-pd with
d > 0; using this algorithm we accurately predict that super-symmetric latin squares
of order-pd possess the confirmed maximum transversal counts for 3 ≤ pd ≤ 9 and the
estimated lower bound on the maximum transversal counts for 9 < pd ≤ 17. Also, we
give some conjectures regarding the number of transversals in a super-symmetric latin
square. Lastly, we use the super-symmetric latin square for the additive group of the
Galois field (F32 ,+) to create a simplified version of Grøstl, an iterated hash function,
where the compression function is built from two fixed, large, distinct permutations.

viii

TABLE OF CONTENTS

DEDICATION . iv

ACKNOWLEDGMENTS . v

AUTOBIOGRAPHICAL SKETCH . vi

ABSTRACT . viii

LIST OF TABLES . xii

LIST OF FIGURES . xix

1 INTRODUCTION . 1

2 LATIN SQUARES . 16

2.1 How Many Exist? . 16

2.2 Basic Notation . 19

2.3 Encoding Cayley Tables of Finite Groups and Quasi-groups 22

2.3.1 Connecting Groups and Permutations 23

2.3.2 Generalizing from Groups to Quasi-groups 33

2.4 Equivalence Classes . 35

2.5 Computational Construction of Latin Squares 42

2.6 Transversals and Conditions for Existence . 46

2.6.1 Delta Lemma . 50

ix

2.6.2 Hall-Paige Conjecture and Finite Solvable Groups 62

2.7 Computational Enumeration of Transversals 84

2.7.1 Survey of Transversal Enumeration Results 84

2.7.2 Creation of Transversal Enumeration Algorithms 88

2.8 Searching for Maximum Transversal Counts 93

2.8.1 Evaluating Cyclic Latin Squares . 94

2.8.2 Building Super-Symmetric Latin Squares 98

2.8.3 Connecting Super-Symmetric Latin Squares, Galois Field Ad-

dition Groups, and Maximum Transversal Count Predictions 105

2.8.4 Results and Conjectures . 108

3 CRYPTOGRAPHIC APPLICATION . 114

3.1 Introduction to Cryptographic Hash Functions 114

3.2 Grøstl and Related “AES-Like” Constructions 118

3.3 Simplified Grøstl: Specification and Construction 123

3.3.1 Algebraic Structure . 123

3.3.2 Compression Function and Round Transformations 127

3.4 Simplified Grøstl: Example Execution . 133

3.4.1 Setup . 133

3.4.2 Permutation P . 135

3.4.3 Permutation Q . 139

3.4.4 Completing the Round . 142

4 CONCLUSION . 144

4.1 Main Results . 144

4.2 Outlook: Past and Future . 146

x

REFERENCES . 149

A Arithmetic and Galois Fields . 161

B Software . 185

B.1 Computational Construction of Latin Squares 185

B.1.1 Algorithms . 185

B.1.2 Implementation and Usage . 189

B.1.3 Performance Benchmarks . 192

B.2 Computational Enumeration of Latin Square Transversals 197

B.2.1 Algorithms . 197

B.2.2 Implementation and Usage . 200

B.2.3 Performance Benchmarks . 203

C Prime Power Order Cyclic and Super-Symmetric Latin Squares 206

xi

LIST OF TABLES

1.1 An example of an order-3 latin square with symbols from the set Z3 =

{0, 1, 2} of integers modulo 3 [left] and an example of an order-4 latin square

with symbols from the set Z4 = {0, 1, 2, 3} of integers modulo 4 [right]. . 1

1.2 An example of an order-3 magic square with symbols from the set Z9 of

integers modulo 9 and the magic constant 12 [left] and an example of an

order-4 magic square with symbols from the set Z16 of integers modulo 16

with the magic constant 30 [right]. 2

1.3 Let (Z5,+) be the finite group over the set Z5 = {0, 1, 2, 3, 4} of integers

modulo 5 under addition. Then the Cayley table of (Z5,+) [left] and the

corresponding order-5 latin square L(Z5,+) [right] can be written as such. 6

1.4 A latin square L(Z5,+) which encodes the finite group (Z5,+) has 15 transver-

sals. One of these transversals is marked in green parentheses. Can the

reader find any of the other transversals? . 13

2.1 The number of latin squares up to order-11; the |Ln′| column contains

the OEIS Sequence A000315 [1] while the |Ln| column contains the

OEIS Sequence A002860 [2]. 18

2.2 An example of a quadrangle (z1,1, z1,3, z4,3, z4,1) = (2, 4, 2, 0) in the latin

square L(Z5,+) which encodes the finite group (Z5,+). The four entries of

the quadrangle are marked in blue parentheses. 26

xii

2.3 An example of an order-5 diagonal {(3, 0, 3), (1, 1, 2), (0, 2, 2), (2, 3, 0), (4, 4, 3)}

(written “from left to right”) across the latin square L(Z5,+). The five entries

of the diagonal are marked in blue parentheses. 30

2.4 The entries of the main diagonal {(0, 0, 0), (1, 1, 2), (2, 2, 4), (3, 3, 1), (4, 4, 0)}

and the main anti-diagonal {(4, 0, 4), (3, 1, 4), (2, 2, 4), (1, 3, 4), (0, 4, 4)} across

the latin square L(Z5,+) are marked in blue parentheses and red square

brackets, respectively. 31

2.5 An example illustration of Theorem 2.27 for the latin square L(Z5,+) that

encodes the abelian group (Z5,+). The entries of L(Z5,+)’s main diagonal

{(0, 0, 0), (1, 1, 2), (2, 2, 4), (3, 3, 1), (4, 4, 0)} are marked in blue parentheses.

The products located symmetrically, with respect to L(Z5,+)’s main diagonal,

encode the same group element, where the same group elements have the

same coloring. 33

2.6 An example of the Cayley table of the finite quasi-group G = (Z3, ?) of order-

3 over the set Z3 = {0, 1, 2} of integers modulo 3, where qi ?qj = 2qi+qj +1

for all qi, qj ∈ G. 34

2.7 The number of isotopy classes and main classes for latin squares up to

order-11; the isotopy class column contains the OEIS Sequence A040082 [3]

while the main class column contains the OEIS Sequence A003090 [4]. . 42

2.8 The sizes of the latin square data sets generated by the NPS-LS-GA Java

implementation up to order-21. 45

2.9 A latin square L(Z5,+) which encodes the finite group (Z5,+) has 15 transver-

sals. The entries for three of these transversals are marked in red parenthe-

ses, blue square brackets, and green angled brackets. 47

xiii

2.10 An example of five disjoint transversals that decompose the latin square

L(Z5,+) that encodes the Cayley table of the group Z5 = (Z5,+). Each

transversal is marked with a distinct color and set of brackets. 79

2.11 The number of transversals across latin squares that encode groups from

order-3 to order-23 [5, 6]; the transversal count list corresponds to the group

list in the catalog of [7]. 86

2.12 The confirmed minimum t(n) and maximum T(n) number of transversals

across latin squares from order-2 to order-9 [5, 6, 8]. 87

2.13 Estimates for the lower bound bT(n)cMMW and the upper bound dT(n)eMMW

on the maximum number of transversals T(n) across latin squares from

order-10 to order-21 as given by Theorem 2.91 [5, 6, 8]. 88

2.14 The minimum and maximum transversal counts that we observed by using

the BM-LS-TCAv3 Java implementation on our order-3 to order-9 latin

square data sets fall within the confirmed [t(n), T(n)] range [5, 6, 8]. The

matching counts are marked in (blue) bold. 91

2.15 The maximum transversal counts that we observed by using the BM-LS-

TCAv3 implementation on subsets of our latin square data sets from order-

10 to order-16; our maximum observed counts are less than or equal to the

estimated bT(n)cMMW [5, 6, 8]. 92

2.16 Cyclic order-n latin squares that encode cyclic groups from (Z3,+) to (Z9,+). 95

2.17 The observed transversal counts for cyclic order-n latin squares from order-3

to order-9 that encode cyclic groups from (Z3,+) to (Z9,+) are compared

to the confirmed [t(n), T(n)] range. The T(n) counts possessed by the prime

order latin squares L(Z3,+), L(Z5,+), and L(Z7,+) are marked in (blue) bold. 96

xiv

2.18 The observed transversal counts are zero for all even order cyclic latin

squares from L(Z2,+) to L(Z14,+). 97

2.19 The self-similar prime power order-32 super-symmetric latin square

L(F32 ,+) constructed using the SS-LS-GA. The permutation π is the

cyclic generator for the prime order-3 cyclic latin sub-squares. There-

after, the prime order-3 cyclic latin sub-squares in the 3 × 3 grid are

permuted with π. 103

2.20 The self-similar prime power order-33 super-symmetric latin square

L(F33 ,+) constructed using the SS-LS-GA. The permutation π is the

cyclic generator for the prime order-3 cyclic latin sub-squares and also

the prime power order-32 super-symmetric latin sub-squares. 104

2.21 The transversal counts for the super-symmetric latin squares L(F22 ,+), L(F23 ,+),

and L(F32 ,+) that encode the addition groups of Galois fields are equal to

the respectively confirmed maximum transversal counts T(4), T(8), and T(9).

Our prediction is correct! . 107

2.22 For latin squares with prime power orders 3 ≤ pd ≤ 16 with d > 0,

we compare the observed maximum transversal counts of our NPS-LS-GA

generated data sets with the observed maximum transversal counts of the

cyclic and super-symmetric latin squares generated by our SS-LS-GA, which

are then compared with either the confirmed T(pd) or the estimated bounds

[bT(pd)cMMW, dT(pd)eMMW]. 109

xv

2.23 For cyclic and super-symmetric latin squares with prime power orders 3 ≤

pd ≤ 17 generated by our SS-LS-GA, we report the apparent relationship

between the transversal counts, the uniform heat values, and the order.

For prime power orders 3 ≤ pd ≤ 9 the transversal counts are all equal to

the confirmed maximum transversal counts T(pd), whereas for prime power

orders 9 < pd ≤ 17 the transversal counts are equal to the estimated lower

bounds on the maximum transversal counts bT(pd)cMMW; these are marked

in (blue) bold. 111

3.1 Examples of arbitrarily sized input messages and their corresponding 128-bit

output hashes. 115

3.2 S-Grøstl operates over the Galois field F32 ∼= F32 [x] = Z3[x]/〈P (x)〉 with

respect to the irreducible polynomial P (x) = x2+1 = 101 ∈ Z3[x] with coef-

ficients in Z3 = {0, 1, 2}. This is the super-symmetric latin square L(F32 [x],+)

(generated by the SS-LS-GA) that encodes the addition group (F32 [x],+),

which has the confirmed maximum number of transversals T(9) = 2,241. 125

B.1 A software performance benchmark comparison for implementations of the

NPS-LS-GA and the PS-LS-GA for generating data sets of 100,000 latin

squares from order-5 to order-22. 194

B.2 A software performance benchmark comparison for implementations of the

NPS-LS-GA and the PS-LS-GA for generating a single latin square from

order-5 to order-30. 196

B.3 A software performance benchmark comparison for implementations of the

BF-LS-TCAv1, the SS-LS-TCAv2, and the BM-LS-TCAv3 for counting the

number of transversals of 100,000 latin squares from order-5 to order-10. 204

xvi

B.4 A software performance benchmark comparison for implementations of the

BF-LS-TCAv1, the SS-LS-TCAv2, and the BM-LS-TCAv3 for counting the

number of transversals in a single latin square from order-5 to order-16. . 205

C.1 The prime order-3 cyclic latin square L(Z3,+) that encodes the cyclic group

(Z3,+) (and also the Galois field addition group (F31 ,+)) with a confirmed

maximum (and minimum) transversal count |T L(Z3,+) | = 3 = T(3) = t(3)

[left] and its transversal heat map H(L(Z3,+)) with a uniform heat value

h(L(Z3,+)) = 1 [right]. 206

C.2 The prime power order-4 super-symmetric latin square L(F22 ,+) that en-

codes the Galois field addition group (F22 ,+) with a confirmed maximum

transversal count |T L
(F22 ,+)

| = 8 = T(4) [left] and its transversal heat map

H(L(F22 ,+)) with a uniform heat value h(L(F22 ,+)) = 2 [right]. 207

C.3 The prime order-5 cyclic latin square L(Z5,+) that encodes the cyclic group

(Z5,+) (and also the Galois field addition group (F51 ,+)) with a confirmed

maximum transversal count |T L(Z5,+) | = 15 = T(5) [left] and its transversal

heat map H(L(Z5,+)) with a uniform heat value h(L(Z5,+)) = 3 [right]. . . 207

C.4 The prime order-7 cyclic latin square L(Z7,+) that encodes the cyclic group

(Z7,+) (and also the Galois field addition group (F71 ,+)) with a confirmed

maximum transversal count |T L(Z7,+) | = 133 = T(7) [left] and its transversal

heat map H(L(Z7,+)) with a uniform heat value h(L(Z7,+)) = 19 [right]. . 207

C.5 The prime power order-8 super-symmetric latin square L(F23 ,+) that en-

codes the Galois field addition group (F23 ,+) with a confirmed maximum

transversal count |T L
(F23 ,+)

| = 384 = T(8) [left] and its transversal heat map

H(L(F23 ,+)) with a uniform heat value h(L(F23 ,+)) = 48 [right]. 208

xvii

C.6 The prime power order-9 super-symmetric latin square L(F32 ,+) that en-

codes the Galois field addition group (F32 ,+) with a confirmed maximum

transversal count |T L
(F32 ,+)

| = 2,241 = T(9) [left] and its transversal heat

map H(L(F32 ,+)) with a uniform heat value h(L(F32 ,+)) = 249 [right]. . . . 208

C.7 The prime order-11 cyclic latin square L(Z11,+) that encodes the cyclic group

(Z11,+) (and also the Galois field addition group (F111 ,+)) with a con-

jectured maximum transversal count |T L(Z11,+) | = 37,851 = bT(11)cMMW

[left] and its transversal heat map H(L(Z11,+)) with a uniform heat value

h(L(Z11,+)) = 3,441 [right]. 209

C.8 The prime order-13 cyclic latin square L(Z13,+) that encodes the cyclic group

(Z13,+) (and also the Galois field addition group (F131 ,+)) with a conjec-

tured maximum transversal count |T L(Z13,+) | = 1,030,367 = bT(13)cMMW

[left] and its transversal heat map H(L(Z13,+)) with a uniform heat value

h(L(Z13,+)) = 79,259 [right]. 209

C.9 The prime power order-16 super-symmetric latin square L(F24 ,+) that en-

codes the Galois field addition group (F24 ,+) with a conjectured maximum

transversal count |T L
(F24 ,+)

| = 244,744,192 = bT(16)cMMW [left] and its

transversal heat map H(L(F24 ,+)) with a uniform heat value h(L(F24 ,+)) =

15,296,512 [right]. 210

C.10 The prime order-17 cyclic latin square L(Z17,+) that encodes the cyclic

group (Z17,+) (and also the Galois field addition group (F171 ,+)) with

a conjectured maximum transversal count |T L(Z17,+) | = 1,606,008,513 =

bT(17)cMMW [left] and its transversal heat map H(L(Z17,+)) with a uniform

heat value h(L(Z17,+)) = 94,471,089 [right]. 210

xviii

LIST OF FIGURES

1.1 An example solution to the 8×8 latin square chessboard problem of Example

1.3. 3

1.2 An example solution to the old playing card problem of Example 1.5 with

a denomination latin square, a suit latin square, and a super-imposed suit-

denomination graeco-latin square. 4

2.1 An example of a latin square in non-reduced form [left] and reduced form

[right], where the second and fourth rows of the non-reduced latin square

are swapped to transform it into a reduced latin square that encodes the

cyclic group. Any latin square can be reduced by permuting its rows and

columns to yield the natural order. 17

2.2 Let L(Z4,?) be an order-4 latin square that encodes the quasi-group (Z4, ?)

over the symbol set Z4 = {0, 1, 2, 3}. These are the six conjugates of

L(Z4,?). 41

2.3 The only symmetrical solution to the eight queens puzzle of Example

2.52 (except for rotations and reflections of itself). We observe that the

placement of the eight queens (if labeled with eight distinct symbols)

represent a transversal of the chessboard. 48

xix

2.4 A visual depiction of the implications of main result of Corollary 2.90,

which extends the Hall-Paige Conjecture 2.87 for solvable groups. All

six conditions are equivalent for solvable groups. However, the Hall-

Paige Conjecture 2.87 remains unresolved for non-solvable groups. 83

3.1 A simple depiction of the account password hashing and storing process.

First, user Bob’s password (message) is fed into the CHF as input. Then

the CHF computes and outputs the hash, which is then stored in a database.

Now user Bob has an account on the system. 116

3.2 A simple depiction of the user authentication process. Evil Eve is trying

to guess user Bob’s password. Evil Eve submits a password. The CHF

computes and outputs Evil Eve’s proposed hash, which is then compared to

user Bob’s hash that is stored in the database. In this case, since Evil Eve

submits the wrong password, then the hashes don’t match. So Evil Eve will

be denied access. 117

xx

1

CHAPTER 1

INTRODUCTION

Definition 1.1. A latin square L of order-n is an n × n array of symbols in which

each symbol occurs exactly once in each row and once in each column. We let Ln

denote the set of all order-n latin squares. We let |Ln| denote the total number of all

order-n latin squares.

Table 1.1: An example of an order-3 latin square with symbols from the set
Z3 = {0, 1, 2} of integers modulo 3 [left] and an example of an order-4 latin square
with symbols from the set Z4 = {0, 1, 2, 3} of integers modulo 4 [right].

0 1 2

1 2 0

2 0 1

0 1 2 3

3 2 1 0

2 0 3 1

1 3 0 2

Definition 1.2. A magic square M of order-n is an n× n array of integers from the

set {0, 1, 2, . . . , n2 − 1}, where the integers in each row, in each column, in the main

diagonal, and in the main anti-diagonal all add up to the same number called the

magic constant.

Latin squares (and their close relatives magic squares) have been studied by

mathematicians since ancient times. The origin of the latin square is not known

2

for certain. The name “latin square” was inspired by some work conducted by Euler

in the late 18th century, who used Latin characters as the symbols [9, 10, 11]. The

latin square concept might have originated with problems concerning the motion and

placement of pieces on a chessboard; see Example 1.3. It might also have originated

from problems concerning the placement of denominations and suits in a deck of

playing cards which are arranged in specific 4×4 arrays; see Example 1.5. To the best

of our knowledge, the earliest written reference (that has survived history) includes the

solutions to the card problem, which was published in 1723; we recommend [12, 13] for

additional information. Furthermore, there is evidence indicating that magic squares

were also known to mathematicians in much earlier times. For example, magic squares

were known by ancient cultures located in places such as China, India, the Middle

East, and Europe [14, 15, 16].

Table 1.2: An example of an order-3 magic square with symbols from the set
Z9 of integers modulo 9 and the magic constant 12 [left] and an example of an
order-4 magic square with symbols from the set Z16 of integers modulo 16 with
the magic constant 30 [right].

3 8 1

2 4 6

7 0 5

6 11 0 13

1 12 7 10

15 2 9 4

8 5 14 3

Example 1.3. Consider the following old chessboard problem [17]: Given eight kings,

eight queens, eight rooks, and eight bishops in black and white, place the (64 total)

game pieces on an 8 × 8 chessboard so that each of the eight distinct pieces appears

only once in each row and each column. See Figure 1.1 for a latin square example

solution.

3

Figure 1.1: An example solution to the 8× 8 latin square chessboard problem
of Example 1.3.

kJqLrSbA
JqLrSbAk
qLrSbAkJ
LrSbAkJq
rSbAkJqL
SbAkJqLr
bAkJqLrS
AkJqLrSb

Euler is credited for initiating the systematic development of latin squares and

“graeco-latin squares” [9, 10, 11].

Definition 1.4. Let A and B be sets of n symbols. A graeco-latin square (or Euler

square) of order-n is an n × n array of ordered pairs of the form (a, b) where a ∈ A

and b ∈ B, such that every row and every column contains each element of A and

each element of B exactly once, where each ordered pair appears exactly once in the

array.

Example 1.5. Consider the old card problem [18]: given a deck of playing cards,

arrange the 16 face cards in a 4 × 4 array so that each denomination symbol in the

set A = {A,K,Q, J} and each suit symbol in the set B = {♣,♥,♦,♠} appears only

once in each row and each column. See Figure 1.2 for an example solution with latin

squares.

Not all pairs of latin squares can be super-imposed to construct a graeco-latin

square; for this, the pair of latin squares must have the following property:

4

Figure 1.2: An example solution to the old playing card problem of Example
1.5 with a denomination latin square, a suit latin square, and a super-imposed
suit-denomination graeco-latin square.

♠ ♥ ♦ ♣

♦ ♣ ♠ ♥

♣ ♦ ♥ ♠

♥ ♠ ♣ ♦

A K Q J

J Q K A

K A J Q

Q J A K

Latin Square of Suits Latin Square of Denominations

♠A ♥K ♦Q ♣J

♦J ♣Q ♠K ♥A

♣K ♦A ♥J ♠Q

♥Q ♠J ♣A ♦K

Graeco-Latin Square of Suits-Denominations

Definition 1.6. Let A and B be sets of n symbols with n ≥ 2. Let LA, LB ∈ Ln

denote order-n latin squares with symbols from A and B, respectively. Let ⊗ be the

super-imposition operation, where LA ⊗ LB is the super-imposition of LA and LB;

LA⊗LB is an n×n array of ordered pairs. Then LA and LB are said to be orthogonal

if LA ⊗ LB is a graeco-latin square.

Thus, in the playing card puzzle solution of Figure 1.2 we observe that the “suit

latin square” and the “denomination latin square” are in fact a pair of orthogonal

latin squares because they satisfy Definition 1.6 and can therefore be super-imposed

to construct a graeco-latin square of Definition 1.4. Figure 1.2 is a classic illustration

of a historical connection between orthogonal latin squares, graeco-latin squares, and

puzzle games. However, in [9, 10, 11] Euler goes beyond such games by applying

the concept of orthogonal latin squares to develop new approaches for constructing

5

graeco-latin squares (including the specific case of magic squares). For instance, he

proposed the Thirty-Six Officers problem (a practical application of order-6 graeco-

latin squares) and investigated general rules for constructing such graeco-latin squares

with even and odd orders [9, 10, 11]. In [11] Euler conjectured that: orthogonal

latin squares of order-n exist if and only if n 6≡ 2 mod 4. Thereafter, in [19] Bose,

Shrikhande, and Parker famously disproved this conjecture by instead proving the

following result:

Theorem 1.7. There is a pair of orthogonal latin squares of order-n if and only if

n 6= {2, 6}.

Although not all of Euler’s conjectures were correct, his inquiries and work even-

tually led to important future developments in fields such as combinatorics, algebra,

and number theory.

A Cayley table [20, 21, 22] encodes the structure of a finite group by rearranging

all the possible products of the group’s elements in a square table that is similar to

the addition tables and multiplication tables that many young students learn about

in elementary school. Cayley was aware of Euler’s work [9, 10, 11], and while he was

examining such groups [20, 21, 22] he discovered that the unbordered Cayley table of

an order-n group is actually an order-n latin square, where each row (or column) of

the latin square encodes a permutation of the group’s elements.

Definition 1.8. Let G = (G,+) be a finite group of order-n and let L be a latin

square of order-n. If L encodes the unbordered Cayley table of (G,+), then we write

L = L(G,+) (or equivalently L = LG) and say that L(G,+) encodes (G,+).

As a result of Cayley’s discoveries, the subject of latin squares began to attract

the serious attention of mathematicians. The cause of this serious interest was the

6

Table 1.3: Let (Z5,+) be the finite group over the set Z5 = {0, 1, 2, 3, 4} of
integers modulo 5 under addition. Then the Cayley table of (Z5,+) [left] and
the corresponding order-5 latin square L(Z5,+) [right] can be written as such.

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

Cayley Table of (Z5,+) Latin Square of (Z5,+) : L(Z5,+)

realization that latin squares were not just applicable to certain puzzle games, but that

latin squares were fundamentally relevant to fields such as combinatorics and algebra.

Schröder made additional latin square developments, where he wrote a series of papers

on formal algebra and logic, which he termed “formal arithmetics” [12, 23]. Schröder

focused heavily on the development of algebraic systems with a generalized identity

element and a binary operation such that both the left and right inverse operations

could be uniquely defined [12, 23]. In fact, these algebraic systems that Schröder had

discovered are what we refer to today as quasi-groups, which are a generalization of

groups that satisfy the latin square property. Evidently, much of Schröder’s work was

“forgotten” but was rediscovered some decades later; a list of Schröder’s papers and a

discussion of his significant accomplishments is exemplified in Ibragimov’s historical

review [23]. This rediscovery of Schröder’s work was initiated when mathematicians

began to generalize group theory to quasi-group theory [12]. For example, a major

result of this generalization was achieved by Moufang in [24], where she established a

7

fundamental connection between non-associative quasi-groups and non-desarguesian

projective planes.

The combined results of groups and quasi-groups discovered by Euler [9, 10, 11],

Cayley [20, 21], Schröder [23], and Moufang [24] built a “latin square bridge” between

the fields of combinatorics and algebra; it then became possible to simultaneously view

latin squares from both combinatoric and algebraic standpoints. For the reader who is

interested in a stronger discussion of such relationships, we recommend the literature

of Dénes and Keedwell [12], Dénes [25], Dénes and Pásztor [26], Barra [27], Guérin

[28], Fog [29], Schönhardt [30], and Wielandt and Huppert [31]. Such achievements

have built the foundation for a legion of historical and modern applications throughout

the 20th and 21st centuries. Some examples of modern applications of latin squares

are in experimental design in statistics [32], programming language compiler testing

[33], and telecommunications [34].

It turns out that quasi-groups and groups play a big role in information security,

which is the discipline and practice of defending information from unauthorized

access, usage, modification, disruption, or destruction. Cyber security (or computer

security) is information security for computing systems and the data in which they

store, transceive, and/or access. An imperative component of both information and

computer security is cryptology, which includes:

• Cryptography: the science of making codes for secure communication in the

presence of adversaries.

• Cryptanalysis: the science of breaking codes by hunting for weaknesses that

would enable adversaries to circumvent “secure” communication without nec-

essarily knowing the secret key(s).

8

Thus, cryptology plays an extensive role in the protection of information and data

that is either in transit or in storage. Hence, in order to maintain and increase the

privacy, integrity, and protection of such information and computing systems against

adversaries in an era of rapidly advancing technology with cyber warfare [35, 36, 37]

and numerous cyber security threats [38, 39, 40, 41, 42, 43], the theory and practice

of cryptology must be thoroughly researched and developed via the scientific method

and the mathematical method.

Since the development of electro-mechanical rotor machines during World War

I (ex. the Enigma machines [44, 45, 46]) and the development of programmable,

electronic, digital computers during World War II (ex. the Colossus computers

[47, 48]), the methods of cryptography have become increasingly complex with a

rapidly expanding application domain. Modern cryptography is based heavily on the

disciplines of mathematics, computer science, and electrical engineering. The design

of a cryptographic algorithm is based on assumptions of computational hardness,

where the primary objective is to make such algorithmically-based systems com-

putationally infeasible for an attacker to break in practice. Thus, although it is

theoretically feasible to break such a cryptographic system, it must be practically

infeasible to do so in any known workable situation or context; in this case, the

system is considered to be computationally secure.

The computational security of a cryptographic system depends greatly on the

underlying algebraic structures and operations that are used to build its algorithm

and implementation. Finite groups and Galois fields [49, 50, 51] are fundamental

algebraic structures that are used to construct cryptographic systems. Therefore, in

order to assess the degree of protection, strength, and reliability that such a system

offers, it is crucial to rigorously evaluate the underlying finite groups and Galois fields

9

via the scientific method and the mathematical method.

Thus, given that the structure of any finite group is encoded with a Cayley table

(and a corresponding latin square), and given that the structure of a Galois field (a

specific type of finite ring equipped with two binary operations) is encoded with two

Cayley tables (and two corresponding latin squares), then many key properties of

a given finite group or Galois field can be obtained by evaluating its representative

latin square(s). This implies that latin squares are elemental to cyber security because

they can be directly utilized to evaluate the computational security of cryptographic

systems.

Example 1.9. Galois fields of prime power order-2d are important algebraic struc-

tures for constructing cryptographic systems for digital computers with a binary

numeral system. Here we give an example of how to construct such a Galois field

F22 ∼= F22 [x], whose addition group (F22 ,+) ∼= (F22 [x],+) is encoded by an order-4

latin square L(F22 ,+) ∈ L4. First, let Z2 = (Z2,+) = {0, 1} be the group of integers

with addition modulo 2. Then the Cayley table of (Z2,+) and the corresponding

order-2 latin square L(Z2,+) can be respectively written as

+ 0 1

0 0 1

1 1 0

and
0 1

1 0
.

Cayley Table of (Z2,+) L(Z2,+)

Now let Z2[x] be the set of polynomials with coefficients from Z2. Next, we choose

a polynomial P (x) ∈ Z2[x] of degree 2 with coefficients p0, p1, p2 ∈ Z2 given by the

binary string

P (x) = p2x
2 + p1x+ p0 = 1 • x2 + 0 • x+ 1 = 101 ∈ Z2[x],

10

where p2 = 1, p1 = 0, p0 = 1 ∈ Z2, such that P (x) is irreducible in Z2[x]. Then

we obtain the Galois field F22 [x] = Z2[x]/〈P (x)〉 where the 4 distinct polynomial

elements of F22 [x] are encoded as the binary strings
a0(x) = 0 = 00 ∈ F22 [x] a2(x) = x = 10 ∈ F22 [x]
a1(x) = 1 = 01 ∈ F22 [x] a3(x) = x+ 1 = 11 ∈ F22 [x].

(1.1)

Moreover, we can input x = 2 into the above equations to obtain the equivalent

enumeration
a0(2) = 0 = 00 ∈ F22 a2(2) = 2 = 10 ∈ F22

a1(2) = 1 = 01 ∈ F22 a3(2) = 3 = 11 ∈ F22 .
(1.2)

Therefore, we can write the addition Cayley table of (F22 [x],+) in the equivalent

polynomial and integer representations

+ 0 1 x x + 1

0 0 1 x x+ 1

1 1 0 x+ 1 x

x x x+ 1 0 1

x + 1 x+ 1 x 1 0

and

+ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

,

respectively. If we remove the top and left borders of the above Cayley tables, then

we obtain the corresponding equivalent latin squares

0 1 x x+ 1

1 0 x+ 1 x

x x+ 1 0 1

x+ 1 x 1 0

and

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

L(F22 [x],+) L(F22 ,+)

that encode L(F22 [x],+) ∼= L(F22 ,+), which is “built from” a 2× 2 array of order-2 latin

sub-squares that are each equivalent to L(Z2,+).

11

Definition 1.10. Let C ⊂ Ln be a set of order-n latin squares and let LA, LB ∈ C be

two distinct latin squares. C is said to be a set of mutually orthogonal latin squares

if each super-imposition LA ⊗ LB is a graeco-latin square for all LA, LB ∈ C.

A well-known connection between mutually orthogonal latin squares and Galois

fields is [52]:

Proposition 1.11. Let pd ∈ N be a prime power. Then there exists the following:

• A Galois field Fpd of order-pd.

• A set C ⊂ Lpd of mutually orthogonal latin squares with |C| = pd − 1.

See Appendix A (and the references therein) for more information on Galois fields.

Example 1.12. Here we give an example of a connection between orthogonal latin

squares, graeco-latin squares, magic squares, and Galois fields. Let G = (G,⊕) and

H = (H,�) be finite groups over the set of symbols Z3 = {0, 1, 2} such that their

(unbordered) Cayley tables are the order-3 latin squares

LG =


1 2 0
0 1 2
2 0 1

 and LH =


0 2 1
2 1 0
1 0 2

 ,
where LG and LH are orthogonal. Then LG and LH can be super-imposed to obtain

the graeco-latin square

LG ⊗ LH =


(1, 0) (2, 2) (0, 1)
(0, 2) (1, 1) (2, 0)
(2, 1) (0, 0) (1, 2)


where each ordered pair of

G ⊗H ≡ G ×H = {(0, 0), (1, 1), (2, 2), (1, 2), (2, 0), (0, 1), (2, 1), (0, 2), (1, 0)}

12

is unique. Then, for each ordered pair (a, b) ∈ G × H = Z3 × Z3, there exists a

unique linear polynomial ax+b ∈ F32 [x] = Z3[x]/〈P (x)〉 for some degree 2 irreducible

polynomial P (x) = x2 + 1 ∈ Z3[x], such that we obtain
(1, 0) (2, 2) (0, 1)
(0, 2) (1, 1) (2, 0)
(2, 1) (0, 0) (1, 2)

↔


x 2x+ 2 1
2 x+ 1 2x

2x+ 1 0 x+ 2


where

(0, 0) ↔ 0x+ 0 = 0 ∈ F32 [x]
(0, 1) ↔ 0x+ 1 = 1 ∈ F32 [x]
(0, 2) ↔ 0x+ 2 = 2 ∈ F32 [x]
(1, 0) ↔ 1x+ 0 = x ∈ F32 [x]
(1, 1) ↔ 1x+ 1 = x+ 1 ∈ F32 [x]
(1, 2) ↔ 1x+ 2 = x+ 2 ∈ F32 [x]
(2, 0) ↔ 2x+ 0 = 2x ∈ F32 [x]
(2, 1) ↔ 2x+ 1 = 2x+ 1 ∈ F32 [x]
(2, 2) ↔ 2x+ 2 = 2x+ 2 ∈ F32 [x].

Then we let x = 3 to obtain
(1, 0) (2, 2) (0, 1)
(0, 2) (1, 1) (2, 0)
(2, 1) (0, 0) (1, 2)

 ↔


3 2 • 3 + 2 1
2 3 + 1 2 • 3

2 • 3 + 1 0 3 + 2

↔


3 8 1
2 4 6
7 0 5

 ,
which is a magic square with a magic constant of 12.

There is interest in sets of mutually orthogonal latin squares with much informa-

tion in the literature; for the reader who wishes to learn more details on mutually

orthogonal latin squares, we recommend [12, 53, 54, 55] as a good starting point. It

turns out that the notion of mutually orthogonal latin squares justifies the importance

of examining latin square “transversals” [6]; a latin square feature that is of primary

interest for this thesis.

Definition 1.13. A transversal of a latin square is a set of entries which includes

exactly one entry from each row and column, and one of each symbol.

Definition 1.14. A permutation of a set G is a function P : G → G that is both

one-to-one and onto.

13

Table 1.4: A latin square L(Z5,+) which encodes the finite group (Z5,+) has 15
transversals. One of these transversals is marked in green parentheses. Can the
reader find any of the other transversals?

+ 0 1 2 3 4

0 0 1 (2) 3 4

1 1 2 3 (4) 0

2 2 3 4 0 (1)

3 (3) 4 0 1 2

4 4 (0) 1 2 3

Definition 1.15. Let (G,⊕) be a finite group of order-n. Let P1 and P2 be permu-

tations over (G,⊕). Then P1 = (a1, ..., an) and P2 = (b1, ..., bn), where ai, bi ∈ G for

all i ∈ Zn. We define point-wise addition between P1 and P2 as

P1 ⊕ P2 = (a1 ⊕ b1, a2 ⊕ b2, ..., an ⊕ bn) = P3.

If P3 = P1 ⊕ P2 is a permutation over (G,⊕), then P3 is said to be an additive

permutation or “good permutation”.

It turns out that not all permutations are additive permutations. The question

regarding the existence of transversals in latin squares that encode finite algebraic

structures (ex. groups, quasi-groups, Galois fields, etc.) is far from being resolved

and is an area of active investigation. The following known fact is of fundamental

importance to this thesis [56, 57, 58, 59]:

Theorem 1.16. Counting the pairs of permutations over a finite group whose point-

wise sum is also a permutation is equivalent to counting the transversals of a latin

square that encodes the group.

Example 1.17. The transversal marked across the latin square L(Z5,+) in Table 1.4

14

is equivalent to an additive permutation; let P3 be this permutation, which can be

written “from left to right” as
P3 = (3, 0, 2, 4, 1)

= (3 + 0, 4 + 1, 0 + 2, 1 + 3, 2 + 4)
= (3, 4, 0, 1, 2) + (0, 1, 2, 3, 4)
= P1 + P2.

In this thesis, our primary objective is to find latin squares that possess the max-

imum number of transversals for a given order-n; can we make accurate predictions?

In other words, we wish to determine which order-n algebraic structures possess

the maximum number of additive permutations; any such structures that “pass”

such “latin square tests” will be candidates for the construction of computationally

secure cryptographic systems that operate with additive permutations. For example,

a cryptographic hash function that operates with additive permutations will have

a greater collision resistance to attacks if we use algebraic structures that possess

the maximum number of additive permutations (when compared to structures with

relatively few additive permutations). Therefore, the main points of this thesis are

summarized as follows:

• In Sections 2.1–2.4 we discuss some additional pertinent notions of latin squares.

• In Sections 2.5 and 2.7 we discuss our software tools for generating latin square

data sets and counting transversals.

• In Section 2.6 we survey some recent results and conjectures related to transver-

sals.

• In Section 2.8 we search for latin squares with maximum transversal counts:

– We confirm previous results [5, 6, 8] that cyclic latin squares of prime

order-p possess the maximum transversal counts for 3 ≤ p ≤ 9.

15

– We create a new algorithm that uses these prime order-p cyclic latin

squares as “building blocks” to construct “super-symmetric latin squares”

of prime power order-pd, which is a generalization of the order-2d algorithm

proposed in [60].

– Using this algorithm we accurately predict that super-symmetric latin

squares of order-pd with d > 0 possess the confirmed maximum transversal

counts for 3 ≤ pd ≤ 9 from [5, 6, 8] and the estimated lower bound on the

maximum transversal counts for 9 < pd ≤ 17 from [5, 6, 8].

– Based on the said evidence, we give some conjectures regarding the number

of transversals in super-symmetric latin squares.

• Lastly, in Chapter 3 we give an example application of how our algorithms and

results can be applied to cryptography for cyber security:

– We create a new generalized version of Grøstl [61], an iterated crypto-

graphic hash function, where the compression function is built from two

fixed, large, distinct permutations.

– In particular, we use the super-symmetric latin square for the additive

group of the Galois field (F32 ,+), which possesses the confirmed maximum

transversal count for order-9, to build our “Simplified-Grøstl” (S-Grøstl).

Note: the latest versions of our latin square tools are open source and are available

at: https://sourceforge.net/projects/latin-square-toolbox/.

16

CHAPTER 2

LATIN SQUARES

2.1 How Many Exist?

Before we begin to explore latin squares, one of the first questions that may come to

mind is: for a given order-n, how many n × n latin squares exist? Mathematicians

and scientists have worked on this challenging problem for many generations. To

date of writing, the short answer is: the counts are known up to order-11 [1, 2], but

beyond that nobody knows for sure!

Let |Ln′| be the number of reduced order-n latin squares. Based on Definition 2.1,

it is not difficult to show that in fact |Ln| = |Ln′ |n!(n− 1)!. Thus, in the attempt to

answer this question for a given order-n, one may begin to hunt for |Ln′| and then

use it to compute |Ln|.

Definition 2.1. A latin square is said to be in reduced form if both its first row and

first column are in their natural order. Note: by “natural order” we mean ordered

like the natural numbers N.

The chronology of results for which the exact values of |Ln| are known is as follows:

• In 1782 Euler [11] determined |L5|, which was independently determined in 1890

by Cayley [22].

17

Figure 2.1: An example of a latin square in non-reduced form [left] and reduced
form [right], where the second and fourth rows of the non-reduced latin square
are swapped to transform it into a reduced latin square that encodes the cyclic
group. Any latin square can be reduced by permuting its rows and columns to
yield the natural order.

0 1 2 3

3 2 1 0

2 0 3 1

1 3 0 2

0 1 2 3

1 3 0 2

2 0 3 1

3 2 1 0

Non-Reduced Form Reduced Form

• In the period of 1890–1900 Frolov [62] and Tarry [63] determined |L6|. There-

after in 1915 McMahon found roughly the same numbers with an alternative

approach [64].

• In the period of 1939–1951 Norton [65], Sade [66], and Saxena [67] determined

|L7|.

• In 1967 Wells determined |L8| [68].

• In 1975 Bammel and Rothstein determined |L9| [69].

• In the period of 1990-1995 Rogoyoski and McKay determined |L10| (Rogoyoski

was an amateur mathematician working on his home computer) [70].

• In 2005 (armed with more computational power) McKay and Wanless deter-

mined |L11| [71].

Note: for the above results, one finds |Ln′| and then computes |Ln| = |Ln′|n!(n− 1)!.

In Table 2.1 we observe that (as n increases) |Ln′| increases at an astronomical

rate: observe the table below, which displays all known values of |Ln| and |Ln′ | for

1 ≤ n ≤ 11 [1, 2].

18

Table 2.1: The number of latin squares up to order-11; the |Ln′ | column
contains the OEIS Sequence A000315 [1] while the |Ln| column contains
the OEIS Sequence A002860 [2].

n # Reduced Latin Squares (|Ln′ |) # All Latin Squares (|Ln|)
1 1 1

2 1 2

3 1 12

4 4 576

5 56 161 280

6 9408 812 851 200

7 16 942 080 61 479 419 904 000

8 535 281 401 856 108 776 032 459 082 956 800

9 377 597 570 964 258 816 5 524 751 496 156 892 842 531 225 600

10 7 580 721 483 160 132 811 489 280 9 982 437 658 213 039 871 725 064 756 920 320 000

11 5 363 937 773 277 371 298 119 673 540 771 840 776 966 836 171 770 144 107 444 346 734 230 682 311 065 600 000

12 ? ?

To date, as it turns out, an easily computable explicit formula for answering this

fundamental question does not yet exist, as the most accurate upper and lower bounds

that are known for large n still remain far apart. For example, one well-known result

for computing the full |Ln| is [72]
(n!)2n

nn2 ≤ |Ln| ≤
n∏
k=1

(k!)n/k.

In the literature there are a handful of explicit formulas for computing |Ln| [71, 73].

For instance, a relatively simple and explicit formula for the number of latin squares

was determined in 1992 by Shao and Wei [73]

|Ln| = n!
∑
A∈Bn

(−1)σ0(A)

per(A)
n

 , (2.1)

where Bn is the set of n×n binary permutation matrices (each row and column contain

exactly one nonzero element), σ0(A) is the number of zero entries in A, and per(A)

is the permanent of A. Unfortunately, the number of terms in (2.1) exponentially

increases, so it quickly becomes difficult to compute |Ln| as the order-n increases.

In any case, this problem remains open for n ≥ 12 [1, 2] and stands as one of the

19

greatest challenges in latin square research. For the reader who is further interested

in the enumeration of latin squares, we recommend the literature [71, 74, 75] and the

references therein.

2.2 Basic Notation

For the purposes of this thesis, we will now give a more formal notation for encoding

latin squares. It is important to establish these notational clarifications now because

we’ll be referring to latin squares with three distinct but equivalent notations, which

will depend on the context.

Definition 2.2. Let L ∈ Ln be an order-n latin square over a set Zn = {0, 1, 2, . . . , n−

1} of symbols (the integers modulo n). We say that L is encoded in the n×n symbol

matrix form if we write

L =


z0,0 z0,1 . . . z0,n−1

z1,0 z1,1 . . . z1,n−1
...

zn−1,0 zn−1,1 . . . zn−1,n−1

 =


L0,0 L0,1 . . . L0,n−1

L1,0 L1,1 . . . L1,n−1
...

Ln−1,0 Ln−1,1 . . . Ln−1,n−1

 ∈ L
n ⊂ Zn×nn ,

where Zn×nn is the set of all n×n matrices over Zn, and x, y, zx,y ∈ Zn such that each

zx,y = Lx,y is the symbol inscribed in the entry of the xth row and yth column of

L. Moreover, we say that the xth row of L and the yth column of L are respectively

written as

Lx,∗ =
(
zx,0 zx,1 . . . zx,n−1

)
and L∗,y =


z0,y

z1,y
...

zn−1,y


so

20

L =



z0,0 z0,1 . . . z0,n−1

z1,0 z1,1 . . . z1,n−1
...

zn−1,0 zn−1,1
... zn−1,n−1

 =


L0,∗

L1,∗

. . .

Ln−1,∗

 =
[
L∗,0 L∗,1 . . . L∗,n−1

]
.

Example 2.3. Let L ∈ L4 be the reduced latin square in Figure 2.1. Then the

symbol matrix form of L is

L =


0 1 2 3
1 3 0 2
2 0 3 1
3 2 1 0

 ∈ L
4 ⊂ Z4×4

4 ,

where the rows of L are
L0,∗ = (0 1 2 3),
L1,∗ = (1 3 0 2),
L2,∗ = (2 0 3 1), and
L3,∗ = (3 2 1 0),

and the columns of L are

L∗,0 =


0
1
2
3

 , L∗,1 =


1
3
0
2

 , L∗,2 =


2
0
3
1

 , and L∗,3 =


3
2
1
0

 .

Remark 2.4. Depending on the context, we may write the symbol inscribed in the

xth row and yth column of L as either Lx,y or zx,y, which are equivalent notations that

mean exactly the same thing. For example, if we’re referring to L in a permutation

context, then we may write the inscribed symbol as Lx,y because it will be consistent

with our notation of the xth row permutation Lx,∗ and the yth column permutation

L∗,y in upcoming sections. Alternatively, if we’re referring to L in a 3D Cartesian-

coordinate context, then we may write the inscribed symbol as zx,y because it will be

consistent with our ordered 3-tuple notation (x, y, zx,y) as defined below.

21

Definition 2.5. Let L ∈ Ln be a latin square. We say that L is encoded in the
n-by-n ordered 3-tuple matrix form if we write

L =


(0, 0, z0,0) (0, 1, z0,1) . . . (0, n− 1, z0,n−1)
(1, 0, z1,0) (1, 1, z1,1) . . . (1, n− 1, z1,n−1)

...
...

(n− 1, 0, zn−1,0) (n− 1, 1, zn−1,1) . . . (n− 1, n− 1, zn−1,n−1)

 ∈ (Zn × Zn × Zn)n×n
,

where L is written as an n× n array of ordered 3-tuples (x, y, z) = (x, y, zx,y) ∈ Zn×

Zn × Zn, such that each ordered triple encodes a 3D cartesian-coordinate coordinate

in Zn × Zn × Zn.

Example 2.6. Let L ∈ L4 be the reduced form latin square in Figure 2.1. Then the

ordered 3-tuple matrix form of L is

L =


(0, 0, 0) (0, 1, 1) (0, 2, 2) (0, 3, 3)
(1, 0, 1) (1, 1, 3) (1, 2, 0) (1, 3, 2)
(2, 0, 2) (2, 1, 0) (2, 2, 3) (2, 3, 1)
(3, 0, 3) (3, 1, 2) (3, 2, 1) (3, 3, 0)

 ∈ (Z4 × Z4 × Z4)4×4 .

Definition 2.7. Let L ∈ Ln be a latin square. We say that a set {}L of n2 ordered

triples is the ordered 3-tuple set form of L if
{}L = { (x, y, z) ∈ Zn × Zn × Zn },

where each entry of L is encoded as an ordered triple.

