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ABSTRACT

Curation is the act of selecting, organizing, and presenting content most often

guided by professional or expert knowledge. While many popular applications have

attempted to emulate this process by turning users into curators, we put an accent on

a recommendation system which can leverage multiple data sources to accomplish the

curation task. We introduce QBook, a recommender that acts as a personal docent by

identifying and suggesting books tailored to the various preferences of each individual

user. The goal of the designed system is to address several limitations often associated

with recommenders in order to provide diverse and personalized book recommen-

dations that can foster trust, effectiveness of the system, and improve the decision

making process. QBook considers multiple perspectives, from analyzing user reviews,

user historical data, and items’ metadata, to considering experts’ reviews and con-

stantly evolving users’ preferences, to enhance the recommendation process, as well

as quality and usability of the suggestions. QBook pairs each generated suggestion

with an explanation that (i) showcases why a particular book was recommended and

(ii) helps users decide which items, among the ones recommended, will best suit their

individual interests. Empirical studies conducted using the Amazon/LibraryThing

benchmark corpus demonstrate the correctness of the proposed methodology and

QBook’s ability to outperform baseline and state-of-the-art methodologies for book

recommendations.
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CHAPTER 1

INTRODUCTION

When visiting a museum, do you have a feeling that each exhibit is trying to tell

you a story or do you instead think that every item is just displayed randomly to

showcase what the museum holds? The truth is, there is a discipline behind the

scenes that studies how to build associations between exhibits and visitors. Curators

are professionals who know how to best create a display that relates to a specific

audience. The process of curation can be used to improve other application areas. One

of them is recommendation systems. Based on research conducted in understanding

recommenders, it is clear that one of the fundamental goals of these systems is

to suggest items to present to users that satisfy their individual needs [49, 91].

Recommendation systems aid users in locating items (either products or services)

of interest [66]. Regardless of the domain, from shopping websites (e.g., Amazon [2],

e-bay [8]), to news related sites (e.g., Yahoo [28], CNN [6]), and hotels or restaurants

(e.g., Yelp [29], hotels.com [10]), recommenders have a huge influence on business

success and user satisfaction. From a commercial standpoint, existing recommenders

enable companies to advertise items by offering them to potential buyers. From a

user prospective, these systems enhance the user’s experience by assisting them in

finding information pertaining to their particular preferences, thus addressing the

information overload concerns that web users have to deal with on a daily basis. This
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can be done by understanding each individual user, his interests and behaviors, and

thus provide him with valuable, appealing and pertinent suggestions. Now, imagine a

recommender that could act as your personal docent in the process of suggesting which

books to read, movies to watch, or even which stocks to invest in. It would get to

know and understand you and provide a personalized, curated set of recommendations

tailored only to you.

While recommenders based on information retrieval, natural language processing,

machine learning and data mining techniques have been studied for the last two

decades [33, 43, 53, 60, 69], they are still affected by a number of limitations and

have not managed to emulate the curation process. Among these problems, the most

common ones and yet to be solved are: cold start, data sparsity, lack of personalization

and diversity. Cold start and data sparsity occur when the system is unable to create

recommendations due to unavailable historical data for new users or items or the

lack of sufficient ratings for most items. Many existing recommendation systems

do not provide sufficiently diverse suggestions which limits users’ exposure to new,

prospective items of interest [101]. This is due to the fact that a common alternative

for generating recommendations is to rely primarily on existing community data,

thus suggesting the same items to similar users within the community, which can

be very vague and impersonal [68]. Some researchers believe that data sparsity is

the reason why recommenders cannot be more successful in creating personalized

suggestions and linking items to users [96]. Even when recommendation systems

accumulate and use large amounts of knowledge extracted from users’ historical data,

considering only this type of data is insufficient, because the real meaning of these

ratings cannot always be fully understood (e.g., by giving 5 starts to a restaurant,

what did a user like the most? Was it the food, ambient, service, or everything?).



3

Furthermore, historical data can be very noisy, which limits the accuracy of rec-

ommendation systems due to its natural variability, i.e., the meaning or intention

behind the same numerical rating can vary for different users [35]. Collecting new

information from users could help solve this problem. However, it has to be done

without imposing extra effort on the users [96]. In an attempt to more adequately

tailor recommendations towards each user, researchers take advantage of various

data sources, such as reviews, metadata and personal tags, to learn user preferences

[35, 40]. The pursuit of further personalized strategies continues to be of importance

to improve both the performance and perceived usability of recommendation systems.

Another challenge faced by recommenders is to get users to trust them, as they still

operate as “black boxes” without providing additional information to the users to

increase their satisfaction and understanding of the system [70]. To increase their

perceived trust on the corresponding recommender, many users need to see more

details related to suggestions than just “dry” recommendations [75]. To address this

issue, recent research works focus on explaining the generated recommendations [66].

Unfortunately, justifying reasons why an item has been suggested to a user is not an

easy task. Thanks to the growth of online sites that archive reviews, researchers have

suggested leveraging this data source to enhance the recommendation process [135].

Nonetheless, a better understanding of the aspects or features of a particular item

that appeal the most to each individual user (e.g., price in the case of restaurants

or genre in the case of a movie), which can inform the recommendation justification

process, is yet to be accomplished.

Recommendation is not the only area that has a need for a strategy that solves

each of the described issues, since as stated in [35] areas such as: “e-commerce, search,

Internet music and video, gaming or even online dating make use of similar techniques
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to mine large volumes of data to better match their users’ needs in a personalized

fashion”. A simple solution would be to let the user deal with information overload

and choose among multiple options and decide which ones suit him the best at any

given moment. This can be accomplished by turning to a recommender capable of

understanding the user as a whole, not only based on the ratings the user provided for

movies he has seen or recently bookmarked books. This recommender could provide

suggestions suitable for different occasions and areas of interest of a user. A number

of newly-developed applications, such as Bundlr [5], Paper.li [20], Pinterest [21], and

Storify [23], let the user be the center of the decision making process. Essentially, these

applications allow their users to play the role of a curator, who “selects, organizes,

and presents content typically using professional or expert knowledge” [55] in the same

fashion as museum curators, who organize and propose exhibitions for an art show.

However, as stated in [46], curation is “more than reflection of a persons interests. It

is scholarship, framing ideas, telling stories showing the edge that exists between the

things curated and the rest of us”. Even the most knowledgeable art connoisseurs do

not know of every single piece of art work that exists. Likewise, ordinary visitors do

not go to museums to see the exhibits they are familiar with over and over again. Let’s

be honest, you can only see Leonardo da Vinci’s Mona Lisa or Monet’s The Water Lily

Pond so many times. Eventually, visitors crave for something new. Most of the time,

curators can bring new and unexpected pieces into the exhibit which are still relevant

to the show. However, curators must be able to fit these new artworks within the story

the exhibit is trying to tell and provide information in an unpretentious and natural

manner. Therefore, it is natural to think that, given the ability of a recommender to

consider and examine large amounts of data from multiple perspectives, the system

itself can act as a curator.
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One domain that could benefit from this type of recommender is books. Books,

which constitute a billion dollar industry [73], are the most popular reading material

among all generations of readers, both for leisure and educational purposes [26].

Hundreds of thousands of books of different types (e.g., paperback and e-books) and

styles (e.g., fiction and non-fiction) are published on a yearly basis, giving readers a

variety of options to choose from and satisfy their reading needs.

Book recommendation systems, which are meant to enhance the decision making

process, can help users by identifying, among the sometimes overwhelming number

of diverse books, the ones that best suit their interests and preferences. These

recommenders are not exclusively designed to aid individuals in their quest for read-

ing materials. They can also improve the decision making process for libraries by

suggesting what books to buy in order to maximize the use of library resources by

their patrons, and publishing companies by advising which books to publish in order

to maximize revenue. From a profit-making point of view, the benefit would be in

understanding the influence of reading patterns on deciding what types of books

should be published or acquired. While book recommenders have been studied in the

past, we observed that most of existing suggestion strategies centered on books are

solely based on either historical data [47, 82, 104] or content [40, 61, 101], and thus are

affected affected by (some of the) aforementioned issues common to recommendation

systems.

We focus our research efforts on the design and development of techniques and

methodologies that lead to QBook, a Curated Recommendation System. This inan-

imate docent captures different areas of users’ interests, not just the most dominant

one, and provides a meaningful and personalized “exhibit” of suggestions coupled with

explanations, which enable users to decide which suggestion is the most suitable in a
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given moment. QBook takes the role of the curator upon itself and makes connections

between suggested items and the reasons for their selection. Justifying each suggestion

does not only increase the user’s trust and satisfaction on the system, but also makes

it quicker and easier for him to decide and understand how the system works [123]. As

users’ overall satisfaction with a recommender is related to the perceived quality of its

recommendations and explanations [66], users’ confidence on QBook also increases.

In designing the proposed curated recommender, we explicitly aimed to enhance

the recommendation process by addressing popular issues affecting these systems.

Examining historical data allow us to capture suitable candidate items for each indi-

vidual user. Items’ metadata brings another rich knowledge resource to explore, which

gives us an opportunity to consider potentially relevant items that otherwise might

be ignored by solely using a rating patterns approach. QBook also considers reviews

generated by users to understand which item features each user cares about and their

degree of importance. By incorporating feature preferences into the recommendation

strategy, we aim to learn more about the user and understand why he could potentially

be interested in each suggested item using other users’ and experts’ opinions1 on

provided feature preferences and overall quality of books. We also analyze users’

genre preferences and their change over time. We use this knowledge in the process of

curation to enable QBook to provide recommendations from different areas of interest

based on a prediction strategy that considers user’s reading patterns. By considering

a larger number of possible books to be suggested and curating them based on users’

personal interests and experts’ knowledge, QBook increases the chances to create a set

of significant (i.e., relevant and valuable) book suggestions that become “a personal

1For experts’ opinion we use book critiques from well-known web sites, including the New York
Times [17].
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exhibit” for the user. Even if suggesting items that are relevant, but unfamiliar, to

a user increases the serendipity of the system, due to lack of sufficient knowledge,

the user may not treat these recommendations as something worth exploring. Hence,

QBook provides a user not only with relevant recommendations, but also justifies the

inclusion of each book in the generated exhibit with a corresponding explanation to

provide a user with information he is interested to know. In conducting this work

we improve research related to recommenders by proposing a strategy that combines

well-known traditional approaches with novel preference matching methods into a

single recommendation strategy that provides suggestions containing information

related to the interests of each user. We believe our approach is a novelty in the area

of recommenders since we created a system that simultaneously considers different

data points (such as rankings, users’ reviews, experts’ reviews) for improving the

quality and usability of the recommendations, while offering diverse, relevant and

high quality suggestions, and corresponding explanations in terms of users’ interest,

without involvement of a sentiment. With this, QBook aims to increase users’

trust, effectiveness, persuasiveness and transparency [123]. Furthermore, by providing

explanations that include information about features users care about, we can help

users make better and faster decisions in choosing recommended books which increases

effectiveness and efficiency [123]. In fact, users do not need to do additional research

to find information about book traits that correlate with their individual preferences

and needs.

With the amount of information and data available these days, curated recom-

mendation systems can focus on collecting knowledge about each individual user and

becoming his personal docent. The newly-developed QBook is definitely able to deal

with the information overload problem, as traditional recommenders do, but more
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importantly, QBook is able to create personal exhibits and eliminate all irrelevant

informations and documents. Wouldn’t it be exciting to have a museum set-up only

for yourself? Of course!, but that is not an easy task. The same way you cannot just

come up with the words to write a poem by randomly picking them out of a page,

you cannot create personalized recommendations that exceed users’ expectations.

The question is: Can you make a poem by curating a set of all possible words to get

Figure 1.1: Blackout poetry

a perfectly matched subset (Figure 1.1)? Can you curate a perfect recommendation

from the sea of information and available resources? Challenge accepted.

To better understand the magnitude of the limitations affecting existing recom-

menders, we describe background work in Chapter 2. We detail how we completed the

challenge in Chapter 3, while the discussion of the evaluation we conducted to verify

the correctness of our solution is provided in Chapter 4. Conclusions and directions

for future work are described in Chapter 5.
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CHAPTER 2

RELATED WORK

Recommendation systems is an area of research commonly associated with Informa-

tion Retrieval that has greatly evolved over the last two decades [107]. The area

focuses on the design and development of tools and techniques that identify items

potentially of interest to users [108]. Machine learning, information retrieval, natu-

ral language processing, and probabilistic models have been adopted for developing

systems that recommend (web) documents [69], songs [51], videos [84], and movies

[78], to name a few. Examples of popular recommenders we use on a daily basis can

be found in different domains, including music (Spotify [22], Pandora [19]), movies

(Netflix [16]), recipes (Pinterest [21]), people to follow (Twitter [25], Facebook [9])

and videos (Youtube[30]).

