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ABSTRACT 

Human society is now facing grand challenges to satisfy the growing demand for 

computing power, at the same time, sustain energy consumption. By the end of CMOS 

technology scaling, innovations are required to tackle the challenges in a radically different 

way. Inspired by the emerging understanding of the computing occurring in a brain and 

nanotechnology-enabled biological plausible synaptic plasticity, neuromorphic computing 

architectures are being investigated. Such a neuromorphic chip that combines CMOS 

analog spiking neurons and nanoscale resistive random-access memory (RRAM) using as 

electronics synapses can provide massive neural network parallelism, high density and 

online learning capability, and hence, paves the path towards a promising solution to future 

energy-efficient real-time computing systems. However, existing silicon neuron 

approaches are designed to faithfully reproduce biological neuron dynamics, and hence 

they are incompatible with the RRAM synapses, or require extensive peripheral circuitry 

to modulate a synapse, and are thus deficient in learning capability. As a result, they 

eliminate most of the density advantages gained by the adoption of nanoscale devices, and 

fail to realize a functional computing system. 

This dissertation describes novel hardware architectures and neuron circuit designs 

that synergistically assemble the fundamental and significant elements for brain-inspired 

computing. Versatile CMOS spiking neurons that combine integrate-and-fire, passive 
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dense RRAM synapses drive capability, dynamic biasing for adaptive power consumption, 

in situ spike-timing dependent plasticity (STDP) and competitive learning in compact 

integrated circuit modules are presented. Real-world pattern learning and recognition tasks 

using the proposed architecture were demonstrated with circuit-level simulations. A test 

chip was implemented and fabricated to verify the proposed CMOS neuron and hardware 

architecture, and the subsequent chip measurement results successfully proved the idea.  

The work described in this dissertation realizes a key building block for large-scale 

integration of spiking neural network hardware, and then, serves as a step-stone for the 

building of next-generation energy-efficient brain-inspired cognitive computing systems.
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Figure 5.7 Testing circuitry used to characterize CMOS spiking neuron. Three resistors 

are connected to the neuron input and convert three spiking inputs into 

currents. ....................................................................................................104 

Figure 5.8 Response of membrane voltage Vmem and typical output firing spikes Vspk with 

interleaving input spikes and equal strength synapses. It shows the linear 
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Figure 5.9 Response of membrane voltage Vmem and typical output firing spikes Vspk with 
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CHAPTER 1 

INTRODUCTION 

The brain is an amazing and mysterious organ. It is the computational and mission 

control center that drives the whole operation of the body. Although brains vary between 

small clusters of neurons to the enormous and astonishingly complex brains of mammals 

and human being, they engage with the world in a stunningly effective and efficient way. 

For example, honeybees recognize various colors, remember routes up to seven miles, and 

communicate with each other using the their unique "waggle" dance language while 

foraging for nectar. The human brain can perform perception, visual, sound, smell, touch 

object recognition, language translation and fine-motor skills with trivial effort even 

without a conscious mind involved in the task. The honeybee achieves its remarkable 

learning, navigation and cognitive work with a tiny brain which has one million neurons in 

a cubic millimeter size and burn less than a milliwatt of power, while a human brain is a 

three-pound weight self-operation “wet” machine operating with only 20 to 30 watts. 

Modern autonomous robots and electronics computers can do some of these tasks 

but require several orders of magnitude higher space and energy, as well as need 

customized programming. For example, a rough-terrain quadruped robot carried onboard 

computers operating in hundreds watts to manage the sensors, control the robot behavior 

and travel with pre-defined global positioning system routes [1]; a self-teaching artificial 
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intelligence system learned to recognize cats and human faces in 200×200 video clips after 

watching 10 million images using a datacenter cluster with 16,000 central processing unit 

(CPU) cores [2] with an estimated power consumption of  300 kilowatts; and a neural 

simulation on a supercomputer simulated the cat’s brain with 109 neurons and 1013 

synapses at 700 times slower than real-time while burning about 2 megawatts [3]. 

Although animal brains outperform modern computers in many aspects, the 

mainstream computing machines in past half-century were created based on the 

architecture drafted by John von Neumann in 1943 [4]. This architecture is characterized 

by separating program and data memory from arithmetic and logical computations. A CPU 

fetches instructions and operands from memory, performs sequential computations, and 

returns results to memory. In the same year, McCulloch and Pitts proposed a neuro-inspired 

computing model, which described a neuron into a mathematical weight summing and 

thresholding function [5]. Although, a two-layer artificial neural network (ANN) capable 

of learning certain classifications by adjusting connection weights was implemented based 

on this neuron model by Rosenblatt in 1958 [6], ANN-based computing were fall far behind 

von Neumann computers on main stage of commuting technology after the inventions at 

Bell Labs of transistor in 1947, integrated circuits (ICs) in 1958 by Jack Kilby and 1959 

by Robert Noyce. 

The invention of transistors allows the switching and amplification of electronic 

currents. Further, the engineering breakthrough of ICs fuels a lot of transistors to be put on 

less than stamp-size semiconductor chips. They sparked and steamed the following 50 

years’ consumer, computing and communication technology revolutions and greatly 

shaped today’s human society. In fact, the technology supporting the von Neumann 



3 

 

 

 

computing architecture has greatly evolved. Since 1970’s, with the adoption of 

complementary metal–oxide–semiconductor (CMOS) technology, the size of silicon 

transistors was dramatically and continuously scaled down without jeopardizing power 

consumption. This resulted in the number of transistors in a IC doubling approximately 

every 18 months, which is known as Moore’s law, and an era of very-large-scale 

integration (VLSI). The transistor scaling down endows an exponential increase in 

computing performance which fulfilled human society’s demand for computing power. 

This fulfilment was made possible largely because transistors have the unusual quality of 

getting better as they get smaller; a small transistor can be turned on and off with less power 

and at greater speeds than a larger one. This meant that one could use more and faster 

transistors without needing more power, and thus that chips could get bigger as well as 

better [7]. 

The von Neumann architecture has been powering nearly all computing systems 

from home appliance microcontroller, mobile phone, home PC, internet infrastructure to 

supercomputers to date due to its ease of programming and intuitive operation. However, 

this engine that powered the past decades’ information technology (IT) revolution is losing 

its steam due to its essential constraints, many upcoming fundamental physical limitations 

and new emerging problems with the demand for radically different computation.  

Grand Challenges and Rebooting Computing 

Human Society Desires a Continued Growing Computing Capability  

Current human society endeavors have been transformed as computer system 

capability by its exponential performance ascending since 1970s.  Faster computers create 
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not just the ability to do old things faster but the ability to do new things that were not 

feasible at all before [8]. Increasing computer performance has powered the whole IT 

revolution, greatly accelerated the pace of scientific discoveries and has rooted deeply in 

our daily lives. 

People enjoy faster response from their personal computers (PC), mobile phones, 

media players, and navigation devices; people expect always-connected  instant chatting, 

faster internet search and smooth online video streaming which is powered by more 

computing capability in datacenters; Engineers and scientists desire higher speed 

workstations and supercomputers to accelerate the pace of their theoretical and 

experimental discoveries; other high-performance computing fields include whole brain 

neural network simulation, public and national security, climate change, structure of 

proteins, understanding life cycle of stars, functions of living cells, behavior of subatomic 

particles, economics, high-energy physics, and nuclear weapons. 

New Ways Are Required to Tackle Unstructured Big Data 

After human society entered PC era, the ways to store and process information have 

been greatly changed. Based on this increasing variety of digital electronics devices, 

information is generated from different sources, such as PC, digital camera, digital audio 

recorders and many more. In spite of their different forms and characteristics, all the 

information is more and more saved in the format of digital data. This trend is even more 

accelerated along with the popularity of mobile devices, video surveillance, remote 

sensing, and Internet of Things. Data created from social media posting, email, office 

document processing, sensors, medical imaging instrument, machine logging, public 

recording, DNA sequencing and cosmic exploring, is growing in an unprecedented pace. 
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Every minute, there are 400 hours of new video uploaded to YouTube [9]; Every day in 

the future, square kilometer array, a radio telescope to be built for cosmic studies will 

generate up to 1020 bits [10].  More than 90% of these new generated data is and will be in 

an unstructured fashion [11] — meaning these human and machine generated textual data 

is fundamentally deferent from the data that stored in conventional database management 

system with keys, records, attributes, and indexes, and can be managed and analyzed with 

conventional computing system.  Data will be valuable only if it can be analyzed — new 

ways is required to extract meaning out of it, then we can make inroads in improving 

business plan, making new discoveries, reducing fraud, ferreting out waste, and even 

confirming acts of terror. The capability of analyzing large unstructured data will become 

a key basis of competition, underpinning new waves of productivity growth, innovation, 

and consumer surplus.  

Unsustainable Energy for Sustainable Computing Capability Growth 

Energy is consumed in all the computing devices everyday around us – from 

milliwatt home sensor systems to megawatts supercomputers. In between, a large number 

of devices, including media players, wireless routers, mobile phones, tablets, set-top-box, 

TV, PC, servers and storage systems, are consuming a few watts to kilowatts. In 2015, 

worldwide combined shipments for PCs, tablets, and mobile phones reached 2.4 billion 

units [12]. Enabling present human society to do many more things more efficiently and 

collaborate across the globe in real-time, the majority of these devices are always-

connected to 24×7 running computing and networking infrastructures. With the exploding 

data generated and transferred, the consequent energy consumption is skyrocketing. By 

2013, the global IT ecosystem used about 1,500 trillion watt-hours of electricity annually, 
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approaching 10% of global electricity generation [13]. Where, the energy consumption of 

a single datacenter or supercomputer can be astronomical number – the most powerful 

supercomputer takes 15 megawatts to operate [14]; a latest Facebook datacenter equipped 

GPUs as machine learning accelerators needs 84 megawatts backup power [15]; and the 

top datacenter consumes 150 megawatts [16]. If no major paradigm shift in the design and 

operation of computing systems, the anticipated and growing energy requirements for 

future computing needs will hit a wall by 2040 [10] – meaning computing will use all the 

energy the human society can produce.   

Besides the large-scale energy challenge, high energy-efficient computing is also 

urged in space and weight constrained small-scale applications. Distributed sensors have a 

potential huge number to perform collective tasks and distributed computing; they also 

need on-site intelligence and communication ability that allow decisions and actuation. 

Unmanned aerial vehicles like drones have tough requirements on their power supply. The 

battery capacity must trade-off with the aerial performance, but more autonomy and 

intelligence are required. High-performance computing systems that consumes very low 

amounts of power is the solution to meet these twin characteristics. Thus, radical 

improvement in the energy efficiency of computing system is needed.  

The End of Semiconductor Transistor Scaling 

In the last forty years, the semiconductor industry has made amazing progresses in 

scaling Complementary Metal-Oxide-Semiconductor (CMOS) transistors. This transistor 

scaling is driven by reducing transistor gate length (or feature size) by a scaling factor in 

each new CMOS technology generation. To obtain good transistor characteristics, other 

dimensional factors, the oxide thicknesses and the gate width also reduced proportionally. 



7 

 

 

 

As result, more gates can be placed on a chip of roughly the same area and cost as before. 

If the supply voltage decreases in a same pace at the same time, the delay of the gate also 

decreases in the same pace – meaning switching frequency increases in a same ratio, and 

the dynamic power consumption of the transistor decreases in a faster pace (square ratio). 

The computational capability of conventional microprocessors was increasing 

exponentially under this full scaling trend from 1970s to 1980s. From late 1990s, CMOS 

technology started running into some limitations that make it impossible to continue along 

that full-scaling path. Accompanied with the scaling down of supply voltage, the transistor 

switching threshold voltage was decreased together to maintain the circuit characteristics. 

The decreasing of the threshold voltage consequently leads to the increase of subthreshold 

leakage current. Subthreshold leakage current contributes to CMOS static power, which 

was too small compared to the dynamic power, thus generally was neglected. But 

ultimately by the 90-nm node in 2000, the feature size of CMOS transistors became 

sufficiently small that the static power dissipation through leakage and parasitic currents 

started to became larger than the dynamic power consumption for switching [17]. As a 

result, voltage scaling down slowed and the race of increasing CPU clock frequency 

stopped. Simulations at the time quickly demonstrated that the continued dimensional 

scaling without a concomitant voltage reduction would quickly yield a power density 

resulting in temperatures well above the melting points of the metals and even the 

semiconductors being used for the systems [18].  

Since then, new types of scaling rules as well as new designs and materials were 

introduced to reduce the power dissipation. However, MOSFETs have fundamental limits 

cannot be overcome even switching to new materials: On and off currents ratio for 
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meaningful switch provides the lower boundary of supply voltage and threshold voltage; 

the minimum channel doping for a given supply voltage limits the tolerance of threshold 

voltage variance; and a minimum oxide thickness is required to produce a transistor could 

reliably work for years [19]. While, the hard physical limitation is the transistor 

dimensions. By Aug 2016, the most advanced CMOS technology for CPU has its transistor 

gate length is 10nm, which is not far away from the size of the atoms used in silicon chip 

fabrication. If Moore’s law continued, the transistor length will meet the size of silicon 

atom at 0.2 nm just 8 years later. Finally, cost of chip manufacturing may render continued 

scaling infeasible. A state-of-the-art fab for manufacturing microprocessors now costs 

around 7 billion US dollars. An estimated cost of the fab for 5 nm chips could rise to over 

16 billion US dollars, or nearly a third of Intel’s current annual revenue. In 2015 that 

revenue, at 55.4 billion US dollars, was only 2% more than in 2011 [7]. So, from economic 

standpoint, the transistor scaling is also ended.  

Von Neumann Bottleneck 

In the thirty-five years of their history, all computing chips follow the architecture 

drafted by von Neumann in 1943, of which program and data memories are separated from 

arithmetic and logical computations. Differing with the original von Neumann’s draft that 

CPU fetches instructions and data and perform computation in a sequential manner, chip 

makers have made many improvements to the chip architecture to satisfy specific data 

processing requirements under certain constrains of memory bandwidth and power 

consumption in the history of computer development. In 1980’s, digital signal processors 

employed data bus in addition to the instruction bus (known as Harvard architecture) and 

added parallel accelerators to improve the performance of multiplication-addition 
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computation; in 1990’s, similar ideal applied to graphic processing and yielded GPU with 

hundreds and thousands specific computation cores on a single chip. When CPUs ran into 

the power wall in middle of 2000’s, chip makers began to include more processor cores on 

each die. Ideally, parallelizing all computing tasks, same as the supercomputer does, will 

make the computation faster, but this doesn’t help to improve the energy-efficiency and is, 

in fact, limited by the interface between processor and memory1. First, the memory latency 

is unavoidable in von Neumann architecture. By dividing the system into two big blocks, 

memory and processor, the processor uses at least five steps in sequence to perform a 

computation: fetch an instruction from memory, decode the instruction, read data from the 

memory, execute, and write the result back to the memory. When the data is stored in 

external memory – meaning not on the same chip of processor, the data access can be time 

consuming. Because the memory improvements have mostly been in density – the ability 

to store more data in less space rather than transfer rates, the processor has to wait for data 

to be fetched from memory. No matter how fast a processor can work, in effect it is limited 

to the rate of transfer allowed by the bottleneck. Despite that modern processors have 

integrated on-chip memory (called cache) to ease the challenge, the unstructured data, e.g. 

images, generally has big size, needs complicated computation, causes huge data exchange 

between processor and memory, thus, cannot be fitted in on-chip caches. Multi-core CPUs 

also face the dark silicon issue, where large sections of chips remain unutilized to manage 

power and thermal constraints. 

In conclusion, the conventional computing platforms cannot last in current growing 

path to fulfill the human society’s demand. So, there is a need to create a new type of 

                                                 
1 In precise words, the separation is between computing unit and memory. Processor is used here for simplification purpose. Today’s 

processor can have different memories on the chip, and all mainstream CPU/DSP/GPU chips have been integrated memories. 
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computer that can reboot the computing capability to solve unfamiliar problems with a 

significant leap in energy efficiency. 

Brain and Nanotechnology-Inspired Neuromorphic Computing 

Conventional computers are designed for precise arithmetic computational tasks 

with structural organized data which primarily originated from needs in national defense 

and scientific research, and later widely spread to engineering development, business 

operation and personal computing. On the other hand, starting from almost the same time, 

early brain-inspired computing techniques are employed in another class of computational 

tasks, called pattern recognition, which aim at more analogous computing with 

unstructured data, e.g. image classification, text recognition, speed understanding and 

language translation. These two classes of computing tasks traditionally exploit a different 

set of software tools and techniques, but both run on the same computer hardware 

architecture – the von Neumann architecture (there are a few customized hardware for 

neural computing but have never been in the mainstream). Recently, with the explosion of 

unstructured data and the rising of deep learning techniques, these two computing paths 

rapidly converge in almost all the computing areas, from electronic personal assistant, 

social networking to financing trading, new material discovery, cosmology research, DNA 

sequencing, and national defense. In view of this computing paradigm convergence and 

the foreseeable energy challenges, the mysterious wetware architecture of human brains, 

which only consume 20 W in its operation, seems just the exact one-stop solution that 

should be revisited for future computing systems and thus presents the ‘next frontier for 

exploration’. 
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The human brain is very good at the tasks of pattern discovering and recognition, 

and massive parallelism is believed the reason endows its effective and efficient computing 

with unstructured data. Radically different from today’s predominant von Neumann 

computers, the brain memories and computes using similar motifs. Neurons perform 

computation by propagating spikes and storing memory in the relative strengths of their 

synapses as well as their interconnections. By repeating and organizing such a simple 

structure of neurons and synapses, a biological brain is hypothesized to realize a very 

energy-efficient and massively-parallel “cognitive computer”. Despites most of the brain 

functions remain unknown, inspired by the understanding of visual and cerebral cortices, 

artificial neural networks (ANNs), in the form of software architecture, have been 

developed and achieved remarkable success in many applications specially using the deep 

learning techniques. However, these architectures have historically required hardware-

intensive training methods, such as the gradient-based back-propagation algorithms on 

conventional computers, and are not scalable in terms of cognitive functionality and 

energy-efficiency. By exploiting parallel graphical processing units (GPUs) or field-

programmable gate arrays (FPGAs), power consumption of ANNs has been reduced by 

few orders of magnitude [20], yet remains far higher than the energy consumption of their 

biological counterparts. 

In the past decade, the discovery of spike-timing-dependent- plasticity (STDP) 

[21]–[27] has opened new avenues in neural network research. Theoretical studies have 

suggested STDP can be used to train spiking neural networks (SNNs) in situ without 

trading-off their parallelism [28]–[31]. Further, nanoscale resistive random-access memory 

(RRAM) devices have demonstrated biologically plausible STDP with ultra-low power 
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consumption in several experiments [32]–[37], and therefore have emerged as an ideal 

candidate of electronic synapses. Then, hybrid CMOS / RRAM analog very-large-scale 

integrated (VLSI) circuits have been proposed [38]–[42] to achieve dense integration of 

CMOS neurons and RRAM synapses for realization of the brain-inspired computing 

system with comparable energy-efficiency to human brains.  

Researchers have recently demonstrated pattern recognition applications on spiking 

neuromorphic systems (with resistive synapses) [43]–[52] using integrate-and-fire neurons 

(IFNs). Most of these systems either require extra training circuitry attached to the synapses 

thus eliminating most of the density advantages gained by using RRAM synapses, or 

different waveforms for pre- and post-synaptic spikes thus introducing undesirable circuit 

overhead which significantly limit power and area budget of a large-scale neuromorphic 

system. There have been a few CMOS IFN designs that attempt to accommodate resistive 

synapses and in situ synaptic plasticity together [53]–[56], however, none of them supports 

pattern classification directly owing to the lack of a mechanism for making decisions when 

employed in a neural network. Moreover, the consideration of large current drive capability 

for a massive number of passive resistive synapses was absent in these designs. 

To this end, notable advancements of computational neuroscience and computer 

science in past decades reveal many architectures and computing mechanisms in the human 

brain. Furthermore, the novel developments and innovations in nanotechnology are 

contributing hardware elements and building blocks that suitable for a potential large-scale 

energy-efficient brain-like system. Inspired by them, a new paradigm of future computing 

system is on the horizon. Now, these components need to be synergic assembled, in order 

to bring brain-like computers into practice. 
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This Dissertation 

This dissertation describes brain-inspired computing architectures and 

neuromorphic circuits that can scale to accommodate a large number of resistive synapses 

to learn real-world patterns. The dissertation is organized as following: 

Chapter two introduces the background of brain computing. Fundamental neuron 

and synapse properties including their electrical operations are reviewed. Several basic 

neuron models are present, followed by discussions of essential learning schemes. The 

neural network architectures, from perceptron to modern deep neural network, are covered 

in the last section. 

Chapter three overviews the nanoscale memory technologies for neuromorphic 

computing. Phase change memory, spin-transfer-torque memory and RRAM are detailed. 

Due to its biological synaptic plausible attribute, operation modes, switching mechanisms 

and STDP of RRAM are elaborated. By comparing to the biological counterparts, 

characteristics of the nanoscale memory devices are discussed and a target specification 

for brain-inspired computing application is proposed. This chapter is wrapped up with a 

discussion of hardware integration of memory devices. 

Chapter four reviews the major building blocks of CMOS spiking neurons. Various 

design styles and circuits realizations of integration, threshold, firing, spike shaping, spike-

adaption, axon and dendritic tree are introduced with the notable examples of silicon 

spiking neuron designs in literature. 

Chapter five decribes a compact spiking leaky integrate-and-fire CMOS neuron 

design and the chip implmentations. The neuron architecture dedicated to RRAM synapses 

is discussed. Major subcircuitry blocks, including the opamp, asynchonous comparator, 
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STDP-compatible spike generator and control logic designs, are covered. The unique dual-

mode operation topology to enable a compact design with single opamp and dynamic 

powering scheme to achive hgh power efficiency are deatiled. Implmentations and 

manufcturing details of the test chip with are introduced. Simulation and chip 

meansurement results are presented to show that the neruon realizes in situ STDP and 

associative learning, and achieved a high energy efficiency when dring a large number of 

resisitve syanpses.   

Chapter six presented a versatile CMOS spiking neuron design with self-learning 

capability. A local learning architecture with corresponding winner-takes-all (WTA) 

interface circuit is proposed. With a novel tri-mode operation, this design encapsulates all 

essential of neuron functions for complex learning in a very compact circuit. In situ 

learning and real-time classification of real-world patterns are demonstrated in circuit level 

simulation.   

Chapter seven concludes the contributions of this work and presents the outlook for 

further work. 
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CHAPTER 2 

BRAIN INSPIRATION FOR COMPUTING 

 A background on the operation of neural networks is established in this chapter. First, 

the fundamental structures and operations of biological neuron and synapse are reviewed. 

Next, various neuron models especially the spiking neuron models are introduced. Third, 

essential biologically inspired learning methods are discussed. Finally, neural network 

architectures from simple perceptron to visual cortex model architecture, which has been 

the inspiration for hierarchical models and deep learning models used for the state-of-art 

machine learning, are covered.  

A Big Picture of Neuron Properties 

Neuron Morphology 

 Neurons are the basic units and core components of the brain. They are highly 

specialized for responding to electro-chemical stimuli, and processing and transmission 

electrical signals. There are about 1011 neurons in the human brain, where three quarters of 

them are in cerebral cortex. A typical neuron cell has three basic morphological regions: 

soma, dendrites and axon, as shown in Figure 2.1. The dendrites generally branch out in 
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trees-like fashion to receive inputs from many other neurons through synaptic connections. 

The pyramidal neuron, as shown in Figure 2.1.A and is often found in cerebral cortex, 

receives thousands of synaptic inputs. And the cerebellar Purkinje cell of Figure 2.1.C can 

form up to 200,000 synaptic connections [135] with its elaborate dendritic tree. The post-

synaptic potentials that are generated through synapses are aggregated in space and time 

within the dendrite and conducted to the soma. Soma, or cell body, is the center of the 

neuron where the electrical signals are processed and generated. Somas have a typical 

A B

C

 
Figure 2.1. Diagram of three neuron cells. (A) A cortical pyramidal cell. These are the primary 

excitatory neurons of the cerebral cortex. (B) A Purkinje cell of the cerebellum. Purkinje cell has 

an elaborate dendritic tree which can form up to 200,000 synaptic connections. (C) A stellate cell 

of the cerebral cortex. Stellate cells one of a large class of inter-neurons that provide inhibitory 

input the neurons of the cerebral cortex. (Reprinted from [64]. Permission is requested and under 

reviewing now.) 
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diameter from about 10 µm to 100 µm. The basic method a soma processes the information 

is to produce a membrane potential with the aggregated post-synaptic potentials, and 

generate an ‘action potential’, or spike for simplicity, once the membrane potential reaches 

a threshold, of which the event to emit the action potential is called firing or spiking. After 

firing, the neuron becomes insensitive to stimuli during a refractory period of few 

milliseconds.  Most neurons transmit action potentials down the pre-synaptic terminals, 

where the action potential generates post-synaptic potentials through synapses to the 

dendrites of other neurons. Axon from single neurons can traverse several millimeters to 

reach other regions in the brain. For fast transmission, some axons are covered by myelin 

sheaths. And to maintain the signal integrity, they are interrupted by nodes of Ranvier 

where, the action potential is regenerated. A few neurons, have no axons or very short 

axons transmit graded potentials directly, which decay exponentially. 

Neuron Electrical Properties 

 The electrical properties of the neurons are defined in the relative to their surrounding 

extracellular medium, which is conventionally defined to be neutral. Under resting 

conditions, a neuron maintain about -70 mV potential inside its cell membrane which is 

supported by ion concentration gradients across the membrane. Membrane potential 

increases when currents flow into the cell (in the form of positively charged ions flowing 

out of the cell), while decreases when currents flow out the cell (in the form of positively 

charged ions flowing into the cell). Information processing in a neuron starts from 

receiving and summing thousands of post-synaptic current inputs from synapses, and then 
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induces the change of the membrane potential at the soma. The current summation in a 

neuron happens in two ways – spatial summation and temporal summation, as illustrated 

in Figure 2.2, Spatial summation is the way of congregating currents from multiple 

synapses, and thus performs the algebraic summation of currents from different locations. 