Example 2.8. Let L ∈ L4 be the reduced latin square in Figure 2.1. Then the

ordered 3-tuple set form of L is
{}L = { (0, 0, 0), (0, 1, 1), (0, 2, 2), (0, 3, 3)

(1, 0, 1), (1, 1, 3), (1, 2, 0), (1, 3, 2)
(2, 0, 2), (2, 1, 0), (2, 2, 3), (2, 3, 1)
(3, 0, 3), (3, 1, 2), (3, 2, 1), (3, 3, 0) },

which is a set of coordinates in Z4 × Z4 × Z4 that encodes L.

22

Remark 2.9. If we’re referring to L in a context that requires us to identify subsets

of entries of L, then we will use the ordered 3-tuple set notation {}L. For example,

in Sections 2.6–2.8 we’ll be referring to diagonals, transversals, and disjoint subsets

of latin squares so we’ll need the ordered 3-tuple set notation.

Consequently, we have the notational equivalence L ≡ {}L by definition.

Example 2.10. Let A and B both be sets of n symbols for the latin squares LA, LB ∈

Ln, respectively. Then the super-imposition of LA and LB is the n×n array of ordered

pairs of symbols LA ⊗ LB written as

LA ⊗ LB =


LA0,0 LA0,1 ... LA0,n−1

LA1,0 LA1,1 ... LA1,n−1
...

LAn−1,0 LAn−1,1 ... LAn−1,n−1

⊗

LB0,0 LB0,1 ... LB0,n−1

LB1,0 LB1,1 ... LB1,n−1
...

LBn−1,0 LBn−1,1 ... LBn−1,n−1



=


(LA0,0, LB0,0) (LA0,1, LB0,1) ... (LA0,n−1, L

B
0,n−1)

(LA1,0, LB1,0) (LA1,1, LB1,1) ... (LA1,n−1, L
B
1,n−1)

...
(LAn−1,0, L

B
n−1,0) (LAn−1,1, L

B
n−1,1) ... (LAn−1,n−1, L

B
n−1,n−1)

 ,

where ⊗ is the super-imposition operator, such that the set

A⊗ B ≡ A× B = {(LAx,y, LBx,y) : LAx,y ∈ A and LBx,y ∈ B}

is the Cartesian product.

2.3 Encoding Cayley Tables of Finite Groups and

Quasi-groups

In this section we demonstrate how latin squares can be applied to encode algebraic

structures that are fundamental to disciplines such as cryptography and cyber secu-

23

rity. For this, we’ll discuss finite groups (ex. Galois field addition), finite quasi-groups,

and permutation groups.

2.3.1 Connecting Groups and Permutations

Since we’re interested in how latin squares apply to cryptography, then it will behoove

us to connect latin squares and group Cayley tables to permutations and permutation

groups; this is our objective here.

In [20, 21] Cayley achieved the following result.

Theorem 2.11. If G = (G,⊕) is an order-n finite group and LG is the unbordered

Cayley table of G, then LG ∈ Ln (is an order-n latin square).

Proof. Suppose that G = (G,⊕) is an order-n finite group and LG is the unbordered

Cayley table of G. We wish to show that LG ∈ Ln. Choose a row LGgi,∗ of LG indexed

by gi ∈ G. Next, suppose that two elements in LGgi,∗ are equal. Then there exist two

columns of LG, denoted LG∗,gj
(indexed by gj ∈ G) and LG∗,gk

(indexed by gk ∈ G), such

that

LGgi,gj
= gi ⊕ gj and LGgi,gk

= gi ⊕ gk.

Therefore
LGgi,gj

= LGgi,gk

gi ⊕ gj = gi ⊕ gk
g−1
i ⊕ gi ⊕ gj = g−1

i ⊕ gi ⊕ gk
(g−1
i ⊕ gi)⊕ gj = (g−1

i ⊕ gi)⊕ gk
e⊕ gj = e⊕ gk

gj = gk,

which implies that LG∗,gj
= LG∗,gk

. So there are no repetitions of elements in LGgi,∗

because the two columns LG∗,gj
and LG∗,gk

are the same. Henceforth, using the same

24

argument for columns, there are no repetitions of elements for any LG∗,gi
, because the

two rows LGgj ,∗ and LGgk,∗ are the same. Consequently LG ∈ Ln is a latin square. �

Definition 2.12. Let G = (G,⊕) and H = (H, ?) be groups. Then a function

α : G → H is said to be a group homomorphism if

α(gi ⊕ gj) = α(gi) ? α(gj), ∀gi, gj ∈ G.

Definition 2.13. Let G = (G,⊕) and H = (H, ?) be groups. Then a group homo-

morphism α : G → H is said to be a group isomorphism if and only if it is bijective.

In this case G and H are said to be isomorphic, which is denoted by G ∼= H.

Definition 2.14. Let G = (G,⊕) be a group. Then an isomorphism α is said to be

an automorphism if α : G → G. If G is a finite group of order-n, then α is said to be

a permutation of the set of G, which may be written in two-line notation as

α =


e g1 g2 . . . gn−1

↓ ↓ ↓ . . . ↓
α(e) α(g1) α(g2) . . . α(gn−1)

 =
 e g1 g2 . . . gn−1

α(e) α(g1) α(g2) . . . α(gn−1)

 ,
or equivalently in one-line notation as

α = [α(e) α(g1) α(g2) . . . α(gn−1)]

by assuming a natural order for the elements and omitting the first row of the two-line

notation.

Remark 2.15. In addition to using two-line and one-line notation, we’ll also write

permutations using cycle notation (see the example below).

Example 2.16. Let Z5 = {0, 1, 2, 3, 4} be the set of integers modulo 5. Then

examples of two permutations of the elements of Z5 written in two-line notation

are

25

α =
 0 1 2 3 4
α(0) α(1) α(2) α(3) α(4)

 =
0 1 2 3 4

1 3 0 2 4

 and

β =
 0 1 2 3 4
β(0) β(1) β(2) β(3) β(4)

 =
0 1 2 3 4

4 3 2 1 0

 ,

which can equivalently be written in the corresponding one-line notation

α = [1 3 0 2 4] and β = [4 3 2 1 0],

and furthermore can equivalently be written in cycle notation

α = (0 1 3 2) and β = (0 4)(1 3).

Definition 2.17. A finite group P = (P , ◦) is said to be a permutation group if:

• the elements of P are permutations of a given set G = {e, g1, g2, ..., gn−1}, and

• the group operation ◦ of P is the composition of such permutations of G.

Definition 2.18. The finite group Sn = (Sn, ◦) is said to be the symmetric group on

the finite set Zn = {0, 1, 2, ..., n− 1} of n symbols if:

• each element α ∈ Sn is a permutation α : Zn → Zn, and

• the group operation ◦ of Sn is the composition of such permutations of Zn.

The following result was proved by Cayley [76].

Theorem 2.19 (Cayley). Every finite group G = (G,⊕) of order-n is isomorphic

to a subgroup of the symmetric group Sn.

Definition 2.20. An ordered 4-tuple (a, b, c, d) of entries from a latin square L ∈ Ln

is said to be a quadrangle if it is of the form (zi,j, zi,k, zl,k, zl,j). In other words,

(a, b, c, d) is a quadrangle if the four entries are the corners of a rectangular block

in L, with at least two rows and two columns, such that a and c lie on one of the

diagonals of the rectangular block.

26

Table 2.2: An example of a quadrangle (z1,1, z1,3, z4,3, z4,1) = (2, 4, 2, 0) in the latin
square L(Z5,+) which encodes the finite group (Z5,+). The four entries of the
quadrangle are marked in blue parentheses.

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 (2) 3 (4) 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 (0) 1 (2) 3

Definition 2.21. A latin square L ∈ Ln is said to satisfy the quadrangle criterion

if, whenever (a, b, c, d) and (a′, b′, c′, d′) are two quadrangles satisfying a = a′, b = b′,

and c = c′, then d = d′.

We obtain the following result from [12].

Theorem 2.22. Let G = (G,⊕) be a finite group of order-n and let LG ∈ Ln encode

G. Then LG has the following properties:

(i) Each row LGx,∗ and each column LG∗,y of LG is a permutation of the elements of

G.

(ii) The quadrangle criterion is satisfied.

Proof. (=⇒) Suppose that G = (G,⊕) is a finite group of order-n and that LG ∈ Ln

is the unbordered Cayley table of G. We wish to show that properties (i) and (ii) are

satisfied.

Claim: property (i) holds. From Theorem 2.11 it immediately follows that each

row LGx,∗ and each column LG∗,y is a permutation of the elements of G. So (i) is satisfied.

27

Claim: property (ii) holds. Suppose that (zi,j, zi,k, zl,k, zl,j) and (zi′,j′ , zi′,k′ , zl′,k′ , zl′,j′)

are two quadrangles of L where

zi,j = zi′,j′ , zi,k = zi′,k′ , and zl,k = zl′,k′ .

Then we obtain
zl,j = zl ⊕ zj

= zl ⊕ (zk ⊕ z−1
k)⊕ (z−1

i ⊕ zi)⊕ zj
= (zl ⊕ zk)⊕ (zi ⊕ zk)−1 ⊕ (zi ⊕ zj)
= zl,k ⊕ z−1

i,k ⊕ zi,j
= zl′,k′ ⊕ z−1

i′,k′ ⊕ zi′,j′
= (zl′ ⊕ zk′)⊕ (zi′ ⊕ zk′)−1 ⊕ (zi′ ⊕ zj′)
= zl′ ⊕ (zk′ ⊕ z−1

k′)⊕ (z−1
i′ ⊕ zi′)⊕ zj′

= zl′ ⊕ zj′
= zl′,j′ .

So the quadrangle criterion is satisfied for LG; so (ii) is satisfied.

Therefore, both properties (i) and (ii) are satisfied in LG since it is the unbordered

Cayley table of G. V

(⇐=) Conversely, suppose that L ∈ Ln is a latin square where properties (i) and

(ii) are satisfied. We wish to show that L = LG is the unbordered Cayley table of G.

For this, we will start by choosing borders for L that will become the borders of the

Cayley table of G. First, we choose the top border; we denote this by topL and without

loss of generality we choose the row topL = Le,∗ (the identity permutation). Second,

we choose the left border; we denote this by leftL and without loss of generality we

choose the column leftL = L∗,e. Now that the top-left border of L is chosen, it follows

that Le,e = e is the identity of G. Since L is a latin square, then
∀gx ∈ G, ∃!gy ∈ G, Lgx,gy = e =⇒ gx ⊕ gy = e

∀g′y ∈ G, ∃!g′x ∈ G, Lg′x,g′y = e =⇒ g′x ⊕ g′y = e,

meaning that the equations are soluble for every gx, g′y ∈ G by property (i). Next, we

wish to use the assumed quadrangle criterion of property (ii) to show that ⊕, which

28

is associative in G, is associative among the entries L. So take any gi, gj, gk ∈ G. If

gi = e, gj = e, or gk = e then gi ⊕ (gj ⊕ gk) = (gi ⊕ gj)⊕ gk is trivial. Henceforth, we

may assume that gi, gj, gk 6= e. Then the subsquare of L determined by the rows Le,∗

and Lgi,∗, and the columns L∗,gj
and L∗,gb⊕gk

has the Cayley table

⊕ gj gj ⊕ gk

e gj gj ⊕ gk
gi gi ⊕ gj gi ⊕ (gj ⊕ gk)

while the subsquare of L determined by the rows Lgj ,∗ and Lgi⊕gj ,∗, and the columns

L∗,e and L∗,gk
has the Cayley table

⊕ e gk

gj gj gj ⊕ gk
gi ⊕ gj gi ⊕ gj (gi ⊕ gj)⊕ gk

.

Consequently, in the bottom right entry of the above two subsquares we see that

we’ve obtained the associativity gi ⊕ (gj ⊕ gk) = (gi ⊕ gj) ⊕ gk by the quadrangle

criterion of property (ii). So we have L = LG since it is the unbordered Cayley table

of G; by appending the borders topL and leftL to LG we obtain the Cayley table of G.

V

�

The result of Theorem 2.22 yields the following.

Corollary 2.23. Let G = (G,⊕) be a finite group of order-n. If e, g1, g2, ..., gn−1 are

the elements of G and h ∈ G is fixed, then the sets of products

h⊕ e, h⊕ g1, h⊕ g2, ..., h⊕ gn−1 and e⊕ h, g1 ⊕ h, g2 ⊕ h, ..., gn−1 ⊕ h

comprise all n (possibly permuted) elements of G.

29

Remark 2.24. For the reader who is interested in a more in-depth historical expla-

nation of Theorem 2.22 and Corollary 2.23, we recommend pg. 19 of [12] and the

references therein.

At this point, let us briefly recapitulate the main results obtained thus far in

this subsection, which pertain to cryptography. Given a finite group G = (G,⊕) of

order-n, we can encode its unbordered Cayley table with a latin square LG ∈ Ln,

where G is isomorphic to a subgroup of Sn, while each row and column of LG is a

permutation of the elements {e, g1, g2, ..., gn−1} of G. We can elaborate on this as

follows.

• LG’s “xth row permutation” that transforms the ordered list of {e, g1, g2, ..., gn−1}

into LG’s xth row may be written as

LGx,∗ =
 e g1 g2 . . . gn−1

LGx,∗(e) LGx,∗(g1) LGx,∗(g2) . . . LGx,∗(gn−1)


=

 e g1 g2 . . . gn−1

zx,0 zx,1 zx,2 . . . zx,n−1

 .
• LG’s “yth column permutation” that transforms the ordered list of {e, g1, g2, ..., gn−1}

into LG’s yth column may be written as

LG∗,y =
 e g1 g2 . . . gn−1

LG∗,y(e) LG∗,y(g1) LG∗,y(g2) . . . LG∗,y(gn−1)


=

 e g1 g2 . . . gn−1

z0,y z1,y z2,y . . . zn−1,y

 .
So in other words, the permutation LGxi,∗◦L

G−1
xj ,∗ leaves no symbol unchanged for xi 6= xj

because, otherwise, one column would contain a symbol twice. Therefore, a sequence

of n permutations (LG0,∗, LG1,∗, LG2,∗, . . . , LGn−1,∗), where LGxi,∗ ◦ L
G−1
xj ,∗ leaves no symbol

unchanged for all xi, xj ∈ G, generates the entire LG.

Definition 2.25. Let LG ∈ Ln be a latin square that encodes the group G = (G,⊕) =

{e, g1, g2, ..., gn−1}. A proper subset of the entries of LG, denoted by DLG ⊂ {}LG, is

30

said to be a diagonal of LG if each (gx, gy, gz) ∈ DLG encodes a unique gx ∈ G and a

unique gy ∈ G, where the order of DLG is |DLG | = n. For each (gx, gy, gz) ∈ DLG , we

say that DLG passes through the entry (gx, gy, gz). The set of all diagonals of LG is

denoted by DLG , so the number of diagonals of LG is always given by |DLG | = n! (i.e.

the number of elements of Sn).

Table 2.3: An example of an order-5 diagonal {(3, 0, 3), (1, 1, 2), (0, 2, 2), (2, 3, 0),
(4, 4, 3)} (written “from left to right”) across the latin square L(Z5,+). The five
entries of the diagonal are marked in blue parentheses.

+ 0 1 2 3 4

0 0 1 (2) 3 4

1 1 (2) 3 4 0

2 2 3 4 (0) 1

3 (3) 4 0 1 2

4 4 0 1 2 (3)

Definition 2.26. Let LG ∈ Ln be a latin square that is the unbordered Cayley table

of the group G = (G,⊕) = {e, g1, g2, ..., gn−1}. Without loss of generality we may

assume that LG is in reduced form. The set of entries

{(gx0 , gy0 , gx0,y0), (gx1 , gy1 , gx1,y1), (gx2 , gy2 , gx2,y2), . . . , (gxn−1 , gyn−1 , gxn−1,yn−1)}

is said to be the main diagonal of LG if it connects the top-left entry and the bottom-

right entry, which are

(gx0 , gy0 , gx0,y0) and (gxn−1 , gyn−1 , gxn−1,yn−1),

respectively. Similarly, the set of entries

{(gx0 , gyn−1 , gx0,yn−1), (gx1 , gyn−2 , gx1,yn−2), (gx2 , gyn−3 , gx2,yn−3), . . . , (gxn−1 , gy0 , gxn−1,y0)}

31

is said to be the main anti-diagonal of LG if it connects the top-right entry and the

bottom-left entry, which are

(gx0 , gyn−1 , gx0,yn−1) and (gxn−1 , gy0 , gxn−1,y0),

respectively.

Table 2.4: The entries of the main diagonal {(0, 0, 0), (1, 1, 2), (2, 2, 4), (3, 3, 1),
(4, 4, 0)} and the main anti-diagonal {(4, 0, 4), (3, 1, 4), (2, 2, 4), (1, 3, 4), (0, 4, 4)} across
the latin square L(Z5,+) are marked in blue parentheses and red square brackets,
respectively.

+ 0 1 2 3 4

0 (0) 1 2 3 [4]

1 1 (2) 3 [4] 0

2 2 3 [(4)] 0 1

3 3 [4] 0 (1) 2

4 [4] 0 1 2 (3)

We obtain the following result from [12].

Theorem 2.27. Let G = (G,⊕) be a finite group of order-n and let LG ∈ Ln be a latin

square that encodes G. Then G is an abelian group if and only if LG has the property

that products located symmetrically, with respect to the main diagonal, encode the

same group element.

Proof. Suppose that G = (G,⊕) is a finite group of order-n and let LG ∈ Ln encode

G.

(=⇒) Suppose that G is an abelian group. Take any gi, gj ∈ G. Then by the

commutative property of ⊕ there exists some gk ∈ G such that

gi ⊕ gj = gk = gj ⊕ gi

32

implies

LGgi,gj
= gk = LGgj ,gi

. V

(⇐=) Suppose, on the contrary, that (with respect to the main diagonal of LG)

the products of LG that are located symmetrically do not encode the same group

element. Then there exists some gi, gj ∈ G such that

gi ⊕ gj 6= gj ⊕ gi

implies

LGgi,gj
6= LGgj ,gi

.

Consequently, the commutative property of ⊕ does not hold in G; so G is not an

abelian group. V �

Definition 2.28. Let p ∈ N be a prime number. An abelian group G is said to be

an elementary abelian group if |g| = p for every non-trivial element g ∈ G.

Remark 2.29. In upcoming sections we will explore a crucial connection between

the Cayley table of any finite elementary abelian group, the number of additive per-

mutations of the group, and the number of transversals in the group’s representative

latin square.

33

Table 2.5: An example illustration of Theorem 2.27 for the latin square
L(Z5,+) that encodes the abelian group (Z5,+). The entries of L(Z5,+)’s main
diagonal {(0, 0, 0), (1, 1, 2), (2, 2, 4), (3, 3, 1), (4, 4, 0)} are marked in blue parentheses.
The products located symmetrically, with respect to L(Z5,+)’s main diagonal,
encode the same group element, where the same group elements have the same
coloring.

+ 0 1 2 3 4

0 (0) 1 2 3 4

1 1 (2) 3 4 0

2 2 3 (4) 0 1

3 3 4 0 (1) 2

4 4 0 1 2 (3)

2.3.2 Generalizing from Groups to Quasi-groups

Definition 2.30. A set G = (G, ?) equipped with a binary operation is said to be a

quasi-group if the following conditions are satisfied:

• G is closed under the operation: qi ? qj ∈ G, ∀qi, qj ∈ G.

• The latin square property holds: ∀qi, qj ∈ G, ∃!x, y ∈ G, qi ? x = qj

and y ? qi = qj.

If G contains a finite number of elements, then G is said to be a finite quasi-group.

Remark 2.31. The unique solution property of Definition 2.30 is known as the latin

square property because it ensures that each element of G occurs exactly once in each

row and exactly once in each column of the G’s Cayley table; it is the defining property

of all quasi-groups and an elementary property of all groups. Recall from Chapter 1

that much of the credit for many of the initial results pertaining to this fundamental

relationship between quasi-groups and latin squares is given to Schröder and Moufang;

34

for the reader who is interested in further details we recommend [12, 23, 24] and the

references therein. The following quasi-group Theorem 2.32 (as given in [12]) is a

generalization of the group Theorem 2.11.

Theorem 2.32. If G = (G, ?) is a finite quasi-group and LG is the unbordered Cayley

table of G, then LG is a latin square.

Proof. Suppose that G = (G, ?) is a finite quasi-group and LG is the unbordered

Cayley table of G. We wish to show that LG is a latin square. Choose a row LGqi,∗

of LG indexed by qi ∈ G. Now suppose, on the contrary, that two elements in LGqi,∗

are equal. Then there exist two distinct columns of LG, denoted LG∗,qj
and LG∗,qk

, such

that

LGqi,qj
= qi ? qj = y = qi ? qk = LGqi,qk

.

But then there would exist two distinct solutions to the equation qi ? x = y, which

contradicts the axiom of a quasi-group. So it follows that there are no repetitions

of the elements in LGqi,∗. Using the same argument for columns, it further follows

that there are no repetitions for elements in any LG∗,qi
. Consequently LG is a latin

square. �

Table 2.6: An example of the Cayley table of the finite quasi-group G = (Z3, ?)
of order-3 over the set Z3 = {0, 1, 2} of integers modulo 3, where qi?qj = 2qi+qj+1
for all qi, qj ∈ G.

? 0 1 2
0 1 2 0
1 0 1 2
2 2 0 1

.

As we will see in Section 2.4, this fundamental connection between latin squares

and quasi-groups is essential for classifying these structures via equivalence classes.

35

2.4 Equivalence Classes

In this section we will consider operations applied to a latin square that yield another

latin square. Here, many of the results are from [12].

Definition 2.33. Let G = (G, ?) and H = (H,�) be quasi-groups. Let α, β, and γ

be one-to-one mappings from G to H. Then the ordered triple (α, β, γ) is said to be

an isotopism if

α(gx)� β(gy) = γ(gx ? gy), ∀gx, gy ∈ G.

In this case G and H are said to be isotopic quasi-groups.

Definition 2.34. Let G = (G, ?) and H = (H,�) be finite isotopic quasi-groups of

order-n that are encoded by the respective latin squares LG, LH ∈ Ln. Then LG and

LH are said to be isotopic latin squares, where:

• α is a permutation that operates on the rows of LG,

• β is a permutation that operates on the columns of LG, and

• γ is a permutation that operates on the elements of LG.

In this case we say that LG and LH are in the same isotopy class; there exist

permutations α, β, and γ that transform LG into LH.

To the best of our knowledge, the age and origin of the concept of isotopy is not

known for certain. It is said that this old concept is so “natural” to the subject

of latin squares that it often goes unnoticed [12]. The isotopy of latin squares was

intentionally applied by Schönhardt in [30] and Baer in [77, 78], and also by Albert

[79, 80] working independently (who introduced the isotopy of algebras and borrowed

the concept from topology for linear algebra applications) [12].

36

Example 2.35. Let (Z4,+) be the finite cyclic group over the set Z4 = {0, 1, 2, 3}

of integers modulo 4 under addition. Then the Cayley table of (Z4,+) and the

corresponding representative latin square L(Z4,+) ∈ L4 can be respectively written as

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

and

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2

.

Now suppose that

α =
0 1 2 3

2 1 3 0

 , β =
0 1 2 3

1 3 2 0

 , and γ =
0 1 2 3

1 0 3 2


are applied to L(Z4,+) to transform it into the latin square LH ∈ L4 that encodes the

order-4 quasi-group H, where the Cayley table of H and the corresponding LH are

respectively written as

+ 0 2 3 1

3 2 0 1 3

0 3 1 2 0

2 1 3 0 2

1 0 2 3 1

and

2 0 1 3

3 1 2 0

1 3 0 2

0 2 3 1

.

Then (Z4,+) and H are isotopic quasi-groups while L(Z4,+) and LH are isotopic latin

squares.

Definition 2.36. Let G = (G, ?) and H = (H,�) be quasi-groups that are isotopic

with respect to (α, β, γ). We say that (α, β, γ) is an isomorphism if α = β = γ. In

37

this case we say that the corresponding latin squares LG, LH ∈ Ln (that encode G

and H) are isomorphic and are in the same isomorphism class.

Example 2.37. Let L(Z4,+) ∈ L4 be the latin square from Example 2.35. Now

suppose that the permutations α, β, and γ with

α = β = γ =
0 1 2 3

1 2 3 0


are applied to L(Z4,+) to transform it into the latin square LK ∈ L4 that encodes the

order-4 quasi-group K, where the Cayley table of K and the corresponding LK are

respectively written as

+ 2 3 0 1

2 3 0 1 2

3 0 1 2 3

0 1 2 3 0

1 2 3 0 1

and

3 0 1 2

0 1 2 3

1 2 3 0

2 3 0 1

.

Then (Z4,+) and K are isomorphic quasi-groups while L(Z4,+) and LK are isomorphic

latin squares.

Definition 2.38. A set G is said to be a groupoid if G has a unary operation −1 :

G → G and a partial function ? : G × G ⇀ G such that the following properties hold

for all g1, g2, g3 ∈ G:

• Associativity: if g1 ?g2 and g2 ?g3 are defined, then (g1 ?g2)?g3 and g1 ? (g2 ?g3)

are defined and equal.

• Inverse: g−1
1 ? g1 and g1 ? g

−1
1 are defined.

• Identity: if g1 ? g2 is defined, then g1 ? g2 ? g
−1
2 = g1 and g−1

1 ? g1 ? g2 = g2.

38

We prove the following four results from [12].

Theorem 2.39. If G = (G, ?) is a quasi-group that is isotopic to a groupoid H =

(H,�), then H is also a quasi-group.

Proof. Let G = (G, ?) be a quasi-group and let H = (H,�) be a groupoid. Suppose

that G and H are isotopic. Then by definition

α(gx)� β(gy) = γ(gx ? gy), ∀gx, gy ∈ G.

Take any a, b ∈ H.

Claim: There exists a unique hx ∈ H for

a� hx = b. (2.2)

Since G and H are isotopic, then α−1(a), γ−1(b) ∈ G. Moreover, since G is a quasi-

group, then for arbitrary a, b ∈ H there exists a unique c ∈ G that is a solution to

α−1(a) ? gy = γ−1(b) with gy = c ∈ G. Now suppose that hx = β(c) ∈ H. Then we

obtain
a� hx = a� β(c)

= α(α−1(a))� β(c)
= γ(α−1(a) ? c)
= γ(γ−1(b))
= b,

which implies that there always exists a solution hx ∈ H to (2.2). Next, to prove

uniqueness, we take h′x ∈ H for (2.2) such that a� h′x = b implies

γ(α−1(a) ? β−1(h′x)) = b ⇐⇒ α−1(a) ? β−1(h′x) = γ−1(b) (2.3)

so α−1(a) ? gy = γ−1(b) is solvable and has a unique solution gy = c = α−1(h′x) where

h′x = β(c). Therefore, h′x = hx = β(c) implies that there always exists a unique

solution h′x = hx to (2.2); so (2.2) is solvable in H. V

39

Claim: There exists a unique hz ∈ H for

hz � a = b. (2.4)

Using a similar argument to the previous claim, we can show that there exists a

unique solution hz ∈ H to (2.4); so (2.4) is solvable in H. V

Consequently H is a quasi-group. �

Definition 2.40. Let G = (G, ?) be a quasi-group (or groupoid). Let σ and τ be

one-to-one mappings where σ, τ : G → G. Then the isotope G∗ = (G,⊗) given by

gx ⊗ gy = σ(gx) ? τ(gy) is said to be a principal isotope of G.

Remark 2.41. In Definition 2.40 the mappings α, β, and γ from Definition 2.33 are

replaced with σ−1, τ−1, and the identity mapping, respectively.

Theorem 2.42. Let G = (G, ?) be a quasi-group (or groupoid) and let H = (H,�)

be isotopic to G. Then H is isomorphic to a principal isotope of G.

Proof. Let G = (G, ?) be a quasi-group (or groupoid) and let H = (H,�) be isotopic

to G. Then there exist the one-to-one, onto mappings α, β, γ : G → H which define

the isotopism between G and H such that

α(gx)� β(gy) = γ(gx ? gy), ∀gx, gy ∈ G.

Thus, the fact that α, β, and γ are one-to-one, onto mappings (with inverses) implies

that α−1 ◦ γ and β−1 ◦ γ are also one-to-one, onto mappings.

Claim: There exists an isotope G∗ = (G,⊗) of G. Now the operation ⊗ is given

as
gx ⊗ gy = α−1(γ(gx)) ? β−1(γ(gy)), (2.5)

which implies the existence of a principal isotope G∗ = (G,⊗) of G. V

40

Claim: (H,�) and (G∗,⊗) are isomorphic with respect to G γ−→ H. From (2.5)

we obtain
γ(gx)� γ(gy) = α(α−1(gx))� β(β−1(gy))

= γ(α−1(γ(x)) ? β−1(γ(gy)))
= γ(gx ⊗ gy),

which implies that H and G∗ are isomorphic under the mapping G γ−→ H. V

Consequently, H is isomorphic to a principal isotope G∗ of G. �

Definition 2.43. A set G is said to be a semi-group if G has a binary operation

? : G × G → G such that satisfies associativity:

(g1 ? g2) ? g3 = g1 ? (g2 ? g3), ∀g1, g2, g3 ∈ G.

Lemma 2.44. Let G = (G, ?) be a groupoid with an identity element and let H =

(H,�) be a semi-group. If G and H are isotopic, then G and H are also isomorphic.

Theorem 2.45. If G = (G, ?) and H = (H,�) are isotopic groups, then G and H

are isomorphic.

Proof. Let G = (G, ?) and H = (H,�) be isotopic groups. Then by Definition 2.38

it follows that G is a groupoid with an identity element. Furthermore, by Definition

2.43 it follows that H is a semi-group. Therefore, Lemma 2.44 implies that G and H

are isomorphic. �

Remark 2.46. Based on these results, we observe that isotopy is an equivalence

relation between quasi-groups (or groupoids) and their representative latin squares.

Therefore, for all n ∈ N, the set Ln of all order-n latin squares can be partitioned into

isotopy classes, such that any two squares in the same class are isotopic, while any two

squares that appear in different classes are not isotopic. In [12] it is furthermore shown

that, in terms geometry, isotopic quasi-groups are quasi-groups that coordinatize the

same 3-net.

41

The following definition and example figure are based on [55].

Definition 2.47. Let LG ∈ Ln be a latin square that encodes the quasi-group G =

(G, ?) where each ordered triple is of the form (gx, gy, gz) for gx, gy, gz ∈ G. Let C =

{(gx, gy, gz) : Lgx,gy = gz}. The (x, y, z)-conjugate of LG is defined by LG:(x,y,z)
gx,gy

= gz for

each (gx, gy, gz) ∈ C. In this case we say that LG and any such LG:(x,y,z) are conjugate

equivalent, where they are in the same conjugacy class.

Figure 2.2: Let L(Z4,?) be an order-4 latin square that encodes the quasi-group
(Z4, ?) over the symbol set Z4 = {0, 1, 2, 3}. These are the six conjugates of L(Z4,?).

0 3 1 2

1 2 0 3

3 0 2 1

3 1 3 0

0 1 3 2

3 2 0 1

1 0 2 3

2 3 1 0

0 2 1 3

1 3 0 2

3 1 2 0

2 0 3 1

(x, y, z)-conjugate (y, x, z)-conjugate (z, y, x)-conjugate

0 1 3 2

2 3 1 0

1 0 2 3

3 2 0 1

0 2 3 1

2 0 1 3

1 3 2 0

3 1 0 2

0 2 1 3

2 0 3 1

3 1 2 0

1 3 0 2

(y, z, x)-conjugate (x, z, y)-conjugate (z, x, y)-conjugate

A latin square has 1, 2, 3, or 6 distinct conjugates [55]. By combining Definitions

2.33, 2.34 and 2.47 one can define the following equivalence relation.

Definition 2.48. Let LG, LH ∈ Ln be latin squares. We say that LG and LH are main

class isotopic if one of them is isotopic to some LK ∈ Ln that is conjugate equivalent

to the other. In this case we say that LG and LH are main class equivalent, where

they are in the same main class.

42

Remark 2.49. Since each latin square contains either 1, 2, 3, or 6 distinct conjugates,

then each conjugacy class contains at either 1, 2, 3, or 6 latin squares. So it follows

that each main class contains either 1, 2, 3, or 6 isotopy classes.

From Section 2.1 we recall that |Ln′| is the number of reduced order-n latin squares.

The following result was proved in [71].

Corollary 2.50. The number of isomorphism classes, isotopy classes, and main

classes of order-n latin squares will be asymptotic to |Ln′ |
n! , |Ln′ |

n!3 , and |Ln′ |
6n!3 , respectively.

Table 2.7: The number of isotopy classes and main classes for latin squares up
to order-11; the isotopy class column contains the OEIS Sequence A040082 [3]
while the main class column contains the OEIS Sequence A003090 [4].

Order-n # Isotopy Classes # Main Classes
1 1 1
2 1 1
3 1 1
4 2 2
5 2 2
6 22 12
7 564 147
8 1 676 267 283 657
9 115 618 721 533 19 270 853 541
10 208 904 371 354 363 006 34 817 397 894 749 939
11 12 216 177 315 369 229 261 482 540 2 036 029 552 582 883 134 196 099
12 ? ?

2.5 Computational Construction of Latin Squares

In order to search for latin squares with maximum transversal counts, we first need

the ability to efficiently generate data sets of latin squares. More specifically, given

43

some order-n and currently available computational power, we need to develop our

own algorithms to rapidly generate:

• The entire Ln for relatively low orders (ex. for order-(n ≤ 5)).

• A “practical sized” proper subset of Ln for relatively high orders (ex. data set

sizes of no more than 1-4 GB for orders for order-(n ≤ 21)).

There are numerous latin square generation algorithms in the literature [81, 82, 83,

84, 85], but for investigative and learning purposes we create our own algorithms from

scratch.

For our attack of the said objectives we design, implement, and test numerous

versions of both non-recursive and recursive generation algorithms. Given the current

computational and time constraints, we put forth our best effort to continually

improve the efficiency, capability, and overall performance of our algorithms in order

to obtain bigger latin square data sets of progressively higher orders. Here we discuss

our latest (and personal best) algorithms for the generation of latin square data sets,

namely:

• the Non-Preloading Selection-Based Latin Square Generation Algorithm (NPS-

LS-GA), and

• the Preloading Selection-Based Latin Square Generation Algorithm (PS-LS-

GA).

Note: the NPS-LS-GA and the PS-LS-GA are given in Appendix B.1.1.

The recursive NPS-LS-GA of Algorithm 2.1 (in Appendix B.1.1) is our latest

algorithm that is capable of generating data sets of latin squares without skipping

any. We implement the NPS-LS-GA in the Java programming language and use it as

our primary tool to generate subsets of Ln up to order-21 on a laptop computer with

44

an Intel® Core™ M-5Y71 1.2 GHz Processor and 8 GB DDR3L SD-RAM equipped

with a Linux operating system. Given our current computational resources, we find

that the NPS-LS-GA implementation is capable of generating the complete Ln up

to order-5. Beyond that, we use the NPS-LS-GA to generate proper subsets of Ln

up to order-21. We find that the NPS-LS-GA generates 607 order-21 latin squares

per second. In Table 2.8 we report the number of latin squares (up to order-21) that

we generate using the NPS-LS-GA, which are compared to all known values of the

total number of latin squares |Ln| that are known to exist up to order-11 (i.e. recall

Table 2.1) [1, 2]. To assess NPS-LS-GA’s generation rate performance, we also use

it to generate 100,000 latin square subsets of Ln up to order-21; see the performance

benchmark results in Appendix B.1.3.

After achieving order-21, we continue our computational experiments by adjusting

the NPS-LS-GA to see if we could increase generation rates for subsets of |Ln| up to

order-21 and beyond. Given that the symbol selection strategy of the NPS-LS-GA

is (theoretically) designed to generate the complete Ln for a given order-n (without

skipping any), we observe the following: the NPS-LS-GA’s (non-preloading) sym-

bol selection strategy requires a relatively significant computational cost because it

searches for the next available symbol (to insert into the latin square being generated)

in order to ensure that no latin squares of Ln are skipped during the generation

process. Upon realizing that the majority of the NPS-LS-GA’s computational cost is

spent on selecting the next symbol, we come up with a hypothesis on how to possibly

modify the NPS-LS-GA with a symbol “preloading” strategy to increase generation

rates at the cost of “skipping over” some of the latin squares in Ln that are appended

to the data set; the result of this experimental modification is the PS-LS-GA of

Algorithm 2.2 (in Appendix B.1.1).

45

Table 2.8: The sizes of the latin square data sets generated by the NPS-LS-GA
Java implementation up to order-21.

Order-n
Data Set Size

Bytes

Data Set Size

Latin Squares
All Latin Squares: |Ln|

1 9 B 1 1

2 62 B 2 2

3 804 B 12 12

4 66 KB 576 576

5 28 MB 161 280 161 280

6 989 MB 4 000 000 812 851 200

7 1.0 GB 3 000 000 61 479 419 904 000

8 1.2 GB 2 750 000 108 776 032 459 082 956 800

9 1.4 GB 2 500 000 5 524 751 496 156 892 842 531 225 600

10 679 MB 1 000 000 9 982 437 658 213 039 871 725 064 756 920 320 000

11 851 MB 1 000 000 776 966 836 171 770 144 107 444 346 734 230 682 311 065 600 000

12 1.1 GB 1 000 000 ?

13 1.3 GB 1 000 000 ?

14 1.5 GB 1 000 000 ?

15 1.7 GB 1 000 000 ?

16 2.0 GB 1 000 000 ?

17 2.3 GB 1 000 000 ?

18 2.6 GB 1 000 000 ?

19 2.9 GB 1 000 000 ?

20 3.2 GB 1 000 000 ?

21 3.6 GB 1 000 000 ?

Hence, by modifying the selection strategy of the NPS-LS-GA to obtain the PS-LS-

GA, we discover that our “preloading hypothesis” is correct: the preloading strategy

of the PS-LS-GA enables it to outperform the NPS-LS-GA (in terms of generating

subsets of |Ln|) by a significant margin; see the performance benchmark results of the

NPS-LS-GA versus the PS-LS-GA in Appendix B.1.3. Interestingly enough, we test

the PS-LS-GA up to order-30 and find that it continues to perform relatively well.

In practice we find that the PS-LS-GA implementation is capable of generating 2,801

order-21 latin squares per second. Thus, although the PS-LS-GA is approximately

4.6 times faster (and achieves much higher orders) than the NPS-LS-GA, we find that

46

the NPS-LS-GA is the most applicable to this research because it doesn’t skip any of

the latin squares in Ln. In future work, it would be interesting to further investigate

when the PS-LS-GA decides to skip a latin square and which types of latin squares

that it may tend to skip.

Upon considering the challenges associated with the task of generating latin

squares, let us briefly acknowledge the complexity. Suppose that we have a partially

filled latin square where at most k cells of the square remain unfilled in any row or

column. What is the complexity of deciding if such a partially filled latin square is

completable? This is known as the latin square completion problem (LS-CP) [86, 87],

which concerns the generation of latin squares. In [86] Colbourn proved that if k is

free, then the LS-CP is N P-complete. This means that the LS-CP is both N P (a

decision problem that is solvable in polynomial time by a theoretical non-deterministic

Turing machine [88]) and N P-hard (every decision problem A that is in N P can

be reduced to the LS-CP in polynomial time, where one can verify that a given

solution to A is also a solution to the LS-CP in polynomial time [89]). In [87]

Easton and Parker tighten Colbourn’s result by proving that the LS-CP remains in

N P-hard for k = 3.

2.6 Transversals and Conditions for Existence

Latin square transversals also play a critical role in the important concept of latin

square orthogonality and they are a major topic of examination in latin square

research [8, 12]. However, a number of basic questions about their properties remain

unresolved. For instance, the question regarding the existence of transversals in latin

squares is far from being resolved and is an area of active investigation (even if strong

47

additional assumptions are made about the structure of the latin square [8]). Here we

survey some known results and conjectures related to transversals. If one is building

a cryptographic system, then such results may help one determine which algebraic

structures may (or may not) be useful for cryptographic applications. Using our latin

square notation, we can restate the transversal Definition 1.13 as follows.

Definition 2.51. Let G = (G,⊕) be a finite quasi-group of order-n and let LG the

latin square that encodes G. A diagonal T ∈ DLG of LG is said to be a transversal

if each entry (gx, gy, gz) ∈ T encodes a unique gx ∈ G, a unique gy ∈ G, and a

unique gz ∈ G, where the order of T is |T | = n. The set of all transversals of LG is

denoted by T (LG), so the number of transversals of LG is denoted by |T (LG)|. For

each (gx, gy, gz) ∈ T , we say that T passes through the entry (gx, gy, gz).

Table 2.9: A latin square L(Z5,+) which encodes the finite group (Z5,+) has
15 transversals. The entries for three of these transversals are marked in red
parentheses, blue square brackets, and green angled brackets.

+ 0 1 2 3 4

0 (0) 1 <2> 3 [4]

1 1 [2] 3 <(4)> 0

2 2 (3) 4 [0] <1>

3 <[3]> 4 0 1 (2)

4 4 <0> [(1)] 2 3

Example 2.52. Consider the classic Eight Queens Puzzle [90]: Given eight queens,

place them on an 8×8 chessboard so that no two queens threaten each other (in other

words, no two queens share the same row, column, or diagonal). See Figure 2.3 for

an example solution, where we observe that the placement of the queens (if labeled

with eight distinct symbols) represent a transversal of the chessboard.

48

Figure 2.3: The only symmetrical solution to the eight queens puzzle of
Example 2.52 (except for rotations and reflections of itself). We observe
that the placement of the eight queens (if labeled with eight distinct
symbols) represent a transversal of the chessboard.

0Z0Z0L0Z
Z0ZQZ0Z0
0Z0Z0ZQZ
L0Z0Z0Z0
0Z0Z0Z0L
ZQZ0Z0Z0
0Z0ZQZ0Z
Z0L0Z0Z0

The following result was initially conjectured by Snevily [91] and proved by Alon

[57].

Theorem 2.53. Let p ∈ N be an odd prime for the group (Zp,+). Take A,B ⊆ Zp

given by A = {a0, a1, a2, . . . , ak−1} and B = {b0, b1, b2, . . . , bk−1}. Then there exists a

permutation α ∈ Sk such that the sums ai + bα(i) mod p for 0 ≤ i < k are pairwise

distinct.

Theorem 2.53 was further extended in [56]. From this we obtain the following:

Definition 2.54. Let n ∈ N and let Zn = {0, 1, 2, . . . , n − 1} be a set of symbols.

Take A,B ⊆ Zn given by A = {a0, a1, a2, . . . , ak−1} and B = {b0, b1, b2, . . . , bk−1}.

Then a permutation α ∈ Sk is said to be a good permutation if the sums ai + bα(i)

mod p for 0 ≤ i < k are pairwise distinct.

49

In [58, 59] the authors propose methods for estimating the number of good permu-

tations of a given set of n symbols. When n is odd the number of good permutations

is not well understood [58]. For instance, is it possible to accurately predict the

number of transversals in latin squares that encode odd order finite groups? This is

an example of an open question regarding the number of additive permutations in

finite groups.

As we will soon see, a major objective of this section is to show that the number

of good permutations of a given finite quasi-group (or group) G of order-n is equal

to the number of transversals across the latin square LG that encodes G. In other

words, we wish to show that a good permutation of a given G is equivalent to a

transversal of LG. Counting the number of good permutations of a given set or

group is particularly important for developing computationally secure cryptographic

systems for cyber security. Theorem 2.53 and Definition 2.54 indicate that if algebraic

structures with “not good permutations” are used to construct a system such as a

cryptographic hash function, then there will be more collisions than a system built

with good permutations. This motivates us to find latin squares with maximum

transversal counts.

Example 2.55. Let L(Z5,+) be the latin square that encodes the cyclic group Z5 =

(Z5,+) of integers with addition modulo 5. Suppose that we have two permutations

α and β given by

α =
0 1 2 3 4

0 3 1 4 2

 and β =
0 1 2 3 4

3 2 1 0 4

 ,
which both encode a distinct transversal of L(Z5,+); these are equivalent to the red

transversal

{(0, 0, 0), (2, 1, 3), (4, 2, 1), (1, 3, 4), (3, 4, 2)}

50

and the blue transversal

{(3, 0, 3), (1, 1, 2), (4, 2, 1), (2, 3, 0), (0, 4, 4)}

marked in Table 2.9. Then the (point-wise) sum

γ = α + β =
 0 1 2 3 4

0 + 3 3 + 2 1 + 1 4 + 0 2 + 4

 =
0 1 2 3 4

3 0 2 4 1


is itself a permutation that encodes a transversal of L(Z5,+); this is equivalent to the

green transversal

{(3, 0, 3), (4, 1, 0), (0, 2, 2), (1, 3, 4), (2, 4, 1)}

marked in Table 2.9.

Remark 2.56. It is known that counting the pairs of permutations over a finite

group (G,⊕) whose point-wise sum is also a permutation is equivalent to counting

the number of transversals in the latin square L(G,⊕).

2.6.1 Delta Lemma

In the last several years, significant progress in latin square transversal research

has been achieved; much of this progress has resulted from the discovery of a new

tool called the “Delta Lemma” [6], which is now being used to confirm and explain

numerous classical and modern results regarding transversals. As it turns out, the

idea behind the Delta Lemma [6] is a deceptively simple, yet enormously powerful

tool for investigating latin square transversals. It simultaneously occurred to two

independent research teams in 2005, which eventually led to the publications [92, 93].

In [94, 95, 96, 97, 98, 99, 100] other researchers have used variants of the Delta Lemma

to achieve results.

51

In order apply the Delta Lemma (which is the upcoming Lemma 2.58), it is useful

to think of a latin square as being a set of entries, where each entry is an ordered

3-tuple of the form (row, column, symbol) [6]; for this we first recall the ordered

3-tuple latin square notation (x, y, z) ∈ Zn × Zn × Zn of Definition 2.5 and Example

2.6 of Section 2.2, and then consider the following.

Definition 2.57. [Delta Function] Let L(Zn,+) ∈ Ln encode Zn = (Zn,+). Then the

mapping ∆ : Zn×Zn×Zn → Zn is called the Delta Function if ∆(x, y, z) = z−x− y

mod n.

Therefore, using Definition 2.57 and given any row x of L(Zn,+), one can iterate

over each entry (x, yj, zj) of x for 0 ≤ j ≤ n− 1 to sum x’s ∆ values (mod n) as [100]
n−1∑
j=0

∆(x, yj, zj) =
n−1∑
j=0

(zj − x− yj) =
n−1∑
j=0

zj −
n−1∑
j=0

x−
n−1∑
j=0

yj = nx = 0 mod n,

and similarly, given any column y of L(Zn,+), one can iterate over each entry (xi, y, zi)

of y for 0 ≤ i ≤ n− 1 to sum x’s ∆ values as
n−1∑
i=0

∆(xi, y, zi) =
n−1∑
i=0

(zi − xi − yi) =
n−1∑
i=0

zi −
n−1∑
i=0

xi −
n−1∑
i=0

yi = ny = 0 mod n.

Thus, from [6, 100] we obtain the following.

Lemma 2.58 (Delta Lemma). Let L(Zn,+) ∈ Ln and let T ∈ T (L(Zn,+)) be a

transversal of L(Zn,+). Then

∑
(xi,yi,zi)∈T

∆(xi, yi, zi) =


0 mod n if n is odd

1
2n mod n if n is even.