2.1 Recommendation Strategies: Groundwork and Obstacles

Among many strategies adopted nowadays to generate recommendations, two of the

most well-known and traditional are content-based filtering [61, 108] and collaborative-

based filtering [104, 108, 112]. Mentioned techniques consider different input data to

identify relevant items to be suggested to users. Content-based strategies analyze

metadata, such as textual comments appended to online news articles [40] or tags

generated by users in social sites [40], related to items previously rated by a user
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to find similar ones to suggest [108]. Collaborative filtering methods, on the other

hand, rely on historical data generated by users (e.g. rated items) as well as items’

ratings assigned by other users who have a similar rating history to predict the rating

of a new, unseen item [108]. Collaborative filtering methods can be classified into

memory-based and neighborhood-based [31, 47]. The former predicts the rating

of an item for a given user based on a rating collection of items previously rated

by similar users [82], whereas the latter learns a model (such as a latent factor or

neighborhood model [78]) from a collection of data consisted of rated items, which is

used to predict the rating of an item for a given user [31, 113]. To further improve

performance of recommendation systems and overcome known limitations, hybrid

strategies [49], which usually combine traditional strategies like content-based and

collaborative-filtering [92, 39], or incorporate other available information, such as

demographic data [38] or knowledge-based filters [125], have been studied. For the

past few years researchers have focused their efforts on matrix factorization algorithm

(SVD)[108], developing state-of-the-art systems based on latent-factor models. SVD

models map users and items to a joint latent factor space, which will generate

suggestions for each individual user describing both products’ and users’ factors

obtained by user’s feedback. Recently, algorithms based on SVD became very popular

(especially in combination with other available user data making another form of

hybrid recommender [34]) due to their accuracy and scalability [80, 106, 108].

As mentioned in the Chapter 1, regardless of the strategy considered, there are

limitations and common issues affecting recommendation systems; including cold

start, data sparsity, lack of personalization and diversity. Other shortcomings of

recommendation systems include (i) restricting a user to access items similar to those

already rated, since content-based recommendations systems can recommend only
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items scoring highly against the profile of a user, and (ii) scalability, since algorithms

based on collaborative filtering tend to be time consuming and scale poorly.

2.2 Book Recommenders

Based on statistics that showcase the results of a survey conducted to investigate the

reading habits of Americans, as shown in Figure 2.1, books take an important place

in human lives and culture. Consequentially, books constitute a very popular and

large domain containing billions of titles that continuously increase. Therefore, it is

not surprising that there are a number of recommendation systems that have been

tailored specifically for generating suggestions that will help users in selecting the

most suitable books to read [81, 100, 101, 103, 132].

Figure 2.1: Number of books read by American adults per year 2010-2014
[4]

The most popular recommenders in this domain, i.e., Amazon [81], suggest books

based on the purchasing patterns among users. Yang et al. [132] rely on a collabora-

tive filtering approach with ranking, which considers users’ preferences on library

resources extracted from their access logs to recommend library materials. This
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approach overcomes the problem that arises due to the sparseness of explicit users’

ratings, i.e., lack of initial information to perform the recommendation task. Park

and Chang [100] create a user-profile based on individual and group behavior, such as

clicks and shopping habits, compute the Euclidean distance between a profile and each

product profile, and recommend the products for which their Euclidean distances are

closest to the user profile. Givon and Lavrenko [67] combine collaborative filtering and

social tags to capture the content of books for recommendation. Sieg et al. [117] rely

on the standard user-based collaborative filtering framework together with a domain

ontology to capture the topics of interest to a user. However, the hybrid-based book

recommenders in [67, 117, 132] require (i) historical data on the users in the form

of ratings, which may not always be available, or (ii) an ontology, which can be

labor-intensive and time-consuming to construct.

Some book recommenders are tailored towards specific group of users, as it is the

case with Rabbit [101] and K3Rec [103], targeting K-12 and K-3 students, respectively.

By emulating the readers’ advisory service popular at libraries, the authors in [101]

describe the process of recommending suitable books for children, by identifying the

topics, contents, and literary elements appealing to each individual user. K3Rec

[103] uses information about grade levels, contents, illustrations, and topics together

with length and writing style, to generate relevant suggestions for emergent readers.

Similar to QBook, Garrido and Illarri [64] rely on content-based data for making book

suggestions. Their proposed TMR [64] examines items’ descriptions and reviews and

takes advantage of lexical and semantic resources to infer users’ preferences. However,

TMR can only work if textual descriptions and reviews of the books are available,

unlike QBook for which descriptions and reviews are 2 of the multiple data points

considered in the recommendation process. To enhance the book recommendation
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process, the authors on [116] discuss the use of an adjusted Eucledian distance measure

which can be used to better determine the degree of similarity among users and in

turn improve collaborative-filtering-based strategies that depend on that information

to generate suggestions. This strategy focuses on the dimensionality of vectors that

capture user preferences, as opposed to their direction (as cosine and correlation-based

strategies do). The authors in [42] present a strategy based on graph analysis and

PageRank to perform the recommendation task by exploiting both clicks and purchase

patterns as well as book metadata, including a title and a description. However, their

recommender is constrained to the existence of a priori pairwise similarity between

items, e.g. “similar products”, which might not always be available and this is not

a requirement for QBook. The authors in [122] highlight the importance of books

recommenders as library services (besides the more traditional e-commerce applica-

tions), and thus propose a fuzzy analytical hierarchy process based on a priori rules

mining that depends upon the existence of book-loan histories. The empirical analysis

presented in [122] is based on a limited and private dataset, which difficults the task

of verifying its applicability on large-scale benchmark datasets. More importantly,

the proposed strategy is contingent on book-loan historical information that due to

privacy concerns libraries rarely, if at all, make available.

To address some of the aforementioned limitations, existing book recommenders

use different techniques which allow them to learn and explore relationships between

users, items, as well as users and items, with the goal of generating more appealing

recommendations for their users [108]. In the following subsections, we describe

different data sources and techniques considered to overcome these obstacles.
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2.2.1 Extracting Information from Reviews

The performance of recommendation systems and their ability to satisfy users’ needs

can be improved by taking advantage of different users’ generated data to better

identify user preferences in an attempt to further personalize recommendations [66].

Many relevant information sources, based on user-generated data, users’ reviews

are the ones that spark the most interest among researchers for recommendation

purposes [34, 63, 135]. A product review describes products’ actual features, while

specifically for the book domain, a book review is a form of criticism where the work

is analyzed based on its content, style, and merit [115]. Numerous approaches have

been developed to identify and extract either features, opinions, or feature-opinion

pairs from reviews based on bootstrapping, natural language processing, machine

learning, extraction rules, latent semantic analysis, statistical analysis, and informa-

tion retrieval [99]. These approaches can be used to infer users’ preferences, which

can be considered as part of the recommendation process and thus increase users’

satisfaction with provided suggestions.

The authors in [34] propose a number of review models that are used to improve

the performance of a prediction rating model, whereas the authors in other strategies

for generating recommendation explanations focus on analyzing the sentiment, i.e.,

positive or negative, of feature descriptions [135] and understanding informal language

used in reviews in order to improve rating prediction [63]. Ling et. al. [83] combine

content-based with collaborative filtering, while taking advantage of both ratings and

reviews by applying topic modeling techniques on the review text and align the topics

with ratings to improve prediction accuracy. Instead, we take advantage of reviews

written by each user to learn a set of features the user cares about.
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2.2.2 Exploring Expert Opinions

To further address issues related to data sparsity and cold-start, researchers have

lately turned towards using experts opinions [36, 67]. Among the few existing research

works, the one conducted by Amatrain et. al. [36] uses experts ratings within

a collaborative filtering approach to overcome the weaknesses of this traditional

strategy. The proposed strategy finds experts that are similar to a specific group of

users and takes advantage of their opinions as relevant in creating recommendations

for a corresponding population [36]. While the study in [36] considers professional

raters in a given domain as experts, the authors in [67] consider that users with

more experience gain a certain level of expertise. McAuley et. al. [67] believe that

suggestion generation process should be influenced by the amount of knowledge and

experience users have in a specific domain.

QBook’s strategy for extracting experts’ opinions is closer to the one described in

[36], in the sense that professional book reviewers are treated as experts. However,

unlike the aforementioned works, QBook examines textual reviews written by experts

to capture their sentiment (e.g., positive or negative) and uses it to determine the

quality of books to be suggested.

2.2.3 Time Component as Part of the Recommendation Process

To better capture change in user’s preferences, including a time dimension has became

of interest to the research community [50, 56, 79, 131]. Even though many studies

considered time as a global component shared by all users [118, 119], a recent study

focuses on individual users with a goal to better personalize suggestions [79, 131].

Xiang et. al. [131] proposed an approach which considers and models the changes in
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short and long term preferences of users’ over time, as well as a new recommendation

strategy and extended personalized Random Walk with a time component [131]. In

[79], the authors created a matrix factorization model that includes time factors

for each individual user. Similarly, the authors in [56] included a time component

to improve collaborative filtering approach, with an idea to weight more recently

generated ratings versus the ones that represent older data.

QBook considers a change of book genre over time, and its influence on the

recommendation process. A considerable number of studies examine the importance

of book genre on readers’ activity [32, 37, 97]. However, to the best of our knowledge,

research based on past genre distribution and time series analysis to influence the

recommendation process has not been conducted. Genre was used as a part of a

cross-domain collaborative filtering approach to recommend books based on users’

genre preferences [111], without considering time component. You et al. [134] propose

a clustering method based on users’ ratings and genre interests extracted from social

networks to solve the cold-start problem affecting collaborative filtering approaches

[114]. Unlike the proposed method, QBook uses time series to predict the genres

most likely of interest to each individual user.

2.2.4 Explaining Recommendations

A powerful way to build a successful relationship between users and the recom-

mendation system is by providing more information on how the system works and

why items are recommended to each user [123]. An attempt to address the lack

of personalization and increase users’ acceptance of the system involves including

explanations that justify the generated suggestions. Unfortunately, explanations on

suggested items is a less explored research area [108]. Recent research works focus on
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explaining the generated recommendations and how different types of explanations

influence users while making decisions [66]. Among the most common strategies

to generate explanations we should highlight those based on exploring previous ac-

tivity of a user [44], information collected from user reviews [135], content-based

tag cloud explanations (which were shown to have high level of acceptance within

users) [66], and the ones developed specifically for traditional recommenders, system

as in the case of explanation generation for the collaborative filtering method [70].

Scientists believe explanations, which reveal reasoning and data behind the process

of a recommendation and offer information about suggested items, has been known

to provide transparency and enhance trust on the system [123]. Many researchers

consider sentiment-based explanations as more effective, trustworthy, and persuasive

than the ones that capture relationship between previous activity of the user and

suggested items [52]. However, unlike existing explanation-generation strategies,

our explanation generation process does not include sentiment in order to make

QBook look honest in the eyes of users. In doing so, QBook is designed to provide

explanations which contain other users’ and experts’ (objective) opinions on features

that are of a specific interest for each individual user, regardless of the polarity of the

opinions.

2.3 Curation in the Recommendation Process

Recommendation systems can leverage community data to emulate the curation

process in the same manner art museums “outsource” the curations of their exhibits to

the public by processing user-generated data create the art shows [62]. Unfortunately,

few research works focus on simulating such a task [76, 77, 109]. In [76], the authors
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discussed the development of an application that learns from users’ interactions with

the system while they swipe through the news and like them. In this research, the

authors use social networks and users’ browsing history to create and recommend

crowd curated content, but using users as curators. The work conducted by Saaya

et al. [109], on the other hand, relies on a content-based strategy that considers

information authors collect from users’ profiles, which are then managed by the users

themselves. The most recent study conducted by Kislyuk at al. [77], combines a

user-based curation method along with a traditional collaborative filtering strategy

to improve Pinterest’s recommendation process. The aforementioned alternatives

simply let users organize suggested content based on their personal preferences, since

all three studies treat users as curators and based on their interests suggest them

new items. However, no recommendation system takes the role of the curator upon

itself. We take a different approach and allow the system to take the curator role

using existing user and item data.

Unlike existing book recommendation strategies, QBook simultaneously considers

multiple data sources, such as books metadata, users’ ratings and reviews, experts’

reviews, and genre distribution over time, to create curated recommendations tailored

to individual users. We discuss the curation of books to be recommended to each

individual user in Chapter 3.
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CHAPTER 3

THE ANATOMY OF QBOOK

In this chapter we detail the design of QBook, which is based on a novel methodology

that relies on a number of data sources. QBook generates book suggestions by

presenting each user with a set of curated books, which are tailored to the varied

interest of the user and paired with the corresponding explanations. In designing

QBook we follow the steps illustrated in Figure 3.1. These steps include (i) selecting

candidate books to be recommended, (ii) exploring reviews to gain knowledge about

users and books, (iii) considering experts’ opinions to determine the quality of books,

(iv) predicting future genres of interest to a user, (v) curating possible suggestions by

simultaneously considering multiple data points, and (vi) creating explanations for the

suggested items. We discuss below the design methodology of each individual step of

QBook, which addresses a particular research problem on its own: Can item metadata

complement the lack of historical data (and vice versa)? How can a time component

influence recommendation systems?, Can experts’ opinions align with readers’ prefer-

ences?, Are users’ features of interests a valuable asset to a recommendation process?,

How does curation work as a part of a recommendation process? Can personalized

explanation aid user in selecting the most relevant suggestions from recommended

ones?
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Figure 3.1: Overview of QBook

3.1 Selecting Candidate Books

To initiate the recommendation process, QBook needs to examine archived books

to identify those potentially of interest to a user U . Unfortunately, due to their

volume, QBook cannot examine every book to determine which ones are potential

candidates to be recommended. For this reason, QBook applies filtering strategies

to identify a manageable set of books to be further examined and curated. Besides

taking advantage of users’ historical data (i.e., rated books) to discover latent features

underlying the interactions between users and books, QBook locates books similar to



21

the ones users liked in the past by applying a content-similarity strategy.

3.1.1 Candidate Recommendations Based on Matrix Factorization

Matrix factorization [80] is used in some of the most effective latent factor models to

learn user and item characteristics in order to predict users’ ratings for unseen items

[80, 108]. Among many effective latent factor models, strategies based on Singular

Value Decomposition (SVD) are very popular [108]. These models have the ability to

learn and explore relationships between users, items, as well as users and items [108].