Temporal summation is the overlap and summation of currents with each other at different 

time, and thus is a time-varying integration of the inputs [57]. Here, neuron membrane acts 

as the dielectric layer of a capacitor that hold the charges yielded by the spatiotemporal 

current summation in the cell body. Once membrane potential grows above the firing 

threshold about -55 mV, an action potential that has a potential of roughly 100 mV and 

lasts for about 1 ms is generated, and it then travels in forward direction down to the axon, 

as well as backwards into the dendritic tree. It is worthwhile to note that all action potentials 

have a uniform spike-like shape and electrical characteristics, and thus, are regarded as 

 
A B C D 

Figure 2.2. Spatio-temporal summation and action potential generation. (A) No summation: 

Excitatory stimuli E1 separated in time do not add together on membrane potential. (B) Temporal 

summation: two excitatory stimuli E1 close in time add together on membrane potential. (C) Spatial 

summation: two simultaneous stimuli E1 and E2 at different locations add together membrane 

potential. (D) Spatial summation of excitatory and inhibitory inputs can cancel each other out on 

membrane potential. (Reprinted from [57]. Permission is requested and under reviewing now.) 
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carrying no sensory information in the shape alone. Instead, their frequency and the exact 

timing relative to each other contains information. It also has been found that the shape of 

action potential has crucial functionalities as a substrate for modification of synaptic 

efficacy.  

 The primary electrical operation of a neuron could be summarized as integrate and 

fire, while considering the dendrite tree as a passive portion. However, neuroscience 

experiments also suggest that dendritic tree could act as independent computational units, 

e.g. it has been found that synapses can influence each other in the neighboring dendrite 

tree, and membrane potentials can be amplified by active spots on dendrite tree [58].  

Synapse 

Neurons communicate with each other using action potentials, while the medium 

that sits between one neuron’s axon and the other neuron, and passed the signal, is termed 

as the synapse. Conventionally, the neuron that transmits action potential is called the pre-

synaptic neuron, and the neuron that receives the action potential related signal is called 

the post-synaptic neuron. Most of the synapses have their post-synaptic part located at the 

spines in the dendritic tree and less frequently at the dendritic shafts. While inhibitory 

synapses also contact the soma, where they can have a strong effect on the membrane 

potential of the post-synaptic neuron and mute it. Although synapses are highly specialized, 

they fall into two categories: chemical synapses which terminate electrical signals and pass 

the information from pre-synaptic neuron to post-synaptic neuron using chemical 

substances, and electrical synapses that directly pass electrical signals.  
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In a chemical synapse, the nerve terminal at the end of the pre-synaptic neuron’s 

axon is separated from the post-synaptic neuron with a synaptic cleft, which has a typical 

width of about 15 to 25 nm. At the nerve terminal, the action potential is terminated and 

converted into a series of chemical reactions to pass information. Thus, the communication 

in chemical synapse is unidirectional from the pre-synaptic to the post-synaptic cell. The 

information transmission in chemical synapse is illustrated in Figure 2.3 [59]. When an 

action potential arrives at the pre-synaptic terminal, voltage gated channels in the 

membrane are opened and causes a rapid influx of Ca2+ ions into a region in the pre-

synaptic bouton called active zone. The fast inflow ions elevate the transient Ca2+ 

concentration level to a much higher value, which in turn, allows vesicles containing 

neurotransmitters to fuse with the membrane at specific docking sites. Then, the 

neurotransmitters molecules are released and diffuse through the synaptic cleft. They bind 

 
Figure 2.3. Synaptic transmission at chemical synapses. (A) An action potential arriving at a pre-

synaptic axon causes voltage-gated Ca2+ channels at the active zone to open. (B) A high 

concentration of Ca2+ near the active zone causes vesicles containing neurotransmitter to fuse with 

the pre-synaptic cell membrane and release their contents into the synaptic cleft. (C) 

Neurotransmitter molecules diffuse across the synaptic cleft and bind specific receptors on the post-

synaptic membrane. These receptors cause ion channels to open (or close), thereby changing the 

membrane conductance and membrane potential of the post-synaptic cell. (Reprinted from [59]. 

Permission is requested and under reviewing now.) 
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to the corresponding receptors on the post-synaptic membrane, that open or close ion 

channels in its vicinity. As a result, ions flow into post-synaptic neuron and build a post-

synaptic potential (PSP). The post-synaptic potential can be either excitatory (EPSP) or 

inhibitory (IPSP), depending on the type of the pre-synaptic neuron. Typically, a EPSP 

increases the membrane potential from its resting potential and brings it closer towards the 

firing threshold; while a IPSP decreases the membrane potential from its resting potential. 

Electrical synapses connect the membranes of two neurons directly with a gap-

junction. The ion channels on the two sides of gap are aligned, and thus, allow ions to pass 

through channels quickly in both the directions. Consequently, electrical signal runs 

through an electrical synapse even if it is below the threshold for an action potential. 

Because the communication is fast, neurons use electrical synapses to synchronize their 

activity. 

The strength (or efficacy) of both of electrical and chemical synaptic transmission 

can be enhanced or diminished, called synaptic plasticity, according to pre- and post-

synaptic activities. The enhancement of synaptic strength is also called potentiation and 

equivalents to an increase in synaptic conductance, while the diminution is called 

depression and equivalents to a reduction in synaptic conductance. The time-scale of 

synaptic potentiation and depression varies from milliseconds to several minutes (short-

term), or from several hours to days (long-term). Here the long term potentiation (LTP) is 

widely considered to be responsible for the underlying learning and memory in the brain. 

There are many cellular mechanisms involved in the formation of LTP, where neuroscience 

experiments have shown that permanent structure changes could lead to LTP. These 
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structure changes include emergence of additional post-synaptic receptors, enlargement of 

axon terminal, and growth of new spines. 

Neuron Models 

McCulloch-Pitts Model 

 Even though a majority part of the human brain still remains less understood even 

after a century’s research, the development of capturing its structure, behavior and 

mathematical modelling for application can be traced back to 1943. In that year, McCulloch 

and Pitts proposed a neuro-inspired computing model [5], which described a neuron into a 

mathematical weight summing and linear thresholding gate. In mathematical form, it 

describes a neuron with a set of inputs x1, x2, x3, …, xn and one output y. The linear threshold 

gate simply classifies the set of inputs into two different classes, “0” or “1”, and can be 

generalized in mathmatical equations 

𝑠 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 

𝑦 = 𝜑(𝑠, 𝜃) 

where wi are the weight values representing the synpatic connection strength, s is the the 

weighted sum and equavilent to the neuron membrane voltage. The φ is called activation 

function which depends on the weighted sum s and the firing threshold θ, and was selected 

as a Heaviside step function at the beginning. The McCulloch-Pitts model of a neuron is 

simple yet has captured the fundamental features and operating behavior of biological 

neurons. 
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The McCulloch-Pitts model highly abstracts the fundamental neuron behavior 

without taking many neural network properties into consideration. Moreover, the 

mathematical formulation of the back-propagation algorithm needs intensive computing 

power and is far away from the actual biological spike-based neural networks. Thus, this 

model is not hardware-friendly and difficult to be used in neuroscience research. By 

looking more closely at the biological neurons and biological neural networks, 

neuroscientists and engineers have formulated more accurate representations of neuron, 

synapse and network architecture that can provide much more computational power. 

A biological neuron has its outputs in the form of short electrical pulses, termed as 

action potentials or spikes. The shape of the pulse does not change as the action potential 

propagates along the axon, and all spikes from the same neuron look alike. As a result, the 

shape of the spike does not carry any information and is noted as 0 or 1in the classic ANNs. 

However, the number and the timing of the spikes can matter and, in fact, are 

computationally useful, which is the fundamental property neglected by the simple 

McCulloch-Pitts model.  

Leaky Integrate-and-Fire Model 

The neuron behavior can be also modeled in terms of the spike generation 

mechanism. The leaky integrate-and-fire (LIF) neuron is probably the best-known example 

of such an abstracted spiking neuron model. The LIF neuron model captures the most basic 

property of biological neurons; it integrates injected currents over time and generates an 

action potential whenever its membrane potential Vmem crosses a firing threshold value Vthr. 

After the firing, the membrane potential goes back to a rest value Vrest below the threshold 
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voltage. In its simplest implementation, the membrane potential dynamics of a LIF neuron 

is described as 

𝐶𝑚𝑒𝑚

𝑑𝑉𝑚𝑒𝑚

𝑑𝑡
= −

𝑉𝑚𝑒𝑚 − 𝑉𝑟𝑒𝑠𝑡

𝑅𝑚𝑒𝑚
+ 𝐼, 

where I is the total injected current, Cmem presents the membrane capacitance, and Rmem 

represents the membrane resistance which causes a leaky current outflow from the neuron. 

This equation is also written in terms of the membrane time constant τm 

𝜏𝑚𝑒𝑚

𝑑𝑉𝑚𝑒𝑚

𝑑𝑡
= −(𝑉𝑚𝑒𝑚(𝑡) − 𝑉𝑟𝑒𝑠𝑡) + 𝐼𝑅𝑚𝑒𝑚, 

and τm = Rmem Cmem called membrane time constant. In the LIF neuron model, the shape of 

the action potential is not explicitly described. By denoting the spiking event as f iring time 

t(f), a discrete time series could be used to represent the output spikes of a neuron  
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Figure 2.4 A leaky integrate-and-fire neuron response under a time-varying input current. (Top) a 

raster plot of the discrete output spike train of which the action potential dynamics is ignored. 

(Middle) Membrane voltage Vmem with the action potentials overlaid onto it as vertical lines. 

(Bottom) Trace of the input current. (Adapted from [64]. Permission is requested and under 

reviewing now.) 



25 

 

 

 

𝑡(𝑓): 𝑉𝑚𝑒𝑚(𝑡(𝑓)) = 𝑉𝑡ℎ𝑟 . 

The LIF neuron model is a single compartment model i.e. it has only one variable 

Vmem that models the subthreshold membrane potential dynamics. It doesn’t specify the 

action potential shape, and membrane capacitance and resistance are time independent 

which is not the case in biological neurons. However, if the action potential dynamics is a 

not a primary factor in computation, and the variations in membrane parameters can be 

ignored, the LIF model provides a very efficient and effective representation of spiking 

neuron behavior. 

Hodgkin and Huxley Model 

From a biophysical point of view, spike potentials are the result of currents that 

pass through ion channels in the cell membrane. In an extensive series of experiments on 

the giant axon of the squid, Hodgkin and Huxley succeeded in measuring these currents 

and describing their dynamics in terms of four nonlinear ordinary differential equations 

[60]. Hodgkin and Huxley model precisely captured the conductance changes in sodium, 

potassium and leak channels as functions of channel potentials, and models the neuron 

membrane potential as a function of the channel currents. While the Hodgkin-Huxley 

model is regarded as one of the great achievements of 20th century biophysics, its 

computational complexity severely limits its applicability to large scale models and 

engineering applications. Furthermore, it is unclear from a computational perspective 

whether the exact details of the ion channels are necessary, or if they are simply artifacts 

of biology’s implementation. Modeling at the level of the Hodgkin-Huxley neuron may be 

key to building a one-to-one correspondence model of the brain, but the computational 
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requirement of such a model makes it hard to justify its use towards engineering and 

application specific tasks [61]. 

Izhikevich Model 

Because the behavior of high-dimensional nonlinear differential equations is 

difficult to visualize and even more difficult to analyze, many lower-dimensional models 

are developed. The Izhikevich model is the most successful two-dimensional model so far 

that is capable of describing channel conductance with the best trade-off between 

biological correctness and computational complexity. The Izhikevich model uses just two 

differential equations and four parameters that are given by: 

𝑑𝑉𝑚𝑒𝑚

𝑑𝑡
= 0.04𝑉𝑚𝑒𝑚

2 + 5𝑉𝑚𝑒𝑚 + 140 − 𝑢 + 

𝑑𝑢

𝑑𝑡
= 𝑎(𝑏𝑉𝑚𝑒𝑚 − 𝑢) 

where u represents a membrane recovery variable, I is the injected current, and a,b are 

tuning parameters [62]. Izhikevich model can exhibit many different neuron behaviors 

 
Figure 2.5. The Izhikevich model is capable of mimicking a number of different neuron behaviors 

that have been experimentally observed. (Adapted from [62]). 
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observed in biological experiments such as tonic spiking, bursting, and spike-frequency 

adaptation, as shown in Figure 2.5. However, from the current understanding from 

computational neuroscience, faithful mathematical fitting a model to the neuron behavior 

tells neither the procedure of information processing occurring in a neuron nor their role in 

computation. Therefore, such models are difficult to be used for study of neural encoding, 

memory, network dynamics, and guiding the construction of artificial neural hardware.  

Brain-Inspired Learning 

Spike-timing dependent plasticity (STDP) of synapses and its modifications are 

widely believed to be the underlying learning mechanism in the brain. Many neuroscience 

experiments have revealed that spike-dependent processes can produce short-term changes 

in the efficacies of synapses, as well as form permanent connections among neurons. The 

changes in synaptic efficacy make a neuron to respond to certain stimulations only, and 

then eventually become selective. Furthermore, experimental and theoretical studies also 

suggest a group of neurons organized in a recurrent manner can compete and form different 

selective pattern to the shared inputs. Inspired by these mechanisms, a wide variety of 

computing tasks including associative learning, auto-encoding, pattern recognition, time-

series predication, function approximation and memory storage and recall can be realized. 

Hebbian Learning 

In 1949, Donald Hebb describes a basic mechanism for synaptic plasticity, where 

an increase in synaptic strength arises from the pre-synaptic cell's repeated and persistent 

stimulation of the post-synaptic cell [63]. This Hebbian learning theory is often 

summarized to "neurons that fire together, wire together". From the point of view of 
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artificial neural networks, Hebb's principle can be described as a method of altering the 

synaptic weights w between neuron units depending on their relative activities. This 

insightful observation partially inspired the development of artificial neural networks.  

The basic Hebb’s rule can be put in a mathematical form with the integrate and fire 

model 

𝜂
𝑑𝒘

𝑑𝑡
= (𝒘𝒙𝑻)𝒙 = 𝑦𝒙, 

where x is a matrix of the pre-synaptic spiking inputs, y is the neuron output equals to the 

dot product of x and w, and η is the learning rate. Using 0 and 1 to represent no spike and 

the presence of a spike, this equation tells that weights increase with the existence of 

respective correlated pre- and post-synaptic spikes during a given small time interval. 

When interpreting this in a statistical manner, x is spike trains of the pre-synaptic neurons 

following certain distribution (e.g. Poisson), y is the spike train of the post-synaptic neuron, 

and thus the basic Hebb’s rule describes the probability of the changes to the synapses 

depending on the neurons coincident activities.  

Theoretical analysis shows the basic Hebb’s rule, in fact, approaches to the 

principle component analysis (PCA) [64], [65]. As result, it yields the weight vector an 

approximation to the first principle component of the given input stimulation. However, 

Hebbian learning is not stable, because the weight values grow with time until they are all 

saturated. As result, the neuron loses its selectivity. There are several mathematical ways 

to modify and stabilize Hebb’s rule, e.g. subtractive normalization  and Oja’s rule [64], but 

they are not biology plausible and difficult to embedded with a neural network in a natural 

way. 
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Spike Timing Dependent Plasticity 

The original Hebb’s rule reflects the one side of the synaptic plasticity, that is 

potentiation or weight increase. The other side, synapses depress or decrease weight when 

the pre- and post-synaptic neurons fire together, was studied and formulated with 

experimental evidence, and named anti-Hebb’s rule. Hebb’s rule relates the synaptic 

changes with the timing of activities of pre- and post-synaptic neurons in a very rough way 

– “together”; while the precise relations with time was not seriously studied until the 

1990’s. 

In 1993, the precise spike-timing information between pre- and post-synaptic 

neurons was used to modulate synapse strength in a neural network simulation without 

considering it as biologically plausible [66]. Five years later, in vivo experiments of cortical 

pyramidal cells showed that the relative timing of the pre- and post-synaptic spike pairs is 

critical in determining the amount and type of synaptic modification that takes place [67]. 

In the following years, this discovery was double confirmed and summarized as the spike-

timing dependent plasticity (STDP) in a well-known formula today [22]–[24], [67]–[69]. 

STDP states that the synaptic weight w is modulated according to the relative timing of the 

pre- and post-synaptic neuron firing. As illustrated in Figure 2.6, a spike pair with the pre-

synaptic spike arrives before the post-synaptic spike results in increasing the synaptic 

strength (or potentiation); a pre-synaptic spike after a post-synaptic spike results in 

decreasing the synaptic strength (or depression). Changes of the synaptic weight plotted as 

a function of the relative arrival timing Δt of the post-synaptic spike with respect to the pre-

synaptic spike is called the STDP function or learning window. A popular choice for the 

STDP function Δw is 
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∆𝑤 = {
𝐴+𝑒−∆𝑡 /𝜏+     for ∆𝑡 > 0

𝐴−𝑒 ∆𝑡 /𝜏−      for ∆𝑡 < 0
, 

and is shown as the fitting curves in Figure 2.6 with the coefficients A+, A-, τ+ and τ-. 

STDP relates both of the synaptic potentiation and depression to precise relative 

arrival timing of the pre- and pos t-synaptic spike pair in a single picture, which greatly 

expands the computing capability of spike-based learning. With an appropriate set of 

parameters, theoretical analysis has shown that the firing rate of the post-synaptic neuron 

has a stable fixed point without an explicit normalization step [70]–[73]. Then, STDP is a 

stable learning method which solves the stability challenge in Hebbian learning in a natural 

way. Recently, simulation based experiments also shown that STDP enables a single 

neuron to develop a selectivity capability by itself to identify a repeating arbitrary 

spatiotemporal pattern and track to its beginning, in an equally dense distracting noisy 
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Figure 2.6 A STDP learning window shows the change of synaptic connections as a function of the 

relative timing of pre- and post-synaptic spikes after 60 spike pairings redrawn from [22]. The 

fitting curve shows the double-exponential STDP function. 
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background [74]. Besides above basic pair-wise learning rule, STDP has many varieties 

[73], [75]. Future experiments have shown the relative voltage of the pre- and post-synaptic 

spike pair is the more fundamental than spike timing [24], [73], which will become explicit 

and critical in modeling and realizing the in situ modulation of nanoscale RRAM devices 

later. Last and important, because STDP is a local learning rule – which implies that the 

change of synapse weight depends only on the activities of the two neurons connected by 

the it, and therefore, there is not von Neumann bottleneck at all, at the same time, the 

circuits driving the learning could be very simple. 

Associative Learning 

Associative learning is a simple analogous to the classical conditioning which is 

the foundation of animal behavior and refers to a learning procedure in which an unrelated 

stimulus is paired with a reinforcing stimulus, such as rewards or punishment, by virtue of 

the repeated correlation. Associative learning was first studied in detail by Pavlov’s studies 

with salivation response in dogs in 1927. In his seminal experimental test, Pavlov fed the 

dog food which is an unconditioned stimulus that is independent of previous experience, 

and at the same time, presented a bell sound which is a conditional stimulus depending on 

its association with food. After a few repeats, the dogs started to salivate in response to 

only to the bell sound.  

The neural substrate of simplified associative learning could be modeled by a neural 

network with two input neurons for sensory and one output neurons for association 

decision. In this small network, one of the two sensory neurons presents the unconditioned 

stimulus, and cause the output neuron fires. If, at the same, another stimulus was given to 

the other sensory neuron, by applying Hebbian learning rule, the connection between this 



32 

 

 

 

sensory neuron and the output neuron will get strengthened. After sufficient repeats in the 

same way, the strengthened connection finally causes firing of output neuron 

independently.     

Associative learning is a dynamic process with the synaptic connections developing 

according to the relationships between a new stimulus with the existing one, and thus, could 

be considered as a minimum form of supervised learning. It is worth to point out that 

associative learning in the real brain is a complicated process instead of a single neuron 

reaction. There is substantial evidence that many chemical substances, like dopamine, are 

involved in the reward learning at the system level. Despite it doesn’t account to explain 

the classical conditioning in animal brains, the single neuron model inspires a useful way 

to implement reinforced learning in hardware. 

Competitive Learning 

STDP enables in situ synaptic potentiation and depression depending on the local 

neurons that are locally connected to a synapse, and then enables a neuron to become 

selective to successive coincidences of a pattern. When a group of neurons are working 

together, the depression between each other or among a group of neurons with recurrent 

connections could make these multi-neuron systems achieve high-level functionality. In a 

brain, the mutual depression is generally achieved through lateral inhibition, which is a 

decrease in the activity of one neuron resulting from the stimulation of its neighbors. 

Lateral inhibition is an extremely common characteristics of the brain’s sensory 

path. The on-center and off-center cells of the auditory system, the somatosensory system, 

and the visual system in brains are the consequence of lateral inhibition. For example, a 

retina on-center cell increases its firing rate when the center of its receptive field is exposed 
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to light, and decreases its firing rate when the surround is exposed to light and the cell is 

inhibited by neighbor cells. Off-center cells have just the opposite reaction. In this way, 

lateral inhibition sharpens the spatial resolution, enhances the contrast at boundaries 

between stimulus and creates the perception of edges. 

In a more general form, lateral inhibition can result competitive learning among 

neurons. As the name implies, competitive learning means the output neurons compete 

among themselves and only the one that responses fastest or strongest is active at any given 

time. This form of competitive learning is also known as winner-take-all (WTA). By 

combining with the Hebbian learning, this feature is able to discover statically salient 

features that may be used to classify a set of input patterns [76]. 

An example of competitive learning in a single layer spiking neural network is 

shown in Figure 2.7 [77]. Here, neurons are organized in parallel as a layer of neural 

network. They all connect to the same input spike trains with only excitatory synapses, and 

competition is formed among them with lateral inhibitory synapses. These neurons sum 

 

Figure 2.7 Simple competitive learning through mutual lateral inhabitation in a spiking single layer 

neural network. Three neurons in parallel connects to the input spike trains, and lateral inhibitory 

connections among them. As soon as a neuron fires, it inhibits its neighbors and implements a 

winner-take-all mechanism. (Adapted from [77]. Permission is requested and under reviewing 

now.) 
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the inputs current and generate their membrane potentials, of which the fastest growing 

one is the neuron has its synaptic weight best matching to the inputs. As soon as the neuron 

fires, it sends a signal to inhibit all of its neighbors, and the only its synapses will be 

changed under learning rule – meaning the winner takes all. We have mentioned that 

Hebbian learning realized an approximation to find the first PCA component of the inputs, 

the WTA mechanism enables the neurons to trace different patterns in the inputs in each 

spiking event, and find their first PCA component respectively. Together, this group of 

neurons identifies characteristic patterns and saves them as fixed filter-like templates in 

their synaptic connections. Later, the pattern classification task is performed by matching 

the fixed filter-like templates to the new input activity profile through competition again. 

Using the binary output spike train notation yi the i-th neuron, WTA can be expressed as 

𝑦𝑖 = {
1,     if 𝑣𝑖 > 𝑣𝑗  for all 𝑗, 𝑗 ≠ 𝑖

0,    otherwise                        
, 

where vi represents the membrane potential just before the firing of the i-th neuron, and the 

respective synaptic weight is updated according to the learning rule.  

WTA can be mathematically interpreted as the maximum likelihood decoding 

method [64], and more theoretical work has proved that the combination of WTA and 

STDP realizes optimal parameter identification in terms of Bayesian expectation-

maximization algorithm [31], and hidden Markov model learning  [78]. 
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Brain-Inspired Architectures 

Perceptron 

In the following one decade of the invention of McCulloch-Pitts neural model, by 

the combining Hebbian learning, Frank Rosenblatt introduced the first generation of 

artificial neural network, the perceptron, in 1958. Perceptron is a binary classifier which a 

neural network composed of several associative neuron units as inputs, a decision neuron 

unit as outputs, and an algorithm for supervised learning [6]. Specially, bias of a neuron is 

used in perceptron algorithm, which can be considered as an additional constant 1 input (x0 

= 1) to a weight with the value equals the bias (w0 = b) in the previous generalized neuron 

model. A subsequently implemented hardware with an array of photocells as neurons and 

potentiometers as synapses may be the first neuro-inspired computing hardware. However, 

it was quickly proved that such a perceptron could only be used to discriminate linearly 

separable data, while the non-linearly separable problems like XOR function were 

impossible for it to classify [79]. This led to the field of neural network research stagnating 

for several years. 

Multi-Level Perceptron 

In 1970’s, it was recognized that a multilayer perceptron (MLP) had far greater 

processing power [80], where there is at least one hidden layer between inputs and outputs 

as shown  in Figure 2.8. In 1986, Rumelhart, Hinton and Williams applied backpropagation 

(BP) algorithm to the MLP network [81]. Moreover, researchers noted that biological 

neurons are sending the signal in patterns of spikes rather than simple absence or presence 

of single spike pulse, and a number of continuous activation functions φ, such the sigmoid, 
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replaced step function in neuron model. By connecting multiple layers of neurons with 

continuous activation function and applying backpropagation algorithm, the true 

computing power of the neural networks were realized. MLP-BP was used successfully for 

wide variety of applications, such as speech or voice recognition, image classification, 

medical diagnosis, and automatic controls. Later, many techniques were added, e.g. noise 

training, momentum, and made it one of the most useful methods in applications of pattern 

recognition and function approximation. 

Research in classic artificial neural network peaked in 1989 when a feed-forward 

multilayer perceptron was shown to approximate any continuous function [82], where the 

proof was not conclusive regarding the number of neurons required or the settings of the 

weights. However, the real challenges came from practical issues: the diminishing 

correction value during backpropagation through multiple layers limited a practical MLP 

ANN realization. Generally, an MLP ANN had only one or two hidden layers, as the 

.
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Figure 2.8. A typical multi-layered perceptron (MLP) is composed of an input layer, output layer, 

and one or more hidden layers. 
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limited computing capability at that time restricted the ANN training to only small scale 

neural networks. These issues remained a roadblock in the next ten years, until another 

wave of brain inspiration arrived in the field of artificial neural networks. Interestingly, in 

the same year, an MLP with a modified architecture was used for handwritten digits 

recognition and started to brew the latest deep learning storm [83], and the concept of brain-

inspired neuromorphic hardware was proposed [84]. 