Proof. Let L(Zn,+) ∈ Ln possess a transversal T ∈ T (L(Zn,+)). Let ∑
t∈T

∆(t) be the

sum of all the ∆-values over each entry of T . Then

52

∑
t∈T

∆(t) = ∑
(xi,yi,zi)∈T

∆(xi, yi, zi)

=
n−1∑
i=0

∆(xi, yi, zi) mod n

=
n−1∑
i=0

(zi − xi − yi) mod n

=
n−1∑
i=0

zi −
n−1∑
i=0

xi −
n−1∑
i=0

yi mod n.

Now since
n−1∑
i=0

zi =
n−1∑
i=0

xi =
n−1∑
i=0

yi,

then
n−1∑
i=0

zi −
n−1∑
i=0

xi −
n−1∑
i=0

yi mod n =
n−1∑
i=0

zi −
n−1∑
i=0

zi −
n−1∑
i=0

zi mod n

=
n−1∑
i=0

zi − 2
n−1∑
i=0

zi mod n

= n(n−1)
2 − 2

(
n(n−1)

2

)
mod n

= n(n−1)
2 − n(n− 1) mod n

= n(n− 1)
(

1
2 − 1

)
mod n

= −1
2n(n− 1) mod n.

At this point, there are two cases to consider.

Case 1: n is even. Then n = 2k for some k ∈ Z. So∑
t∈T

∆(t) = −1
2n(n− 1) mod n

= −1
2(2k)(n− 1) mod n

= −k(n− 1) mod n

= (−kn+ k) mod n

= −kn mod n+ k mod n

= k mod n

= 1
2n mod n. V

Case 2: n is odd. Then n = 2k + 1 for some k ∈ Z. So

53

∑
t∈T

∆(t) = −1
2n(n− 1) mod n

= −1
2(2k + 1)((2k + 1)− 1) mod n

=
(
−1

2(2k)− 1
2

)
(2k) mod n

=
(
−k − 1

2

)
(2k) mod n

=
(
−2k2 − 1

2(2k)
)

mod n

= (−2k2 − k) mod n

= −k(2k + 1) mod n

= −kn mod n

= 0 mod n. V

�

Example 2.59. Let L(Z5,+) be the latin square that encodes the finite group (Z5,+).

Let {(3, 0, 3), (4, 1, 0), (0, 2, 2), (1, 3, 4), (2, 4, 1)} be a transversal of L(Z5,+) (the green

transversal marked in Table 2.9). We apply the Delta Function ∆(x, y, z) to each

entry ∆(xi, yi, zi) of this transversal to obtain
∆(3, 0, 3) = 3− 3− 0 mod 5 ≡ 0 mod 5
∆(4, 1, 0) = 0− 4− 1 mod 5 ≡ 0 mod 5
∆(0, 2, 2) = 2− 0− 2 mod 5 ≡ 0 mod 5
∆(1, 3, 4) = 4− 1− 3 mod 5 ≡ 0 mod 5
∆(2, 4, 1) = 1− 2− 4 mod 5 ≡ 0 mod 5

where

∆(3, 0, 3) + ∆(4, 1, 0) + ∆(0, 2, 2) + ∆(1, 3, 4) + ∆(2, 4, 1) ≡ 0 mod 5,

which is predicted by the Delta Lemma since 5 is odd.

Theorem 2.60. Let L(Zn,+) ∈ Ln encode (Zn,+). If n is even, then L(Zn,+) has no

transversals.

Proof. Suppose L(Zn,+) ∈ Ln encodes Zn = (Zn,+) where n is even. Since z = x+ y

mod n for all (x, y, z) ∈ {}L(Zn,+), then

54

n−1∑
z=0

z =
n−1∑
x=0

(x+ y) mod n

=
n−1∑
x=0

x mod n +
n−1∑
y=0

y mod n.

Now by the well-known Faulhaber’s formula [101] we know that
n−1∑
x=0

x = 0 + 1 + 2 + ...+ (n− 1) = n(n− 1)
2 ,

which gives
n−1∑
x=0

x mod n +
n−1∑
y=0

y mod n =
n−1∑
x=0

x mod n +
n−1∑
y=0

y mod n

= n(n−1)
2 mod n + n(n−1)

2 mod n

=
(
n(n−1)

2 + n(n−1)
2

)
mod n

= n(n− 1) mod n.

Therefore,
n(n−1)

2 ≡ n(n− 1) mod n
n(n−1)

2 ≡ 0 mod n

n
(
n−1

2

)
≡ 0 mod n.

Now since n is even, then n−1 is odd. So n−1
2 is not an integer, implying that n

(
n−1

2

)
is not an integer. As a consequence, L(Zn,+) has no transversals; so T (L(Zn,+)) = ∅

when n is even. �

The original proof of Theorem 2.60 (with n even) was achieved by Euler and

delivered to the St. Petersburg Academy on October 17, 1776 [10]. Thereafter, it was

published in Euler’s 1849 paper titled De quadratis magicis [9, 10]. In fact, Theorem

2.60 was one of the first theorems regarding transversals that was ever proved [6].

Thereafter, the n odd case of Theorem 2.60 was proved after the discovery of the

Delta Lemma [6].

The following generalization was proved in [100] by Wanless and Webb.

Theorem 2.61. For any n ∈ N with n /∈ {1, 3}, there exists some L ∈ Ln that

contains an entry through which no transversal passes.

55

Proof. Let L(Zn,+) ∈ Ln encode Zn = (Zn,+). If n is even, then Theorem 2.60

implies that L(Zn,+) has no transversals. Thus, we may assume that n is odd, and

therefore we will consider the two cases of n ≡ 1 mod 4 and n ≡ 3 mod 4.

Case 1: n ≡ 1 mod 4. Then n ≥ 5 and so we define L(Zn,+) as follows; that is,

(x, y, x+ y mod n) for each entry of L(Zn,+) with the following exceptions:

1. (0, 0, 1) so ∆((0, 0, 1)) = 1,

2. (0, 1, 0) so ∆((0, 1, 0)) = −1,

3. (x, 0, x+ 2) so ∆((x, 0, x+ 2)) = 2 for all x = 1, 3, . . . , n−7
2 ,

4. (x, 2, x) so ∆((x, 2, x)) = −2 for all x = 1, 3, . . . , n−7
2 ,

5.
(
n−3

2 , 0, 0
)

so ∆
((

n−3
2 , 0, 0

))
= −n−3

2 ,

6.
(
n−3

2 , 2, n−3
2

)
so ∆

((
n−3

2 , 2, n−3
2

))
= −2,

7.
(
n−3

2 , n+3
2 , n+1

2

)
so ∆

((
n−3

2 , n+3
2 , n+1

2

))
= −n−1

2 ,

8. (n− 1, 1, 1) so ∆ ((n− 1, 1, 1)) = 1,

9.
(
n− 1, 2, n+1

2

)
so ∆

((
n− 1, 2, n+1

2

))
= n−1

2 , and

10.
(
n− 1, n+3

2 , 0
)

so ∆
((
n− 1, n+3

2 , 0
))

= n−1
2 .

Then define the set of “unamended entries” of L(Zn,+) as

Ω = ⋃
0≤x,y≤n−1

{(x, y, x+ y mod n)},

where ∆(t) = 0 for all t ∈ Ω, and the set of “amended entries” of L(Zn,+) as
Ω′ =

{
(0, 0, 1), (0, 1, 0),

(
n−3

2 , 0, 0
)
,
(
n−3

2 , 2, n−3
2

)
,
(
n−3

2 , n+3
2 , n+1

2

)
,

(n− 1, 1, 1) ,
(
n− 1, 2, n+1

2

)
,
(
n− 1, n+3

2 , 0
) }

∪

 ⋃
x=1,3,...,n−7

2

{
(x, 0, x+ 2) ∪ (x, 2, x)

} ,
where ∆(t) 6= 0 for all t ∈ Ω′.

Suppose, towards contradiction, that T ∈ T (L(Zn,+)) is a transversal of L(Zn,+) such

56

that T passes through the element t0 = (x0, y0, z0) = (0, 0, 1). Then ∆(t0) = 1 6= 0.

Now since t0 ∈ T with x0 = 0, y0 = 0, and z0 = 1, then for t1 ∈ T it must be that

x1 6= 0, y1 6= 0, and z1 6= 1. So

t1 6= t0, (0, 1, 0),
(
n− 3

2 , 0, 0
)
, (n− 1, 1, 1)

and

t1 6= (x, 0, x+ 2), for x = 1, 3, . . . , n− 7
2 .

Thus, for the candidate choices of t1 it must be that

t1 ∈
(

Ω′ \
{
t0, (0, 1, 0),

(
n− 3

2 , 0, 0
)
, (n− 1, 1, 1), (x, 0, x+ 2

})
∪ Ω

implies

t1 ∈

(x, 2, x),
(
n−3

2 , 2, n−3
2

)
,
(
n−3

2 , n+3
2 , n+1

2

)
,
(
n− 1, 2, n+1

2

)
,

(
n− 1, n+3

2 , 0
) ∪ Ω,

recalling that (x, 2, x) for x = 1, 3, . . . , n−7
2 . Since we have that n ≥ 5 and n ≡ 1

mod 4, then there are four possible choices to consider.

Case: 1.1 Choose t1 = (x1, y1, z1) =
(
n−3

2 , 2, n−3
2

)
. Then

∆(t1) = n− 3
2 − n− 3

2 − 2 = −2 6= 0 =⇒ ∆(t0) + ∆(t1) = 1− 2 = −1 6= 0.

Now since t1 ∈ T with x1 = n−3
2 , y1 = 2, and z1 = n−3

2 , then for t2 = (x2, y2, z2) ∈ T

it follows that x2 6= n−3
2 , y2 6= 2, and z2 6= n−3

2 with t2 6= t0, t1. Thus, it must be that

t2 ∈
{ (
n− 1, n+3

2 , 0
) }
∪ Ω. Therefore, we may choose t2 =

(
n− 1, n+3

2 , 0
)
. Then

∆(t2) = 0− (n− 1)−
(
n+ 3

2

)
= −3n− 1

2
implies

∆(t0) + ∆(t1) + ∆(t2) = 1− 2 + −3n− 1
2 6= 0.

Consequently, for any t3 = (x3, y3, z3) ∈ T it must be that t3 ∈ Ω. But since

57

∆(t0) + ∆(t1) + ∆(t2) 6= 0 and ∆(t) = 0 for all t ∈ Ω, then there is no such t3 ∈ T,Ω

where ∆(t0) + ∆(t1) + ∆(t2) + ∆(t3) = 0. Hence,

t3 ∈ Ω, T and ∆(t0) + ∆(t1) + ∆(t2) + ∆(t3) 6= 0 =⇒ T 6∈ T (L(Zn,+)),

implying that T is not a transversal of L(Zn,+)—a contradiction. V

Case 1.2: Choose t1 = (x1, y1, z1) =
(
n−3

2 , n+3
2 , n+1

2

)
. Then

∆(t1) = n+ 1
2 − n− 3

2 − n+ 3
2 = −n+ 1

2 6= 0 =⇒ ∆(t0)+∆(t1) = 1+−n+ 1
2 6= 0.

Now since t1 ∈ T with x1 = n−3
2 , y1 = n+3

2 , and z1 = n+1
2 , then for t2 = (x2, y2, z2) ∈ T

it follows that x2 6= n−3
2 , y2 6= n+3

2 , and z2 6= n+1
2 with t2 6= t0, t1. Thus, it must be

that t2 ∈ Ω. But since ∆(t0) + ∆(t1) 6= 0 and ∆(t) = 0 for all t ∈ Ω, then there is no

such t2 ∈ T,Ω where ∆(t0) + ∆(t1) + ∆(t2) = 0. Hence,

t2 ∈ Ω, T and ∆(t0) + ∆(t1) + ∆(t2) 6= 0 =⇒ T 6∈ T (L(Zn,+)),

implying that T is not a transversal of L(Zn,+)—a contradiction. V

Case 2.3: Choose t1 =
(
n− 1, 2, n+1

2

)
. Then

∆(t1) = n+1
2 − (n− 1)− 2 = −n−1

2 6= 0
=⇒ ∆(t0) + ∆(t1) = 1 + −n−1

2 6= 0.

Now since t1 ∈ T with x1 = n− 1, y1 = 2, and z1 = n+1
2 , then for t2 = (x2, y2, z2) ∈ T

it follows that x2 6= n − 1, y2 6= 2, and z2 6= n+1
2 with t2 6= t0, t1. Thus, it must be

that t2 ∈ Ω. But since ∆(t0) + ∆(t1) + ∆(t2) 6= 0 and ∆(t) = 0 for all t ∈ Ω, then

there is no such t2 ∈ T,Ω where ∆(t0) + ∆(t1) + ∆(t2) = 0. So

t2 ∈ Ω, T and ∆(t0) + ∆(t1) + ∆(t2) 6= 0 =⇒ T 6∈ T (L(Zn,+)),

implying that T is not a transversal of L(Zn,+)—a contradiction. V

Case 1.4: Choose t1 = (x1, y1, z1) =
(
n− 1, n+3

2 , 0
)
. Then

∆(t1) = 0− (n− 1)−
(
n+3

2

)
= −3n−1

2 6= 0

=⇒ ∆(t0) + ∆(t1) = 1 + −3n−1
2 6= 0.

58

Now since t1 ∈ T with x1 = n− 1, y1 = n+3
2 , and z1 = 0, then for t2 = (x2, y2, z2) ∈ T

it follows that x2 6= n − 1, y2 6= n+3
2 , and z2 6= 0 with t2 6= t0, t1. Thus, it must be

that t2 ∈
{ (

n−3
2 , 2, n−3

2

) }
∪ Ω. Therefore, we may let t2 =

(
n−3

2 , 2, n−3
2

)
. Then

∆(t2) = n−3
2 −

n−3
2 − 2 = −2 6= 0

=⇒ ∆(t0) + ∆(t1) + ∆(t2) = 1 + −3n−1
2 − 2 6= 0.

Consequently, for any t3 = (x3, y3, z3) ∈ T it must be that t3 ∈ Ω. But since

∆(t0) + ∆(t1) + ∆(t2) 6= 0 and ∆(t) = 0 for all t ∈ Ω, then there is no such t3 ∈ T,Ω

where ∆(t0) + ∆(t1) + ∆(t2) + ∆(t3) = 0. Hence,

t3 ∈ Ω, T and ∆(t0) + ∆(t1) + ∆(t2) + ∆(t3) 6= 0 =⇒ T 6∈ T (L(Zn,+)),

implying that T is not a transversal of L(Zn,+)—a contradiction. V

Case 2: n ≡ 3 mod 4. Then n ≥ 5 and so we define L(Zn,+) as follows; that is,

(x, y, x+ y mod n) for each entry of L(Zn,+) with the following exceptions:

1. (0, 0, 1) so ∆((0, 0, 1)) = 1,

2. (0, 1, 0) so ∆((0, 1, 0)) = −1,

3. (x, 0, x+ 2) so ∆((x, 0, x+ 2)) = 2 for all x = 1, 3, . . . , n−5
2 ,

4. (x, 2, x) so ∆((x, 2, x)) = −2 for all x = 1, 3, . . . , n−5
2 ,

5.
(
n−1

2 , 0, 0
)

so ∆
((

n−1
2 , 0, 0

))
= −n−1

2 ,

6.
(
n−1

2 , n+1
2 , n−1

2

)
so ∆

((
n−1

2 , n+1
2 , n−1

2

))
= n−1

2 ,

7. (n− 1, 1, 1) so ∆ ((n− 1, 1, 1)) = 1,

8.
(
n− 1, 2, n−1

2

)
so ∆

((
n− 1, 2, n−1

2

))
= n−3

2 , and

9.
(
n− 1, n+1

2 , 0
)

so ∆
((
n− 1, n+1

2 , 0
))

= −n−1
2 .

59

Then define the set of “unamended entries” of L(Zn,+) as

Ω = ⋃
0≤x,y≤n−1

{(x, y, x+ y mod n)},

where ∆(t) = 0 for all t ∈ Ω, and the set of “amended entries” of L(Zn,+) as
Ω′ =

{
(0, 0, 1), (0, 1, 0),

(
n−1

2 , 0, 0
)
,
(
n−1

2 , n+1
2 , n−1

2

)
,

(n− 1, 1, 1) ,
(
n− 1, 2, n−1

2

)
,
(
n− 1, n+1

2 , 0
) }

∪

 ⋃
x=1,3,...,n−5

2

{
(x, 0, x+ 2) ∪ (x, 2, x)

} ,
where ∆(t) 6= 0 for all t ∈ Ω′.

Suppose, towards contradiction, that T ∈ T (L(Zn,+)) is a transversal of L(Zn,+) such

that T passes through the element t0 = (x0, y0, z0) = (0, 0, 1). Then ∆(t0) = 1 6= 0.

Now since t0 ∈ T with x0 = 0, y0 = 0, and z0 = 1, then for t1 ∈ T it must be that

x1 6= 0, y1 6= 0, and z1 6= 1. So

t1 6= t0, (0, 1, 0),
(
n− 1

2 , 0, 0
)
, (n− 1, 1, 1)

and

t1 6= (x, 0, x+ 2), for x = 1, 3, . . . , n− 5
2 .

Thus, for the candidate choices of t1 it must be that
t1 ∈

(
Ω′ \

{
t0, (0, 1, 0),

(
n−1

2 , 0, 0
)
, (n− 1, 1, 1), (x, 0, x+ 2)

})
∪ Ω

=⇒
t1 ∈

{
(x, 2, x),

(
n−1

2 , n+1
2 , n−1

2

)
,
(
n− 1, 2, n−1

2

)
,(

n− 1, n+1
2 , 0

) }
∪ Ω,

recalling that (x, 2, x) for x = 1, 3, . . . , n−5
2 . Since we have that n ≥ 5 and n ≡ 1

mod 4, then there are four possible choices to consider.

Case 2.1: Choose t1 = (x1, y1, z1) =
(
n−1

2 , n+1
2 , n−1

2

)
. Then

∆(t1) = n−1
2 −

n−1
2 −

n+1
2 = −n−1

2 6= 0
=⇒ ∆(t0) + ∆(t1) = 1− −n−1

2 6= 0.

Now since t1 ∈ T with x1 = n−1
2 , y1 = n+1

2 , and z1 = n−1
2 , then for t2 = (x2, y2, z2) ∈ T

it follows that x2 6= n−1
2 , y2 6= n+1

2 , and z2 6= n−1
2 with t2 6= t0, t1. Thus, it must be that

60

t2 ∈
{ (
n− 1, 2, n−1

2

)
, (x, 2, x)

}
∪ Ω. Therefore, we may choose t2 =

(
n− 1, 2, n−1

2

)
.

Then
∆(t2) = n−1

2 − (n− 1)− 2 = −n+1
2 − 2

=⇒ ∆(t0) + ∆(t1) + ∆(t2) = 1− 2 +
(
−n+1

2 − 2
)
6= 0.

Consequently, for any t3 = (x3, y3, z3) ∈ T it must be that t3 ∈ Ω because y3 6= y2 = 2

implies that t3 6= (x, 2, x). But since ∆(t0) + ∆(t1) + ∆(t2) 6= 0 and ∆(t) = 0 for

all t ∈ Ω, then there is no such t3 ∈ T,Ω where ∆(t0) + ∆(t1) + ∆(t2) + ∆(t3) = 0.

Hence,

t3 ∈ Ω, T and ∆(t0) + ∆(t1) + ∆(t2) + ∆(t3) 6= 0 =⇒ T 6∈ T (L(Zn,+)),

implying that T is not a transversal of L(Zn,+)—a contradiction. V

Case 2.2: Choose t1 = (x1, y1, z1) =
(
n− 1, 2, n−1

2

)
. Then

∆(t1) = (n− 1)− 2− n−1
2 = n−5

2 6= 0
=⇒ ∆(t0) + ∆(t1) = 1 + n−5

2 6= 0.

Now since t1 ∈ T with x1 = n− 1, y1 = 2, and z1 = n−1
2 , then for t2 = (x2, y2, z2) ∈ T

it follows that x2 6= n − 1, y2 6= 2, and z2 6= n−1
2 with t2 6= t0, t1. Thus, it must be

that t2 ∈ Ω. But since ∆(t0) + ∆(t1) 6= 0 and ∆(t) = 0 for all t ∈ Ω, then there is no

such t2 ∈ T,Ω where ∆(t0) + ∆(t1) + ∆(t2) = 0. Hence,

t2 ∈ Ω, T and ∆(t0) + ∆(t1) + ∆(t2) 6= 0 =⇒ T 6∈ T (L(Zn,+)),

implying that T is not a transversal of L(Zn,+)—a contradiction. V

Case 2.3: Choose t1 = (x, 2, x). Then
∆(t1) = x− x− 2 = −2 6= 0

=⇒ ∆(t0) + ∆(t1) = 1 +−2 6= 0.
Now since t1 ∈ T with x1 = x, y1 = 2, and z1 = x, then for t2 = (x2, y2, z2) ∈ T

it follows that x2 6= x, y2 6= 2, and z2 6= x with t2 6= t0, t1. Thus, it must be that

t2 ∈
{ (

n−1
2 , n+1

2 , n−1
2

) }
∪ Ω. Therefore, we may choose t2 =

(
n−1

2 , n+1
2 , n−1

2

)
. Then

61

∆(t2) = n−1
2 −

n−1
2 −

n+1
2 = −n+1

2

=⇒ ∆(t0) + ∆(t1) + ∆(t2) = 1− 2− n+1
2 6= 0.

Consequently, for any t3 = (x3, y3, z3) ∈ T it must be that t3 ∈ Ω. But since

∆(t0) + ∆(t1) + ∆(t2) 6= 0 and ∆(t) = 0 for all t ∈ Ω, then there is no such t3 ∈ T,Ω

where ∆(t0) + ∆(t1) + ∆(t2) + ∆(t3) = 0. Hence,

t3 ∈ Ω, T and ∆(t0) + ∆(t1) + ∆(t2) + ∆(t3) 6= 0 =⇒ T 6∈ T (L(Zn,+)),

implying that T is not a transversal of L(Zn,+)—a contradiction. V

Therefore, in the cases of n ≡ 1 mod 4, n ≡ 3 mod 4, and n ≡ 0 mod 2 when

n ≥ 4, we can always find such an L(Zn,+) with amended entries where there exists

an entry of L(Zn,+) for which no transversal passes. Consequently, for every n > 3,

there exists order-n latin square which contains an entry that is not included in any

transversal. �

The n ≡ 1 mod 4 case of Theorem 2.61 was proved by Mann [102], but the n ≡ 1

mod 4 of Theorem 2.61 was an open problem until the discovery of the Delta Lemma

2.58 [6, 100].

The following result was proved in [103] by Balasubramanian.

Theorem 2.62. If n ∈ N is even, then any L ∈ Ln possesses an even number of

transversals.

Remark 2.63. Let n ∈ N be even and consider a latin square L(G,⊕) ∈ Ln that

encodes an order-n group (G,⊕). If (G,⊕) is a cyclic group, then Theorem 2.60 tells

us that L(G,⊕) has zero transversals and equivalently that (G,⊕) has zero additive

permutations (i.e. see Table 2.18 in Section 2.8)—if we’re building a cryptographic

system that operates with additive permutations, then we surely wish to avoid using

(G,⊕) in its construction! On the other hand, if (G,⊕) is not a cyclic group, then

62

Theorem 2.62 tells us that L(G,⊕) has an even number of transversals and equivalently

that (G,⊕) has an even number of additive permutations—many cryptographic sys-

tems for digital computers operate over Galois fields with orders that are powers of

2, which means that the addition groups of such fields will have an even number of

additive permutations.

If a latin square’s order is odd, then we consider the following conjecture by Ryser

[104].

Conjecture 2.64. If n ∈ N is odd, then any L ∈ Ln possesses an even number of

transversals. Each latin square of odd order has at least one transversal.

Today Conjecture 2.64 remains unproven in general, but relatively recent compu-

tational evidence obtained by McKay, McLeod, and Wanless [8] proves that Conjec-

ture 2.64 is true given the following condition:

Theorem 2.65. If n ∈ N is odd and n ≤ 9, then any L ∈ Ln possesses at least one

transversal.

2.6.2 Hall-Paige Conjecture and Finite Solvable Groups

As it turns out, numerous studies and results regarding latin square transversals have

been stated in terms of the following two equivalent concepts for quasi-groups [6].

Definition 2.66. Let G = (G, ?) be a finite quasi-group. A permutation (and

biunique mapping) θ : G → G is said to be a complete mapping if the biunique

mapping η : G → G defined by η(gx) = gx ? θ(gx) for all gx ∈ G is also a permutation.

In this case, η is said to be an orthomorphism.

63

In [102] Mann originally introduced the notion of complete mappings for groups,

yet Definition 2.66 works just as well for quasi-groups [6].

The following fact from [6] implies that all of the latin square transversal results

(ex. of this thesis or any literature result pertaining to latin square transversals) can

be restated in terms of results pertaining to complete mappings and orthomorphisms

of quasi-groups.

Theorem 2.67. Let G = (G, •) be a finite quasi-group of order-n and let LG ∈ Ln

encode G. Then G has:

1. A complete mapping θ : G → G if and only if LG has a transversal (that is,

we can locate a transversal by selecting, in each row LGgx,∗, the entry LGgx,θ(gx) in

column LG∗,θ(gx)).

2. An orthomorphism η : G → G if and only if LG has a transversal (that is, we

can locate a transversal by selecting, in each row LGgx,∗, the entry LGgx,η(gx) in

column LG∗,η(gx)).

Remark 2.68. Counting the number of complete mappings in a finite group (G,⊕)

is equivalent to:

• Counting the number of additive permutations over (G,⊕).

• Counting the number of transversals in the latin square L(G,⊕).

Definition 2.69. Let G = (G, •) be a finite quasi-group of order-n. Then G is said to

be an admissible quasi-group if G possesses a complete mapping (or equivalently an

orthomorphism). Similarly, if G is a group, then G is said to be an admissible group.

In other words, G is admissible if and only if G’s representative LG ∈ Ln possesses a

transversal.

64

The “Hall-Paige Conjecture” aims to identify conditions in which a finite group G

will possess a complete mapping, or equivalently conditions in which the latin square

LG that encodes G will possess a transversal [105]. In this section, we systemati-

cally survey existing literature results that are related to the Hall-Paige Conjecture

(identified as the upcoming Conjecture 2.87).

In [106] Paige first proved the following result.

Lemma 2.70. Let G = (G,⊕) be a finite group of order-n and let LG ∈ Ln encode

G. If LG has a transversal, then there exists some ordering of the elements of G, say

g1, g2, . . . , gi, . . . , gn, which yields the trivial product g1 ⊕ g2 ⊕ · · · ⊕ gi ⊕ . . . gn = e.

Proof. Suppose that LG has a transversal T (or equivalently assume that G is

admissible). Then Theorem 2.67 implies that there is a complete mapping gi → θT (gi)

of G. Without loss of generality we may assume θT (e) = ηT (e) = e as the identity.

First, consider g1 ⊕ θT (g1) with g1 6= e. Then
g1 ⊕ θT (g1) 6= e =⇒ g−1

1 6= θT (g1) and θT (g1)−1 6= g1

=⇒ θT (g1)−1 ∈ G \ {e, g1}.

Next we choose g2 = θT (g1)−1 to form the product

g1 ⊕ θT (g1)⊕ g2 ⊕ θT (g2),

where θT (g1)⊕ g2 = e. Thereafter, we repeat this step to subsequently obtain
g2 ⊕ θT (g2) 6= e =⇒ g−1

2 6= θT (g2) and θT (g2)−1 6= g2

=⇒ θT (g2)−1 ∈ G \ {e, g1, θT (g1), g2}.

Next we choose g3 = θT (g2)−1 to form the product

g1 ⊕ θT (g1)⊕ g2 ⊕ θT (g2)⊕ g3 ⊕ θT (g3),

where θT (g1) ⊕ g2 ⊕ θT (g2) ⊕ g3 = e. We inductively repeat this step to eventually

achieve the trivial product

g1 ⊕ θT (g1)⊕ g2 ⊕ θT (g2)⊕ g3 ⊕ θT (g3)⊕ ...⊕ gk ⊕ θT (gk) = e, (2.6)

65

where g−1
i (i = 2, 3, ..., k) = θT (gi−1)−1 and g−1

1 = θT (gk). Now in the case that k < n,

then we choose gk+1 for gk+1 ⊕ θT (gk+1) and inductively repeat the procedure until

we ultimately achieve a product similar to (2.6). Therefore, since gi → θT (gi) with

gi ⊕ θT (gi) ≡ ηT (gi) we obtain
g1 ⊕ θT (g1)⊕ g2 ⊕ θT (g2)⊕ g3 ⊕ θT (g3)⊕ ...⊕ zn ⊕ θT (zn) = e

ηT (g1)⊕ ηT (g2)⊕ ηT (g3)⊕ ...⊕ ηT (zn) = e,

where each ηT (gi) = gi⊕ θT (gi) is distinct (because if they were not distinct then the

equality of two such products would imply that θT (gi) = θT (gj) or i = j). �

Before we move on to the next main result (of the upcoming Lemma 2.79), we

must introduce some preliminary definitions and results from [107].

Definition 2.71. Let G = (G,⊕) be a group. Then G is said to be a solvable group

if there exist subgroups G0,G1,G2, . . . ,Gk ⊂ G such that

{e} = G0 < G1 < G2 < · · · < Gk = G,

where Gi−1 is normal in G and Gi/Gi−1 is an abelian group for i = 1, 2, . . . , k.

Definition 2.72. Let G = (G,⊕) be a finite group and let p be a prime number.

Then G is said to be a p-group if, for all g ∈ G, there exists an integer m ≥ 0 such

that |g| = pm.

Definition 2.73. Let G = (G,⊕) be a finite group and let H be a subgroup of G.

Let p be a prime number and furthermore suppose that H is a p-group (a p-subgroup

of G). Then H is said to be a Sylow p-subgroup of G if H is not a proper subgroup of

any other p-subgroup of G; that is, H is a maximal p-subgroup of G.

In [108] the following result was achieved by Lagrange.

Theorem 2.74 (Lagrange). If G = (G,⊕) is a finite group with a subgroup H ≤ G,

then |H| divides |G|.

66

In [109] the following result was achieved by Sylow.

Theorem 2.75 (Sylow). Let G = (G,⊕) be a finite group. Let p be a prime with

multiplicity n. If p divides |G|, then there exists a Sylow p-subgroup P ≤ G where

|P| = pn.

Definition 2.76. Let G = (G,⊕) be a finite group with subgroups H,K ≤ G. Then

K is said to be the complement of H in G if

G = H⊕K = {h⊕ k : h ∈ H, k ∈ K} and H ∩K = {e}.

Furthermore, ifH is a Sylow p-subgroup, then K is said to be a p-complement subgroup

of G (or equivalently if |K| is relatively prime to p and [G : K] = pm for some m ∈ N).

Definition 2.77. Let G = (G,⊕) be a group. An element t ∈ G is said to be an

involution if t2 = e; that is, t has order |t| = 2. An element g ∈ G is said to be

an strongly real if there is an involution t with gt = t−1 ⊕ g ⊕ t; by definition, every

involution is strongly real.

A standard group theory result (i.e. Proposition 10.20 in Section 10 of [110]) is

the following.

Lemma 2.78. If P is a non-trivial p-group, then the center Z(P) of P is a non-trivial

subgroup.

The following result includes the first direct, elementary proof by Vaughan-Lee

and Wanless [105], which builds on the results originally proved by Hall and Paige

[107].

Lemma 2.79. Let G = (G,⊕) be a finite group of order-n. Then the following

conditions are equivalent:

67

(i) There exists some ordering of the elements of G, say g1, g2, . . . , gi, . . . , gn, which

yields the trivial product g1 ⊕ g2 ⊕ · · · ⊕ gi ⊕ · · · ⊕ gn = e.

(ii) Any Sylow 2-subgroup P of G is trivial or non-cyclic.

Proof. Let P be a Sylow 2-subgroup of G. The objectives of this proof strategy are

as follows:

For (ii) =⇒ (i), we first wish to show that if P is trivial or non-cyclic, then we

can list the elements {g1, g2, . . . , gi, . . . , gn} of G to obtain the trivial product

g1 ⊕ g2 ⊕ · · · ⊕ gi ⊕ · · · ⊕ gn = e. (2.7)

For (i) =⇒ (ii), we wish to show, via proof-by-contrapositive, that if P is non-

trivial and cyclic, and if t is the unique involution element in P , then we can list the

elements {g1, g2, . . . , gi, . . . , gn} of G to obtain the involution product

g1 ⊕ g2 ⊕ · · · ⊕ gi ⊕ · · · ⊕ gn = t. (2.8)

Case 1: Suppose that P = {e} is trivial. First, we wish to show that G has

no involutions. If we suppose, for a moment, that 2 is a divisor of |G|, then Sylow’s

Theorem 2.75 implies that G has a non-trivial Sylow 2-subgroup P . Therefore, since

P is trivial by hypothesis, then |G| is not divisible by 2; so |G| is odd. Hence, since no

non-trivial element of G is its own inverse, then G has an even number of non-trivial

elements. Thus, we can list the elements of G so that each gi ∈ G \ P is “adjacently

paired” with its inverse g−1
i in the list; in other words, we can write G as the union

of a list of disjoint inverse pairs as

G = {e, e−1} ∪ {g1, g
−1
1 } ∪ {g2, g

−1
2 } ∪ · · · ∪ {gn, g−1

n }

to obtain the trivial product

g1 ⊕ g−1
1 ⊕ g2 ⊕ g−1

2 ⊕ · · · ⊕ gn ⊕ g−1
n = e.

68

So we are done for the P = {e} case of (ii) =⇒ (i). V

Case 2: Suppose that P is non-trivial. Since P is a 2-group, then the order of

each element in P is a power of 2 and therefore Lagrange’s Theorem 2.74 implies that

every subgroup of P is a 2-subgroup. Let

Z(P) = {z ∈ P : ∀gi ∈ P , z ⊕ g = g ⊕ z}

be the center of P ; Z(P) is the set of elements that commute with every element of

P . Now since P is non-trivial, it follows that Z(P) is non-trivial by Lemma 2.78.

Moreover, since |P| is a power of 2, then 2 is a prime factor of |P| so Theorem 2.75

guarantees the existence of an order-2 subgroup of P , which is also a subgroup of

Z(P); so there exists an involution t ∈ Z(P). By definition we have that |t| = 2, so

let
CG(t) = {gi ∈ G : gi ⊕ t = t⊕ gi} (2.9)

be the centralizer of t ∈ G; CG(t) is the set of all elements in G that commute with t.

Therefore, since P is a non-trivial 2-group and t ∈ Z(P), it follows that

∀gi ∈ P , t⊕ gi = gi ⊕ t =⇒ P ⊆ CG(t) =⇒ P ≤ CG(t),

so {e} ≤ Z(P) ≤ P ≤ CG(t) ≤ G. From this point forward, we will break the

remainder of the proof up into the following two “sub-cases” (namely Case 2.1 and

Case 2.2), which depend on whether or not CG(t) is a proper subgroup of G.

Case 2.1: Suppose that CG(t) is a proper subgroup of G. Then we consider the

following two “sub-sub-cases” (namely Case 2.1.1 and Case 2.1.2), which depend on

whether or not P is cyclic.

Case 2.1.1: Suppose that P is non-cyclic. Since CG(t) from (2.9) is a group,

then for all ci ∈ CG(t) there exists a unique c−1
i . So we start by applying induction to

the elements of CG(t) to partition it into the pairwise disjoint sets of inverse pairs

69

CG(t) = {c1, c
−1
1 } ∪ {c2, c

−1
2 } ∪ · · · ∪ {ci, c−1

i } ∪ · · · ∪ {cl, c−1
l }

to obtain the trivial product
l∏

i=1
(ci ⊕ c−1

i) = (c1 ⊕ c−1
1)⊕ · · · ⊕ (ci ⊕ c−1

i)⊕ · · · ⊕ (cl ⊕ c−1
l) = e,

where we let LCG(t) denote the list of the elements in the product ∏l
i=1(ci ⊕ c−1

i) = e

as
LCG(t) : c1, c

−1
1 , c2, c

−1
2 , . . . , ci, c

−1
i , . . . , cl, c

−1
l . (2.10)

Next, in order to similarly apply induction to the elements of G \ CG(t) to obtain

desired products, we first partition G \ CG(t) into the two disjoint sets

U = {gi ∈ G \ CG(t) : g2
i 6= e} and V = {gi ∈ G \ CG(t) : g2

i = e}.

First, we consider the (non-involution) elements of U ⊂ G \ CG(t). For each ui ∈ U

(all with |ui| 6= 2 and ui 6= u−1
i) we have

e = e|ui| = (ui ⊕ u−1
i)|ui| = u

|ui|
i ⊕ (u−1

i)|ui| = e⊕ (u−1
i)|ui| = (u−1

i)|ui|

which implies that |ui| = |u−1
i | and u−1

i ∈ U . So for all ui ∈ U there exists a unique

u−1
i ∈ U where ui 6= u−1

i ; this result allows us partition U into pairwise disjoint sets

of inverse pairs

U = {u1, u
−1
1 } ∪ {u2, u

−1
2 } ∪ · · · ∪ {ui, u−1

i } ∪ · · · ∪ {uk, u−1
k }

to obtain the trivial product as
k∏
i=1

(ui ⊕ u−1
i) = (u1 ⊕ u−1

1)⊕ · · · ⊕ (ui ⊕ u−1
i)⊕ · · · ⊕ (uk ⊕ u−1

k) = e,

where we let LU denote the list of the elements in the product ∏k
i=1(ui⊕ u−1

i) = e as

LU : u1, u
−1
1 , u2, u

−1
2 , . . . , ui, u

−1
i , . . . , ul, u

−1
l . (2.11)

Second, we consider the (involution) elements of V ⊂ G \ CG(t). For each vi ∈ V (all

with |vi| = 2 and vi = v−1
i) we know that

70

vi = vi

= e−1 ⊕ vi ⊕ e
= (t2)−1 ⊕ vi ⊕ t2 // since e = t2

= t−2 ⊕ vi ⊕ t2

= (t−1 ⊕ t−1)⊕ vi ⊕ (t⊕ t)
= t−1 ⊕ (t−1 ⊕ vi ⊕ t)⊕ t
= t−1 ⊕ (vti)⊕ t // by Definition 2.77
= (vti)t

which implies

vi ∈ V =⇒ vi = v−1
i = (vti)t ∈ V .

Next, since vi ∈ V ⊂ G \ CG(t) implies vi 6∈ CG(t), we have that
vi ⊕ t 6= t⊕ vi

t−1 ⊕ vi ⊕ t 6= vi

vti 6= vi.

Moreover
(vti)2 = vti ⊕ vti

= (t−1 ⊕ vi ⊕ t)⊕ (t−1 ⊕ vi ⊕ t)
= t−1 ⊕ vi ⊕ (t⊕ t−1)⊕ vi ⊕ t
= t−1 ⊕ vi ⊕ e⊕ vi ⊕ t
= t−1 ⊕ (vi ⊕ vi)⊕ t
= t−1 ⊕ e⊕ t
= t−1 ⊕ t
= e,

which implies
vi ∈ V =⇒ vti ∈ V .

Therefore, for all vi ∈ V there exists a unique vti ∈ V with vti 6= vi; this result allows

us to partition V into the disjoint sets of pairs

V = {v1, v
t
1} ∪ {v2, v

t
2} ∪ · · · ∪ {vi, vti} ∪ · · · ∪ {vm, vtm}.

Next, for each vi ∈ V we have

71

vti = t−1 ⊕ vi ⊕ t
t⊕ vti = vi ⊕ t

v−1
i ⊕ t⊕ vti = t

vi ⊕ t⊕ vti = t // since vi = v−1
i

which permits us to obtain the involution product
v1 ⊕ t⊕ vt1 = t

v1 ⊕ (v2 ⊕ t⊕ vt2)⊕ v1 = t
... = ...

v1 ⊕ (v2 ⊕ (. . . (vm ⊕ t⊕ vtm) . . .)⊕ vt2)⊕ vt1 = t,

(2.12)

where we let LV denote the list of the elements in the product of (2.12) as

LV : v1, v2, . . . , vm, t, v
t
m, . . . , v

t
2, v

t
1. (2.13)

Next, we will combine the lists LCG(t) of eq. (2.10), LU of eq. (2.11), and LV

of eq. (2.13), in a specific way in order to obtain the desired trivial product. For

this we insert v1, v2, . . . , vm of LV into LCG(t) immediately before t, and we insert

vtm, . . . , v
t
2, v

t
1 of LV into LCG(t) immediately after t to obtain the product

LCG(t)︷ ︸︸ ︷
c1 ⊕ c2 ⊕ . . .⊕

LV︷ ︸︸ ︷
v1 ⊕ v2 ⊕ · · · ⊕ vm⊕

LCG(t)︷︸︸︷
t ⊕

LV︷ ︸︸ ︷
vtm ⊕ · · · ⊕ vt2 ⊕ vt1⊕

LCG(t)︷ ︸︸ ︷
· · · ⊕ cl = e, (2.14)

which remains trivial, where we let LV,CG(t) denote the list of the elements in the

product of (2.14) as

LV,CG(t) : c1, . . . , v1, . . . vm, t, v
t
m, . . . , v

t
1, . . . cl. (2.15)

Then we append the elements of LU to the right-hand side of LV,CG(t) from (2.14) to

obtain the desired trivial product
LV,CG (t)︷ ︸︸ ︷

c1 ⊕ · · · ⊕ v1 ⊕ · · · ⊕ vm ⊕ t⊕ vtm ⊕ · · · ⊕ vt1 ⊕ · · · ⊕ cl⊕
LU︷ ︸︸ ︷

u1 ⊕ u−1
1 ⊕ · · · ⊕ uk ⊕ u−1

k = e.

So we’ve shown that when CG(t) < G and P is non-trivial and non-cyclic, there exists

an ordering of the elements of G that yields the desired trivial product of (2.7). V

Case 2.1.2: Suppose that P is cyclic. This proof is similar to the previous case

72

but with one exception: we list the elements of LCG(t) of eq. (2.10), LU of eq. (2.11),

and LV of eq. (2.13) so for G they give the unique involution product t (instead of the

trivial product e). So we’ve shown that when CG(t) < G and P is a non-trivial and

cyclic, there exists an ordering of the elements of G that yields the desired involution

product of (2.8). V

Case 2.2: Suppose that CG(t) = G. Take any gi ∈ G and take gj ∈ G such that
gj = g−1

i ⊕ t⊕ gi
gj ⊕ g−1

i = g−1
i ⊕ t

gi ⊕ gj ⊕ g−1
i = t.

Then t2 = e and gj = g−1
i ⊕ t⊕ gi = t imply

g2
j = (g−1

i ⊕ t⊕ gi)2 = t2 = e ∈ Z(G) and gj = g−1
i ⊕ t⊕ gi = t ∈ Z(G).

So we let 〈t〉 = (〈t〉,⊕) = {e, t} be the order-2 group generated by t. Since P is

a non-trivial 2-subgroup of G where |P| divides |G|, then |G| is even. So |〈t〉| = 2

divides both |P| and |G|. Thus, by Sylow’s Theorem 2.75 it follows that 〈t〉 is a

normal 2-subgroup of both P and G. Therefore, we have the two quotient 2-groups

G/〈t〉 = {gi ⊕ 〈t〉 : gi ∈ G} and P/〈t〉 = {gi ⊕ 〈t〉 : gi ∈ P}.

Now P < G implies P/〈t〉 < G/〈t〉, where Sylow’s Theorem 2.75 implies that P/〈t〉 is

in fact a Sylow 2-subgroup of G/〈t〉. (Note: at this point it is still possible that P/〈t〉

is a Sylow 2-subgroup with |P/〈t〉| = 20 = 1.) So we will consider the following two

sub-cases for P/〈t〉, which depend on the following properties.

Case 2.2.1: Suppose that P/〈t〉 is trivial or non-cyclic. Now since |〈t〉| = 2,

then by Lagrange’s Theorem 2.74 we have |G| = |〈t〉| • |G/〈t〉| = 2k for some k ∈ N.

Hence, by induction there exist k elements of G, denoted by h1, h2, . . . , hk ∈ G, such

that we can choose either

h1 = g1, h2 = g−1
1 , h3 = g2, h4 = g−1

2 , . . . , hk−1 = gk/2, hk = g−1
k/2 (2.16)

73

to obtain one version of G/〈t〉’s trivial product

h1 ⊕ h2 ⊕ · · · ⊕ hk−1 ⊕ hk = e ∈ 〈t〉 =⇒ e⊕ 〈t〉 = 〈t〉, (2.17)

or alternatively we choose all of the same values as above in (2.16) except for the

final hk = g−1
k/2⊕ t, which, instead of (2.17), gives us another instance of G/〈t〉’s trivial

product
h1 ⊕ h2 ⊕ · · · ⊕ hk−1 ⊕ hk = t ∈ 〈t〉 =⇒ t⊕ 〈t〉 = 〈t〉 (2.18)

for
e⊕ 〈t〉 = t⊕ 〈t〉 = 〈t〉 ∈ G/〈t〉.

Henceforth, for either selection (2.17) or (2.18) of h1, h2, . . . , hk ∈ G, we can list the

elements of G/〈t〉 to obtain the trivial product

h1 ⊕ 〈t〉 ⊕ h2 ⊕ 〈t〉 ⊕ · · · ⊕ hk ⊕ 〈t〉 = (h1 ⊕ h2 ⊕ · · · ⊕ hk)⊕ 〈t〉 = 〈t〉,

which gives
G/〈t〉 = {h1 ⊕ 〈t〉, h2 ⊕ 〈t〉, . . . , hk ⊕ 〈t〉} (2.19)

such that
h1 ⊕ h2 ⊕ · · · ⊕ hk ∈ 〈t〉.

Consequently, for any hi ∈ {h1, h2, . . . , hk} ⊂ G we have hi ⊕ 〈t〉 = {hi ⊕ e, hi ⊕ t}.

Then we can write all the elements of G as
G = {h1 ⊕ e, h2 ⊕ e, . . . , hk ⊕ e, h1 ⊕ t, h2 ⊕ t, . . . , hk ⊕ t}

= {h1, h2, . . . , hk, h1 ⊕ t, h2 ⊕ t, . . . , hk ⊕ t},
where t ∈ Z(G) is central and h1 ⊕ h2 ⊕ · · · ⊕ hk ∈ 〈t〉 implies

h1 ⊕ h2 ⊕ · · · ⊕ hk ⊕ (h1 ⊕ t)
⊕(h2 ⊕ t)⊕ · · · ⊕ (hk ⊕ t) = (h1 ⊕ h1)⊕ (h2 ⊕ h2)⊕ . . . (hk ⊕ hk)⊕ tk

= h2
1 ⊕ h2

2 ⊕ · · · ⊕ h2
k ⊕ tk

= (h1 ⊕ h2 ⊕ · · · ⊕ hk)2 ⊕ tk

= (h1 ⊕ h2 ⊕ · · · ⊕ hk)2 ⊕ tk

= e⊕ tk

= tk.

Now recall that P is non-trivial by hypothesis. Therefore, we must consider two

74

additional cases, which depend on whether P/〈t〉 is trivial or not.