The estimation strategy based on matrix factorization considered by QBook rep-

resents each item i and user U as n-dimensional vectors of the form qi and pu ∈ Rn,

where the vector components of qi represent the degree to which each latent factor

applies to the corresponding item i and the vector components of pu show the degree

of interest of U on items [108]. The rating predicted for U on i (rU,i) is calculated

using Equation 3.1.

rU,i = µ+ bi + bu + qTi pu (3.1)

where qTi pu represents the dot product that captures the overall interest of U in the

characteristics that describe i based on the interaction between U and i, and µ, bi, and

bu are parameters that denote the overall average rating and the observed deviations

of U and i from the average, respectively. These parameters are estimated using

Equation 3.2, which aims to minimize the regularized squared error on a set of known

ratings.

minb∗,p∗,q∗
∑
U,i∈K

(rU,i − µ− bi − bu − qTi pu)2 + λ(‖qi‖2 + ‖pu‖2 + b2i + b2u) (3.2)

where µ, bi, bu, qi, pu, qTi pu, and rU,i are as defined in Equation 3.1, K is a set
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of training instances, and λ is a constant that controls the extent of regularization

determined by using cross-validation. Minimization is performed by gradient decent

[58].

Matrix factorization methods provide greater prediction accuracy, memory effi-

cient compact models, and easier implementation compared to other collaborative

filtering strategies [108], therefore we deemed it as an adequate approach for gen-

erating relevant candidate items for the recommendation process. QBook depends

upon the LensKit’s [13] implementation of FunkSVD algorithm for book candidate

generation based on generated score. QBook only treats as candidate books for U

those for which their corresponding rU,i is above 3 (on Likert-type scale). In doing

so, QBook ensures that items that are known to be not likely appealing to U are not

further considered during the curation process.

3.1.2 Candidate Recommendation Based on Content-Based Filtering

Content-based filtering methodologies create suggestions based on a comparison be-

tween items’ characteristics and users’ preferences. Available content representations

(e.g., metadata) are used to describe items, as well as users’ profiles based on items

users favored in the past [108]. Among existing content-based models, the Vector

Space Model [54] is one of the most popular ones, which represents items and user

profiles as vectors of weighted terms. To estimate the degree of similarity between P ,

the vector representation of U ’s profile, and I, the vector representation of i content

profile, the model generates a score based on the cosine correlation similarity measure

[54]. This score, computed as in Equation 3.3, reflects how likely a given item is to

be relevant to the corresponding user.
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sim(I, P ) =
I · P
‖I‖ · ‖P‖

(3.3)

where · indicates vector dot product, while ‖I‖ and ‖P‖ are norms of vectors I and

P , respectively. Normalizing the result of the dot product of the item and profile

vectors by considering their lengths prevents larger vectors from producing higher

scores only because they have a higher chance of containing similar terms.

In this approach, the weight of the terms considered in the vector representations

wi, where each wi showcases the importance of each term (ti) in capturing the content

of i or the preference profile of U based on a popular TF − IDF weighting scheme

[54] as shown in Equation 3.4.

wi = tfi ∗ idfi (3.4)

where term frequency, tfi, reflects the importance of ti in a corresponding item

description, D (as shown in Equation 3.5) and inverse term frequency, idfi, reflects the

importance of ti in a set of all item descriptions, C (calculated as shown in Equation

3.6).

tfi =
fi∑t
j=1 fi

(3.5)

where fi is the number of occurrences of ti in D.

idfi = log(
n

dfi
) (3.6)

where n is the size of C and dfi the number of item descriptions in C in which ti

appears at least once. wi increases proportionally to the number of times ti appears

in D, but is offset by the frequency of ti in C, which helps to adjust for the fact that

some words appear more frequently in general.

To determine the degree of appeal of each book, b, for U , QBook relies on
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Figure 3.2: User-generated tags for Hamlet as extracted from LibraryThing
[15]

Lenskit’s implementation of the content-based algorithm [7] to represent b’s vector,

B, and U ’s profile vector P . QBook takes advantage of user-generated tags from the

LibraryThing [15] website to capture the content of books and select ones similar to

those for which U has already expressed a preference. Therefore, b’s description is

represented as sets of tags for a book, while a set of all descriptions is a set of all

tags of all books. We choose LibraryThing since it represents the most popular social

application for cataloging books. As shown in Figure 3.2, tags are a simple way to

categorize books based on users’ opinions. Anything can be a tag: words or phrases

separated by commas. Therefore, one person can describe Hamlet using classic as a

tag while another creates tags such as fiction or freshman for the same book. Tags,

which capture books’ content from users’ perspectives, are useful for searching and

sorting (e.g., to list all books for the freshman year of college). Because of the large

number of available tags, which amount to 129,320,610 tags generated by more than

2 million members1, and their mentioned characteristics, it is natural for QBook to

depend on them for selecting books that may be of interest to users.

To ensure candidate books are potentially appealing to U in terms of their content,

QBook applies the same filtering approach discussed in Section 3.1.2 and selects only

candidate books for U with a respective CBrank(B,P ) score (as shown in Equation

1According to the Zeitgeist Overview (http://www.librarything.com/zeitgeist)
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3.7) above 3.

CBrank(B,P ) = sim(B,P ) ∗ 4 + 1 (3.7)

where B, P and sim(B,P ) are defined in Equation 3.3 and CBrank(B,P ) represents

a normalized sim(B,P ) value to a 1-5 range.

3.1.3 How does QBook Generate Candidates?

The final candidate set of books (CB) to be considered during the recommendation

process contains highly rated books that address topics of interest for U . The two

strategies considered for candidate selection (i.e., matrix factorization and content-

based filtering) complement each other and ensure diversity among candidate books.

While the first one relies on examining users’ rating patterns, the second one focuses

on books characteristics and does not require user-generated data. Moreover, by con-

sidering rating patterns and content, serendipity and novelty of the recommendations

also increase, because users are exposed to a variety of books to chose from. QBook

also addresses data sparsity in this step, since some books are missing assigned ratings

or user-generated tags or other metadata. Even if books do not have (sufficient)

ratings assigned to them, they might still have tag descriptions that can help the

recommender determine if they are indeed potentially of interest to a user and vice

versa (books with ratings might be selected to pick up other patterns that reflect

appeal to a user regardless of the content descriptions). By doing this, QBook

overcomes limitations of individual strategies used and addresses data sparsity issue.
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3.2 Getting to Know Users and Books

QBook aims to provide U with a set of appealing suggestions that are personalized

based on the information he values. QBook examines reviews written by U and

identifies the set of literary elements (features) that he cares the most about2. To

identify how a candidate book, b (generated in Section 3.1) addresses U ’s features of

interest, QBook finds the similarity between features U talked about in his reviews

and the ones referenced in book reviews made by other users. To do so, QBook needs

to capture (i) the most important features for each user and (ii) the most popular

features for each candidate book.

3.2.1 User’s Interest

To identify features of interest to U , QBook performs semantic analysis on reviews and

considers the frequency of occurrence of specific terms U employs in his reviews. By

using the set of literary elements described in [101], QBook explores diverse features

of books such as their characters, the pace in which the stories unfold, their overall

storyline, the tone of their narrative, the writing style of their stories and their frame.

As defined in [101], each literary element (feature Fi) is associated to with a set of

terms used to describe that element, since different words can be used to express

similar book elements. A list of sampled literary elements and their corresponding

related terms considered by QBook is shown in Table 3.13.

QBook analyzes each review previously written by U to capture which features

he talks about and cares about the most. Whenever QBook recognizes a term

2If U does not have reviews, then the most popular user features are treated a U ’s features of
importance.

3The complete list of literary terms and their associated sets of terms is included in Appendix A.
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Table 3.1: Sample of terms associated with each literary feature used by
QBook
Literary Element Sample of Related Terms
characters stereotypes, detailed, distant, dramatic, eccentrice, vocative
pace fast, slow, leisurely, breakneck, compelling, deliberate
storyline action-oriented, character-centered, cinematic, complex, conclusive
tone happy, light, uplifting, dark, ironic, funny, evocative, serious
writing style austere, candid, classic, colourful, complex, concise
frame descriptive, minimal, bleak, light-hearted, fun, bitter-sweet

related to a specific literary feature, it assumes that U talks about that feature.

For example, if a review contains the sentence “Some of the questions at the end of

the chapter are very complex.”, QBook identifies writing style as one of the features

mentioned by U . Moreover, it is necessary to take into consideration the frequency

with which U refers to these features in his reviews. Consequently, for each feature

mentioned by U , denoted FUn (where n is a number of mentioned features), QBook

computes its associated overall frequency of occurrence (AFFUn
), using Equation 3.8.

To ensure that a feature frequently mentioned in a single review, or a few ones, does

not overshadow the importance of other features more prominently mentioned in a

number of U ’s reviews, QBook normalizes the overall frequency of occurrence of FUn

based on the number of reviews generated by U .

AFFUn
=

∑
x∈FUn

freq(x)

|RU |
(3.8)

where RU is the set of all reviews generated by U , |RU | is the total number of reviews

made by U , x is a term from a corresponding set of terms for FUn, and freq(x) is the

frequency of occurrence of x in RU .

By recognizing the features addressed in U ’s reviews and calculating their associ-
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ated overall frequencies of occurrence, QBook acquires knowledge about the interests

of U and identifies which literary elements he cares the most about.

3.2.2 Most-Discussed Book Features

QBook also needs a deeper understanding of the literary elements (features) that are

often used in reviews to describe b. QBook takes advantage of reviews available for

b and examines them to identify the features most-commonly addressed in reviews

pertaining to b.

The most-discussed features about b (Fbm, where m is a number of detected

features) are identified by following the process defined for identifying features of

interest to U , as described in Section 3.2.1. QBook uses the same list of literary

elements with associated sets of terms to extract features from all the reviews written

for b. QBook also uses Equation 3.8 to compute the overall frequency of each book

feature, Fbm, denoted AFFbm
, which captures its relative degree of importance with

respect to other features discussed in reviews pertaining to b. In this case, the

normalization factor is the total number of reviews made for b.

With this step QBook gains knowledge related b based on subjective opinions of

all users who read b. By capturing their opinions, QBook identifies the most discussed

literary elements for b, and thus determines if U would be interested in reading b.

3.2.3 How does QBook Incorporate Users’ Interests?

QBook uses knowledge about U and each book in CB collected from the processes

discussed in Section 3.2.1 and 3.2.2 to determine if b is a likely candidate of interest

for U based on their respective reviews. QBook learns which book traits U most

frequently mentions in his reviews and applies that knowledge to predict which book
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would be preferred by U . QBook leverages U ’s preferences in the recommendation

process by calculating the degree of similarity between U ’s feature preferences and

b’s most-discussed features. For this reason, QBook generates n-dimensional vector

representations of U and b based on the aforementioned features, i.e., ~UV and ~BV ,

respectively. In this step, QBook explores the feature resemblance with similarity

measure, which is defined using the V SM model (as defined in Section 3.1.2) and

computed using Equation 3.9.

Sim(U, b) =
~UV · ~BV∥∥∥ ~UV
∥∥∥× ∥∥∥ ~BV

∥∥∥ (3.9)

where ~UV = < AFFU1
, AFFU2

, ..., AFFUn
> and ~BV = < AFFb1

, AFFb2
, ..., AFFbm

>, n

and m are numbers of distinct features describing U and b, respectively, AFFUn
and

AFFbm
are degrees of importance for FUn and Fbm as defined in Equation 3.8.

By using the Sim(U, b) score as one of the data points considered during the

recommendation process, QBook triggers the generation of personalized books sug-

gestions, since it captures all features of interests for U and compares them with all

the most-discussed features of b ∈ CB to determine how likely b is relevant to U .

3.3 Considering Experts’ Opinions

To further analyze b ∈ CB, QBook takes advantage of experts’ reviews. The goal of

this step is to learn unbiased and objective opinions from experts to enable QBook

to incorporate another data point in the recommendation process and increase its

accuracy and U ’s satisfaction by providing high quality books. QBook explores

publicly available book critiques to determine experts’ opinions on candidate books
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by performing semantic analysis to examine which books experts valued more.

To capture sentiment at a word and sentence level, QBook examines expert

reviews from two different perspectives and takes advantage of popular sentiment

analysis tools for natural language processing (NLP)[53]: CoreNLP [88] and Senti-

WordNet [59].

3.3.1 Sentiment Analysis at Word Level

SentiWordNet [59] is a lexical resource for opinion mining that is used for assigning

one of three sentiment scores, positive, negative, objective, to each synset4 of WordNet

[27], as shown on Figure 3.3.

Figure 3.3: The graphical representation adopted by SentiWordNet for
representing the opinion-related properties of a term sense [59].

WordNet is a large lexical database of English words [27]. In order to use Sen-

tiWordNet, each sentence must be tokenized and each token must be assigned a

part-of-speech (POS) tag. The POS tag can be: noun, verb, adjective and adverb.

Since a word can have multiple meanings, a word sense disambiguation process is

4Synsets represent a sets of cognitive synonyms expressing a distinct concept.
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needed. SentiWordNet uses WordNet, which provides various senses for a word and

each sense’s definition. For example, for the word good as a noun, WordNet contains

senses with corresponding definitions as shown in Table 3.2.

