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ABSTRACT

Readability refers to the ease with which a reader can understand a text. Auto-

matic readability assessment has been widely studied over the past 50 years. However,

most of the studies focus on the development of tools that apply either to a single

language, domain, or document type. This supposes duplicate efforts for both de-

velopers, who need to integrate multiple tools in their systems, and final users, who

have to deal with incompatibilities among the readability scales of different tools. In

this manuscript, we present MultiRead, a multipurpose readability assessment tool

capable of predicting the reading difficulty of texts of varied type and length regardless

of the language in which they are written. MultiRead bases its predictions on

multiple indicators extracted from textual resources, including lexical, morphological,

syntactical, semantic and social indicators. The latter are of particular interest given

the recent adoption of social sites by users of different age and reading abilities. We

gathered a leveled corpora comprised of textual resources in English, Spanish and

Basque languages, with diverse length, source, domain and format. This corpora was

used for assessing the effectiveness of MultiRead, and demonstrating that MultiRead

outperforms other readability assessment systems, in terms of accuracy among all

languages and document types evaluated.
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CHAPTER 1

INTRODUCTION

Reading is an important skill in the academic environment, a competence that can

be critical for students’ educational opportunities and their careers [94]. As reported

by Lennon and Burdick [72], reading for learning takes place when the reader com-

prehends 75% of a text. This represents an appropriate balance that allows the

reader to positively understand the text, while also finding challenges in the reading

process that will motivate him to improve his skills [72]. Outside the educational

environment, reading generally takes place for comprehension rather than for learning.

In this context, it is critical to provide people with texts they can fully understand.

For example, patients that properly understand documents disclosed to them before

surgery are known to be less anxious before the operation and obtain more satisfactory

results during posterior treatment [90]. Recent studies [63, 88, 90], however, show that

even medical documents that are supposed to be suited for average readers, tend to

be too specialized and even well-educated adults have trouble understanding them.

The reading level of a text is also influential from a marketing standpoint. The

reports by Chebat et al. [36] demonstrate that the persuasiveness of advertisements

is directly correlated to the readability of them. Furthermore, the authors in [36]

argue that highly literate people would find low reading level argumentation naive,

while low literate people would have trouble understanding complex arguments and
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therefore lose interest in the ad. Along similar lines, Fang et al. [50], who analyzed

the factors influencing the perceived value of attraction reviews in TripAdvisor, verify

that the readability of a review is one of the most influencing factors for its perceived

value. Whether for learning, understanding or ensuring persuasiveness, i.e., reaching a

particular target audience, the complexity of texts to be read needs to be determined.

Every reader has different reading skills and the levels of difficulty of the texts they

need depends also upon their personal objective. Therefore, providing institutions and

readers with tools they can use to measure the complexity of a text so that they can

assess whether it is adequate for a user is imperative. Readability Assessment tools1

are certainly aimed for handling such a task by providing a mean to determine the

degree of ease with which a reader can understand a given text, i.e. the readability

level of the text.

Historically, teachers have been the main stakeholders of readability assessment

formulas, using them to select new materials for their courses and curriculum design.

However, lately, other stakeholders have found benefits in using readability assessment

tools outside the academic environment. Automatic text simplification [95, 101], sum-

marization for people with reading difficulties [51], book recommendation [89], literacy

assessment [108], or legal and medical document complexity assessment [63, 85, 88, 90]

are only a few examples of applications that take advantage of the complexity levels

generated by existing readability assessment tools. Even in commercial environments,

book publishers require professional linguistic services in order to tag their publica-

tions with a readability level required for their intended audience [12], a task that

could similarly be completed by an automated tool.

1Readability assessment tool and readability assessment formula are used interchangeably in this
document.
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In estimating the complexity of texts, traditional formulas, such as Flesch [53],

Dale-Chall [35], and Gunning FOG [17], became very popular in the late 1940’s

among educators for manually determining text difficulty. Most of these formulas

relied on shallow features, which could easily be adapted to multiple languages and

provide a simple way of determining text complexity. The multilingualism achieved

by traditional formulas offered numerous benefits in contexts where the readability

of more than one language was needed, i.e., book translation or learning a second

language. However, traditional formulas were known to lack precision. For example,

they could classify nonsense text as simple to read, just because it contained short and

frequently-used words [43]. The insufficient precision encouraged researchers to study

and develop better and more sophisticated methods for readability assessment that

depended upon more in-depth text analysis [22, 56]. These new formulas continued

taking advantage of shallow features, but incorporated more complex features based

on the syntax and semantics of text. With the addition of new text complexity indica-

tors, the tools became more precise, but at the same time more constrained regarding

their language adaptability [29, 52]. In fact, the new tools used increasingly more

language-dependent techniques, which made the systems unadaptable to estimate

readability scores for texts in languages other than the one they were designed for.

As a result, the multilingualism that was possible in early stages disappeared.

Versatility issues go beyond the number of languages that can be handled by

readability assessment tools. They can also refer to the type of documents that can

be processed by automatic readability assessment tools (see Figure 3.1 for sample

documents that could be examined by readability assessment tools). While a wide

variety of domains and document types have been studied in the literature, from single

sentences [45] and books [46], to search results [40] and web-pages [109], most of the
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existing tools focus exclusively on a specific domain, document type and language.

This imposes additional efforts on stakeholders in the readability assessment area

of study: developers, researchers, and final users (teachers, publishers, librarians,

translators, and ad executives, to name a few). Typical issues that usually arise

as result of having to use more than one readability assessment tool for the same

task include (i) software integration costs, where developers need to spend more

resources integrating multiple readability tools in their applications (ii) license costs,

as companies need to pay for each tool license, (iii) prediction scale incompatibilities,

where the predictions of each tool used do not match with each other, and (iv) longer

learning periods, where final users need to learn how to use multiple tools instead of

just one. Creating a multipurpose readability assessment tool would not only ease the

creation of software that requires readability as a service, but would also facilitate the

daily use of readability assessment tools for final users, who would no longer struggle

using different assessment strategies.

Figure 1.1: Examples of document types for which MultiRead can determine read-
ability.

With versatility and precision in mind, we designed and developed MRAS, a
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Multipurpose Readability Assessment System. MultiRead estimates the readability

levels of all sorts of documents2 in multiple languages, including text snippets, books,

websites and even short and unstructured texts, such as the ones found in social

media. MultiRead, which is open-source, is capable of detecting patterns that can

influence the readability of a text in order to give a prediction of its difficulty, i.e.,

reading level. MultiRead adapts itself to the input text language and format and uses

an adequate subset of features each time, creating, to the best of our knowledge, the

first multipurpose readability assessment system.

For designing MultiRead, we explored features and methods used in the literature,

designed novel features that positively influence the readability level estimating pro-

cess, and analyzed how all those features can be adapted to be used in multipurpose

readability assessment. In addition, given the increasing adoption of social media

and social networking sites, which lead to the creation of new textual resources on a

daily basis, from tweets and Facebook posts, to web-pages, we designed a novel set of

features that take advantage of social elements such as hashtags, mentions or URLs.

Finally, we analyzed strategies for combining all the aforementioned textual features,

in order to predict the readability of a text.