• Case 2.2.1.A: Suppose that P/〈t〉 is trivial. Then Theorem 2.74 implies

|P| = |P/〈t〉| • |〈t〉| = 1 • 2 = 2, so P is cyclic. Now since P/〈t〉 is a trivial Sylow

2-subgroup of G/〈t〉, then 2 does not divide |G/〈t〉| because P/〈t〉 is a maximal

2-subgroup of G/〈t〉; so it follows that |G/〈t〉| = k = 2l + 1 is odd for some

l ∈ N. Hence, we obtain

(h1 ⊕ h2 ⊕ · · · ⊕ h2l+1)2 ⊕ t2l+1 = e⊕ t2l ⊕ t = e⊕ (t2)l ⊕ t = e⊕ el ⊕ t = t,

which is the involution product since P is non-trivial and cyclic. So we’ve shown

that when CG(t) = G and P is a non-trivial and cyclic, there exists an ordering

of the elements of G that yields the desired involution product of (2.8). V

• Case 2.2.1.B: Suppose that P/〈t〉 is non-trivial. Then P/〈t〉 is a non-cyclic.

Therefore, the fact that 〈t〉 is cyclic implies that P is non-cyclic. Furthermore,

P/〈t〉 being a non-trivial Sylow 2-subgroup of G/〈t〉 implies that |G/〈t〉| = k =

2l is even for some l ∈ N by Theorem 2.74. So we obtain

(h1 ⊕ h2 ⊕ · · · ⊕ h2l)2 ⊕ t2l = e⊕ (t2)l = e⊕ el = e,

which is the trivial product since P is non-cyclic. So we’ve shown that when

CG(t) = G and P is a non-trivial and non-cyclic, there exists an ordering of the

elements of G that yields the desired trivial product of (2.7). V

Case 2.2.2: Suppose that P/〈t〉 is non-trivial and cyclic. Let h ⊕ 〈t〉 be the

generator of P/〈t〉. Since |P| and |〈t〉| are both even, and 〈t〉 < P is normal in

P , then |P/〈t〉| = |h ⊕ 〈t〉| = m ∈ N is also even by Theorem 2.74. Therefore, by

induction we can choose g1, g2, . . . , gk ∈ G with

|G/〈t〉| = |G|
|〈t〉|

= 2k
2 = k

75

for some k ∈ N such that

G/〈t〉 = {g1 ⊕ 〈t〉, g2 ⊕ 〈t〉, . . . , gk ⊕ 〈t〉}

and
(g1 ⊕ 〈t〉)⊕ (g2 ⊕ 〈t〉)⊕ · · · ⊕ (gk ⊕ 〈t〉) = (g1 ⊕ g2 ⊕ · · · ⊕ gk)⊕ 〈t〉

= h
m
2 ⊕ 〈t〉,

where hm
2 ⊕ 〈t〉 is the unique involution in P/〈t〉 because

(hm
2 ⊕ 〈t〉)2 = (hm

2 ⊕ 〈t〉
m
2)2 = ((h⊕ 〈t〉)m

2)2 = (h⊕ 〈t〉)m = 〈t〉.

Now since P/〈t〉 is a non-trivial Sylow 2-subgroup of G/〈t〉 it follows that |G/〈t〉| =

k = 2l is even for some l ∈ N. Then we can write all of the 2k elements of G as
G = {g1 ⊕ e, g2 ⊕ e, . . . , gk ⊕ e, g1 ⊕ t, g2 ⊕ t, . . . , gk ⊕ t}

= {g1 ⊕ e, g2 ⊕ e, . . . , g2l ⊕ e, g1 ⊕ t, g2 ⊕ t, . . . , g2l ⊕ t}
= {g1, g2, . . . , g2l, g1 ⊕ t, g2 ⊕ t, . . . , g2l ⊕ t},

where we obtain the product
g1 ⊕ g2 ⊕ · · · ⊕ g2l ⊕ (g1 ⊕ t)⊕

(g2 ⊕ t)⊕ · · · ⊕ (g2l ⊕ t) = (g1 ⊕ g1)⊕ (g2 ⊕ g2)⊕ · · · ⊕ (g2l ⊕ g2l)⊕ t2l

= g2
1 ⊕ g2

2 ⊕ · · · ⊕ g2
2l ⊕ t2l

= (g1 ⊕ g2 ⊕ · · · ⊕ g2l)2 ⊕ (t2)l

= (g1 ⊕ g2 ⊕ · · · ⊕ g2l)2 ⊕ (e)l

= (g1 ⊕ g2 ⊕ · · · ⊕ g2l)2

= (hm
2)2

= hm

(2.20)

because either
g1 ⊕ g2 ⊕ · · · ⊕ g2l = h

m
2 ⊕ e = h

m
2

or
g1 ⊕ g2 ⊕ · · · ⊕ g2l = h

m
2 ⊕ t,

since (g1 ⊕ g2 ⊕ · · · ⊕ gk)⊕ 〈t〉 = h
m
2 ⊕ 〈t〉 and 〈t〉 = {e, t}. Now since h⊕ 〈t〉 is the

generator of P/〈t〉, then hm ⊕ 〈t〉 = 〈t〉, so 〈t〉 = {e, t} implies that either

hm = e or hm = t;

76

we will consider both of these cases as follows.

• Case 2.2.2.A: Suppose that hm = e. Then P is non-cyclic because P = 〈h, t〉,

where we have that (2.20) gives the trivial product when. So we’ve shown that

when CG(t) = G and P is a non-trivial and non-cyclic, there exists an ordering

of the elements of G that yields the desired trivial product of (2.7). V

• Case 2.2.2.B: Suppose that hm = t. Then the fact that hm is an involution

gives
(hm)2 = t2 = e =⇒ h2m = e =⇒ |h| = 2m.

Now |h ⊕ 〈t〉| = |P/〈t〉| = m and 〈t〉 = 2 gives |P| = |P/〈t〉| • |〈t〉| = 2m by

hypothesis; so |h| = 2m = |P| implies that P is cyclic. So in the case that

hm = t, we have that (2.20) gives the involution product when P is cyclic. So

we’ve shown that when CG(t) = G and P is a non-trivial and cyclic, there exists

an ordering of the elements of G that yields the desired involution product of

(2.8). V

Finally, this completes the proof that there exists some ordering of the elements

of G that yields the trivial product if and only any Sylow 2-subgroup P of G is trivial

or non-cyclic. �

Before we move on to the next main result (of the upcoming Lemma 2.84), we

must introduce some preliminary definitions and results.

Lemma 2.80. Let G = (G,⊕) be a finite group and let H be a subgroup with index

[G : H] = k. Let {g0, g1, g2, . . . , gk−1} ⊂ G be a set of representatives for both the left

and right coset expansions of G by H. Let

α =
 0 1 2 . . . k − 1
α(0) α(1) α(2) . . . α(k − 1)

 and β =
 0 1 2 . . . k − 1
β(0) β(1) β(2) . . . β(k − 1)



77

be permutations of Zk = {0, 1, 2, . . . , k − 1} such that

gi ⊕ (gα(i) ⊕H) = gβ(i) ⊕H, ∀i = 0, 1, 2, . . . , k − 1.

Then, if there exists a complete mapping for H, then there exists a complete mapping

for G.

Lemma 2.81. Let G = (G,⊕) = A • B = {a ⊕ b | a ∈ A, b ∈ B}, where A,B ≤ G

and A ∩ B = {e}. If a complete mapping exists for A, then there exists a complete

mapping for B.

Lemma 2.82. If G = (G,⊕) is a finite non-cyclic 2-group, then there exists a

complete mapping for G.

M. Hall and Paige also used the following result by P. Hall [111].

Lemma 2.83. Let G be a solvable finite group. Then for every prime p where p

divides |G|, there exists a p-complement subgroup H of G.

From [105, 107] we obtain the following three results for any finite solvable group.

Lemma 2.84. Let G be a finite solvable group of order-n and let LG ⊂ Ln encode G.

If P is a Sylow 2-subgroup of G that is trivial or non-cyclic, then LG has a transversal.

Proof. Suppose that G is a finite solvable group and let P be a non-cyclic Sylow

2-subgroup of G. Since P < G and |P| = 2m for some integer m > 0, then 2 is a

prime that divides |G|. Therefore, Lemma 2.83 implies that G has a 2-complement;

lets use P ′ to denote this 2-complement of P in G. Then by definition of P ′ we have

that G = P ⊕P ′ and P ∩P ′ = {e}, where |P ′| is odd (since |P ′| is relatively prime to

2). Now by definition of P , Lemma 2.82 implies the existence of a complete mapping

for P . Henceforth, since G = P ⊕ P ′ and P ∩ P ′ = {e} it follows from Lemma 2.81

78

that there also exists a complete mapping for P ′. Consequently, Lemma 2.80 implies

the existence of a complete mapping for G. Therefore, Theorem 2.67 implies LG has

a transversal. �

Corollary 2.85. Let G = (G,⊕) be a finite solvable group of order-n and let LG ∈ Ln

encode G. If there exists some ordering of the elements of G, say g1, g2, . . . , gi, . . . , gn,

which yields the trivial product g1⊕g2⊕· · ·⊕gi⊕ . . . gn = e, then LG has a transversal.

Proof. Suppose that G = (G,⊕) is a finite solvable group of order-n and let LG ∈ Ln

encode G. Suppose there exists some ordering of the elements of G, say g1, g2, . . . , gi, . . . , gn,

which yields the trivial product g1⊕g2⊕· · ·⊕gi⊕. . . gn = e. Then Lemma 2.79 implies

that the Sylow 2-subgroups of G are trivial or non-cyclic. Consequently, Lemma 2.84

implies that LG has a transversal. �

Corollary 2.86. Let G = (G,⊕) be a finite solvable group of order-n and let LG ∈ Ln

encode G. Then the following three conditions are equivalent:

(i) LG has a transversal (or equivalently G is admissible).

(ii) The Sylow 2-subgroups of G are trivial or non-cyclic.

(iii) There exists some ordering of the elements of G, say g1, g2, . . . , gi, . . . , gn, which

yields the trivial product g1 ⊕ g2 ⊕ · · · ⊕ gi ⊕ · · · ⊕ gn = e.

Proof. Suppose that G = (G,⊕) is a finite solvable group of order-n and let LG be the

unbordered Cayley table of G. Suppose that LG has a transversal. Then Lemma 2.70

implies that there exists some ordering of the elements of G, say g1, g2, . . . , gi, . . . , gn,

which yields the trivial product g1 ⊕ g2 ⊕ · · · ⊕ gi ⊕ · · · ⊕ gn = e. Then Lemma 2.79

implies that the Sylow 2-subgroups of G are trivial or non-cyclic. Then Lemma 2.84

implies that LG has a transversal. �

79

At this point, we state the Hall-Paige Conjecture [107] as follows.

Conjecture 2.87. Let G = (G,⊕) be a finite group of order-n and let LG ∈ Ln be a

latin square that encodes G. Then the following three conditions are equivalent:

(i) LG has a transversal (or equivalently G is admissible).

(ii) The Sylow 2-subgroups of G are trivial or non-cyclic.

(iii) There exists some ordering of the elements of G, say g1, g2, . . . , gi, . . . , gn, which

yields the trivial product g1 ⊕ g2 ⊕ · · · ⊕ gi ⊕ · · · ⊕ gn = e.

Thus, we observe that Corollaries 2.85 and 2.86 prove that the Hall-Paige Con-

jecture 2.87 is true for the specific case of solvable groups. Today Conjecture 2.87

remains unproven for all groups in general (to obtain such a result one would need

to prove that Conjecture 2.87 also holds for non-solvable groups). Henceforth, we

move on to consider some additional conditions that will further extend the results

of Corollaries 2.85 and 2.86.

Definition 2.88. Let L ∈ Ln be a latin square. We say that L can be decomposed

into disjoint transversals if there exist n disjoint transversals across L.

Table 2.10: An example of five disjoint transversals that decompose the latin
square L(Z5,+) that encodes the Cayley table of the group Z5 = (Z5,+). Each
transversal is marked with a distinct color and set of brackets.

+ 0 1 2 3 4

0 [0] (1) {2} <3> 〈4〉

1 〈1〉 [2] (3) {4} <0>

2 <2> 〈3〉 [4] (0) {1}

3 {3} <4> 〈0〉 [1] (2)

4 (4) {0} <1> 〈2〉 [3]

80

The following fact is well-established in the literature [6, 105]; we rewrite the

proofs for such additional conditional equivalences as follows.

Lemma 2.89. Let G = (G,⊕) be a finite group of order-n and let LG ∈ Ln encode

G. Then the following three conditions are equivalent:
(i) LG has a transversal.

(ii) LG can be decomposed into disjoint transversals.

(iii) There exists a latin square LG′ ∈ Ln that is orthogonal to LG.

Proof. Suppose that G = (G,⊕) is a finite group of order-n and let LG ∈ Ln encode

G.

Claim 1: (i) =⇒ (ii). Suppose that TLGi ⊂ {}LG is a transversal of LG written

as

TL
G

i = {(xi,0, yi,0, zi,0), (xi,1, yi,1, zi,1), (xi,2, yi,2, zi,2), ..., (xi,n−1, yi,n−1, zi,n−1)},

where each (xi,k, yi,k, zi,k) ∈ TL
G

i is the choice from the kth row of LG for the symbol

zi,k ∈ G. Now take any fixed element g ∈ G. Then, for each row k = 0, 1, 2, ..., n− 1

choose g ⊕ zi,k; this gives a new transversal TLGi+k mod n for row k with respect to

g. Therefore, by fixing each g ∈ G and repeating this process for n − 1 additional

iterations we obtain a set of n transversals

T (LG) = {TLGi+0 mod n, T
LG

i+1 mod n, T
LG

i+2 mod n, ..., T
LG

i+(n−1) mod n}

such that
{}LG =

⋃
Ti∈T (LG)

TL
G

i and i 6≡ j mod n =⇒ TL
G

i ∩ TL
G

j = ∅.

So T (LG) is a set of n disjoint transversals that partitions {}LG. Consequently, LG

can be decomposed into disjoint transversals. V

Claim 2: (ii) =⇒ (i). Suppose that LG can be composed into a set T (LG) of

disjoint transversals. Then clearly LG has a transversal. V

81

Claim 3: (ii) =⇒ (iii). Suppose that LG can be composed into a set T (LG) of

disjoint transversals, which we write as

T (LG) = {TLGi+0 mod n, T
LG

i+1 mod n, T
LG

i+2 mod n, ..., T
LG

i+(n−1) mod n}.

Then construct an n× n array of symbols from G, denoted LG
′ , where

∀TLGi ∈ T (LG), ∀(xi,k, yi,k, zi,k) ∈ TL
G

i , set LG
′ [xi,k][yi,k]← i.

Now since each TL
G

i ∈ T (LG) is a disjoint transversal of LG and each LG
′ [xi,k][yi,k]

contains the same symbol i ∈ G for k = 0, 1, 2, ..., n − 1, then LG
′ is a latin square.

Moreover, for any fixed TL
G

i ∈ T (LG), since each (xi,k, yi,k, zi,k) ∈ TL
G

i contains a

distinct symbol zi,k ∈ G that corresponds to the fixed i, then it follows that each of

the n2 ordered pair entries of the graeco-latin square superimposition

LG ⊗ LG′ =


z0,0 z0,1 . . . z0,n−1

z1,0 z1,1 . . . z1,n−1
...

zn−1,0 zn−1,1 . . . zn−1,n−1

⊗

z′0,0 z′0,1 . . . z′0,n−1

z′1,0 z′1,1 . . . z′1,n−1
...

z′n−1,0 z′n−1,1 . . . z′n−1,n−1



=


(z0,0, z

′
0,0) (z0,1, z

′
0,1) . . . (z0,n−1, z

′
0,n−1)

(z1,0, z
′
1,0) (z1,1, z

′
1,1) . . . (z1,n−1, z

′
1,n−1)

...
(zn−1,0, z

′
n−1,0) (zn−1,1, z

′
n−1,1) . . . (zn−1,n−1, z

′
n−1,n−1)


(2.21)

are distinct. Consequently, it follows that since LG has a decomposition into disjoint

transversals, then there exists LG′ such that LG and LG
′ are orthogonal mates. V

Claim 4: (iii) =⇒ (ii). Suppose that LG has an orthogonal mate LG′ . Then

the n2 ordered pair entries of the graeco-latin square superimposition of LG ⊗ LG′ of

(2.21) are distinct. So there are two cases to consider.

Case 4.1: Fix any symbol z ∈ G of LG. Then there are n distinct ordered pairs

of the form (z, z′) in the graeco-latin square LG ⊗ LG′ for z′ = 0, 1, 2, ..., n − 1. Now

82

since LG is a latin square, then each entry of LG with the symbol z is in a distinct

row and a distinct column of LG. Thus, since each of the n ordered pairs (z, z′) of

LG⊗LG′ are distinct, then (with z fixed) the set of positions of each (z, z′) in LG⊗LG′

correspond to a distinct disjoint transversal TLGz in LG′ ; there exists a set of n disjoint

transversals T (LG) of LG′ . So LG′ has a decomposition into disjoint transversals. V

Case 4.2: Fix any symbol z′ ∈ G of LG′. Then by a similar argument to the

previous case, it follows that LG has a decomposition into disjoint transversals. V

Consequently, if a latin square has an orthogonal mate, then it has a decomposition

into disjoint transversals. V

This completes the proof that LG has a transversal if and only if LG can be

decomposed into disjoint transversals if and only if there exists a latin square LG′

that is orthogonal to LG. �

Finally, we obtain the main result of this section.

Theorem 2.90. Let G = (G,⊕) be a finite solvable group of order-n and let LG ∈ Ln

encode G. Then the following six conditions are equivalent:

(i) LG has a transversal.

(ii) The Sylow 2-subgroups of G are trivial or non-cyclic.

(iii) There exists some ordering of the elements of G, say g1, g2, . . . , gi, . . . , gn, which

yields the trivial product g1 ⊕ g2 ⊕ · · · ⊕ gi ⊕ · · · ⊕ gn = e.

(iv) LG can be decomposed into disjoint transversals.

(v) There exists a latin square LG′ that is orthogonal to LG.

(vi) G is admissible.

Proof. Suppose that G = (G,⊕) is a finite solvable group of order-n and let LG ∈ Ln

encode G. Then Lemma 2.86 implies that conditions (i), (ii), and (iii) are equivalent.

83

Since Lemma 2.89 implies that conditions (i), (iv) and (v) are equivalent, then

conditions (i), (ii), (iii), (iv) and (v) are equivalent. Consequently, since Theorem

2.67 implies that conditions (vi) and (i) are equivalent, then conditions (i), (ii), (iii),

(iv), (v), and (vi) are equivalent. �

Here we observe that the main result of this section, namely Theorem 2.90, goes

beyond Corollaries 2.85 and 2.86 by providing additional equivalent conditions for

determining the existence of transversals in a latin square that encodes a finite solvable

group; see Figure 2.4. In the future, it will be interesting to see if Theorem 2.90 can

be further generalized to include all finite groups.

Figure 2.4: A visual depiction of the implications of main result of
Corollary 2.90, which extends the Hall-Paige Conjecture 2.87 for solvable
groups. All six conditions are equivalent for solvable groups. However, the
Hall-Paige Conjecture 2.87 remains unresolved for non-solvable groups.

LG has a transversal LG can be decomposed
into disjoint transversals

There exists a latin
square LG′ that is
orthogonal to LG

G is admissible

There exists some
ordering of the elements
of G which yields the
trivial product

The Sylow 2-subgroups
of G are trivial or
non-cyclic.

All All

A
ll

A
ll

All

Solvable

84

2.7 Computational Enumeration of Transversals

In the previous Section 2.6 we mathematically examined latin square transversals

and some key conditions for their existence. Thus, in order to make further use of

such results for cryptographic application, one needs the ability to efficiently count

the number transversals of a latin square L ∈ Ln, namely |T (L)|. In Section 2.7.1

we survey some existing pertinent transversal enumeration results in the literature

[5, 6, 8]. Subsequently, in Section 2.7.2 we introduce our algorithms for enumerating

transversals.

2.7.1 Survey of Transversal Enumeration Results

The challenges of counting and predicting the number of transversals in latin squares

tend to become greater as the order increases. Over the course of recent decades,

numerous mathematicians and scientists have put forth a significant effort in their

attack on such challenges. For this, some of major open questions are:

• Which latin squares have the maximum number of transversals? Which have

the minimum number of transversals?

• Which groups have the maximum number of good permutations? Which have

the minimum number of good permutations?

Here we report some of the pertinent latin square transversal counting results from

the literature which aim to address such inquiries. For the reader who is further

interested in the details of such endeavors, we recommend the literature [5, 6, 8] and

the plethora of important references therein.

85

In [112] the authors evaluate the complexity of counting the |T (L)| in a given L.

More specifically, they show that [112]:

• For closed structures the counting problem is #P-complete.

• For closed structures with a left-identity and a left-cancellation law the counting

problem is #P-complete.

• For an abelian groups the counting problem is beyond the #P-class.

• The famous counting problems of n-queens and toroidal n-queens are both

beyond the #P-class.

In the transversal counting case of [112] the transversal counting problems are not in

N P because the machine’s job is not to just determine if a given latin square has a

transversal, but rather to count all of the transversals across the latin square (hence

the class #P).

However, in [6] the author remarks on the analysis of [112], where he proposes

that their conclusions would be much different if the input would be a Cayley table

that encodes the group (instead of using a single integer to specify the order of the

group). So far as we can tell, there appears to be relatively few results in the literature

pertaining to the counting complexity.

In any case, there are numerous literature results with computational data ob-

tained by counting latin square transversals directly. For instance, in Table 2.11 we

list the number of transversals for the latin squares that encode general finite groups

from order-3 to order-23 as reported in [5, 6]; this transversal count list corresponds to

the group list in the catalog of Thomas and Wood [7]. To the best of our knowledge,

order-23 is the highest order for which it is computationally feasible to count all of

the transversals across a given single latin square.

86

Table 2.11: The number of transversals across latin squares that encode groups
from order-3 to order-23 [5, 6]; the transversal count list corresponds to the
group list in the catalog of [7].

Order-n # Transversals Maximum
3 3 3
4 0, 8 8
5 15 15
7 133 133
8 0, 384, 384, 384, 384 384
9 2 025, 2 241 2 241
11 37 851 37 851
12 0, 198 144, 76 032, 46 080, 0 198 144
13 1 030 367 1 030 367
15 36 362 925 36 362 925

16

0, 235 765 760, 237 010 944, 238 190 592,
244 744 192, 125 599 744, 121 143 296, 123 371 520,
123 895 808, 122 191 872, 121 733 120, 62 881 792,
62 619 648, 62 357 504

244 744 192

17 1 606 008 513 1 606 008 513
19 87 656 896 891 87 656 896 891
20 0, 697 292 390 400, 140 866 560 000, 0, 0 697 292 390 400
21 5 778 121 715 415, 826 814 671 200 5 778 121 715 415
23 452 794 797 220 965 452 794 797 220 965

Let t(n) and T(n) denote the minimum and maximum number of transversals,

respectively, for any latin square in Ln. In Table 2.12 we list t(n) and T(n) for

all latin squares from order-2 to order-9 as reported in [5, 6]. To date of writing,

order-9 is the highest order for which it is computationally feasible to count all of the

transversals for the set of all latin squares of a given order.

For n ≥ 10, the values of T(n) are not yet known due to current computational

limitations—there are only estimates. Let bT(n)cMMW and dT(n)eMMW denote the

estimated lower and upper bounds on T(n), respectively, as proposed by McKay,

McLeod, and Wanless [8]:

87

Theorem 2.91. If n ≥ 5 then

15n/5 = bT(n)cMMW ≤ T(n) ≤ cn
√
nn! = dT(n)eMMW

where c =
√

3−
√

3
6 e

√
3/6 ≈ 0.61354.

In Table 2.13 we report the estimates of bT(n)cMMW and dT(n)eMMW from [5, 6, 8],

which we denote as bT(n)cMMW and dT(n)eMMW (for McKay-McLeod-Wanless [8]),

respectively, from order-10 to order-21. Table 2.13 exemplifies a crucial effort to

extend the results of Table 2.12.

Table 2.12: The confirmed minimum t(n) and maximum T(n) number of
transversals across latin squares from order-2 to order-9 [5, 6, 8].

Order-n t(n) Mean Standard
Deviation T(n)

2 0 0 0 0
3 3 3 0 3
4 0 2 3.46 8
5 3 4.29 3.71 15
6 0 6.86 5.19 32
7 3 20.41 6.00 133
8 0 61.05 8.66 384
9 68 214.11 15.79 2 241

In the upcoming Section 2.8 we refer to the results of Tables 2.11, 2.12, and 2.13

during our search for T(n).

88

Table 2.13: Estimates for the lower bound bT(n)cMMW and the upper bound
dT(n)eMMW on the maximum number of transversals T(n) across latin squares
from order-10 to order-21 as given by Theorem 2.91 [5, 6, 8].

Order-n bT(n)cMMW dT(n)eMMW

10 5 504 75 000
11 37 851 528 647
12 198 144 3 965 268
13 1 030 367 32 837 805
14 3 477 504 300 019 037
15 36 362 925 2 762 962 210
16 244 744 192 28 218 998 328
17 1 606 008 513 300 502 249 052
18 6 434 611 200 3 410 036 886 841
19 87 656 896 891 41 327 486 367 018
20 697 292 390 400 512 073 756 609 248
21 5 778 121 715 415 6 803 898 881 738 477

2.7.2 Creation of Transversal Enumeration Algorithms

In the previous section we surveyed some of the existing data and results in the

literature that pertain to counting latin square transversals. In order to obtain our

own data and results for this research, we create a set of software tools for computing

counting latin square transversals. Here we introduce these algorithms, which aim to

address the following questions:

• How fast can we count |T (L)| for a given L ∈ Ln?

• What is the highest order-n for which it is computationally feasible to count

|T (L)| for a given L ∈ Ln?

• What is the highest order-n for which it is computationally feasible to count

|T (L)| for all L ∈ Ln? How fast?

Thus, given some L ∈ Ln and currently available computational power, the objective

is to develop our own algorithms to efficiently count |T (L)| for the highest order-n

89

that we can reach. We work to continually improve the efficiency, capability, and

overall performance of our algorithm implementations in order to obtain counts for

a progressively increasing n. We design, implement, and experiment with the three

main versions of our algorithms for enumerating latin square transversals, namely

the:

• Brute-Force Latin Square Transversal Counting Algorithm (BF-LS-TCAv1).

• Subsquare Sequence Latin Square Transversal Counting Algorithm (SS-LS-TCAv2).

• Boolean Matrix Latin Square Transversal Counting Algorithm (BM-LS-TCAv3).

Note: the BF-LS-TCAv1, the SS-LS-TCAv2, and the BM-LS-TCAv3 are given in

Appendix B.2.1.

The BF-LS-TCAv1 of Algorithm 2.4 (in Appendix B.2.1) is our first and most

rudimentary approach to counting transversals. We say that the BF-LS-TCAv1

is rudimentary because, given an order-n latin square L as input, it determines

|T (L)| by using iterative brute force to exhaustively evaluate every possible order-n

diagonal to determine if it is a transversal. We implement the BF-LS-TCAv1 in the

C programming language. We find this implementation to be sufficient for counting

transversals on single latin squares up to order-10, where it serves as an important

tool for the preliminary phase of our research on latin square transversals (where the

need to quickly evaluate latin squares of order-(n ≥ 10) has not yet come into play).

As our research progresses, we eventually develop the ability to generate latin

squares beyond order-10 (recall Section 2.5); thus, we need to (attempt to) obtain

transversal counts for those orders. A major computational bottleneck of the BF-LS-

TCAv1 is that it’s implementation requires that the set of all order-n diagonals be

loaded into RAM for exhaustive evaluation (this was n! diagonals); this significant

90

limitation revealed itself when we attempted to process relatively large data sets (ex.

100,000) of order-10 latin squares. As a result, we invest more effort into designing a

completely new transversal counting algorithm to obtain such counts for order-(n ≥

10), which motivates us to create Version 2: the SS-LS-TCAv2 of 2.5 (in Appendix

B.2.1). The SS-LS-TCAv2 is a non-brute force algorithm that, when given L ∈ Ln as

input, determines |T (L)| by recursively calling itself, where it makes a new sub-square

state of descending order if a state symbol is found inside its current sub-square state.

In terms of computational resource consumption, a major advantage that the SS-LS-

TCAv2 has over the BF-LS-TCAv1 is that it doesn’t on the loading of n! diagonals

into RAM. Thus, the SS-LS-TCAv2 Java implementation serves as an important tool

for counting transversals on relatively large latin square data sets up to order-13

(ex. 100,000 latin squares) and on single latin squares up to order-16. For counting

the number of transversals of order-10 latin squares, we find that SS-LS-TCAv2 is

approximately 25.5 times faster than BF-LS-TCAv1 implementation, and that the

SS-LS-TCAv2 implementation only consumes approximately 18.6% of the RAM that

the BF-LS-TCAv1 implementation consumes; in Appendix B.2.3 see the performance

benchmark results of the SS-LS-TCAv2 versus the BF-LS-TCAv1.

A major computational limitation of the SS-LS-TCAv2 is the repeated allocation

(and deallocation) of sub-square objects in RAM. Thus, upon further evaluations of

the SS-LS-TCAv2, we discover that such repeated constructions of sub-squares are not

necessary because instead we can just use a Boolean matrix (stored in globally) to keep

track of the transversal states; this leads to the successive development of Version 3:

the BM-LS-TCAv3 of Algorithm 2.6 (in Appendix B.2.1). To summarize, the BM-LS-

TCAv3 counts transversals by recursively calling itself, where it accepts a row as input

and looks at global data to see which entries in the row are valid to generate a partial

91

transversal that could become a transversal. For counting the number of transversals

of order-16 latin squares, we find that the BM-LS-TCAv3 Java implementation is

approximately 1.3 times faster than the SS-LS-TCAv2 implementation; in Appendix

B.2.3 see the performance benchmark results of the BM-LS-TCAv3 versus the SS-LS-

TCAv2. Thus, by using the BM-LS-TCAv3 we are able to process larger data sets

with order-16 latin squares at a faster rate.

In Table 2.14 we report the minimum and maximum transversal counts that

we observe by using the BM-LS-TCAv3 to process our data sets of order-n latin

squares for 3 ≤ n ≤ 9; our resulting transversal counts fall within the confirmed

[t(n), T(n)] range reported in [5, 6, 8]. Thereafter, in Table 2.15 we report the

maximum transversal counts that we observe by using the BM-LS-TCAv3 on (subsets

of) our data sets of order-n latin squares for 9 < n ≤ 16; our resulting transversal

counts are bounded above by the estimated lower and upper bounds on the maximum

transversal counts that were reported in [5, 6, 8].

Table 2.14: The minimum and maximum transversal counts that we observed
by using the BM-LS-TCAv3 Java implementation on our order-3 to order-9
latin square data sets fall within the confirmed [t(n), T(n)] range [5, 6, 8]. The
matching counts are marked in (blue) bold.

Order-n

Data Set
Size:

Latin
Squares

Data Set Observed
Transversals

Range: [Min, Max]

Confirmed
Transversals

Range: [t(n), T(n)]

Is Observed
Within

Confirmed
Range?

3 12 [3, 3] [3, 3] Yes
4 576 [0, 8] [0, 8] Yes
5 161 280 [3, 15] [3, 15] Yes
6 4 000 000 [0, 32] [0, 32] Yes
7 3 000 000 [3, 63] [3, 133] Yes
8 2 750 000 [0, 384] [0, 384] Yes
9 2 500 000 [84, 444] [68, 2 241] Yes

92

Table 2.15: The maximum transversal counts that we observed by using the
BM-LS-TCAv3 implementation on subsets of our latin square data sets from
order-10 to order-16; our maximum observed counts are less than or equal to
the estimated bT(n)cMMW [5, 6, 8].

Order-n

Data Set
Size:

Latin
Squares

Data Set
Observed

Transversals
Max

Estimated
bT(n)cMMW

Estimated
dT(n)eMMW

Is Observed
Max ≤

Estimated?

10 1 000 000 1 664 5 504 75 000 Yes
11 500 000 3 896 37 851 528 647 Yes
12 300 341 132 096 198 144 3 965 268 Yes
13 176 516 82 628 1 030 367 32 837 805 Yes
14 15 000 557 440 3 477 504 300 019 037 Yes
15 1 000 3 316 847 36 362 925 2 762 962 210 Yes
16 358 183 558 144 244 744 192 28 218 998 328 Yes

Next, we give proof that the BM-LS-TCAv3 of Algorithm 2.6 correctly counts the

number of transversals in a latin square.

Theorem 2.92. Let L ∈ Ln be a latin square of order n ≥ 3 and let T ∈ T (L) be

a transversal of L. Let T ′(L) be the set of transversals of L that are counted by the

BM-LS-TCAv3. Then T ∈ T ′(L).

Proof. Let L ∈ Ln be a latin square of order n ≥ 3 and let T ∈ T (L) be a transversal

of L written as

T = {(x0, y0, z0), (x1, y1, z1), . . . , (xn−1, yn−1, zn−1)},

where (xi, yi, zi) ∈ T is the ith row of L and the ith element of T . Let T ′(L) be the

set of transversals of L that are counted by the BM-LS-TCAv3. We wish to show

that T ∈ T ′(L).

By definition, the BM-LS-TCAv3 begins at row 0 and chooses the first available

entry (0, y, z) of row 0 to see if (0, y, z) is passed through by a transversal. Since the

BM-LS-TCAv3 has made no selection, then we may assume that the BM-LS-TCAv3

93

chooses (x0, y0, z0) ∈ T of row 0. So x̄0 = ȳ0 = z̄0 = 0. Next, the BM-LS-TCAv3

considers row 1. Since T is a transversal of L, then there exists an available entry

(x1, y1, z1) ∈ T of row 1, where x0 6= x1, y0 6= y1, and z0 6= z1. By definition, the

BM-LS-TCAv3 considers each available entry of row 1. Thus, we may assume that

the BM-LS-TCAv3 chooses (x1, y1, z1) ∈ T of row 1. So x̄1 = ȳ1 = z̄1 = 0.

Thereafter, since n ≥ 3 it follows that the BM-LS-TCAv3 considers row i where

3 ≤ i+ 1 < n because the BM-LS-TCAv3 considers each of the n rows of L. Since T

is a transversal of L, then there exists an available entry (xi, yi, zi) ∈ T of row i where

xi 6= x0, x1 and yi 6= y0, y1 and zi 6= z0, z1. So we may assume that the BM-LS-TCAv3

chooses (xi, yi, zi) ∈ T .

Case: n = 3. Then the BM-LS-TCAv3 counts T as a transversal. V

Case: n > 3. Then the BM-LS-TCAv3 continues to the next row, so BM-LS-

TCAv3 considers row i + 1. Since i + 1 < n and T is a transversal of L, then there

exists an available entry (xi+1, yi+1, zi+1) ∈ T of row i + 1, where xi+1 6= x0, x1, xi

and yi+1 6= y0, y1, yi and zi+1 6= z0, z1, zi for i = 2, 3, . . . , n − 2. So we may assume

that the BM-LS-TCAv3 chooses (xi+1, yi+1, zi+1) ∈ T . By inductively repeating this

process, it follows that the BM-LS-TCAv3 chooses each (xi, yi, zi) ∈ T and will count

T as a transversal when i+ 1 = n. V

Therefore, T ∈ T ′(L) for n ≥ 3. �

2.8 Searching for Maximum Transversal Counts

Before we proceed to the main content of this section, let us briefly recapitulate the

main prerequisite content of the preceding three sections.

94

• In Sections 2.5 and 2.7 we created software tools for generating latin square

data sets and counting transversals.

• In Section 2.6 we surveyed some recent results and conjectures related to transver-

sals, which included some key equivalent conditions for the existence of transver-

sals in latin squares that encode groups.

Therefore, now that we’ve obtained some knowledge of latin square transversals

and are equipped with the appropriate software tools to evaluate latin squares up to

order-17, we begin our attack on the following questions:

• For order-n with 3 ≤ n ≤ 9, can we accurately predict which finite groups will

possess the confirmed T(n)? How about the confirmed t(n)?

• For order-n with 9 < n ≤ 17, can we accurately predict which finite groups will

possess the estimated bT(n)cMMW? How about the estimated dT(n)eMMW?

2.8.1 Evaluating Cyclic Latin Squares

Definition 2.93. A latin square is said to be cyclic if its rows are generated by

cyclically permuting the first row (it follows that the columns have the same property).

In other words, a cyclic latin square of order-n is, up to relabeling the symbols, just

the addition Cayley table (or the subtraction table) for the finite cyclic groups of the

integers modulo n; such groups are denoted by Zn = (Zn,+) and the corresponding

latin squares are denoted by L(Zn,+) ∈ Ln.

Definition 2.94. Let Zn = (Zn,+) be a finite group encoded by the latin square

L(Zn,+) ∈ Ln. If n = p ∈ N is prime, then we say that L(Zp,+) is a latin square with

prime order. More generally, if n = pd ∈ N is a prime power for some d ∈ N, then we

say that L(Z
pd ,+) is a latin square with prime power order.

95

Here we consider the cyclic latin squares that encode cyclic groups from order-3

to order-9 that are listed in Table 2.16. We use the BM-LS-TCAv3 Java implemen-

tation to process these cyclic latin squares and report the results in Table 2.17; the

observed counts for each order are compared next to the counts of the confirmed

range [t(n), T(n)] from [5, 6, 8].

Table 2.16: Cyclic order-n latin squares that encode cyclic groups from (Z3,+)
to (Z9,+).

L(Z3,+)

0 1 2
1 2 0
2 0 1

L(Z4,+)

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

L(Z5,+)

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

L(Z6,+)

0 1 2 3 4 5
1 2 3 4 5 0
2 3 4 5 0 1
3 4 5 0 1 2
4 5 0 1 2 3
5 0 1 2 3 4

L(Z7,+)

0 1 2 3 4 5 6
1 2 3 4 5 6 0
2 3 4 5 6 0 1
3 4 5 6 0 1 2
4 5 6 0 1 2 3
5 6 0 1 2 3 4
6 0 1 2 3 4 5

L(Z8,+)

0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 0
2 3 4 5 6 7 0 1
3 4 5 6 7 0 1 2
4 5 6 7 0 1 2 3
5 6 7 0 1 2 3 4
6 7 0 1 2 3 4 5
7 0 1 2 3 4 5 6

L(Z9,+)

0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 0
2 3 4 5 6 7 8 0 1
3 4 5 6 7 8 0 1 2
4 5 6 7 8 0 1 2 3
5 6 7 8 0 1 2 3 4
6 7 8 0 1 2 3 4 5
7 8 0 1 2 3 4 5 6
8 0 1 2 3 4 5 6 7

First, in Table 2.17 we observe that the even order cyclic latin squares L(Z4,+),

L(Z6,+), and L(Z8,+) have the confirmed minimum (zero) counts of T(4), T(6), and T(8),

respectively. Thus, to obtain more data on this even order phenomena we use the

BM-LS-TCAv3 to count the number of transversals in even order cyclic latin squares

from order-2 to order-14 and report the results in Table 2.18. Here we observe that

all of the transversal counts are zero from L(Z2,+) to L(Z14,+); we recall that this

phenomena is predicted by Theorem 2.60 from Section 2.6.1, which is a result that

one can prove with the Delta Lemma 2.58.

Second, in Table 2.17 we observe that the odd prime order cyclic latin squares

96

Table 2.17: The observed transversal counts for cyclic order-n latin squares
from order-3 to order-9 that encode cyclic groups from (Z3,+) to (Z9,+) are
compared to the confirmed [t(n), T(n)] range. The T(n) counts possessed by the
prime order latin squares L(Z3,+), L(Z5,+), and L(Z7,+) are marked in (blue) bold.

Order-n
Cyclic Latin

Square
Cyclic
Group

Observed
Transversals

Confirmed
Transversal

Range: [t(n), T(n)]
3 L(Z3,+) (Z3,+) 3 [3,3]
4 L(Z4,+) (Z4,+) 0 [0, 8]
5 L(Z5,+) (Z5,+) 15 [3,15]
6 L(Z6,+) (Z6,+) 0 [0, 32]
7 L(Z7,+) (Z7,+) 133 [3,133]
8 L(Z8,+) (Z8,+) 0 [0, 384]
9 L(Z9,+) (Z9,+) 2 050 [68, 2 241]

L(Z3,+), L(Z5,+), and L(Z7,+) have the confirmed maximum counts of T(3), T(5), and

T(7), respectively. We also observe that the odd non-prime order cyclic latin square

L(Z9,+) has a transversal count of 2,050 that is much closer to T(9) = 2,241 than it is

to t(9) = 68; the fact that L(Z9,+) has odd order influences its transversal count as

predicted by Theorem 2.60.

Based on the results of Tables 2.17 and 2.18 we observe the following:

1. All even order cyclic latin squares from order-2 to order-14 that encode the cor-

responding cyclic groups of the integers modulo n under addition from (Z2,+)

to (Z14,+) have zero transversals.

2. All of our cyclic latin square transversal counts fall within the bounds of t(n)

and T(n) as reported by [5, 6, 8].

3. The cyclic latin squares with odd prime order—namely L(Z3,+), L(Z5,+), and

L(Z7,+)—have transversal counts that match T(3), T(5), and T(7), respectively.

97

Table 2.18: The observed transversal counts are zero for all even order cyclic
latin squares from L(Z2,+) to L(Z14,+).

Order-n
Cyclic Latin

Square
Cyclic
Group

Observed
Transversals

2 L(Z2,+) (Z4,+) 0
4 L(Z4,+) (Z4,+) 0
6 L(Z6,+) (Z6,+) 0
8 L(Z8,+) (Z8,+) 0
10 L(Z10,+) (Z10,+) 0
12 L(Z12,+) (Z12,+) 0
14 L(Z14,+) (Z14,+) 0

4. The cyclic latin squares with non-prime order—namely L(Z4,+), L(Z6,+), L(Z8,+),

and L(Z9,+)—have transversal counts below T(4), T(6), T(8), and T(9), respec-

tively. In fact, the even non-prime order latin squares L(Z4,+), L(Z6,+), and

L(Z8,+) have transversal counts that match t(4), t(6), and t(8), respectively.

Meanwhile, the odd non-prime order latin square LZ9 has a transversal count

that is relatively close to T(9) in contrast to the even non-prime order latin

squares.

Remark 2.95. We note that if p is prime, then Zp = (Zp,+) is also a Galois field of

order-p.

Hence, based on the results of Tables 2.17 and 2.18, we decide to investigate the

following transversal prediction questions:

• Given that L(Z3,+), L(Z5,+), and L(Z7,+) have maximum transversal counts, can

we use such prime order cyclic latin squares as “latin sub-square building

blocks” to construct larger latin squares with prime power orders that also

have maximum transversal counts?

98

• Given that L(Z4,+)=(Z22 ,+), L(Z8,+)=(Z23 ,+), and L(Z9,+)=(Z32 ,+) are prime power

order cyclic latin squares (which do not have maximum transversal counts), is

it possible to use prime order cyclic latin squares such as L(Z2,+) and L(Z3,+)

(which do have maximum transversal counts for those orders—even though

T(2) = t(2) = 0 for L(Z2 ,+)) as “latin sub-square building blocks” to construct

larger latin squares with prime power orders that also have maximum transversal

counts?

• Can we use the above results to predict which types of prime power order latin

squares will possess the maximum number of transversals?

The said questions motivate our investigation in the next sections.

2.8.2 Building Super-Symmetric Latin Squares

Based on the observed maximum transversal results for latin squares that encode

cyclic groups, we decide to investigate the question: can we use this to design and

implement a new algorithm to generate specific types of prime power order latin

squares that possess the maximum number of transversals? Our hypothesis is: yes.

Upon considering this question, we design and implement a new algorithm (dis-

cussed in more detail below and listed as Algorithm 2.3 in Appendix B.1.1) that

generates a specific type of latin square with prime power order-pd, which is based

on the concept of self-similarity (an object that is exactly or approximately similar

to a part of itself). The design of our proposed algorithm is based on the fact that:

each cyclic latin square of prime order-p with p ∈ {2, 3, 5, 7} has the desired T(2),

T(3), T(5), and T(7), respectively. For the sake of notational simplicity, we will use

L
(F

pd ,+) ∈ Lpd to denote such an order-pd self-similar latin square, even though we are

99

not yet claiming that L(F
pd ,+) encodes the group (Fpd ,+) of Galois field addition. So

we make the conjecture: for any pd with d > 1, there exists a prime power order-pd

“self-similar latin square L(F
pd ,+) of p× p adjacent order-pd−1 latin sub-squares” each

possessing T(pd−1) transversals so that L(F
pd ,+) possesses T(pd) transversals.

To give a general summary: given p and d > 1 as input, our proposed algorithm

generates an order-pd latin square L(F
pd ,+) ∈ Lpd that is recursively built from p ×

p adjacent latin sub-squares of order-pd−1, where each order-pd−1 latin sub-square

that is equivalent to L
(F

pd−1 ,+) ∈ Lpd−1 (up to order-preserving symbol relabeling)

is recursively built from p × p adjacent latin sub-squares of order-pd−2, where each

order-pd−2 latin sub-square is equivalent to L(Fpd−2 ,+) ∈ Lpd−2 , etc., where the smallest

latin sub-square “building blocks” are cyclic latin squares of prime order-p that are

equivalent to L(Zp,+). During the generation process, for each “grid level” of p × p

latin sub-squares, the same permutation π that cyclically generates the rows (or

columns) of L(Zp,+) is recursively applied to cyclically permute the p × p latin sub-

squares to construct a latin square L(F
pd ,+) that exhibits a self-similar structure. Upon

creating our algorithm for generating such self-similar order-pd latin squares, we then

discover that it is an apparent generalization of the algorithm proposed in [60] which

generates the so-called “super-symmetric” latin squares of order-2d. Thus, we define

the following:

Definition 2.96. Let Zp = (Zp,+) be the cyclic group of integers modulo p under

addition where p ∈ N is prime. Let L(Zp,+) ∈ Lp be the cyclic latin square of prime

order-p that encodes (Zp,+) with symbols from {0, 1, 2, . . . , p−1}, where each row (or

column) of L(Zp,+) is cyclically generated by the permutation π. Let L(Zp,+)+kp ∈ Lp

be a cyclic latin square of prime order-p that encodes (Zp,+) with symbols from

{0 + kp, 1 + kp, 2 + kp, . . . , (p − 1) + kp}, where each row (or column) of L(Zp,+)+kp

100

is cyclically generated by the permutation π, so that each L(Zp,+)+kp is equivalent to

L(Zp,+) (up to order-preserving symbol relabeling) for k = 0, 1, 2, . . . , (p − 1). Then,

we say that a latin square L(Fp2 ,+) ∈ Lp2 of prime power order-p2 is order-p2 super-

symmetric if L(Fp2 ,+) can be written as the p× p latin sub-square grid

L(Zp,+) L(Zp,+)+p L(Zp,+)+2p . . . L(Zp,+)+(p−1)p

L(Zp,+)+p L(Zp,+)+2p . . . L(Zp,+)+(p−1)p L(Zp,+)

L(Zp,+)+2p . . . L(Zp,+)+(p−1)p L(Zp,+) L(Zp,+)+p

. . . L(Zp,+)+(p−1)p L(Zp,+) L(Zp,+)+p L(Zp,+)+2p

L(Zp,+)+(p−1)p L(Zp,+) L(Zp,+)+p L(Zp,+)+2p . . .

where each row (or column) of L(Fp2 ,+) is cyclically generated by π and consists of the

set {
L(Zp,+), L(Zp,+)+p, L(Zp,+)+2p, . . . , L(Zp,+)+kp, . . . , L(Zp,+)+(p−1)p

}
of prime order-p cyclic latin sub-squares (each with rows that are cyclically generated

by π) that are each equivalent to the latin square L(Zp,+) (up to order-preserving

symbol relabeling) that encodes (Zp,+). More generally, we say that a latin square

L
(F

pd ,+) ∈ Lpd of prime power order-pd is order-pd super-symmetric if L(F
pd ,+) can be

written as the p× p latin sub-square grid

L
(F

pd−1 ,+)
L

(F
pd−1 ,+)+p

L
(F

pd−1 ,+)+2p . . . L
(F

pd−1 ,+)+(p−1)p

L
(F

pd−1 ,+)+p
L

(F
pd−1 ,+)+2p . . . L

(F
pd−1 ,+)+(p−1)p

L
(F

pd−1 ,+)

L
(F

pd−1 ,+)+2p . . . L
(F

pd−1 ,+)+(p−1)p
L

(F
pd−1 ,+)

L
(F

pd−1 ,+)+p

. . . L
(F

pd−1 ,+)+(p−1)p
L

(F
pd−1 ,+)

L
(F

pd−1 ,+)+p
L

(F
pd−1 ,+)+2p

L
(F

pd−1 ,+)+(p−1)p
L

(F
pd−1 ,+)

L
(F

pd−1 ,+)+p
L

(F
pd−1 ,+)+2p . . .

where each row (or column) of L(Fp2 ,+) is cyclically generated by π and consists of the

set {
L

(F
pd−1 ,+),L(F

pd−1 ,+)+p,L(F
pd−1 ,+)+2p, . . . ,L(F

pd−1 ,+)+kp, . . . ,L(F
pd−1 ,+)+(p−1)p

}

101

of prime power order-pd−1 latin sub-squares (each with rows that are cyclically gen-

erated by π) that are each equivalent to the latin square L(F
pd−1 ,+).