Table 3.2: WordNet senses and definitions for the word good
Sense Description
good.n.01 benefit
good.n.02 moral excellence or admirableness
good.n.03 that which is pleasing or valuable or useful
commodity.n.01 articles of commerce

To determine the sentiment of each word from an expert review (ER), SentiWord-

Net checks all possible meanings of the word and selects the one whose definition most

closely matches the context of the word in the ER.

As shown in Equation 3.10, while using SentiWordNet, QBook determines ER’s

overall sentiment by the calculating an average score (sentiWNr(ER)) based on the

sentiment of each word included in ER.

sentiWNr(ER) =

∑m
j=1 sentiWN(xj))

m
(3.10)

where xj is the jth word in ER, m represents the number of words in ER, and

sentiWN(xj) is a sentiment score of xj. The range of sentiWNr(ER) is -1 to 1,

where 1 is considered very positive, -1 very negative, and 0 neutral. For example,

“important” is an adverb with sentiment score 0.5, and “horror” is recognized as a

noun with sentiments core -0.159.

Based on a conducted empirical analysis5 and study described in [98] where the

authors note that “the end of the document where closing remarks would reflect

5For purpose of this study we analyzed critiques for 85 different randomly books from NRP
website [18].
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the general author view”, we noticed that reviewers give their overall thoughts in

the last sentence of their review. For this reason, QBook also analyses the sen-

timent of the last sentence to ensure the real tone of review is captured. This

score, denoted sentiWNs(ER), is also considered by QBook in the curation process.

sentiWNs(ER) is computed as in Equation 3.10, but only on ER’s last sentence.

3.3.2 Sentiment Analysis at Sentence Level

SentiWordNet and some of the other popular sentiment prediction systems look only

at words in isolation to determine their sentiment and then use them to classify the

sentiment of the whole text. In some cases, the polarity of a word on its own does

not properly capture the intended polarity of a sentence. With that in mind, QBook

is designed to also consider the polarity of sentences in their entirety. In doing so,

Qbook uses Stanford CoreNLP [88] builds up a representation of whole sentences

based on their structure which is why QBook is using incorporating CoreNLP to

estimate the sentiment of the objective opinions of experts in their reviews. CoreNLP

is a java natural language analysis library that contains a set of tools that can

provide: the base forms of words, their parts of speech, if they are entities (e.g.,

names of companies or people), normalized forms of numeric quantities and dates,

and determine the structure of sentences in terms of phrases and word dependencies

and their sentiment, etc. It contains models for performing text analysis on a number

of different languages, such as English, Chinese, French, German, and Spanish. Its

sentiment analysis tool uses deep learning techniques trained on 215,000 phrases

extracted from 12,000 sentences. QBook uses the library to compute the sentiment

of each sentence of a review based on the composition of word meanings in the longer

phrase. For example, funny and witty are captured as positive, but the following
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sentence has a negative connotation:

This movie was actually neither that funny, nor super witty.

QBook takes advantage of CoreNLP by using the provided parser to extract each

sentence, sj, from ER and calculates a sentiment score, coreNLP (sj), for each

sentence in ER. These scores are combined into a single score, coreNLPr(ER)

that captures the overall sentiment of ER based on the sentiment of its individual

sentences, as shown in Equation 3.11.

coreNLPr(ER) =

∑p
j=1 coreNLP (sj))

p
(3.11)

where ER represents a review, p is a number of sentences in a ER, sj is jth sentence

in ER and coreNLP (sj) is a sentiment score of sj. The estimation of the review’s

sentiment score is done by averaging the scores of the individual sentences in the

whole review. As previously stated, the last sentence carries an important weight in

terms of the overall sentiment of the review, thus QBook also considers the sentiment

of the last sentence (coreNLPs(ER)). This score is calculated using Equation 3.11

but on the last sentence.

coreNLPr(ER) and coreNLPs(ER) scores are in range of 0 (very negative) to 1

(very positive) with 0.5 being neutral, 0.25 negative and 0.75 positive.

3.3.3 How does QBook Quantify Experts’ Opinions?

QBook applies the two aforementioned complementary strategies to several expert

reviews to capture an unbiased opinion on the quality of a book. The four gen-

erated data points (from Sections 3.3.1 and 3.3.2) bring objectivity to QBook’s

recommendation process, especially since scores are based on an average of multiple
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expert reviews6. Furthermore, involving experts’ reviews in the recommendation

process can help overcome the data sparsity issue, since some books do not have

sufficient user-generated data, but have professional critiques which provide valuable

information.

3.4 Incorporating a Time-Based Component

To better serve their stakeholders, recommenders must be able to predict readers’

interest at any given time. However, given that users’ preferences may evolve over

time, it is crucial to consider a time component in the process of predicting suitable

suggestions [130]. As previously stated, there are a number of data points based

on user-generated ratings, reviews or book metadata, that can inform the book

recommendation process. However, the influence of a change in users’ reading activity

over time is often not considered. Furthermore, many avenues can be explored from

a time-sensitive stand point in order to generate better predictions of books that

will correspond to readers’ interests. One of them that is often overlooked is genre.

By definition, genre (e.g., drama, comedy)7 is a category of literary composition,

determined by literary technique, tone, content, or even length. While genre has been

studied as a part of the recommendation process [111], the influence of its distribution

over time on suggesting suitable books for individual or groups of users has not

been explored. Change of genre over time is a significant dimension to improve the

genre prediction process that consequentially influences process performed by book

recommenders. Including this component provides the likelihood of reader(s) interest

6Popular books tend to be reviewed by more than one expert, while less popular ones may not
have any.

7The full list of main literal genre is given in Appendix B
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in each genre based on its occurrences at a specific point of time, not only the most

recent or the most frequently read one. As an answer to this need, QBook uses a

genre prediction strategy that examines a genre distribution over time and applies a

time series analysis model. The goal of our strategy is to discover different areas of

user interest, not only the most dominant or recent ones. To do so, QBook analyzes

user reading history and book genre to not only determine the most dominant areas of

U ’s interest, but also the degree of a U ’s interest in each of them (e.g., we can predict

that a user is 40% likely interested in reading fiction books, 30% fantasy books, and

30% drama books, and thus provide recommendations accordingly).

From the user’s point of view, explicitly including time based analysis to inform the

recommendation process leads to relevant suggestions that satisfy his specific reading

needs. At the same time, the recommendation process improves by providing more

effective and relevant suggestions. In the remainder of this section we discuss a novel

time-based genre prediction strategy we developed to inform the recommendation

process.

3.4.1 Time Series Analysis

To include the time component into QBook’s recommendation process, we use a time

series analysis model to better predict users’ reading interests. By its definition, a

univariate time series is a sequence of measurments of the same variable collected

over time [3]. Unlike the standard linear regression, data used in time series models

are not necessarily independent and identically distributed, and they represent a list

of observations where the ordering matters since changing the order could influence

the meaning of the data [3]. The goal of time series analysis is to identify a model

that describes the pattern of the time series and explain how the past affects the
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future. Auto-Regressive Integrated Moving Average (ARIMA) [12] includes the most

popular models that use time series for prediction purposes. A specific time-series

model, denoted ARIMA(p, d, q) is defined and built based on the values of p, d,

and q. These parameters represent important factors of time-series models: p shows

that a value of an observed variable in one period is related to the number of its

values in previous periods (autoregressive term), d represents a differencing operation

between terms to produce a stationary process8, and q represents the possibility of

a relationship between a variable and the number of residuals from previous periods

(moving average term). Therefore, to identify the appropriate ARIMA model for a

given variable Y , it is necessary to iteratively determine values of p, d and q, where

p, q ≥ 1.

The ARIMA forecasting equation for a stationary time series is a linear regression-

type equation in which the predictors consist of intervals of the dependent variable

Y and periods of the prediction errors. That is: “predicted value of Y = a constant

and a weighted sum of one or more recent values of Y , and a weighted sum of one or

more recent values of the errors” [12]. To determine the dth value of Y noted as y,

over t periods of time, ARIMA calculates the value of yt when using the following

equations:

If d = 0: yt = Yt

If d = 1: yt = Yt − Yt−1

If d = 2: yt = (Yt − Yt−1)− (Yt−1 − Yt−2) = Yt − 2Yt−1 + Yt−2

The general forecasting equation is provided in Equation 3.12.

ŷt = µ+ φ1yt−1 + ...+ φpyt−p − θ1et−1 − ...− θqet−q (3.12)

8If statistical properties of a random variable are all constant over time, its time series is
stationary.
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where the moving average parameters are represented with φ’s so that their signs are

negative in the equation.

3.4.2 How does QBook Use Time-Based Genre Prediction?

Predicting genre to inform the recommendation process involves examining genres

read by a specific user. While a simple genre distribution analysis yields probabilities

or weights that determine the most favored genres, it lacks the ability to consider genre

preference evolution over time. To overcome this drawback, QBook uses a time-based

genre examination which requires information on reading activities among readers.

We first explore U ’s reading activity to obtain the distribution of his genre interest

during continuous periods of time and a significance of each genre for U as described

below.

To explicitly consider the change of genre preference distribution over time, our

genre prediction strategy takes advantage of ARIMA. Specifically, QBook uses

the implementation of ARIMA model in R language. Since changes in reading

activity between fixed and known periods of time are not constant, QBook applies

non-seasonal ARIMA models. By using ARIMA, QBook is able to determine a

model tailored to each genre distribution to predict its importance for a corresponding

user in real time based on its previous occurrences. ARIMA forecasting model uses a

specific genre distribution to predict the likelihood of future occurrence of that genre

based on its importance in previous periods of time. An interesting characteristic

we have discovered is that one book may belong to several genres. For example,

Hamlet (by William Shakespeare) belongs to number of different genres, such as

drama, tragedy and fiction. Therefore, QBook considers all books read in a given time

period with all corresponding genres. QBook calculates imp(gn,t,U), as in Equation
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3.13, in order to determine the importance of a given genre, gn, for U at a specific

time period, t.

imp(gn,t,U) =

∑m
b=1 |gn,t,b|
|Gt|

(3.13)

where |gn,t,b| represents the frequency of occurrences of a specific genre among the

m ≥ 1 books read during t, Gt is the set of all genres read in t, and |Gt| is a size of

Gt.

Our prediction strategy is able to conduct a search over possible ARIMA models

and choose the one with a best fit for a specific genre distribution in time. As

illustrated in Figure 3.4, a recent study done by Pew [1] on reading habits in the

USA, shows that 28 percent of readers read 11 books per year, and that the average

18-to-29 year old finishes 9 books per year, compared to 13 among older American

[24]. Based on this data, we establish one month long “windows” of time in which each

user is expected to read at least one book. Our strategy uses one month time frames

from the first book log (either bookmarked or rated book) to last. As illustrated in

Table 3.3, QBook creates a matrix where predicted likelihood of occurrence of a given

genre gn, denoted p(gn) at time frame, TW , is based on: its occurrences in the past (in

TW−1 time frames), a specific time when it occurred and its importance for a specific

user (imp(gn,W−1)). With the described time series genre prediction strategy, QBook

is able to prioritize the recommendation of fantasy books for U who recently started

reading more fantasy books, and less comedy ones, which was a genre known to be

favored by U in the past. The described prediction approach provides an additional

data point to further personalize the recommendation process.
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Figure 3.4: Pew statistics on reading activity among Americans

Table 3.3: Genre prediction model for U
TimePeriod Genre1 Genre2 Genre3 ... Genren
T1 imp(g1,1,U) imp(g2,1,U) imp(g3,1,U) ... imp(gn,1,U)
T2 imp(g1,2,U) imp(g2,2,U) imp(g3,2,U) ... imp(gn,2,U)
T3 imp(g1,3,U) imp(g2,3,U) imp(g3,3,U) ... imp(gn,3,U)
... ... ... ... ... ...
TW−1 imp(g1,W−1,U) imp(g2,W−1,U) imp(g3,W−1,U) ... imp(gn,W−1,U)
TW p(g1) p(g2) p(g3) ... p(gn)

3.5 Curating Book Suggestions

The most important step of QBook’s recommendation process focuses on curating

CB to generate top −K suggestions tailored to U . In this step, QBook’s goal is to

emulate the curation process (as defined in [46]) and become a personal docent that
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understands U and provides relevant books to read that appeal to the diverse, yet

unique, preferences and interests of U . To do so, QBook simultaneously considers

different data points generated in Sections 3.1-3.3 and builds a model that creates

a single score that quantifies the degree to which U prefers b ∈ CB. Based on

generated scores for each data point, QBook selects top−K suggestions to present to

U . QBook constructs a model that simultaneously considers different perspectives,

captured based on the generated scores for each book, into a single score that repre-

sents the degree to which U prefers the corresponding book. For model generation,

QBook adopts the Random Forests algorithm [48], which is a “classifier consisting

of a collection of tree-structured classifiers {h(x,Θk), k = 1, ...)} where the {Θk} are

independent identically distributed random vectors and each tree casts a unit vote for

the most popular class at input x.”

Intuitively, random forest is an ensemble learning method for classification and

regression that combines a number of decision trees in order to reduce the risk of

overfitting. A decision tree is a predictive modeling approach used in machine learn-

ing, data mining and statistics that maps observations about an item to conclusions

about the item’s target value. Like decision trees, random forests handle categorical

features, extend to the multiclass classification setting, do not require feature scaling,

and are able to capture non-linearities and feature interactions. Random Forest is

one of the most successful machine learning models which outputs the class or mean

prediction of the individual trees [46, 128]. As reported in [46, 128], among the

benefits of Random Forest models we should highlight that they:

• correct decision trees’ habits of overfitting to their training set,

• are one of the most accurate learning algorithms available,
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• run efficiently on large datasets,

• handle thousands of input variables without variable deletion,

• estimate which variables are important in the classification,

• generate an internal unbiased estimate of the generalization error as the forest

building progresses,

• have an effective method for estimating missing data and maintaining accuracy

when a large proportion of the data are missing,

• have methods for balancing error in class population unbalanced data sets,

• compute information about the relation between the variables and the classifi-

cation,

• compute proximities between pairs of cases that can be used in clustering,

locating outliers, or (by scaling) give interesting views of the data,

• extend to unlabeled data, leading to unsupervised clustering, data views and

outlier detection, and

• offer an experimental method for detecting variable interactions.