During the research process, we also had to consider some technical aspects,

such as the need of multilingual text processing tools and the lack of a dataset for

development and evaluation purposes. Therefore, part of our research work involved

exploring existing Natural Language Processing tools and identifying various textual

resources that leaded us to the creation of a readability leveled corpora comprised of

textual resources pertaining to multiple languages, domains and formats.

2In this manuscript the term document can refer to a text snippet, book, webpage, tweet, or any
other textual representation for which readability will be predicted.
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We conducted an in-depth study to validate the correctness of the design and effec-

tiveness of MultiRead. We also assessed the benefits and limitations of a multipurpose

readability assessment system. It is important to note that, for practical purposes, the

proposed application has only been tested in three different languages: English, for

state of the art comparison purposes and as reference of germanic languages. Spanish,

as a reference for romance languages, and Basque as an example of a pre-indoeuropean

and minority language.

“ Write for the expert, but write so the non-expert can understand.

”
Bernard Kilgore, celebrated Wall Street Journal editor

In writing this manuscript, we learned that, writing properly but in a manner the

reader can understand is challenging but estimating the level of difficulty of a text

is even more so. If not, consider this poem from G. A. Becquer, a famous Spanish

post-romantic poem: “Volverán las oscuras golondrinas, en su balcón sus nidos a

colgar...”(see Figure 1.2). A poem with simple words, yet full of meaning, cannot be

assigned a level of difficulty comparable of that of a first grader (as Flesch-Kincaid

does) or close to third grader (and Automatic Reading Index does). Only in its native

Spanish, Flesch-Kinkaid assigns a grade level of 7 for the poem, which remains for

third graders according to Automated Reading Index.

This is what we set out to accomplish in this research work, to be able to estimate

a suitable level of difficulty, regardless of the language of the text, and regardless of

its format: from long documents, to short tweets, to poems. How we did that, is

detailed in the remainder of this manuscript: In Section 2, we discuss existing works
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in the area of readability assessment, starting from the historically known traditional

formulas to the current machine learning based readability assessment systems. We

also discuss different strategies to measure readability assessment for texts in specific

languages and document types. In Section 3, we describe the design of MultiRead,

where apart for providing a background of the text processing techniques, we describe

in detail each of the features specifically designed for MultiRead and the strategies

used for combining those features. In Section 4, we present our evaluation framework

as well of the results conducted to validate the performance of MultiRead and discuss

the benefits and limitation of developing a multipurpose readability assessment tool.

In order to prove the validity of MultiRead in social related tasks we also de-

veloped an study to measure importance of the readability signal in the hashtag

recommendation process, which we published in ACM RecSys 2016 [26]. We include

this publication as an appendix (see Appendix A).
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Figure 1.2: G.A. Becker’s poem ”Volveran las oscuras golondrinas” and its readability
level estimated in original Spanish and translated English version.
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CHAPTER 2

BACKGROUND AND RELATED WORK

From the past six decades, different readability assessment systems have been devel-

oped [29, 52, 70]. In this section, we provide an in-depth discussion on readability

assessment, from traditional formulas to state of the art techniques. We also discuss

formulas applied to establish text complexity in different languages as well as for

different types of texts.

2.1 Traditional Readability Assessment

Traditional readability formulas, such as Flesch [53], Dale-Chall [35], and Gunning

FOG [17], make use of shallow features, mostly based on ratios of characters, terms,

and sentences. Flesch [53] readability formula (see Equation 2.1) is based on a linear

combination of the average length of words and average length of sentences in a

document.

F = 206.835− 1.015× (
totalWords

totalSentences
)− 84.6× (

totalSyllabes

totalWords
) (2.1)

Kincaid et al. [69] adapted the Flesch formula to American education grade

levels, in order to predict a grade level instead of a number between 0 and 100, as
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the traditional Flesch formula does. This updated strategy, also known as Flesch-

Kincaid (see Equation 2.2), uses the same features as Flesch, i.e., length of words and

sentences, but combines them using different weights.

FK = 0.39× (
totalWords

totalSentences
) + 11.8× (

totalSyllabes

totalWords
)− 15.59 (2.2)

Other alternatives, such as Dale-Chall [42] readability formula (see Equation 2.3),

introduced the concept of simple and complex terms, taking advantage of a manually

generated list1 of 3000 easy terms. The frequency of those terms was used as an

indicator of text complexity, together with the already known average sentence length.

DC = 15.79× (
difficultWords

totalSentences
) + 0.0496× (

totalWords

totalSentences
) (2.3)

Similar to the Dale-Chall strategy, Gunning Fog [61] (See Equation 2.4) also

considered the occurrences of simple or complex terms. However, instead of using a

list to define complex terms, Gunning’s readability formula considers a term complex

if it has more than 3 syllables.

FOG =
totalWords

totalSentences
× totalComplex

totalWords
(2.4)

SMOG [81] was developed as an improvement over Gunning Fog, in terms of

precision. SMOG takes advantage of a non linear strategy (see Equation 2.5) that

combines the total number of complex terms in a text and the total number of

sentences. The method to determine whether a term is complex is the same as used

by the Gunning Fog formula.

1The full list can be found in http://www.readabilityformulas.com/articles/dale-chall-readability-
word-list.php
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SMOG = 1.0430×
√

30× totalComplex
totalSentences

+ 3.1291 (2.5)

Lasbarhet’s index (see Equation 2.6), also known as LIX, predicts the difficulty to

comprehend a text for a foreign reader. Similar to the previous formulas, it is based

on the frequency of occurrence of complex terms per sentence. A term is considered

as simple if it has less than 6 characters and the number of sentences is computed

given the number of periods in the text.

LIX =
totalWords

totalPeriods
× totalComplex

totalPeriods
(2.6)

The aforementioned formulas are a sample of the most popular among the hun-

dreds available to date. Further details on existing traditional formulas (which

are mostly based on sentence and term counts) can be found on the recent survey

literature [29, 52].

The simplicity of these traditional formulas, made them easily adaptable to lan-

guages other than English. This is evidenced by the Spaulding’s readability formula

for Spanish [100], which uses the same two indicators as Dale-Chall’s and Gunning

Fog’s readability formulas, i.e., ratio of difficult terms and average length of sentence

in a document, with weights adapted to the Spanish language.

The aforementioned formulas are basic enough even to be computed manually,

providing a simple way of estimating a text’s complexity. A teacher or a librarian

would compute the formula on the first pages of a book, and estimate whether the

book was adequate for a reader without having to read the whole book. However,

the formulas were shown to lack precision in some cases, such as the one described in

[100], where completely nonsensical text was predicted to be easily readable by the
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aforementioned readability formulas. As an example, the phrase sv eni sar ein de er,

would be considered as easily readable by all the aforementioned readability formulas,

just because it has short terms, even if it is completely nonsensical, or the term quark

which is considered simple by most of the traditional readability formulas, due to its

length, despite being a high level technical term [107].

The increase in popularity of machine learning techniques and the need to improve

predictive quality of traditional formulas lead the readability assessment into a new

era of study. An era where readability formulas take advantage of supervised learning

techniques to combine tens or hundreds of indicators. Even if shallow features are

still included in current readability assessment tools, they are usually considered

baseline features, and features that consider other language aspects, such as syntax

or semantics, play a more significant role [29].

2.2 Readability Assessment by Languages

Adapting readability assessment tools to several languages have been the main focus

for researchers on recent years. This is evidenced by the fact that there exist at least

one prediction formula for each of the most popular languages spoken worldwide.