Recurrent Networks 

Perceptrons are feedforward neural networks wherein their connections between the 

neurons go in only one direction and do not form a cycle. While in general, the connections 

in a neural network can form a directed cycle, called recurrent neural networks (RNN). The 

competitive learning network with lateral inhibitions is an example of the recurrent neural 

network. The cycled connections in RNN create internal states which allow the network to 

exhibit dynamic temporal behavior. As a result, RNNs can use their internal memory to 

process arbitrary sequences of inputs, e.g. speech waveforms and financial time-series data. 

Besides competitive learning network, there are several types of RNNs. The Hopfield 

network is a symmetrically connected RNN which serves as content-addressable memory 

system with interconnection alteration under Hebbian learning rule. A liquid state machine 

(LSM) consists of a large collection of randomly connected non-linear neurons with linear 

read-out units. The recurrent nature of the connections turns the input into a spatio-

temporal pattern of activations in the network nodes and realizes a large variety of 

nonlinear functions. The LSM can theoretically perform any mathematical operation by 

linearly combining the network states and forms a universal function approximation. 



38 

 

 

 

Hierarchical Models and Deep Neural Networks 

Sustained advances in neuroscience experiments and anatomy in the past half-

century have revealed the basic hierarchy of primate visual cortex, and then offer 

significant inspiration to vision computing technology. The first milestone of 

understanding the visual cortex hierarchy was made by Hubel and Wiesel in 1962, who 

first described two functional classes of visual cortical cells: Simple cells and Complex 

cells [85]. A simple cell has relatively small receptive field and responds best to oriented 

stimuli at one particular orientation and grating. A complex cell has a large receptive field 

and responds a certain orientation regardless of the exact location. Hubel and Wiesel 

further proposed that simple cell’s receptive field could be ‘pooling’ the activity of a small 

group of on-center or off-center cells that are aligned along a certain orientation; while 

complex cell’s receptive field could be a pooling of simple cells’ activity with the same 

preferred orientation but slightly different locations [86]. 

Inspired by the scaling invariance capability provided by simple-complex-cell pair, 

many models have been proposed to build a multi-stage hierarchical architecture which 

achieves complex and invariant object representation by progressively stacking simple-to-

complex pairs from lower levels [28], [87]–[90]. Figure 2.9 illustrates an example of 

information processing in hierarchical simple-to-complex stacks. This HMAX model [87] 

composites of has five layers of neural networks, S1, C1, S2, C2 and VTU, and two types 

of computation— weight sum and max. The S1 is a simple cell layer extracting orientation 

features from retina outputs. After S1, max-like operations (shown in dash circles) are 

applied over similar features at different position and become the inputs of C1, which is a 

complex cell layer building tolerance to position and scale. Several C1 outputs combine 
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under a bell-shaped tuning operation (shown in plain circle) and form complicated features 

extracted in S2, a higher level simple cell layer, to increase complexity of the underlying 

representation. Furthermore, C2, the high er level complex cell, further combines feature 

from C1 and S2 and forms complicated features. The fifth layer is a full connection between 

C2 and VTU, which contains view-tuned cells that are tolerant to scaling and translation 

of their preferred object view. Recent research has shown that the simple-cell-like receptive 

field could emerge from unsupervised learning to natural scene images [91].  Also 

 

Figure 2.9 The basic HMAX model consists of a hierarchy of five levels, from the S1 layer with 

simple-cell like response properties to the level with shape tuning and invariance properties like 

the view-tuned cells. (Reprinted with permission from [87] © 1999 Macmillan Publishers Ltd: 

Nature Neuroscience). 
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biologically plausible unsupervised receptive field formation has been shown using STDP 

local learning rule [92].  

Hierarchical organization provides a solution to the invariance object recognition 

by decomposing a complex task in a hierarchy of simpler ones that can be easily processed 

at each stage. In addition, employing the hierarchical stacking of simple building blocks 

enables a better use of computational resources to achieve high energy efficiency. For 

instance, the lowest levels of the hierarchy may represent a dictionary of features that can 

be shared across multiple classification tasks [93]. 

Hierarchical visual cortex inspired the development of immensely popular 

convolutional neural networks (CNNs) as well, which is the starting point of deep neural 

networks (DNNs). In 1980, Kunihiko Fukushima introduced Neocognitron [94] which is a 

multi-layer neural network with its first layer operating in convolutional manner to extract 

local features and then cascades it in the simple-to-complex manner. Later, LeCun 

designed his deep neural networks [83], [95] with a customized connecting schema that 

can be trained with standard backpropagation algorithm to recognize handwritten postal 

codes on mails, as shown in Figure 2.10.  

However, similar to the MLP, CNN experienced the issue of vanishing gradient 

[96] and is difficult to train in general manner, until several techniques were invented later. 

One of the critical techniques is layer-wise pre-training used in  Schmidhuber's multi-level 

hierarchy of networks, in which each layer is pre-trained one at a time through 

unsupervised learning, and then fine-tuned through backpropagation [97]. Other 

techniques include choosing appropriate activation functions, e.g. using rectified linear 

units (ReLU) to replace conventional sigmoid function [98], and loss functions, e.g. using 

https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Backpropagation
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cross-entropy loss to replace conventional mean squared error [99]. Finally, these 

innovations led to the rise of today’s deep neural networks (DNNs).  

DNN is a general name of various deep learning architectures such as CNNs deep 

belief networks, recurrent neural networks, deep Boltzmann machines, long short term 

memory, stacked auto-encoders and so on. In spite of their different structures and 

mathematical operations, all DNNs use a cascade of several layers (more than three) of 

nonlinear processing units for feature extraction and transformation, and each successive 

layer uses the output from the previous layer as its input [100]. DNNs have been shown to 

produce state-of-the-art results on various tasks including human-level performance in 

imaging object recognition, automatic speech recognition, natural language processing, 

audio recognition and bioinformatics, and this list is still growing fast. 

Unfortunately, despite the brain-inspired architectures naturally fitting into neural 

network which realizes massive parallelism and unsupervised learning, most of today’s 

DNNs are running on conventional computers and trained using some form of gradient 

descent algorithm. Consequently, they suffer from the issue of von Neumann bottleneck 

(i.e. the memory processor interface gets overwhelmed with large volume of computation), 

 

Figure 2.10 Architecture of LeNet-5 convolutional neural network. It starts with a convolution 

operation to extract local features from the inputs (similar to the S1 in visual cortex), and 

composites three cascading simple-to-complex layers (C1, S2-C3 and S4-C5) before the final three-

layer full connection network. (Reprinted with permission from [95] © 1998 IEEE). 

https://en.wikipedia.org/wiki/Deep_learning#Stacked_.28de-noising.29_auto-encoders
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with unsustainable energy consumption. Thus, the brain-inspiration should not only be 

adopted at the software and algorithm level, but should also be wholeheartedly explored at 

the computing hardware architecture level. Such synergistic exploration will realize the 

ANN algorithms on a suitable hardware substrate, and truly unleash the computing power 

of the brain-inspired architectures. 

Summary 

Neurons and synapses are understood to be the fundamental and core elements that 

are responsible for learning and computing occurring in the brain. Morphologies and 

electrical properties of the neuron and synapse are reviewed in the beginning of this 

chapter. Neuron lies at the center of neural information processing. Major neuron models 

that capture neuron operation with different level of details are introduced. Based on the 

fidelity to represent neuron dynamics and complexity, LIF model abstracts the primary 

operation of a neuron in a compact form, and thus, is suitable for computing hardware, 

while Hodgkin-Huxley model and its simplified forms fit into bio-realistic neural system 

emulation. Synapses are understood to be the locations where learning takes place in the 

brain. It is shown that a single neuron can work as a maximum likelihood detector and 

finds the first PCA component of the inputs by modulating its synapses under Hebbian 

learning rule. Further, the more fundamental mechanism of changing synaptic strength is 

discussed in STDP learning rule. The discovery of STDP is a significant contribution to 

neuroscience. It descripts the synaptic change as a function of precise relative timing of 

pre- and post-synaptic spikes, and enables a form of in situ learning depending on relative 

potentials, and paves a solid path for brain- and nanotechnology inspired computing 

system. Next, a brief introduction of the associative learning as a simple model of classic 
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conditioning was given. With multiple neurons, the competitive learning and WTA were 

discussed. They work with Hebbian and STDP learning together provides a simple but 

effective way for a small group of neurons to selectively discriminate patterns from 

spatiotemporal inputs, and forms the basic neural circuitry to build complex network for 

handling complicated tasks. At the neural network level, a brief history of the artificial 

neural network, from the perceptron to latest deep neural networks, was reviewed. It has 

been shown that, by progressively stacking simple neural structure from lower levels, a 

multi-stage hierarchical architecture can perform complicated computing tasks, like 

invariant object representation, with significant efficiency in term of both space occupation 

and energy consumption. As a conclusion, the emerging understanding brain from the 

experimental and computational neuroscience communities inspires a potential new 

computing paradigm in many aspects: from the basic hardware elements, to learning 

methods, and finally system architectures. These inspirations need to be assembled 

cohesively to form an effective synergy, so that they can successfully address the grand 

computing challenges of the present age.
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CHAPTER 3 

NANOTECHNOLOGY FOR NEUROMORPHIC COMPUTING 

The history of computing technology development is accompanied with the 

sustained advancement in memory technologies. In the continuing era of von Neumann 

computers, both the temporary and permanent data storage has been fulfilled by the 

CMOS-based memories, e.g. PROM, SRAM, DRAM, and Flash memory ICs. Despite the 

semiconductor device technology specifically for memory has been evolving even faster 

than the digital CMOS for computing logic, the speed gap between memory and logic is 

unavoidable in von Neumann architecture. Moreover, as CMOS technology is approaching 

its scaling limits, the power consumption of computer memories has been accounting for a 

significant percent of the overall energy budget. In this context, many nanoscale non-

volatile memories (NVMs) have been proposed and have demonstrated significant progress 

in recent years. These new NVMs address the two major challenges of energy efficiency 

and nanoscale scaling with novel structures. To alleviate this, new materials and innovative 

integration schemes have demonstrated great potential to achieve ultra-high energy-

efficiency, high-density, and good scalability. These new memory devices also bring new 

functionalities, where biologically plausible synaptic plasticity have been experimentally 

demonstrated in various nanoscale memory devices. This convergence of energy-

efficiency, high-density, and biologically plausible synaptic plasticity on the nanoscale 
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memory devices inspires a new computing paradigm beyond the conventional von 

Neumann architecture. By synergistic integration of these nanoscale devices as electrical 

synapses in the brain-inspired computing architecture, it is very promising to realize 

neuromorphic computing systems with computing capability and energy-efficiency 

approaching towards biological brains. This chapter reviews the emerging non-volatile 

memory technologies, focuses on the resistive random access memory (RRAM) and 

discusses its operations and integration in relevance to brain-inspired computing.  

Overview of Emerging Memory Technologies 

Mainstream memory devices today storage information by means of charging 

capacitive cells in CMOS circuits, e.g. SRAM stores charge on parasitic capacitors, with 

positive feedback, in cross-coupled inverters; DRAM stores charges on a capacitor cell, 

and Flash memory stores charge on a floating gate structure or through other charge 

trapping mechanisms. As CMOS technology scaled down to nanometer dimension, the 

charge on the tiny capacitor becomes susceptible to leak away which results in reduced 

retention and degraded reliability. Consequently, frequent refresh is required to retain the 

information and results in increased power consumption.  

In this context, the emerging memories are mainly non-charge-based non-volatile 

memories which retain information in change in material and/or structural properties. To 

achieve this target, emerging NVMs generally employ materials different from those of 

mature memories based on CMOS, and yield radically different information retention 

mechanisms. These materials include ferroelectric dielectrics, ferromagnetic metals, 

chalcogenides, transitional metal oxides, carbon-based materials, etc. Further, their 

switching mechanisms extend beyond classical electronic processes, to quantum 
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mechanical phenomena, ionic reactions, phase transition, molecular reconfiguration, etc. 

[101]. At present, the emerging NVM constitutes a large family tree that includes 

ferroelectric random-access-memory (FeRAM), phase change memory (PCM), magnetic 

RAM (MRAM), spin-transfer-torque RAM (STT-RAM), conductive-bridging RAM 

(CBRAM), FeFET memory, carbon-based memory, molecular memory, Mott memory, 

and several novel type of memories that are being invented continuously, as illustrated in 

Figure 3.2. 

Although they employ various material systems, structures and switching 

mechanisms, most of the emerging NVMs are two-terminal devices so that the highest 

density can be achieved with the minimum 4F2 footprint. Most of these memory devices 

also represent information in the form of overall resistance change of the devices, as shown 

 

Figure 3.1. Memory taxonomy from the 2013 ITRS Emerging Research Devices (ERD) chapter. 

Many emerging NVMs have a simple two-terminal structure, suitable for high density crossbar 

memory arrays. (Reprinted with permission from [101] © 2016 Elsevier.) 
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in PCM, STT-RAM and RRAM. Such devices with resistance change depending on its 

history are also described as memristors2 by some researchers from the point of view of 

highly abstracted circuit theory [102], [103]. The emerging NVMs’ property of storing 

information as resistance states is similar to biological synapses whose synaptic efficacy, 

or strength, can be represented as its conductance (reciprocal of resistance). Thus, it is 

natural to consider employing these emerging NVM devices as electronic synapses.  

PCM, STT-RAM, and RRAM are all two-terminal memory devices that can be 

integrated between two metal layers in the back-end-of-line (BEOL), and allow their dense 

integration with modern CMOS technology. Despite the simple appearance as two-

terminal passive devices, they are quite different in their operating mechanism, structure, 

and thin-film material composition. Consequently, they exhibit vastly different electrical 

characteristics, and require distinct electrical interface to operate as electronic synapses. 

Following sections introduce these characteristics and discuss the usage of emerging 

resistive memory devices as electronic synapses. 

Phase Change Memory (PCM) 

Phase change memory (PCM) exploits the unique behavior of structural changes in 

solid materials to store information. For example, a chalcogenide glass, such as such as As-

S or Ge-S, is able to reversibly transit between crystalline phase and amorphous phase 

under Joule heating. When in the crystalline state, the chalcogenide glass has a long range 

                                                 
2  Please note that the term memristor is used in this dissertation together with the specific memory device category name, e.g. RRAM, 

when circuits-level behavior of a memory device is sufficient for the description without considering its physical mechanism for 

convenience. It is important to note the concept of memristor is a high-level and simplified abstraction of memory devices, and thus, do 
not account for several device behaviors, characteristics and limitations. 

https://en.wikipedia.org/wiki/Arsenic_trisulfide
https://en.wikipedia.org/wiki/Arsenic_trisulfide
https://en.wikipedia.org/wiki/Germanium_monosulfide
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order in crystals and exhibits low resistance; while in the amorphous state, it has a short 

range order and exhibits high resistance. Based on this phase changing mechanism, as 

illustrated in Figure 3.2.A, a PCM typically consists of a thin layer of the phase change 

material sandwiched between two inert metal electrodes, where one of the electrodes is 

usually much smaller than the other one such that a critical volume of the material can be 

melt down by heating beyond its melting point Tmelt with a rapid elevation in current 

density. To reset to high-resistive amorphous phase, the programmed region is first melted 

and then quenched rapidly by applying a large voltage pulse for a short time period; while 

a medium electrical current pulse is applied to anneal the programmed region at a 

A B

D

Time

Te
m

p
er

at
u

re

Read

SET pulse

RESET pulse
C

P
ro

gr
am

m
ab

le
 

R
eg

io
n

 

Figure 3.2. (A) The cross-section schematic of the conventional PCM cell. (B) A PCM is 

programmed to HRS by applying tall and thin RESET voltage pulse, and LRS by short fat SET 

pulse. (C) STDP measured from a PCM with different spacing and amplitude configurations of the 

pre-spike pulses. (D) The pulsing scheme used to implement STDP.  The pre-spike is a series of 

tall-thin and short-fat positive pulses, and the post-spike is a fat negative pulse. The overlap of tall-

thin pre-spike and post-spike causes depression (reset), while the overlap short-fat pre-spike and 

post-spike causes potentiation (set). (Adapted with permissions from [104] © 2010 IEEE and [33] 

© 2012 American Chemical Society.) 



49 

 

 

 

temperature between the crystallization temperature and the melting temperature Tcrys for 

a time period long enough that takes the material to low-resistive crystalline phase. These 

program/erase pulse shapes are shown in Figure 3.2.B [104].  

PCMs can serve as electronic synapses with STDP learning capability [33], [105], 

[106]. Figure 3.2.C shows an STDP implementation in a 200 nm Ge2Sb2Te5 PCM device 

[33]. Here, the pre-spike is applied to the top electrode of the PCM the post-spike is applied 

to the bottom electrode. The shapes of pre- and post-spikes are different from biological 

action potentials:  pre-spike is a pulse train that consists of typical tall and thin (10 ns, 50 

ns and 100 ns) pulses with increasing amplitudes for depression (reset), and short and fat 

(100 ns , 1 μs, and 10 μs) pulses with decreasing amplitudes for potentiation (set). The 

post-spike is a 8 ms negative pulse. When the pre- and post-spike overlaps, they create a 

net potential over the threshold of 0.36 V for set operation, and the threshold of 0.7 V for 

the reset operation. Besides single device evaluation, an application of patttern 

recongnition with PCM synapes and STDP learning has been recently demostrated [107]. 

PCMs have very good endurance, long data retention and are able to achieve 

multiple level storage [101]. However, PCMs generally consume more energy than other 

nanoscale NVM devices as they solely use Joule heating as their primary mechanism of 

state change. PCMs are also relatively larger than other emerging memories. In terms of 

STDP learning, PCMs definitely require complicated pulse schema due to their unipolar 

switching property; switching depends on the absolute voltage amplitude only and is 

independent with the voltage polarity. 
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Spin-Transfer-Torque Random-Access-Memory (STT-RAM) 

Spin is an intrinsic binary form of angular momentum carried by electrons. 

Generally, an electrical current consists of electrons in either one of the two spin 

orientations and the amount of them are same in macroscale statistics. However, by passing 

the current through a nanometer scale thin magnetic layer, called fixed layer, a spin-

polarized current with all the electrons spin in the same orientation can be produced. If this 

spin-polarized current is directed into a second thinner magnetic layer, called free layer, 

angular momentum can be transferred to this layer, and consequently change its magnetic 

orientation. Utilizing this spin-transfer-torque effect between fixed and free ferromagnetic 

layers, STT-RAM realizes low and high resistance states in a magnetic tunnel junction 

(MTJ) with a tunnel barrier layer separating the two ferromagnetic layers, as illustrated in 

Figure 3.3.A [108]. When the magnetic direction of the fixed and free layers are parallel 

(or aligned in the same direction), the STT-RAM device exhibits low resistance. On the 

other hand, when they are anti-parallel (or not aligned in the same direction), the device 

A B
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Figure 3.3. (A) Structure of a magnetic tunnel junction (MJT). The parallel and anti-parallel of the 

free layer and fixed layer result LRS and HRS respectively. (B) Resistance increase in a MJT 

induced by a stimulus resulting from two sawtooth spikes with a time shift. (Adapted with 

permissions from [108] © 2016 IEEE and [109] © 2012 John Wiley and Sons.) 
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exhibits high resistance. During the read operation with a small current, the magnetic 

orientation of the free layer is not be disturbed; while in programming operation with a 

larger current, the free layer’s orientation will be flipped depending on the current flow 

direction.  

Some work has been presented in literature to evaluate the use of STT-RAMs as 

electronic synapses  [109]. Figure 3.3.B demonstrates an increase in STT-RAM resistance 

by a net potential over the reset threshold, resulting from the two sawtooth spikes with a 

40 seconds time shift [109]. Several experiments also show STT-RAMs behave in a 

stochastic fashion. Leveraging the stochastic switching, a vehicle (car) detection task was 

simulated in a spiking neural network with STT-RAM synapse [110]. 

Since STT-RAM drives the state switching by changing the magnetic orientation 

in the thin free layer, it is inherently a binary memory device with bipolar switching.  STT-

RAM memory is also energy-efficient, with fast switching, and long endurance. However, 

the resistance contrast between the two states of the STT-RAM is typically low [111]. 

Resistive Random-Access-Memory (RRAM) 

RRAM devices use the direct resistance change in thin-film insulators to store 

information. There are a large number of material systems available to realize the thin-film 

insulator. However, RRAM devices can be categorized into several types depending on the 

structure of conductive filaments formed in the thin-film insulator. Anion-type RRAM 

achieves the resistive switching by the formation of oxygen vacancies and migration of 

oxygen-ions. Cation-type RRAM, also known as conductive-bridge RAM (CBRAM), 

achieves resistive switching by the formation and dissolution of metal filaments with redox 

reaction and migration of metal ions. Oxide-based RRAM relies resistive switching  on the 
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conductive filaments consisting of oxygen vacancies, and carbon-based RRAM induces 

the resistive switching by hydrogenation and dehydrogenation of hydrogen atoms [112]. 

Despite different underlying switching physics, all these RRAM devices share a lot of 

common device characteristics and the array architecture design considerations are very 

similar [113]. 

Resistance Switching Modes 

The most common characteristic of RRAMs is their hysteretic current-voltage 

characteristic induced by resistance change occurring between the two stable states, called 

the low resistance state (LRS) or ON state and the high resistance state (HRS) or OFF state. 

For multilevel operation, intermediate resistance states are utilized as well. A write 

operation changing a RRAM from the HRS to the LRS is called a SET operation, while 

the opposite write operation changing it from the HRS to the LRS is called a RESET 

operation. It should be noted that RRAMs often need an electroforming step prior to their 

first write/read operation. This electroforming step generally involves higher current level 

than the write/read operations [114], [115]. 

The operation of resistance change is distinguished by two different modes, 

unipolar resistive switching and bipolar resistive switching, as illustrated in Figure 3.4.  

Unipolar Switching 

The unipolar resistive switching mode is characterized by the fact that the SET and 

RESET operations takes place with only one voltage polarity. Changing from the HRS to 

the LRS, the SET process takes place at a voltage larger than Vth1, with a LRS current 

limited by a current compliance (CC). To change back from the LRS into the HRS, the 
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RESET process takes place at the voltage larger than Vth2 without the current compliance. 

The CC is important because it is used to avoid device damage in the SET process and 

must be released to allow a large current in the RESET process to induce electrochemical 

change. The unipolar switching in RRAMs and PCMs appears to be the same in terms of 

the definition, which depends on the absolute value of voltage and independent of the 

voltage polarity, while they have radically different mechanisms. The resistance switching 

in RRAMs is mainly related to the formation and rupture of conductive path, instead of 

phase change of the solid material in PCMs. As a result, RRAMs have their SET process 

generally faster than PCMs, where the latter need time to heat the material in amorphous 

state to bring it back to the crystalline phase. 

Bipolar Switching 

Bipolar resistive switching shows a voltage polarity dependency for the switching 

process. Starting in the HRS, a SET process occurs at the positive voltage and triggered by 

a voltage larger than the positive threshold Vth_p, which leads to the LRS. Often, a current 
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Figure 3.4. Resistive switching modes in the RRAMs. A current compliance CC is required for 

SET operation. (A) Unipolar switching. The switching direction is independent of voltage polarity. 

The SET voltage Vth2 is always larger than the RESET voltage Vth1. The RESET current is always 

higher the CC used in the SET operation. (B) Bipolar switching. SET and RESET occur at opposite 

polarity bias. 
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compliance CC is also used to protect the device from damage and determine the resistance 

range for LRS. RESET switching process is obtained at a negative voltage. A voltage of 

opposite polarity and an amplitude larger than the negative threshold Vth_n is used for the 

RESET process to switch the it back into the HRS. Most RRAMs reported in the literature 

are operated in the bipolar resistive switching mode. 

In both types of switching modes, the resistance states are read out with a voltage 

smaller than SET and RESET threshold voltages, while avoiding a detectable change of 

the state. Since unipolar switching only uses the voltage amplitudes to perform the 

switching, it generally needs a precise control of the voltage applied across the devices, 

while bipolar switching has better voltage margins because the SET and RESET operations 

are separated by voltage polarity, which also naturally fits into the STDP learning rule and 

will be discussed later. 

Switching Mechanisms and Operation 

Typically, a RRAM device is built as a metal–insulator–metal (MIM) structure 

which has a solid electrolyte thin-film inserted between two metal electrodes in a 

sandwiched stack. Modern microscopic analysis reveals that the resistive switching in 

RRAMs devices involves both physical and chemical processes that take place at different 

locations in the devices. Also the electrodes and the insulator layer determine the switching 

behavior. In the locational aspect, switching can take place near one of the electrode 

interfaces, at the center between the electrode interfaces, or involve the entire path between 

the electrode interfaces. A resistive switching can occur in the formation and dissolution 

of a single conducting filament, or over the entire cross-section of the device. In the 

physical and chemical aspect, the resistive switching can take place due to – (1) the phase 
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change of the material, which is similar to the PCMs, or (2) the conductive filament path 

disruption by Joule heating which is a thermo-chemical reaction and similar to fuse-anti-

fuse switching, or (3) valence change of which the migration and accumulation of the 

anions, typically oxygen vacancies, around the cathode reduce the valence state of anions 

that turning oxide into a metallic phase resulting in the formation of a metallic conductive 

channel, or (4) a growth of a metallic conductive filament which is caused by the reduced 

metal atoms accumulate at the cathode after metal cations migrate to inert cathode, or (5) 

Schottky barrier changing by the trapping of injected electronic charges at the interface of 

defect sites. In fact, in a general sense, many of these changes take place concurrently in 

the RRAM device and contribute to the resistive switching.  

Among various switching mechanisms, the formation and dissolution of a 

conductive bridge filament is the one has been intensively studied, and therefore, it is used 

as a typical example to illustrate the resistive switching processes in RRAMs. The RRAM 

device using metallic conductive bridge filament as the dominant switching mechanism is 

called the conductive-bridging RAM (CBRAM). 

The sandwich structure of a CBRAM has its anode electrode built with an 

electrochemically active metal, e.g. Ag or Cu, the cathode electrode built with an 

electrochemically inert metal, e.g. W, Pt or TiN, and the thin film of solid electrolyte 

formed by either thermal or photo diffusion of the respective electrochemically active 

metal ions into the chalcogenide crystal lattice (called the forming process) [116]. The LRS 

of a CBRAM is the state in which a metallic conductive bridge is formed in the ion 

conducting amorphous (chalcogenide glass) medium; while HRS is the state where the 

metallic conductive bridge is dissolved. The switching between LRS and HRS is triggered 
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by electrochemical processes depending on the voltage applied across the two electrodes. 