Random forests train a set of decision trees separately where the algorithm injects

randomness into the training process so that each decision tree is slightly different.

By combining the predictions from each tree, the model reduces the variance of the

predictions and improve the performance on test data. The randomness injected into

the training process includes: subsampling the original dataset on each iteration to

get a different training set and considering different random subsets of features to
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split on at each tree node. To make a prediction on a new instance, i.e., generate the

score that represents a degree to which U would like to read b, a random forest must

aggregate the predictions from its set of decision trees. Each model finds a prediction

by averaging the predictions of individual trees.

As part of curation process, QBook uses vectors Ubj (which correspond to each

b ∈ CB and U) to build a random forest model through training by using multiple

data points and fully capturing the relationship between each candidate book (bj)

and a user (U) (as shown in Equation 3.14).

Ubj =< rU,i, CBrank(Bj, Pi), Sim(U, bj), sentiWNr(bjr), sentiWNs(bjr),

coreNLPr(bjr), coreNLPr(bjr) > (3.14)

where rU,i is defined in Equation 3.1, CBrank(Bj, Pi) is defined in Equation 3.7,

Sim(U, bjV ) in Equation 3.9, sentiWNr(bjr) and sentiWNs(bjr) are generated us-

ing Equation 3.10 for review and last sentence sentiment, and coreNLPr(bjr) and

coreNLPs(bjr) are also defined in Equation 3.11 (review and sentence level).

To demonstrate the correctness of selecting the random forest algorithm, we

conducted an empirical study using 10-fold cross validation on a disjoint subset of

data from the one used for experimental purposes. In this study, we evaluated the

performance of a number of multiple machine learning techniques to determine the

one best suited to our duration task using popular prediction metrics: Mean Average

Error (MAE) and Root Mean Square Error (RMSE) [87]. Based on our assessment

of Gaussian Process, Decision Tree, Linear Regression and Random Forest [95], we

concluded that the model that best fits QBook task is RandomForest (see Table 3.4

for a detailed report of the results of our study).
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Table 3.4: Machine Learning Techniques Comparison
Name Gaussian Process Decision Tree Linear Regression Random Forest
MAE 0.502 0.317 0.502 0.253
RMSE 0.671 0.571 0.671 0.432

The reasons behind the better performance of RandomForest are due to the fact

that it: (i) builds many independent classifiers and then chooses or favors the one

that happens to do best, (ii) builds trees on good features and favors them over trees

that were built on noise features and (iii) has decision rules at the leaves that are not

sensitive to outliers or small noise.

3.5.1 Creating a Personalized Exhibit

As mentioned in Section 3.5, QBook assigns a score for b ∈ CB using the trained

random forest model that showcases the degree of which U prefers bj. By doing

this, QBook identifies the top −K suggestions for U . As discussed in Section 3.4.2,

reading activity among users varies, which causes QBook to have lack of information

for curation purposes corresponded to “nonreaders”, who are users who rated less than

35 books. The lack of available information can hinder the process of further curation

of personalized recommendations, which is why the final set of recommendations for

these users is based on the scores generated using the random forest model. However,

for active readers (who read at least 35 books), it is important to identify motives

for their reading selections, which can be different among different readers; some are

biased by experts other by authors preferences. Consequently, QBook explores and

considers these reasons in the book selection process for each active reader to further

personalize suggestions. To do so, QBook captures correlations among different data

points involved in the process of generating Ubj for U . QBook uses a commonly-
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adopted correlation strategy, Pearson correlation [133], which is a statistical measure

that indicates the extent to which two or more variables fluctuate together calculated

using Equation 3.15.

corr.coefficient(XY ) =
n (
∑
xy)− (

∑
x) (
∑
y)√[

g
∑
x2 − (

∑
x)2
] [
g
∑
y2 − (

∑
y)2
] (3.15)

where X and Y are specific data points, x and y are variables that belong to X and Y ,

respectively, and g is a number tuples of variable considered. The positive correlation

coefficient between any two variables, which are data points considered by QBook,

in our case, means that for every positive increase of one variable, there is a positive

increase in the other. If a coefficient is negative, it means that for every positive

increase of one variable, there is a negative decrease of the other one. Otherwise, the

two variables are not related.

To better understand dependencies among data points, their overall correlations

for all users are presented in Figure 3.5 where the blue bubbles represent positive

correlations and the red ones are negative. The size of the bubbles represent the

strength of the correlation, i.e., the bigger the bubble is, the higher the correlation

between the corresponding data points.

Consider a user, U1, and the degree of correlation each of the perspective data

points considered by Qbook has in influencing his reading selections. As shown in

Figure 3.6, CBrank(U1, book) (obtained in Section 3.1.2) has the highest correlation

score among the data points, so for U1 the content of books to be recommended has

the highest importance for him at the time of deciding what to read. Now consider

U2, where (as showcased in Figure 3.7) the data point with a highest influence in the

process of a book selection is Sim(U2, book), calculated in Section 3.2. This means
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Figure 3.5: Overall data points correlations computed on the QDevel
dataset, where actual is real rating value assigned by a user U to a given
book b and predicted is rating value predicted during QBook recommen-
dation process.

that unlike U1, book selections made by U2 are driven by the similarity between literal

elements U2 cares about and the ones that are used in b.

QBook determines which data point has the most influence on U in the process of

selecting books to read in the past and re-ranks the top recommendations generated

using random forests model based on the importance (i.e., computed score) of the

corresponding data point for each book in CB for U . If the selected data points

has positive correlation with a predicted score, QBook considers that data point as

the most important one in U ’s process of selecting books to read, so it re-orders the

top − K recommendations generated on Section 3.5 based on the score of the most

influential data point for U . For example, recommendations for U1 are re-ordered

based on CBrank values, while suggestions for U2 are ranked based on the values of
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Figure 3.6: Feature Correlation for a given U1

Sim. Consequentially, QBook provides personalized suggestions for U , since choosing

a book to read differs among the users.

In the case of active readers, the final step of QBook for curating their suggestions

considers the genre preference of U . This is accomplished using prediction strategy

(described in Section 3.4). To determine the number of representative candidates

from each genre that should be part of the final exhibit presented to U , QBook uses

pgn predictions of how likely U will be interested in each genre at a given point of

time. Consequently, books from the previously generated top−K set are selected to

become a part of the final list of top − 7 recommendations that are provided to U

based on the most influential data point and predicted genre preferences. Note that

number 7 is determined based on a popular psychology paper [93], where authors



47

Figure 3.7: Feature Correlation for a given user U2.

argue that a number of objects an average human can hold in working memory is 7

± 2.

By performing this curation step, QBook increases diversity among the sugges-

tions by including books from all different areas of users’ interests and improves

personalization of recommendations by ordering suggestions based on a specific fea-

ture for U . Consequently, QBook enables U to chose from exhibit of books tailored

solely to him in order to satisfy reading needs in a given time.

3.6 Generating Explanations

QBook cannot be a personal docent if it does not justify why the suggestions were

generated. To do this, QBook pairs each book recommendation with an explanation
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giving U data that allows him to make the most informed and fastest decisions in

terms of selecting a single item among the suggested ones. The purpose of providing

an explanation for each of the curated book suggestions generated in Section 3.5

is to help U in the process of selecting the one that will better satisfy his reading

needs at a particular moment. To generate the explanations, QBook uses archived

book reviews provided by other users, experts’ reviews, and the set of steps taken to

generate curated recommendations.

3.6.1 What Do Other Readers Say About a Book?

QBook creates explanations for a curated book, bj, by extracting from archived re-

views on b descriptions related to U ’s preferred features (literary elements determined

in Section 3.2). In other words, QBook identifies sentences in reviews pertaining to b

that include literary elements of U ’s interest. In doing so, QBook provides the user

with sufficient information about the recommendations without overwhelming him

with too much information to read related to the recommended books. QBook does

not emphasize the sentiment of the features, since QBook’s intent is not to make

U like one option more than another, but to save time on identifying information

important for him in the process of choosing the book to read.

3.6.2 What Do Experts Say About the Book?

Along with the other users’ opinions, QBook generates explanations based on the

experts’ opinions on the book’s quality. As described in Section 3.3, QBook is

able to analyze expert’s reviews. Moreover, QBook includes in the corresponding

explanations sentences from experts’ reviews that reference users’ top feature (literary

element) of interest. This way, U is provided with objective opinions by extracting
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sentences from experts’ reviews pertaining to the feature of U (denoted FU1). This

increases U ’s trust in QBook, since U can read unbiased opinions that help him

determine if he would like to read a particular recommendation or not.

3.6.3 Why Was Each Curated Book Selected?

As the final part of the explanation generation process, QBook looks into the steps

taken in curating each book suggestion. If a book was selected based on users’

historical data, an explanation contains information that a given book was selected

since similar users gave it a higher rating score. In the case of book from content

based filtering, the explanation includes information that suggested book is similar

to the ones the user liked in the past. If experts’ opinion had a strong influence in

the curation process, QBook makes sure that the user is aware of it, as well as the

fact that a recommended book belongs to the most likely genre of interest to the user

or not.

3.6.4 Why Should Reader Care About Suggested Books?

Explanation generation is an important part of the QBook recommendation process.

In doing so, QBook provides U with sufficient information about the recommen-

dations without overwhelming U with too much information to read related to the

recommended books. As previously stated, QBook does not emphasize the sentiment

of the features, since its intent is not to make U like one option more than another,

but save U ’s time in identifying information important for him. To provide U with

more information about each suggestion, QBook selects the sentences from other users

reviews for a suggested book that describe the most frequently mentioned feature FU1 ,

since FU1 represents the literary element of highest interest for U . If there are multiple
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sentence describing the same feature, QBook arbitrarily selects one to be shown to U .

Furthermore, duplicate sentences are excluded, since QBook never selects a sentence

to be part of the explanation for b, if that sentence is previously selected. To make

suggestion’s explanation more informative and complete, QBook includes a sentence

from experts’ reviews (selected as described in Section 3.6.2) that describes FU1 and

thus offers an objective opinion about the corresponding literary element, as well

as a sentence that describes the most important perspective that influenced reading

selections for U detected during the curation process (as described in Section 3.6.3).

The explanation paired with b includes three sentences specifically selected for U to

provide him with personalized and valuable information. The number of sentences is

chosen based on a study [120] that proves that users prefer to see at most 7% of the

document as the summary to make the best decisions if documents are of their interest

or not. Since QBook provides “summarized” reviews (in the form of explanations),

often there are at least 35 sentences in a book critique9, we chose to show 7% of 35

sentences as part of a book suggestion’s explanation. To further justify the chosen

number of sentences to include in the explanation, we rely on a user-study conducted

in [57], where 80% of the appraisers preferred explanations generated of the same

number of sentences over remaining two strategies for generating explanations, since

appraisers indicated that explanations provided the most useful information about

suggestions.

Most importantly, by providing personalized explanations, QBook is able to tell a

story about U and how each suggestion is related to U , which increases users’ trust

in the system, as well as the system’s transparency [124]. Unlike the majority of

9We evaluated a random sample of reviews posted on NPR books website [18] to determine the
frequent length of expert reviews.
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existing recommendation strategies, QBook is not a “black box” since it provides all

information regarding the selection and curation of the final exhibit of books that are

suggested. By doing this, QBook increases users’ trust and transparency of the system

since they know QBook is making decisions tailored towards each individual user.

Therefore, by providing the most complete explanations QBook acts as a personal

docent for U .
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CHAPTER 4

EVALUATION

In this chapter, we discuss the framework we adopted for evaluating QBook and the

results of the experimental studies conducted to validate its performance and design

methodology. These studies include (i) examining individual strategies considered

by QBook, (ii) demonstrating the importance of the generated explanations, (iii)

analyzing QBook’s effectiveness and scalability, (iv) comparing the performance of

QBook with baselines and existing approaches focused on recommending books and

(v) how QBook addresses current recommendation issues.

4.1 Framework

In this section we discuss the dataset, evaluation metrics and assessment strategy

considered in this study.

4.1.1 Dataset

To the best of our knowledge, there is no existing benchmark dataset that can be used

for evaluating the performance of a curation recommendation system. For this reason,

we created our own dataset based on well-known resources. For user historical data,

i.e. ratings and reviews, we used the INEX Amazon/LibraryThing Book Corpus [11],
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which consists of 2.7 million book titles1, each with combined book metadata from

Amazon [2] and LibraryThing [15]. Each book record in the dataset is an XML file (an

example of which is shown in Figure 4.1), that includes: isbn, title, author, publisher,

number of pages, publication date, reviews, and user-generated tags. Each review tag

Figure 4.1: Sample of XML file that represents a book record.

contains author ID, the content of a review, numerical rating value and corresponding

timestamp, so we were able to create a dataset that captures connections among

books’ metadata and rating distribution over time. The Amazon/LibraryThing col-

lection is complemented with library catalog records from the Library of Congress

(LoC) [14], which includes 1.25 million titles. Lastly, experts’ reviews are collected

1Note that some books can have multiple editions, therefore multiple titles refer to the same book
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from known book critiques’ websites, such as The New York Times [17], NPR Books

[18] and Editorial Reviews from Amazon/LibraryThing dataset.