A description of representative and recent tools designed and developed to predict

difficulty levels for texts in different languages is presented below.

For English, the readability assessment system presented in [22] predicted only

two levels of difficulty, simple or complex, using elaborate features, such as ambiguity

among terms in the texts. Other authors [51], oriented their system for assessing

the difficulty level of a text for people with intellectual disabilities by developing

features that were intended to detect how well a text was structured. The readability
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prediction system for financial documents presented in [32] was based on features

such as the presence of active voice or number of hidden verbs. It is also important

to mention two commercial readability assessment tools, Lexile2 and AR3, which

are widely-used among academic professionals in the USA, being used by over 150

publishers [12] . Even if their algorithms are not public, they are known to use shallow

features showing how common terms of a text are and how long sentences are [72].

The literature pertaining to readability for text in English is abundant. For a more

in-depth discussion on readability assessment for texts in English refer to [29, 52].

In contrast to English, Spanish readability assessment has not seen any significant

improvement regarding features in recent years, as most of the existing works are

still based on shallow features. Among the well-known readability assessment tools

for Spanish, SSR [100] is based on the analysis of sentence length and number of

infrequent words per sentences, whereas LC and SCI [24] were based on density of

low frequency words in text. Other systems [47, 102] incorporate strategies to combine

the aforementioned methods to improve readability estimation.

Compared to other languages, Basque readability assessment is reduced to only

one system. Due to the fact that Basque is considered a minority language and

shares little similarity with most spoken languages, limited research has been done

in the area. So far, ErreXail [60] is the only system created for Basque readability

assessment. ErreXail was developed to predict two different readability values, sim-

ple or complex, using features mostly based on ratios of common natural language

processing labels, such as Part-of-Speech tags or morphology annotations.

Similar to Basque, the literature for Arabic readability assessment is also very

2https://www.lexile.com/
3http://www.renaissance.com/products/accelerated-reader/atos-analyzer
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recent. Al-Ajlan et al. [16] developed a readability assessment tool based on only two

features: average letters per term and average terms per sentence. These features

were analyzed using a Support Vector Machine in order to classify text as simple or

complex. Recently, J. Forsyth [55] performed another study with a significantly larger

amount of features than previous studies, demonstrating the validity of lexical and

discourse features for Arabic readability assessment. In a simpler approach, Mahmoud

et al. [48] presented a modification of the Flesch readability. Apart from the common

Flesch indicators, this formula also includes information about short, long and stress

syllables, as well as some other textual aspects that are only found on formal texts.

For Italian and Russian, the research conducted by F. Dell’Orletta [45] and

Karpov et al. [67], respectively, demonstrated the importance of structural features

for readability prediction. Both research works are focused on a combination of several

syntactic features, including features that measured the complexity of syntactic trees.

Unlike readability assessment tools for English, Spanish, and Italian, to name a

few, structural features do not seem to have such a positive influence for Chinese.

Therefore, most of the research works related to Chinese readability assessment have

been focused only on lexical features, such as Tf-Idf of terms [37, 41].

Rather than focusing on the general reader, François and Fairon [56] developed

a system for French with foreign language learners in mind. The objective was

to determine which features were more important for a foreign language learner to

understand a text. They tested lexical, syntactical and semantic features and showed

that semantic ones performed poorly in their case. Uitdenbogerd [106] also focused

on the same task. However, his study only focused on English natives that learned

French. As a novelty, he proposed a feature that considered the occurrence of true

cognates, terms that were same or similar in both languages, since those terms are
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the ones than this audience easier learns. Wang [107] also proposed the use of true

cognates for readability assessment, developing an automatic true cognate identifier.

2.3 Readability Assessment by Document Type

Traditional readability assessment has usually been oriented to relatively long text

snippets [17, 35, 53]. While state-of-the-art [29, 55, 60] is also mostly oriented to such

type of text, recent studies also explore methods for assessing the readability of other

types of document.

Several studies are focused on the analysis of readability for single sentences [45,

67]. Most these studies are usually part of text simplification systems, which use

readability assessment for choosing which sentences need simplification. Dell’Orletta

et al. [45] developed a readability assessment tool for Italian sentences, combining

lexical, syntactical and semantic features. Karpov et al. [67] developed a similar study

for Russian, making a big emphasis on syntactical features. Both studies concluded

that structural features have the most relevance for sentence readability prediction.

Web-related readability assessment has also been studied. Web pages are usu-

ally challenging for readability assessment given their varied topics and formats.

Collins-Thompson et al. [40] assessed the readability of search results by considering

information in both the title and the snippet retrieved by the search engine, and the

full content of the pointed web page. The authors take advantage of language models

for predicting readability, since these models are the most adequate for predicting the

readability of short and noisy texts, such as web pages and their snippets [40].

Yu et al. [109] presented a Firefox plugin to automatically enhance the readability

of web page for Asians that do not speak fluent English. For doing so, their systems
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considered several structures known to be complex for non-English native speakers

and applied several transformation to make them more readable.

Along similar lines, Kanungo et al. [66] developed a readability assessment tool

for search result summaries. Their system combines several traditional readability

formulas, such as Flesch [53] or Gunning-FOG [17], with some novel features specif-

ically designed for their task. The latter refer to features that measure the number

of strange characters or repeated keywords, in order to detect spam summaries. This

is an important aspect for these type of documents, because spammers try to trick

search engines with summaries full of keywords, that are usually recognized as simple

by readability assessment tools [66].

Even if books also contain long snippets, which traditional readability formulas

are able to handle, copyright regulations make books contents difficult to obtain. In

order to overcome this issue, Dening et al. [46] presented a readability assessment

tool for K-12 books, which goes beyond traditional textual contents. Their system

focuses on available book metadata such as its author or genre.

2.4 Applications of Readability Assessment

Educational applications have traditionally been the main focus for readability formu-

las. Popular tools such as Lexile and AR were specifically designed to help teachers

and librarians select books for children. Both systems are currently commonly used

by book publishers to catalog books given their readability level [12].

Readability assessment tools have also been included in automatic book recom-

mendation systems. Rabbit [89] makes book recommendations oriented to K-12

children considering multiple criteria that include several appealing factors for the
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reader as well as the readability score for the recommended books. This permits

Rabbit to not only recommend books that are of interest of to a reader, but also

ensure that he is going to be able to understand them.

Text simplification also takes advantage of readability assessment tools [45, 51].

Knowing if a text needs to be simplified is an important prerequisite for such a system

[45]. More specifically, being able to recognize which parts of a text are the ones

making the text complex is also important. Single sentence readability assessment

[45] has been used to handle both issues. Text simplification can be seen as an iterative

process where a text can be infinitely simplified. For this task, knowing when to stop

is also a must. Therefore, readability assessment has also been used to determine if a

simplification was enough or not, both as an evaluation method or stopping criteria

[102].

In some contexts, such as the medical domain [90] or food diseases [49], it is critical

to provide people with documents that they can fully understand. For example,

patients that properly understand documents disclosed to them before surgery, are

known to be less anxious before the operation and obtain more satisfactory results

during posterior treatment [90]. Therefore, some institutions are currently enforced

by law to ensure that the documents they generate match the reading level of average

people [30, 57]. Several studies [30, 57, 63, 88, 90] have been conducted to assess

whether this enforcement is fulfilled. However, most of them show that documents

that are supposed to be suited for average readers, tend to be too specialized and

even well-educated adults have trouble understanding them [30, 57, 63, 88, 90].