Figure 3.5 illustrates the principle of CBRAM operations with current-voltage (I-V) curves 

using a quasi-static triangular voltage sweeping with silver (Ag) active electrode and 

platinum (Pt) inert electrode [117]. Initially, the two electrodes of the device are insulated 

by the chalcogenide glass. Ag+ ions injected during the forming process are bonded with 

chalcogenide atoms, and thus, there is no metallic atom in the electrolyte layer and the 

device resistance is high (see Figure 3.5.A). When a sufficiently positive voltage is applied 

to the anode, the SET process starts with the oxidization of Ag atoms in the Ag electrode 

to create Ag+ ions at the Ag electrode-electrolyte interface (Figure 3.5.B). Under the 

 
Figure 3.5. Current-voltage curves of a CBRAM device and the schematic illustration of its SET 

and RESET processes. (A) A original device in HRS with two electrodes are insulated by 

chalcogenide glass. (B-D) The migration and electrodeposit of Ag+ ions towards the Pt electrode 

form a metallic filament conductively bridging the two electrodes, and then, turns the device in to 

LRS.  (E) The dissolution of the metallic filament breaks the conductive bridge and transits device 

back to HRS. (Reprinted with permission from [117] © 2011 IOP Publishing.) 
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internal electric field between the two electrodes, Ag+ ions migrate through the solid 

electrolyte towards the Pt electrode. At the Pt electrode-electrolyte interface electrode, Ag+ 

ions are reduced back to metallic Ag atoms, bond with pre-injected Ag+ ions (which also 

are reduced back the metallic Ag atoms) and form a preferred growing point for the new 

electrodeposited Ag atoms. The accumulation of metallic Ag atoms reduces the distance 

between the Ag electrode and Ag growing point, and consequently creates a stronger 

electric field at the growing point (Figure 3.5.C). As a result, the migration of Ag+ ions are 

accelerated, and finally they form a metallic filament that is made of Ag-Ag bonds and 

conductively bridges the two electrodes (Figure 3.5.D). With the formation of the 

conductive filament bridge the device transitions from the HRS to the LRS. The RESET 

process performs in a reverse manner where the metallic Ag-Ag bonds are ruptured, Ag+ 

ions re-bond with the chalcogenide atoms return to and get reduced at the Ag electrode, 

and the conductive filament is dissolved (Figure 3.5.E). Figure 3.6 illustrates the formation 

of Ag metallic filament by Ag-Ag long range bonds, and the dissolution is the state of Ag-

S-Ge short range bonding [118]. Because Ag atoms are more favorable to bond with 

 
Figure 3.6. Schematic of a silver filament in Ag–GeSx and the silver filament dissolution scheme. 

Ag-Ag long range bonds forms the metallic filament, and Ag-S-Ge short range bonds in dissolved 

state. (Reprinted with permission from [118] © 2015 IOP Publishing.) 
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chalcogenide atoms, CBRAM appears more stable to stay in HRS than in LRS. This 

explains that CBRAMs generally have a relative lower RESET threshold than SET 

threshold under small device current [119], and a relative low retention compared to other 

nanoscale memory devices. 

STDP in Bipolar Switching RRAMs 

Many RRAMs are two-terminal bipolar switching devices. A bipolar switching 

device has a positive switching threshold voltage Vth_p; the device will change to a lower 

resistance state from a high resistance state when the potential applied over the device 

larger than Vth_p .  The negative threshold voltage -Vth_n dictates that the device will change 

to a higher resistance state from a lower resistance state when the potential applied over 

the device beyond -Vth_n. A very important consequence of bipolar resistive switching is 

that a STDP learning scheme equivalent to the biological synapse can be realized in situ 

just by overlapping two simple voltage waveforms across this two-terminal passive device, 

as elaborated in Figure 3.7. Here two voltage waveforms Vpre (called pre-synaptic spike) 

and Vpost (called post-synaptic spike) are applied at the opposite terminals of the bipolar 

resistive switching device. The voltage waveform of Vpre and Vpost is designed to 

individually have two opposite polarities separated in time, i.e. with positive and negative 

excursions as shown in  Figure 3.7. The peak amplitudes of these two parts, Va+ and Va-, 

are smaller than the positive threshold and negative threshold respectively 

{
𝑉𝑎+ < 𝑉𝑡ℎ_𝑝

𝑉𝑎− < 𝑉𝑡ℎ_𝑛
. 
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It is obvious that either of Vpre and Vpost applied across the device individually will not 

disturb the status of the device. However, when they meet, they will create a net potential 

between the two terminals of the device which is just their difference  

𝑉𝑛𝑒𝑡 = 𝑉𝑝𝑜𝑠𝑡 − 𝑉𝑝𝑟𝑒. 

The polarity and a mplitude of this net potential are determined by the shape of these two 

voltage waveforms and the time duration for which they overlap. The design is performed 

with the constraint 

𝑉𝑎+ + 𝑉𝑎− > 𝑉𝑡ℎ_𝑝, 

where the net Vnet potential is greater than the positive threshold Vth_p when the post-

synaptic spike Vpost arrives a little bit later (Δt >0) than the pre-synaptic spike Vpre, and 
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Figure 3.7. Elaborations of STDP in bipolar switching devices with overlapping of voltage spikes. 

(A) The overlap of a pre-spike Vpre arriving before the post-spike Vpost creates a net potential over 

a positive voltage threshold, while the overlap of a pre-spike arriving after the post-spike creates a 

net potential over a negative voltage threshold. (B) The yield biological plausible STDP learning 

window. 
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consequently induces the SET process in the bipolar resistive switching device to change 

the device resistance to a lower value. Similarly, but in the opposite direction, by using the 

design constraint 

𝑉𝑎+ + 𝑉𝑎− > 𝑉𝑡ℎ_𝑛, 

the absolute amplitude of Vnet is greater than the negative threshold Vth_n when the post-

synaptic spike Vpost arrives a little earlier (Δt < 0) than the pre-synaptic spike Vpre., and 

consequently induces the RESET process in the bipolar resistive switching device to 

change the device resistance to a higher value. We thus define an effective voltage-time 

product E as an integral of the effective voltage Veff over time 

𝐸(∆𝑡) = ∫ 𝑉𝑒𝑓𝑓(𝑡) 𝑑𝑡,
∆𝑡

0

 

where 

𝑉𝑒𝑓𝑓 = {

𝑉𝑛𝑒𝑡 − 𝑉𝑡ℎ𝑝
,   if 𝑉𝑛𝑒𝑡 >     𝑉𝑡ℎ_𝑝

𝑉𝑛𝑒𝑡 − 𝑉𝑡ℎ𝑛
,   if 𝑉𝑛𝑒𝑡 < −𝑉𝑡ℎ_𝑛 

             0, otherwise

, 

then the relative time difference of the spike pair Δt will translate into the amount of 

conductance change. The conductance3 G(Δt), which is the reciprocal of resistance, change 

in the RRAM device is proportional to the effective voltage-time factor E 

𝐺(∆𝑡) = 𝑓(𝐸(∆𝑡)). 

Since the conductance of a RRAM device represents the capability of the device to transmit 

current through it and serve as an electronic equivalent to the synaptic strength of a 

biological synapse, the property of changing its conductance according to the relative 

                                                 
3 Resistance, conductance, synaptic weight and synaptic strength are the different descriptions for the same character of a RRAM 

synapse. For convenience, we use conductance, which is proportional to synaptic weight as used in computer science or synaptic strength 
as used in neuroscience, when we refer to RRAM device. 
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arrival time of pre- and post-synaptic voltage spike pair is exactly equivalent to the STDP 

learning occurring in a biological synapse. Consequently, bipolar RRAMs have been 

considered as the most promising candidate among all emerging nanoscale memory 

devices to be employed as electronics synapses for large-scale brain-inspired computing 

systems. 

Recently, several experiments have demonstrated biologically plausible STDP with 

bipolar RRAMs [32], [34]–[36], [120], [121]. Figure 3.8 shows the first STDP 

measurement in the emerging NVMs. In this experiment, a 100×100 nm bipolar RRAM 

cell was tested by giving a series of 300 µs width voltage pulses with 3.2 V positive 

amplitude or -2.8 V negative amplitude. It was observed that the positive voltage pulses 

induce incremental resistance increase, while the negative voltage pulses induce 

incremental resistance decrease. In the next, a pair of positive and negative rectangular 

voltage pulses was applied to the device at the same time, where width of the positive 

A B

50µm

 

Figure 3.8. (A) The incremental conductance change in a bipolar RRAM device. Positive voltage 

pulses with amplitude over positive threshold induce resistance increase, and negative voltage 

pulses with amplitude over negative threshold induce resistance decrease. (B) The measured 

change of the device conductance as synaptic weight versus the relative timing Δt of the spike pair. 

Inset: scanning-electron microscope image of a fabricated RRAM crossbar array. (Adapted with 

permission from [32] © 2010 American Chemical Society.) 
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voltage pulses is changed as a decaying exponential in multiple tests, and the biological 

plausible STDP curves were measured. Unfortunately, amplitude of the voltage pulses used 

in this groundbreaking work were fl at; the relative time difference of the pre- and post-

synaptic spike cannot be directly translated into the effective voltage-time product, and 

therefore, the realized STDP was not an intrinsic process. However, after this work, several 

other experiments have demonstrated in situ and intrinsic STDP solely depending on the 

relative timing of spike pairs in RRAM devices [34], [36]. 

As discussed in chapter 2, a popular choice for the biological plausible STDP 

learning function has the form of double exponential curves  
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Figure 3.9. Illustration of influence of action potential shape on the resulting STDP function. 

(Adapted from[53]. Copyright 2013 Frontiers Media SA.). 
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∆𝑤 = {
𝐴+𝑒−∆𝑡 /𝜏+     for ∆𝑡 > 0

𝐴−𝑒 ∆𝑡 /𝜏−      for ∆𝑡 < 0
. 

Theoretical analysis in [53] reveals there is possibility to use spike voltage waveforms with 

simpler shapes to realize the above biological plausible double exponential STDP function 

in bipolar RRAM devices. In fact, is has been shown in the last section that the filament 

formation in CBRAM is a self-accelerating process because the growth of filament reduces 

the distance from the growing point to the active electrode which consequently increase 

electrical field and accelerates the growth of filament furthermore. Intuitively, a self-

accelerating process results an exponential growth of a respective parameter in the system 

which is the conductance in this CBRAM case. Therefore, a spike voltage waveform with 

a shape to make an effective voltage-time product E, which is linearly proportional to the 

relative time Δt, will produce the biological plausible double exponential STDP function. 

The spike shape with a short rectangular positive tail and long ramp up negative tail as 

shown in Figure 3.9.B  is such a waveform. In case the width of the positive tail τ+ in this 

spike shape is much smaller than the width of the negative tail and Δt > τ+, then 

𝐸(∆𝑡) = ∫ 𝑉𝑒𝑓𝑓(𝑡) 𝑑𝑡
∆𝑡

0

≈ (𝑉𝑎+ − 𝛥𝑡 ∙ 𝑎 ∙ 𝑉𝑎−) ∙ 𝜏+ 

approximates a linear function of Δt. From the simulation based on memristor equations 

with exponential terms related to the effective voltage [53], it has been shown that the spike 

shape in Figure 3.9.B indeed produces a double exponential curved STDP learning 

function. Other spike shapes and their respective STDP function are also shown in Figure 

3.9. 
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Device Characteristics for Neuromorphic Computing 

When considering the use of emerging NVMs as electrical synaptic devices, some 

of basic device characteristics, including energy efficiency, size, retention and endurance, 

need to be evaluated. 

Energy Efficiency 

The projected unsustainable energy consumption as discussed in Chapter 1 is the 

primary motivation to pursue brain-inspired computing systems. Thus, among all 

performance metrics, energy-efficiency is the primary consideration to select or custom 

design a nanoscale memory device for potential neuromorphic applications. Since such a 

memory doesn’t need static power to retain its state, NVM has zero standby energy 

consumption. While the read operation can be much shorter and requires smaller voltage 

than the write, the energy efficiency of a two-terminal memory device is determined by the 

current, speed and voltage used during a write read operation. Considering the potential 

integration with modern CMOS technology, the write voltage is in a relatively small range 

from 0.5 V to 3V, which is desirable. So far, the reported write speed of major STT-RAM 

test chips ranges from 1 ns to 100 ns, RRAMs ranges from 10 ns to 100 ns, and PCMs 

ranges from 100 ns to 1 µs [101]. While the write current has been improved a lot in past 

several years and can be brought under 100 µA. Taking 10 ns writing speed as the 

reference, the present NVMs could achieve energy consumption at the magnitude of 10-12 

J (or 1 pJ) per switch. Comparing to a synapse in the human brain which consumes about 

2×10-15 J (or 2 fJ) to transmit one bit information (equivalent to 25,000 ATP [122], [123]), 

nanoscale NVMs is promising in ultimately achieving a similar energy efficiency, while 

the key is the realizing of a lower write current or faster write speed. For instance, a device 
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with the properties of 1 µA write current and 1 ns write speed [124] can result a comparable 

energy efficiency to biological synapses. 

Device Dimensions 

We have discussed that a meaningful brain-inspired computing system requires a 

large-scale integration of neural network, therefore, a compact memory device with small 

footprint is desired. As the density has been a fundamental requirement for a memory 

technology, the mainstream emerging NVMs have been designed to be two-terminal, 

occupying 4 F2 size, and exhibit the potential to be scaled down to nanometer regime. 

Moreover, the 3D integration of emerging NVMs have been demonstrated [125]–[127] and 

will continue to evolve rapidly. Referring to the 300 nm diameter of synaptic active zone 

[128] (equivalent to the diameter of memory device) and 20 nm width of the synaptic cleft 

(equivalent to the thickness of memory device ), it is very promising to achieve a synaptic 

density with NVM synapses that comparable to the human brain. 

Resolution 

Mathematical analysis also shows synaptic learning prefers precise weight state 

(see PCA implication of Hebbian learning in the previous chapter). There are some 

experiments that have demonstrated multi-level NVMs, however, these implementations 

require relative large devices [129], or the intermediate states do not last long (i.e. they 

relax to more stable states, often showing bistable behavior). Most of nanoscale memory 

devices exhibit behaviors of both binary switching and stochastic switching in nanometer 

regime [119], [124], [130]–[133]. One of the solution is to use compound binary devices 

which employ several devices in parallel [52], [133], which in fact is equivalent to a larger 
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area device in some sense. Simulations in [52] show a compound device with 10 binary 

devices in parallel (or 3.3-bits equivalent) allows reasonable performance in a pattern 

recognition task with little accuracy degradation when compared to the one using 100 

devices in parallel (6.6-bits). Interestingly, the synaptic transmission and synaptic plasticity 

in biological synapses is a stochastic process through multiple NMDA receptors, and the 

typical number of these receptors is 20 (or 4.3-bit) [128]. Taking 4-bits as a target for 160 

nm compound device, this means a 5 nm for an individual binary device. The research of 

computing with stochastic synapses remains fairly recent, and more work is required to be 

done to understand the impact on applications and the trade-off among other design 

parameters. 

Retention and Endurance 

For a general purpose computing system, 10-years data retention and system 

endurance may be required. With 4 Hz operation frequency similar to the brain synapses  

[123], this translates to an endurance of 1×109 write operations, which is the upper limit of 

the most emerging NVMs [101]. However, considering that a practical neuromorphic 

system needs much faster learning speed than human beings which spans years, the 

endurance of memory devices for brain-inspired computing need to be improved 

significantly. Taking a learning of MNIST dataset as an example, if the system was 

expected to learn 60,000 training samples with 10 epochs every day, the synaptic operation 

frequency increases to 166 Hz, and then the 10-years endurance specification becomes 

4.7×1010. Conversely, if the expectation is 1 second, the synaptic operation frequency 

increase to 100 kHz, and then the 10-years endurance specification skyrockets to 1.5×1014
. 
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In conclusion, the present nanotechnology allows emerging NVMs to provide a 

promising solution of electrical synapses for large-scale brain-inspired computing system, 

in terms of energy efficiency and size. While improvements are still desired to achieve a 

comparable energy efficiency and density of human brains, and significant advancement 

of endurance is required to bring the system into actual practice. 

Crossbar and 3D Integration 

Crossbar (or crossnet) is a planar stack architecture where the top and bottom 

electrodes of the memory devices are essentially intersecting orthogonal lines, and the two-

terminal memory devices are formed at each crosspoint, as illustrated in Figure 3.10.A.  

The key advantage of the crossbar is that it does not need precise mask alignment and hence 

can be fabricated in smaller size than standard CMOS cells using advanced patterning 

methods, when the nanoscale-accuracy overlay is not available. Moreover, thanks to its 

simple and stacked architecture, crossbar is easy to vertically integrate on top of CMOS 

Table 3.1 Performance Metrics of Memory Devices as Synapses 

Metrics Units Current1 Target Bio-Equivalence Value* 

Energy Efficiency J / switch 10-11 – 10-13 10-15 - 2×10-15 

Single Device Diameter nm 100 – 10 5 Vesicle Diameter 35 

Thickness nm 50 – 10 10 Clef Width 20 

Resolution bit 5 4 NMDA Receptors 1 – 4.3 

Compound Device Diameter nm 250 160 Terminal Diameter 200 – 500 

Operation Frequency Hz - 200 - 4 

Endurance Cycles 106-109 1011 - 109 

Lifetime Years 10 10 - 70 

* Source: biological synaptic equivalent values come from [128] and were translated to the metric units. 
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subsystem circuits, as an add-on in the back-end-of-the-line (BEOL) of the CMOS process 

[134]. In the vertical integration, as illustrated in Figure 3.10.B, the bottom electrode wires 

of the crossbar can connect to the underneath CMOS system with metal-via-metal contacts 

directly, while the connections of the top electrode wires and CMOS system need to use 

through via silicon (TSV) technology [135]. This allows the CMOS system to address 

every top/bottom electrode wire, and therefore address every memory device at the 

crosspoint of the add-on crossbar. By employing crosspoint memory devices as synapse 

via
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Figure 3.10. Crossbar architecture and 3D integration. (A) Memory devices organized between 

intersecting orthogonal crossbars. (B) Cross-section illustration of the integration of crossbar on 

top pf CMOS circuits with interconnection through standard vias and TSVs. (C) Schematic of 3D 

crosspoint architecture using the vertical RRAM cells and vertical MOSFETs. (Adapted with 

permission [114] © 2013 American Chemical Society). 
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and the top/bottom crossbar wires as passive dendrite trees and axons, the crossbar 

architecture provides an effective connectivity solution to large-scale hybrid 

CMOS/RRAM network for brain-inspired, or neuromorphic, computing system. 

Standalone planar crossbar architectures have been employed and demonstrated in 

many nanoscale memories, and multilayer crossbar devices were also demonstrated 

recently [125], [136]. With the CMOS device moving to vertical structure (known as 

FinFET) in nanometer regime, vertical sandwiched crossbars were also proposed [137]. 

The vertical crossbar can be built with pillar electrodes and multilayer plane electrodes, 

which requires only one critical lithography mask, and hence more promising for higher 

density, better integration with CMOS, and lower cost. An example of 3D crossbar 

architecture using the vertical RRAM cells and vertical MOSFETs is depict in Figure 

3.10.C.  Here, the vertical metal pillar electrodes build the frame of a 3D structure. The 

RRAM cells are formed between the pillar electrodes and multilayer metal plane electrodes 

as a vertical surrounding wall. The metal pillar electrodes extend downwards to connect 

with the CMOS circuits which can be in planar fashion or in vertical fashion as well. The 

metal plane electrodes are able to connect to the underneath CMOS circuits by TSVs or 

laterally connect to other 3D structure on the same substrate. Vertical integration of CMOS 

substrate and multiplayer RRAM crossbars unleashes the potential to connect a large 

number of synapses with CMOS neurons, thus, is promising to achieve a comparable 

density to human brains in terms of geometric dimension. In conjunction with potential 

lateral placement of 3D chips and vertical stacks of chips, large-scale deep neural network 

with hybrid CMOS / RRAM technology appear to be feasible. 
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Summary 

In this chapter, the emerging NVM technologies were briefly introduced. Dedicated 

introduction was provided for the PCM, STT-RAM and RRAM devices, which are all two-

terminal nanoscale memories. These devices enable dense integration in a crossbar 

architecture, store and represent information in resistance values, and have demonstrated 

STDP capability. Specially, RRAM devices allow bipolar resistive switching and 

potentially multi-level resistive states, therefore, can realize in situ biological plausible 

STDP function by using simple voltage waveforms as pre- and post-synaptic spikes. Then, 

the relationship between the spike waveform shape and the respective STDP function was 

discussed. By matching the potential system specifications of a brain-inspired computing 

system to human brains characteristics, the requirements of energy efficiency, size, 

resolution, retention and endurance to memory devices were reviewed and summarized, 

where energy efficiency and the endurance may be the most challenging characteristics and 

may need significant improvement in the future development of memory devices as 

electronic synapses. Finally, the details of crossbar architectures and further vertical 

integration possibilities were presented. In conclusion, the state-of-art nanotechnology 

provides a very promising solution to use memory device as dense synapses together with 

modern CMOS technology. The hybrid integration of multilayer RRAM crossbar and 

CMOS neurons paves a path for realizing large-scale brain-inspired hardware with 

comparable energy-efficiency, real-time processing capability, and compact 3D volume to 

the wetware, i.e. the human brain. 
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CHAPTER 4 

INTRODUCTION TO BUILDING BLOCKS OF ANALOG SPIKING 

NEURONS 

Neuron is the core component in a neural network that connects all the elements 

together to perform learning and computation. There are many different types of neurons 

in biological brains. While most of them share the common attributes: accumulate inputs 

from the sensory afferents or adjunctive neurons, compete with other neurons to generate 

spikes, propagate spikes, and modulate synaptic strength with relative timing of spikes. 

There have been many design approaches for silicon neurons to implement these 

functionalities with different emphasis on biological fidelity, complexity and efficiency. 

This chapter reviews the major building blocks required for analog spiking neuron designs 

along with several significant implantations of silicon neurons. 

Spatio-Temporal Integration 

Information processing in a neuron starts from the spatial and temporal current 

summation. The accumulated charge is stored in the cell body of a biological neuron, of 

which the membrane acts the dielectric of an equivalent capacitor. To mimic this behavior, 

the spatiotemporal integration is usually realized using an on-chip capacitor in 

neuromorphic circuits.  
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From the ideal current–voltage relation, the voltage change V(t) across a capacitor 

C is proportional to the charge, Q(t), that is built-up on the two plates. Here the charge is 

integration of the input current I(t)  

𝑉(𝑡) =
𝑄(𝑡)

𝐶
=

1

𝐶
∫ 𝐼(𝜏)𝑑𝜏

𝑡

𝑡0

+ 𝑉(𝑡0). 

Based on this relation, the spatio-temporal current summation is modeled in a circuitry 

with multiple switch-gated current sources and a capacitor, as shown in Figure 4.1. Here, 

the capacitor C is the element to store the integrated charge, switches SWi work as ion 

channel gates, converging several wire branches to a single node implements the spatial 

current summation, and the temporal factor comes from time-dependence of the current 

sources Ii. The mathematical expression for the model depicted in Figure 4.1 can be written 

as 

𝑉(𝑡) =
1

𝐶
∑ ∫ 𝐼𝑖(𝜏)𝑑𝜏

𝑡

𝑡0

𝑛

𝑖=1

+ 𝑉(𝑡0), 

  

C

I1 In

SW1 SWn

Ii

SWi

 
Figure 4.1 Current spatiotemporal integration circuitry. Capacitor C is the element to store the 

integrated charges, switches SWi work as the iron channel gates, converged wire branches to one 

node works for the spatial current summation, and temporal factor comes from time-dependence 

of current sources Ii. 
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where the integral term presents the temporal integration, and the summation term 

presents the spatial integration. 

Passive Integrators 

The simplest implementation of a current integrator is the follower-integrator. It 

can be implemented even with a single MOSFET, of which the channel current is 

controlled by the transistor’s gate voltage as shown in Figure 4.2. It consists of a voltage-

controlled PMOS activated by a brief active-low spike with its output node connected to a 

capacitor. When a spike reaches the transistor, a post-synaptic current flows from the power 

supply, integrates on the capacitor and yields the membrane voltage Vmem; the transistor is 

off for the rest of the time. The amount of current ID is controlled by the voltage level of 

the spike, and is usually set to a small value by biasing the transistor in sub-threshold region 

of operation which can be formulated as 

𝐼𝐷(𝑡) = 𝐼𝐷0

𝑊

𝐿
𝑒

−
1

𝑛𝑉𝑇
(𝑉𝑠𝑝𝑘(𝑡)−𝑉𝐷𝐷)

, 

where Vdd is the supply voltage, Vspk is the input spike voltage, W and L are the transistor’s 

width and length, ID0 is the leakage current, n is a nonlinearity factor, and VT is the thermal 

voltage. By connecting multiple MOSFET branches into a tree shape, the circuit realizes a 

simple spatio-temporal integration, and can form a silicon neuron circuit that model 

sodium, potassium, and other ion channel dynamics in a faithful way [138]. The follower 

integrator circuit is extremely compact, but is difficult to control and tune its characteristics 

which depend on implicit device parameters, e.g. leakage depends on parallel resistance 

and off current of the MOSFET. Finally, as a passive integrator, the increase of Vmem 
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reduces the amount of the current that flows through the transistor (s) each time. As result, 

the later coming spike makes less impacts to the integration and yield a non-linear 

integrator. 

Given its simplicity and compactness, a lot of improvements were made to follower 

integrator circuit and have been used in a broad variety of VLSI implementations of spiking 

neural networks, especially for the purpose of mimicking synaptic dynamics with better 

controllable designs. A widely-used category of these circuits is called the log-domain 

integrator. These circuits employ current-mode design as the alternative to the voltage-

mode in the follower integrator and operate MOSFETs in the subthreshold region to 

effectively implement first-order differential equations.  