Our proposed Super-Symmetric Latin Square Generation Algorithm (SS-LS-GA)

for constructing a latin square that satisfies Definition 2.96 is Algorithm 2.3 in

Appendix B.1.1. If p = 2, then the SS-LS-GA Java implementation starts with

the cyclic latin square L(Z2,+) for (Z2,+) and follows a procedure that is similar to

the one proposed in [60]. Otherwise, if p > 2, then the SS-LS-GA starts with the

cyclic latin square L(Zp,+) for (Zp,+) and follows a procedure that is a generalization

of the specific p = 3 case in Example 2.97. Note: in the d = 1 “base case”, the

SS-LS-GA will simply generate a prime order-p cyclic latin square L(Zp,+). Thus, for

any prime power order-pd super-symmetric latin square L(F
pd ,+) we may assume that

d > 1.

Example 2.97. Let Z3 = (Z3,+) be the cyclic group of integers modulo 3 under

addition. Let L(Z3,+) be the cyclic latin square of prime order-3 that encodes (Z3,+)

with symbols from {0, 1, 2} and the maximum T(3), where each row (or column) of

L(Z3,+) is cyclically generated by the permutation

π =
 0 1 2
π(0) π(1) π(2)

 =
0 1 2

1 2 0


to obtain

L(Z3,+) =


0 1 2
1 2 0
2 0 1

 ∈ L3 ⊂ Z3×3
3 .

Then for k = 0, 1, 2 (with the order-preserving symbol relabeling) we obtain

L(Z3,+) =


0 1 2
1 2 0
2 0 1

 , L(Z3,+)+3 =


3 4 5
4 5 3
5 3 5

 , and L(Z3,+)+6 =


6 7 8
7 8 6
8 6 7



102

so the first order-3 latin sub-square row of the order-32 super-symmetric latin square

L(F32 ,+) is the partial latin square

0 1 2
1 2 0
2 0 1

3 4 5
4 5 3
5 3 4

6 7 8
7 8 6
8 6 7

.

Then to cyclically generate the second and third rows (in order to complete L(F32 ,+))

we reapply π to the set {L(Z3,+), L(Z3,+)+3, L(Z3,+)+6} comprising the first row, which

we write as

π =
 L(Z3,+) L(Z3,+)+3 L(Z3,+)+6

π(L(Z3,+)) π(L(Z3,+)+3) π(L(Z3,+)+6)

 =
 L(Z3,+) L(Z3,+)+3 L(Z3,+)+6

L(Z3,+)+3 L(Z3,+)+6 L(Z3,+)

 ,
to construct the complete prime power order-32 super-symmetric latin square L(F32 ,+)

given in Table 2.19. Thereafter, if we wish to further construct the prime power

order-33 super-symmetric L(F33 ,+) given in Table 2.20, we simply iterate this procedure

one more time.

103

Table 2.19: The self-similar prime power order-32 super-symmetric latin
square L(F32 ,+) constructed using the SS-LS-GA. The permutation π is the
cyclic generator for the prime order-3 cyclic latin sub-squares. Thereafter,
the prime order-3 cyclic latin sub-squares in the 3 × 3 grid are permuted
with π.

0 1 2
1 2 0
2 0 1

3 4 5
4 5 3
5 3 4

6 7 8
7 8 6
8 6 7

3 4 5
4 5 3
5 3 4

6 7 8
7 8 6
8 6 7

0 1 2
1 2 0
2 0 1

6 7 8
7 8 6
8 6 7

0 1 2
1 2 0
2 0 1

3 4 5
4 5 3
5 3 4

.

104

Table 2.20: The self-similar prime power order-33 super-symmetric latin
square L(F33 ,+) constructed using the SS-LS-GA. The permutation π is the
cyclic generator for the prime order-3 cyclic latin sub-squares and also the
prime power order-32 super-symmetric latin sub-squares.

0 1 2 3 4 5 6 7 8

1 2 0 4 5 3 7 8 6

2 0 1 5 3 4 8 6 7

3 4 5 6 7 8 0 1 2

4 5 3 7 8 6 1 2 0

5 3 4 8 6 7 2 0 1

6 7 8 0 1 2 3 4 5

7 8 6 1 2 0 4 5 3

8 6 7 2 0 1 5 3 4

9 10 11 12 13 14 15 16 17

10 11 9 13 14 12 16 17 15

11 9 10 14 12 13 17 15 16

12 13 14 15 16 17 9 10 11

13 14 12 16 17 15 10 11 9

14 12 13 17 15 16 11 9 10

15 16 17 9 10 11 12 13 14

16 17 15 10 11 9 13 14 12

17 15 16 11 9 10 14 12 13

18 19 20 21 22 23 24 25 26

19 20 18 22 23 21 25 26 24

20 18 19 23 21 22 26 24 25

21 22 23 24 25 26 18 19 20

22 23 21 25 26 24 19 20 18

23 21 22 26 24 25 20 18 19

24 25 26 18 19 20 21 22 23

25 26 24 19 20 18 22 23 21

26 24 25 20 18 19 23 21 22

9 10 11 12 13 14 15 16 17

10 11 9 13 14 12 16 17 15

11 9 10 14 12 13 17 15 16

12 13 14 15 16 17 9 10 11

13 14 12 16 17 15 10 11 9

14 12 13 17 15 16 11 9 10

15 16 17 9 10 11 12 13 14

16 17 15 10 11 9 13 14 12

17 15 16 11 9 10 14 12 13

18 19 20 21 22 23 24 25 26

19 20 18 22 23 21 25 26 24

20 18 19 23 21 22 26 24 25

21 22 23 24 25 26 18 19 20

22 23 21 25 26 24 19 20 18

23 21 22 26 24 25 20 18 19

24 25 26 18 19 20 21 22 23

25 26 24 19 20 18 22 23 21

26 24 25 20 18 19 23 21 22

0 1 2 3 4 5 6 7 8

1 2 0 4 5 3 7 8 6

2 0 1 5 3 4 8 6 7

3 4 5 6 7 8 0 1 2

4 5 3 7 8 6 1 2 0

5 3 4 8 6 7 2 0 1

6 7 8 0 1 2 3 4 5

7 8 6 1 2 0 4 5 3

8 6 7 2 0 1 5 3 4

18 19 20 21 22 23 24 25 26

19 20 18 22 23 21 25 26 24

20 18 19 23 21 22 26 24 25

21 22 23 24 25 26 18 19 20

22 23 21 25 26 24 19 20 18

23 21 22 26 24 25 20 18 19

24 25 26 18 19 20 21 22 23

25 26 24 19 20 18 22 23 21

26 24 25 20 18 19 23 21 22

0 1 2 3 4 5 6 7 8

1 2 0 4 5 3 7 8 6

2 0 1 5 3 4 8 6 7

3 4 5 6 7 8 0 1 2

4 5 3 7 8 6 1 2 0

5 3 4 8 6 7 2 0 1

6 7 8 0 1 2 3 4 5

7 8 6 1 2 0 4 5 3

8 6 7 2 0 1 5 3 4

9 10 11 12 13 14 15 16 17

10 11 9 13 14 12 16 17 15

11 9 10 14 12 13 17 15 16

12 13 14 15 16 17 9 10 11

13 14 12 16 17 15 10 11 9

14 12 13 17 15 16 11 9 10

15 16 17 9 10 11 12 13 14

16 17 15 10 11 9 13 14 12

17 15 16 11 9 10 14 12 13

105

2.8.3 Connecting Super-Symmetric Latin Squares, Galois Field

Addition Groups, and Maximum Transversal Count

Predictions

So we use our SS-LS-GA implementation to generate the super-symmetric latin

squares L(F22 ,+) ∈ L22 , L(F23 ,+) ∈ L23 , and L(F32 ,+) ∈ L32 . A further “visual”

examination of these squares leads to the realization that these self-similar latin

squares (with prime power order-pd for 4 ≤ n = pd ≤ 9 with d > 1) are in fact

the corresponding addition group Cayley tables of the Galois fields F22 , F23 , and F32 !

Thus, let us further illustrate this connection between super-symmetric latin

squares and Galois field addition groups.

First, we choose the degree 2 irreducible polynomial x2 + 1 ∈ Z2[x] to construct

the Galois field F22 [x] = Z2[x]/〈x2 + 1〉 ∼= F22 to obtain the corresponding addition

group (F22 [x],+) ∼= (F22 ,+) with the super-symmetric Cayley table

+ 0 1 x x + 1
0 0 1 x x+ 1
1 1 0 x+ 1 x

x x x+ 1 0 1
x + 1 x+ 1 x 1 0

∼=

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

,

L(F22 [x],+) Polynomial Form L(F22 ,+) Symbol Form

where we let x = 2 to obtain the equivalent symbol form. We observe that L(F22 ,+)

contains 4 adjacent latin sub-square “building blocks” that are each a prime order-

2 cyclic latin square that is equivalent to L(Z2,+) and possesses T(2) = t(2) = 0

transversals (the confirmed maximum and minimum).

Second, we choose the degree 3 irreducible polynomial x3 + x + 1 ∈ Z2[x] to

construct the Galois field F23 [x] = Z2[x]/〈x3+x+1〉 ∼= F23 to obtain the corresponding

106

addition group (F23 [x],+) ∼= (F23 ,+) with the super-symmetric Cayley table

+ 0 1 2 2+1 22 22+1 22+2 22+2+1
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5

2+1 3 2 1 0 7 6 5 4
22 4 5 6 7 0 1 2 3

22+1 5 4 7 6 1 0 3 2
22+2 6 7 4 5 2 3 0 1

22+2+1 7 6 5 4 3 2 1 0

,

where we let x = 2 to obtain the equivalent symbol form. We observe that L(F23 ,+)

contains 4 adjacent latin sub-squares in a 2× 2 that are each a prime power order-22

latin square that is equivalent to L(F22 ,+). Moreover, we observe that each latin square

that is equivalent to L(F22 ,+) contains 4 adjacent latin sub-squares in a 2×2 grid that

are each a prime order-2 cyclic latin square that is equivalent to L(Z2,+) and possesses

T(2) = t(2) = 0 transversals.

Third, we choose the degree 2 irreducible polynomial x2 + 1 ∈ Z3[x] to construct

the Galois field F32 [x] = Z3[x]/〈x2 + 1〉 ∼= F32 to obtain the corresponding addition

group (F32 [x],+) ∼= (F32 ,+) with the super-symmetric Cayley table

+ 0 1 2 3 3+1 3+2 2•3 2•3+1 2•3+2
0 0 1 2 3 4 5 6 7 8
1 1 2 0 4 5 3 7 8 6
2 2 0 1 5 3 4 8 6 7
3 3 4 5 6 7 8 0 1 2

3+1 4 5 3 7 8 6 1 2 0
3+2 5 3 4 8 6 7 2 0 1
2•3 6 7 8 0 1 2 3 4 5

2•3+1 7 8 6 1 2 0 4 5 3
2•3+2 8 6 7 2 0 1 5 3 4

,

where we let x = 3 to obtain the equivalent symbol form. We observe that L(F32 ,+)

contains 9 adjacent latin sub-squares in a 3 × 3 grid that are each a prime order-3

cyclic latin square that is equivalent to L(Z3,+) and possesses T(3) = 3 transversals.

107

At this point, our hypothesis becomes: L(F22 ,+), L(F23 ,+), and L(F32 ,+) may have the

maximum confirmed T(4), T(8), and T(9), respectively. Since the T(n) for 4 ≤ pd ≤ 9

have been confirmed in [5, 6, 8], then we know it is possible to determine if our

prediction is correct or incorrect.

Thus, we use our BM-LS-TCAv3 implementation to count the number of transver-

sals in the super-symmetric latin squares L(F22 ,+), L(F23 ,+), and L(F32 ,+) and report the

results in Table 2.21; the respective T(4), T(8), and T(9) [5, 6, 8] are re-listed next to

our super-symmetric latin squares transversal counts in Table 2.21.

Table 2.21: The transversal counts for the super-symmetric latin squares
L(F22 ,+), L(F23 ,+), and L(F32 ,+) that encode the addition groups of Galois fields
are equal to the respectively confirmed maximum transversal counts T(4), T(8),
and T(9). Our prediction is correct!

Order-n
Galois Field
Latin Square

Galois Field
Addition Group

Observed
Transversals

Confirmed
Transversals

Range: [t(n), T(n)]
22 = 4 L(F22 ,+) (F22 ,+) 8 [0,8]
23 = 8 L(F23 ,+) (F23 ,+) 384 [0,384]
32 = 9 L(F32 ,+) (F32 ,+) 2 241 [68,2 241]

In Table 2.21 we observe an exciting result: our prediction is correct! More specifi-

cally, we observe that the super-symmetric latin squares of prime power order-pd (with

4 ≤ pd ≤ 9) that encode the Galois field addition Cayley tables—namely L(F22 ,+),

L(F23 ,+), and L(F32 ,+)—have maximum transversal counts that match T(4), T(8), and

T(9), respectively; a significant improvement over the respective zero transversal

counts of the cyclic Cayley tables L(Z4,+), L(Z8,+), and L(Z9,+) that we reported in

Tables 2.17 and 2.18.

108

To us, these prediction results suggest that perhaps the maximum transversal

counts of prime order cyclic latin squares may be directly related to the maximum

transversal counts of self-similar prime power order super-symmetric latin squares

that are built from appropriately arranged cyclic latin sub-squares; such evidence

seems to support the idea that it may be possible to predict which types of prime

power order-pd latin squares will possess the maximum number of transversals!

2.8.4 Results and Conjectures

Here, based on the results of the preceding sections, we further examine the transversal

counts of prime power order-pd cyclic and super-symmetric latin squares for 3 ≤ n =

pd ≤ 17 with d > 0.

First, for latin squares with prime power orders 3 ≤ pd ≤ 17, we report the

comparison between the maximum transversal counts of our NPS-LS-GA generated

data sets with the maximum transversal counts of the cyclic and super-symmetric latin

squares generated by our SS-LS-GA in Table 2.22; these cyclic and super-symmetric

latin squares are listed in Appendix C. Note: due to current limitations on compu-

tational resources, we are only able to count the number of transversals for subsets

of our data sets with latin squares up to order-16 and a single order-17 latin square.

In Table 2.22 we observe that:

1. For prime power orders 3 ≤ pd ≤ 16, the cyclic and super-symmetric latin

square transversal counts are always greater than or equal to the latin squares

in the NPS-LS-GA generated data sets.

2. For prime power orders 3 ≤ pd ≤ 9, the cyclic and super-symmetric latin square

transversal counts are all equal to the confirmed maximum transversal counts

T(pd) that are reported in [5, 6, 8].

109

Table 2.22: For latin squares with prime power orders 3 ≤ pd ≤ 16 with d > 0,
we compare the observed maximum transversal counts of our NPS-LS-GA
generated data sets with the observed maximum transversal counts of the
cyclic and super-symmetric latin squares generated by our SS-LS-GA, which
are then compared with either the confirmed T(pd) or the estimated bounds
[bT(pd)cMMW, dT(pd)eMMW].

Prime
Power

Order-pd

Data Set
Size:

Latin
Squares

(NPS-LS-GA)

Observed
Max #

Transversals:
Data Set

(NPS-LS-GA)

Observed
Transversals:

Cyclic or
Super-Symmetric

(SS-LS-GA)

Max # Transversals:
Confirmed T(pd) or
Estimated Bounds

[bT(pd)cMMW, dT(pd)eMMW]

31 = 3 12 3 3 3
22 = 4 576 8 8 8
51 = 5 161 280 15 15 15
71 = 7 3 000 000 63 133 133
23 = 8 2 750 000 384 384 384
32 = 9 2 500 000 444 2 241 2 241

111 = 11 500 000 3 896 37 851 [37 851, 528 647]
131 = 13 176 516 82 628 1 030 367 [1 030 367, 32 837 805]
24 = 16 358 183 558 144 244 744 192 [244 744 192, 28 218 998 328]

3. For prime power orders 9 < pd ≤ 16, the cyclic and super-symmetric latin

square transversal counts are all equal to the estimated lower bounds on the

maximum transversal counts bT(pd)cMMW that are reported in [5, 6, 8].

Next, we wish to investigate a possible relationship between transversal counts

and the following:

Definition 2.98. Let LG be a latin square that encodes the quasi-group G = (G, ?).

For any gx, gy ∈ G let LGgx,gy
be the entry of LG at row gx and column gy. Then we

say that:

• The number of times that a transversal of LG passes through LGgx,gy
is the heat

value of entry LGgx,gy
, which we denote by h(LGgx,gy

).

• The n×n matrix H(LG) is the heat map of LG if each entry H(LGgx,gy
) of H(LG)

at row gx and column gy contains h(LGgx,gy
) for all gx, gy ∈ G.

110

• h(LG) is the (uniform entry) heat value of LG if h(LGgx1 ,gy1
) = h(LGgx2 ,gy2

) for all

gx1 , gy1 , gx2 , gy2 ∈ G.

Example 2.99. Suppose that we have the following order-9 latin squares
L(G,?) L(Z9,+) L(F32 ,+)

0 1 2 3 4 5 6 7 8

1 0 3 2 5 4 7 8 6

2 3 0 1 6 7 8 4 5

3 2 1 0 7 8 5 6 4

4 5 6 7 8 0 1 2 3

5 4 7 8 0 6 2 3 1

6 7 8 4 1 2 3 5 0

7 8 5 6 3 1 4 0 2

8 6 4 5 2 3 0 1 7

0 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 0

2 3 4 5 6 7 8 0 1

3 4 5 6 7 8 0 1 2

4 5 6 7 8 0 1 2 3

5 6 7 8 0 1 2 3 4

6 7 8 0 1 2 3 4 5

7 8 0 1 2 3 4 5 6

8 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8

1 2 0 4 5 3 7 8 6

2 0 1 5 3 4 8 6 7

3 4 5 6 7 8 0 1 2

4 5 3 7 8 6 1 2 0

5 3 4 8 6 7 2 0 1

6 7 8 0 1 2 3 4 5

7 8 6 1 2 0 4 5 3

8 6 7 2 0 1 5 3 4

that encode some order-9 quasi-group G = (G, ?), the order-9 cyclic group Z9 =

(Z9,+), and the order-9 group F32 = (F32 ,+) of Galois field addition. Then we

compute the number of transversals for L(G,?), L(Z9,+), and L(F32 ,+) using the BM-

LS-TCAv3 implementation and simply record the number of times that each entry

appears in a transversal in a 9 × 9 heat map matrix; we obtain the respective

transversal counts |T (L(G,?))| = 150, |T (L(Z9,+))| = 2,025, and |T (L(F32 ,+))| = 2,241,

along with the corresponding heat maps

H(L(G,?)) H(L(Z9,+)) H(L(F32 ,+))
22 27 20 14 12 13 21 12 9

19 15 24 19 10 18 10 15 20

26 24 25 20 18 15 7 11 4

23 15 12 23 21 12 20 10 14

12 10 15 13 42 16 15 10 17

10 17 16 15 11 33 18 9 21

9 10 11 20 12 14 11 57 6

11 21 13 13 13 14 32 16 17

18 11 14 13 11 15 16 10 42

,

225 225 225 225 225 225 225 225 225

225 225 225 225 225 225 225 225 225

225 225 225 225 225 225 225 225 225

225 225 225 225 225 225 225 225 225

225 225 225 225 225 225 225 225 225

225 225 225 225 225 225 225 225 225

225 225 225 225 225 225 225 225 225

225 225 225 225 225 225 225 225 225

225 225 225 225 225 225 225 225 225

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

.

We observe that H(LG) has non-uniform entry heat values, while H(L(Z9,+)) and

H(L(F32 ,+)) have uniform entry heat values of h(L(Z9,+)) = 225 and h(L(F32 ,+)) = 249,

respectively. Moreover, for the uniform cases, we observe that
|T (L(Z9,+))| = h(L(Z9,+)) • 9 = 225 • 9 = 2,025 and
|T (L(F32 ,+))| = h(L(F32 ,+)) • 9 = 249 • 9 = 2,241,

where |T (L(F32 ,+))| = 2,241 = T(9).

111

Using the approach described in Example 2.99, we compute the heat maps for the

cyclic and super-symmetric latin squares of prime power orders 3 ≤ pd ≤ 17; the heat

maps are listed in Appendix C. Interestingly enough, we observe that each of these

cyclic and super-symmetric latin squares have a uniform heat value! Hence, in Table

2.23 we report the apparent relationship between the transversal counts, the uniform

heat values, and the prime power order of each cyclic or super-symmetric latin square.

Note: we are finally able to process the single cyclic latin square of prime order-17,

so we also include that result in Table 2.23.
Table 2.23: For cyclic and super-symmetric latin squares with prime power
orders 3 ≤ pd ≤ 17 generated by our SS-LS-GA, we report the apparent
relationship between the transversal counts, the uniform heat values, and the
order. For prime power orders 3 ≤ pd ≤ 9 the transversal counts are all equal
to the confirmed maximum transversal counts T(pd), whereas for prime power
orders 9 < pd ≤ 17 the transversal counts are equal to the estimated lower
bounds on the maximum transversal counts bT(pd)cMMW; these are marked in
(blue) bold.

Prime
Power

Order-pd

Type

Observed
Uniform

Heat
Value

Observed
Transversals:

Cyclic or
Super-Symmetric

Max # Transversals:
Confirmed T(pd) or
Estimated Bounds

[bT(pd)cMMW, dT(pd)eMMW]

31 = 3 Cyclic 1 31 • 1 = 3 3

22 = 4 Super-Symm. 2 22 • 2 = 8 8

51 = 5 Cyclic 3 51 • 3 = 15 15

71 = 7 Cyclic 19 71 • 19 = 133 133

23 = 8 Super-Symm. 48 23 • 48 = 384 384

32 = 9 Super-Symm. 249 32 • 249 = 2 241 2 241

111 = 11 Cyclic 3 441 111 • 3 441 = 37 851 [37 851, 528 647]

131 = 13 Cyclic 79 259 131 • 79 259 = 1 030 367 [1 030 367, 32 837 805]

24 = 16 Super-Symm. 15 296 512 24 • 15 296 512 = 244 744 192 [244 744 192, 28 218 998 328]

171 = 17 Cyclic 94 471 089 171 • 94 471 089 = 1 606 008 513 [1 606 008 513, 300 502 249 052]

In Table 2.23 we observe that some interesting related sequences are:

1. The transversal counts for cyclic and super-symmetric latin squares of prime

power orders 3 ≤ pd ≤ 17:

112

3, 8, 15, 133, 384, 2241, 37851, 1030367, 244744192, 1606008513.
2. The uniform heat values of entries for cyclic and super-symmetric latin squares

of prime power orders 3 ≤ pd ≤ 17:

1, 2, 3, 19, 48, 249, 3441, 79259, 15296512, 94471089.

Moreover, based on the preliminary evidence of Table 2.23, we propose the fol-

lowing:

Conjecture 2.100. Let L ∈ Lpd be a cyclic or super-symmetric latin square of prime

power order-pd with d > 0. Then:

(i) L possesses the maximum number of transversals T(pd) for any order-pd latin

square.

(ii) L possesses a uniform heat value uniform heat value h(L), where the number of

transversals is T(pd) = |T (L)| = h(L) • pd.

Remark 2.101. Our conjecture predicts that for prime power order-pd with d > 0:

• The estimated lower bound bT(pd)c in [5, 6, 8] may be the correct T(pd).

• The estimated upper bound dT(pd)e in [5, 6, 8] may be too high.

Remark 2.102. At this point we briefly recall the latin square equivalence classes of

Section 2.4: isotopy classes, conjugacy classes, and main classes. More specifically, in

Definition 2.48 it is said that two latin squares LG, LH ∈ Ln are main class equivalent

if one of them is isotopic equivalent to some LK ∈ Ln that is conjugate equivalent

to the other. In other words, all of the latin squares in the same main class have

essentially the same structure [6]. This implies that all of the latin squares in the

same main class have the same number of transversals. Thus, if Conjecture 2.100 is

correct, then it follows that: if LG ∈ Lpd is a latin square of prime power order-pd

113

with d > 0 that is main class equivalent to a cyclic or super-symmetric latin square

LH ∈ Lpd (i.e. generated by the SS-LS-GA), then LG possesses the maximum number

of transversals T(pd).

It would be very interesting to test Conjecture 2.100 by generating cyclic and

super-symmetric latin squares of larger prime power orders (such as 52 and 33, etc.)

and counting their transversals to see if Conjecture 2.100 holds. Unfortunately, we

only have the practical capability to count all of the transversals of latin squares up to

order-17 due to the hardware restrictions of our current computing resources. Perhaps

in the near future it will be possible to determine if Conjecture 2.100 is correct for

any order-pd via the methods of science and mathematics.

In the meantime, let’s use the largest super-symmetric latin square that we know

has the confirmed maximum number of transversals, namely L(F32 ,+), to design and

implement a new cryptographic system in the next chapter!

114

CHAPTER 3

CRYPTOGRAPHIC APPLICATION

3.1 Introduction to Cryptographic Hash Functions

A critical sector of cryptographic research, development, and application is that of

cryptographic hash functions (CHF). A CHF is a mathematical algorithm defined as

a function F : M → H that maps an input message M ∈ M of an arbitrary size to

an output hash H ∈ H of a fixed size.

The ideal computationally secure CHF has three main properties:

1. Preimage resistance: Given a hash Hi ∈ H, it is computationally infeasible

for an attacker to find a message Mi ∈ M with the same hash, such that

Hi = F(Mi).

2. Second preimage resistance: Given a message Mi ∈ M, it is computationally

infeasible for an attacker to find a second messageMj ∈M such thatMi 6=Mj

but F(Mi) = F(Mj) ∈ H.

3. Collision resistance: It is computationally infeasible for the attacker to choose

any two messages Mi,Mj ∈M with Mi 6=Mj and F(Mi) = F(Mj) ∈ H.

Table 3.1 includes examples of six distinct messages and their corresponding

hashes, which are generated using the MD5 CHF created by Rivest in 1992 [113].

115

We observe that a small (single character) change to the input message yields a dra-

matically different output hash; this desirable property of cryptographic algorithms

is known as the avalanche effect [114].

Table 3.1: Examples of arbitrarily sized input messages and their corresponding
128-bit output hashes.

Input Message (Arbitrary Size) Output Hash (128-Bit Size)
M0 = “mySup3rS3cr3tp4$$w0rd” F(M0) = 519ddd987b078ff873cebb728aa88334
M1 = “MySup3rS3cr3tp4$$w0rd” F(M1) = 438e74075616dd238dfd0989c372626d
M2 = “'In the middle of difficulty lies

opportunity.' -A. Einstein” F(M2) = f6d25cb72eae4cf5c4dcb65580e548d2

M3 = “'In the middle of difficulty l1es
opportunity.' -A. Einstein” F(M3) = 6c91069711f3ee39af23e05e99e76995

M4 = “'Never trust a computer you can’t
throw out a window.' -S. Wozniak” F(M4) = cf237059c1acc17db94290ffe0c887c3

M5 = “'Nev3r trust a computer you can’t
throw out a window.' -S. Wozniak” F(M5) = b15b56ab21de119480413cd4a0ed2884

CHFs have been nicknamed the “workhorses of modern cryptography” [115] be-

cause they have numerous crucial applications in the territory of cyber security. For

instance, a major notable area of application is that of authentication: the process of

determining whether someone or something is, in fact, who or what they declare to

be. For example, CHFs are deployed for password verification, digital signatures,

digital fingerprinting, and message authentication codes [116, 117, 118, 119]; see

Figures 3.1 and 3.2 for an example depiction of password hashing and authentication.

Furthermore, CHFs are also utilized to generate and evaluate checksums for integrity

verification [116, 120]; accidental or malicious data corruption of messages, passwords,

files, or hard drives can be detected by computing the checksum for such data and

then comparing it to the target checksum.

Thus, in order to assess of the degree of protection, strength, and reliability

that a given CHF offers, it is paramount to rigorously evaluate the CHF’s preimage

116

Figure 3.1: A simple depiction of the account password hashing and storing
process. First, user Bob’s password (message) is fed into the CHF as input.
Then the CHF computes and outputs the hash, which is then stored in a
database. Now user Bob has an account on the system.

resistance, second preimage resistance, and collision resistance both computationally

and mathematically. Hence, these three important CHF resistance properties imply

that a malicious adversary cannot modify or replace the original message without

altering the corresponding hash. If a CHF lacks one or more of the said resistance

properties, then it exhibits a weakness and thus is vulnerable to attack in practice; this

implies that the CHF can potentially be “hacked”, exploited, and/or circumvented in

the “real world”. In such a case that a CHF exhibits a weakness, then it is imperative

for the analysts to hunt down and identify the weakness mechanism so appropriate

fixes and security measures can be immediately implemented. Hence, the need and

117

Figure 3.2: A simple depiction of the user authentication process. Evil Eve is
trying to guess user Bob’s password. Evil Eve submits a password. The CHF
computes and outputs Evil Eve’s proposed hash, which is then compared to
user Bob’s hash that is stored in the database. In this case, since Evil Eve
submits the wrong password, then the hashes don’t match. So Evil Eve will be
denied access.

motivation to examine the underlying algebraic and algorithmic characteristics of

CHFs arise.

Thus, order to assess the computational security of a crypto-system such as a

CHF, one must mathematically and computationally evaluate the algebraic structures

upon which it operates. A great strategy for assessing a CHF is through publicly

open international competitions, where scientists, mathematicians, programmers, and

hackers from around the globe have the opportunity to design, implement, evaluate,

and discuss various CHF candidates. One example of such an event was the 2007-2012

NIST Hash Function Competition held by the U.S. National Institute of Standards

118

and Technology (NIST) [121], where the objective was to openly develop a new

CHF called Secure Hash Algorithm 3 (SHA-3) for standardization that is more

computationally secure that its SHA-1 and SHA-2 predecessors. NIST selected 51

entries for round 1 [122], where 14 of those teams advanced to round 2 [123, 124],

from which the 5 finalists were selected for round 3 [125]:

1. BLAKE by Aumasson, Henzen, Meier, and Phan [126].

2. Grøstl by Gauravaram, Knudsen, Matusiewicz, Mendel, Rechberger, Schläffer,

and Thomsen [61].

3. JH by Wu [127].

4. Keccak by Bertoni, Daemen, Peeters, and Van Assche [128].

5. Skein by Schneier, Ferguson, Lucks, Whiting, Bellare, Kohno, Callas, and

Walker [129].

In October of 2012 NIST selected Keccak as the winner [125] which was subsequently

released as the SHA-3 standard in August of 2015 [130].

We selected Grøstl [61] for the cryptographic application component of this thesis.

In our opinion, Grøstl is an excellent CHF for study and application. A key design

goal for the creators Grøstl was transparency—a goal based on principles that differ

from those shared by many other members in the SHA family [61].

3.2 Grøstl and Related “AES-Like” Constructions

Here we briefly introduce Grøstl and how such CHFs are frequently connected to

symmetric-key algorithms, which is another fundamental area of cryptography.

In a symmetric-key crypto-system the communicating parties share the same

cryptographic secret keys for both the encryption of plaintext and the decryption of

119

ciphertext. Symmetric-key encryption can use either stream ciphers or block ciphers

[131]:

• Stream ciphers encrypt the bytes of a message one at a time.

• Block ciphers break the message into l-bit blocks and encrypt each block as a

single unit, where the plaintext is padded so that it is a multiple of the block

size.

Note: for a stronger discussion of symmetric-key cryptography we recommend [131]

and the references therein.

Although the application domain of symmetric-key encryption systems is generally

different than that of CHF systems, it turns out that there is a great overlap between

them: not only are they used together to build security protocols (ex. key agreement,

symmetric encryption, and message authentication), but in fact CHFs are frequently

based on symmetric ciphers, so many of the algorithms and underlying algebraic

structures are similar. In fact there are numerous methods for which a symmetric

cipher can be used to construct a CHF [61, 132, 133, 134, 135, 136]. A prime example

of this is Grøstl [61], which is based on the block cipher of the Rijndael Advanced

Encryption Standard (AES) [137].

Grøstl, AES, and many other block cipher algorithms are members of a “family”

in which they are related via the notion of a substitution-permutation network [138].

In short, a substitution-permutation network takes a block of the message (plaintext)

and the key as inputs, and applies several alternating “rounds” or “layers” of sub-

stitution operations and permutation operations to output the ciphertext (or hash)

block. In this case, a CHF such as Grøstl [61] (which does not accept a key as input)

is often referred to as being “AES-like” because its algorithm and the underlying

algebraic structures are roughly similar to AES [137]. Like numerous CHFs in this

120

family, Grøstl “borrows” some essential components from AES such as the S-box and

the method for which the diffusion layers are constructed [61]. Moreover, since the

wide-pipe construction of Grøstl gives it an internal state size that is much larger

than the output size, the resistance against all known, generic attacks is strengthened

[61]. In general, many features of Grøstl are well-understood in terms of similar

work regarding AES. Therefore, the mathematical and computational strategies for

assessing the security of Grøstl are roughly similar to the strategies that are used to

assess numerous CHFs and other AES-like crypto-systems.

Both Grøstl and AES-like algorithms utilize a Galois field Fpd
∼= Fpd [x] = Zp[x]/〈P (x)〉

(with additive permutations), which is built from a commutative polynomial ring

(with an identity) comprising a finite number of polynomial elements, where the

operations are modular addition and multiplication with respect to an irreducible

polynomial P (x) ∈ Zp[x] of degree d = 8 whose modulo coefficients are in Zp with

p = 2. In the case of AES, each polynomial b(x) ∈ F28 [x] = Z2[x]/〈PAES(x)〉 encodes

a byte which is a binary string of 8 coefficients that is written as

b(x) = b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x
1 + b0 ∈ F28 [x]

with bi ∈ Z2 = {0, 1} for i = 0, 1, 2, . . . , 7, while the degree d = 8 irreducible

polynomial PAES(x) ∈ Z2[x] is written as

PAES(x) = x8 + x4 + x3 + x+ 1 = 1 0001 1011 ∈ Z2[x],

where the binary number 1 0001 1011 (11b in hexadecimal) encodes PAES(x). One

can obtain a more comprehensive explanation regarding the structure of AES (as used

by Grøstl [61]) in [139, 140, 141, 142].

Grøstl is an example of a block-based CHF that is iterated. This means that in

order to compute the hash F(M) = H ∈ H of a given message M ∈M of arbitrary

121

length, a certain sequence of computations, which comprise a round, is repeatedly

executed a specific number of times. Since Grøstl is block-based, it first pads and

partitions M into a sequence of l-bit blocks

M : m1, . . . ,mk, . . . ,mν with mk ∈ F2l for k = 1, 2, . . . , ν.

Grøstl can process l-bit block sizes of 512 or 1024 [61]. Thus, for p = 2 and d = 8

with a given common block size of l = 512, each element

mk ∈ F2l = F2d·8·8 = F28·8·8 = F2512 , for k = 1, 2, . . . , ν,

of M is a 512-bit (64-byte) message block given by the length-64 sequence of bytes

mk : mk[0],mk[1], . . . ,mk[η], . . . ,mk[63] with mk[η] ∈ F28 for η = 0, 1, . . . , 63,

such that each mk ∈ F2l is defined as a corresponding initial state matrix S0
k ∈

M8,8(F28) via the mapping

ξ : F2512 →M8,8(F28),

where ξ(mk) = S0
k is given by Sk:i,j = mk[8i + j] for 0 ≤ i < 8 and 0 ≤ j < 8, such

that M8,8(F28) denotes the set of all 8× 8 matrices over F28 . Therefore, Grøstl then
maps each 512-bit block mk to the 8× 8 initial state matrix

ξ(mk) = S0
k =



mk[0] mk[8] mk[16] mk[24] mk[32] mk[40] mk[48] mk[56]
mk[1] mk[9] mk[17] mk[25] mk[33] mk[41] mk[49] mk[57]
mk[2] mk[10] mk[18] mk[26] mk[34] mk[42] mk[50] mk[58]
mk[3] mk[11] mk[19] mk[27] mk[35] mk[43] mk[51] mk[59]
mk[4] mk[12] mk[20] mk[28] mk[36] mk[44] mk[52] mk[60]
mk[5] mk[13] mk[21] mk[29] mk[37] mk[45] mk[53] mk[61]
mk[6] mk[14] mk[22] mk[30] mk[38] mk[46] mk[54] mk[62]
mk[7] mk[15] mk[23] mk[31] mk[39] mk[47] mk[55] mk[63]


∈M8,8(F28)

of mk, where each byte mk[η] ∈ F28 for η = 0, 1, 2, . . . , 63 is an encoded polynomial

with coefficients from Z2.

The (512-bit) compression function fGrøstl is based on two underlying 512-bit

122

permutations PGrøstl and QGrøstl (each is a round-dependent composition of four

distinct transformations), which is defined as [61]

fGrøstl(h, ξ(m)) = PGrøstl(h⊕2 ξ(m))⊕2 QGrøstl(ξ(m))⊕2 h, (3.1)

where ⊕2 is the bitwise addition in Z2 and m is a 512-bit message block. During the

hashing process, Grøstl iteratively applies fGrøstl to each block mk of M during the

execution of each round, where each mk undergoes a length-q sequence of transitions

denoted by

mk → S0
k → S1

k → S2
k → · · · → Stk → St+1

k → · · · → Sqk ,

where we let q denote the number of transitions which depends on the number of

rounds and the l-bit block size, etc., and we let t denote the tth state. For this, the

underlying transformations of fGrøstl are sequentially applied to each entry mk[η] ∈

F28 and are encoded as operations in F28 [x] as Grøstl iteratively applies fGrøstl as

follows: an initial l-bit value h0 = iv is defined and then each mk is processed as

hk ← fGrøstl(hk−1, ξ(mk)) for k = 1, 2, . . . , ν,

where fGrøstl maps each pair of 512-bit inputs to a single 512-bit output, such that the

first 512-bit input hk−1 of fGrøstl is called the chaining input. After the final message

block mν has been processed, the final hashed output H of Grøstl is computed as

H ← FGrøstl(M) = ΩGrøstl(hν),

where ΩGrøstl is the final output transformation (which truncates the final state and

maps it to the final hash string format).

123

3.3 Simplified Grøstl: Specification and Construc-

tion

The algebraic structure of the original Grøstl CHF [61] over the Galois field F28 ∼=

F28 [x] is complex (by design) and thus one faces an immense challenge if one aims

to evaluate Grøstl over such a gigantic order. Therefore, we design and implement a

new, generalized version of the Grøstl CHF over Fpd
∼= Fpd [x], where we fix p = 3 and

d = 2 to create a “Simplified Grøstl” CHF over a smaller Galois field F32 ∼= F32 [x]:

namely S-Grøstl. Thus, our objective is to study and evaluate the S-Grøstl CHF over

F32 in order to learn more about the original Grøstl CHF over F28 [61].

3.3.1 Algebraic Structure

Our S-Grøstl CHF is similar to the original Grøstl CHF [61]: the only major difference

is that S-Grøstl operates over F32 while Grøstl operates over F28 . We select F32 for

the construction of S-Grøstl based on the following transversal results of Chapter 2:

• The order-32 super-symmetric latin square L(F32 ,+) ∈ L9 that encodes (F32 ,+)

possesses the confirmed maximum number of transversals T(9) = 2,241, which

is the largest confirmed T(n) reported by [5, 6, 8];

• The number of “good” additive permutations over (F32 ,+) is equal to the

number of transversals T(9) = 2,241 of L(F32 ,+).

• The six conditions of Theorem 2.90 are equivalent since (F32 ,+) is a solvable

group, where we note that:

(i) L(F32 ,+) has a transversal.

(ii) The Sylow 2-subgroups of (F32 ,+) are trivial or non-cyclic.

124

(iii) There exists some ordering of the elements of (F32 ,+) which yields the

trivial product 0.

(iv) L(F32 ,+) can be decomposed into disjoint transversals.

(v) There exists a latin square L(F32 ,+)′ that is orthogonal to L(F32 ,+).

(vi) (F32 ,+) is admissible.

In order to construct a polynomial Galois field over F32 for usage in S-Grøstl,

we first select an irreducible polynomial P (x) ∈ Z3[x] of degree 2 with coefficients

p0, p1, p2 ∈ Z3. Thus, we choose

P (x) = x2 + 1 = 1 · x2 + 0 · x1 + 1 · x0 = 101 ∈ Z3[x],

where p2 = 1, p1 = 0, p0 = 1 ∈ Z3, such that P (x) is irreducible in Z3[x]. Therefore,

we obtain the Galois field F32 [x] = Z3[x]/〈P (x)〉 where the 9 distinct polynomial

elements of F32 [x] are encoded as ternary strings written as
a0(x) = 0 = 00 ∈ F32 [x] a5(x) = x+ 2 = 12 ∈ F32 [x]
a1(x) = 1 = 01 ∈ F32 [x] a6(x) = 2x+ 0 = 20 ∈ F32 [x]
a2(x) = 2 = 02 ∈ F32 [x] a7(x) = 2x+ 1 = 21 ∈ F32 [x]
a3(x) = x+ 0 = 10 ∈ F32 [x] a8(x) = 2x+ 2 = 22. ∈ F32 [x]
a4(x) = x+ 1 = 11 ∈ F32 [x]

. (3.2)

The super-symmetric Cayley table that encodes the addition group (F32 [x],+) of

F32 [x] with respect to P (x) = x2 + 1 ∈ Z3[x] is displayed in Table 3.2.

Since S-Grøstl encodes data with polynomials and operates in F32 [x], then any

polynomial a(x) ∈ F32 [x] will have coefficients in Z3 = {0, 1, 2}. Therefore, since

our polynomial coefficients are not restricted to Z2 = {0, 1} due to the changed

characteristic, the “bit” and “binary” terminology is no longer applicable. Thus,

for the sake of clarity, we’ll refer to any such polynomial coefficient in Z3 as a trit

and use ternary numbering for the rest of this thesis. Therefore, when we say that

an operation as tritwise, we’re indicating that the operation is performed on each

125

Table 3.2: S-Grøstl operates over the Galois field F32 ∼= F32 [x] = Z3[x]/〈P (x)〉 with
respect to the irreducible polynomial P (x) = x2 + 1 = 101 ∈ Z3[x] with coefficients
in Z3 = {0, 1, 2}. This is the super-symmetric latin square L(F32 [x],+) (generated
by the SS-LS-GA) that encodes the addition group (F32 [x],+), which has the
confirmed maximum number of transversals T(9) = 2,241.

+ 0 1 2 x x + 1 x + 2 2x 2x + 1 2x + 2
0 0 1 2 x x+ 1 x+ 2 2x 2x+ 1 2x+ 2
1 1 2 0 x+ 1 x+ 2 x 2x+ 1 2x+ 2 2x
2 2 0 1 x+ 2 x x+ 1 2x+ 2 2x 2x+ 1
x x x+ 1 x+ 2 2x 2x+ 1 2x+ 2 0 1 2

x + 1 x+ 1 x+ 2 x 2x+ 1 2x+ 2 2x 1 2 0
x + 2 x+ 2 x x+ 1 2x+ 2 2x 2x+ 1 2 0 1

2x 2x 2x+ 1 2x+ 2 0 1 2 x x+ 1 x+ 2
2x + 1 2x+ 1 2x+ 2 2x 1 2 0 x+ 1 x+ 2 x

2x + 2 2x+ 2 2x 2x+ 1 2 0 1 x+ 2 x x+ 1

individual trit in a ternary string modulo 3. For example, given a 2-trit string 12 and

executing a tritwise multiplication by 2, the result would be 21 because 4 ≡ 1 (mod 3)

and 2 ≡ 2 (mod 3); the same process applies for tritwise addition. For this, we denote

tritwise addition and multiplication by the operators ⊕3 and ⊗3, respectively.

For S-Grøstl we have p = 3 and d = 2, and we fix the length of our message

M∈M to be 32-trits and set the l-trit block size to be l = 32. So each element

mk ∈ F3l = F3d·4·4 = F32·4·4 = F332 , for k = 1, 2, . . . , ν,

of M is a 32-trit block given by the length-16 sequence of length-2 ternary strings

mk : mk[0],mk[1], . . . ,mk[η], . . . ,mk[15] with mk[η] ∈ F32 for η = 0, 1, . . . , 15,

such that each mk ∈ F3l is defined as a corresponding matrix S0
k ∈ M4,4(F32) via the

mapping

ξ : F332 →M4,4(F32),

where ξ(mk) = S0
k is given by S0

k:i,j = mk[4i + j] for 0 ≤ i < 4 and 0 ≤ j < 4, such
that M4,4(F32) denotes the set of all 4×4 matrices over F32 . Therefore, S-Grøstl then

126

maps each 32-trit block mk to its 4× 4 initial state matrix

ξ(mk) = S0
k =


mk[0] mk[4] mk[8] mk[12]
mk[1] mk[5] mk[9] mk[13]
mk[2] mk[6] mk[10] mk[14]
mk[3] mk[7] mk[11] mk[15]

 =


S0

k:0,0 S0
k:0,1 S0

k:0,2 S0
k:0,3

S0
k:1,0 S0

k:1,1 S0
k:1,2 S0

k:1,3

S0
k:2,0 S0

k:2,1 S0
k:2,2 S0

k:2,3

S0
k:3,0 S0

k:3,1 S0
k:3,2 S0

k:3,3,

∈M4,4(F32),

where each mk[η] ∈ F32 for η = 0, 1, . . . , 15 is an encoded polynomial with coefficients

from Z3, such that (in the rightmost matrix representation) each Sk:i,j is the entry in

the ith row and jth column of the matrix of message block mk.