Web search engines are increasingly getting more personalized towards their users.

With the goal of providing users with resources that are both of interest and match

their level of understanding, several applications have incorporated a readability
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signal in their systems. Collins-Thompson et al. [41] presented a re-ranking strategy

based on the readability of retrieved documents, so that the ones that were more

adequate to the user would be ranked higher. On the other side, Kanungo et al. [66]

took advantage of readability assessment for improving the way summary snippets

where created in Yahoo!. This method was oriented to make the summaries more

readable so that users would better know what to expect when they clicked on each

result.

Even if the application domains discussed in this section are the most prominent,

they are not he only ones that benefit from high-quality readability assessment.

Other applications such as, translation [62] or dyslexia-related studies [98] also take

advantage of such complexity assessment.

2.5 Feature Fusioning Techniques in Readability Assessment

When estimating the readability level of a document, analyzing features in isolation

is not enough. Instead, it is important to generate a single score that simultaneously

considers the information captured in each individual feature. This leads to a more

well-rounded assessment of the document and thus a better estimation of its level of

difficulty.

In addressing the feature fusioning challenge for readability assessment, many

diverse techniques have been considered [29]. Collins et al. [41] used a naive Bayes

model, while Denning et al. [46] took advantage of a linear regression for combining

features. Francois et al. [56] determined the logistic regression to fit best with their

system. However, most of state-of-the-art systems have used Support Vector Machines

[52, 105, 96, 29] making this technique the most popular in the area.
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2.6 Readability Assessment and Multilingual Needs

While the number of readability assessment systems oriented to individual languages

is high, little research has been done regarding multilingualism. To the best of

our knowledge, the study carried by De Clercq et al .[44], is the only work that

handles more than one language for readability prediction. In this work, readability

assessment techniques are analyzed for both Dutch and English, and a readability

level prediction tool is developed for each language. The research work focuses on

comparing which features are valuable for each on the languages analyzed, concluding

that the best feature set for both languages is significantly similar. This fact supports

the development of MultiRead, since it proved that a unique set of features could be

used for automatically predicting the readability in several languages.

MultiRead is distinct from De Clercq et al.’s work in the fact that MultiRead

is only one system, with a comprehensive set of features to be able to predict the

readability of multiple languages, instead of building one system for each language

as they do. Furthermore, De Clercq et al. only focus on the readability prediction of

long text passages, while the set of documents that MultiRead can handle is broader:

MultiRead can process documents that vary in length (long and short snippets),

format (web pages, tweets, or plain text), and topic.
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CHAPTER 3

METHOD

MultiRead is an assessment tool capable of automatically predicting the readability

level of any given document,1 regardless of its type, format, length or language. To

do so, MultiRead takes advantage of several tools (described in Section 3.1), as well

as various text processing strategies (described in Section 3.2). An overview of its

design methodology is described in Sections 3.3 - 3.6.

3.1 Tools

Whether for processing documents or extracting features from a document that can

be analyzed in order to predict its readability level, MultiRead depends upon several

existing tools and techniques, which we describe below.

3.1.1 NLP Toolkits

In designing and developing MultiRead we analyzed a number of existing NLP toolk-

its. The goal of this analysis was to find one than fulfilled the text processing re-

quirements of MultiRead, regarding both the number of languages and functionalities

handled by our tool.

1As previously state, in this manuscript the term document can refer to a snippet, book, webpage,
or tweet, to name a few.
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We focused our assessment on the toolkits presented in Table 3.1, since they are

popular, well-documented, and continuously updated.

Table 3.1: Comparison of existing NLP tools in terms of languages they can handle
and basic text processing functionalities they provide.

Tool Languages Tokenization Stemming PoS Chunking Dependency Named Entity
NLTK English + Yes No Yes Yes In development Poor
CoreNLP English + Yes Some languages Yes Yes Some languages No
OpenNLP English + Yes Yes Yes Yes Yes Yes
SyntaxNet 70+ Yes No Yes No Yes No
Freeling 14 Yes Yes Yes Yes Yes Yes
Katea Basque Yes Yes Yes Yes Yes Yes
TwitterNLP English Yes No Yes No Yes No

NLTK [31], OpenNLP [1] and CoreNLP [80] were originally designed for English,

with the possibility of extension to other languages. Unfortunately, these toolkits

currently offer support for a limited number of languages and expanding them to new

languages would require training models specifically tailored to each of them, which

is a non-trivial task.

Instead of using specific language models, SyntaxNet [2, 23] is compatible with

already existing commonly-used model formats, such as the one used in the Universal

Dependency Treebank [3], which contains models for more than 70 languages. How-

ever, given the recentness of its development, SyntaxNet still does not offer support

for some common NLP tasks, i.e., tokenization or lemmatization, that are imperative

for the readability prediction process.

Freeling [86, 87] is a project more consolidated than SyntaxNet, offering a good

balance between languages supported and functionalities. In addition to tokenization

functionalities, Freeling offers Part-of-Speech tagging, syntactic parsing, dependency

parsing and semantic labeling capabilities, and supports 14 languages: Asturian,

Catalan, German, English, French, Galician, Croatian, Italian, Norwegian, Por-

tuguese, Russian, Slovene, Spanish, and Welsh.
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Katea [14, 20, 28] is the only existing set of NLP tools developed for Basque. Katea

is composed by Morpheus [14] (morpho-syntactic analysis), eustagger [20] (lemma-

tization and syntactic function identification), eihera [19] (named entity detection),

ixati [14] (shallow parsing) and maltixa [28] (dependency parsing).

We also considered TwitterNLP [58], a natural language processing toolkit specifi-

cally designed for analyzing Twitter-generated data, i.e., tweets. This toolkit provides

support for NLP tasks such as tokenization or dependency parsing. However, it only

works on tweets written in English and not all functionalities needed by MultiRead

are provided. Consequently, we decided not to include it as part of our tool.

Offering support for the three languages considered in this thesis (English, Spanish

and Basque), SyntaxNet would be the ideal choice of tool for text processing. How-

ever, given that it still does not offer some basic functionalities, such as tokenization

or shallow parsing, we decided to use two other tools that complement each other:

Freeling and Katea. Together they fullfill both the language and functionality needs

of MultiRead.

3.1.2 WordNet

Wordnet [83] is a lexical database for English where terms, i.e., nouns, verbs and

adjectives, are grouped into sets of synonyms, also known as synsets. Synsets are

related to each other by several semantic relationships, such as hyperonymie or

hyponimie, forming a tree structure. This structure eases some basic operations,

such as measuring distance or similarity between synsets.

As an example of WordNet’s tree structure, Figure 3.1 illustrates a partial neigh-

borhood for the motor vehicle synset. This synset has vehicle as hypernym and car

and truck as hyponyms.
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Figure 3.1: Example of a reduced tree generated around the vehicle concept in
Wordnet.

For MultiRead we used the WordNet implementation developed by the IXA NLP

group [15], which provides support for five languages including English, Spanish and

Basque. This implementation takes advantage of the Inter-Lingual Index, which offers

a simple way to map synsets in different languages that have the same meaning to

one unique identification code.