As shown in Figure 4.3.A, using a current mirror for the input spike lifts the 

constraint on the spike voltage. At the same time, the current mirror gives additional 

degrees of freedom so that the current to be summed on the capacitor is modulated by a 

reference voltage Vref, maximum current limiting voltage Vw, and the ratio of the mirroring 

  

Cmem

M1 MnMi

Vmem

VDD

Vspk_1 Vspk_i Vspk_n

ID1 IDi IDn

 

Figure 4.2 Simple MOSFET-capacitor follower-integrator. Single MOSFET is used as the voltage 

controlled current source, and input spikes applied on the gate of the MOSFET works as a switching 

signal. 
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transistors. This circuit, called the “Tau-Cell,” was first proposed in [139] and used to 

implement tau-cell neurons with various spiking neural models [140]–[142].   

Another subthreshold log-domain circuit is the current mirror integrator (CMI) 

[143], [144] as shown in Figure 4.3.B. This circuit builds upon a p-type current mirror with 

the current summing capacitor sitting on the mirroring node. Because the Iw and Iτ 

formulate a complimentary current source, the voltage at the capacitor changes almost 

linearly with the arrival of each spike. This circuit also produces a mean output current Isyn 

that increases with input firing rates and has a saturating nonlinearity with maximum 

amplitude that depends on the synaptic weight bias Vw and on its time constant bias Vτ 

[145]. CMI circuit allows robust emulation of emergent ion-neuronal dynamics, 

reproducing chaotic bursting as observed in pacemaker cells [146], and has been 

extensively used by the neuromorphic engineering community.  

In order to achieve tunable dynamic conductance, a differential pair in negative 

feedback configuration was introduced to generate more appropriate Iw current and 

designed as the differential-pair integrator (DPI) [145]. In this circuit, the input voltage 

pulses are integrated to produce an output current that has maximum amplitude set by Vw, 

 
 

Figure 4.3 Log-domain integrator circuits. (A) “Tau-cell” circuit; (B) Current mirror integrator; (C) 

Differential-pair integrator. (Adapted with permission from [146] © 2011 Frontiers Media SA.) 
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Vt, and Vthr. Here, Vthr bias offers an extra degree of freedom via to implement additional 

adaptation and plasticity schemes. DPI enables generalized silicon implementations of LIF 

neuron [147] and has been used to build a small-scale spiking neuromorphic processor 

[148]. 

Passive integrators are generally compact in silicon area and very energy-efficient 

when biased appropriately in the subthreshold region. With these advantages, they are 

widely used in the implementation of silicon synapses [145], [149] and forge silicon 

neurons that are able to faithfully model the ionic channel dynamics in biological spiking 

neurons. However, synapse acts as a controllable current source in these circuits, therefore 

consume large silicon area and are not amenable for large-scale neuromorphic networks 

when the number of synapses is large.  

Leveraging the DPI architecture, a circuit to integrate a dense array of two-terminal 

memristors was proposed in [41]. The major challenge of this circuit is that it fails to 

provide stable voltage on the node of current integration. Therefore, it is difficult to control 

the potential across RRAM synaptic devices to be under the threshold voltage when no 

synapse change is expected, while exceeding the thresholds during STDP. As a result, it 

cannot utilize the STDP property offered by the RRAM nano-device and then, in fact, not 

really works for dense RRAM integration. However, this circuit is useful to produce the 

same and shared post-synaptic temporal dynamics or connecting to active synapses which 

are formed around nano STT-RAM device [150]. 

Opamp Integrators 

Precise and linear current integrator can be built with operational amplifiers 

(opamp). A standard opamp is a voltage amplifier with a differential input and a single-
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ended output that produces an output potential (Vout relative to circuit ground) that is 

typically many thousands of times larger than the potential difference between its input 

terminals 

𝑉𝑜𝑢𝑡 = 𝐴𝑂𝐿(𝑉+ − 𝑉−), 

where AOL is the open loop gain of the opamp, V+ and V− are the voltage on the positive 

and negative ports.  

Figure 4.4 shows an inverting integrator built with opamp. Here, a capacitor C is 

connected between the negative input port and output port of the opamp and forms a 

negative feedback loop. With zero charge on the capacitor, no voltage drop will be allowed 

on the capacitor. Because V+ is fixed, opamp’s gain is large and Vout is capped by supply 

voltage, the voltage difference between V+ and V− is forced to almost zero which means 

V− is virtually fixed to the same voltage as V+  

𝑉𝑋 = 𝑉− = 𝑉+ −
𝑉𝑜𝑢𝑡

𝐴𝑂𝐿
≈ 𝑉+, when 𝑉𝑜𝑢𝑡 ≪ 𝐴𝑂𝐿. 

C

Iin

VoutAvAv
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If

Rin

Vin
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+ -

 
Figure 4.4 Opamp based active inverting integrator circuit. Capacitor C connected between the 

negative input port and output port of the opamp forms a negative feedback, and makes X a node 

of virtual ground. Current Iin flowing into X turns to charge C with a same amount current If and 

yields Vc, while the potential at X remains constant. 
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Therefore, current Iin flows into the opamp negative input node X turns to be the current If 

with the same amount 

𝐼𝑓 = 𝐼𝑖𝑛. 

Consequently, If charges the capacitor and produces positive charges on left-hand plate of 

the capacitor. At the same time, the opamp output falls negative in an attempt to produce 

the same amount of negative charges on the right-hand plate of the capacitor and maintain 

a voltage across the capacitor following the capacitance-voltage-charge relationship. 

Conversely, a current flowing out from node X produces negative voltage change. The 

formula for determining voltage output for the integrator is as follows 

𝑉𝑜𝑢𝑡(𝑡) = 𝑉𝐶(𝑡) =
𝑄(𝑡)

𝐶
=

1

𝐶
∫ 𝐼𝑓(𝜏)𝑑𝜏

𝑡

𝑡0

+ 𝑉𝑐(𝑡0) =
1

𝐶
∫ 𝐼𝑖𝑛(𝜏)𝑑𝜏

𝑡

𝑡0

+ 𝑉𝑐(𝑡0). 

Figure 4.5 shows a simulated response of such an opamp-based inverting integrator 

for spatio-temporal current integration. In this circuit, three resistors (R1 = 10 MΩ, R2 = 5 

MΩ and R3 = 1 MΩ) are connected between node X and three voltage pulse sources 

respectively. The voltage sources have the same DC level (900mV), pulse amplitude (300 

mV) and duration (1 µs). When a positive spike ran through the resistor, it produced a 

current flowing into summing node and caused a step decrease to the output; when the 

spike is negative, the current flew out and output voltage increased. It can be figured out 

that the output change caused by Vin2 is two times of the change caused by Vin1 and output 

change caused by Vin3 is five times of the change caused by Vin1 which are linearly 

proportional to their produced currents, and then, are linearly proportional to the respective 

resistance as well. Once the spikes Vin1 and Vin2 overlap, the currents were aggregated and 

then the output change were summed. The current summing node potential VX remains 

constant all the time. 
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As a conclusion, the opamp-based inverting integrator provides a current summing 

node X which has a constant voltage level and is a very important attribute to enable reliable 

interfacing with RRAM devices. Moreover, opamp integrator is a linear current integrator, 

because its output node is isolated from the current summing node which has been fixed 

 
Figure 4.5 Response of opamp-based inverting integrator. These pulses cause step decrease and 

increase to the output voltage Vout. The step size is linearly proportional to the amount of current, 

and the direction of change depends on the current flow direction. The effect of current aggregation 

occurs when spikes Vin1 and Vin2 overlap. The current summing node potential VX remains constant 

during the integration. 
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and doesn’t move with charge accumulation on the capacitor. This also makes the opamp 

integrator respond faster than the passive integrators. Besides the inverting integrator, 

several topologies to realize an integrator based on a single-ended opamp. Furthermore, 

this standard inverting integrator is a compact and simple reconfigurable implementation 

whose other properties will prove to be useful in our neuron design presented later.  

Threshold and Firing Functionality 

In the integrate and fire neuron model, a neuron generates a spike once the 

membrane voltage crosses the firing threshold. This threshold crossing detection can be 

implemented in circuitry by comparing the input voltage with a voltage reference.  

One of the original circuits proposed for implementing LIF neuron models in VLSI 

is the Axon-Hillock circuit [84] as shown in Figure 4.6.A. The amplifier block A is typically 

implemented using two inverters in series, and the threshold crossing detection is 

performed by comparing Vmem to an implicit threshold that is determined by transistors’ 

characteristics. Once the Vmem crosses the threshold, the neuron fires an output pulse Vout 

which quickly changes from 0 to Vdd and turns on the reset transistor to discharge Cmem. A 

special design of this circuit is its positive feedback loop formed by the capacitor Cfb 

between the amplifier’s input and output, which make membrane voltage step up 

immediately and the output pulse-width depends on Cfb, Ir and Iin. When Vmem decreasing 

to under the amplifier’s switching threshold, Vout swings back to 0, the discharge transistor 

is turned off, and the membrane voltage steps down in the opposite direction with a same 

ratio. The positive feedback mechanism makes this Axon-hillock neuron self-reset, and 

produce stable binary spike of which the duration exhibits an excellent matching properties 

due to its dependent on capacitors rather than any of its transistors. 
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An explicit threshold crossing detection can be performed with CMOS voltage 

comparator circuits. The voltage comparator is similar to an opamp – a high gain amplifier 

with two inputs and single output, but it is specifically designed to compare the voltages 

between its two inputs, therefore, it operates in a non-linear fashion and provides a two-

state output voltage. Explicit firing threshold circuit was original implemented with a 

differential pair amplifier in [151], and additional output stages were used in [152], [153]. 

With explicit firing threshold and additional circuits modelling multiple ion channel 

dynamics, these neurons represented a neuron model with much better fidelity – an 

example comprises circuits for both setting explicit spiking thresholds and implementing 

an explicit refractory period is shown in Figure 4.7. However, in modern circuit 

implementation, comparators generally are built with three sub-circuits. Besides the 

differential pair as an input pre-amplifier that enlarges the input single level and an output 

stage converts the bi-stable state into a binary signal, a positive feedback circuitry is used 

to rapidly amplify the difference between the inputs to one of the two stable states. This 

positive feedback mechanism reduces the time that is required to determine and trigger a 

A 

 

B 

 

Figure 4.6 Axon-hillock circuit. (A) Schematic diagram; (B) membrane voltage and output voltage 

traces over time. (Adapted with permission from [146] © 2011 Frontiers Media SA.) 
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spike event, and is crucial for STDP learning in which the timing of spiking directly 

impacts the change of synaptic efficacy. 

Spike Shaping 

From the discussion so far, one can build a silicon neuron that integrates input 

current, fires when membrane voltage crosses a threshold and even represents ion channels 

dynamics with reasonable fidelity to their biological counterparts using the previously 

discussed building blocks. Such a neuron generally outputs a simple spike in a waveform 

of binary rectangular pulse with two-level voltages. However, as discussed in previous 

chapter, the shape of the spike Vspk can strongly influence the STDP learning function in a 

A 

 

B 

 

 Figure 4.7 A neuron circuit comprises circuits for both setting explicit spiking thresholds and 

implementing an explicit refractory period. (A) Schematic diagram; (B) Membrane voltage trace 

over time. (Adapted with permission from [153] © 2001 Elsevier.) 
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synapse built with a nanoscale memory device. Therefore, a circuitry that can generate 

appropriate spike waveform to enable STDP learning in nano-device based synapse is 

desired. A bio-realistic STDP pulse with exponential rising edges is very difficult to realize 

in circuits. However, a bio-inspired STDP pulse can be achieved with a simpler action 

potential shape by implementing a short narrow positive pulse of large amplitude followed 

by a longer slowly decreasing negative tail as plotted in the embedded figure in Figure 4.8. 

This leads to a simple implementation, yet realizes a STDP learning function similar to the 

biological counterpart [40]. Figure 4.8 shows a realization of the spike generation circuitry 

with three voltage levels selected by two mono-stable cells, and the duration of the spike 

tails are controlled by two capacitors charged with current sources [54]. 

Vrest

Vhigh

Vlow

Vout

   
Figure 4.8 STDP-compatible spike generation. A circuit realization to the spike with a short narrow 

positive pulse of large amplitude followed by a longer slowly exponentially decreasing negative 

tail as shown in the embedded figure. (Adapted with permission from [54] © 2012 IEEE). 
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Spike-Frequency Adaptation and Adaptive Thresholds 

When stimulated with constant current or continuous pulses, many neurons show a 

reduction in the firing frequency of their spike response following an initial increase. This 

phenomenon is called spike-frequency adaptation (SFA). SFA plays important role in the 

neuron functionality and network behavior. In terms of computing aspect, SFA makes a 

neuron shift from integrator to resonator, and then become more sensitive to synchronous 

activity. In a group of neurons in local competition, SFA reduces the activity of the 

dominating neuron for a short while, thus other neurons have opportunity to response to 

the input simulation and overall leading to a better selectivity map in the group. 

There are several biophysical mechanisms that can cause spike-frequency 

adaptation. They all include a form of slow negative feedback to the excitability of the cell. 

For the circuit realization of the SFA, one of the most direct way is to integrate the spikes 

produced by the neuron itself and subtract the resulting current from the membrane 

capacitance [149]. Figure 4.8 shows a silicon neuron design with this mechanism and its 

firing rate measurements in response to a constant input current [154]. The other simple 

method to model and realize SFA is to use adaptive thresholds. In this model, the neuron’s 

spiking threshold voltage is changed with the neuron’s firing rate. For example, in a neuron 

with opamp-based inverting integrator, each time the neuron fires, a small amount of 

voltage should be added to the firing threshold to make it go upwards; on the other hand, 

when there is no firing, the threshold voltage should decrease till the baseline level. 

From the integrate-and-fire equation, these two ways to adapt spike frequency are 

equivalent. An IFN fires when its membrane voltage meets the threshold  

𝑉𝑚𝑒𝑚(𝑡) =
1

𝐶𝑚𝑒𝑚
∫ 𝐼(𝜏)𝑑𝜏

𝑡

𝑡0

+ 𝑉𝑚𝑒𝑚(𝑡0) > 𝑉𝑡ℎ𝑟. 
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By subtracting charges from the integration capacitor Cmem with a firing rate dependent 

current source Iadp, we have 

𝑉𝑚𝑒𝑚(𝑡) =
1

𝐶𝑚𝑒𝑚
∫ 𝐼(𝜏)𝑑𝜏

𝑡

𝑡0

+ 𝑉𝑚𝑒𝑚(𝑡0) −
1

𝐶𝑚𝑒𝑚
∫ 𝐼𝑎𝑑𝑝(𝜏)𝑑𝜏

𝑡

𝑡0

> 𝑉𝑡ℎ𝑟. 

Moving this term to the left hand of the expression and rewriting it in a voltage form just 

adds the adaptive term Vadp to the threshold voltage:  

A 

 
B 

 
Figure 4.8 Spike-frequency adaptation is a silicon neuron. (A) SFA is implemented by subtracting 

charges from the integration capacitor with a PMOS current source controlling by the neuron’s 

spiking output. (B) The instantaneous firing rate as a function of spike count. The inset shows how 

the individual spikes increase their inter-spike interval with time. (Adapted from [154]. Permission 

is requested and under reviewing now.) 
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𝑉𝑚𝑒𝑚(𝑡) =
1

𝐶𝑚𝑒𝑚
∫ 𝐼(𝜏)𝑑𝜏

𝑡

𝑡0

+ 𝑉𝑚𝑒𝑚(𝑡0) > 𝑉𝑡ℎ𝑟 +  
1

𝐶𝑚𝑒𝑚
∫ 𝐼𝑎𝑑𝑝(𝜏)𝑑𝜏

𝑡

𝑡0

= 𝑉𝑡ℎ𝑟 + 𝑉𝑎𝑑𝑝(𝑡) . 

Figure 4.9 is a possible circuit realization of a neuron with opamp-based inverting 

integrator and explicit firing threshold. In this circuit, a parallel RC circuits is added 

between the voltage comparator and baseline threshold voltage Vthr0. Without spikes, the 

new adaptable threshold voltage Vthr equals Vthr0. Each time the neuron fires, some charge 

would add to the capacitor Cadp by the current source Idap and yield an increase in Vthr, and 

therefore, the firing rate would reduce. Because the parallel resistor Radp introduces a 

leakage current, Cadp would discharge to the baseline level Vthr0 if no fire again. 

Concurrently, Vthr would decrease following an exponential decay curve, which could be 

desired in the competitive learning algorithm. 
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Figure 4.9 A possible circuitry for realizing adaptive firing threshold. A voltage comparator is 

employed for explicit threshold crossing detection. Each time the neuron fires, an output controlled 

current source Iadp charges capacitor Cadp and increases Vthr from the baseline value Vthr0; when no 

firing occurs, parallel resistor Radp discharges Cadp towards Vthr0. 
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Axons and Dendritic Trees 

Axon and dendritic tree are other another building blocks for silicon neurons. Axon 

propagates efferent impulsive signals from the soma to distant neurons in other portion of 

the network that far away from the current neuron. This structure is crucial especially for 

large-scale neural network. Axon circuitry is basically a series of signal repeaters to keep 

the signal integrity of spikes. Dendritic tree could act as independent computational units 

as suggested by neuroscience experiments. Because the individually separated dendritic 

branches can produce different post-synaptic current with different time delays, the 

dendritic tree of a single neuron can act as a multilayer computational network that allows 

parallel processing of the inputs from pre-synaptic neurons before they are combined in the 

soma. More information about axon and dendritic circuitry can be found in [155]  and 

[149]. 

Summary 

In this chapter, the major building blocks to build analog spiking neurons were 

introduced together with several neuron design styles and examples. Because the easy and 

compact mapping from neuron model to analog circuits, LIF neuron is the most popular 

model for the implementation of neuromorphic systems. Thus, the integrator and threshold 

firing are the most important building blocks of a LIF neuron. With appropriate design and 

assembly of these building blocks, it is possible to use silicon integrate and fire neurons to 

mimic neuron behaviors and dynamics with reasonable faithfulness, and then is very useful 

for real-time emulation of a biological neural network. However, with the primary 

objective of this research is computation, faithfully representing the neuron dynamics may 

not be necessary and wasteful in terms of power consumption and silicon area. Thus 
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compact designs with appropriate abstraction of the neuron model are employed. 

Furthermore, it is worth to point out that the spike waveform shapes are generally neglected 

in some neuromorphic systems, which were designed for biological neural network 

emulation, but are critical to synaptic plasticity and the meaningful interface with RRAM 

devices as synapses. Therefore, they are considered as an essential building block for our 

neuron designs and implementation that follow in the next chapter.
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CHAPTER 5 

A CMOS SPIKING NEURON FOR DENSE RESISTIVE SYNAPSES 

AND IN SITU STDP LEARNING 

In previous chapter, several silicon neuron design styles have been reviewed along 

with other circuit building blocks. These designs model certain aspects of the biological 

neurons, however, most of them focus on faithful modeling of the ionic channel dynamics 

in biological spiking neurons, and require the synapses to act as controlled current sources 

[146], [156], [157]. As a result, they consume large silicon area, and therefore are not 

amenable for large-scale neuromorphic networks with a massive number of silicon 

neurons. The emergence of nanoscale RRAM synapses has triggered a growing interest in 

integrating these devices with silicon neurons to realize novel brain and nanotechnology 

inspired neuromorphic systems [43]–[52]. In these systems, researchers have used bio-

inspired LIF neuron models as an alternative to the complex bio-mimetic neuron models 

to implement large networks of interconnected spiking neurons. The IFN model captures 

the essential transient spiking behavior of the neuron with reasonable accuracy for use in 

learning while requiring a relative low number of transistors for its implementation. 

Currently, the IFNs used in neuromorphic systems [47], [156], [158], [159] need either 

extra training circuitry attached to resistive synapses, thus eliminating most of the density 

advantages gained by using RRAM synapses; or employ different waveforms for pre- and 
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post-synaptic spikes, thus introducing undesirable circuit overhead which limits power and 

area budget of a large-scale neuromorphic system. This chapter presents a novel leaky 

integrate-and-fire neuron design and the respective chip implementation. The proposed 

neuron works in a dual-mode operation with a single opamp and enables online learning 

directly with dense two-terminal resistive synapses. Several simulations and final chip 

measurements shows neuron’s ability to drive dense resistive synapses, and realize in situ 

associative learning. 

Accommodating RRAM Synapses 

Nano RRAM devices are non-volatile memory devices that do not consume power 

to retain their state. They are simple in structure (typically two-terminal), nanoscale in 

dimension, consuming very little energy to change their conductance and are compatible 

with CMOS process technology. Because the RRAM devices generally have two voltage-

type thresholds for conductance change, they are able to emulate STDP behavior similar 

to biological synapses with pair-wise spikes. As a result, nanoscale RRAM devices are 

very promising for implementing dense electronic synapses, and for synergistically 

interfacing with CMOS neurons in large-scale brain-inspired computing systems. With this 

context, nanoscale RRAM device is expected to be used as the synapse in its minimal form 

in a crossbar array, i.e. without any other associated device or circuits. Also, the 

conductance change depends on the over-threshold potential produced by the pre- and post-

synaptic spikes applied across it, while keeping its conductance unchanged when an under-

threshold potential spike is applied across it.  
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Existing IFN circuits fail to fit into a real large-scale neuromorphic system with 

resistive synapses due to three major challenges: (1) in-situ learning in resistive synapses, 

(2) driving capability and (3) accessory circuits attached to the synapses. 

Firstly, conventional IFN circuits are designed to generate spikes to match the 

spiking behavior of certain biological neurons [146], and then, synaptic learning is barely 

taken into consideration together with the neuron circuit. In Chapter 3, it has been shown 

that recent nanoscale RRAMs have demonstrated biological plausible STDP learning 

which requires the neurons to produce spikes with specific shapes. Thus, to realize online 

learning that leverages the dense-integration with nanoscale emerging devices, a pulse 

generator is needed to produce spikes which are compatible with the electrical properties 

of the two-terminal resistive synapse. Moreover, a STDP-compatible spike shape with 

digitally configurable pulse amplitudes and widths is desired to enable the designed silicon 

neuron to interface with synapse devices with different properties (e.g. programing 

thresholds and operating frequency) and incorporate spike-based learning algorithms, both 

of which are continuously evolving. 

Secondly, in order to integrate currents across several resistive synapses (with 

1MΩ-1GΩ resistance range) and drive thousands of these in parallel, the conventional 

current-input IFN architecture [3] cannot be directly employed; current summing 

overheads and the large current drive required from the neurons would be prohibitive. 

Instead, an opamp-based IFN is desirable as it provides the required current summing node 

as well as a large current drive capability. 

Finally, the primary benefit of using nanoscale resistive memory as a synapse is its 

high integration capability that is ideal for resolving the synaptic density challenge in 
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realizing massively parallel neuromorphic systems. For this reason, any additional 

ancillary circuit attached to synapse for online learning neutralizes this benefit and can 

make resistive synapse less desirable if the ancillary circuit occupies large area. Thus, a 

simple one-wire connection between a synapse to a neuron is desired. To get rid of ancillary 

circuits, current summing and pre-spike driving are needed to be implemented on the same 

node; similar to the post-spike propagation and large current drive. Thus, a compact neuron 

architecture utilizing opamp-based driver for both pre- and post-spikes becomes necessary. 

There have been a very few CMOS IFN designs attempting to address above 

problems. In [53], a reconfigurable opamp based IFN architecture was proposed to provide 

a current summing node to accommodate memristors. Respective circuit simulations, 

including tunable STDP-compatible spikes, were presented in [54]. To enable a change 

between excitatory and inhibitory connections,  a current conveyor was employed to drive 

memristor in [55], and the measurement results from a ferroelectric memristor was shown 

in [56]. However, these neurons fail to provide an energy-efficient driving capability to 

interface with a large number of RRAM synapses, or extra buffer circuits are required 

which can easily consume even larger silicon real estate than the neuron itself. Driving 

capability for a large number of synapses is generally desired in mimicking biological 

neural networks, e.g. a cerebellar Purkinje cell needs to form up to 200,000 synaptic 

connections [160], and for real-world pattern recognition applications, e.g. MNIST patterns 

have 784 pixels [161]. For instance, when a neuron drives 1,000 RRAM synapses, each of 

them having 1MΩ resistance, it requires 1mA current to sustain a 1V spike amplitude 

resulting in 1mW instantaneous power consumption. Therefore, a compact neuron design 
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with highly-scalable driver circuit solution for RRAM synapses, while avoiding large 

circuit overhead, is truly desired. 

The Neuron Design 

Figure 5.1 shows the circuit schematics of the proposed leaky integrate-and-fire 

neuron. It is composed of a single-ended opamp, a compact asynchronous comparator, a 

phase controller, a spike generator, three analog switches (SW1, SW2 and SW3), a capacitor 

Cmem, and a leaky resistor Rleaky which is implemented using a MOS transistor in triode. The 

opamp works as an active inverting integrator with capacitor Cmem and provides current 

summing node with constant voltage; it is also able to be reconfigured as a voltage buffer 

using the transistor switches. The comparator provides explicit firing threshold. The phase 
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controller is designed for generating the phase signals to realize specific spike waveform 

and for reconfiguring the opamp between the two different operational modes. Then, the 

neuron works in a dual-mode operation, one for leaky integration and the other for firing 

and emitting STDP-compatible spikes. One of the two different bias settings are selected 

for the same opamp depending upon the neuron’s mode of operation. By synergistic 

integration between circuits and RRAM devices, combining these functions in a compact 

architecture is the key to overcome the three challenges discussed previously. 

 

LIF Neuron 
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Cmem
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Figure 5.1 Block diagram of the proposed event-driven leaky integrate and fire neuron circuit. It 

includes integrate-and-fire, STDP-compatible spike generation, large current driving ability and 

dynamic powering in a compact circuit topology with a reconfigurable architecture based on a 

single opamp. (© 2015 IEEE) 
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Reconfigurable Architecture and Dual-Mode Operation 

Dual-mode operation is realized by using a single-ended opamp that is reconfigured 

both an integrator, as well as a buffered driver for resistive load during the firing events. 

Here, a power-optimized opamp operates in two asynchronous modes: integration and 

firing modes, as illustrated in Figure 5.2. 