Therefore, since S-Grøstl operates over F32 , the compression function fS−Grøstl is

similarly based on two underlying 32-trit permutations PS−Grøstl and QS−Grøstl such

that

fS−Grøstl(h, ξ(m)) = PS−Grøstl(h⊕3 ξ(m))⊕3 QS−Grøstl(ξ(m))⊕3 h, (3.3)

recalling that ⊕3 is the bitwise addition in Z3, where m is an arbitrary 32-bit message

block. For the purpose of this thesis, we need only to consider a single 32-tritm1 =M.

Therefore, S-Grøstl initializes the single 32-trit value h0 = iv and processes the single

m1 by applying the compression function fS−Grøstl as

h1 ← fS−Grøstl(h0, ξ(m1))

since k = 1 for a single iteration, where fS−Grøstl maps the two 32-trit inputs to a

single 32-trit output.

Thus, after the last (and single) m1 = M ∈ M has been processed, the final

hashed output H ∈ H of S-Grøstl is computed as

H ← FS−Grøstl(M) = ΩS−Grøstl(h1),

where we omit the S-Grøstl truncation of ΩS−Grøstl because it isn’t necessary for the

purposes of this thesis.

127

From this point forward, for the sake of simple description, we let Stk = St ∈

M4,4(F32) denote the tth state of mk = m1 =M (we drop the “k” subscript since we

need only to consider one message block), where the initial state is ξ(mk) = ξ(m1) =

ξ(M) = S0
k = S0.

3.3.2 Compression Function and Round Transformations

In the original Grøstl [61] over F28 , the (512-bit) compression function fGrøstl of (3.1)

is based on 512-bit permutations PGrøstl and QGrøstl, where the design of PGrøstl and

QGrøstl was motivated by the Rijndael AES block cipher algorithm [139, 140, 141, 142].

This implies that the AES-like design of PGrøstl andQGrøstl comprises a certain number

of rounds R, where each round comprises a certain number of round transformations.

Hence, in the specific case of Grøstl, both PGrøstl and QGrøstl are composed of the

following four round transformations:

1. AddRoundConstant,

2. SubBytes,

3. ShiftBytes (or “ShiftRows”), and

4. MixBytes (or “MixColumns”).

Each of these round transformations operates on the 8× 8 (matrix) state for 512-bit

blocks.

Our S-Grøstl has exactly four similar such round transformations for both PS−Grøstl

and QS−Grøstl:

1. AddRoundConstant (σ),

2. SubTrits (λ),

3. ShiftRows (π), and

128

4. MixColumns (ρ).

Hence, a round permutation PS−Grøstl (or QS−Grøstl) is composed of the said round

transformations in the following order:

PS−Grøstl = ρ ◦ π ◦ λ ◦ σ.

Each of these round transformations operates on the 4× 4 (matrix) state for 32-trit

blocks.

AddRoundConstant (σ)

The original Grøstl [61] uses bitwise addition to add a round-dependent constant

matrix to the input state matrix. The purpose of adding round constants is to

make each round distinct and also to ensure that PGrøstl and QGrøstl are independent

from one another [61]; this is the general design criteria for the AddRoundConstant

transformation.

In S-Grøstl we have a similar such transformation:

Definition 3.1. Let σ[Ar] : M4,4(F32) → M4,4(F32) denote the mapping defined by

σ[Ar](St) = St+1 if and only if St+1
ij = Stij ⊕ Ar ∈ M4,4(F32) for all 0 ≤ i, j < 4. We

say that σ[Ar] is the AddRoundConstant transformation of round-r.

For round r of S-Grøstl, the AddRoundConstant transformation σ uses tritwise

addition to add a round-dependent constant matrix Ar ∈M4,4(F32) to the input state

matrix St ∈M4,4(F32) to output the resulting state matrix St+1 ∈M4,4(F32).

So σ updates the state of St via

St+1 ← St ⊕ Ar,

129

where the round constant Ar depends on the round r, such that 0 ≤ r < R and R

is the total number of rounds. PS−Grøstl and QS−Grøstl have distinct round constants,

which are

PS−Grøstl : Ar =



00⊕ r 01⊕ r 02⊕ r 10⊕ r
00 00 00 00
00 00 00 00
00 00 00 00

 ∈M4,4(F32)

and

QS−Grøstl : Ar =



22 22 22 22
22 22 22 22
22 22 22 22

22⊕ r 21⊕ r 20⊕ r 12⊕ r

 ∈M4,4(F32),

respectively, where r ∈ F32 is the round number that corresponds to an enumeration

of 2-trit element of F32 [x] as listed in (3.2). For example, r = 2 corresponds to

a2(x) ∈ F32 [x] of (3.2), and r = 7 corresponds a7(x) ∈ F32 [x] of (3.2), etc.

The σ transformation of S-Grøstl is similar to that of the original Grøstl [61] with

one minor exception: on the first row of Ar for PS−Grøstl and on the last row of Ar

for QS−Grøstl S-Grøstl increments (decrements) starting at the least significant trit,

whereas on the first row of Ar for PGrøstl and on the last row of Ar for QGrøstl Grøstl

increments (decrements) the most significant nibble.

SubTrits (λ)

In Grøstl [61] the SubBytes transformation is an element-wise operation that sub-

stitutes each byte in the state matrix by another value from the S-box. The Grøstl

S-box is identical to the one used in Rijandael AES [139, 140, 141, 142]. SubBytes

is the only non-linear transformation in Grøstl, where its values are generated from

the multiplicative inverse of a Galois field with an affine transform. It has been

130

well-studied and is specifically designed to be resistant to linear and differential

cryptanalysis attacks.

In S-Grøstl we have a similar such transformation:

Definition 3.2. Let λ : M4,4(F32)→M4,4(F32) denote the mapping given as a parallel

application of 42 bijective S-box-mappings λi,j : F32 → F32 and defined by λ(St) =

St+1 if and only if St+1
i,j = λi,j(Sti,j) for all 0 ≤ i, j < 4. We say that λ is the SubTrits

transformation.

The SubTrits transformation λ is an element-wise operation that does a substi-

tution that is similar to that of Grøstl (and AES): the multiplicative inverse of each

2-trit element Sti,j ∈ F32 [x] in an entry of the state matrix St ∈M4,4(F32) is computed

and then multiplied by a fixed element B, and then the result is added to a second

fixed element C.

Now since each Sti,j ∈ F32 [x] is in fact a polynomial with coefficients that can be

written as a column-vector, then B must be an invertible square matrix B and C

must a column-vector C, where both must have dimensions that correspond to the

size of the possible size of the ciphertext of St. Consequently, in this case of d = 2,

B ∈ M2,2(Z3) is required to be an invertible 2 × 2 matrix with elements modulo 3,

while C ∈M2,1(Z3) is required to be a length-2 column-vector with elements modulo

3.

For convenience, we define λ on all of F32 [x] so that it maps 0 to C and any

nonzero x = Sti,j to

St+1
i,j = B · x−1 + C. (3.4)

Thus, for our implementation, we select two fixed elements b0(x), b1(x) ∈ F32 [x] to fix

the invertible 2× 2 matrix

131

B =

2 1

1 1

 =

b0,0 b0,1

b1,0 b1,1

 , bi,j ∈ Z3, b0(x) = b0,0x+b0,1, b1(x) = b1,0x+b1,1 ∈ F32 [x],

and select the fixed (zero) column-vector

C =

0

0

 =

c0

c1

 , ci ∈ Z3, c(x) = c0x+ c1 ∈ F32 [x]

for (3.4).

ShiftRows (π)

In Grøstl [61] the design criteria for the ShiftBytes transformation requires that PGrøstl

and QGrøstl are independent and achieve optimal diffusion. In short, diffusion means

that if one changes a single bit of the input message (i.e. plaintext), then (statistically)

half of the bits in the output hash (i.e. ciphertext) should change (and conversely)

[143]; in other words, diffusion refers to “scattering” the statistical structure of the

input over “the bulk” of the output.

In S-Grøstl we have a similar such transformation:

Definition 3.3. Let π : M4,4(F32)→M4,4(F32) denote the mapping for which there is

a mapping ς : {0, 1, ..., 3} → {0, 1, ..., 3} such that π(St) = St+1 if and only if St+1
i,j =

Sti,j−ς(i) mod 4 for all 0 ≤ i, j < 4. We say that π is the ShiftRows transformation.

In S-Grøstl the ShiftRows transformation π remains unchanged from the original

Grøstl [61] except for the size of the state matrix St for which it acts on. For each

row, π cyclically shifts each element within a row to the left by a certain number of

positions.

Thus, let ς = [ς(0), ς(1), ς(2), ς(3)] be a list of integers in the range from 0 to 3.

Then π cyclically shifts all elements in row i of the state matrix St by ς(i) positions

132

to the left (wrapping around as necessary). For PS−Grøstl and QS−Grøstl the operation

is identical and only the order of the values of ς change:
PS−Grøstl : ς = [0, 1, 2, 3]

QS−Grøstl : ς = [1, 3, 0, 2].
Therefore, π may be illustrated as follows:

PS−Grøstl : St =


St

0,0 St
0,1 S0,2 St

0,3

St
1,0 St

1,1 St
1,2 St

1,3

St
2,0 St

2,1 St
2,2 St

2,3

St
3,0 St

3,1 St
3,2 St

3,3

 −→


St

0,0 St
0,1 St

0,2 St
0,3

St
1,1 St

1,2 St
1,3 St

1,0

St
2,2 St

2,3 St
2,0 St

2,1

St
3,3 St

3,0 St
3,1 St

3,2

 = π(St) = St+1

QS−Grøstl : St =


St

0,0 St
0,1 St

0,2 St
0,3

St
1,0 St

1,1 St
1,2 St

1,3

St
2,0 St

2,1 St
2,2 St

2,3

St
3,0 St

3,1 St
3,2 St

3,3

 −→


St

0,1 St
0,2 St

0,3 St
0,0

St
1,3 St

1,0 St
1,1 St

1,2

St
2,0 St

2,1 St
2,2 St

2,3

St
3,2 St

3,3 St
3,0 St

3,1

 = π(St) = St+1.

MixColumns (ρ)

In Grøstl [61] the main design criteria for the MixBytes transformation is that it

must utilize the wide trail strategy. This strategy is a design approach that aims to

combine efficiency and resistance against differential and linear cryptanalysis attacks

[144].

Definition 3.4. We say that an n× n matrix D ∈Mn,n is a circulant matrix if D is

composed of cyclically shifted versions of an n-length list.

Definition 3.5. We say that an m × n matrix D ∈ Mm,n over a Galois field F is a

maximum distance separable (MDS) matrix if all possible square sub-matrices of D

obtained by discarding rows and colums are non-singular.

The following transformation of S-Grøstl is similar to that of the original Grøstl

[61], where each column of the state matrix St is transformed independently.

133

Definition 3.6. Let ρ : M4,4(F32) → M4,4(F32) denote the mapping given as the

parallel application of 4 “column” mappings ρj : M4,1(F32) → M4,1(F32) defined by

ρ(St) = St+1 if and only if St+1
j = ρj(Stj) for all 0 ≤ j < 4, where each ρj is given by

ρj(x) = D · x for all x ∈M4,1(F32), such that D ∈M4,4(F32) is an invertible diffusion

matrix.

In S-Grøstl the MixColumns transformation ρ multiplies each column of St by a

constant, invertible, circulant, MDS matrix D, such that St and D have the same

dimensions, and where both have elements from F32 [x]. Thus, the application of ρ on

the entire St can be written as the matrix multiplication

St+1 ← D × St,

where each column of St is multiplied tritwise with D to produce a single column of

output. For S-Grøstl we select the constant, invertible, circulant, MDS 4× 4 matrix

D =



00 01 01 10
10 00 01 01
01 10 00 01
01 01 10 00

 ∈M4,4(F32),

where each entry of D stores an element of F32 [x].

3.4 Simplified Grøstl: Example Execution

Here we give a step-by-step demonstration of 1-round S-Grøstl over F32 .

3.4.1 Setup

Suppose that we wish to use S-Grøstl to hash the message

M = 01221020111002211210020102011201

134

which is a ternary string of 32-trits; here, we need only to consider a single 32-trit

block m1 =M∈M. Therefore, m1 is split into the 16 sub-strings

01, 22, 10, 20, 11, 10, 02, 21, 12, 10, 02, 01, 02, 01, 12, 01

where each length-2 sub-string stores 2 trits. Then the sub-strings of m1 are arranged

in the 4× 4 matrix

ξ(m1) =



01 11 12 02
22 10 10 01
10 02 02 12
20 21 01 01

 =



1 x+ 1 x+ 2 2
2x+ 2 x x 1
x 2 2 x+ 2
2x 2x+ 1 1 1

 ∈M4,4(F32),

which is the initial input for QS−Grøstl of fS−Grøstl in (3.3). Now since M is 32 trits

in size, we do the decimal (base-10) to ternary (base-3) conversion

3210 = 1 · 33 + 0 · 32 + 1 · 31 + 2 · 30 = 10123

to construct the initial value

h0 =



00 00 00 00
00 00 00 00
00 00 00 10
00 00 00 12

 =



0 0 0 0
0 0 0 0
0 0 0 x

0 0 0 x+ 2

 .

Therefore, the initial input for PS−Grøstl of fS−Grøstl in (3.3) is

h0⊕3ξ(m1) =



00 00 00 00
00 00 00 00
00 00 00 10
00 00 00 12

⊕3



01 11 12 02
22 10 10 01
10 02 02 12
20 21 01 01

 =



01 11 12 02
22 10 10 01
10 02 02 22
20 21 01 10

 ∈M4,4(F32).

Consequently, for this example demonstration of fS−Grøstl (3.3) we will execute

fS−Grøstl(h0, ξ(m1)) = PS−Grøstl(h0 ⊕3 ξ(m1))⊕3 QS−Grøstl(ξ(m1))⊕3 h0

for 1-round S-Grøstl.

135

3.4.2 Permutation P

For the sake of description, we start with the input S0|P = h0 ⊕3 ξ(m1), which we

refer to as state 0 of the permutation PS−Grøstl.

AddRoundConstant (σ)

First, we apply the round-dependent σ transformation. Since this is round r = 0 for

the permutation PS−Grøstl, the round constant for σ is

A0 =



00 01 02 10
00 00 00 00
00 00 00 00
00 00 00 00

 =



0 1 2 x

0 0 0 0
0 0 0 0
0 0 0 0

 .

So state 1 of the permutation PS−Grøstl is

S1|P = σ(S0|P) =



01⊕3 00 11⊕3 01 12⊕3 02 02⊕3 10
22⊕3 00 10⊕3 00 10⊕3 00 01⊕3 00
10⊕3 00 02⊕3 00 02⊕3 00 22⊕3 00
20⊕3 00 21⊕3 00 01⊕3 00 10⊕3 00

 =



01 12 11 12
22 10 10 01
10 02 02 22
20 21 01 10



=



1 x+ 2 x+ 1 x+ 2
2x+ 2 x x 1
x 2 2 2x+ 2
2x 2x+ 1 1 x

 .

SubTrits (λ)

Second, we apply the λ transformation, which is sequentially applied to each element

of S1|P . Our first element S1|P
0,0 = 01 is equivalent to the polynomial 1. So our first step

for λ is to find the multiplicative inverse of this polynomial in F32 [x] with respect to the

irreducible polynomial x2 +1, which can be done with a modified Extended Euclidean

136

algorithm, and results in (S1|P
0,0)−1 = 01 for the polynomial 1 (which happens to be a

trivial case). This polynomial 1 is then written in column-vector form, from top to

bottom, and then multiplied by the matrix B modulo 3; this yields the vector output

λ(01) =

2 1
1 1


0

1

 (mod 3) =

1
1

 ,
which is the vector encoding of the polynomial x + 1 whose coefficients are concate-

nated into the 2-trit string form 11. This gives us the new first element S2|P
0,0 = 11 of

S2|P .

The second element S1|P
0,1 = 12 is equivalent to the polynomial x+2, which has the

corresponding multiplicative inverse (S1|P
0,1)−1 = 11 for the polynomial x + 1. Again,

x + 1 is written in column-vector form, from top to bottom, and then multiplied by

the matrix B modulo 3; this yields the vector output

λ(11) =

2 1
1 1


1

1

 (mod 3) =

0
2

 ,
which is the vector encoding of the polynomial 2 whose coefficients are concatenated

into the 2-trit string form 02, which gives us the new second element S2|P
0,1 = 02 of

S2|P .

Thus, λ is repeatedly applied to all sixteen entries of S1|P to obtain

S2|P =



11 02 10 02
20 12 12 11
12 22 22 20
21 01 11 12

 =



x+ 1 2 x 2
2x x+ 2 x+ 2 x+ 1
x+ 2 2x+ 2 2x+ 2 2x
2x+ 1 1 x+ 1 x+ 2

 ,

which is state 2 of the permutation PS−Grøstl.

137

ShiftRows (π)

Third, we apply the π transformation to each row of the state matrix S2|P . Since

we’re currently applying the permutation PS−Grøstl, then the values ς for which π will

cyclically left shift all elements in rows 0, 1, 2, and 3 of S2|P respectively correspond

to

ς = [ς(0) = 0, ς(1) = 1, ς(2) = 2, ς(3) = 3].

Therefore, by applying π to cyclically left shift each ith row of S2|P by ς(i) we obtain

S2|P =


11 02 10 02
20 12 12 11
12 22 22 20
21 01 11 12

 −→


11 02 10 02
12 12 11 20
22 20 12 22
12 21 01 11

 =


x+ 1 2 x 2
x+ 2 x+ 2 x+ 1 2x
2x+ 2 2x x+ 2 2x+ 2
x+ 2 2x+ 1 1 x+ 1



= π(S2|P) = S3|P ,

which is state 3 of the permutation PS−Grøstl.

MixColumns (ρ)

Fourth, we apply the ρ transformation to each column of the state matrix S3|P , which

is given by the matrix multiplication S4|P ← D × S3|P , such that S4|P is state 4 of

the permutation PS−Grøstl.

To obtain the first column of S4|P we compute

ρ





11
12
22
12



 =



00 01 01 10
10 00 01 01
01 10 00 01
01 01 10 00

 ·


11
12
22
12

 =



20
10
12
11

 =



2x
x

x+ 2
x+ 1


which was obtained via

138

S4|P
0,0 : (00⊗3 11)⊕3 (01⊗3 12)⊕3 (01⊗3 22)⊕3 (01⊗3 12) = 00⊕3 12⊕3 22⊕3 22 = 20 = 2x
S4|P

1,0 : (10⊗3 11)⊕3 (00⊗3 12)⊕3 (01⊗3 22)⊕3 (01⊗3 12) = 12⊕3 00⊕3 22⊕3 12 = 10 = x

S4|P
2,0 : (01⊗3 11)⊕3 (10⊗3 12)⊕3 (00⊗3 22)⊕3 (01⊗3 12) = 11⊕3 22⊕3 00⊕3 12 = 12 = x+ 2
S4|P

3,0 : (01⊗3 11)⊕3 (01⊗3 12)⊕3 (10⊗3 22)⊕3 (00⊗3 12) = 11⊕3 12⊕3 21⊕3 00 = 11 = x+ 1

.

To obtain the second column of S4|P we compute

ρ





02
12
20
21



 =



00 01 01 10
10 00 01 01
01 10 00 01
01 01 10 00

 ·


02
12
20
21

 =



10
01
12
12

 =



x

1
x+ 2
x+ 2


which was obtained via
S4|P

0,1 : (00⊗3 02)⊕3 (01⊗3 12)⊕3 (01⊗3 20)⊕3 (10⊗3 21) = 00⊕3 12⊕3 20⊕3 11 = 10 = x

S4|P
1,1 : (10⊗3 02)⊕3 (00⊗3 12)⊕3 (01⊗3 20)⊕3 (01⊗3 21) = 20⊕3 00⊕3 20⊕3 21 = 01 = 1
S4|P

2,1 : (01⊗3 02)⊕3 (10⊗3 12)⊕3 (00⊗3 20)⊕3 (01⊗3 21) = 02⊕3 22⊕3 00⊕3 21 = 12 = x+ 2
S4|P

3,1 : (01⊗3 02)⊕3 (01⊗3 12)⊕3 (10⊗3 20)⊕3 (00⊗3 21) = 02⊕3 12⊕3 01⊕3 00 = 12 = x+ 2

.

To obtain the third column of S4|P we compute

ρ





10
11
12
01



 =



00 01 01 10
10 00 01 01
01 10 00 01
01 01 10 00

 ·


10
11
12
01

 =



00
12
20
10

 =



0
x+ 2

2x
x


which was obtained via
S4|P

0,2 : (00⊗3 10)⊕3 (01⊗3 11)⊕3 (01⊗3 12)⊕3 (10⊗3 01) = 00⊕3 11⊕3 12⊕3 10 = 00 = 0
S4|P

1,2 : (10⊗3 10)⊕3 (00⊗3 11)⊕3 (01⊗3 12)⊕3 (01⊗3 01) = 02⊕3 00⊕3 12⊕3 01 = 12 = x+ 2
S4|P

2,2 : (01⊗3 10)⊕3 (10⊗3 11)⊕3 (00⊗3 12)⊕3 (01⊗3 01) = 10⊕3 12⊕3 00⊕3 01 = 20 = 2x
S4|P

3,2 : (01⊗3 10)⊕3 (01⊗3 11)⊕3 (10⊗3 12)⊕3 (00⊗3 01) = 10⊕3 11⊕3 22⊕3 00 = 10 = x

.

To obtain the fourth column of S4|P we compute

ρ





02
20
22
11



 =



00 01 01 10
10 00 01 01
01 10 00 01
01 01 10 00

 ·


02
20
22
11

 =



21
20
11
10

 =



2x+ 1
2x
x+ 1
x


which was obtained via

139

S4|P
0,3 : (00⊗3 02)⊕3 (01⊗3 20)⊕3 (01⊗3 22)⊕3 (10⊗3 11) = 00⊕3 20⊕3 22⊕3 12 = 21 = 2x+ 1
S4|P

1,3 : (10⊗3 02)⊕3 (00⊗3 20)⊕3 (01⊗3 22)⊕3 (01⊗3 11) = 20⊕3 00⊕3 22⊕3 11 = 20 = 2x
S4|P

2,3 : (01⊗3 02)⊕3 (10⊗3 20)⊕3 (00⊗3 22)⊕3 (01⊗3 11) = 02⊕3 01⊕3 00⊕3 11 = 11 = x+ 1
S4|P

3,3 : (01⊗3 02)⊕3 (01⊗3 20)⊕3 (10⊗3 22)⊕3 (00⊗3 11) = 02⊕3 20⊕3 21⊕3 00 = 10 = x

.

Consequently, the result is

S4|P =



20 10 00 21
10 01 12 20
12 12 20 11
11 12 10 10

 =



2x x 0 2x+ 1
x 1 x+ 2 2x

x+ 2 x+ 2 2x x+ 1
x+ 1 x+ 2 x x

 ,

which is state 4 of the permutation PS−Grøstl.

3.4.3 Permutation Q

Here we start with the input

S0|Q = ξ(m1) =



01 11 12 02
22 10 10 01
10 02 02 12
20 21 01 01

 ,

which is state 0 of the permutation QS−Grøstl.

AddRoundConstant (σ)

First, we apply the σ transformation. Since this is round r = 0 for the permutation

QS−Grøstl, the round constant for σ is

Ar =



22 22 22 22
22 22 22 22
22 22 22 22
22 21 20 12

 =



2x+ 2 2x+ 2 2x+ 2 2x+ 2
2x+ 2 2x+ 2 2x+ 2 2x+ 2
2x+ 2 2x+ 2 2x+ 2 2x+ 2
2x+ 2 2x+ 1 2x x+ 2

 .

So state 1 of the permutation QS−Grøstl is

140

S1|Q = σ(S0|Q) =



22⊕3 01 22⊕3 11 22⊕3 12 22⊕3 02
22⊕3 22 22⊕3 10 22⊕3 10 22⊕3 01
22⊕3 10 22⊕3 02 22⊕3 02 22⊕3 12
22⊕3 20 21⊕3 21 20⊕3 01 12⊕3 01

 =



20 00 01 21
11 02 02 20
02 21 21 01
12 12 21 10



=



2x 0 1 2x+ 1
x+ 1 2 2 2x

2 2x+ 1 2x+ 1 1
x+ 2 x+ 2 2x+ 1 x

 .

SubTrits (λ)

Second, we apply the λ transformation, which is sequentially applied to each element

of S1|Q. Our first element S1|Q
0,0 = 20 is equivalent to the polynomial 2x, so the

multiplicative inverse is (S1|Q
0,0)−1 = 10 for the polynomial x. This polynomial x is

then written in column-vector form, from top to bottom, and then multiplied by the

matrix B modulo 3; this yields the vector output

λ(10) =

2 1
1 1


1

0

 (mod 3) =

2
1

 ,
which is the vector encoding of the polynomial 2x+ 1 whose coefficients are concate-

nated into the 2-trit string form 21. This gives us the new first element S2|Q
0,0 = 21 of

SQ2 .

Thus, λ is repeatedly applied to all sixteen entries of S1|Q to obtain

λ(S1|Q) = S2|Q =



21 00 11 01
10 22 22 21
22 01 01 11
02 02 01 12

 =



2x+ 1 0 x+ 1 1
x 2x+ 2 2x+ 2 2x+ 1

2x+ 2 1 1 x+ 1
2 2 1 x+ 2

 ,

which is state 2 of the permutation QS−Grøstl.

141

ShiftRows (π)

Third, we apply the π transformation to each row of the state matrix S2|Q. Since

we’re currently applying the permutation QS−Grøstl, then the values ς for which π will

cyclically left shift all elements in rows 0, 1, 2, and 3 of S2|Q respectively correspond

to

ς = [ς(0) = 1, ς(1) = 3, ς(2) = 0, ς(3) = 2].

Therefore, by applying π to cyclically left shift each ith row of S2|Q by σ(i) we obtain

S2|Q =


21 00 11 01
10 22 22 21
22 01 01 11
02 02 01 12

 −→


00 11 01 21
21 10 22 22
22 01 01 11
01 12 02 02

 =


0 x+ 1 1 2x+ 1

2x+ 1 x 2x+ 2 2x+ 2
2x+ 2 1 1 x+ 1

1 x+ 2 2 2



= π(S2|Q) = SQ3 ,

which is state 3 of the permutation QS−Grøstl.

MixColumns (ρ)

Fourth, we apply the ρ transformation to each column of the state matrix S3|Q, which

is given by the matrix multiplication S4|Q ← D × S3|Q, such that S4|Q is state 4 of

the permutation QS−Grøstl.

To obtain the first column of S4|Q we compute

ρ





00
21
22
01



 =



00 01 01 10
10 00 01 01
01 10 00 01
01 01 10 00

 ·


00
21
22
01

 =



20
20
12
12

 =



2x
2x
x+ 2
x+ 2

 .

To obtain the second column of S4|Q we compute

142

ρ





11
10
01
12



 =



00 01 01 10
10 00 01 01
01 10 00 01
01 01 10 00

 ·


11
10
01
12

 =



00
22
22
01

 =



0
2x+ 2
2x+ 2

1

 .

To obtain the third column of S4|Q we compute

ρ





01
22
01
02



 =



00 01 01 10
10 00 01 01
01 10 00 01
01 01 10 00

 ·


01
22
01
02

 =



10
10
21
00

 =



x

x

2x+ 1
0

 .

To obtain the fourth column of S4|Q we compute

ρ





21
22
11
02



 =



00 01 01 10
10 00 01 01
01 10 00 01
01 01 10 00

 ·


21
22
11
02

 =



20
21
11
22

 =



2x
2x+ 1
x+ 1
2x+ 2

 .

Consequently, the result is

ρ(S3|Q) = S4|Q =



20 00 10 20
20 22 10 21
12 22 21 11
12 01 00 22

 =



2x 0 x 2x
2x 2x+ 2 x 2x+ 1
x+ 2 2x+ 2 2x+ 1 x+ 1
x+ 2 1 0 2x+ 2

 ,

which is state 4 of the permutation QS−Grøstl.

3.4.4 Completing the Round

Finally, to complete the round, we add the results of PS−Grøstl and QS−Grøstl together

with h0 to obtain

143

S5 = S4|P ⊕3 S4|Q ⊕3 h0

=



20 10 00 21
10 01 12 20
12 12 20 11
11 12 10 10

⊕3



20 00 10 20
20 22 10 21
12 22 21 11
12 01 00 22

⊕3



00 00 00 00
00 00 00 00
00 00 00 10
00 00 00 12



=



20⊕3 20⊕3 00 10⊕3 00⊕3 00 00⊕3 10⊕3 00 21⊕3 20⊕3 00
10⊕3 20⊕3 00 01⊕3 22⊕3 00 12⊕3 10⊕3 00 20⊕3 21⊕3 00
12⊕3 12⊕3 00 12⊕3 22⊕3 00 20⊕3 21⊕3 00 11⊕3 11⊕3 10
11⊕3 12⊕3 00 12⊕3 01⊕3 00 10⊕3 00⊕3 00 10⊕3 22⊕3 12



=



10 10 10 11
00 20 22 11
21 01 11 02
20 10 10 11

 =



x x x x+ 1
0 2x 2x+ 2 x+ 1

2x+ 1 1 x+ 1 2
2 x x x+ 1

 ,

which is the final state of round 0. Since we’re only doing 1 round for this example,

then S5 is the final state in total, which contains the hash H of the original message

m1 =M.

This concludes our example application of how the super-symmetric latin square

L(F32 ,+) ∈ L9—that was generated by the SS-LS-GA, encodes the Galois field addition

group (F32 ,+), and possesses the confirmed maximum number of transversals T(9) =

2,241—can be used to construct a cryptographic system.

144

CHAPTER 4

CONCLUSION

In this thesis we investigated the following questions:

• How can we efficiently generate latin squares? How can we efficiently count the

number of transversals in a latin square?

• Which conditions indicate the existence of transversals in a latin square that

encodes a group (or quasi-group)?

• Which latin squares possess the maximum (or minimum) transversal counts for

a given order-n?

• Can we accurately predict which latin squares have the maximum (or minimum)

transversal counts for a given order-n?

• Can we generate latin squares with maximum transversal counts?

• By investigating the above questions, can we obtain practical results that can

be applied cryptography?

4.1 Main Results

Through our survey of pertinent results in the existing literature, we examined

conditions in which latin squares possess transversals; for this we considered quasi-

groups and groups (including Galois field addition). We examined the Delta Lemma

145

2.58 [6, 92, 93, 100], along with the Hall-Paige Conjecture 2.87 [106, 107] and its

generalization, Theorem 2.90, which identifies six equivalent conditions that hold for

solvable groups [6, 105]. To help guide our mathematical investigation, we created

software tools to efficiently generate latin squares (up to at least order-31) and count

their transversals up to order-17. By mathematically and computationally evaluating

latin squares in terms of transversals, we were able to:

1. Generate latin square data sets and obtain transversal count results that match

the existing results for minimum and maximum transversal counts [5, 6, 8].

2. Verify that the even order-n cyclic latin squares that encode cyclic groups

possess the confirmed minimum transversal counts t(n) for 2 ≤ n ≤ 9 [5, 6, 8].

3. Verify that the prime order-p cyclic latin squares that encode cyclic groups

possess the confirmed maximum transversal counts T(p) for 2 ≤ p ≤ 9 [5, 6, 8].

4. Create the new SS-LS-GA of Algorithm 2.3 for constructing super-symmetric

latin squares of prime power order-pd that generalizes the order-2d algorithm

proposed in [60].

5. Correctly predict that the prime power order-pd cyclic and super-symmetric

latin squares possess the confirmed maximum transversal counts T(pd) for 3 ≤

pd ≤ 9 [5, 6, 8] and the estimated lower bound bT(pd)c for 9 < pd ≤ 17 [5, 6, 8].

6. Discover that the Cayley tables which encode the addition groups of Galois

fields are prime power order-pd super-symmetric latin squares (at least for 3 ≤

pd ≤ 17).

7. Propose Conjecture 2.100, which predicts that for prime power order-pd with

d > 0:

146

• A cyclic or super-symmetric latin square L (and every latin square in

the same main equivalence class) may possess the maximum number of

transversals T(pd) = |T (L)| = h(L) • pd with a uniform heat value h(L).

• The estimated lower bound bT(pd)c from [5, 6, 8] may be the correct T(pd)

and the estimated upper bound dT(pd)e from [5, 6, 8] may be too high.

8. Apply the super-symmetric latin square L(F32 ,+), which encodes the Galois field

addition group (F32 ,+), to create a new generalized and simplified version of

the Grøstl CHF [61].

4.2 Outlook: Past and Future

The origin of Latin squares and the origin of magic squares are not known for

certain. Some surviving historical evidence indicates that magic squares were known

to numerous ancient civilizations [14, 15, 16]. Other evidence suggests that the latin

square concept might be a relatively recent development [9, 10, 11, 17, 18]. In the

author’s opinion, the fact that such squares have practical applications in modern

cryptography is fascinating and important! Moreover, it may be advantageous to

conduct a thorough examination of historical literature and archaeological records

pertaining to latin squares, graeco-latin squares, and magic squares; could one find

additional square-based properties or methods known by the ancients that would have

additional modern applications to disciplines such as cryptography?

To the best of our knowledge, it was Euler [9, 10, 11] who initiated a systematic

mathematical examination of latin squares and their practical applications. After

Cayley realized that his tables of finite groups are latin squares, the subject began

to attract the serious interest of numerous mathematicians from around the world.

147

As a result, a “latin square bridge” was constructed between disciplines such as

combinatorics and algebra. Such developments have built the foundation for a legion

of historical and modern applications throughout the 20th and 21st centuries.

Since World War I and World War II, the methods of cryptography have become

increasingly complex. The digital infrastructure of the modern world relies on our

ability to maintain and increase the privacy, integrity, and security of computing

systems with the methods of cryptography. Thus, it is critical to rigorously evaluate

the computational security of cryptographic systems with new approaches via the

methods of science and mathematics. Looking forward, in the author’s opinion, it

may be advantageous to conduct a thorough investigation of inquiries such as the

following:

• Can anybody prove Conjecture 2.100?

• If we thoroughly examine the proof of the estimated bounds [bT(n)c, dT(n)e]

from [5, 6, 8] for order-n, could this help us prove Conjecture 2.100 for order-pd?

• How might super-symmetric latin square applications impact cryptography and

cyber security?

• Can super-symmetric latin squares be generalized to n-dimensional super-symmetric

latin hyper-cubes (ex. applied to [145, 146])? If so, would super-symmetric latin

hyper-cubes be applicable to cryptography?

• Can ternary arithmetic, order-3d super-symmetric latin squares, and order-3d

Galois fields be applied to developments in ternary computation and cryp-

tographic systems (ex. applied to [147, 148, 149])? Moreover, will future

computers and cryptographic systems be based on generalized order-pd Galois

fields?

148

• What future applications will Musto’s new quantum latin squares [150, 151]

have? Is it possible to construct super-symmetric quantum latin squares? Could

super-symmetric quantum latin squares be applied to quantum computing and

post-quantum cryptography (ex. applied to [152])?

Perhaps in the future, if hard work, collaboration, and creativity are combined

with the methods of science and mathematics, then it might be possible to answer

such questions!

149

REFERENCES

[1] L. Comtet, Dénes J., A. D. Keedwell, R. A. Fisher, and et. al. Sequence
#A000315: Number of reduced latin squares of order n; also number of labeled
loops with a fixed identity element. The On-Line Encyclopedia of Integer
Sequences.

[2] C. A. Pickover, H. J. Ryser, J. A. A Sloane, and et. al. Sequence #A002860:
Number of latin squares of order n; or labeled quasigroups. The On-Line
Encyclopedia of Integer Sequences.

[3] J. W. Brown, R. A. Fisher, F. Yates, and et. al. Sequence #A040082: Number
of inequivalent latin squares (or isotopy classes of latin squares) of order n. The
On-Line Encyclopedia of Integer Sequences.

[4] F. Harary, Palmer E. M., N. J. A. Sloane, and et. al. Sequence #A003090:
Number of species (or “main classes” or “paratopy classes”) of latin squares of
order n. The On-Line Encyclopedia of Integer Sequences.

[5] I. M. Wanless. Transversals in latin squares. Quasigroups Related Systems,
15:169–190, 2007.

[6] I. M. Wanless. Transversals in latin squares: a survey. Surveys in Combinatorics
2011, London Mathematical Society, Lecture Note Series 392:403–437, 2011.

[7] A. D. Thomas and G. V. Wood. Group tables, Shiva Mathematics Series,
volume 2. Shiva Publishing Ltd., Cambridge, Mass, 1980.

[8] B. D. McKay, J. C. McLeod, and I. M. Wanless. The number of transversals in
a latin square. Designs, Codes and Cryptography, 40(3):269–284, 2006.

[9] L. Euler. De quadratis magicis. Commentationes arithmeticae, 2:593–602, 1849.

[10] L. Euler. On magic squares. arXiv preprint math/0408230, (Translated by
Jordan Bell in 2004).

[11] L. Euler. Recherches sur une nouvelle espece de quarres magiques. Zeeuwsch
Genootschao, 1782.

150

[12] A. D. Keedwell and J. Dénes. Latin squares and their applications. Elsevier,
2015.

[13] N. Rapanos. Latin squares and their partial transversals. The Harvard College
Mathematics Review, 2:4–12, 2008.

[14] S. S. Block and S. A. Tavares. Before Sudoku. Oxford University Press, Oxford,
2009.

[15] S. Cammann. The evolution of magic squares in China. Journal of the American
Oriental Society, 80(2):116–124, 1960.

[16] T. Hayashi. Magic squares in Indian mathematics. In Encyclopaedia of the
History of Science, Technology, and Medicine in Non-Western Cultures, pages
1252–1259. Springer, 2008.

[17] M. Petković. Mathematics and Chess: 110 Entertaining Problems and Solu-
tions. Dover Publications, 1997.

[18] R. B. Bapat. Exploring mathematical ideas with a deck of cards. Resonance:
Journal of Science Education, 12(3), 2007.

[19] R. C. Bose, S. S. Shrikhande, and E. T. Parker. Further results on the
construction of mutually orthogonal latin squares and the falsity of Euler’s
conjecture. Canad. J. Math, 12:189–203, 1960.

[20] A. Cayley. Desiderata and suggestions: No. 1. the theory of groups. American
journal of Mathematics, 1(1):50–52, 1878.

[21] A. Cayley. Desiderata and suggestions: No. 2. the theory of groups: graphical
representation. American Journal of Mathematics, 1(2):174–176, 1878.

[22] A. Cayley. On latin squares. Messenger of Math, 19:135–137, 1890.

[23] S. G. Ibragimov. On forgotten works of Ernst Schröder lying between algebra
and logic (Russian). Istor.-Mat. Issled., (17):247–258, 1966.

[24] R. Moufang. Zur struktur von alternativkörpern. Mathematische Annalen,
110(1):416–430, 1935.

[25] J. Dénes. On a problem of L. Fuchs. Acta Sci. Math. (Szeged), 23:237–241,
1962.

[26] J. Dénes and E. Pásztor. Akvázicsoportok néhány problémájárol. Magyar Tud.
Akad. Mat. Fiz. Oszt. Közl., 13:109–118, 1963.

151

[27] J. R. Barra. A propos d’un théorème de r. c. rose. C. R. Acad. Sci. Paris,
256:5502–5504, 1963.

[28] R. Guérin. Aspects algébraiques du probldme de yamamoto. C. R. Acad. Sci.
Paris, 256:583–586, 1963.

[29] D. Fog. Gruppentafeln and abstrakte gruppentheorie. Skand. Mat. Kongr.
Stockholm., pages 376–384, 1934.

[30] E. Schöhardt. Über lateinische quadrate und unionen. J. Reine Angew. Math.,
163:183–229, 1930.

[31] H. Wielandt and B. Huppert. Arithmetical and normal structure. 1960 Insti-
tute on Finite Groups: Held at California Institute of Technology, Pasadena,
California, August 1-August 28, 1960:[Report], 6:17, 1962.

[32] R. G. U. Stell and J. H. Torrie. Principles and procedures of statistics. McGraw-
Hill Book Company, Inc., New York, Toronto, London, 1960.

[33] R. Mandl. Orthogonal latin squares: an application of experiment design to
compiler testing. Communications of the ACM, 28(10):1054–1058, 1985.

[34] R. Datta and N. A. Touba. Generating burst-error correcting codes from
orthogonal latin square codes–a graph theoretic approach. In Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), 2011 IEEE Interna-
tional Symposium on, pages 367–373. IEEE, 2011.

[35] L. Janczewski. Cyber warfare and cyber terrorism. IGI Global, 2007.

[36] R. R. Dipert. The ethics of cyberwarfare. Journal of Military Ethics, 9(4):384–
410, 2010.

[37] J. Andress and S. Winterfeld. Cyber warfare: techniques, tactics and tools for
security practitioners. Elsevier, 2013.

[38] E. Byres and J. Lowe. The myths and facts behind cyber security risks for
industrial control systems. In Proceedings of the VDE Kongress, volume 116,
pages 213–218, 2004.

[39] United States Coast Guard. Cyber Strategy, 2015. Available at http://www.
uscg.mil/seniorleadership/DOCS/cyber.pdf; accessed on 2016-11.

[40] United States Department of Energy. Cybersecurity, 2016. Available at http:
//www.energy.gov/oe/services/cybersecurity; accessed on 2016-11.

152

[41] K. Zetter. The Biggest Security Threats We’ll Face in
2016, 2016. Available at http://www.wired.com/2016/01/
the-biggest-security-threats-well-face-in-2016/; accessed on 2016-01.

[42] McAfee Labs. 2016 Threats Predictions Report, 2015. Available at http://www.
mcafee.com/us/resources/reports/rp-threats-predictions-2016.pdf;
accessed on 2016-05.

[43] M. Krancer. The Biggest Cybersecurity Threat: The Energy Sector, 2015.
Available at http://www.forbes.com/sites/michaelkrancer/2015/11/04/
the-biggest-cybersecurity-threat-the-energy-sector/; accessed on
2015-11.

[44] A. M. Turing. Mathematical theory of enigma machine. Public Record Office,
London, 3, 1940.

[45] S. Singh. The code book: the science of secrecy from ancient Egypt to quantum
cryptography. Anchor, 2011.

[46] W. Kozaczuk. Enigma: how the German machine cipher was broken, and how
it was read by the Allies in World War Two. Univ Pubns of Amer, 1984.

[47] B. J. Copeland. Colossus: its origins and originators. IEEE Annals of the
History of Computing, (4):38–45, 2004.

[48] F. L. Carter. Codebreaking with the Colossus Computer. Bletchley Park Trust,
2008.

[49] É. Galois and P. M. Neumann. The mathematical writings of Évariste Galois,
volume 6. European mathematical society, 2011.

[50] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications.
Cambridge university press, 1994.

[51] J. Bewersdorff. Galois theory for beginners. American Mathematical Society,
Providence, Rhode Island, 2006.

[52] D. P. Mehendale. Finite projective planes. arXiv preprint math/0611492, 2006.

[53] J. Dénes and A. D. Keedwell. Latin squares: New developments in the theory
and applications, volume 46. Elsevier, 1991.

[54] C. F. Laywine and G. L. Mullen. Discrete mathematics using Latin squares,
volume 49. John Wiley & Sons, 1998.

153

[55] C. J. Colbourn and J. H. Dinitz. Handbook of combinatorial designs. CRC
press, 2006.

[56] S. Dasgupta, G. Károlyi, O. Serra, and B. Szegedy. Transversals of additive
latin squares. Israel Journal of Mathematics, 126(1):17–28, 2001.

[57] N. Alon. Additive latin transversals. Israel Journal of Mathematics, 117(1):125–
130, 2000.

[58] C. Cooper, R. Gilchrist, I. N. Kovalenko, and D. Novakovic. Estimation of the
number of “good” permutation with applications to cryptography. Cybernetics
and Systems Analysis, 35(5):688–693, 1999.

[59] C. Cooper. A lower bound for the number of good permutations. Data
Recording, Storage and Processing (Nat. Acad. Sci. Ukraine), 213:15–25, 2000.

[60] M. A. P. Chamikara, S. R. Kodituwakku, A. A. C. A. Jayathilake, and A. A. I.
Perera. An algorithm to construct super-symmetric latin squares of order 2n.
IJRIT International Journal of Research in Information Technology, 1(4):38–
50, 2013.

[61] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger,
M. Schläffer, and S. S. Thomsen. Grøstl - a SHA-3 candidate. In Dagstuhl
Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2009.

[62] M. Frolov. Sur les permutations carrés. J. de Math. spéc, 4:8–11, 1890.

[63] M. G. Tarry. Le probleme des 36 officiers. Association Française, 1900.

[64] P. A. MacMahon. Combinatorial analysis, vols. 1 and 2, 1915.

[65] H. W. Norton. The 7 × 7 squares. Annals of Eugenics, 9(3):269–307, 1939.

[66] A. Sade. Enumeration des carrés latins. Application au 7e ordre. Conjecture
pour les ordres supérieurs, Marseille, 1948.

[67] P. N. Saxena. A simplified method of enumerating latin squares by MacMahon’s
differential operators; ii. the 7 × 7 latin squares. J. Indian Soc. Agric. Statistics,
3:24–79, 1951.

[68] M. B. Wells. The number of latin squares of order eight. Journal of Combina-
torial Theory, 3(1):98–99, 1967.

[69] S. E. Bammel and J. Rothstein. The number of 9 × 9 latin squares. Discrete
Mathematics, 11(1):93–95, 1975.

154

[70] B. D. McKay and E. Rogoyski. Latin squares of order 10. Electron. J. Combin,
2:N3, 1995.

[71] B. D. McKay and I. M. Wanless. On the number of latin squares. Annals of
combinatorics, 9(3):335–344, 2005.

[72] J. H. van Lint and R. M. Wilson. A course in combinatorics. Cambridge
University Press, 2001.

[73] J. Shao and W. Wei. A formula for the number of latin squares. Discrete
mathematics, 110(1):293–296, 1992.

[74] D. S. Stones. The many formulae for the number of latin rectangles. Electronic
Journal of Combinatorics, 17(1), 2010.

[75] R. J. Stones, S. Lin, X. Liu, and G. Wang. On computing the number of latin
rectangles. Graphs and Combinatorics, pages 1–16, 2015.

[76] A. Cayley. The collected mathematical papers of Arthur Cayley, volume 7. The
University Press, 1894.

[77] R. Baer. Nets and groups. Transactions of the American Mathematical Society,
46(1):110–141, 1939.

[78] R. Baer. Nets and groups. ii. Transactions of the American Mathematical
Society, 47(3):435–439, 1940.

[79] A. A. Albert. Quasigroups. i. Transactions of the American Mathematical
Society, 54(3):507–519, 1943.

[80] A. A. Albert. Quasigroups. ii. Transactions of the American Mathematical
Society, 55(3):401–419, 1944.