3.2 Text Processing

Natural language text is generally unstructured, making it hard to handle for com-

puters [78]. Therefore, the aim of text processing is to infer inherent structures in

text in order to ease consequent processes. In the remaining of this section, we discuss

basic text processing operations applied by MultiRead.
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3.2.1 Tokenization

Tokenization is the process of splitting a text into smaller parts, i.e., tokens [79]. A

token represents each sensical part of a text, which usually corresponds to a term, a

number, or a punctuation mark.

Even if tokenization may look as simple as dividing text by spaces and punctuation

marks, usually it is not as trivial, as each language has specific punctuation rules that

need to be considered [104].

As illustrated in Table 3.2, tokenization goes further than splitting a sentence

based on spaces. Both the words aren’t and student’s need to be separated into

two tokens in English, while 1991 and the period need to be kept together to show

ordinality in Basque numbers. The reason for this different tokenization is that are

and not are two separate terms with full meaning on their own in English, whereas

1991 would lose its ordinal sense if the period is removed in Basque.

A precise tokenization is important, since most of the processes involved in iden-

tifying features from text are usually preceded by this analysis.

Table 3.2: Tokenization of sentences in different languages.

Basque
Sentence 1991. urtean jaio zen.
Tokens 1991. urtean jaio zen .

Spanish
Sentence La O.T.A.N. ha firmado el acuerdo.
Tokens La O.T.A.N. ha firmado el acuerdo .

English
Sentence Those aren’t student’s tables.
Tokens Those are n’t student ’s tables .

3.2.2 Stopword removal

Stopword removal or stopping refers to the process of removing stopwords from a

text [79]. A stopword is a term that does not add any important information to
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the task that is performed, usually creating unnecessary noise that hinders valuable

information in a document. While common stopwords include prepositions and

articles, the frequency of occurrence of a term is also a good indicator for stopwords

since, in general, the more frequently a term appears in a text o corpus, the less

information it provides about the text. Some examples of general purpose stopwords

are a, the or is. However, depending on the domain, terms such as computer or

algorithm can be treated as stopwords among computer science documents, given

their high frequency of occurrence among documents in this domain.

The purpose of stopword removal is usually two-fold: speeding up later processes

and reducing noise in text. This process is usually performed without the need of

any specific tool, just using a stopword list. In MultiRead, we take advantage of a

popular stopword list for 50 different languages [9].

3.2.3 Stemming/Lemmatization

The goal of both stemming and lemmatization is to achieve a normalized version of

a term [79]. Stemming and lemmatization differ in the way the normalized form is

obtained. While lemmatization is able to achieve real canonical form (i.e., lemma)

of a word (the one appearing in the dictionary), stemming simply chops common

prefixes and suffixes to obtain an approximation of the lemma.

Stemming or lemmatization is usually useful for search and comparison tasks as it

reduces the search space among all terms. As an example, in calculating the frequency

of occurrence of the verb play, it is more representative to count all word-forms (play,

plays, played) at the same time, than to separate each word-form frequency.

When both techniques are available, MultiRead favors lemmatization over stem-

ming, since the former yields a smaller term space. Unfortunately, lemmatization
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techniques are not available for some languages, given the complexity of this process.

Freeling is used for lemmatization in Spanish and English, while Katea serves the

same purpose for Basque. Several examples of lemmatization can be seen in Table

3.3.

Table 3.3: Example of lemmatization for different languages.

English Spanish Basque
Original plays are won fuiste vine comieron nator balituzte dakit
Lemmatized play be win ir venir comer etorri edun jakin

3.2.4 Part of Speech Tagging

Part of Speech (PoS) tagging is the process of labeling each token with a tag that

represents the function the token has in a sentence [79]. PoS tags usually differ from

language to language2, however, the most predominant tags, such as verb, adjective

or noun, are common among most languages. As shown in Table 3.4, for the sentence

“Did they win the race?” most of the PoS tags used are similar, regardless of the

language in which the sentence is written, with the exception of some auxiliary verbs

and participles.

PoS tags are the building blocks of structure in text. They can be used alone

for applications that need to consider very basic structure in text or need to better

identify terms, since a term can have different meaning depending on its PoS. For

example, left means leaving if it is treated as a verb, but it means the opposite of

right when it treated as a noun.

2The Penn Treebank project defines 36 PoS tags for English, which can be
seen here https://www.ling.upenn.edu/courses/Fall 2003/ling001/penn treebank pos.html
whereas the Ancora project defines 49 PoS tags for english which can be seen here:
http://clic.ub.edu/corpus/webfm send/18
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Table 3.4: Part of Speech tagging for the sentence “Did they win the race?” in multiple
languages.

English
Did they win the race ?
Verb (Auxiliar) Pronoun Verb Determinant Noun Symbol

Spanish
Ganaron (ellos) la carrera ?
Verb Pronoun (Elliptic) Determinant Noun Symbol

Basque
Lasterketa irabazi al zuten (haiek) ?
Noun Verb Particle Verb (Auxiliar) Pronoun (Elliptic) Symbol

3.2.5 Named Entity Detection

A named entity is a token or group of tokens that represent a known entity, such as a

person, a location, or an organization [79]. Depending on the complexity of the tool

that performs this analysis, those entities can also be linked to a knowledge base, such

as DBpedia [71] where more structured information about the entity can be found.

A named entity is usually a relevant term in a text, something that a user may

be interested in or looking for, i.e., a name of a location or person. For this reason,

they are often treated as key points, i.e., terms that are representative of the content

of a document, for searching or indexing purposes. For an example of named entities

identified using Freeling, see Table 3.5.

Table 3.5: Named entity detection of the sentence “Salvador Dali was born in
Figueres”

Sentence Salvador Dali was born in Figueres .
Named Entity person person location

3.2.6 Shallow Parsing

Shallow parsing, also called chunking, refers to the process of grouping tokens into

chunks [79]. A chunk usually consists of a small phrase of about 1 to 4 terms. The

terms in each chunk are somehow connected to each other and together express a
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senseful concept. There are two types of chunks, depending on if they express a

noun (sn-chunk) or a verb phrase (vb-chunk). An example of a shallow parsing of a

sentence can be seen in Figure 3.2. Note that we only provide an example in English,

since this shallow parsing works in the same manner for most languages.

Shallow parsing is useful for tasks that require using bigger chunks of text than

just tokens. One simple example could be autocompletion, where full senseful chunks

can be suggested to the user instead of just separate tokens. Named entity recognition

also benefits from shallow parsing, since most of the named entities are usually exact

noun-chunks.

Figure 3.2: Shallow parsing of the sentence “Did they win the race?” where verb
chunks are denoted with a vb prefix and noun chunks with a sn prefix.

3.2.7 Dependency Parsing

Dependency parsing goes further than shallow parsing by establishing relationships

between tokens rather than just grouping them [79]. Given these relationships, a
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dependency tree is generated. This tree usually has a root node representing the

main verb of the sentence, which has the subject and objects of the sentence as

children. An example of a dependency parsed sentence is shown in Figure 3.3. Once

again, only one language is presented in the example, since dependency parsing is

very similar for the languages considered in this research work.

Figure 3.3: Dependency parsing of the sentence “Did they win the race?”, where the
root node is the term did with the term they as subject and the term win as verb.