The integration mode 

As shown in Figure 5.2.A, in this mode, the phase control signal Φint is set to active, 

and switch SW1 is set to connect “membrane” capacitor Cmem with the opamp output. With 

Φfire working as a complementary signal to Φint, switches SW2 and SW3 are both open. 

Thanks to the spike generator that is designed to hold a voltage equal to the rest potential 

Vrest during the non-firing time, the positive input of opamp is set to voltage Vrest, which 

consequently acts as the common-mode voltage. With this configuration, the opamp 

realizes a leaky integrator with the leak-rate controlled by Rleaky, and charges Cmem resulting 

in a change in the neuron “membrane potential” Vmem. Next, the neuron sums the currents 

injected into it, and causes the output voltage to move down. Then, the potential Vmem is 
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compared with a threshold Vthr, crossing which triggers the spike-generation circuit and 

forces the opamp into the “firing mode.” 

The firing mode 

As shown in Figure 5.2.B, in this mode, the phase signal Φfire is set to active and 

Φint is set to inactive which causes switch SW2 is close, and switch SW3 connects the opamp 
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Figure 5.2 Dual-mode operation. (A)  Integration mode: opamp is configred as a leaky integrator 

to sum the currents injected into the neuron. Voltages of Vrest are held for both pre- and post-resistive 

syanpses.  (B) Firing mode: opamp is reconfigured as a voltage buffer to drive resisitive synapses 

with STDP spikes in both forward and backward directions. Noting backward driving occurs at the 

same node (circled) of current summing which enables in-situ learning in bare synapses. 
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output to the p ost-synapses. Consequently, the opamp is reconfigured as a voltage 

follower/buffer. STDP spike generator creates the required action potential waveform Vspk 

and passes it to input port of the buffer, which is positive input of the opamp. Noting both 

pre-synapses and post-synapses are shorted to the buffer output, the neuron propagates 

post-synaptic spikes in the direction of the input synapses on the same port where currents 

were being summed. At the same time, the neuron also propagates the pre-synaptic spikes 

in the forward direction on the same node where the post-synapses are driven. Furthermore, 

SW1 is connected to Vrest, which then discharges and resets the voltage on the membrane 

capacitor Cmem. 

Opamp and Dynamic Biasing 

The energy-efficiency of the neuron is tied to the above discussed dual-mode 

operation. For dynamic biasing/powering, the opamp is designed with the output stage 

being split into a major branch and a minor branch. The major branch provides large current 

driving capability; while the minor low-power branch works with the first stage to provide 

the desired gain in the integration mode. Two complementary signals Φint and Φfire are used 

to bias the opamp in low-power configuration by disabling the major branch during 

integration and discharging modes, while enabling it to drive large currents in the firing 

mode.  

In this work, a compact design [162] is modified with an embedded split driver to 

realize a dynamically powered opamp, as shown in Figure 5.3. A two-stage opamp is 

suitable to obtain a compact design while at the same time achieving sufficiently large gain. 

The opamp contains a folded cascode input stage and a class-AB output stage. By 

incorporating the class-AB driver circuit in the folded-cascode summing circuit of the input 
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stage, this design saves silicon area. Since the rail-to-rail input is not a design consideration 

for this neuron application, th e input stage is simplified with only the NMOS branch 

remaining in the input stage. For dynamic powering, the class-AB output circuit is split 

into a major branch with large-size transistors that sustains large current and a minor branch 

with small-size transistors, while the push-pull driving circuits are shared. To switch 

between the two operating modes, two pairs of switches are added between the minor and 

major branches. When the neuron is operating in the integration mode, Φint is high and Φfire 
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Figure 5.3. A circuit implementation of the opamp with the dynamic biasing. A split class-AB 

driver is embedded in a compact folded-cascode topology. The major branch on the right side (red 

in dark area) provides large current driving capability; while the minor low-power branch in the 

middle (blue) works with the first stage to provide the desired gain. The complementary signals 

Φint and Φfire are used to activate the major branch only during the firing mode. 
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is low. Then, transistor M1 is on to pull-up the PMOS in major transistor to VDD and turn it 

off; in a similar way, M2 is on to pull-down the NMOS to ground and turn it off. At the 

same time, the two transistors, M3 and M4 between the minor branch and major branch are 

turned off to isolate the major branch from the opamp’s output. For stable operation, the 

compensation capacitors and zero nulling resistors need to be calculated and simulated for 

both of the two operational modes. Since the second pole of this opamp is proportionally 

related to the trans-conductance of the second stage, once the opamp is compensated for 

the lower-power mode (i.e. the integration mode), a larger second-stage trans-conductance 

due to the operation of the major branch brings in additional capacitance and causes the 

two dominant poles to further separate from each other (i.e. additional pole splitting is 

achieved). Consequently, the whole system is automatically compensated and stabilized 

when operating in the firing mode.  

Asynchronous Comparator 

Figure 5.4 shows the comparator used in this neuron design. It comprises of two 

cascaded differential amplifiers. The inner amplifier is a gain stage based on source-

coupled differential pair with diode-connec ted load devices. The output of the differential 

pair is further enhanced and regenerated upon using the cross-coupled latch that provides 

positive feedback. The outer amplifier further enhances the overall gain and converts the 

intermediate comparison result into a full-scale binary output voltage [163].  
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Phase Controller 

Figure 5.5 shows the phase control circuitry. It comprises of four signal generation 

circuits. The two-phase non-overlapping signal generators are implemented with NAND-

flip-flop based circuits. It takes the binary output from comparator and produces Φint and 

Φfire that control the switching of the neuron between the two modes of operation. Thanks 

to the latch-based topology, the produced signals Φint and Φfire are mutually non-

overlapping. The last signal generator stage takes Φ1 and Φfire to produce Φ2 and a reset 

signal which is used to clear a latch, that stores the comparator result, after the spike has 

been generated. Φ1 and Φ2 define the duration for the positive pulse and the negative tail of 

the spike waveform respectively. 

VDD

GND

Vthr

Vbn

Vcom

Vin

 
Figure 5.4. Circuits schematics of a compact asynchronous comparator. The positive feedback is 

incorporated with cross-connected coupled network to enhance the gain of the source-coupled 

differential pair. 



101 

 

 

 

Spike Generator  

A possible circuit implementation of the spike shape generator is shown in Figure 

5.6.B. It employs a voltage selector and an RC-discharging circuit for the positive pulse 

and the negative tail, respectively. This circuit is driven using the phase control signals 

Φint, Φ1, and Φ2. When the neuron is integrating the input currents, the signal Φint is active 

and connects the output Vspk to the rest voltage Vrest, which is generally the common-mode 

voltage in case that the neuron is built using a single-ended opamp integrator; once a spike 

event is triggered,  Φint opens the switch and two switches controlled by signal Φ1 are 

closed, and the Vspk is changed to the higher voltage level Va+ which lasts for a duration of 
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Figure 5.5. Control and phase generation circuitry. The four non-overlapping phase signals control 

the operational mode of the neuron and define the timings of output spike waveform.  
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τ+ and forms the positive pulse of the spike waveform. At the same time, the capacitor C 

is charged to the lower voltage level Va- to prepare for the following negative tail waveform. 

After the positive pulse duration, previous switches are opened and another two switches 

controlled by signal Φ2 are clo sed. Now, Vspk changes to the opposite polarity at the voltage 

level of Va- and starts to increase towards the rest voltage, with the capacitor C discharging 

through the resistor R. Here, the discharge rate is controlled the RC time-constant which 

can be made tunable by implementing a resistor/capacitor bank which is in turn controlled 

by a digital interface. Thanks to the characteristics of the RC discharging circuit, this circuit 

implements an inherently exponential curve for the negative tail. 

Alternative solution can be used to implement a straight ramping curve for the 

negative tail. In this solution, instead of using a resistor to discharge the capacitor, a current 

source is applied to precisely control the discharge rate which is constant and independent 

with the time, thus generating a linearly sloping negative tail.  
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Figure 5.6. STDP-compatible spike generation. (A) A spike with a short narrow positive pulse of 

large amplitude followed by a longer slowly exponentially decreasing negative tail, and (B) the 

respective circuit realization. (© 2015 IEEE) 
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Circuit Simulations 

The circuits were designed in Cadence analog design environment and the 

simulations were carried out with the Spectre circuit simulator. The silicon neuron was 

realized with an IBM 180nm CMOS process.  

Opamp Characterizations 

A two-stage opamp was used with folded-cascode topology for the first stage 

followed by a dynamically biased class-AB output stage, as discussed earlier. With 1.8 V 

power supply, 900 mV common voltage, an equivalent load of 1 kΩ in parallel with 20 pF, 

the opamp has 39 dB DC gain, 3 V/µs slew rate and 5 MHz unity-gain frequency in 

integration mode; and 60 dB DC gain, 15 MHz unit gain frequency and 15 V/µs slew rate 

in firing mode.  

Integration, Firing and Leaking 

A test circuitry that consists of a neuron and three input resistor synapses was used 

to evaluate the spatiotemporal integration, firing with threshold, spiking and leaky 

functionalities, as shown in Figure 5.7. In this setup, a 2 pF integration capacitor Cmem was 

used, firing threshold was set to 200 mV, and a standard spike shape as shown in Figure 

5.6.A was employed with the Va+ = 350 mV, Va- = 150 mV, τ+ = 0.5 µs and τ- = 2.5 µs. 

To verify the spatiotemporal integration, three spike trains with 900 mV rest 

voltage, 100mV positive amplitude, 100 ns pulse with 1 µs interleaving were sent to the 

input branches. All the three resistor synapses have the same strength equal to 100 kΩ. 

Under this configuration, an input spike runs through the resistor produces a 1 µA current 

flowing into the neuron. Figure 5.8 shows the response of membrane voltage Vmem and the 
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output firing spikes Vspk with th ese interleaved input spikes and equal strength synapses. It 

can be seen that each spike caused about 50 mV step decrease to the membrane voltage 

Vmem, and the Vmem decreased alm ost linearly along the input spikes. Since the three input 

spike trains were interleaving with no overlaps, the steps of Vmem’s changes were identical. 

When the Vmem crosses the 200 mV threshold in the downward direction, a firing event was 

triggered and a spike Vspk with its waveform shape same as expected was sent out. After 

the spiking, the Vmem returned to the resting potential, and another integrating and firing 

cycle started.  In this figure, it can be also seen that a few tiny glitches on the neuron output 

which correspond to the input spikes. These glitches exist in real circuits because the 

opamp is not perfect and has a finite gain – the 39 dB gain in integration mode is not large, 

and thus, the opamp didn’t perfectly hold the resting potential. The amplitude of the 

glitches was around 10 mV in this case, which have negligible effect (since they as 

significantly smaller than the memristor thresholds) and generally have no impact on the 

neuron operation and synaptic learning. Using the relatively low gain opamp configuration 

here helps to achieve lower power consumption, and thus these glitches can be tolerated. 

 

 

Figure 5.7 Testing circuitry used to characterize CMOS spiking neuron. Three resistors are 

connected to the neuron input and convert three spiking inputs into currents. 
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To evaluate the impact of the synaptic strength, i.e. the resistor’s conductance, to 

the membrane voltage, the three resistors were set to R1 = 50 kΩ, R2 = 100 kΩ, and R3 = 

200 kΩ. Put in another way, this made the three input synapses have 2×, 1× and 0.5× 

strength if the 100 kΩ was defined as 1× synaptic strength. As shown in Figure 5.9, the 

respective input trains, in red, green and blue, yield approximately 100 mV, 50mV and 

 

Figure 5.8 Response of membrane voltage Vmem and typical output firing spikes Vspk with 

interleaving input spikes and equal strength synapses. It shows the linear inverting integration of 

identical input currents from three spike sources, while each of the input spike led to a moving 

down step on the membrane voltage Vmem. Once Vmem ran across the 200 mV firing threshold, a 

spike with waveform customized for STDP learning was generated. 



106 

 

 

 

25mV steps to membrane voltage Vmem respectively. Since the input spike trains are equally 

spaced in arrival time, the widths of steps were same. Consequently, the neuron has same 

membrane voltage behavior in every spiking cycle with the output spike interval around 

20 µs. 

Figure 5.10 shows a simulation results where the three input trains overlap at 

different times. In this test case, R1 = 120 kΩ, R2 = 60 kΩ, and R3 = 30 kΩ. For the first 30 

µs, only the Vin1 had its input spike train (in red) presented to the neuron. This yielded about 

60mV steps to the Vmem decrease with each spike. After 24 spikes, the Vmem crossed the 

 

Figure 5.9 Response of membrane voltage Vmem and typical output firing spikes Vspk with interleave 

input spikes and three different strength synapses. Here R1 = 50 kΩ, R2 = 100 kΩ, and R3 = 200 kΩ 

make the three input synapses have 2×, 1× and 0.5× strength. The respective input trains, in red, 

green and blue, yield 100 mV, 50mV and 25mV steps to membrane voltage Vmem respectively. 
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firing threshold and the first output spike was generated. Here, we can see the influence of 

a weak leaky mechanism, which reduce the steps’ height when the potential across the 

capacitor Cmem increased with the Vmem going to a lower voltage. Started from 30 µs, the 

second spike train from Vin2 was presented and completely overlapped with the Vin1. The 

larger strength of the R2 and the overlapping effect made Vmem decreased much faster and 

trigged the second output spike after 8 input spikes. This procedure was further accelerated 

with the third spike train from Vin3 started from 40 µs and the even larger synaptic strength 

was counted in. This time, the neuron fired only after 4 inputs spikes. The output spike 

intervals were measured 24 µs, 9 µs and 5 µs were inversely proportional to the total 

 

Figure 5.10 Response of membrane voltage Vmem and typical output firing spikes Vspk with 

overlapping input spikes and three different strength synapses. Here R1 = 120 kΩ, R2 = 60 kΩ, and 

R3 = 30 kΩ. The overlapping of the input spike trains made larger Vmem decreasing steps, and 

consequently caused decreasing interval in output spikes. 
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effective synaptic strength, in form of conductance, which were 8 µS, 25 µS and 58 µS 

respectively. 

A close look at the leaky integration effect can be found in Figure 5.11. In this 

simulation, all the three resistors were set to 20 kΩ, and three input spike trains were 

repeated after 30 µs. Under the first three input spikes, Vmem quickly dropped to almost the 

firing threshold, however, without any more input current, the Vmem started to move towards 

to the rest voltage with the charges leaking away from the Cmem. Once the input trains came 

back at 30 µs, the Vmem dropped again and crossed the firing threshold.  

 

Figure 5.11 Leaky response of membrane voltage Vmem. 
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Spike Shaping 

The STDP-compatible pulse generator circuit was designed with digital configurability to 

allow interfacing with a broad range of nano-RRAM devices. Such tunability may also be 

useful in the circuit implementation to compensate for the RRAM parameter variations. 

Figure 5.12 shows some examples of the output STDP spike generated from the 

configurable spike generator with positive/negative amplitudes and pulse widths were set 

to various values, while using 1.8V power supply and driving 1,000 memristor synapses 

with average resistance of 1MΩ. The shape of spike is adjustable to accommodate a broad 

range of memristor characteristics and the circuit behavior mandated by SNN learning 

algorithms. 
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Figure 5.12. Examples of neuron output spikes generated from the tunable spike generator. By 

changing the values of resistors and capacitors in the spike generation circuits, the positive and 

negative amplitudes, positive and negative tail durations, and the RC slope were configured. (© 

2015 IEEE) 
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Power Consumption 

To evaluate energy-efficiency, the neurons were designed to have the capability to 

drive up to 10,000 resistive synapses with an assumption that the distribution of resistive 

states is tightly arranged around 1 MΩ resistance. This yields a 100 Ω equivalent resistive 

load. Figure 5.13 shows the neuron consumed 13 μA baseline current in the integration 

mode. When firing, the dynamically biased output stage consumed around 56 μA current 

in the class-AB stage, and drove the remaining current to memristor synapses: a 1.4 mA 

peak current for 10,000 memristor synapses sustained a spike voltage amplitude of 140 

mV. The current sunk by the synapses follows Ohm’s law (linear region of the hysteresis 

loop) due to its resistive nature. Insufficient current supplied to the resistive synapses will 

cause a lower spike voltage amplitude that may fail STDP learning. Here, the widely used 

energy-efficiency figure-of-merit for silicon neuron, pJ / spike / synapse, becomes 

dependent on the resistance of synapses, and therefore, is not an appropriate descriptor of 

neuron’s efficiency. Instead, the power efficiency η during the maximum driving condition 

(at equivalent resistive load) should be used, i.e. 

𝜂 =
𝐼mr

𝐼mr + 𝐼IFN
, 

where Imr is the current consumed by a resistive synapse and IIFN is the current consumed 

by a silicon neuron. Our simulation demonstrated η = 97% with 100 Ω for the selected 

memristor, and a baseline power consumption of 22 μW with a 1.8 V power supply voltage. 

This baseline power consumption doesn’t change with the neuron’s driving capability 

thanks to the dual-mode operation. As a comparison, a neuron without dynamic biasing 
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consumes a 5-fold baseline current; a neuron based on dual-opamp architecture may 

consume a 10-fold static current. It should be noted these power consumption values are 

for a neuron design that targets a broad range of synaptic devices, without optimizing for 

a specific device, and therefore have a significant room for improvement in power 

efficiency when designed for specific resistive synapse characteristics. 

Table 5.1 shows the comparison results with the related work in the literature. It 

should be noted that most of previous silicon neuron designs didn’t accommodate two-

terminal memristor, and therefore, it is inapplicable to compare the performance metrics 
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Figure 5.13. Graphics showing the current consumption versus the number of its driving synapses. 

(A) Current proportional to synapse numbers was required to sustain spike voltage amplitudes for 

desired STDP learning in memristors, which causes large current being pulled when a large number 

of memristor are interfaced. Dynamic biasing based on dual-mode operation kept the neuron in 

very low power phase with only baseline (or static) current in integration mode, and extra current 

for output drive in firing mode. (B) The current consumption breakdown versus the number of 

memristor synapses, assuming that the distribution of resistive states is tightly arranged around 

1MΩ. (© 2015 IEEE) 
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directly. While the best comparable works are the neurons reported in [40], [54]–[56], but 

unfortunately, they don’t report the crucial power figures. 

Single Post-Synaptic Neuron System 

To build a brain-inspired computing system, we begin with a basic single neuron 

system, as shown in Figure 5.14. It is built up with two elements, a RRAM synapse and a 

CMOS neuron (while the pre-synaptic neuron is shown for a purpose to tell the source of 

the input spike). The RRAM device works as a synapse to connect pre- and post-synaptic 

neurons, and the conductance of the RRAM realizes the synaptic strength which can be 

changed with pair-wise spikes from pre- and post-synaptic neurons under the STDP rule. 

It is important to note that the synapse is a bare two-terminal RRAM device – meaning 

Table 5.1 Comparison of Several Neuron Designs 

 This Work [54], [55] [56], [169] [146], [159] 

RRAM Compatible Yes Yes Yes No 

Fixed Vrest for Synapses Yes Yes Yes - 

Current Summing Node Yes Yes Yes - 

STDP-Compatible Pulse Yes Yes Yes - 

Dynamic Powering Yes No No - 

Baseline Power 22µW N/A1 N/A1 Vary2 

Large Driving Current Yes No No - 

Large Driving Efficiency 97% N/A1 N/A1 - 

1. The figure is not reported. 

2. Inapplicable to compare. 
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there isn’t any other circuitry connecting to it for any purpose of sensing or modulating its 

state, except the two neurons connected to its two terminals respectively. Moreover, the 

pre- and post-spikes are identical with both positive and negative amplitude under the 

respective thresholds of the RRAM device. By utilizing the device in this way, we can 

completely leverage the benefits providing by the nanoscale RRAM devices to build large-

scale neuromorphic systems.  

In Situ STDP Learning 

Functionality of the fundamental hybrid CMOS / RRAM block was first simulated 

in a small neural circuit with two RRAM synapses connected between two input neurons 

(pre-synaptic neurons) and one output neuron (post-synaptic neuron) as depicted in Figure 

5.15. With an equivalent load of 1 kΩ in parallel with 20 pF, the opamp was characterized 

to have 39 dB DC gain, 3V/µs slew rate and 5 MHz unity-gain frequency in integration 

mode; and 60 dB DC gain, 15 V/µs slew rate and 15 MHz unit gain frequency in firing 

mode. We employed a device model in [164] that has been matched to multiple physical 

 

Forward spike Backward spike

Post-synaptic
neuron

Pre-synaptic
neuron

RRAM
synapse

 
 

Figure 5.14. The fundamental block of the hybrid CMOS / RRAM system. A two-terminal passive 

RRAM device works as a synapse between two CMOS neurons. The conductance of the RRAM 

presents the synaptic strength, and can be changed with pair-wise spikes from pre- and post-

synaptic neurons under STDP rule. 
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memristor devices (RRAMs). The STDP-compatible pulse generator circuit was designed 

with digital configurability to allow interfacing with a broad range of memristors. Such 

tunability may be also useful in the circuit implementation to compensate for significant 

memristor parameter variation, which is a primary concern with such devices. For instance, 

spike parameters Va+
 = 140 mV, Va-

 = 30 mV, τ+
 = 1 μs and τ-

 = 3 μs were chosen for a 

device with Vth_p
 = 0.16 V and Vth_n

 = 0.15 V, where Va
+ and Va

-
 were small enough to avoid 

perturbing the memristor, and large enough to create net potentials across the memristor 

with a potential above the memristor programming thresholds Vth_p and Vth_n. 

Figure 5.16 shows the integrate-and-fire operations of the neuron and the LTP/LDP 

learning in the memristor synapses. In this simulation, one of the pre-synaptic neurons (#1) 

was forced to spike regularly with output Vpre1 (blue solid line), while the other spikes (#2) 

randomly with output Vpre2 (red dash line). The post-synaptic neuron summed the currents 

that were converted from Vpre1  and Vpre2 by the two synapses, and yielded Vmem. Post-

synaptic spikes Vpost were generated once Vmem crossed the firing threshold voltage Vthr = 

Pre-spike

Post-spike

t1

t1+Δt

Resistive
Synapses

IFN1

IFN2

R1

R2

t2

Pre-spike

IFN3

 

Figure 5.15. A small system with two input neurons and one output neuron. This simple system is 

used to verify the neuron operation and STDP learning in the fundamental hybrid CMOS / RRAM 

block, and demonstrate associative learning of a Pavlov’s dog later. 
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0.3 V. The bottom panel shows potentiation and depression of the memristor synapses 

when a post-synaptic spike overlapped with the latest pre-synaptic spike, and created a net 

potential Va+
 + Va- = 170mV over the memristor, which was exceed their programming 

thresholds Vth_p = 160mV or Vth_n = 150mV. For example, the post-synaptic neuron fired 

immediately after a spike from input neuron #1 at 110 µs, and therefore, this spike pair has 

relative arrival time Δt > 0 that the post-synaptic spike arrived late than the pre-synaptic 
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Figure 5.16. Neuron operation and LTP/LDP learning in RRAM synapses. Output neuron sums 

input current and yields the membrane potential Vmem. Post-synaptic spikes Vpost fired when Vmem 

crossed Vth, and caused long term potentiation or depression (LTP/LDP) in synapses, which depends 

on the relative arriving time with respect to the pre-synaptic spikes Vpre.  (© 2015 IEEE) 
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spike. Putting this in another way, the spike coincidence means a neuron spiking event is 

triggered by the pre-synaptic spike, and therefore, the output neuron should have a higher 

correlation with the input neuron #1. Hence, the connection between them should increase 

which is represented in a conductance jump upwards of R1, also called long term 

potentiation (LTP) in term of synapse strength. A contrary case happened at 170 µs where 

neuron #1 trigged another spiking event in the output neuron, and then, conductance of R1 

increased again, but this time a spike from input neuron #2 occurred about 5 μs after the 

output neuron’s spiking. It is obvious that the input spike from neuron #2 is irrelevant to 

this spike event, and as a result, the connection between them should decrease which is 

shown as a conductance step downwards of R2, also called long-term depression (LTD) in 

term of synapse strength. One may note that R2 have both LTPs and LDPs in this 

simulation. This is because the input neuron #2 was randomly firing, so its spikes didn’t 

carry any meaningful information. Despite of the potentiation and the depression of the 

synapse, they can also cancel each other over longer duration and create neither favorable 

nor unfavorable relationship between the two neurons. Such relationships introduced by 

LTPs and LTDs according to the spiking correlation between two neurons are fundamental 

computing mechanism in brain-inspired system, which enables a neuron to become 

selective to a specific pattern [74] and a group of neurons to discover patterns by 

themselves as we will show later. 

 Quantitatively, a pre- / post-synaptic spike pair with 1μs arriving time difference 

Δt resulted in a 0.2 μS conductance increase or decrease depending on late or earlier arrival 

of Vpost relative to Vpre respectively. Figure 5.17 summarizes the STDP learning in 
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memristor conductance change ΔGmr versus ±5 µs range of Δt. The asymmetric curve shape 

with more depression peak value than potentiation was caused by the lower memristor 

negative threshold Vth_n than Vth_p.   

Example of Associative Learning 

Associative learning is simple classic conditioning experimentally demonstrated by 

a neural network with two input neurons for sensory and one output neurons for association 

decision. Such a simple neural network is analogous to the seminal research done by Pavlov 

with salivation response in dogs. Associative learning is especially important as it is 

believed to be behind how brains correlate individual events and how neural networks 

perform certain tasks very effectively. First proposed in [165], synaptic emulators and 

specially-designed microcontroller and ADC circuitry were developed to demonstrate the 
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Figure 5.17. Simulated pairwise STDP learning window around 1µS conductance and 5µs relative 

time range. (© 2015 IEEE) 
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associative learning. Later, several experiments were performed with physical RRAM 

devices [51], [166]. However, all of them need additional circuitry to program the RRAM 

devices, and none of them address the challenge of integration with silicon neuron, and 

then can’t perform in situ learning in two-terminal RRAM in a large-scale network. 