[81] K. Yamamoto. Generation principles of latin squares. Bull. Inst. Internat.
Statist, 38:73–76, 1961.

[82] M. J. Strube. A basic program for the generation of latin squares. Behavior
Research Methods, 20(5):508–509, 1988.

[83] B. G. Kim and H. H. Stein. A spreadsheet program for making a balanced latin
square design. Revista Colombiana de Ciencias Pecuarias, 22(4):591–596, 2009.

[84] R. Fontana. Random latin squares and sudoku designs generation. Electronic
Journal of Statistics, 8(1):883–893, 2014.

155

[85] I. Gallego Sagastume. Generation of random latin squares step by step and
graphically. In XX Congreso Argentino de Ciencias de la Computación (Buenos
Aires, 2014), 2014.

[86] C. J. Colbourn. The complexity of completing partial latin squares. Discrete
Applied Mathematics, 8(1):25–30, 1984.

[87] T. Easton and R. G. Parker. On completing latin squares. Discrete Applied
Mathematics, 113(2):167–181, 2001.

[88] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall PTR, 1997.

[89] J. Van Leeuwen. Handbook of theoretical computer science (vol. A): algorithms
and complexity. Mit Press, 1991.

[90] J. J. Watkins. Across the board: the mathematics of chessboard problems.
Princeton University Press, 2004.

[91] H. S. Snevily. The Cayley addition table of Zn. The American Mathematical
Monthly, 106(6):584–585, 1999.

[92] J. Egan and I. M. Wanless. Latin squares with no small odd plexes. Journal of
Combinatorial Designs, 16(6):477–492, 2008.

[93] A. B. Evans. Latin squares without orthogonal mates. Designs, Codes and
Cryptography, 40(1):121–130, 2006.

[94] D. Bryant, J. Egan, B. Maenhaut, and I. M. Wanless. Indivisible plexes in latin
squares. Designs, Codes and Cryptography, 52(1):93–105, 2009.

[95] P. Danziger, I. M. Wanless, and B. S. Webb. Monogamous latin squares. Journal
of Combinatorial Theory, Series A, 118(3):796–807, 2011.

[96] J. Egan. Bachelor latin squares with large indivisible plexes. Journal of
Combinatorial Designs, 19(4):304–312, 2011.

[97] J. Egan and I. M. Wanless. Indivisible partitions of latin squares. Journal of
Statistical Planning and Inference, 141(1):402–417, 2011.

[98] J. Egan and I. M. Wanless. Latin squares with restricted transversals. Journal
of Combinatorial Designs, 20(2):124–141, 2012.

[99] K. Pula. A generalization of plexes of latin squares. Discrete Mathematics,
311(8):577–581, 2011.

156

[100] I. M. Wanless and B. S. Webb. The existence of latin squares without orthogonal
mates. Designs, Codes and Cryptography, 40(1):131–135, 2006.

[101] J. Faulhaber. Academia Algebrae: darinnen dir miraculosische Guvontiones zu
den höchsten Costen weiters continuirt u. profitiert werden. Remmelin, 1631.

[102] H. B. Mann. The construction of orthogonal latin squares. The Annals of
Mathematical Statistics, 13(4):418–423, 1942.

[103] K. Balasubramanian. On transversals in latin squares. Linear Algebra and Its
Applications, 131:125–129, 1990.

[104] H. J. Ryser. Neuere probleme der kombinatorik. Vorträge über Kombinatorik,
Oberwolfach, pages 69–91, 1967.

[105] M. Vaughan-Lee and I. M. Wanless. Latin squares and the hall–paige conjecture.
Bulletin of the London Mathematical Society, 35(2):191–195, 2003.

[106] L. J. Paige. Complete mappings of finite groups. Pacific J. Math, 1(1):111–116,
1951.

[107] M. Hall and L. J. Paige. Complete mappings of finite groups. Pacific J. Math,
5:541–549, 1955.

[108] J. Louis. Lagrange. Suite des réflexions sur la résolution algébrique des
équations. CF Voss, 1773.

[109] M. L. Sylow. Théoremes sur les groupes de substitutions. Mathematische
Annalen, 5(4):584–594, 1872.

[110] J. F. Humphreys. A course in group theory, volume 6. Oxford University Press
on Demand, 1996.

[111] P. Hall. A note on soluble groups. Journal of the London Mathematical Society,
1(2):98–105, 1928.

[112] J. Hsiang, D. F. Hsu, and Y. Shieh. On the hardness of counting problems of
complete mappings. Discrete mathematics, 277(1):87–100, 2004.

[113] R. Rivest. The md5 message-digest algorithm, 1992. RFC1321, Internet
Activities Board, Internet Engineering Task Force, 2004.

[114] H. Feistel. Cryptography and computer privacy. Scientific American, 228:15–23,
1973.

157

[115] B. Schneier. Cryptanalysis of MD5 and SHA: Time for a new standard.
Computer World, 2004.

[116] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In Advances in Cryptology (CRYPTO’96), pages 1–15. Springer,
1996.

[117] J. A. Halderman, B. Waters, and E. W. Felten. A convenient method for se-
curely managing passwords. In Proceedings of the 14th International Conference
on World Wide Web, WWW ’05, pages 471–479, New York, NY, USA, 2005.
ACM.

[118] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell. Stronger
password authentication using browser extensions. In Usenix security, pages
17–32. Baltimore, MD, USA, 2005.

[119] C. Lee, L. Li, and M. Hwang. A remote user authentication scheme using hash
functions. ACM SIGOPS Operating Systems Review, 36(4):23–29, 2002.

[120] J. Fridrich and M. Goljan. Robust hash functions for digital watermarking. In
Information Technology: Coding and Computing, 2000. Proceedings. Interna-
tional Conference on, pages 178–183. IEEE, 2000.

[121] United States National Institute of Standards and Technology. SHA-3 Com-
petition (2007-2012), 2005. Available at http://csrc.nist.gov/groups/ST/
hash/sha-3/; accessed on 2016-11.

[122] United States National Institute of Standards and Technology. SHA-3 Com-
petition First Round Candidates, 2008. Available at http://csrc.nist.gov/
groups/ST/hash/sha-3/Round1/submissions_rnd1.html; accessed on 2016-
11.

[123] United States National Institute of Standards and Technology. SHA-3 Compe-
tition Second Round Candidates, 2009. Available at http://csrc.nist.gov/
groups/ST/hash/sha-3/Round2/submissions_rnd2.html; accessed on 2016-
11.

[124] A. Regenscheid, R. Perlner, S. Chang, J. Kelsey, M. Nandi, and S. Paul. Status
report on the first round of the SHA-3 cryptographic hash algorithm compe-
tition. Information Technology Laboratory National Institute of Standards and
Technology Gaithersburg, MD, pages 20899–8930, 2009.

[125] United States National Institute of Standards and Technology. NIST Selects
Winner of Secure Hash Algorithm (SHA-3) Competition, 2012. Available at
http://www.nist.gov/itl/csd/sha-100212.cfm; accessed on 2016-11.

158

[126] J. Aumasson, L. Henzen, W. Meier, and R. C. Phan. SHA-3 proposal BLAKE.
Submission to NIST, 2008.

[127] H. Wu. The hash function JH. Submission to NIST (round 3), page 6, 2011.

[128] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The Keccak SHA-3
submission. Submission to NIST (Round 3), 6(7):16, 2011.

[129] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas,
and J. Walker. The skein hash function family. Submission to NIST (round 3),
7(7.5):3, 2010.

[130] United States National Institute of Standards and Technology. NIST Releases
SHA-3 Cryptographic Hash Standard, 2015. Available at http://www.nist.
gov/itl/csd/201508_sha3.cfm; accessed on 2016-11.

[131] C. Paar and J. Pelzl. Understanding cryptography: a textbook for students and
practitioners. 2009.

[132] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block
ciphers: A synthetic approach. In Advances in Cryptology (CRYPTO’93), pages
368–378. Springer, 1993.

[133] T. Bartkewitz. Building hash functions from block ciphers, their security and
implementation properties. Ruhr-University Bochum, 2009.

[134] R. L. Rivest and J. C. N. Schuldt. Spritz-a spongy rc4-like stream cipher and
hash function. Proceedings of the Charles River Crypto Day, Palo Alto, CA,
USA, 24, 2014.

[135] A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, and E. Tischhauser. Ale:
Aes-based lightweight authenticated encryption. In Fast Software Encryption,
pages 447–466. Springer, 2013.

[136] S. Gueron and M. E. Kounavis. Vortex: A new family of one-way hash functions
based on aes rounds and carry-less multiplication. In Information Security,
pages 331–340. Springer, 2008.

[137] J. Daemen and V. Rijmen. The design of Rijndael: AES-the advanced encryp-
tion standard. Springer Science & Business Media, 2013.

[138] B. Preneel, V. Rijmen, and A. Bosselaers. Principles and performance of
cryptographic algorithms. Dr. Dobb’s journal, 23(12):126–131, 1998.

[139] J. Daemen and V. Rijmen. AES proposal: Rijndael. 1999.

159

[140] J. Daemen and V. Rijmen. The design of Rijndael. information security and
cryptography. Text and Monographs, Springer Verlag, 2002.

[141] United States National Institute of Standards and Technology. Commerce
Department Announces Winner of Global Information Security Competition,
2000. Available at https://www.nist.gov/news-events/news/2000/10/
commerce-department-announces-winner-global-information-security;
accessed on 2016-11.

[142] C. Cid, S. Murphy, and M. Robshaw. Algebraic aspects of the advanced
encryption standard. Springer Science & Business Media, 2006.

[143] W. Stallings. Electronic mail security. Cryptography and Network Security
Principles and Practice. 6th Edition, Pearson Education, Upper Saddle River,
pages 67–68, 2014.

[144] J. Daemen and V. Rijmen. The wide trail design strategy. In IMA International
Conference on Cryptography and Coding, pages 222–238. Springer, 2001.

[145] B. Tang. Orthogonal array-based latin hypercubes. Journal of the American
statistical association, 88(424):1392–1397, 1993.

[146] K. Q. Ye. Orthogonal column latin hypercubes and their application in
computer experiments. Journal of the American Statistical Association,
93(444):1430–1439, 1998.

[147] G. Frieder. Ternary computers: Part i: Motivation for ternary computers. In
Conference Record of the 5th Annual Workshop on Microprogramming, MICRO
5, pages 83–86, New York, NY, USA, 1972. ACM.

[148] M. Glusker, D. M. Hogan, and P. Vass. The ternary calculating machine of
thomas fowler. IEEE Annals of the History of Computing, 27(3):4–22, 2005.

[149] J. Yi, H. Huacan, and L. Yangtian. Ternary optical computer architecture.
Physica Scripta, 2005(T118):98, 2005.

[150] B. Musto and J. Vicary. Quantum latin squares and unitary error bases. arXiv
preprint arXiv:1504.02715, 2015.

[151] B. Musto. Constructing mutually unbiased bases from quantum latin squares.
arXiv preprint arXiv:1605.08919, 2016.

[152] P. Gaborit. Post-Quantum Cryptography. Springer, 2013.

[153] S. Warner. Modern algebra. Courier Corporation, 1990.

160

[154] T. W. Judson. Abstract algebra. 2010.

[155] J. Gallian. Contemporary abstract algebra. Cengage Learning, 2016.

[156] D. S. Dummit and R. M. Foote. Abstract algebra, volume 3. Wiley Hoboken,
2004.

161

APPENDIX A

ARITHMETIC AND GALOIS FIELDS

Here we introduce Galois fields in terms of elementary and modular arithmetic. All

of the definitions and results provided here in known facts that can be obtained from

textbooks on abstract algebra or number theory. Most of this content is obtained

from [50, 153, 154, 155, 156].

To the best of our knowledge, the oldest and most elementary branch of math-

ematics is arithmetic: the study of numbers and the properties of the traditional

operations between them: addition, subtraction, multiplication, and division. Any-

body who has studied any form of mathematics probably knows this. Many of us use

arithmetic on a routine basis and take crucial notions such as division, factorization,

and commutativity for granted. However, one fact that many people may not know

is that there exists a multitude of mathematical objects and structures for which

the commonly assumed division, factorization, and commutativity “don’t work” or

“behave in a bizarre way”.

For example, one might say that a structure such as the integers (Z) is not

as “well-behaved” as structures such as the rationals (Q) or the reals (R); if one

is restricted to working in Z, then a division operation such as 3
2 “doesn’t work”

because 3
2 /∈ Z, etc. Thus, there are important branches of modern mathematics

such as number theory and abstract algebra which aim to study, evaluate, and

162

classify the fundamental properties and capabilities of such objects and structures.

Number theory and abstract algebra have enormous applications in disciplines such

as cryptography and cyber security.

Now let’s consider the importance of arithmetic in the discipline of cryptography,

where the objective may be to build computationally secure systems for applications

such as encryption or password authentication; a crypto-system upon which the

security of an modern infastructure (ex. the Internet) greatly depends on. For the

designers of such crypto-systems, it is imperative to know the fundamental properties

and capabilities of the underlying algebraic structures upon which those systems

operate. For example, in the case of symmetric-key encryption, the sender must

be able to apply a sequence of transformations that converts a plaintext message

to ciphertext; it is likely that such transformations require arithmetic operations.

Thereafter, the receiver must be able to apply a sequence of “reverse” or inverse

transformations that converts the ciphertext back to the original plaintext. Thus, in

order to decrypt the message that was encrypted using arthimetic operations such as

addition and multiplication, the underlying algebraic structures of the crypto-system

must have “built-in” inverse operations such as subtraction and division. Now in the

case of CHFs it is clear that such decryption doesn’t apply (even though we recall

that many CHFs are based on such symmetric-key ciphers to begin with) because

they are one-way functions. However, in order for us to build any such workable

crypto-system in the first place, we must also have the ability to apply the various

elementary arithmetic operations and their inverse counterparts.

With this notion of arithmetic in mind, let’s first consider the following elementary

algebraic structure:

Definition A.1. A monoid M = (M,⊕) is a set equipped with a binary operation

163

⊕ such that the following monoid axioms hold:

(i) ⊕ is closed: a⊕ b ∈M, ∀a, b ∈M.

(ii) ⊕ is associative: a⊕ (b⊕ c) = (a⊕ b)⊕ c, ∀a, b, c ∈M.

(iii) There exists an identity element (denoted by e ∈ M) such that: a ⊕ e = a =

e⊕ a, ∀a ∈M.

We see that a monoidM = (M,⊕) let’s us “add” two elements together with the

operation ⊕; but ⊕ is not the same as the traditional arithmetic operation + because

⊕ lacks numerous arithmetic properties. For example, if we’re restricted to working

in M, then there is no well-defined method to compute the inverse of an element

to establish any form of “subtraction”, nor is ⊕ commutative, etc. Therefore, let’s

consider the following structures, which enable us to introduce notions such as inverse

elements, commutativity, and so forth.

Definition A.2. A monoid G = (G,⊕) is said to be a group if, for each element,

there exists an inverse element: ∀a ∈ G, ∃b ∈ G, a⊕ b = e = b⊕ a.

Definition A.3. A group G = (G,⊕) is said to be an abelian group if ⊕ is commu-

tative: a⊕ b = b⊕ a, ∀a, b ∈ G.

Next, let’s use the above definitions to define an additional structure which is

slightly more “sophisticated”.

Definition A.4. A ring R = (R,⊕,⊗) is a set equipped with the binary operations

of addition ⊕ and multiplication ⊗ such that the following ring axioms hold:

(i) (R,⊕) is an abelian group.

(ii) (R,⊗) is a monoid.

164

(iii) ⊗ is left and right distributive over ⊕:

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c), ∀a, b, c ∈ R.

In other words, one can build a ring R = (R,⊕,⊗) by “combining” an abelian

group G = (G,⊕) with a monoidM = (M,⊕) in compliance with the above axioms,

where G andM “interact” via the distributive property. In terms of our cryptographic

goals, an algebraic structure such as R gives us more of the desired “arithmetic

behavior” to work with. In fact R can be equipped with additional properties such

as the following:

Definition A.5. Let R = (R,⊕,⊗) be a ring.

(i) R is said to be a commutative ring if: the multiplication ⊗ is commutative.

(ii) R is said to be a ring with identity if: there is a unique identity element, denoted

by 1 ∈ R, such that 1 6= 0, where 1⊗ a = a⊗ 1, ∀a ∈ R.

(iii) If R is a commutative ring with identity (1 6= 0), then R is said to be an integral

domain if: a⊗ b = 0 =⇒ a = 0 or b = 0.

(iv) If R is a ring with identity, then R is said to be a division ring if:
∀a ∈ R, a 6= 0 =⇒ ∃b ∈ R, a⊗ b = 1.

Example A.6. Consider the set of integers Z. As it turns out, Z is a classic example

of an integral domain so we may write it in ring notation as Z = (Z,+, •). In this

case, Z is a ring with identity such that its two binary operations + and • are both

commutative and associative, and where • distributes over +; so these are useful

arithmetic properties to have at our disposal! Furthermore Z’s + operation has an

additive inverse so each element of Z has a corresponding inverse and can be related

to the additive identity; this is also a very useful property. But what about Z’s •

operation? Does • have the same useful properties as +? For this let’s consider an

165

example: take 5 ∈ Z. Does 5 have a multiplicative inverse in Z that would enable

us to “reverse” 5 to obtain the multiplicative identity 1? No. This is because the

multiplicative inverse of 5 is 1
5 , and we’re working strictly in Z so 1

5 6∈ Z. This means

that Z is not a division ring because in general division “doesn’t work”. Therefore,

if we were to try to build a crypto-system based entirely on Z it wouldn’t be very

applicable because we can’t perform the elementary arithmetic operation of division

to undo such transformations.

Therefore, the above example motivates us to consider an algebraic structure

equipped with division that fully supports elementary arithmetic.

Definition A.7. A ring F = (F,+, •) is said to be a field if F is a commutative

division ring.

The division capability of F makes it a powerful structure indeed! But are all such

fields applicable to crypto-systems that operate on modern digital computers?

Example A.8. Some classic examples of fields are Q = (Q,+, •) and R = (R,+, •).

If we’re working in either of these structures, then we have every property of Z plus

the additional operation of division. However, in terms of cryptographic applicability

there is still a major issue: assuming that we have modern digital computers that

encode only finite states, how can we build a working crypto-system that is based on

the totality of either Q or R when they both require us to encode an infinite number

of states? We can’t, as such an exact infinite representation on a finite digital system

is impossible.

Therefore, the above example motivates us to consider a specific type of field that

can be fully represented with a finite number of states on a digital computer.

166

Definition A.9. A field Fn = (F,+, •) is said to be a finite field if it contains a finite

number of elements n; that is, if its order, denoted by |F| = n, is finite. Equivalently,

a finite field Fn is often called a Galois field.

Remark A.10. For the sake of conciseness, from this point forward we will write F

to declare a field and omit the full notation of F = (F,+, •) unless a clear distinction

is required. If such a field is necessarily Galois with a n elements, then we will write

Fn; Galois field is the term that we use throughout this thesis for Évariste Galois

[49, 51].

Next we show how to use the properties of an integral domain (like Z) to construct

a Galois field with arithmetic that we can use in crypto-systems.

Definition A.11. Let R = (R,+, •) be a ring and let R∗ = R \ {0}.

• An element a ∈ R is said to be a zero divisor in R if there exists some b ∈ R∗

such that a • b = 0 or b • a = 0.

• An element a ∈ R∗ is said to be a proper zero divisor in R if there exists some

b ∈ R∗ such that a • b = 0 or b • a = 0.

Definition A.12. Let R = (R,+, •) be a ring. Then an element r ∈ R is said to be

cancellable if and only if for all a, b ∈ R
r • a = r • b =⇒ a = b

a • r = b • r =⇒ a = b.

Theorem A.13. Let R = (R,+, •) be a ring such that R 6= ∅ and let R∗ = R \ {0}.

If r ∈ R∗, then r is a zero divisor if and only if r is not cancellable for •.

Proof. Let R = (R,+, •) be a ring such that R 6= 0 and let R∗ = R\{0}. Take any

r ∈ R∗.

167

(=⇒) Suppose that r is a zero divisor. Then by Definition A.11 there exists some

a ∈ R∗ such that r • a = 0 or a • r = 0. Then r is not cancellable for • because

r • 0 = 0 = 0 • r. V

(⇐=) Suppose that r is cancellable. Then by Definition A.12 there exists some

a, b ∈ R∗ such that r • a = r • b where a 6= b for left • by r. Then

r • a = r • b =⇒ r • a− r • b = 0 =⇒ r • (a− b) = 0 =⇒ a− b 6= 0.

So r is a zero divisor. By similar argument, we may also suppose that a • r = b • r

where a 6= b for right • by r; then it similarly follows that r is a zero divisor. V

Consequently r is a zero divisor if and only if r is not cancellable for •. �

Theorem A.14. If the ring R = (R,+, •) is a finite integral domain, then R is a

Galois field.

Proof. Suppose that R = (R,+, •) is a finite integral domain. Since R is finite, then

we may list the elements of R as x0, x1, x2, x3, . . . , xn where we let x0 = 0 and x1 = 1

be the identities for + and •, respectively. Now let R∗ = R \ {0}. Fix any r ∈ R∗

and consider the set of products

R′ = {r • x1, r • x2, r • x3, . . . , r • xn},

where each r • xi ∈ R for i = 1, 2, 3, . . . , n because R is closed under + and •. So

R′ ⊂ R. Now by Definition A.5, since R is an integral domain, it follows that

r • xi 6= 0 =⇒ r • xi ∈ R∗, for i = 1, 2, 3, . . . , n.

Hence, by Theorem A.13 it follows that each r ∈ R∗ is cancellable for •; so

r • xi = r • xj =⇒ xi = xj, for i, j = 1, 2, 3, . . . , n.

Therefore each r •xi ∈ R′ is distinct and cancellable with |R′| = n = |R∗|, soR′ = R∗.

Therefore, since 1 ∈ R∗ there exists some r−1 ∈ R∗ such that r •r−1 = 1; so this holds

168

for any nonzero r ∈ R. Consequently by Definitions A.7 and A.9 it follows that R is

a Galois field of order-(n+ 1). �

Definition A.15. Let R = (R,+, •) be a ring.

• A subset A of a ring R is a subring of R if the + and • of A are closed; that is

a+ b ∈ A and a • b ∈ A, ∀a, b ∈ A.

• A subring I of a ring R is an ideal if:

a • r ∈ I and r • a ∈ I, ∀a ∈ I and ∀r ∈ R.

Definition A.16. Let I be an ideal of the ring R = (R,+, •).

• Then a binary relation ∼ of R is said to be an equivalence relation if ∼ is:

(i) Reflexive: ∀a ∈ R, a ∼ a.

(ii) Symmetric: ∀a, b ∈ R, a ∼ b =⇒ b ∼ a.

(iii) Transitive: ∀a, b, c ∈ R, a ∼ b and b ∼ c =⇒ a ∼ c.

• For a, b ∈ R it is said that a is congruent to b modulo I if a − b ∈ I. In this

case we write a ≡ b mod I if and only if a− b ∈ I.

Theorem A.17. If I is an ideal of the ring R = (R,+, •), then congruence modulo

I is an equivalence relation.

Proof. Suppose that I is an ideal of the ring R = (R,+, •). We wish to show that

≡ is an equivalence relation.

Claim: ≡ is reflexive. Take any a ∈ R. Since I is a subring then a− a = 0 ∈ I

implies that a ≡ a mod I. So ≡ is reflexive. V

Claim: ≡ is symmetric. Take a, b ∈ R such that a ≡ b mod I. Then a− b ∈ I.

Since I is a subring ofR, then the additive inverse of a−b is b−a since (a−b)+(b−a) =

0. Therefore b− a ∈ I implies b ≡ a mod I. So ≡ is symmetric. V

169

Claim: ≡ is transitive. Take a, b, c ∈ R such that a ≡ b mod I and b ≡ c

mod I. Then
a− b ∈ I and b− c ∈ I =⇒ (a− b) + (b− c) ∈ I

=⇒ a− b+ b− c ∈ I
=⇒ a− c ∈ I
=⇒ a ≡ c mod I.

So ≡ is transitive. V

Consequently ≡ is an equivalence relation. �

Theorem A.18. Let I be an ideal of the ring R = (R,+, •). If a ≡ b mod I and

c ≡ d mod I, then

(i) a+ c ≡ b+ d mod I, and

(ii) a • c ≡ b • d mod I.

Proof. Suppose that I is an ideal of the ring R = (R,+, •), and that a ≡ b mod I

and c ≡ d mod I.

Claim: a+ c ≡ b+ d mod I. By hypothesis we obtain
a− b ∈ I and c− d ∈ I =⇒ (a− b) + (c− d) ∈ I

=⇒ a− b+ c− d ∈ I
=⇒ a+ c− b− d ∈ I
=⇒ (a+ c)− (b+ d) ∈ I
=⇒ a+ c ≡ b+ d mod I. V

Claim: a • c ≡ b • d mod I. By hypothesis we have a − b ∈ I and c − d ∈ I so

we let x = a− b ∈ I and y = c− d ∈ I. Then
a • c ∈ I =⇒ (x+ b) • (y + d) ∈ I

=⇒ x • y + x • d+ b • y + b • d ∈ I
=⇒ b • d ∈ I
=⇒ a • c ≡ b • d mod I. V

So (i) and (ii) are satisfied. �

170

Definition A.19. Let I be an ideal of the ring R = (R,+, •) The set [a] = {x ∈ R :

a ≡ x} = a+ I is said to be the equivalence class of an element a ∈ R if ≡ of R is a

congruence relation. If a ≡ b mod I we say that a and b are congruent, which may

equivalently be denoted by a + I = b + I or [a] = [b]. We write R/I to denote the

set of all such equivalence classes.

Theorem A.20. If I is an ideal of the ring R = (R,+, •), then R/I becomes a ring

(called the quotient ring of R modulo I) under the operations
(a+ I) + (b+ I) = (a+ b) + I
(a+ I) • (b+ I) = (a • b) + I.

Proof. Suppose that I is an ideal of the ring R = (R,+, •). We wish to show that

R/I is a quotient ring under the said operations.

Claim: addition is commutative. Take any a+ I, b+ I ∈ R/I. Then

(a+ I) + (b+ I) = (a+ b) + I = (b+ a) + I = (b+ I) + (a+ I),

so addition is commutative for all a+ I, b+ I ∈ R/I. V

Claim: addition is associative. Take any a+ I, b+ I, c+ I ∈ R/I. Then
((a+ I) + (b+ I)) + (c+ I) = ((a+ b) + I) + (c+ I)

= (a+ b+ I) + (c+ I)
= a+ b+ c+ I
= (a+ I) + (b+ c+ I)
= (a+ I) + ((b+ c) + I)
= (a+ I) + ((b+ I) + (c+ I),

so for all a+ I, b+ I, c+ I ∈ R/I addition is associative. V

Claim: there exists a unique additive identity 0+I ∈ R/I. Take any a+I ∈ R/I.

Then

(a+ I) + (0 + I) = (a+ 0) + I = a+ I,

so 0 + I is the additive identity of R/I for all a+ I ∈ R/I. V

171

Claim: there exists a unique multiplicative identity 1 + I ∈ R/I. Take any

a+ I ∈ R/I. Then

(a+ I) • (1 + I) = (a • 1) + I = a+ I = (1 • a) + I = (1 + I) • (a+ I),

so 1 + I is the multiplicative identity of R/I for all a+ I ∈ R/I.

Claim: for each element, there exists an additive inverse. Let a + I ∈ R/I.

Then

(a+ I) + (−a+ I) = (a+ (−a)) + I = 0 + I,

so for all a+ I ∈ R/I there exists an additive inverse −a+ I. V

Consequently R/I is a quotient ring. �

Definition A.21. An ideal I of the commutative ring R = (R,+, •) is said to be a

principal ideal if there exists n ∈ R such that I = 〈n〉; in this case, we say that I is

generated by n.

Example A.22. Let Z = (Z,+, •) be the integers and let 〈n〉 be a principal ideal

generated by n ∈ Z. Then the elements of the quotient ring Zn = Z/〈n〉 are

[0] = 0 + 〈n〉, [1] = 1 + 〈n〉, [2] = 2 + 〈n〉, . . . , [n− 1] = n− 1 + 〈n〉.

Theorem A.23. If 〈p〉 is the principal ideal generated by the prime p ∈ Z, then the

quotient ring Zp = Z/〈p〉 is a Galois field.

Proof. Suppose 〈p〉 is the principal ideal generated by the prime p ∈ Z for the

quotient ring Zp = Z/〈p〉. So we have that [0] ∈ Zp and [1] ∈ Zp are the additive

and multiplicative identities of Zp, respectively. Take any [a], [b] ∈ Zp and consider

[a] • [b] = [a • b]. Now since 〈p〉 is the principal ideal generated by p, then

[0] = [k • p], for k = 1, 2, 3,

172

Therefore

[a • b] = [0] ⇐⇒ ∃k ∈ Z, a • b = k • p.

But since p is prime, then p divides a • b if and only if p divides a or p divides b. So

either [a] = [kp] or [b] = [kp] for some k ∈ Z. Hence, Zp contains no zero divisor and

is thus an integral domain. Consequently since Zp is finite, Theorem A.14 implies

that the quotient ring Zp = Fp is a Galois field. �

Example A.24. Let Z = (Z,+, •) be the integers and let 〈3〉 be a principal ideal

generated by the prime 3 ∈ Z. Then the elements of the Galois field Z3 = Z/〈3〉 = F3

are
[0] = 0 + 〈3〉 = {0, 3, 6, 9, 12, 15, 18, 21, . . . }
[1] = 1 + 〈3〉 = {1, 4, 7, 10, 13, 16, 19, 22, . . . }
[2] = 2 + 〈3〉 = {2, 5, 8, 11, 14, 17, 20, 23, . . . },

where |Z/〈3〉| = 3. Here, the addition and multiplication operations of F3 can be

expressed by the following respective operation tables.

+ [0] [1] [2]
[0] [0] [1] [2]
[1] [1] [2] [0]
[2] [2] [0] [1]

• [0] [1] [2]
[0] [0] [0] [0]
[1] [0] [1] [2]
[2] [0] [2] [1]

Definition A.25. Let R = (R,+, •) be a ring. If there exists some n ∈ Z with n > 0

such that n •r = 0 for each r ∈ R, then the least such n is said to be the characteristic

of R. In this case, R is said to have (positive) characteristic n. If n is a prime power,

then R is said to have prime characteristic. Otherwise, if no such n > 0 exists, then

R is said to have characteristic O.

Theorem A.26. If R = (R,+, •) 6= ∅ is an integral domain with characteristic p ∈ Z,

then p must be prime.

173

Proof. Suppose that R = (R,+, •) 6= ∅ is an integral domain with characteristic

p ∈ Z. Then we have the identities 0, 1 ∈ R so p ≥ 2, where p • r = 0 for all r ∈ R.

Now suppose, towards contradiction, that p is not prime. Then there exists some

a, b ∈ Z where 1 < a, b < p such that for all r ∈ R we have
p = a • b =⇒ p • r = (a • b) • r = 0

=⇒ p • 1 = (a • b) • 1 = a • 1 • b • 1 = (a • 1) • (b • 1) = 0.
(A.1)

Now since R is an integral domain, then it has no zero divisors. Therefore (A.1)

implies that either

a • r = 0 =⇒ a • r = (a • 1) • r = 0 or b • r = 0 =⇒ b • r = (b • 1) • r = 0, ∀r ∈ R.

But 1 < a, b < p and (by definition of the characteristic) p is the least such integer

such that p • r = 0 for all r ∈ R—a contradiction. Consequently p must be prime. �

Theorem A.27. If Fn is a Galois field, then Fn has prime characteristic p.

Proof. Let Fn be a Galois field. Consider the multiples of the identity

1, 1 • (1 + 1) = 1 • 2, 1 • (1 + 1 + 1) = 1 • 3, 1 • (1 + 1 + 1 + 1) = 1 • 4,

Now since Fn contains only a finite number of distinct elements then there exist

a, b ∈ Z such that 1 ≤ a < b where

a • 1 = b • 1 =⇒ a • 1− b • 1 = 0 =⇒ (a− b) • 1 = 0 =⇒ (a− b) • c = 0, ∀c ∈ Fn.

So Fn has a positive characteristic which we denote as p. Now since Fn is an integral

domain with characteristic p > 0, then p must be prime by Theorem A.26; so Fn has

prime characteristic p. �

Definition A.28. Let F be a field. A vector space K = (K,+, •) is an abelian group

equipped with scalar multiplication, denoted by a • ~u for all a ∈ F and for all ~u ∈ K,

where the following axioms hold for all a, b ∈ F and for all ~u,~v ∈ K:

(i) a • (b • ~u) = (a • b) • ~u,

174

(ii) (a+ b) • ~u = a • ~u+ b • ~u,

(iii) a • (~u+ ~v) = a • ~u+ a • ~v, and

(iv) 1 • ~u = ~u,

In this case, K is said to be a vector space over F.

Definition A.29. Let F and K be fields. If F ⊂ K, then F is said to be a subfield of

K and (equivalently) K is said to be an extension field of F. If F 6= K, then F is said

to be a proper subfield of K.

Theorem A.30. Let F and K be fields where F ⊂ K. If we define the scalar

multiplication as

F×K→ K : (a, ~u) 7→ a • ~u, ∀a ∈ F, ∀~u ∈ K, (A.2)

then K is a vector space over F.

Proof. Suppose that F and K are fields where F ⊂ K. Define the scalar multiplication

as given by (A.2). We wish to show that vector space properties of Definition A.28

are satisfied.

Claim: K = (K,+, •) is an abelian group. Since K is a field, then the elements of

K form an abelian group under +. Next, take any “vector” ~u ∈ K and any “scalar”

a ∈ F. Now since F ⊂ K, then any scalar multiplication (a, ~u) 7→ a • ~u ∈ K is just

multiplication in K. V

Claim: the vector space axioms (i)—(iv) of Definition A.28 hold for all a, b ∈ F

and for all ~u,~v ∈ K. Since K is an extension field of F, then by the field axioms it

immediately follows that for all a, b ∈ F and for all ~u,~v ∈ K:

(i) a • (b • ~u) = (a • b) • ~u.

(ii) (a+ b) • ~u = a • ~u+ b • ~u.

175

(iii) a • (~u+ ~v) = a • ~u+ a • ~v.

(iv) 1 • ~u = ~u. V

Consequently, K is a vector space over F. �

Definition A.31. Let K be a vector space over a field F. Let BK = {~v0, ~v1, ~v2, . . . , ~vd−1}

be a finite subset of K. Then BK is said to be a basis if the following conditions hold:

(i) The linear independence property:

∀ai ∈ F, a0 • ~v0 + a1 • ~v1 + · · ·+ ad−1 • ~vd−1 =⇒ a0 = a1 = · · · = ad−1 = 0.

(ii) The spanning property:

∀~u ∈ K, ∃!a0, a1, . . . , ad−1 ∈ F, ~u = a0 • ~v0 + a1 • ~v1 + · · ·+ ad−1 • ~vd−1.

The numbers ai ∈ F for i = 0, 1, . . . , d − 1 are said to be the coordinates of the

vector ~u with respect to the basis BK, which we may write in coordinate form as

(a0, a1, . . . , ad−1) ∈ Fd, where d = [K : F] is said to be the dimension of K over F

and (equivalently) the degree of extension. If d is a finite, then K is said to be finite

dimensional vector space over F and d is said to be a finite extension.

Lemma A.32. Let Fq be a Galois field (with |Fq| = q elements) and let the Galois

field K be a vector space over Fq. Then K = Kqd (with |Kqd | = qd elements) where

d = [Kqd : Fq].

Proof. Suppose that the Galois field K is a vector space over Fq. Then there exists a

basis BK of K. Since Fq has a finite number of elements, then K is a finite dimensional

vector space over Fq; let’s denote this by d = [K : Fq]. Then BK has d elements

which we denote as BK = {~v0, ~v1, ~v2, . . . , ~vn−1}. Next, take any ~u ∈ K. Then by

176

the spanning property of Definition A.31 it follows that there exists a coordinate

(a0, a1, . . . , ad−1) ∈ Fdq such that

~u = a0 • ~v0 + a1 • ~v1 + a2 • ~v2 + · · ·+ ad−1 • ~vd−1, ∀~u ∈ K,

is unique. Therefore, since each ai ∈ Fq for i = 0, 1, 2, . . . , d− 1 can be any one of

the q possible values of Fq, then |K| = d so K = Kqd . �

Remark A.33. Now that we’ve established that a Galois field K is a vector space

over its subfield F, from this point forward we will omit the finite field vector notation

(ex. ~vi ∈ K) for the sake of consistency and conciseness.

Definition A.34. Let F = (F ,+, •) and K = (K,⊕,⊗) be rings with multiplicative

identities denoted by 1F ∈ F and 1K ∈ K, respectively. Then a function α : F → K is

said to be a ring homomorphism if the following operator morphism properties hold

under α:

(i) Addition: α(a+ b) = α(a)⊕ α(b), ∀a, b ∈ F .

(ii) Multiplication: α(a • b) = α(a)⊗ α(b), ∀a, b ∈ F .

(iii) Multiplicative Identity: α(1F) = 1K.

If F = F and K = K are both fields, then α is said to be a field homomorphism.

Definition A.35. Let F and K be sets. The function α : F → K is a bijective

function if and only if α is:

(i) Injective: α(a) = α(b) =⇒ a = b.

(ii) Surjective: ∀b ∈ K, ∃a ∈ F , α(a) = b.

In this case α is said to be a bijection.

177

Definition A.36. Let F and K be rings. Then a ring homomorphism α : F → K is

said to be a ring isomorphism if and only if it is bijective. In this case F and K are

said to be isomorphic, which is denoted by F ∼= K. If F = F and K = K are both

fields, then α is said to be a field isomorphism.

Definition A.37. A field F is said to be a prime field if it does not contain any

proper subfields.

Theorem A.38. If K is a field and F is the prime subfield of K, then:

(i) F ∼= Q if K has characteristic 0.

(ii) F ∼= Fp if K has prime characteristic p.

Proof. Suppose that K is a field and F is the prime subfield of K. Denote 0K, 1K ∈ K

as the additive and multiplicative identities of K, respectively. We will consider the

following two cases.

Case 1: K has characteristic 0. First, consider the distinct list of elements

0 • 1K, 1 • 1K, 2 • 1K, . . . , n • 1K, . . . , ∀n ∈ Z,

for which we define the subring

S = {n • 1K : n ∈ Z}

of K. Then we define the ring homomorphism α : S → Z and see that

α(a+S b) = α(a) +Z α(b) and α(a • Sb) = α(a) • Z α(b), ∀a, b ∈ S,

immediately follows; so α is an isomorphism and S ∼= Z. Second, consider the distinct

list of elements

0 • 1K,
1 • 1K

1 • 1K
,

1 • 1K

2 • 1K
, . . . ,

2 • 1K

1 • 1K
,

3 • 1K

1 • 1K
, . . . ,

m • 1K

n • 1K
, . . . , ∀m,n ∈ Z, n 6= 0,

for which we define the subfield

T =
{
m • 1K

n • 1K
: m,n ∈ Z, n 6= 0

}
(A.3)

178

of K. Then we define the field homomorphism β : T→ Q and see that

β(a+T b) = β(a) +Q β(b) and β(a • T b) = β(a) • Q β(b), ∀a, b ∈ T,

immediately follows; so β is an isomorphism and T ∼= Q. Now since any subfield of

K must contain the identities 0K, 1K ∈ K, then 0K, 1K ∈ T. So

T ⊂ F and T ⊂ K =⇒ T = F,

where T = F is the prime subfield of K. Consequently T = F ∼= Q. V

Case 2: K has prime characteristic p. Then we apply a similar argument to the

previous case where instead of (A.3) we define the subfield

T = {0 • 1K, 1 • 1K, 2 • 1K, . . . , (p− 1) • 1K}

to obtain T ∼= Fp, where Fp is the prime subfield of K which both have prime

characteristic p. V

�

Theorem A.39. If Fn is a Galois field and Fq is the prime subfield of Fn, then n = pd

where p is the characteristic of Fn and d = [Fn : Fq].

Proof. Suppose that Fn is a Galois field with the prime subfield Fq. Since the order

of Fn is finite with n = qm for some m > 0, then Fn must have prime characteristic

p by Theorem A.27. Therefore, Fq ∼= Fp by Theorem A.38, so |Fq| = p. Hence,

n = qm = pd with m = d = [Fn : Fq] by Lemma A.32. �

Remark A.40. Let R = (R,+, •) be a ring. For the sake of conciseness, from this

point forward we may denote the multiplication a • b as ab for any a, b ∈ R.

Definition A.41. Let R = (R,+, •) be ring. Then any expression of the form

f(x) =
n∑
i=0

fix
i = f0 + f1x+ f2x

2 + · · ·+ fnx
n,

179

where fi ∈ R and fn 6= 0, is said to be a polynomial over R with indeterminant x.

For this we say:

(i) The elements f0, f1, f2, . . . , fn are the coefficients of f(x).

(ii) The coefficient an is the leading coefficient of f(x).

(iii) f(x) is monic if fn = 1.

(iv) The degree of f(x) is n and write deg f(x) = n if n is the largest nonnegative

number for which fn 6= 0. If no such n exists, then we have f(x) = 0, which is

the zero polynomial.

(v) f(x) is a constant polynomial if f(x) = a0 for all x ∈ R with constant f0 ∈ R.

Definition A.42. Let R = (R,+, •) be a ring. Then the ring formed by all of the

polynomials over R is denoted by R[x] = (R[x],+, •) and is said to be the polynomial

ring over R. From this point forward, we’ll just write R or R[x] to declare such rings

unless it is necessary to distinguish between the operations.

As it turns out, certain useful properties of R can be inherited by R[x].

Theorem A.43. Let R be a ring. Then:

(i) R[x] is commutative if and only if R is commutative.

(ii) R[x] has an identity if and only if R is has an identity.

(iii) R[x] is an integral domain if and only if R is an integral domain.

Theorem A.44 (Division Algorithm). Let F be a field and let f(x), g(x) ∈ F[x]

with f(x), g(x) 6= 0 where g(x) is nonconstant polynomials. Then there exist the

unique polynomials q(x), r(x) ∈ F[x] such that

f(x) = g(x)q(x) + r(x),

where either deg r(x) < deg g(x) or r(x) = 0.

180

The division algorithm formalizes the long division of polynomials.

Definition A.45. Let F be a field and take f(x) ∈ F[x]. a ∈ F is said to be a root

of f(x) if f(a) = 0.

Theorem A.46. Let F be a field. An element a ∈ F is a root of f(x) ∈ F[x] if and

only if x− a is a factor of f(x) in F[x]

Proof. Let F be a field and take any f(x) ∈ F[x].

(=⇒) Take a ∈ F and suppose that a is a root of f(x). Then f(a) = 0 and by the

division algorithm of Theorem A.44 there exist g(x), r(x) ∈ F[x] such that

f(x) = (x− a) • g(x) + r(x),

where deg r(x) < deg(x − a) = 1. Therefore r(x) is a constant polynomial, so let

r(x) = b ∈ F. Then f(x) = (x− a) • g(x) + b and f(a) = 0 gives
f(a) = (a− a) • g(a) + b

= 0 • g(a) + b

= b

= 0

=⇒ f(x) = (x− a) • g(x).

So x− a is a linear factor of f(x).

(⇐=) Suppose (x−a) ∈ F[x] is a factor of f(x). Then there exists some g(x) ∈ F[x]

such that

f(x) = (x− a) • g(x) =⇒ 0 = (x− a) • g(x) =⇒ 0 = x− a.

So f(a) = 0 and a ∈ F is a root of f(x). �

Definition A.47. Let R[x] be a polynomial ring. Then a polynomial f(x) ∈ R[x] is

said to be irreducible over R (or equivalently irreducible in R[x]) if deg f(x) > 0 and

f(x) = g(x) • h(x) with g(x), h(x) ∈ R[x] implies that either g(x) or h(x) is constant.

Otherwise, if deg f(x) > 0 and f(x) is not irreducible over R, then f(x) is said to be

reducible over R.

181

Roughly speaking, irreducible polynomials are the “prime numbers” of polynomial

rings. Irreducible polynomials allow us to construct the finite fields of non prime order.

The irreducibility or reducibility of a given polynomial largely depends on the ring

over which it is defined.

Theorem A.48. Let F be a field and take f(x) ∈ F[x]. Then the quotient ring

F[x]/〈f(x)〉 is a Galois field if and only if f(x) is irreducible over F.

Theorem A.49. For any Galois field Fpd with p ∈ Z prime and d ∈ Z such that d > 0,

there exists an irreducible polynomial f(x) ∈ Fpd [x] of degree d where Fpd/〈f(x)〉 is a

field of order |Fpd/〈f(x)〉| = pd.

Definition A.50. Let F be a field and let f(x) = f0 + f1x + · · · + fnx
n ∈ F[x] be

a nonconstant polynomial. A vector space K over F is said to be a splitting field of

f(x) if there exist u1, u2, . . . , un ∈ K such that K = F(u1, u2, . . . , un) and

f(x) = (x− u1)(x− u2) · · · (x− un).

In this case f(x) ∈ F[x] is said to split in K if it is the product of n distinct linear

factors in K[x]. In this case, f(x) is said to be separable and K is said to be a separable

extension of F if every element in K is the root of a separable polynomial in F[x].

Lemma A.51. If Fn is a Galois field, then an = a for any a ∈ Fn.

Proof. Let Fn be a Galois field. Then we consider the following two cases.
• Case: a = 0. Then we obtain the trivial result 0n = 0. V

• Case: a 6= 0. Since Fn is a field, then (Fn \ {0}, •) is a group of order n − 1.

Therefore, we obtain

an−1 = 1 =⇒ a • an−1 = a =⇒ an = a, ∀a ∈ Fn \ {0}. V

So an = a for any a ∈ Fn. �

182

Lemma A.52. If the Galois field Kn is a vector space over the subfield F ⊂ Kn, then

the polynomial f(x) = xn − x ∈ F[x] factors in Kn[x] as

f(x) = xn − x =
∏
ui∈K

(x− ui)

and Kn is a splitting field of f(x) over F.

Proof. Suppose that the Galois field Kn is a vector space over the subfield F ⊂ Kn.

Let f(x) = xn − x ∈ F[x]. Since deg f(x) = n, then f(x) has at most n roots in Kn.

Now since |Kn| = n, and that Lemma A.51 gives un = u for all u ∈ Kn, then we

have n such roots {u0, u1, . . . , un−1} ⊂ Kn for f(x); that is, f(ui) = 0 for all ui ∈ Kn.

Therefore, f(x) splits in Kn and there is no proper subfield of Kn for which f(x)

splits. �

Theorem A.53. Let Fpd be a Galois field. Then every subfield Fpm of Fpd has pm

elements, where m | d. Conversely, if m | d for m > 0, then there exists a unique

subfield of Fpd that is isomorphic to Fpm.

Proof. Suppose that Fpd is a Galois field.

(=⇒) Let K be a subfield of Fpd and let Lp be isomorphic to Zp. Then K = Kpm

must be anm-dimensional vector space over Lp wherem = [Kpm : Lp] and |Kpm| = pm.

Moreover, Fpd must be a d-dimensional vector space over Lp where d = [Fpd : Lp] and

|Kpd | = pd. Therefore,

[Fpd : Lp] = [Fpd : Kpm] • [Kpm : Lp] =⇒ m | d.