To better understand the reading activity of users in the dataset, in Figure 4.2 we

present the distribution of read books among all users from Amazon/LibraryThing

dataset. Based on the provided distribution, we notice two extremes: a large number

of users read a very small number of books, while a small number of readers rated a

large number of books. Further analysis of users based on their ratings and reviews is

illustrated in Figure 4.3, which showcases that 11% of users read more than 100 books

per year among all users. This means that the majority of readers tend to read less

than 100 books on a yearly basis. With that in mind, for evaluating the performance

of QBook, we considered users who read less than 100 books per year, while the

others are considered spammers and thus treated as outliers. For example, as shown

in Figure 4.2, there are some users in the dataset who rated around 47000 books in

a couple of years, which is clearly not possible. The remaining set of 1,728,756 users

constitute the dataset used to validate the performance of QBook, denoted QData.

We split QData in three parts, where 1,727,200 users were used for training —

denoted QTrain, 778 users for development — denoted QDevel, and the remaining

781 users for evaluation — denoted QEval. To ensure a representative distribution

for development and evaluation purposes, we first clustered users from QData based

on their corresponding number of books read. Thereafter, we created the development

and evaluation partitions by randomly selecting the same percentage of users from

clusters to “simulate” real representation of QData in each of the partitions.
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Figure 4.2: Number of users vs. number of books on INEX/LibrayThing
Dataset.

Figure 4.3: Reading activity among users on INEX/LibrayThing Dataset.

4.1.2 Metrics

For recommendations validation purposes, we used the well-known metrics2 dis-

cussed below:
2Note that all corresponding equations are given for calculating metrics of an individual user. The

metrics of the system are obtained by averaging individual scores of all users who make a dataset.
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• Normalized Discounted Cumulative Gain (NDCG), which measures the correct-

ness of the generated recommendations and penalizes relevant recommendations

positioned lower in the ranking calculated using Equation 4.1 [71, 108].

nDCG =
DCG

IDCG
(4.1)

DCG is calculated using Equation 4.2 and IDCG is an ideal DCG used as

normalization factor.

DCG = rel1 +

pos∑
i=2

reli
log2(i)

(4.2)

where log2(i) is penalization factor, pos is a rank position and reli is the graded

relevance of the book at rank i (reli is 1 if the corresponding book is relevant

and 0 otherwise).

• Mean Reciprocal Rank (MRR), which captures the average number of suggested

items a user has to scan through to identify a relevant one, as shown in Equation

4.3 [71, 108, 112].

MRR =
1

|Q|

|Q|∑
i=1

ranki (4.3)

where Q is the number of books recommended to a user, ranki is the ranking

position of the book, and 1
|Q| is normalization factor.

• Mean Absolute Error (MAE ), which is a measure of the deviation of recom-

mendations from their true user-specified values [87]. For a given set of n (>1)

< pi, qi > pairs for a user, this metric computes their absolute error, where p is

real user-generated rating and q is predicted value. For each rating-prediction

pair MAE treats the absolute error between them i.e., |pi − qi| equally. The
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MAE is computed by first summing the absolute errors of the n rating-prediction

pairs and then computing the average. MAE is computed using Equation 4.4.

MAE =
1

n

n∑
i=1

|pi − qi| (4.4)

• Mean Squared Error (MSE) is an estimator that measures the average of the

squares of the errors, that is, the difference between the estimator and what is

estimated [87]. MSE assesses the quality of a predictor using Equation 4.5.

MSE =
1

n

n∑
i=1

(pi − qi)2 (4.5)

where pi and qi are as defined in Equation 4.4, and n is as defined in Equation

4.4.

• Root-Mean-Square Error (RMSE ) represents a quadratic scoring rule which

measures the average magnitude of the error, the difference between predicted

scores and user-specific values are each squared and then averaged over the

sample [87]. Since the errors are squared before they are averaged, the RMSE

gives a relatively high weight to large errors. RMSE is calculated using Equation

4.6.

RMSE =

√√√√ 1

n

n∑
i=1

(pi − qi)2 (4.6)

where pi and qi are as defined in Equation 4.5 and n is as defined in Equation

4.4.

• Accuracy showcases the percentage of right and wrong predictions [87]. The

accuracy of a measurement system is the degree of closeness of measurements
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of a quantity to that quantity’s true value. In the case of QBook, we treat book

recommendations on a binary fashion, in such a way that they are treated as

relevant if they have been rated or bookmarked by the corresponding user on a

given dataset, and non-relevant otherwise.

• Coverage shows how many of the items from the dataset are being recommended

to all users who get recommendations, as shown in Equation 4.7 [65]. This

measure aims to quantify if all items of users interests are recommended, thus

the larger coverage value is better in a recommendation context.

coverage =
|K
⋂
R
⋂
A|

|K
⋂
R|

(4.7)

where K is the set of books of the collection known to a given user, R is the set

of relevant books to a user and A is the set of recommended books. Therefore,

|K
⋂
R
⋂
A| is a set composed of the relevant books known to a user that have

been recommended.

• Serendipity measures how surprising the successful recommendations are to the

user [65]. It is the amount of relevant, but new, information offered to a user

in a recommendation. To calculate the unexpected set of recommendations, we

use Equation 4.8.

UNEXP = RC/PM (4.8)

where PM is a set of recommendations generated by a primitive recommen-

dation model and RS is the recommendations generated by QBook. However,

unexpected recommendations are not necessarily successful recommendations

[65], so we use Equation 4.9 to calculate serendipity.
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SRDP = u (RSk) (4.9)

where RSk is kth element in UNEXP and u (RSk) describe the usefulness of

the unexpected recommendations. The u (RSk) = 1 if a recommendation is

useful to a user, and u (RSk) = 0 otherwise.

• Novelty captures how different a recommendation is with respect to what the

user has already seen along with the relevance of the recommended item [126].

Novelty is the fraction of the relevant books in the recommended set that are

not known to a user. This metric is calculated using Equation 4.10.

novelty =
|(R
⋂
A)−K|

|R
⋂
A|

(4.10)

where K and R are defined as in Equation 4.7.

For demonstrating the usefulness of the explanations generated by QBook, we rely

on the criteria defined in [123] which outline the “characteristics” of good explana-

tions for recommendation systems. These criteria are: Transparency, Scrutability,

Trust, Effectiveness, Persuasiveness, Efficiency and Satisfaction. Table 4.1, initially

introduced in [123], includes detailed definitions of each of the aforementioned goals.

Table 4.1: Aims of explanations in a recommender system
Aim Definition
Effectivness Help users make good decisions
Efficiency Help users make decisions faster
Persuasiveness Convince users to try or buy
Satisfaction Increase the ease of usability or enjoyment
Scrutability Allow users to tell the system it is wrong
Transparency Explain how the system works
Trust Increase users’ confidence in the system
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4.1.3 Test of Statistical Significance

To verify the performance of our recommendation strategy we use the well-known

t-test of statistical significance [87]. A t-test of statistical significance shows if the

difference between the averages of two samples most likely reflects a real difference in

the population from which the samples were taken.

In the case of recommendation systems, this test aims to demonstrate that the im-

provement in performance of a given system or recommendation strategy (regardless

of the metric considered) is consistent.

4.1.4 Offline Assessment

Offline evaluation strategies are very popular in the recommendation domain [110, 86],

given that they do not require any direct interaction with real users, and thus are

not costly. Unfortunately, this type of evaluation can only answer a narrow set of

questions, mostly based on the prediction power of algorithms. In conducting offline

evaluations, we assume users’ behaviors and their interactions with the system, thus

we are not able to measure the real influence of a system to its users or account for

relevant suggestions on items users are yet to rate [108]. Therefore, the results of the

offline empirical studies are undervalued [108]. However, this limitation affects all

recommenders evaluated with such strategies, which is why the measures reported in

this manuscript are consistent [102].

4.2 Experimental Results

In this section, besides evaluating QBook’s overall methodology by using the dataset

described in Section 4.1.1 and metrics described in Section 4.1.2, we compare its
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performance with baseline, yet popular, strategies available on LensKit, including

Matrix Factorization (SVD) [13] and Content-Based Filtering (CB) [7], as well as

state-of-the-art book recommendations,including the ones [41, 74, 83, 85, 90, 129].

In this section, we also provide an initial assessment based on the scalability and

efficiency of QBook.

4.2.1 QBook Performance

We evaluate the individual strategies that contribute to QBook’s recommendation

process and analyze how each of them influences generation of book suggestions. In

doing so, we create top − K recommendations for each user in QDevel using the

individual strategies considered by Qbook and defined in Chapter 3. Thereafter, we

evaluate effectiveness of the recommendation generated using each strategy based on

NDCG.

In Figure 4.4, we illustrate the NDCG scores computed using QDevel. Note

that both QDevel and QEval sets provide comparable scores, which showcases that

QBook performance is consistent without occurrence of overfitting as a result of

training.

Figure 4.4: Performance evaluation of individual recommendation strategies
considered by QBook on QDevel and QEval.
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As shown in Figure 4.4, matrix factorization and content based approaches are

similarly effective, in terms of generating book recommendations. However, when

combined they slightly increase the value of NDCG. This improvement is statistically

significant (p < 0.001), which means that users get, in general, more relevant recom-

mendations, when both strategies are considered. This can be explained with the fact

that these two methodologies complement each other, i.e., where the lack of users’

ratings can be replaced with a content of the book, and vice versa. Furthermore,

we can see that similarity between literary features of a user’s interest and book’s

most mentioned ones, has a positive influence on the recommendation process as it

increases NDCG by 2.5 % when explicitly considered as part of the recommendation

process. This is anticipated, since user-generated reviews hold a lot of information

that can allow us to gain knowledge about each user and personalize suggestions.

The most reliable data points, which do not only achieve relatively high NDCG

but also are widely applicable and do not depend on individual users, are the four

strategies that analyze sentiment of expert reviews. These strategies rely on informa-

tion frequently available for books and thus are applicable to the majority of books

examined by QBook. Based on Figure 4.4, we can see that data points calculated

using sentence level sentiment analysis, provide slightly better recommendations com-

paring to the ones generated using word level sentiment analysis.

Even though all of the individual strategies perform relatively well, we cannot

assume that each data point can be calculated for every single book at any moment.

QBook’s improvements in terms of NDCG we can justify with the fact thatQBook: (i)

simultaneously considers multiple data points, (ii) includes genre-prediction strategy,

and (iii) more completely analyzes different perspectives of user-book relations to

provide recommendations even when some of the data points are unavailable. This is
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important because QBook is able to address data sparsity as one of the major issues

recommendation systems are facing. With an NDCG of 93% on QDevel (and 94% on

QEval), QBook provides the most relevant recommendations to the largest number

of users.

This is demonstrated based on the fact that NDCG of QBook is statistically

significant with respect to the NDCG reported for the individual strategies (for p <

0.001).

4.2.2 Evaluating Genre Prediction

Since our time-based genre prediction strategy is novel, we validate it in isolation to

prove its correctness. To validate the performance of our proposed time-based genre

prediction strategy, we selected a subset of the QDevel corpus of books. We used

1214 users3 along with the books they rated or reviewed. To quantify the assessment,

we applied MAE, Accuracy and Kullback—Leibler (KL) divergence [87]. In the

context of genre prediction, MAE estimates the difference between the predicted

genre importance and the ground truth, i.e., genre distribution for a user at a given

time, whereas Accuracy applies a binary strategy that reflects if the predicted genres

correspond to the ones read by a user in a given period of time. Furthermore,

KL divergence (also known as information gain) measures how well a distribution b

generated by a prediction strategy approximates to distribution a, the ground truth,

as shown in Equation 4.11.

D (a ‖ b) =
∑
i

ailog
ai
bi

(4.11)

3In our initial assessment, we considered Amazon users who provided ratings for at least 35 books.
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where a is real distribution, b is predicted distribution, and ai and bi are individual

values that correspond to real and predicted distributions, respectively.

In establishing the ground truth for each user considered for evaluation purposes,

we adopted the well-known W −1 strategy, such that the genre of the books rated by

a given user in the W time frame are treated as “relevant” genres for a user, and the

genre of the books rated in the previous W − 1 windows are used for training a user’s

genre prediction model. As a baseline of our initial assessment, we use a traditional

prediction strategy that considers the proportion of occurrences of each genre over

the total number of occurrences of genres read by a user in W − 1 periods of time, as

the only decider on how likely is for that genre to be of a users’ choice in W .

Table 4.2: Evaluation using the Amazon dataset
Genre Prediction MAE KL divergence Accuracy
With Time Series 0.143 0.623 0.870
Without Time Series 0.144 0.663 0.826
With Time Series (3+ genre) 0.138 0.660 0.857
Without Time Series (3+ genre) 0.146 0.720 0.810

The reading activity of users from a dataset collection varies: from new users

who noted one book to spammers who rated over a thousand of books during long

periods of time. As shown in Table 4.2, for W=114 the performance of proposed

strategy improves with the number of observed windows of time. KL divergence

scores showcase that genre distribution predicted using time-series approach better

approximates to the ground truth. This can be seen on Figure 4.5, where MAE

distribution of proposed genre prediction approach is closer to zero, comparing to the

baseline. Figure 4.5 depicts that a probability of occurrence of each considered genre

is closer to the ground truth when a time component is included in the prediction

4We empirically verified that for 6≥N≥11 the results are comparable to the ones for W=11.