One of the benefits of dependency parsing over shallow parsing is the possibility

to choose a granularity when selecting chunks with full meaning. Using the tree

generated by the dependencies, any cut will cause the sub-trees to be fully sensical.

For example, cutting the tree depicted in Figure 3.3 in the node did, would create

chunks with full sense they and win the race while cutting the tree in the node win
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would create the race. Because of this possibility, dependency parsing is highly used

in language transformation applications, such as transforming a statement into a

question.

3.3 Design Overview

MultiRead is based on a supervised learning approach that relies on knowledge

acquired from a set of text given their readability. MultiRead is capable of identifying

patterns in texts in order to predict the readability of any new document D. In

designing and developing MultiRead, we followed the steps illustrated in Figure 3.4

and discussed in the following sections.

3.4 Adapting to the Input Document

One of the main features of MultiRead is its versatility, since MultiRead is capable of

predicting readability levels for documents of different format, length and language.

Consequently, not all documents handled by MultiRead can be treated in the same

manner.

The language in which a document is written is the characteristic that most

influences its processing, as it determines the text processing toolkit that will be used

for it. For doing so, MultiRead takes advantage of Freeling’s language identification

module. While this module is limited to the languages supported by Freeling, if

MultiRead were to be expanded to be applicable to other languages, developing

a language identification module would be relatively trivial, as a simple bigram

distribution would provide enough accuracy for this task.



31

Figure 3.4: Overview of the design of MultiRead

As opposed to language, the format or length of a document are not as discriminat-

ing as the language, in terms of internal processing steps. In other words, MultiRead

applies the same processing steps for any document D, regardless of D’s type, format,

or length, in order to extract and infer as much information as possible about D for
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better estimating its degree of difficulty.

3.5 Feature Extraction

A feature is a numeric representation intended to capture information about a text

from different perspectives. Feature engineering, i.e., identifying patterns that influ-

ence the readability of a text, is one of the most important aspects of this thesis. A

good feature set determines the quality of a classifier, and therefore the quality of a

readability assessment system. In the rest of this section, we provide a description of

each feature examined in MultiRead.

3.5.1 Shallow Features

Shallow features [17, 35, 53] have historically shown to be of good use when predicting

readability. Even if they sometimes lack precision [43], they serve as a good baseline

for readability assessment systems. We describe below shallow features considered by

MultiRead.

Word length

Everyday terms are usually short in most languages, they are preferred for spoken

language over their longer synonyms, in order to maintain more fluent conversations.

On the other hand, difficult terms are longer the more technical or scientific they are.

Therefore, short terms are the ones youngsters first learn and better comprehend.

This leads to hypothesize that term length can be correlated with the readability

of a document. To take advantage of this, MultiRead depends upon four features
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(computed as in Equation 3.1) that focus on term length: average length of terms

and average length of their lemmas in D, with and without stopwords for both cases.

WordLength(D) =
∑

w∈Dw

length(w)

|Dw|
(3.1)

where w is a word in D, |Dw| is the total number of words in D and length(w) is a

function that calculates the number of characters in w.

Sentence Length

The length of a sentence can have direct correlation with its difficulty. Sentences

oriented to people with low understanding skills are usually short as they just focus

on simple ideas and facts with very naive argumentation. On the other hand, docu-

ments oriented to more technical or complex audiences contain more argumentation.

Consequently, more sub-clauses are incorporated in the sentences resulting in longer

sentences. MultiRead takes advantage of this fact analyzing two features, average

sentence length in D with and without stop words, each of which is computed using

Equation 3.2.

SentenceLength(D) =
∑
s∈Ds

length(s)

|Ds|
(3.2)

where s is a sentence in D, |Ds| is the total number of sentences in D and length(s)

is a function that calculates the number of word in s.

Ratio of Simple Terms

The vocabulary of a text strongly determines its readability [18, 44, 91]. Everyday

terms tend to be easy for readers to understand, while more technical, domain specific,
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or abstract terms tend to be more difficult. The frequency of occurrences of simple and

complex terms have been demonstrated to be positively correlated with readability

levels [42]. Consequently, using Equation 3.3, MultiRead computes a score that makes

it possible to examine the ratio of occurrence of simple terms among all the terms

in D. Determining whether a term is simple or complex, however, is still an open

task. Therefore, MultiRead adopts two different , yet well-established, strategies to

determine if a term is simple:

• Lookup Table Dale-Chall [42] created a list of 3000 terms considered simple.

This list is used as one of the techniques to detect whether a term is simple or

not.

• Length Gunning [61] simply considered terms that contained more than 3

syllables as complex. This technique is also incorporated in MultiRead.

RatioOfSimpleTerms(D, tsimple) =
|Simple(D, tsimple)|

|Dw|
(3.3)

where |Dw| is the total number of words in D and |Simple(w, tsimple)| is the total

number of simple words in D, as determined by a given strategy, i.e., tsimple, which

refers to either Dale-Chall or Gunning Fox methodologies.

Ratio of Different Terms

As mentioned before, vocabulary is an aspect that strongly correlates with the read-

ability of a text. As a hypothesis, a document that has very diverse vocabulary might

denote an effort of the author to make a text more sophisticated, since experienced

writers usually try to avoid repetitions using synonyms and different rephrasing. We
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take advantage of this phenomena by measuring the ratio of terms that only occur

once with respect to the ones that occur more than once in D.

RatioOfDifferentTerms(D) =
|Unique(Dw)|

|Dw| − |Unique(Dw)|
(3.4)

where |Dw| is the total number of words in D and |Unique(Dw)| refers to the total

number of words in D that only occur once, after lemmatization.

3.5.2 Morphological Features

Morphological features capture how terms are formed from their root. Even if this

aspect is not relevant for some languages, including English, it has been shown to be

a strong predictor for readability scores in morphology-rich languages such as Basque

[60]. Morphological features analyzed in MultiRead are described as follows.

Inflection Ratio

Inflection is the modification of a term to express different grammatical categories,

including case, tense, person, number, gender, mood or voice. For example, the verb

play can be inflected to played to indicate past tense. Even if verbs in English have

very few inflection forms (e.g. speak, speaks, spoke, spoken) some languages, such as

Spanish or Basque, use inflection very extensively, taking advantage of most of the

aforementioned categories. As an example, the Basque auxiliary verb *edun3 (one of

the verbs with highest occurrence in Basque) has over 1000 inflection forms4. The

longer the inflected form, the more complex it tends to be and the harder to learn and

3The star in front of *edun is a notation used in verbs that its canonical form was arbitrarily
created and therefore never occurs in a text.

4See simplified *edun verb building table at
https://nereagaite.files.wordpress.com/2011/11/nor nori nork full table.png .
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understand for people with low proficiency of the language. To take advantage of this

fact, MultiRead considers to what extent are terms inflected in D and measures the

average ratio between the character length of word-forms and their respective lemmas.

InflectionRatio(D) =

∑
w∈D

length(lemma(w))
length(w)

|DS|
(3.5)

where w is a word in D, |Dw| is the total number of words in D, lemma(w) is a

function that yields the lemma of w, and length(lemma(w)) is the character length

of the lemma of w.