With the same memristor model implemented in Verilog-A, associative learning of 

a Pavlov’s dog in the hybrid CMOS-memristor network was simulated with developed 

CMOS neuron circuit in Cadence. Figure 5.18 shows the simulation results. Before learning, 

the “salivation” neuron (IFN3) only responds to the input 1 which is the “sight of food” 

neuron input (IFN1). By simultaneously applying stimulations to both the “sight of food” 

and “sound” neurons (IFN2) in the learning phase, synapse R2 between the “sound of bell” 
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Figure 5.18 Development of an associative learning simulated in a hybrid CMOS / memristor 

Pavlov’s dog. 
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neuron and the “salvation” neuron is strengthened. After around 1 μs, stimulus from the 

“sound of bell” neuron alone is able to excite the “salivation” neuron, therefore establishing 

an association between the conditioned and unconditioned stimuli. It is worth to note that 

the synaptic plasticity realized in a silicon memristor synapse could be must faster than its 

biological counterpart (which works in milliseconds timescale) [167][36].  

Figure 5.19 shows the synaptic potentiating progress which is presented as the 

resistance decrease. In this experiment, the synapse R1 between “sight of food” neuron IFN1 

and “salivation” neuron IFN3 was initialized to 30 kΩ, and the synapse R2 between “sound 

of bell” neuron IFN2 and “salivation” neuron IFN3 was initialized to 1 MΩ. For synapse 
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Figure 5.19 Resistance evolution of the two memristor synapses in associative learning simulation.  
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R2, before learning, the stimulation singles out the STDP-compatible spikes propagated 

across the memristor and injected into the decision-making neuron. Because the spike was 

designed to have peak voltages below the threshold voltages of memristor, the memristor 

has its resistance unchanged, at the same time, the current integrated by the neuron was too 

small to excite the neuron to fire. During the learning phase, its resistance decreased in each 

STDP event. After 1 ms, the resistance dramatically reduced to 20 kΩ, and then it is synaptic 
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Figure 5.20 Zoom-in view of the spike trains of the three CMOS neurons (top panel), net potential 

across memristors with peak voltage exceeded threshold Vth,p of the memristor (middle panel), and 

synaptic potentiating in the two memristor synapses (bottom panel) during associative learning 

simulation. 
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potentiated. In the following probing phase, larger current injected into neuron due to lower 

resistance of R2 and drove the output neuron fired independently.  

Figure 5.20 zooms in the in situ learning in details. Input spike from the “sight of 

food” neuron causes a firing of the “salivation” neuron (contribution of spike from “sound” 

neuron to output neuron firing depends on the synaptic strength between them. At the 

beginning of the leaning phase, this could be neglected). A “sound” signal arrives at the 

same time, in other words, is correlated to the “sight of food”. When, the spike from the 

“salivation” neuron (post-synaptic spike) is simultaneous with the spike from the two 

inputs neurons, then the created net potential across each memristor with peak voltage 

exceeds the positive threshold voltage Vth,p. As result, the two memristor synapses 

experienced an in situ modification under the STDP rule. Noting that the resistance change 

of memristor depends on its state as well, modification values of the two memristor were 

different. The one exhibiting high resistance decrease more than the one exhibiting lower 

resistance. 

Chip Implementation 

To verify the proposed CMOS analog spiking neuron design and provide a platform 

for on-chip RRAM integration and hybrid system-level experiment, a test chip was 

planned, designed and fabricated. The test chip contains several these spiking neurons with 

external tunability to optimize their response to the memristor characteristics (e.g., 

threshold voltage and the STDP program/erase pulse shape required by the fabricated 

RRAM devices) and the spike shape required by learning algorithms, and an array of 

bottom electrodes to provide the option for physical RRAM devices to be bonded 

externally or fabricated on the CMOS chip using a back-end-of-the-line (BEOL) process. 
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For a complete chip, biasing, voltage reference, digital interface, decoupling and ESD 

protection circuits were also included.  

Design environment 

We used Cadence Virtuoso analog design environment to do physical design work, 

LVS and DRC. The chip implementation process is IBM CMOS7RF/HV AM. This process 

provides 6 metal layers with a thick aluminum top metal layer. CMOS 7RF provides 

standard minimum 180nm NMOS and PMOS transistors operates at 1.8V, metal-insulator-

metal (MIM) capacitors with the capacitance density from 2.05 fF/μm2 to 4.10 fF/μm2 and 

several standard and optional resistors. 

Neurons 

The previously designed spiking neuron was implemented on the chip in full 

custom manner. The opamp targets to have 39 dB DC gain, 3V/µs slew rate and 5MHz 

unity-gain frequency in low power mode; while 60dB DC gain, 15MHz unit gain frequency 

and 15V/µs slew rate in firing mode in full driving capability mode under 1.8 V power 

supply. The two-stage folded-cascode opamp was with dynamically biased class-AB 

output stage was laid out to achieve a balance between compact size and good circuit 

reliability. The integration capacitor and the compensation capacitors were implemented 

with MIM capacitors, and polysilicon resistors were used. The comparator was 

implemented to provide less than 50ns responding time without specific size optimization. 

Analog switches were implemented to provide low on-state resistance and appropriate 

capacitance to enable large current flow and minimize current spur. The phase control 



123 

 

 

 

portion was layout with full-custom logic gates and optimized for minimum size. Each of 

these major blocks are separated and isolated with guard-ring structures, and the whole 

neuron circuits is surrounded by a big double-guard-ring. The final neuron layout occupies 

110 × 110 µm2, which enables 8,300 neurons to fit into a chip of 1 × 1 cm2. The size of 

implemented CMOS neuron is in the range of the size of biological neurons which are vary 

in size from 10 µm to 100 µm in diameter. Considering most of the layout in the design 

was not optimized for small space and the use of 180nm planer process, there are still 

significant room to further reduce the neuron size. 
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Figure 5.21 An example of RRAM crossbar layout. The fifth metal layer (green) of CMOS chip was 

used to layout bottom electrodes and alignment masks, and tungsten vias were used as contact points 

to plant RRAM devices between the bottom electrodes and top electrodes (red, not on CMOS chip 

but will be processed in BEOL). 
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RRAM Arrays 

RRAM devices are considered to be integrated on chip using BEOL process. This 

enables the designed chip to serve as a platform to verify the hybrid CMOS / RRAM 

integration, in-situ learning and other simple applications. For this purpose, three 8×8 

electrode arrays were designed on the chip. Each of the arrays have a shared connection to 

the output of one neuron, and eight tungsten contact points were designed on each of the 

array’s eight fingers which were layout using the fifth metal layer. This structure enables 

crossbar on-top of the CMOS circuits. Finally, a window was designed to open a big area 

into the passivation and several mask alignment marks were placed on the chip to enable 

BEOL processing for RRAMs planting. An example of RRAM crossbar layout is shown 

in Figure 5.21. In this example, RRAM devices will be planted on the tungsten contact 

points between the bottom electrodes (green in the figure, on CMOS chip) and top 

electrodes (red in the figure, by BOEL process). 

Tunability 

An on-chip tunability function was designed to make the spike waveform could be 

shaped according to external setup. This includes three functional blocks: two 4-bit DACs, 

nine 4-bit capacitor banks and a register row. 

The two 4-bit DACs provide reference voltages for Va+ and Va- which define the 

positive and negative voltage amplitudes of the spike waveform respective. These 4-bit 

DACs were implemented in current steer W-2W architecture with a high performance 

opamp, and shared among all the neurons. The W-2W transistor ladder produces 16-levels 

current under the digital controlled switches. Figure 5.22.A shows the layout of this W-2W 
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ladder. Then the current is buffered and converted into 16-levels voltages by a 72 dB, 200 

MHz unity-gain frequency and 500 V/μs slew rate opamp.  

To provide tunability to the positive / negative tail durations and ramp slope of the 

spike waveform, three 4-bit capacitor banks were designed for each neuron. The capacitor 

bank was implemented with high density MIM capacitors and organized in 4×4 common 

centroid structure, as the layout shows in Figure 5.22.B. These unit capacitors are 

connected in parallel under the control of digital controlled switches form a larger 

capacitance with 16 levels.  

Finally, a shift register row was built with DFFs with up to 3.3V input driver to 

enable communication with external controller (e.g. FPGA, PC and testing instruments) to 

set desired spike waveform parameters. Table 5.2 summarizes the tunable parameters of 

the neuron output spike waveform as shown in Figure 5.6.A by giving the minimum and 

maximum values with the increasing / decreasing step size from simulations. 

A B

 
Figure 5.22 Layouts of (A) current steer W-2W ladder and (B) 4×4 common centroid structure MIM 

capacitor bank. 
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Other modules 

Besides, several biasing circuits were developed to provide bias voltages for 

opamps and comparator. They are shared among all neurons in current steer manner and 

reproduce the voltages locally with current mirror circuits. Many decoupling capacitor 

arrays were filled into the chip between the power grids to protect functional blocks from 

noise in the power supply. Finally, two types of ESD protection circuits were added besides 

the power supply pad and signal pads respectively, in order to protect the chip from external 

surge current strike. 

 

The finished chip layout is shown in Figure 5.23. This single chip design includes 

three neurons, three 8×8 bottom electrodes in a big glass opening area reserved for RRAM 

crossbar BEOL processing, and several individual contact points were designed with 

various sizes to enable on-chip RRAM devices tests. 

 

 

Table 5.2 Tunable parameters of the neuron output spike waveform 

Parameter Symbol Unit Min Max Step Size 

Positive amplitude Va+ mV 0 360 24 

Negative amplitude Va- mV 0 360 24 

Positive pulse width τ+ ns 48 396 23 

Negative pulse width τ- ns 282 1125 56 

Negative pulse slope slope mV/ns 0.011 0.52 0.034 

* Note: parameters are for the spike waveform defined by Figure 5.6.A. 
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Chip Measurements 

The test chip was fabricated in IBM CMOS7RF/HV 180nm CMOS process through 

MOSIS, and its micrograph is shown in Figure 5.24.  The chip has a size of 2×2 mm2. The 

active area of the chip includes circuitries of three neurons that each occupies 0.01mm2, 

digital configurable capacitor and resistor banks, biasing and voltage reference circuitries, 

and a digital interface. The test-chip also includes three 8×8 on-chip tungsten electrode 

arrays, the option of resistive synapses integration to be bonded externally and / or 

fabricated on the CMOS chip using a BEOL process.  
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Figure 5.23 Test chip layout. Three neurons and three 8×8 bottom electrodes of RRAM crossbar 

were integrated on a single chip. A big glass opening area was reserved for BEOL processing.  

Several individual contact points were designed with various sizes to enable on-chip RRAM 

devices tests. 
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Measurement Setup 

 The measurements of the test chip was set up as shown in Figure 5.25. A FPGA 

was used to communicate with the chip and configure the neuron parameters, e.g. spike 

shape, threshold and trimmings. Two Agilent 33220 / 33520B 20 / 30 MHz arbitrary 

waveform generators were employed to provide the original input stimulation to the 

neurons. The outputs of neuron 1 and 2 were connected to the input of neuron 3 through 

two resistors, R1 and R2, to form a small network. All the three neurons’ outputs were 

monitored by an Agilent MSO7104B mixed signal oscilloscope (1 GHz bandwidth, 4 Gsps 

 

 

Figure 5.24 Micrograph of the test chip in 180nm CMOS. N1, N2 and N3 are three silicon neurons. 

Biasing is biasing and voltage reference circuitries, and Digital I/F is the digital interface. (© 2015 

IEEE) 
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sample rate, four analog channels with intrinsic 1 MΩ resistance in parallel with 14pF 

capacitance). The chip was powered by a voltage regulator board which was built with 

Analog Device’s ADP225 dual output adjustable low noise voltage regulator, and 

connected to the main DC power supply.  

Spiking Behaviors 

First, the output spike trains of all the three neurons on the test chip were measured. 

For this testing purpose, the output port of a neuron was connected to a driving a load with 

resistance of 1 kΩ in parallel with capacitance of 20 pF which is equivalent to few 

thousands of resistive synapses with 1 MΩ nominal. During the test, a 2MHz rectangular 
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Figure 5.25 Setup for test chip measurements. A FPGA was used to communicate with the chip 

and configure the neuron parameters (e.g. spike shape, threshold, trimming…). Two arbitrary 

waveform generators were employed to provide the original input stimulation to the neurons. IFN3 

was connected to the outputs of IFN1 and IFN2 through two resistors to form a small network.  
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pulse train with 50 ns 100 mV amplitude above 900 mV DC level was given to the neuron’s 

input through a 50 kΩ resistor which injects 100 fC (= 50 ns × 2 µA) charges into the 

neuron. The output response of the neuron under testing was monitored by the oscilloscope. 

Figure 5.26 shows a measured neuron output spike train. From the zoomed in window we 

can see a typical neuron output spike with a positive tail and ramp up negative tail of which 

the shape is same was the expectation illustrated in Figure 5.6.A.  

With 1,000 samples, the measured parameters of the output spikes is summarized 

in Table 5.3 and compares with the target specifications. Both of the positive and negative 

amplitudes of output spike have 6% attenuation mainly due to the voltage drops on analog 

switches which was not included in circuits-level simulation, and ±3% variations mainly 

due to the limited responding time of the voltage reference from the DACs. Both of 

durations of the spike positive and negative tails shown both 13% shifting and 5% 
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Figure 5.26 Measured spikes from single neuron. (A) a measured spike train, and (B) the zoom-in 

shows a typical neuron output spike with a positive tail and ramp up negative tail. 
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variations from the target specifications. This parameter shifting could come from the 

process-voltage-temperature (PVT) related resistor variations of which only the process 

variations contribute ±15%. Finally, the neurons shown approximate ±5 mV common 

voltage shifting from the expected 900 mV level which are the intrinsic consequence finite 

gains of the opamps. 

Next, we connected one neuron’s (note as IFN1) output to another neuron’s (note 

as IFN2) input to test the overlapping of the pair-wise spikes on the resistive synapse 

between them. The same 2 MHz rectangular pulse train with 50 ns 100 mV amplitude 

above 900 mV DC level was given to the IFN1’s input through a 50 kΩ resistor, the IFN2’s 

output was still connected to a driving a load with resistance of 1 kΩ in parallel with 

capacitance of 20 pF, and the IFN1 and IFN are connected with a 50 kΩ resistor. Under 

this configuration, the IFN1 produced spikes same as before, while current produced by 

these spikes fed into the IFN2 and caused its spiking. The spikes of IFN2 travelled in both 

the forward and backward direction, while they appeared not only on neuron’s output port 

but also on neuron’s input port which is connected to the IFN1. Figure 5.27 illustrates a 

spike pair that was applied across the resistor connecting between IFN1 and IFN2. It shows 

a relative arrival time Δt around 0.5 μs of the two paired spikes. In a 0.4 μs time-window, 

the spikes created a net potential greater than the synaptic modification threshold, Vth_p = 

Table 5.3 Measured Parameters of the Typical Neuron Output Spike 

Parameter Symbol Unit Designed Measured 

Positive amplitude Va+ mV 360 340 ± 20 

Negative amplitude Va- mV 180 160 ± 20 

Positive pulse width τ+ ns 396 450 ± 25 

Negative pulse width τ- ns 1125 1000 ± 100 
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340 mV, based on which the spike waveform was created to make sure spike amplitudes 

are under it but their overlapping effect above it. It was also observed that, with smaller 

loading, the spike has sharper rise and fall edges which cause a greater peak net potential 

with the spike pair; whereas, with larger loading , slower rise and fall edges could lead to 

an under-threshold net potential.  

Unfortunately, due to the pin-out constraints of this test chip, we are not able to 

observe the membrane potential Vmem of the fabricated neuron directly.  

+Vth_p 

-Vth_n 

Δt

-400

-200

0

200

400

600

800

1,000

1,200

1,400

0 1 2 3 4 5

V
o

lt
ag

e 
(m

V
)

Time (μs)

Net potential across synapse
Vnet = Vpost - Vpre

Over threshold potential 
created by STDP spike-pair

Post-spike
Vpost

Pre-spike
Vpre

 
Figure 5.27 The over-threshold net potential across resistive synapse created by a STDP spike pair 

from pre- and post-synaptic neurons. (© 2015 IEEE) 
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Experiments of Associative Learning 

An associative learning was experimentally demonstrated by a neural network with 

two input neurons for sensory and one output neurons for association decision, as shown 

in Figure 5.15. Besides previous simulations, this application was also tested with the 

fabricated chip. Because RRAM devices were not available till the time of experiment, we 

used a variable resistor to emulate the modulation of resistive synapse. The resistive 

synapse has a positive threshold Vth_p = 340 mV. The synapse R1 was initialized to 51 kΩ, 

and synapse R2 was initialed to 1 MΩ. The connection of the neurons and synapses is 

shown in Figure 5.25. 

The measurement results are shown in Figure 5.28. Before learning, the synapse R1 

between IFN1 and IFN3 is strong (low resistance) and the synapse R2 between IFN2 and 

IFN3 is weak (high resistance). This made the “salivation” neuron (IFN3) only respond to 

the inputs from the “sight of food” neuron (IFN1), while inputs from the “sound” neuron 

(IFN2) had almost no impact to the IFN3. By simultaneously applying stimulations to both 

“sight of food” neuron and “sound” neuron (IFN2), the firing events of IFN3 now is 

correlated with inputs from IFN2 – their spikes had more chance to overlap on synapse R2. 

As a result, synapse R2 grew more and more stronger under the STDP learning rule, which 

can be found from the progressively shorten intervals between the spikes of IFN3 during 

the “learning phase”.  Then, when the stimuli of “sight of food” (IFN1) was removed, the 

“sound of bell” neuron alone was able to excite the “salivation” neuron, therefore 

establishing an association between the conditioned and unconditioned stimulus. 
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Figure 5.28 An experimental demonstration of associative leaning using the fabricated chip. By simultaneously applying stimulations to both IFN1 

and IFN2, synapse R2 was strengthened with STDP learning, which carried larger currents with spike and caused IFN3 responded to IFN2 inputs 

independently after learning. (© 2015 IEEE) 
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Summary 

In this chapter, a compact spiking leaky integrate-and-fire CMOS neuron circuits 

is presented. The proposed neuron is built upon a signle opamp which is able to configured 

as a low power active inverting integrator, as well as a voltage buffer with large output 

dirving capability to accommodate RRAM devices. It also employs a compact 

asynchonous comparator for explicit firing threshold, and a spike generator to produce 

STDP-compatible pulses. Besides, other circuit components support this reconfiguration 

architecture and provide external tunablility are disscussed. Circuits simulations have 

shown a network comprising of the desgined neruon and general memristive synapses can 

realize STDP learning and associative learning without any additional training circuitry, 

and achieved a high energy efficiency when driving a large number of resisitve syanpses. 

Furthuremore, a test chip with three designed neruons and a crossbar structure for future 

RRAM integration was implemended and fabricated a standard 0.18μm CMOS process. 

The measurement results verified the neuron’s functionalities, and the associative learning 

experiment was demonstrated sucessfully. Thanks to its unique topology and dual-mode 

operation, the proposed CMOS neuron contributes a core building block to integrate dense 

resistive synapses for large-scale hybrid CMOS / RRAM neuromorphic systems. 
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CHAPTER 6 

GENERALIZED CMOS SPIKING NEURON AND HYBRID CMOS / 

RRAM INTEGRATION FOR BRAIN-INSPIRED LEARNING 

Spike-dependent synaptic plasticity is believed to be the basic mechanism that 

underlies learning in a brain. In the previous chapter, experimental work with the designed 

CMOS spiking neuron has revealed ways in which pair-wise spikes can change synaptic 

strength by modulating conductance of the RRAM devices under the STDP rule, and a task 

of auto-associative learning was performed with single post-synaptic neuron. However, to 

realize more complicated tasks like pattern recognition, neurons need to work together. In 

this chapter, novel CMOS neuron designs that enable local supervised and unsupervised 

learning are presented. With a generalized neuron design, the system architecture that 

integrates CMOS neurons with RRAM synapses is discussed. Finally, a demonstration of 

real-world pattern recognition in supervised learning manner based on circuits-level 

simulations is presented. 

Enabling Brain-Inspired Learning 

A neural network learns through synaptic plasticity in excitatory connections as 

well as inhibitory connections. In a local WTA learning scheme, an inhibit signal can be 

communicated to every other neuron in the network once it fires. At the same time, each 



137 

 

 

 

 

 

neuron “listens” the inhibitory signal from other neurons, as depicted in Figure 6.1.A. Such 

an inhibition mechanism is generally realized by lateral connections to inhibition cells 

which generate IPSP and absorb current from the neurons. Therefore, the membrane 

voltages of those neurons that failed in the competition are reduced, and then, lose the 

chance to fire in following short time duration as well.  

However, such an explicit inhibition is circuit resource intensive and difficult to 

scale-up in neuromorphic hardware, especially when there are a large number of neurons 

participating in the competition. Instead, an implicit inhibition with a bus-like operation is 

very efficient; all local neurons are connected to one shared bus together, and each of them 

monitors the bus status before its firing event. In this scheme, a neuron is allowed to present 

an inhibitory signal only when there is no spike event on the shared bus. Otherwise, the 

non-winner neuron is discharged and any potential firing event is suppressed, as depicted 

in Figure 6.1.B. 

Figure 6.2 shows the proposed WTA bus interface that can be embedded in the 

neuron with a compact implementation and is amenable to scaling-up to large networks. 

Inhibitory connection
Excitatory connection

A B

 

Figure 6.1. Two inhibitory connection schemes. (A) One-to-one scheme. Each neuron has an 

inhibitory connection to another neuron in the local group. (B) Shared bus. All neurons in the local 

group share a common inhibitory bus. 
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The bus interface works in an asynchronous manner. A tri-state buffer is employed to 

isolate the neuron output from the bus during the non-firing state, and to pull-up the bus 

when a neuron fires. During normal operation, the interface circuit monitors the bus status. 

A firing event presented as logic high on the bus activates Φd and can be used to force 

neurons to discharge their membrane voltage. When a potential firing is triggered by a 

firing threshold comparator output Vcpr, the D-flip-flop (DFF) locks-in the bus status and 

passes it to Φfire. The logic low of Φfire, implying an existing firing event of another neuron, 

will consequently suppress neuron from firing. On the contrary, the logic high of Φfire gives 

a green-light to switch the local neuron to the firing mode, and broadcasts an inhibitory 

signal via the shared bus. When the firing is finished, the DFF state is cleared. 

Circuits in Figure 6.2 works for supervised learning as well. Instead of generating 

an inhibitory signal based on the neuron firing, a teaching signal Vtch is added to the DFF’s 

clock port combined with the firing threshold crossing detection Vcpr under an OR operation 

ΦfireD

SS

Vwtab

Vcpr

Vtch

Vmode
Φd

Vrst

Φc

Q

Vdd

DelayTri-state 
Buffer

 

Figure 6.2. Detailed circuit schematic of the WTA bus interface. A potential firing event triggers 

the D-flip-flop to read into the WTA bus status. When there is no spike event on the bus Vwtab, the 

tri-state gate is enabled to generate the firing signal Φfire. On the other hand, when there is a spike 

event on the bus, a discharging signal Φd is generated. (© 2015 IEEE) 
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– either crossing the firing threshold, or an external teacher can trigger a neuron to fire. At 

the same time, teaching signal Vtch also applies to the Φd to trigger lateral inhibition. 

Revisiting the Reconfigrable Architecture 

Summarizing previous discussions to fully leverage the benefits offered by the 

RRAM synapses, a silicon neuron that is amenable to network scale-up and accommodates 

dense RRAM integration should:  

1) Connect to a synapse at one terminal only; 

2) Sustain a constant poetical across the synapses in the absence of spikes; 

3) Provide a current summing node to sense incoming spikes; 

4) Fire a suitable waveform to enable STDP in the synapses; 

5) Be capable of providing large current that flows into synapses when firing; 

6) Be compact and energy-efficient. 

Now, in order to connect several neurons to form a local competitive learning, an additional 

capability is required 

7) Enable pattern learning through decision-making ability. 

Figure 6.3 shows the schematics of a proposed CMOS neuron that fulfills the above 

requirements. This circuit effectively combines an opamp-based integrator, an STDP-

compatible spike generator, a WTA interface and a control circuit for reconfiguration. By 

employing tri-mode operation, it provides a unique port, Vden, to sum the incoming currents 

and to propagate post-synaptic spikes, and another port Vaxon to propagate pre-synaptic 

spikes. These two ports also sustain a fixed voltage Vrest during integration and membrane 

capacitance discharge, while driving a specific STDP-compatible waveform with a large 

current to enable online synaptic plasticity in the large number of RRAM synapses 

connected in parallel. Moreover, an inhibitive discharge mode with a shared WTA bus 
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enables competitive learning among local neurons. All of these functions are assembled 

around a single CMOS opamp that is dynamically biased to supply large current only when 

driving the synapses while maintaining low power consumption during the rest of the time. 

Further, the neuron functions in a fully asynchronous manner consuming dynamic power 

only when computation is occurring. In this proposed neuron, the tri-mode operation, WTA 

bus, dynamic powering and STDP-compatible spike generation make up the key roles to 

realize a cohesive architecture. 
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Figure 6.3. Diagram of the proposed leaky IFN. It includes integrate-and-fire, WTA interface, 

STDP-compatible spike generation, large current driving ability and dynamic powering in a 

compact circuit topology with a reconfigurable architecture based on a single opamp. (© 2015 

IEEE) 
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Triple-Mode Operation 

 A spiking silicon neuron for competitive learning should perform three major 

functions: (1) current summing and integration, (2) firing when membrane potential crosses 

a threshold and driving resistive loads, and (3) providing an inhibitive discharge. These 

three functions are performed with a single opamp which is a key advantage of our neuron.  

(1) The integration mode 

As shown in Figure 6.4.A, in this mode, switch SW1 connects the “membrane” capacitor 

Cmem with the output of the opamp, SW2 is open, and SW3 connects post-synapses to a rest 

voltage Vrest which can be either equal to Vrest or can be floated. Φd and Φfire are 

asynchronous phase signals to control the switches. As the spike generator is designed to 

hold a voltage to the refractory potential Vrest during the non-firing time, the opamp’s 

positive port is set to Vrest. Under this configuration, the opamp realizes a leaky integrator; 

currents flowing from the pre-synapses are summed at Vden and charge the capacitor Cmem 

resulting in “membrane potential” Vmem, with the voltage leak-rate controlled by a triode 

transistor Mleaky. Vmem moves down as more charge is stored on Cmem, and triggers a 

reconfiguration event of the neuron upon reaching the firing threshold Vthr.  