(⇐=) Suppose there exists some m ∈ N such that m | d and there exists the

Galois field Fpm . Then pm − 1 | pd − 1. Hence, there exists f(x) = xp
m−1 − 1, g(x) =

xp
d−1 − 1 ∈ Fpd , where f(x) | g(x). So x • f(x) | x • g(x), where every root of x • f(x)

is a root of x • g(x). Thus, there is a splitting field Kpm ⊂ Fpd of x • f(x), where

Kpm
∼= Fpm .

183

�

Lemma A.54. Let F be a field and take any f(x) ∈ F[x]. Then there exists a splitting

field K of f(x) that is unique up to isomorphism.

Definition A.55. Let F be a field and let f(x) = f0 + f1x+ f2x
2 + · · ·+ fnx

n ∈ F[x]

be a polynomial. Then the polynomial f ′(x) is said to be the derivative of f(x) if

f ′(x) = f1 + f2x+ · · ·+ nfnx
n−1 ∈ F[x].

Lemma A.56. Let F be a field and let f(x) ∈ F[x] be a polynomial with the derivative

f ′(x) ∈ F[x]. Then a ∈ F is a multiple root of f(x) ∈ F[x] if and only if a is a root

of both f(x) and f ′(x).

Lemma A.57. Let R be a commutative ring with prime characteristic p. Then

(a+ b)pd = ap
d + bp

d and (a− b)pd = ap
d − bpd

, ∀a, b ∈ R, ∀d ∈ Z, d > 0.

Theorem A.58. If pd ∈ Z is a prime power, then there exists a Galois field Fpd. Any

Galois field Fpd is isomorphic to the splitting field of f(x) = xp
d − x over Fp, where

Fpd that is a vector space over its prime subfield Fp.

Proof. Suppose that pd ∈ Z is a prime power.

Claim: The Galois field Fpd exists. Let Fp be a Galois field. By Lemma A.51 we

let f(x) = xp
d − x ∈ Fp[x]. By Lemma A.52 we let K be the splitting field of f(x)

over Fp. Now the derivative of f(x) is f ′(x) = pdxp
d−1 − 1 = −1 ∈ Fp[x], so f(x) has

pd distinct roots {u0, u1, . . . , upd−1} ⊂ K. Therefore, by Lemma A.56 f(x) and f ′(x)

have no roots in common. Now we define L = {ui ∈ K : up
d

i − ui = 0}, which is a

subfield of K because 0, 1 ∈ L,K, and by Lemma A.57 we obtain

a, b ∈ L =⇒ (a− b)pd = ap
d − bpd = a− b =⇒ a− b ∈ L,

184

and

a, b ∈ L, b 6= 0 =⇒ (ab−1)pd = ap
d

b−p
d = ab−1 =⇒ ab−1 ∈ L.

Thus, for each of f(x)’s distinct roots we have {u0, u1, . . . , upd−1} ⊂ L ⊂ K, which

implies that f(x) splits in L. So |L| = pn implies that K = L. Consequently, L = Fpd

is a Galois field.

Claim: The Galois field Fpd is unique. Let Fpd be a Galois field. Then Fpd has

prime characteristic p by Theorem A.27. So let Fp be the prime subfield of Fpd . Then

Fpd is a d-dimensional vector space over Fp where d = [Fpd : Fp]. By Lemma A.51

we let f(x) = xp
d − x ∈ Fp[x]. Moreover, it follows that Fpd is a splitting field of

f(x) over Fp. Consequently, Fpd is unique (up to isomorphisms) as given by Lemma

A.54. �

From Theorem A.58 we obtain the following result.

Corollary A.59. If Fpd and Kpd are both Galois fields of order |Fpd | = |Kpd| = pd,

then there exists some isomorphism α : Fpd → Kpd such that Fpd
∼= Kpd.

185

APPENDIX B

SOFTWARE

B.1 Computational Construction of Latin Squares

B.1.1 Algorithms

The first two algorithms that we present are our latest (and personal best) algorithms

for generating subsets of Ln: the NPS-LS-GA of Algorithm 2.1 and the PS-LS-GA of

Algorithm 2.2. In terms of algorithmic structure, the PS-LS-GA is nearly identical to

the NPS-LS-GA with the exception of a few statements (that are marked with ∗ in

Algorithm 2.2). Thereafter, the third Algorithm 2.3 that we present is our SS-LS-GA

for generating prime power order-pd super-symmetric latin squares (and also prime

order-p cyclic latin squares if d = 1).

186

Algorithm 2.1 Non-Preloading Selection-Based Latin Square Generation Algorithm
1: input:
2: n . Latin square order (integer)
3: limit . Number of latin squares to generate (integer)
4: global data:
5: count . Counter (integer)
6: row, col . Row usage and column usage (n× n boolean arrays)
7: rowId, colId . Row index and column index (integers)
8: output:
9: L . Latin square buffer (n× n× n integer array)
10:
11: procedure generateSquaresNonPreload(n, limit)
12: . Initialize default values
13: count← 0 . Set generation counter to zero
14: for i← 0, i < n, i← (i+ 1) do . Set rows and columns to empty
15: for j ← 0, j < n, j ← (j + 1) do
16: row[i][j]← true
17: col[i][j]← true
18: end for
19: end for
20: . Generate limit latin squares of order-n
21: generateSquaresNonPreloadRecurse(0, 0) . Initiate recursion
22: end procedure
23:
24: procedure generateSquaresNonPreloadRecurse(rowId, colId)
25: for i← 0, i < n, i← (i+ 1) do
26: . If both row and column not used, then attempt to add next cell
27: if (row[rowId][i] == true) and (col[colId][i] == true) then
28: row[rowId][i]← false . Set current row flag to used
29: col[colId][i]← false . Set current column flag to used
30: L[rowId][colId]← i . Set cell’s symbol as i
31: if (rowId == colId) and (colId == (n− 1)) then . If adding the final cell to square
32: if CheckLatinSquareProperty(L) == true then . If the latin square property holds
33: print(L) . Output to command terminal
34: count← (count+ 1) . Increment counter
35: if (limit 6= 0) and (count == limit) then . If limit number of latin squares are generated
36: terminateProcess . Terminate system generation process
37: end if
38: end if
39: else if colId == (n− 1) then . If finished generating current row and still more to do
40: generateSquaresNonPreloadRecurse(rowId+ 1, 0) . Begin generating next row
41: else . If still generating current row
42: generateSquaresNonPreloadRecurse(rowId, colId+ 1) . Go to next column
43: end if
44: row[colId][i]← true . Reset row flag to unused
45: col[colId][i]← true . Reset column flag to unused
46: end if
47: end for
48: end procedure

187

Algorithm 2.2 Preloading Selection-Based Latin Square Generation Algorithm
1: input:
2: n . Latin square order (integer)
3: limit . Number of latin squares to generate (integer)
4: global data:
5: count . Counter (integer)
6: row, col . Row usage and column usage (n× n boolean arrays)
7: rowId, colId . Row index and column index (integers)
8: preLoad . *Preload switch (boolean)*
9: output:
10: L . Latin square buffer (n× n× n integer array)
11:
12: procedure generateSquaresPreload(n, limit)
13: . Initialize default values
14: count← 0 . Set generation counter to zero
15: for i← 0, i < n, i← (i+ 1) do . Set rows and columns to empty
16: for j ← 0, j < n, j ← (j + 1) do
17: row[i][j]← true
18: col[i][j]← true
19: end for
20: end for
21: preLoad← true . *Set preloading mode*
22: . Generate limit latin squares of order-n
23: generateSquaresPreloadRecurse(0, 0) . Initiate recursion
24: end procedure
25:
26: procedure generateSquaresPreloadRecurse(rowId, colId)
27: for i← 0, i < n, i← (i+ 1) do
28: if preLoad == true then . If in preloading mode
29: i← ((rowId+ colId)%n) . *Preload symbol*
30: end if
31: . If both row and column not used, then attempt to add next cell
32: if (row[rowId][i] == true) and (col[colId][i] == true) then
33: row[rowId][i]← false . Set current row flag to used
34: col[colId][i]← false . Set current column flag to used
35: L[rowId][colId]← i . Set cell’s symbol as i
36: if (rowId == colId) and (colId == (n− 1)) then . If adding the final cell to square
37: if CheckLatinSquareProperty(L) == true then . If the latin square property holds
38: if preLoad == true then . If already preloaded
39: preLoad← false . *Clear preloading mode for this instance*
40: end if
41: print(L) . Output to command terminal
42: count← (count+ 1) . Increment counter
43: if (limit 6= 0) and (count == limit) then . If limit number of latin squares are generated
44: terminateProcess . Terminate system generation process
45: end if
46: end if
47: else if colId == (n− 1) then . If finished generating current row and still more to do
48: generateSquaresPreloadRecurse(rowId+ 1, 0) . Begin generating next row
49: else . If still generating current row
50: generateSquaresPreloadRecurse(rowId, colId+ 1) . Go to next column
51: end if
52: row[colId][i]← true . Reset row flag to unused
53: col[colId][i]← true . Reset column flag to unused
54: end if
55: end for
56: end procedure

188

Algorithm 2.3 Super-Symmetric Latin Square Generation Algorithm
1: input:
2: p . Prime base
3: d . Exponent
4: output:
5: superL . Latin square buffer (pd × pd × pd integer array)
6:
7: . Generates and returns a super-symmetric latin square given a prime power order
8: procedure generateSuperSymmetricSquare(p, d)
9: if d < 1 then . If invalid prime power
10: return null . Then return null
11: end if
12: superL← generateCyclicBaseSquare(p) . Latin square buffer (pd × pd × pd integer array)
13: if d == 1 then . If prime power is just one
14: return superL . Then return prime order-p cyclic latin square
15: end if
16: . Generate by lifting the super-symmetric square for each power
17: order ← p
18: for i← 1, i < d, i← (i+ 1) do . Set rows and columns to empty
19: order ← (order × p)
20: superL← liftSquare(superL, order, p)
21: end for
22: return superL . Return prime power order-pd super-symmetric latin square
23: end procedure
24:
25: . Generates and returns an order-p cyclic latin square in reduced form
26: procedure generateCyclicBaseSquare(p)
27: . Set the symbols of the prime order-p cyclic latin square
28: for i← 0, i < p, i← (i+ 1) do
29: for j ← 0, j < p, i← (j + 1) do
30: B[i][j]← (i+ j) mod p
31: end for
32: end for
33: return B . Return prime order-p cyclic latin square
34: end procedure
35:
36: . Generates and returns a lifted super-symmetric square built with a p× p latin sub-square grid
37: procedure liftSquare(L, orderL, p)
38: . Set each latin sub-square in the p× p grid
39: for i← 0, i < p, i← (i+ 1) do
40: for j ← 0, j < p, i← (j + 1) do
41: liftedL← insertSubsquare(i, j, (i+ j) mod p, L, orderL)
42: end for
43: end for
44: return liftedL . Return the lifted super-symmetric square
45: end procedure
46:
47: . Inserts a latin sub-square into a super-symmetric latin square
48: procedure insertSubSquare(row, col, offSym,L, orderL)
49: i← row × orderL . Set starting row for sub-square insertion
50: j ← col × orderL . Set starting column for sub-square insertion
51: . Insert the latin sub-square into the grid of the lifted square
52: for i← 0, i < ((row + 1)× orderL), i← (i+ 1) do
53: for j ← 0, j < ((col + 1)× orderL), j ← (j + 1) do
54: liftedL[i][j]← (L[i mod orderL][j mod orderL] + (offSym× orderL))
55: end for
56: end for
57: return liftedL . Return the super-symmetric square with inserted sub-square
58: end procedure

189

B.1.2 Implementation and Usage

NPS-LS-GA

We implemented the NPS-LS-GA of Algorithm 2.1 in the Java programming language,

which is available at https://sourceforge.net/projects/latin-square-toolbox/. Some of

the NPS-LS-GA implementation’s key features are:
• Theoretically capable of generating the complete Ln without skipping any latin

squares.

• Practically capable of generating subsets of Ln up to order-21 on a laptop

computer (with an Intel® Core™ M-5Y71 1.2 GHz Processor and 8 GB DDR3L

SD-RAM).

• Practically capable of generating approximately 607 order-21 latin squares per

second on a laptop computer.

• Practically capable of generating the complete Ln up to order-5 on a laptop

computer.

Example B.1. One can generate a data set of 100,000 order-5 latin squares via the

Unix command-line as follows:

[nathan@icebox ∼]$ java LS Generator Selection 5 100000

(0,0,0)(0,1,1)(0,2,2)(0,3,3)(0,4,4)

(1,0,1)(1,1,0)(1,2,3)(1,3,4)(1,4,2)

(2,0,2)(2,1,3)(2,2,4)(2,3,0)(2,4,1)

(3,0,3)(3,1,4)(3,2,1)(3,3,2)(3,4,0)

(4,0,4)(4,1,2)(4,2,0)(4,3,1)(4,4,3)

...

[outputs order-5 latin squares until the job is complete or the user presses control-c]

190

If the user does not specify the size of the data set, then the NPS-LS-GA imple-

mentation will begin to generate the complete Ln.

PS-LS-GA

We implemented the PS-LS-GA of Algorithm 2.2 in the Java programming language.

Some of the PS-LS-GA implementation’s key features are:

• Theoretically capable of generating proper subsets of Ln because it skips some

latin squares.

• Practically capable of generating proper subsets of Ln up to at least order-30

on a laptop computer (with an Intel® Core™ M-5Y71 1.2 GHz Processor and

8 GB DDR3L SD-RAM).

• Practically capable of generating approximately 2,801 order-21 latin squares per

second on a laptop computer (approximately 4.6 times faster than the NPS-LS-

GA).

Example B.2. One can generate a data set of 100,000 order-5 latin squares via the
Unix command-line as follows:

[nathan@icebox ∼]$ java LS Generator Selection Preload 5 100000

(0,0,0)(0,1,1)(0,2,2)(0,3,3)(0,4,4)

(1,0,1)(1,1,0)(1,2,3)(1,3,4)(1,4,2)

(2,0,2)(2,1,3)(2,2,4)(2,3,0)(2,4,1)

(3,0,3)(3,1,4)(3,2,1)(3,3,2)(3,4,0)

(4,0,4)(4,1,2)(4,2,0)(4,3,1)(4,4,3)

...

[outputs order-5 latin squares until the job is complete or the user presses control-c]

191

SS-LS-GA

We implemented the SS-LS-GA of Algorithm 2.3 in the Java programming language,

which is available at https://sourceforge.net/projects/latin-square-toolbox/. Some of

the SS-LS-GA implementation’s key features are:

• Capable of generating a prime order-p cyclic latin square.

• Capable of generating a prime power order-pd super-symmetric latin square.

• Displays the latin square in a “human readable” format.

• Automatically counts and displays the number of transversals.

Example B.3. One can generate the prime order-5 cyclic latin square (that encodes
the cyclic group (Z5,+)) via the Unix command-line as follows:

[nathan@icebox ∼]$ java LS Generator Super Symmetric 5 1

The super symmetric square of 51 is

(0,0,0)(0,1,1)(0,2,2)(0,3,3)(0,4,4)

(1,0,1)(1,1,2)(1,2,3)(1,3,4)(1,4,0)

(2,0,2)(2,1,3)(2,2,4)(2,3,0)(2,4,1)

(3,0,3)(3,1,4)(3,2,0)(3,3,1)(3,4,2)

(4,0,4)(4,1,0)(4,2,1)(4,3,2)(4,4,3)

With human readable form of

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

The square has 15 transversals

Example B.4. One can generate the prime power order-32 cyclic latin square (that
encodes the Galois field addition group (F32 ,+)) via the Unix command-line as
follows:

192

[nathan@icebox ∼]$ java LS Generator Super Symmetric 3 2

The super symmetric square of 32 is

(0,0,0)(0,1,1)(0,2,2)(0,3,3)(0,4,4)(0,5,5)(0,6,6)(0,7,7)(0,8,8)

(1,0,1)(1,1,2)(1,2,0)(1,3,4)(1,4,5)(1,5,3)(1,6,7)(1,7,8)(1,8,6)

(2,0,2)(2,1,0)(2,2,1)(2,3,5)(2,4,3)(2,5,4)(2,6,8)(2,7,6)(2,8,7)

(3,0,3)(3,1,4)(3,2,5)(3,3,6)(3,4,7)(3,5,8)(3,6,0)(3,7,1)(3,8,2)

(4,0,4)(4,1,5)(4,2,3)(4,3,7)(4,4,8)(4,5,6)(4,6,1)(4,7,2)(4,8,0)

(5,0,5)(5,1,3)(5,2,4)(5,3,8)(5,4,6)(5,5,7)(5,6,2)(5,7,0)(5,8,1)

(6,0,6)(6,1,7)(6,2,8)(6,3,0)(6,4,1)(6,5,2)(6,6,3)(6,7,4)(6,8,5)

(7,0,7)(7,1,8)(7,2,6)(7,3,1)(7,4,2)(7,5,0)(7,6,4)(7,7,5)(7,8,3)

(8,0,8)(8,1,6)(8,2,7)(8,3,2)(8,4,0)(8,5,1)(8,6,5)(8,7,3)(8,8,4)

With human readable form of

0 1 2 3 4 5 6 7 8

1 2 0 4 5 3 7 8 6

2 0 1 5 3 4 8 6 7

3 4 5 6 7 8 0 1 2

4 5 3 7 8 6 1 2 0

5 3 4 8 6 7 2 0 1

6 7 8 0 1 2 3 4 5

7 8 6 1 2 0 4 5 3

8 6 7 2 0 1 5 3 4

The square has 2241 transversals

B.1.3 Performance Benchmarks

Here we present the performance benchmark comparison results for: the NPS-LS-GA

of Algorithm 2.1 versus the PS-LS-GA of Algorithm 2.2.

We conducted two distinct system run-time performance comparison benchmarks

for our software implementations of the NPS-LS-GA of the Algorithm 2.1 and the

193

PS-LS-GA of Algorithm 2.2 for generating sample data sets of latin squares. NPS-LS-

GA and PS-LS-GA were both implemented in the Java programming language. The

benchmarks were executed on a laptop computer with an Intel® Core™ M-5Y71 1.2

GHz Processor and 8 GB DDR3L SD-RAM equipped with a Linux operating system.

Note: as they were generated, all of the latin squares were printed to standard output

on the Linux terminal so this would impact overall performance.

For each data set processed, the timing result was obtained via the user-mode of

the Linux time command and is the average of three runs. For instance, if k is the

number of latin squares in a given data set and t0, t1, and t2 are the number of seconds

for the three runs, then the time quantity tavg = t0+t1+t2
3 is the average of the three

runs and the rate quantity k
tavg

is the number of latin squares (whose transversals

were counted) per second.

First, we benchmarked the algorithms on generating data sets comprising 100,000

latin squares from order-5 to order-22—see the results in Table B.1.

Consequently, to summarize our generation results of Table B.1, we observed that

1. First, NPS-LS-GA outperforms PS-LS-GA from order-5 to order-14 by a rela-

tively small margin.

2. Second, PS-LS-GA begins to outperform NPS-LS-GA by a relatively small

margin (in all but one case) up to order-19.

3. Third, PS-LS-GA begins to outperform NPS-LS-GA by a factor of 2.4 at order-

20 and a factor of 4.6 at order-21.

4. Finally, at order-22, NPS-LS-GA appears to hit an “extreme slow down” and

was evidently unable to generate the data set in the observed time frame,

whereas PS-LS-GA continued to perform up to order-33 and beyond.

194

Table B.1: A software performance benchmark comparison for implementa-
tions of the NPS-LS-GA and the PS-LS-GA for generating data sets of 100,000
latin squares from order-5 to order-22.

Latin Squares Generated / Second
Order-n NPS-LS-GA PS-LS-GA Winner

5 83 333 94 340 PS-LS-GA
6 76 923 74 074 NPS-LS-GA
7 62 500 64 102 PS-LS-GA
8 52 632 47 170 NPS-LS-GA
9 39 215 36 765 NPS-LS-GA
10 32 258 29 940 NPS-LS-GA
11 23 641 23 474 NPS-LS-GA
12 20 284 17 986 NPS-LS-GA
13 13 495 15 314 PS-LS-GA
14 11 947 11 338 NPS-LS-GA
15 8 651 9 174 PS-LS-GA
16 7 746 7 353 NPS-LS-GA
17 5 241 6 211 PS-LS-GA
18 3 559 4 975 PS-LS-GA
19 3 725 4 132 PS-LS-GA
20 1 390 3 367 PS-LS-GA
21 607 2 801 PS-LS-GA
22 − 2 351 PS-LS-GA

Second, we benchmarked the algorithms on generating data sets comprising of

only a single latin square from order-5 to order-10—see the results in Table B.2.

Consequently, to summarize our transversal counting results of Table B.2, we

observed that

1. First, from order-5 to order-8, NPS-LS-GA and PS-LS-GA are within 0.001

seconds so we call this a “tie”.

2. Second, from order-9 to order-13, PS-LS-GA wins slightly but they are within

a relatively small margin (within 0.01 seconds).

195

3. Third, from order-14 to order-19, PS-LS-GA wins by a larger margin (within

0.1 seconds).

4. Fourth, from order-20 to order-22, PS-LS-GA wins by a relatively significant

margin.

5. Finally, at order-23 we stop benchmarking NPS-LS-GA because it takes too

long, meanwhile PS-LS-GA continues to generate larger order latin squares

with a relatively small increase in time.

196

Table B.2: A software performance benchmark comparison for implementa-
tions of the NPS-LS-GA and the PS-LS-GA for generating a single latin square
from order-5 to order-30.

Single Latin Square Generation Time (# Seconds / Square)
Order-n NPS-LS-GA PS-LS-GA Winner

5 0.056 0.056 Tie
6 0.056 0.057 Tie (within 0.001)
7 0.056 0.057 Tie (within 0.001)
8 0.056 0.057 Tie (within 0.001)
9 0.058 0.054 PS-LS-GA
10 0.059 0.055 PS-LS-GA
11 0.063 0.062 PS-LS-GA
12 0.065 0.058 PS-LS-GA
13 0.087 0.059 PS-LS-GA
14 0.177 0.060 PS-LS-GA
15 1.122 0.062 PS-LS-GA
16 0.066 0.063 PS-LS-GA
17 0.101 0.063 PS-LS-GA
18 0.264 0.064 PS-LS-GA
19 0.974 0.064 PS-LS-GA
20 34.551 0.063 PS-LS-GA
21 114.509 0.064 PS-LS-GA
22 3 510.148 0.068 PS-LS-GA
23 − 0.069 PS-LS-GA
24 − 0.069 PS-LS-GA
25 − 0.070 PS-LS-GA
26 − 0.067 PS-LS-GA
27 − 0.068 PS-LS-GA
28 − 0.075 PS-LS-GA
29 − 0.069 PS-LS-GA
30 − 0.071 PS-LS-GA

197

B.2 Computational Enumeration of Latin Square

Transversals

B.2.1 Algorithms

Here we present the three versions of our algorithms for counting the number of

transversals in a given latin square.

Algorithm 2.4 Brute Force Latin Square Transversal Counting Algorithm (Version 1)
1: input:
2: n . Latin square order (integer)
3: L . Latin square buffer (n× n× n integer array)
4: d . Number of all possible order-n latin square diagonals: n factorial (integer)
5: D . Set of all possible order-n latin square diagonals (d× n ordered pair (row, col) array)
6:
7: global data:
8: count . Counter (integer)
9: symCount . Observed symbol counts (n integer array)
10: n,L, d,D . Note: input set as global
11:
12: output:
13: count
14:
15: . Accepts an order-n latin square as input and counts the number of transversals by using brute force to

exhaustively evaluate every possible order-n diagonal to determine if it is a transversal.
16: procedure countTransversalsV1(n, L, d, D)
17: for i← 0, i < d, i← (i+ 1) do . For every order-n diagonal
18: . Reset/clear counter values
19: count← 0 . Set transversal counter to zero
20: for j ← 0, j < n, j ← (j + 1) do
21: symCounts[j]← 0 . Set all symbol counts to zero
22: end for
23: for j ← 0, j < n, j ← (j + 1) do . For every cell in current diagonal
24: rowId← D[i][j][0] . Identify current cell’s row in ordered pair
25: colId← D[i][j][1] . Identify current cell’s column in ordered pair
26: symCount[L[rowId][colId]]← (symCount[L[rowId][colId]] + 1) . Increment symbol count
27: end for
28: isTransversal← true . Assume current diagonal is a transversal, then look for contradiction
29: for j ← 0, j < n, j ← (j + 1) do . For every symbol count of current diagonal
30: if symCount[j] 6= 1 then . If current symbol’s count is not 1
31: isTransversal← false . Then current diagonal is not a transversal
32: break . Terminate symbol counting because contradiction found
33: end if
34: end for
35: if isTransversal == true then . If current diagonal is a transversal
36: count← (count+ 1) . Increment transversal count
37: end if
38: end for
39: return count . Return resulting transversal count as output
40: end procedure

198

Algorithm 2.5 Subsquare Sequence Latin Square Transversal Counting Algorithm (Version 2)
1: input:
2: n . Latin square order (integer)
3: L . Latin square buffer (n× n× n integer array)
4:
5: global data:
6: count . Counter (integer)
7: states . Subsquare states (n× n× n× n integer array)
8: statesN . Subsquare order (n integer array)
9: n,L . Note: input set as global
10:
11: output:
12: count
13:
14: . Accepts an order-n latin square as input and recursively counts the number of transversals.
15: procedure countTransversalsV2(n, L)
16: . Initialize default values
17: count← 0 . Set transversal counter to zero
18: states[0]← L . Set initial subsquare state to be the input latin square
19: for i← 0, i < n, i← (i+ 1) do
20: statesN [i]← (n− i) . Set the descending orders of the subsquare states
21: end for
22: countTransversalsRecurseV2(0) . Initiate recursion on subsquare state 0
23: return count . Return resulting transversal count as output
24: end procedure
25:
26: . Counts transversals by recursively calling itself, where it makes a new subsquare state of descending order if a

state symbol is found inside its current subsquare state.
27: procedure countTransversalsRecurseV2(stateId)
28: if statesN [stateId] == 1 then . If at final subsquare state with single cell (base case)
29: if state == states[stateId][0][0] then . If this final symbol completes a transversal
30: count← (count+ 1) . Then transversal found, so increment count
31: end if
32: return
33: end if
34: . Determine if the current subsquare state contains the symbol we’re searching for
35: for i← 0, i < statesN [stateId], i← (i+ 1) do
36: for j ← 0, j < statesN [stateId], j ← (j + 1) do
37: if states[stateId][i][j] == stateId then . If symbol is found
38: makeSubsquare(i, j, stateId) . Build next (smaller) subsquare state
39: countTransversalsRecurseV2(stateId+ 1) . Recurse on next subsquare state
40: end if
41: end for
42: end for
43: end procedure
44:
45: . Accepts a row, column, and state (symbol) as input and creates a new subsquare state that does not include

the row and column in the next state’s memory location.
46: procedure makeSubsquare(rowId, colId, stateId)
47: . Evaluate every cell in the current subsquare state to see if it’s symbol belongs in the next subsquare state
48: for i← 0, i < statesN [stateId], i← (i+ 1) do
49: for j ← 0, j < statesN [stateId], j ← (j + 1) do
50: . If the current cell is not in an excluded row or column
51: if ((i == rowId) or (j == colId)) == false then
52: xTemp← i
53: yTemp← j
54: if i > rowId then . Enforce row boundary condition
55: xTemp← (xTemp− 1)
56: end if
57: if j > colId then . Enforce column boundary condition
58: yTemp← (yTemp− 1)
59: end if
60: . Then insert the current cell’s symbol into the next subsquare state
61: states[stateId+ 1][xTemp][yTemp]← states[stateId][i][j]
62: end if
63: end for
64: end for
65: end procedure

199

Algorithm 2.6 Boolean Matrix Latin Square Transversal Counting Algorithm (Version 3)
1: input:
2: n . Latin square order (integer)
3: L . Latin square buffer (n× n× n integer array)
4:
5: global data:
6: count . Counter (integer)
7: sym . Symbol observed flags (n× n boolean array)
8: col . Column observed flags (n× n boolean array)
9: n,L . Note: input set as global
10:
11: output:
12: count
13:
14: . Accepts an order-n latin square as input and recursively counts the number of transversals.
15: procedure countTransversalsV3(n, L)
16: . Initialize default values
17: count← 0 . Set transversal counter to zero
18: for i← 0, i < n, i← (i+ 1) do
19: sym[i]← true . Set all symbols as unobserved
20: col[i]← true . Set all columns as unobserved
21: end for
22: countTransversalsRecurseV3(0) . Initiate recursion on row 0
23: return count . Return resulting transversal count as output
24: end procedure
25:
26: . Counts transversals by recursively calling itself, where it accepts a row as input and looks at global data to see

which cells in the row are valid to generate a partial transversal that could become a transversal.
27: procedure countTransversalsRecurseV3(rowId)
28: . For every column in current row, evaluate the cell’s symbol
29: for i← 0, i < n, i← (i+ 1) do
30: . If adding the cell’s symbol would create a partial transversal
31: if (sym[L[row][i]] == true) and (col[i] == true) then
32: sym[L[row][i]]← false . Set symbol as observed
33: col[i]← false . Set column as observed
34: if row == (n− 1) then . If this final symbol completes a transversal
35: count← (count+ 1) . Then transversal found, so increment count
36: else
37: countTransversalsRecurseV3(rowId+ 1) . Otherwise, recurse on next row
38: end if
39: sym[L[row][i]]← true . Reset symbol as unobserved
40: col[i]← true . Reset column as unobserved
41: end if
42: end for
43: end procedure

200

B.2.2 Implementation and Usage

BF-LS-TCAv1

We implemented the BF-LS-TCAv1 of Algorithm 2.4 in the C programming language.

Some of the BF-LS-TCAv1 implementation’s key features are:

• Practically capable of counting the number of transversals across latin squares

up to order-10 on a laptop computer (with an Intel® Core™ M-5Y71 1.2 GHz

Processor and 8 GB DDR3L SD-RAM).

• Uses an iterative brute force approach to exhaustively evaluate every possible

order-n diagonal to determine if it is a transversal.

• Requires a file that contains a list of all possible diagonals as input.

• Displays the number of latin squares that have specific counts.

• Displays the minimum, maximum, and average transversal counts.

Example B.5. One can count all of the transversals for a data set with 1001 order-5
latin squares via the Unix command-line as follows:

[nathan@icebox ∼]$./LS Transversal Counter v1 ls order05 1001.txt ls diag order05.txt

Computing some stats for 1001 latin squares...

of latin squares with transversal counts of:

891 squares with a transversal count of 3

110 squares with a transversal count of 15

Transversals/square stats:

Minimum: 3

Maximum: 15

Average: 4.3

201

SS-LS-TCAv2

We implemented the SS-LS-TCAv2 of Algorithm 2.5 in the Java programming lan-

guage. Some of the SS-LS-TCAv2 implementation’s key features are:

• Practically capable of counting the number of transversals across latin squares

up to order-17 on a laptop computer (with an Intel® Core™ M-5Y71 1.2 GHz

Processor and 8 GB DDR3L SD-RAM).

• Uses a recursive “sub-square” algorithm to count transversals.

• Does not require a file that contains a list of all possible diagonals as input.

• Displays the number of latin squares that have specific counts.

• Displays the heat maps for each latin square.

• Counts the transversals of 63 order-10 latin squares per second (approximately

25.5 faster than the BF-LS-TCAv1 implementation).

• Consumes approximately 18.6% of the RAM that the BF-LS-TCAv1 implemen-

tation at counting order-10 latin squares.

Example B.6. One can count all of the transversals for a data set with 1001 order-5
latin squares via the Unix command-line as follows:

[nathan@icebox ∼]$ java LS Transversal Counter v2 ls order05 1001.txt

1 3 2 0 4

2 4 0 3 1

0 1 3 4 2

3 2 4 1 0

4 0 1 2 3

Heat Map:

3 3 3 3 3

3 3 3 3 3

202

3 3 3 3 3

3 3 3 3 3

3 3 3 3 3

Transversal count: 15

...

For a transversal count of 15 there were 110 squares

For a transversal count of 3 there were 891 squares

BM-LS-TCAv3

We implemented the BM-LS-TCAv3 of Algorithm 2.6 in the Java programming lan-

guage, which is available at https://sourceforge.net/projects/latin-square-toolbox/.

Some of the BM-LS-TCAv3 implementation’s key features are:

• Practically capable of counting the number of transversals across latin squares

up to order-17 on a laptop computer (with an Intel® Core™ M-5Y71 1.2 GHz

Processor and 8 GB DDR3L SD-RAM).

• Uses a recursive “boolean matrix” algorithm to count transversals.

• Does not require a file that contains a list of all possible diagonals as input.

• Displays the number of latin squares that have specific counts.

• Displays the heat maps for each latin square.

• Approximately 1.3 times faster than the SS-LS-TCAv2 implementation at count-

ing the transversals of order-16 latin squares.

• Consumes approximately the same amount of the RAM as the SS-LS-TCAv2

implementation (but requires much less memory allocations and deallocations).

The usage of the BM-LS-TCAv3 implementation is identical to the SS-LS-TCAv2

implementation.

203

B.2.3 Performance Benchmarks

Here we present the performance benchmark results for the software implementations

of the three versions of our latin square transversal enumeration algorithms.

We conducted two distinct system run-time performance comparison benchmarks

for our software implementations of the BF-LS-TCAv1 of Algorithm 2.4, the SS-LS-

TCAv2 of Algorithm 2.5, and the BM-LS-TCAv3 of Algorithm 2.6 for counting the

number of transversals in latin square data sets. BF-LS-TCAv1 was implemented

in the C programming language, while SS-LS-TCAv2 and BM-LS-TCAv3 were im-

plemented in the Java programming language. The benchmarks were executed on a

laptop computer with an Intel® Core™ M-5Y71 1.2 GHz Processor and 8 GB DDR3L

SD-RAM equipped with a Linux operating system.

For each data set processed, the timing result was obtained via the user-mode of

the Linux time command and is the average of three runs. For instance, if k is the

number of latin squares in a given data set and t0, t1, and t2 are the number of seconds

for the three runs, then the time quantity tavg = t0+t1+t2
3 is the average of the three

runs and the rate quantity k
tavg

is the number of latin squares (whose transversals

were counted) per second.

First, we benchmarked the algorithms on data sets comprising 100,000 latin

squares from order-5 to order-10—see the results in Table B.3. To summarize our

transversal counting results of Table B.3, we observed that

1. First, at order-5 BF-LS-TCAv1 outperforms SS-LS-TCAv2 and BM-LS-TCAv3

by a relatively large margin.

2. Second, at order-6 BM-LS-TCAv3 outperforms BF-LS-TCAv1 and SS-LS-TCAv2

but all are within a relatively small margin.

204

3. Third, from order-7 to order-9 BM-LS-TCAv3 outperforms SS-LS-TCAv2 by a

relatively small margin and BF-LS-TCAv1 by a relatively large margin.

4. Finally, at order-10 BF-LS-TCAv1 appears to “hit a wall” and exhibit an

extreme slowdown (possibly due to thephysical limitations of the computer such

as 8 GB SD-RAM, etc.), meanwhile BM-LS-TCAv3 continued to outperform the

others.

Table B.3: A software performance benchmark comparison for implemen-
tations of the BF-LS-TCAv1, the SS-LS-TCAv2, and the BM-LS-TCAv3 for
counting the number of transversals of 100,000 latin squares from order-5 to
order-10.

Latin Squares (With Transversals Counted) Per Second
Order-n BF-LS-TCAv1 SS-LS-TCAv2 BM-LS-TCAv3 Winner

5 99 900 31 250 32 258 BF-LS-TCAv1
6 19 608 22 727 23 810 BM-LS-TCAv3
7 2 061 7 463 9 217 BM-LS-TCAv3
8 220 1 845 2 331 BM-LS-TCAv3
9 22 338 419 BM-LS-TCAv3
10 − 63 78 BM-LS-TCAv3

Second, we benchmarked the algorithms on data sets comprising of only a single

latin square from order-5 to order-16—see the results in Table B.4.

205

Table B.4: A software performance benchmark comparison for implemen-
tations of the BF-LS-TCAv1, the SS-LS-TCAv2, and the BM-LS-TCAv3 for
counting the number of transversals in a single latin square from order-5 to
order-16.

Single Latin Square Transversal Counting Time (# Seconds / Square)
Order-n BF-LS-TCAv1 SS-LS-TCAv2 BM-LS-TCAv3 Winner

5 0.001 0.087 0.083 BF-LS-TCAv1
6 0.001 0.088 0.084 BF-LS-TCAv1
7 0.005 0.090 0.088 BF-LS-TCAv1
8 0.039 0.102 0.095 BF-LS-TCAv1
9 0.341 0.115 0.097 BM-LS-TCAv3
10 3.749 0.147 0.107 BM-LS-TCAv3
11 − 0.208 0.158 BM-LS-TCAv3
12 − 0.612 0.453 BM-LS-TCAv3
13 − 3.238 2.393 BM-LS-TCAv3
14 − 25.914 15.658 BM-LS-TCAv3
15 − 214.123 155.719 BM-LS-TCAv3
16 − 1 744.701 1 294.353 BM-LS-TCAv3

206

APPENDIX C

PRIME POWER ORDER CYCLIC AND

SUPER-SYMMETRIC LATIN SQUARES

Here we list the cyclic and super-symmetric latin squares of prime power order-pd for

3 ≤ pd ≤ 17 with d > 0 that were generated by our SS-LS-GA of Algorithm 2.3.

We also report the corresponding transversal counts and heat maps obtained by our

BM-LS-TCAv3 of Algorithm 2.6.

Table C.1: The prime order-3 cyclic latin square L(Z3,+) that encodes the cyclic
group (Z3,+) (and also the Galois field addition group (F31 ,+)) with a confirmed
maximum (and minimum) transversal count |T L(Z3,+) | = 3 = T(3) = t(3) [left]
and its transversal heat map H(L(Z3,+)) with a uniform heat value h(L(Z3,+)) = 1
[right].

L(Z3,+) H(L(Z3,+))
0 1 2
1 2 0
2 0 1

1 1 1
1 1 1
1 1 1

Table C.2: The prime power order-4 super-symmetric latin square L(F22 ,+) that
encodes the Galois field addition group (F22 ,+) with a confirmed maximum
transversal count |T L

(F22 ,+)
| = 8 = T(4) [left] and its transversal heat map

H(L(F22 ,+)) with a uniform heat value h(L(F22 ,+)) = 2 [right].

L(F22 ,+) H(L(F22 ,+))
0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

Table C.3: The prime order-5 cyclic latin square L(Z5,+) that encodes the cyclic
group (Z5,+) (and also the Galois field addition group (F51 ,+)) with a confirmed
maximum transversal count |T L(Z5,+) | = 15 = T(5) [left] and its transversal heat
map H(L(Z5,+)) with a uniform heat value h(L(Z5,+)) = 3 [right].

L(Z5,+) H(L(Z5,+))
0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

3 3 3 3 3

3 3 3 3 3

3 3 3 3 3

3 3 3 3 3

3 3 3 3 3

Table C.4: The prime order-7 cyclic latin square L(Z7,+) that encodes the cyclic
group (Z7,+) (and also the Galois field addition group (F71 ,+)) with a confirmed
maximum transversal count |T L(Z7,+) | = 133 = T(7) [left] and its transversal heat
map H(L(Z7,+)) with a uniform heat value h(L(Z7,+)) = 19 [right].

L(Z7,+) H(L(Z7,+))
0 1 2 3 4 5 6

1 2 3 4 5 6 0

2 3 4 5 6 0 1

3 4 5 6 0 1 2

4 5 6 0 1 2 3

5 6 0 1 2 3 4

6 0 1 2 3 4 5

19 19 19 19 19 19 19

19 19 19 19 19 19 19

19 19 19 19 19 19 19

19 19 19 19 19 19 19

19 19 19 19 19 19 19

19 19 19 19 19 19 19

19 19 19 19 19 19 19

julieweigt
Typewritten Text

julieweigt
Typewritten Text

julieweigt
Typewritten Text
207

julieweigt
Typewritten Text

julieweigt
Typewritten Text

208

Table C.5: The prime power order-8 super-symmetric latin square L(F23 ,+) that
encodes the Galois field addition group (F23 ,+) with a confirmed maximum
transversal count |T L

(F23 ,+)
| = 384 = T(8) [left] and its transversal heat map

H(L(F23 ,+)) with a uniform heat value h(L(F23 ,+)) = 48 [right].

L(F23 ,+) H(L(F23 ,+))
0 1 2 3 4 5 6 7

1 0 3 2 5 4 7 6

2 3 0 1 6 7 4 5

3 2 1 0 7 6 5 4

4 5 6 7 0 1 2 3

5 4 7 6 1 0 3 2

6 7 4 5 2 3 0 1

7 6 5 4 3 2 1 0

48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48

48 48 48 48 48 48 48 48

Table C.6: The prime power order-9 super-symmetric latin square L(F32 ,+) that
encodes the Galois field addition group (F32 ,+) with a confirmed maximum
transversal count |T L

(F32 ,+)
| = 2,241 = T(9) [left] and its transversal heat map

H(L(F32 ,+)) with a uniform heat value h(L(F32 ,+)) = 249 [right].

L(F32 ,+) H(L(F32 ,+))
0 1 2 3 4 5 6 7 8

1 2 0 4 5 3 7 8 6

2 0 1 5 3 4 8 6 7

3 4 5 6 7 8 0 1 2

4 5 3 7 8 6 1 2 0

5 3 4 8 6 7 2 0 1

6 7 8 0 1 2 3 4 5

7 8 6 1 2 0 4 5 3

8 6 7 2 0 1 5 3 4

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

249 249 249 249 249 249 249 249 249

209

Table C.7: The prime order-11 cyclic latin square L(Z11,+) that encodes the
cyclic group (Z11,+) (and also the Galois field addition group (F111 ,+)) with a
conjectured maximum transversal count |T L(Z11,+) | = 37,851 = bT(11)cMMW [left]
and its transversal heat map H(L(Z11,+)) with a uniform heat value h(L(Z11,+)) =
3,441 [right].

L(Z11,+) H(L(Z11,+))
0 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 0

2 3 4 5 6 7 8 9 10 0 1

3 4 5 6 7 8 9 10 0 1 2

4 5 6 7 8 9 10 0 1 2 3

5 6 7 8 9 10 0 1 2 3 4

6 7 8 9 10 0 1 2 3 4 5

7 8 9 10 0 1 2 3 4 5 6

8 9 10 0 1 2 3 4 5 6 7

9 10 0 1 2 3 4 5 6 7 8

10 0 1 2 3 4 5 6 7 8 9

3 441 3 441 3 441 3 441 3 441 . . . 3 441

3 441 3 441 3 441 3 441 3 441 . . . 3 441

3 441 3 441 3 441 3 441 3 441 . . . 3 441

3 441 3 441 3 441 3 441 3 441 . . . 3 441

3 441 3 441 3 441 3 441 3 441 . . . 3 441

3 441 3 441 3 441 3 441 3 441 . . . 3 441

3 441 3 441 3 441 3 441 3 441 . . . 3 441

3 441 3 441 3 441 3 441 3 441 . . . 3 441

3 441 3 441 3 441 3 441 3 441 . . . 3 441

3 441 3 441 3 441 3 441 3 441 . . . 3 441

3 441 3 441 3 441 3 441 3 441 . . . 3 441

Table C.8: The prime order-13 cyclic latin square L(Z13,+) that encodes the
cyclic group (Z13,+) (and also the Galois field addition group (F131 ,+)) with a
conjectured maximum transversal count |T L(Z13,+) | = 1,030,367 = bT(13)cMMW
[left] and its transversal heat map H(L(Z13,+)) with a uniform heat value
h(L(Z13,+)) = 79,259 [right].

L(Z13,+) H(L(Z13,+))
0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 0

2 3 4 5 6 7 8 9 10 11 12 0 1

3 4 5 6 7 8 9 10 11 12 0 1 2

4 5 6 7 8 9 10 11 12 0 1 2 3

5 6 7 8 9 10 11 12 0 1 2 3 4

6 7 8 9 10 11 12 0 1 2 3 4 5

7 8 9 10 11 12 0 1 2 3 4 5 6

8 9 10 11 12 0 1 2 3 4 5 6 7

9 10 11 12 0 1 2 3 4 5 6 7 8

10 11 12 0 1 2 3 4 5 6 7 8 9

11 12 0 1 2 3 4 5 6 7 8 9 10

12 0 1 2 3 4 5 6 7 8 9 10 11

79 259 79 259 79 259 79 259 . . . 79 259

79 259 79 259 79 259 79 259 . . . 79 259

79 259 79 259 79 259 79 259 . . . 79 259

79 259 79 259 79 259 79 259 . . . 79 259

79 259 79 259 79 259 79 259 . . . 79 259

79 259 79 259 79 259 79 259 . . . 79 259

79 259 79 259 79 259 79 259 . . . 79 259

79 259 79 259 79 259 79 259 . . . 79 259

79 259 79 259 79 259 79 259 . . . 79 259

79 259 79 259 79 259 79 259 . . . 79 259

79 259 79 259 79 259 79 259 . . . 79 259

79 259 79 259 79 259 79 259 . . . 79 259

79 259 79 259 79 259 79 259 . . . 79 259

210

Table C.9: The prime power order-16 super-symmetric latin square L(F24 ,+) that
encodes the Galois field addition group (F24 ,+) with a conjectured maximum
transversal count |T L

(F24 ,+)
| = 244,744,192 = bT(16)cMMW [left] and its transversal

heat map H(L(F24 ,+)) with a uniform heat value h(L(F24 ,+)) = 15,296,512 [right].

L(F24 ,+) H(L(F24 ,+))
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 296 512 15 296 512 . . . 15 296 512
15 296 512 15 296 512 . . . 15 296 512
15 296 512 15 296 512 . . . 15 296 512
15 296 512 15 296 512 . . . 15 296 512
15 296 512 15 296 512 . . . 15 296 512
15 296 512 15 296 512 . . . 15 296 512
15 296 512 15 296 512 . . . 15 296 512
15 296 512 15 296 512 . . . 15 296 512
15 296 512 15 296 512 . . . 15 296 512
15 296 512 15 296 512 . . . 15 296 512
15 296 512 15 296 512 . . . 15 296 512
15 296 512 15 296 512 . . . 15 296 512
15 296 512 15 296 512 . . . 15 296 512
15 296 512 15 296 512 . . . 15 296 512
15 296 512 15 296 512 . . . 15 296 512
15 296 512 15 296 512 . . . 15 296 512

Table C.10: The prime order-17 cyclic latin square L(Z17,+) that encodes the
cyclic group (Z17,+) (and also the Galois field addition group (F171 ,+)) with a
conjectured maximum transversal count |T L(Z17,+) | = 1,606,008,513 = bT(17)cMMW
[left] and its transversal heat map H(L(Z17,+)) with a uniform heat value
h(L(Z17,+)) = 94,471,089 [right].

L(Z17,+) H(L(Z17,+))
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1
3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2
4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3
5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4
6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5
7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6
8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7
9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8
10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9
11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10
12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11
13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12
14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13
15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089
94 471 089 94 471 089 . . . 94 471 089