Morphological Phenomena Frequencies

Some morphology phenomena are more frequent than others in everyday language,

whereas some phenomena only happen on high level structures of text. As an

example, subjunctive mood (if I were) is less frequently used than indicative (I

was) tense, and is more common in higher level texts. The same happens with

the Nor-Nori (Who-ToWho) person form in Basque, a form that is usually avoided

in spoken language, and is only used by proficient writers. To take advantage of the

described phenomena and to discover other similar phenomena, MultiRead examines

the frequency of occurrence of each morphological phenomena tmorph in D. Using

Equation 3.6, MultiRead estimates the ratio of occurrence of each phenomena with

respect to the number of tokens in D. Phenomena analyzed by MultiRead include:

• Case (English:0,Spanish:0,Basque:17) Ablative, Absolutive, Adlative1, Adla-

tive2, Adlative3, Dative, Destinative, Descriptive, Ergative, Genitive1, Geni-

tive2, Inesive, Instrumental, Motivativ, Partitiv, Prolativ and Sociativ.

• Tense (English:3,Spanish:3,Basque:3) Past, Present, Future.
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• Person (English:0,Spanish:0,Basque:4) Who, Who-Who, Who-ToWho, Who-

ToWho-What.

• Number (English:2,Spanish:2,Basque:2) Singular, Plural.

• Gender (English:0,Spanish:2,Basque:0) Masculine, Feminine, Neutral.

• Mood (English:3,Spanish:3,Basque:4) Indicative, Subjunctive, Imperative, Hy-

pothetical.

• Voice (English:2,Spanish:2,Basque:2) Active, Passive.

MoprhRatio(D, tmorph) =
freq|D, tmorph|

|Dw|
(3.6)

where tmorph is a tag describing a given morphological phenomena, |Dw| is the total

number of words in D and freq(D, tmorph) the total number of words in D that are

associated with tmorph.

3.5.3 Syntactic Features

In grammar, syntax is what defines the structure inside a sentence. Therefore,

syntactic features are the ones aimed at describing structural complexity. We detail

below the syntactic features defined for MultiRead.

PoS Ratios

As described in Section 3.2.6, PoS tags are the building blocks of the structure of a

text. Therefore, we hypothesize that some PoS tags are more involved in complex

structures than others. In order to analyze this, MultiRead measures the frequency

of on occurrence of each PoS tag in a text.
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Measuring the occurrence of single PoS tags might not be enough to capture

the structure of a text. Therefore, we also measure the occurrences of n-gram PoS

tags. As an example, MultiRead measures the frequency of a verb and and adjective

appearing one next to the other. As combinations of PoS tags can exponentially

grow, we only consider 2-grams and 3-grams. As a result, MultiRead extracts a

feature (computed as in Equation 3.7) for each combination of 1, 2 and 3 PoS tags,

based on the frequency of occurrence of that combination divided by the total number

of tokens D.

PoSCombinationRatio(D, tPoS) =
freq(D, tPoS)

|Dw|
(3.7)

where tPoS denotes one of the aforementioned PoS tag combination, |Dw| is the total

number of words in D and freq(D, tPoS) the total number of occurrences of tPoS in

D.

Dependency Tree Complexity

As described in Section 3.2.7, the dependency tree is a deep representation of the

structure of a sentence. The assumption is that the more complex this tree is, the

more complex is its respective sentence. In order to take advantage of this assumption,

MultiRead considers as features the average complexity of each dependency tree in D,

computed (as in Equation 3.8) based on several complexity metrics. Each metric

considered is described below using the tree examples shown in Figure 3.5.

DependencyComplexity(D, tcomplexity) =
∑
s∈Ds

complexity(s, tcomplexity)

|Ds|
(3.8)
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where tcomplexity represents a tree complexity method, s is a sentence in D, |Ds| is

the total number of sentences in D, and complexity(s, tcomplexity) is the function that

yields the level of complexity of a sentence and its corresponding tree, based on

tcomplexity.

Figure 3.5: Example trees

(a) Tree 1 (b) Tree 2 (c) Tree 3

• Depth. The depth of a tree is the maximum distance from the root to any

of its leaves. It is measured counting the nodes that the mentioned maximum

path needs to go through. The depth of trees 1, 2 and 3 in Figure 3.5 are 4, 5

and 2 respectively.

• Resolution. The resolution of a tree describes how branches occur in a tree.

A fully resoluted tree is one that has all branches given the number of nodes

(trees 1 and 2 in Figure 3.5), while an unresolved tree is one that has all the

leaves directly connected to the root (tree 3 in Figure 3.5) by one branch. For

calculating the resolution of a tree, we follow Colless’s [38] formula, that simply

divides the number of internal branches in a tree by the maximum possible

internal branches that the tree could have.

• Imbalance. The balance of a tree measures how skewed a tree is to one side.



40

Tree 1 and 3 in Figure 3.5 are perfectly balanced trees, while tree 2 is the most

imbalanced tree possible, since most of the nodes hang from one side of the

tree. To measure imbalance of a tree we use Colless’s [39] imbalance formula,

slightly modified to allow splitting points with more than 2 branches. In this

case, complexity(s, tcomplexity) in Equation 3.8 is computed as:

Complexity(s, timbalance) =
∑
p∈s

maxSubtreep −minSubtreep
|splittingPoints(s)|

(3.9)

where p is a split point in the tree of sentence s, maxSubtreep is the number of

nodes in the biggest subtree generated from p, minSubtreep is the number of

nodes in the smallest subtree generated p and |splittingPoints(s)| is the total

number of split points in the tree of s.

• Branches per splitting point. Defined as the number of branches that each

splitting point has on average. All the example trees have 2.

• Number of splitting points. Defined as the number of splitting points in

the tree.

Note that both Branches per splitting point and Number of splitting points

do not describe any specific aspect of the tree, but they are simply oriented

to describe the tree from a different perspective and complement the depth,

imbalance, and resolution metrics.

3.5.4 Semantic Features

In addition to shallow, syntactic, and morphological features, MultiRead examines

semantic features that go beyond the tokens and structure of a text. Doing so
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facilitates the analysis of the concepts laying on a text.

Semantic Closeness

The topic of a text is another criteria that can be considered for determining its

difficulty. For example, a text about animals will generally be simpler to read than

a text about microbiology. To take advantage of this fact, we created a knowledge

base KB which contains information related to the probability of occurrence of topics

group by reading levels. In other words, given a pre-defined set of reading levels R

and a leveled textual corpora, KB includes the probability distribution of concepts

in each reading level r ∈ R, extracted using WordNet. A concept ci is defined as

ci = {w1, · · · , wn}, where wi is a word that refers to the corresponded concept ci, as

determined using WordNet.

Each reading level r ∈ R is associated with a concept distribution vector Kr =

{P (c1), · · · , P (cn)}, where P (ci) is the probability of ci among documents of read-

ability r. Similarly, a vector KD is created for D, which captures the probability

distribution of concepts (defined inKB) inD. Comparing the distribution of concepts

in D with respect to the distribution of concepts among documents with different

degrees of difficulty, allows MultiRead to identify the most likely reading level of D.

This comparison is computed using Equation 3.10, which determines the the similarity

between KD and Kr based on the angle between the two vectors, i.e., cosine similarity

strategy [27].