(2) The firing mode 

As shown in Figure 6.4.B, in this mode, switch SW2 is closed and the switch SW3 bridges 

the opamp output to the post-synapses. The opamp is now reconfigured as a voltage buffer. 

The STDP-compatible spike generator creates the required action potential waveform Vspk 

and relays it to the positive port of the opamp. Then, both the pre-synapses and post-

synapses are shorted together to the buffer’s output, ensuring effective buffering of signals 
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in both the pre- and post-synaptic directions. The neuron propagates spikes in the backward 

direction from Vden which is the same port of current summing. The pre-synaptic spikes are 

driven in the forward direction on Vaxon which is the port that drives the post-synapses. This 

firing-mode occurs either when the neuron wins the first-to-fire competition among the 

local neurons connected to a WTA bus, or during supervised learning. In the former 

scenario, the winning neuron presents a firing signal on the WTA bus noted as Vwtab, and 

forces other neurons on the same bus into “discharge mode”. In the latter scenario, Vmode 

indicates a supervised learning procedure and disables competition among the neurons. 

Then, with a teaching signal Vtch, the neuron is forced to fire a spike and drives it into pre-

synapses, and this modulates the synaptic weights under the STDP learning rule. For stable 

operation, only one Vtch of a neuron is active at a time in order to avoid conflict. 

(3) The inhibitive discharge mode 

As shown in Figure 6.4.C, in this mode, switch SW1 is closed, SW2 connects Vrest to 

discharge Cmem, and SW3 is disconnected from the opamp output to isolate the neuron from 

the post-synapses.  
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Figure 6.4. Tri-mode operation of the proposed leaky integrate-and-fire neuron (A) Integration mode: The opamp is configured as a negative 

integrator to sum current on Cmem causing the membrane potential Vmem to move down until its crosses a firing threshold voltage Vthr. Without an 

input current, voltages at the two inputs of the opamp are held at Vrest. Post-synapses are disconnected from the neuron. (B) Firing mode: phase 

signals Φint, Φfire, Φ1 and Φ2 control the spike generator to create a STDP-compatible spike Vspk which is buffered and driven by the opamp. Then, 

the spike propagates in both backward and forward directions to pre-synapses and post-synapses respectively. The activation of either Vcpr or Vtch 

causes a firing event, which is also presented on the WTA bus by pulling-up the bus with Vwtab. (C) Inhibitive discharge mode: Φd is active to 

discharge the Cmem when an active Vwtab signal is detected on the WTA bus. The opamp is configured as a low-power buffer with Φint is active and 

Φfire is inactive. Also, the neuron is isolated from the post-synapses. (© 2015 IEEE)



144 

 

 

 

 

 

Hybrid CMOS / RRAM Neuromorphic Systems 

Using contemporary semiconductor technology and nano-devices, it is quite 

feasible to build hybrid CMOS / RRAM neuromorphic systems to perform brain-inspired 

computing tasks which can be fast, energy-efficient, and autonomous. Leveraging the 

nanometer dimension of CMOS transistors and RRAM devices, it is promising to assemble 

reliably dense arrays of RRAM synapses on top of many million neurons on a stamp size 

silicon chip. Given the recent development in 3-dimensional (3D) integration of 

semiconductor chips, there is a possibility of stacking several of these chips together and 

finally building a large-scale deep neural networks with its speed, size and energy 

consumption approaching that of a mammalian brain. These ideas have been discussed in 

research community for a while. In the recent years, many studies and experiments have 

been carried out to understand the potential system architecture and explore appropriate 

devices, circuits, interconnections and algorithms to enable the expected brain-inspired 

computing. However, most of these works either focused on specific RRAM device and its 

behaviors without integrating appropriate circuits to form a computing system, or using 

purely software simulation without taking any physical constraints into account. As a 

result, the critical block bridging emerging devices to a practical system is missing. As 

shown in the previous chapter, using the designed CMOS spiking neuron, RRAM synapses 

can be connected to perform both LTP and LTD learnings in situ. With appropriate network 

architecture and neuron operation, simple hybrid CMOS / RRAM neural networks can be 

built to learning and recognize real-world images in both supervised and unsupervised 

manners. Specially, several circuits-level simulations prove the concept of hybrid CMOS / 

RRAM neuromorphic system and provide several insights to the system details.  



145 

 

 

 

 

 

Single Layer Neural Network with Crossbar Architecture 

To organize dense RRAM devices and connect with CMOS circuits, crossbar 

network have been proposed [134], [159], [168], [169] and now widely implemented in 

RRAM chips as discussed in Chapter 3. A crossbar has the advantages of straightforward 

scaling down to nanometer size, convenient scale-up to a large amount of wires and easy 

fabrication [170]. In a crossbar architecture, each input neuron is connected to another 

output neuron with a two terminal RRAM to form a matrix-like connection for each layer. 

By cascading or stacking crossbars, a large-scale computing system can be constructed. 

Semiconductor technologies now offer vertical integration capability using through silicon 

via (TSV) for multiple chips and 3D packages [135], and high density crossbar organized 

memory products have been commercialized recently [125].  

A possible architecture to construct hybrid CMOS / RRAM neural network with 

crossbar is shown in Figure 6.5. It includes the CMOS spiking neurons, RRAM synapses 

organized in crossbar and local WTA buses for competitive learning. In semiconductor 
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Figure 6.5. A single layer of hybrid CMOS / RRAM neuromorphic computing system. The RRAM 

synapses are organized in crossbar, input and output CMOS spiking neurons sit on the two sides of 

the crossbar, and local WTA buses connecting a group of neurons for competitive learning. (© 

2015 IEEE) 
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manufacturing practice, the RRAM crossbar can be fabricated on top of the CMOS circuits, 

while for clear illustration purpose, the CMOS neurons are still arranged at one side of the 

crossbar. A single layer or a stacking of multiple layers of such an architecture is expected 

to work for in situ learning and real-time classifications for real-world patterns. 

 

Example of Supervised Handwriting Digits Recognition 

The Application of Optical Character Recognition 

As an important application of machine learning, optical character recognition 

(OCR) is widely used to demonstrate and evaluate pattern recognition performance. An 

electronic OCR system is designed to convert the images of printed text into computer-

readable text to be used for electronic storage, pre-processing for machine learning, text-

to-speech, and data mining, etc. Figure 6.6 illustrates a single-layer OCR system with the 

proposed architecture: the text image is read by an input sensory matrix where each pixel 

maps to a neuron and is converted into spikes. All spikes from input neurons propagate 

through a synaptic RRAM/memristor network to the output neurons. Summing of the input 

spikes causes a spike from a winning output neuron under WTA competition, which then 

back-propagates and locally updates weights of the synapses via a STDP learning rule. 

Simulation Setups 

To effectively train this network, a supervised learning method was used. The 

teaching signal Vtch is provided to the assigned output neuron. The signal Vtch forces the 

neuron to spike immediately after input pattern is received. Thus, the learning algorithm is 
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tightly embedded in hardware in the proposed implementation. In a trained network, test 

patterns can be classified without a teaching signal Vtch. Output neurons sum the currents 

flowing into them and fire according to the WTA competition to indicate the class of an 

input pattern. Such a pattern recognition system realizes real-time performance thanks to 

its straightforward event-driven parallel operation. The proposed system is compatible with 

the spiking neural network model as described in [31], [74], [171].  

We employed handwritten digits obtained from the UCI Machine Learning 

Repository [172] to demonstrate real-world pattern learning and classification with the 

proposed system. Figure 6.7 shows the pattern examples in this dataset. These images 

include handwritten digits from a total of 43 individuals, 30 included the training set and a 

separate 13 to the test set. 32×32 bitmaps are divided into non-overlapping blocks of 4×4 

 
Figure 6.6. A spiking neural system for the pattern recognition application of optical character 

recognition (OCR). (© 2015 IEEE) 
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and the number of ‘on’ pixels are counted in each block. This generates an input matrix of 

8×8 where each element is an integer in the range of 0 to 15.  

In our simulations, digits “0”, “1”, “2” and “7” were selected from the training 

dataset, in which there are 376, 389, 380 and 387 samples of each digit respectively. In the 

testing dataset, the samples number are 178, 182, 177 and 179, respectively. Samples in 

the testing dataset are different from the samples in the training dataset. These images were 

mapped onto an 8×8 sensory neuron matrix consists of 64 IFNs, and pixel values were 

converted into currents flowing to IFNs, with a threshold of seven or greater for “on” values 

used. This results in the input spike trains are shown in Fig. 8D. Each dot represents a spike 

and corresponds to an image pixel in binary form. 

During the training phase, the training mode Vmode signal was sent to the output 

neurons. Digit samples were presented to the system in their original sequence (random) 

in the dataset. Corresponding labels were read into the simulator to activate the teaching 

First 20
Samples

Train
(random)

Test
(class-by-class) 

 

Figure 6.7. Examples of digits from UCI optical handwriting dataset. 
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signal Vtch to the corresponding output neuron, and forced a post-synaptic spike Vpost at 1μs 

after each pattern was presented. All samples of the four digits in the training dataset were 

presented. 

Simulation Results 

Figure 6.8 plots conductance changes in the RRAM synapses connecting to each of 

the four output neurons. Before training, all synapses were initialized with Gaussian 

randomly distributed conductance (μ = 8.5 nS, σ = 4 nS). During training, their conductance 

values were gradually increased and separated to different values, due to the STDP learning 

of the RRAM synapses. Because of computing resource restrictions on circuit-level 

simulations, we have limited the training demonstration to only one epoch here. However, 

the weights stabilize eventually after several epochs of training based on Matlab 

simulations later using the LIF neuron model instead of a transistor-level circuit. Figure 

6.9 is a rearrangement of the conductance into an 8×8 bitmap with each pixel corresponding 

to an input image. Before training, all synapses were initialized with a Gaussian random 

distributed conductance (μ = 8.5 nS, σ = 4 nS). After training, the maximum conductance 

is 53 μS, and the minimum conductance is 6.6 nS. It is remarkable that the synaptic 

networks extracted several distinctive features of the digits: The loop of the digit “0”, the 

vertical line of the “1”, and the bone of “2” and “7”.  

Figure 6.10 shows a test-case simulation with 20 samples from each digit (out of 

four) and presented to the system for recognition in a class-by-class fashion. With an 

untrained synaptic network, the four output neurons responded to the inputs with random 

spiking. After training, each output neuron responds to the input patterns in the same class 
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most of time showing clear selectivity, and only one neuron fired under the local 

competition rule.  

Figure 6.11 zooms into the details of currents and membrane voltages during 

testing. Due to the modulation of the synaptic network (causing different integration 

speeds), the total current flowing into the output neurons were separated; the neuron with 

the largest current (I0) had its membrane voltage Vmem0 cross the firing threshold Vth first 

winning the competition to fire first; whereas the current flowing into neuron “7” (I7) was 

too small to make its Vmem7 reach the firing threshold. The other two neurons had their Vmem 

reach the firing threshold, but their potential firing events were suppressed by the winner 

neuron. Membrane voltages of all neurons were reset by the WTA signal on the shared bus 

(not shown), and the actual circuit behavior introduced a 50 ns delay from Vth crossing to 

Vmem resetting. To illustrate this winner-takes-all in another way, we define spiking 

‘opportunities’ of the output neurons based on the total currents flowing into them 

𝑝𝑛 =
∑ 𝐼𝑛,𝑖(𝑡) 𝑖

∑ ∑ 𝐼𝑛,𝑖(𝑡) 𝑖𝑛
, 

where pn is the relative spiking opportunity of the nth output neuron and In,i is the current 

flowing into the nth output neuron by the ith input. With the same synaptic weights and the 

all In,i equal, it follows that pn = 1/n, which means the same chance to fire and no winner 

(for this reason, the synapses can’t be initialized to all zero values. And such a condition 

doesn’t exist in a real-world environment too). Once the synaptic weights are well 

modulated, they create different currents flowing into neurons. With a larger current, a 

neuron has the higher opportunity to spike in the same timeslot, which distinguishes the 

winner neuron from the others, as shown in Figure 6.12.  
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In this pattern recognition example, a 96% correction rate was achieved with the 

selected 4 digits. Matlab simulations with the IFN mathematical model show 83% 

correction rate with all 10 digits. These results are encouraging especially considering the 

system is a simple single-layer network, and no input encoding was applied. Applying 

symbolic patterns that were used in [44], [45], [48], [49], [173], [174], 100% correction 

rates were achieved simply because each pattern produced a unique synaptic network with 

their weights having exactly the same shape as the identical pattern of each class. 

Discussions 

Device Thresholds 

Previous example demonstrates that the described CMOS spiking neuron 

architecture is generalized for memristor synapses. By selecting appropriate CMOS 

technology with sufficient supply voltage, online STDP learning can be achieved with the 

memristors, but not limited to, as reported in [175]–[178]. However, the memristor in [32], 

with its Vth_p
 = 1.5V and Vth_n

 = 0.5V, would be difficult to fit into this architecture. With 

these threshold voltages, it is impossible to find a STDP pulse that can produce both 

potentiation and depression while not disturbing the memristor. In other words, for 

generalized STDP learning, assuming symmetric the pre- and post-synaptic spikes, a 

memristor is expected to have its thresholds satisfy the condition: |𝑉𝑝 − 𝑉𝑛| < 𝑚𝑖𝑛 (𝑉𝑝, 𝑉𝑛). 
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Figure 6.8. Direct plot of memristor conductance learned in a circuit-level simulation with 4 output 

neurons during one epoch of training. (© 2015 IEEE) 
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Figure 6.9 Conductance evolution rearranged as 8×8 bitmap. Before training, all synapses were 

initialized with a Gaussian random distributed conductance (μ = 8.5nS, σ = 4nS). After training, 

the maximum conductance is 53μS, and the minimum conductance is 6.6 nS. With the training 

moving on, the memristor network extracted distinctive features of digits: loop of the digit “0”, the 

vertical line of the “1”, or the bone of “2” and “7”. (© 2015 IEEE) 
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Figure 6.10. Test results of the neural network with an input spike train composed of 20 samples for each digit and presented in class-by-class 

fashion. Without learning, a random synaptic network caused decision neurons spiking arbitrarily. After learning, each of these 4 output neurons is 

mostly selective to one of the 4 classes and spiking in the same class-by-class fashion of input.  (© 2015 IEEE)
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Figure 6.11 In a test case with one digit presented to the system, total current flowing into decision 

neurons were separated due to the modulation of synaptic network, which caused different 

integration speeds. The neuron with the largest input current I0 had its membrane voltage Vmem0 

cross the firing threshold Vth first, and then won the competition of the race-to-fire first. (© 2015 

IEEE) 
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Figure 6.12 Firing opportunity and spike outputs of 4 output neurons. All neurons have almost 

equal opportunities to spiking at the beginning. After learning, their spiking probabilities are 

modulated by their synaptic connections and distinguished. As result, a winner emerges. (© 2015 

IEEE) 
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Energy Efficiency 

An energy-efficiency optimized design is the one with driving capability tailored 

according to the desired application and the memristor used. In the presented simulations, 

the neuron was tailored to support up to 1.5 mA current in order to sustain Va+
 = 140 mV 

to a memristor network which has a peak average resistance around 93 Ω. With MNIST 

patterns, each output neuron would have 784 input synaptic connections, thus the average 

resistive loading of these 784 synapses should be evaluated for both training and testing 

scenarios. The neuron driving capability is selected to sustain the least spike voltage 

amplitudes on the lowest equivalent resistive load while achieving the highest power 

efficiency. If the resistance of the memristor in its low resistance state (LRS) is 1 kΩ and 

(say) 1% of the memristors are in their LRS, 7,840 µA current is required to maintain a 1 

V spike voltage. For VGA (480640 pixels) images, this number skyrockets to 32,700 

µA. It can be concluded that to implement low-power brain-inspired computing chip, the 

memristor synapses should have fairly high resistances (more than a MΩ) in their LRS, or 

a mechanism to isolate non-active synapses from the network during neurons’ firing 

without large overheads becomes necessary. 

Sneak Path 

On the physical device side, a memristor passive crossbar architecture generally 

suffers from sneak paths (undesired paths parallel to the intended path for current sensing) 

[38], [168], [179]–[181]. The sneak-paths problem is caused by directly connecting 

resistive-type cells on sensing grid to the high-impedance terminations of the unselected 

lines. As discussed in chapter four, a fixed voltage across a memristor is required for brain-
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inspired computing. Therefore, every path without a spike in the crossbar is tied to Vrest, 

and so the above discussed large current pouring into memristor networks becomes costly 

in terms of power consumption. Theoretically, a non-firing neuron could have a floating 

output thus reducing the current, but consequently sneak paths may bridge spiking neurons 

to other neurons and cause malfunction. So far, none of the existing solutions for sneak-

paths work for memristor synapses, and thus further studies are required. 

Device Variability 

Nano-scale RRAM devices show both spatial (device-to-device) variations and 

temporal (trial-to-trial) variations. These variations come from limitation of fabricating 

accuracy as well as the intrinsic stochastic switching behaviors of the nano-scale devices 

[130], [131], [133], [182], [183]. Based on a general mathematical model fitting to 

experimental results, system-level simulations revealed the typical one-layer neural 

network with memristive synapses is robust to device variations under unsupervised 

learning manner [52], [184]. In these simulations, 50% relative standard variations on all 

the device parameters, including both spatial and temporal variations, are tolerated in 

MNIST pattern classification tasks. Moreover, the work in [52] employed compound 

binary memristive devices to approach multi-level RRAM and demonstrated the one-layer 

neural network with WTA also tolerates to stochastic switching variations.  

Although a spiking neural network offers some tolerance to device variation, the 

memristor threshold variations can still fail network training when a low voltage spike is 

applied. There is a careful design trade-off between the low-voltage amplitudes of a spike 

required for energy-efficiency, and the high net potential margin over the memristor’s 

characteristics required for reliable STDP learning. For instance, a memristor with Vth_p = 
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160 mV and Vth_n = 15 0mV requires the spike voltage must higher than 80 mV while a 

practical value typically in the range of 100 to 140 mV to minimize the impact from device 

variations and spike noise.  

Simulations 

It should be noted that the circuit-level simulations with faithful modeling of 

electrical behavior consumes significant amount of time as well as computing resources. 

Due to these restrictions, we limited the training demonstration to one epoch in the circuit-

level simulations in shown this work. Based on the behavioral simulation results, the 

network optimally trains for the desired patterns and the weights eventually stabilize. This 

is expected if the circuit-level simulations were continued for several training intervals. 

Moreover, one has the flexibility to randomly initialize the weights with behavioral models. 

However, in a circuits approach, the memristors are expected to ‘pre-formed’ using a 

voltage pulse (or a photo-induced pre-forming step) which sets them in a high-resistance 

initial state. Therefore, the circuit simulations presented were initialized with all the 

memristors in their high-resistance state (low conductance) and then were potentiated to 

their final weights. 

Summary 

This chapter presents a generalized spiking neuromorphic system. It combines 

standard CMOS design of a novel silicon integrate-and-fire neuron with a RRAM crossbar 

which can be realized in contemporary nano-scale semiconductor technology. This system 

naturally embeds local online learning and computing by employing STDP in the RRAM 

synapses and winner-take-all strategy among the local neurons. The CMOS neuron 
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assembles its functionalities in a compact manner based on a single opamp, using a tri-

mode operation, and fully exploits the synaptic density gain obtained by using RRAM 

crossbar synapses. Circuit simulations verified the functionality of the proposed neuron, 

and demonstrated an application of real-world pattern recognition with handwriting digits. 

The described system realizes a hybrid CMOS / RRAM neural circuits block for a large-

scale brain-inspired computing architecture.
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CHAPTER 7 

CONCLUSION AND OUTLOOK 

This dissertation reviews the integrated circuit elements, blocks, architectures and 

methods for energy-efficient non-von-Neumann autonomous learning and computing 

systems inspired from the recent understanding of biological brains, learning schemes, 

architectures and nanotechnology devices. Leveraging these crucial brain-inspiration and 

emerging nano-device adoption, CMOS spiking neuron designs are proposed, designed, 

simulated, manufactured and measured. The designed neurons assemble the key elements 

in synergistic manner and the idea of brain-like computing system was demonstrated 

through detailed circuit-level simulations. 

Contributions 

Unique contributions of the research work described in this dissertation are 

summarized as follows: 

1. Proposed a compact spiking neuron architecture upon the reconfiguration of single 

opamp. It realizes a leaky integrate-and-fire neuron and a voltage buffer capable of 

propagating STDP-compatible spikes in both forwards and backwards directions, and 

realizing in situ STDP learning in the RRAM devices. 
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2. Quantitatively analyzed the energy efficiency of the spiking neuron in driving a large 

number of resistive load. Proposed a dynamic powering scheme based on the dual-

mode operation of the spiking neuron. It realized low power consumption in integration 

mode and high current driving capability in firing mode. In synergy with the compact 

reconfigurable neuron architecture, the proposed spiking neuron architecture is the first 

silicon neuron circuit in literature that is able to accommodate dense RRAM devices as 

electronics synapses for in situ STDP learning. 

3. Designed the proposed spiking neuron with a standard 180-nm CMOS process. 

Embedded the proposed dynamic powering techniques effectively in an opamp with a 

unique minor-main branching designs. Proved that the design works as a fundamental 

component for hybrid CMOS / RRAM neural network through systematic 

characterization of the neuron circuits and an associative learning demonstration with 

memristive synapses in circuit-level simulation.  

4. Implemented and fabricated a test chip in 180nm CMOS technology containing three 

of the designed CMOS spiking neurons with external tunability to the neuron 

parameters and an on-chip structure for BEOL integration of RRAM crossbars. 

Successfully brought up the test chip and measured the neurons’ spiking characteristics. 

Demonstrated an in situ autonomous associative learning with the test chip.  

5. Generalized the compact spiking neuron architecture to support local competitive 

learning. Proposed the concept of shared winner-take-all (WTA) bus, and designed a 

WTA interface circuitry. Developed a triple-mode operation schema for this neuron, 

and systematically realized a neuron motif. 
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6. Developed a pattern learning and recognition system with the proposed neurons and 

memristive synapses, and proved the proposed neuron design by successfully 

demonstrating a real-world handwriting digits learning and recognition in circuit-level 

simulation. 

7. The generalized compact and energy efficient CMOS spiking neuron with WTA 

interface and working in triple-mode operations contributes a fundamental and key 

building block for dense integration of RRAM synaptic devices and online learning in 

both supervised and unsupervised manner, and then, pave a path for future realization 

of large-scale brain-inspired computing systems. 

Discussions and Future Work 

This work serves as a solid stepping stone towards realizing energy-efficient brain-

inspired computing hardware, while there are many things that remain to be investigated, 

developed, and implemented. 

From the systems aspect, despite most of the brain functions still remain unknown, 

a lot of data and knowledge in terms of brain architecture, cortical structures, neural 

microcircuits (connectomes), and neuron / synapse properties has been collected. 

Understanding the implications, significance and functionalities behind these data and 

knowledge will unlock significant brain-inspiration computing mechanisms, and provide 

immense potential for the implementation of future intelligent computing systems. In terms 

of the spiking neural networks, several works have theoretically shown its powerful 

computing capability with shallow networks. However, the analysis and simulation of a 

deep spiking neural network is difficult with limited computing resources. Although it has 
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been shown that synaptic parameters trained in static deep neural work can be translated 

and applied to deep spiking neural network, and yield same performance as modern deep 

learning system [185], the significant challenge is that there is not an effective method to 

train the deep spiking neural network based on conventional algorithms. Moreover, 

simulation of spiking neural network is very computationally intensive, and hence, it is 

difficult to verify an idea with conventional computers. With this context, the 

neuromorphic hardware that could be employed to simulate spiking neural network will 

greatly accelerate pace of research and development. Recently, SpiNNaker [186] and 

TrueNorth [187] have emerged as such neuromorphic hardware, and may be worth to be 

widely employed in brain-inspired computing architecture studies. 

From the synaptic device aspect, the research and development of nanoscale 

emerging memory devices is accelerating. However, most of these work is scheduled and 

planned for the traditional storage applications only; the big picture is missing in the device 

studies for neuromorphic applications. Thus, a multidisciplinary research with deep 

understanding of both nanotechnology and neuromorphic system is desired. For the 

nanoscale device itself, the binary and stochastic switching will be a key challenge for its 

usage as a synapse. Reliable device models, computing schemes and circuits topologies to 

leverage these intrinsic properties are the next stepping stones to bring brain-inspired 

computing system into reality. Moreover, the improvements of the nanoscale memory 

devices on the energy efficiency, endurance, and hybrid and vertical integrations are 

required. 

In the circuits aspect, more complicated neuron design is expected with the better 

understanding of the brain computation and nano-device characteristics. At the same time, 
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improvements on the total power consumption and design size are also expected. Ultra-

low power silicon neurons have been realized in sub-threshold designs, however, these 

neurons don’t accommodate RRAM devices due to weak capabilities to sustain stable 

current summation node and drive large resistive load. Innovations are desired here to 

create more compact and energy efficient neuron architecture and designs.  For large–scale 

system development, the interconnections, including the internal communication, inter-

chip communications, power supply grid and reference voltages reproduction, must be 

studied. For internal and inter-chip communications, address event presentation (AER) 

[149] is one of the possible methods. AER encodes the spike events of a group of neurons 

into asynchronous digital signals which can travel to far away destinations in a digital bus. 

In AER encoder, each valid bus date represents an index (address) of the neuron which just 

emit a spike; while in the decoder, a spike is reproduced and assigned to the destination 

neurons according to the decoding result. Using such kind of an analog-to-digital 

conversion, spiking event can be transmitted through a long distance, and then, enables 

inter-chip communication. The discussions of AER’s topologies, arbitration and timing 

designs can be found in [149]. 

In conclusion, the development of brain-inspired neuromorphic computing systems 

is in its early stage, but have great potentials to be the solution to the grant computing 

challenges the human society facing nowadays. The success of the development relies on 

well interdisciplinary collaborations among neuroscience, material science, computer 

science and electrical engineering, where the progress in each of these fields could inspire 

research and development in the other fields, and then, form a synergy to tackle one and 
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another challenges. And this journey itself is a dreaming one for every scientist and 

engineer. 
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