65

process. As a further assessment, we observed differences in genre predictions among

Figure 4.5: Comparison of density based distributions of MAE.

users who read different number of distinct genres. As shown in Figure 4.6, for

users who read only one to two genres, the time-based prediction strategy does not

outperform the baseline. Note that the graph contains two axes with discrete values.

If we do not apply jittering, we would only see a lot of points on top of each other,

making it impossible to see the color of those points which is an important aspect of

the graph. Therefore, we apply jittering to move those data points slightly so that

they can be better visualized. This juttering will never change the result since the

jittering applied is less than 1, which is smaller than the gap between each point. This

way, jittering points never overlap and with points of other groups. However, if a user

reads three or more genres, our time-based genre prediction strategy outperforms the

baseline in all three metrics. This is not surprising, as it is not hard to determine

area(s) of interest for a user who constantly reads only one or two book genres, which
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is why the baseline performs as well as the time-based prediction strategy. In Figure

4.6, we can observe a higher percentage of bubbles with a color (shades of blue,

purple) that represents smaller MAE comparing to the baseline occur more when

number of read genres increases. Given that users that read three or more genres

represent 91% of the users in our sampled dataset, the proposed strategy provides

significant improvements in predicting preferred genre for each reader. Furthermore,

KL divergence improvement when using time-series prediction approach is statistically

significant with respect to prediction without an involvement of a time series, for p

< 0.001.

Figure 4.6: Influence of the number of read genres and the number of win-
dow frames on genre predictions, where delta MAE = baseline prediction
- prediction using time series.
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4.2.3 Quantifying QBook’s Explanations

Based on the criteria described in Table 4.1 and the design strategy of QBook

(presented in Chapter 3), we can conclude that QBook achieves five out of the seven

defined criteria expected for explanations generated by recommenders, including:

transparency, trust, satisfaction, effectivness and efficiency. By suggesting curated

books which are described based on users’ preferred features of interest, showcasing

opinions of other users on those features and describing curation steps, QBook ad-

dresses transparency. QBook inspires trust of its users in the system, since it does

not consider the sentiment, i.e., positive or negative, connotation of the features to

determine if they should be included in the corresponding explanations. Instead,

QBook provides unbiased recommendations and explanations. With that, users’

confidence increases knowing that QBook provides a real picture of each suggested

book. Users are also able to make good and fast decisions, in terms of selecting

books among the suggested ones, since they know which books, based on provided

explanations, match their preferences. With this, QBook increases its effectiveness.

Given that users’ overall satisfaction with a recommender is related to the perceived

quality of its recommendations and explanations [66], QBook users appreciate the

fact they do not need to spend more time on researching books with characteristics

important to them.

According to the studies presented in [123] and assessments on a number of

current strategies for generating recommendations with the corresponding expla-

nations [72, 94, 121, 127, 135], we can report that, on average, only two (out of

the seven) criteria are satisfied by any given recommender system that provides

justified recommendations. The only system that is comparable with QBook is the
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one developed by Zha et al. [135] that fulfilled five of the aforementioned criteria

with its provided explanations. Given that the proposed system involves sentiment

in the generation of the explanations, we argue that users’ trust in QBook is more

than its counterpart presented in [135], since QBook makes unbiased decision when

generating users’ features of preferences and making decisions which sentences to

select to address the corresponding features.

4.2.4 Understanding how QBook Addresses Recommendation Issues

In this section, we showcase the benefits of QBook and its ability to address popular

recommendation issues. To quantify QBook’s performance in these aspects, we

considered MAE, novelty, coverage and serendipity (previously described in Section

4.1.2). Furthermore, while using the evaluation framework presented in [86], we can

simulate online evaluation using offline metrics: coverage, serendipity and novelty.

Table 4.3: QBook and Recommendation Issues
Book Recommenders MAE Novelty Coverage Serendipity
QBook 0.42 0.73 0.92 0.68

Based on the results of our conducted empirical study, we conclude that the rec-

ommendation prediction accuracy of QBook is consistent, regardless of the presence

or absence of some data points used in the recommendation process. As shown in

Table 4.3, low MAE of 0.42 generated by QBook showcases that recommendation

strategy is able to successfully predict the user’s degree of preference for each book,

no matter if there is available data for that book.

As reflected by the coverage score in Table 4.3, QBook is able to consider a vast

number of diverse books in generating recommendations, as opposed to popular ones.
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Based on this assessment, we can conclude that QBook addresses data sparsity and

cold-start problem, since it considers high volumes of books to recommend.

The novelty score of 73% depicts that a user is provided with book suggestions

that are diverse based on what he already saw. This characteristic of QBook, together

with relatively high serendipity score, shows that new and unexpected, but relevant

suggestions are provided to a user. We can determine that books suggestions QBook

provides to each user are not only novel and serendipitous, but also relevant, which

is an important ability for recommendation systems.

4.2.5 Efficiency and Scalability of QBook

Besides assessing the effectiveness of QBook and its individual strategies considered

on making book recommendations, we have also conducted the initial study and

validated the overall efficiency of QBook. We consider 10 randomly selected users

from QEval who rated a different numbers of books in the past (users with 5, 10, 20,

30, 40, 50, 60, 70, 80 and 90 rated books) and compute the processing time of QBook

in generating recommendations for each of them. The average time in milliseconds

required by QBook to generate book recommendations is 607.3 milliseconds which

proves the efficiency of QBook. As determined by the curve created using the

Microsoft Excel Trend/Regression tool (shown in Figure 4.7), the processing time

of QBook as the number of analyzed books increases follows a linear trend, which

demonstrates the scalability of QBook.

4.2.6 QBook versus Others

In this section, we demonstrate the correctness of QBook by comparing its perfor-

mance with existing book recommendation methodologies, introduced in [41, 74, 83,
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Figure 4.7: (Average) Processing time of QBook for generating book rec-
ommendations for users who rated different number books in the past.

85, 90, 129]. The empirical analyses reported in this section, are based on QEval

dataset. A brief description of the baseline and state-of-the-art approaches considered

in our evaluation is provided below:

• Matrix Factorization (SVD) is a popular baseline recommendation strategy as

explained in Chapter 2.

• Content-based Filtering (CB) is another popular baseline approach used in

generating suggestions, detailed in Chapter 2.

• LDAMF model [90] tries to harness the information in the review text by fitting

an LDA model on the review text. The model uses topic distribution on items

(or users), learned by gradient descent methods, as the latent factors in matrix

factorization models.
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• CTR (Collaborative Topic Regression) is a state-of-the-art method that recom-

mends scientific articles to potential interested readers [129]. Even though the

approach is not specifically created for book recommendations, it is comonly

used in for the comparison purposes since it contains all characteristics of the

books, except maybe the number of pages. The CTR model focuses on the

one-class collaborative filtering problem by using different precision parameters.

For comparison purposes, we used the results obtained in [83] where authors

used the same precision parameters as well as LDA-C [45] for pre-training

purposes. CTR also utilizes both ratings and reviews information to inform

the recommendation process.

• HFT (Hidden Factors and Hidden Topics) is a state-of-the-art method that

combines reviews with ratings [90]. This approach models the ratings using

a matrix factorization model with an exponential transformation function to

link the stochastic topic distribution in modeling the review text and the latent

vector in modeling the ratings.

• The URP (User Rating Profile) model described in [89] is an extension of LDA

for collaborative filtering. In this model, each user is represented as a mixture of

so-called user attitudes, the rating for each item is generated by selecting a user

attitude for the item, and then sampling a rating according to the preference

pattern associated with that attitude.

• SVD++ [78] refers to a matrix factorization model which makes use of implicit

feedback information. In general, implicit feedback can refer to any kind of

users’ history information that can help indicate users’ preference. As a varia-
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tion of SVD algorithm, and commonly used in recommendation community, we

compare its performance with our approach.

• The authors in [74] proposed a Bayesian model, called User Rating and Review

Profile (URRP), by combining collaborative filtering and content-based filtering

to more accurately learn user rating and review preferences. To address cold-

start problem, URRP links User Rating Profile with a topic model (Latent

Dirichlet Allocation [45]) with the review text generated by users.

• ‘Free Lunch’ [85] leverages clusters based on information that is present in the

user-item matrix, but not directly exploited during matrix factorization. The

authors in [85] observe users and items in terms of their overall rating patterns

and introduce an approach that uses Factorization Machines [105] to improve

recommendation performance.

• Another model that combines content-based filtering with collaborative filtering

by using the information of both ratings and reviews RMR (Ratings Meet Re-

views) to improve prediction accuracy in a recommendation process is described

in [83]. Ling et al. [83], apply topic modeling techniques on the review text and

align the topics with rating dimensions to learn latent topics and explore the

prior knowledge on items or users and recommend new items.

To better understand the correctness of the design methodology of QBook, we com-

pare its performance with baselines, yet popular, algorithms: Matrix Factorization

(SVD) and Content-based filtering (CB). While details of algorithms were discussed

in Section 2, for their implementation we rely on LensKit. For this purpose, we

calculated NDCG and MRR metrics. As shown in Table 4.4, QBook outperforms
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Table 4.4: QBook versus Baseline evaluating top-K recommendations
Baseline Recommenders NDCG MRR
QBook 0.933 0.670
SVD 0.874 0.612
Content Based 0.874 0.585

both of the baselines. The significant (p < 0.01) NDCG improvement of QBook, with

respect to SVD and CB, demonstrates that in general, recommendations provided by

QBook are preferred over the ones provided by either baseline, which either consider

ratings patterns or content, but not both, as part of the recommendation process.

To further prove the correctness of QBook, we evaluated its performance in terms

of MRR. Thereafter, with compared QBook’s MRR with respect to the MRR of

existing state-of-the-art recommendation strategies. As reported in Table 4.4, QBOok

outperforms baselines in terms of MRR metrics, which means that a position of the

first relevant book among suggested ones is higher than in the case with baseline

recommendations. Furthermore, a higher NDCG indicates that the relevant recom-

mendations generated by QBook are positioned higher in the ranking of generated

recommendations than the ones provided by QBook’s counterparts.

Even if QBook outperforms traditional recommendations strategies (SVD and

CB), in order to prove its true recommendation strength, we compare QBook’s

performance with state-of-the-art methodologies. In Table 4.5 we summarized the

results of the evaluation conducted using INEX Amazon/LibraryThing dataset in

Table 4.5 in terms of RMSE and MSE.

As shown is Table 4.5, QBook outperforms existing state-of-the-art book recom-

menders considered in this empirical study in terms of predicting the degree of which a

user would like to read each recommended book. The difference on RMSE and MAE

scores computed for QBook with respect to aforementioned state-of-the-art book
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Table 4.5: Performance assessment of QBook versus state-of-the-art recom-
mendation strategies, in terms of RMSE and MSE

Book Recommenders RMSE MSE
QBook 0.632 0.795
MF 1.052 1.107
LDAMF 1.053 1.109
CTR 1.052 1.106
HFT 1.066 1.138
RMR 1.055 1.113
Free Lunch 0.933 0.986
Free Lunch with Clustering 0.825 0.681
SVD++ 0.908 1.282
URRP 1.104 1.220

recommenders are statistically significant with p > 0.001, which means that QBook

is able to provide recommendations that users find of use, i.e., they are relevant to

their reading needs.

To assess QBook’s performance, we measure how successfully QBook is able to

predict QEval rating scores based on recommendation method explained in Chapter

3. The prediction power of QBook is demonstrated with having the root mean

square errors twice as low as in case of state-of-the-art approaches. Lower MSE

and RMSE mean that predicted scores (quantify the degree to which the rating

predicted for recommended book differs from the actual degree of interest (rating)

of a given user on the recommended book) are closer to the ground truth. When

analyzing the performance of different strategies in more detail, we can see that Matrix

Factorization strategies perform better, as in the case of Free Lunch (with and without

clustering) and SVD++. However, QBook not only considers MF approach in the

process of selecting book candidates, but also complements its limitations when using

content based approach during the candidate selection, as well as involving different

perspectives including other users’ and experts reviews.
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CHAPTER 5

CONCLUSIONS

In this study we presented QBook, a novel book recommendation system. QBook acts

as a personal docent and curates books to present them to each individual user and

satisfy his reading needs. To create book exhibits, QBooks creates suggestions based

on different areas of interest to a user, not only the most dominant or recent ones.

Instead of gaining knowledge during the education process to inform the curation

process, as in the case with professional curators, QBook takes advantage of users’

historical data (such as ratings and reviews), items’ metadata, experts’ knowledge

and distribution of interest patterns related to each individual user. QBook justifies

each suggestions with a corresponding explanation, to provide a user with reasons for

including each book in the generated exhibit.

The novelty of QBook consists of involving user-generated reviews, among other

data sources, into its recommendation process but without considering the sentiment

expressed in the reviews. QBook recommendation strategy is based on the well-known

matrix factorization and content-based filtering methods and complemented by re-

views, which are considered to infer the literary elements (features) each individual

user cares about while reading a book. Even though users’ reviews are generated by

variety of users and therefore include different subjective opinions, QBook comple-

ments them by considering knowledge extracted from objective experts opinions which
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positively influence curation of recommendations and generation of explanations.

One of the important contributions of QBook is the proposed genre prediction

strategy that estimates possible interests of each individual user. The novelty of

this genre-prediction strategy consists of incorporating an explicit time component

to generate genre distribution. To the best of our knowledge, this is the first time

that the well-known time series ARIMA model is used to predict book genre of

readers’ interests. The described strategy provides successful predictions and out-

performs the baseline for 77% of users based on the presented initial evaluation,

while for the remaining users it provides predictions comparable to the baseline.

By considering all the genre a user read in the past, QBook achieves diversity of

provided suggestions.This is important since a user would not receive the same type

of recommendation over time. This way QBook aims to satisfy different areas of

user’s interest and give a greater range of options to select from.

Another contribution of QBook lies in the explanation generation process that

analyses other users’ opinions on extracted features of interest for a given user and

experts’ objective critique to include them in the generated explanations associated

with each suggested book. QBook also captures which data points have the highest

influence in the process of selecting a book to read for each individual user and thus

include that information in this explanations. The generated justifications help each

user choose the best book to read, among the recommended ones, without any need

to locate further information pertaining to the book.

We conducted a number of offline experiments to validate the performance of

QBook using popular Amazon/LibraryThing and Library of Congress datasets. Based

on the experimental results, we can conclude that QBook outperforms baselines, as

well as a number of state-of-the-art book recommendation strategies, which further
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demonstrates the importance of considering a number of different data sources, be-

yond solely users’ ratings or book content to enhance the recommendation process.

We also conducted initial experiments that verified the correctness and usefulness

of the proposed explanation-generation strategy by comparing it with existing ap-

proaches. By conducting an in-depth assessment based on diversity, coverage and

serendipity of provided recommendations, we showed that QBook addresses already

known recommendation problems, including cold-start, data sparsity, personalization

and diversity. Lastly, we analyzed the processing time of QBook and were able to

demonstrate that QBook is efficient and scales well.

5.1 Applicability

While we used books as a case study, in terms of sample items to be recommended,

we developed domain independent techniques and methodologies so that our system

can be used to recommend any type of items (e.g. songs, movies or events) as long as

we can provide it with necessary data points to generate recommendations. However,

it is important to note that future assessments on other items are out of the scope of

this thesis work.

5.2 Future Work

Even though we successfully completed the challenge presented in Chapter 1 and

created a personal docent, QBook, which outperforms baseline and state-of-the-art

approaches, we are aware of a need to further extend validation and demonstrate

that QBook not only generates relevant suggestions but also helps users in making

appropriate choices among provided suggestions.
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As in the case of measuring explanations, offline metrics are not enough to show-

case a performance of QBook as a personal docent. Consequentially, we propose in

the future to rely on the popular, online A − B test [87]. This type of evaluation

is performed by including two groups of users directed towards two system, which

differ in precisely one thing, and collect their results to observe changes in their

behaviors [87]. We propose to conduct A − B testing by asking groups of users to

provide us with a number of books with their ranks and reviews, and use it as an

input to generate curated suggestions and explanations. One group of users will

be provided with curated suggestions, while the other group will receive non-curated

recommendations. We will collect users’ feedback through a questionnaire to measure

the performance differences between tested systems and see the level of satisfaction

of users after providing them new, unseen items.

Because of the scope of this study, the conducted evaluation showcases the genre

prediction performance for a single user. We plan to conduct further assessments

in terms of quantitatively determining the degree to which the proposed strategy

provides successful genre predictions for libraries and publishing companies and in-

fluences the recommendation process to assist all three stakeholders. Furthermore,

we believe that presented genre-prediction strategy can be applied on other metadata

that could benefit from an in-depth analysis of preference change over time, as

in the case of subject headings. This would aid the process of identifying more

concretely user preferences and enable recommendation systems to provide diverse,

but personalized suggestions, which is why we will also explore this in future work.

Given the domain-independent nature of our strategies and methodologies, we

also plan to validate QBook on datasets other than books and demonstrate the

applicability of the proposed recommendation strategy in domains other than books.
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The evaluations presented in this manuscript are from a user perspective, however,

we are interested in enhancing, if needed, the design of QBook to ensure that it can

satisfy the needs for other stakeholders, such as libraries and publishing companies.

Our goal is to go even one step further and enable our personal curator to generate

suggestions in multiple domains, based on a complete virtual footprint available for

a user. For example, this recommender will be able to recommend restaurants based

on the songs we liked or movies we watched, or even recommend events we should

attend as a consequence of clothes we recently rated and reviewed. In that case, the

recommendation system would know a user better than anyone else.
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GutiéRrez. Trees for explaining recommendations made through collaborative
filtering. Information Sciences, 239:1–17, 2013.

[73] Sydney Jarrard. Retail sales at bookstores up in April amer-
ican booksellers association. http://www.bookweb.org/news/

retail-sales-bookstores-april-33897. Accessed: 2016-05-06.

[74] Mingming Jiang, Dandan Song, Lejian Liao, and Feida Zhu. A bayesian
recommender model for user rating and review profiling. Tsinghua Science
and Technology, 20(6):634–643, 2015.

[75] Salil Kanetkar, Akshay Nayak, Sridhar Swamy, and Gresha Bhatia. Web-based
personalized hybrid book recommendation system. In Advances in Engineering
and Technology Research (ICAETR), 2014 International Conference on, pages
1–5. IEEE, 2014.

[76] Gabriella Kazai, Daoud Clarke, Iskander Yusof, and Matteo Venanzi. A
personalised reader for crowd curated content. In Proceedings of the 9th ACM
Conference on Recommender Systems, pages 325–326. ACM, 2015.



86

[77] Dmitry Kislyuk, Yuchen Liu, David Liu, Eric Tzeng, and Yushi Jing. Human
curation and convnets: Powering item-to-item recommendations on pinterest.
Computer Vision and Pattern Recognition, 2015.

[78] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collabo-
rative filtering model. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 426–434. ACM,
2008.

[79] Yehuda Koren. Collaborative filtering with temporal dynamics. Communica-
tions of the ACM, 53(4):89–97, 2010.

[80] Yehuda Koren, Robert Bell, Chris Volinsky, et al. Matrix factorization tech-
niques for recommender systems. Computer, 42(8):30–37, 2009.

[81] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet computing, 7(1):76–80, 2003.

[82] Gregory D Linden, Jennifer A Jacobi, and Eric A Benson. Collaborative
recommendations using item-to-item similarity mappings. US Patent 6,266,649.

[83] Guang Ling, Michael R Lyu, and Irwin King. Ratings meet reviews, a com-
bined approach to recommend. In Proceedings of the 8th ACM Conference on
Recommender systems, pages 105–112. ACM, 2014.

[84] Chunxi Liu, Shuqiang Jiang, and Qingming Huang. Personalized online video
recommendation by neighborhood score propagation based global ranking.
In Proceedings of the First International Conference on Internet Multimedia
Computing and Service, pages 244–253. ACM, 2009.

[85] Babak Loni, Alan Said, Martha Larson, and Alan Hanjalic. ’free
lunch’enhancement for collaborative filtering with factorization machines. In
Proceedings of the 8th ACM Conference on Recommender systems, pages 281–
284. ACM, 2014.

[86] Andrii Maksai, Florent Garcin, and Boi Faltings. Predicting online performance
of news recommender systems through richer evaluation metrics. In Proceedings
of the 9th ACM Conference on Recommender Systems, pages 179–186. ACM,
2015.

[87] Christopher D Manning and Hinrich Schütze. Foundations of statistical natural
language processing, volume 999. MIT Press, 1999.



87

[88] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel,
Steven Bethard, and David McClosky. The stanford corenlp natural language
processing toolkit. In ACL (System Demonstrations), pages 55–60, 2014.

[89] Benjamin M Marlin. Modeling user rating profiles for collaborative filtering. In
Advances in Neural Information Processing Systems, page None, 2003.

[90] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: under-
standing rating dimensions with review text. In Proceedings of the 7th ACM
Conference on Recommender Systems, pages 165–172. ACM, 2013.

[91] Sean Michael Mcnee. Meeting user information needs in recommender systems.
Proquest, 2006.

[92] Prem Melville, Raymond J Mooney, and Ramadass Nagarajan. Content-
boosted collaborative filtering for improved recommendations. In Association
for the Advancement of Artificial Intelligence/Innovative Applications of Arti-
ficial Intelligence Conference, pages 187–192, 2002.

[93] George A Miller. The magical number seven, plus or minus two: Some limits on
our capacity for processing information. Psychological Review, 63(2):81, 1956.

[94] Joanna Misztal and Bipin Indurkhya. Explaining contextual recommendations:
Interaction design study and prototype implementation. In Proceedings of the
Joint Workshop on Interfaces and Human Decision Making for Recommender
Systems (9th ACM Conference on Recommender Systems), Vienna (Austria),
2015.

[95] Tom M Mitchell. Machine learning book, 1997.

[96] C-C Musat, Yizhong Liang, and Boi Faltings. Recommendation using textual
opinions. In IJCAI International Joint Conference on Artificial Intelligence,
number EPFL-CONF-197487, pages 2684–2690, 2013.

[97] Angela Nyhout and Daniela K O’Neill. Mothers’ complex talk when sharing
books with their toddlers: Book genre matters. First Language, pages 115–131,
2013.

[98] Bruno Ohana and Brendan Tierney. Sentiment classification of reviews using
sentiwordnet. In 9th. IT & T Conference, page 13, 2009.

[99] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations
and Trends in Information Retrieval, 2(1-2):1–135, 2008.



88

[100] You-Jin Park and Kun-Nyeong Chang. Individual and group behavior-based
customer profile model for personalized product recommendation. Expert
Systems with Applications, 36(2):1932–1939, 2009.

[101] Maria Soledad Pera and Yiu-Kai Ng. Automating readers’ advisory to make
book recommendations for k-12 readers. In Proceedings of the 8th ACM
Conference on Recommender Systems, pages 9–16. ACM, 2014.

[102] Maria Soledad Pera and Yiu-Kai Ng. Exploiting the wisdom of social connec-
tions to make personalized recommendations on scholarly articles. Journal of
Intelligent Information Systems, 42(3):371–391, 2014.

[103] Maria Soledad Pera and Yiu-Kai Ng. Analyzing book-related features to
recommend books for emergent readers. In Proceedings of the 26th ACM
Conference on Hypertext & Social Media, pages 221–230. ACM, 2015.

[104] Al Mamunur Rashid, Istvan Albert, Dan Cosley, Shyong K Lam, Sean M
McNee, Joseph A Konstan, and John Riedl. Getting to know you: learning
new user preferences in recommender systems. In Proceedings of the 7th
International Conference on Intelligent User Interfaces, pages 127–134. ACM,
2002.

[105] Steffen Rendle. Factorization machines with libfm. ACM Transactions on
Intelligent Systems and Technology (TIST), 3(3):57, 2012.

[106] Steffen Rendle and Lars Schmidt-Thieme. Online-updating regularized kernel
matrix factorization models for large-scale recommender systems. In Proceedings
of the 2008 ACM Conference on Recommender Systems, pages 251–258. ACM,
2008.

[107] Paul Resnick and Hal R Varian. Recommender systems. Communications of
the ACM, 40(3):56–58, 1997.

[108] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender
systems handbook. Springer, 2011.

[109] Zurina Saaya, Rachael Rafter, Markus Schaal, and Barry Smyth. The curated
web: a recommendation challenge. In Proceedings of the 7th ACM conference
on Recommender systems, pages 101–104. ACM, 2013.
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APPENDIX A

LITERARY ELEMENTS

In this section we provide complete sets of related terms for each literary elements

used in Section 3.2 as described in [101].

• Characterization : stereotypes detailed distant dramatic eccentric evocative

faithful familiar introspective laudatory lifelike multiple points of view quirky

realistic layered linear literary recognizable sympathetic vivid well-developed

well-drawn developed real believable

• Frame : descriptive minimal bleak light-hearted fun bitter-sweet bittersweet

comfortable contemporary darker detailed setting detailed edgy evocative evan-

gelistic exotic foreboding gritty hard-edged heart-warming historical humorous

journalistic literary lush magical melodramatic menacing mystical nightmare

philosophical political popular psychological romantic rural scholarly sensual

small-town stark suspenseful timeless upbeat urban small town school

• Writing Style: austere candid classic colourful complex concise conversational

direct dramatic dry elaborate extravagant fervent flamboyant frank graceful

homespun jargon laconic metaphorical natural ornate passionate poetic pol-

ished prosaic restrained seemly showy simple sophisticated stark thoughtful

unaffected unembellished unpretentious unusual
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• Pacing: fast slow leisurely breakneck compelling deliberate leisurely-paced

measured relaxed unhurried dense engrossing easy fast-paced stately

• Tone: happy light uplifting dark ironic funny evocative serious old-fashioned

traditional modern contemporary sentimental emotional stark realistic safe re-

laxing suspenseful tense quirky wordplay bizarre surreal humorous

• Story-line: action-oriented character-centered cinematic complex conclusive

domestic episodic violent family-centered folksy gentle humorous inspirational

investigative issue-oriented layered linear literary multiple storylines mystical

mythic journalistic literary lush magical melodramatic menacing mystical night-

mare philosophical open-ended plot-centered plot twists racy rich romp sexually

explicit steamy strong language thought-provoking tragic multiple
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APPENDIX B

BOOK GENRES

In this section we provide complete list of major genres of literature types used in

genre prediction strategy described in Section 3.4.

• Narrative

• Non fiction

• Essay

• Biography

• Autobiography

• Speech

• History

• Fiction

• Drama

• Poetry

• Fantasy

• Humor



95

• Fable

• Fairy tale

• Science fiction

• Short story

• Realistic fiction

• Folklore

• Historical fiction

• History

• Horror

• Tall tale

• Legend

• Mystery

• Mythology

• Fiction in verse