SemanticCloseness(D, r) =
Kr •Kd

||Kr||||Kd||
(3.10)

where the numerator is the dot product between Kr and Kd and the denominator the
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product between the modules Kr and Kd.

Synonym Usage

As previously stated, the use of synonyms is an important aspect than can determine

text quality and therefore readability. Professional writers try to avoid repetition of

words by using synonyms and different phrasings, while texts oriented to low reading

level audiences tend to repeat more terms to simplify the vocabulary of the text. In

order to take advantage of this writing pattern, we use a feature oriented towards

measuring the usage of synonyms in a text.

For each concept ci in KB, we analyze how balanced is the use of each word wi

related to ci among the all the words in D. The more balanced the frequencies of terms

related to a given concept the better use of synonyms by the writer, as repetition has

been avoided by using all synonyms equally. On the opposite side, when frequencies

are not balanced, i.e., one word has nearly 100% of the occurrences among the terms

that pertain to the same concept in D, it means that no effort to use synonyms was

made. For measuring the aforementioned balance, we take advantage of Shanon’s

entropy [97] and create a feature that estimates the entropy of each synset in D, as

shown in Equation 3.11.

Entropy refers to chaos in an information source. It considers each term as a

message and its frequency as the probability to produce that message in order to

measure the unpredictability of the signal. The more even the probabilities, the more

unpredictable is the signal and therefore the bigger the entropy. In our case, the more

even the distribution of terms, the bigger the entropy and therefore the better the

synonym usage.
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SynonymUsage(D) =
∑

ci∈Dc

− ∑
wi∈ci

P (wi) log10 P (wi)

|Dc|
(3.11)

where ci is a concept in D, wi denotes a term associated with ci, P (wi) is the

probability of occurrence of wi in D, Dc is the set of concepts discussed in D and |Dc|

is the number of distinct concepts in D.

Cohesion

Cohesion, or coherence, is the intangible glue that holds paragraphs together [7].

Having good cohesion in a text means that ideas stick together and that the flow

between sentences is smooth. Texts oriented to low skilled readers are usually very

cohesive, the jumps from sentence to sentence are small, because the reader has

enough trouble understanding each single sentence. More skilled readers precisely

comprehend the meaning of each sentence, therefore, they are also more capable of

detecting bigger argumentation changes between sentences. In order to capture this

phenomena, we measure the content similarity between adjacent sentences in D. As

described in the following equation, the similarity between sentences is computed

using the Jaccard [65] similarity of the sets of non-stopword lemmas in each sentence.

Cohesion(D) =

∑
si,sj∈D

|si∩sj |
|si∪sj |

|Dij|
(3.12)

where si and sj are any two adjacent sentences in D, |Dij| is the number of adjacent

sentence pairs in D, |si ∩ sj| represents the number of words included in both si and

sj and |si ∪ sj| captures the number of distinct words in either si or sj.
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3.5.5 Social Features

As evidenced by the data captured in Figure 3.6, 5,700 tweets are generated every

second, more than 1 billion users use Facebook actively, brands are aware of the

importance of their presence in social networks and are actively participating in the

using several hashtags.

Figure 3.6: Social network infographic extracted from Leveragemedia.com

Social sites like Facebook, Twitter or Instagram have become very popular, chang-

ing the way we see the internet and the resources contained in it. Increasingly, more

resources contain social data inherent to these sites, such as hashtags, usernames,
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mentions, or links, data that are usually ignored by readability formulas. We define

below some of the data that can be found in social media resources:

• Hashtag. A hashtag is a term or a set of terms preceded by a # symbol, used

to represent a concept in social media. For example, in Figure 3.7 #SIGIR2016

aims to capture that the content of the tweet refers to ACM SIGIR Conference

in Information Retrieval.

• Username. Most of the documents generated in social media are usually

related to a known author. For example, in Figure 3.7 Dr Chole is the name of

the user that wrote the tweet.

• Mention. A mention is any other user of the social network that is explicitly

addressed in a document. Those users are usually directly connected to the

author of the document, given a friendship or interest relation. For example, in

Figure 3.7 IonMadrazo and NevDragovic are users mentioned in the tweet.

• Link. A link is a reference to another document. This document is somehow

expected to have some relation with the content of the analyzed document,

being a supportive document or a full version of the current document.

• Emoticon. An emoticon is a set of punctuation marks oriented to express an

emotion such as happiness or sadness. Examples include, :), ;), or :(.

Even if the mentioned information can be important in social media documents,

it usually ignored by readability formulas. For this reason, we introduce novel

social features we created for MultiRead that take advantage of the aforementioned

information.
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Figure 3.7: An example Tweet written by Dr Chole.

Frequencies of Social Data

Social media resources contain more information than text, they also contain hash-

tags, mentions to other users and emoticons. In order to analyze this information

for readability prediction we treat the frequencies of occurrence of social media tags,

i.e., tsocial, as predictors for readability. As a result, three features are created for

MultiRead, i.e., ratio of tokens that are hashtags, mentions or emoticons, each of

which is defined as in Equation 3.13.

SocialTagRatio(D, tsocial) =
freq(D, tsocial)

|Dw|
(3.13)

where tsocial is a given social tag, i.e., hashtag, mention or emoticon, |Dw| is the total

number of words in D, and freq(D, tsocial) the number of occurrences of tsocial in D.

In addition to its general frequency, we also consider the distribution of each

individual emoticon, hypothesizing that some emoticons are more adult-friendly than

others that are more commonly-used by children. Therefore, for each emoticon, we

also consider a feature based on its frequency of occurrence, computed using the

following equation:

EmoticonRatio(D, temoticon) =
freq(D, temoticon)

|Dw|
(3.14)
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where temoticon represents a given emoticon, |Dw| is the total number of words in D

and freq(D, temoticon) is the total number of occurrences of temoticon in D.

Extended Information Features

Most of the features described in this manuscript are oriented to be computed over

a significant amount of text so that their estimated values are meaningful, i.e.,

representative of the information they are meant to capture, and serve as evidence

to compute accurate readability level predictions. However, social media related

documents, such as tweets or comments, only contain a few words, which is usually

a restriction. With the goal of incorporating more context that can enhance the

quality of the readability prediction for short documents, we also compute all the

features described in this manuscript for D′, an extended version of D. This extended

document includes additional textual information that relates to the content of D. We

create four different versions of D′, each of which differs depending upon the source

of information used to extend D. The sources considered for creating D′ include:

• Other documents written by the user who authored D. A user is

expected to be consistent in his writing in terms of readability. Therefore,

when the user name of the writer is known (such as a Facebook username or a

twitter handle), it is useful to take advantage of other resources written by him,

and use them as context. Based on this information, D′ is created by merging

all documents written by the author of D.

• Documents by mentioned users. Homophily stands for the nature of users

to relate to similar users. It is a principle that widely manifests in social

networks, in terms of aspects such as age, hobbies or profession of users [112].
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Following this principle, our hypothesis is that users with the same readability

also tend to relate to each other more frequently that random users. Therefore,

we create an extended version of D comprised of documents written by other

users mentioned in D, such as their Facebook comments or twitter tweets.

• Documents that contain same hash-tags. Following the same principle

of homophily, we hypothesize that users with similar readability also share the

hashtags they often use. Therefore, we also consider an extended version of D

that includes documents that contain the same hashtags as D.

• Linked web pages. Web pages linked on a document are usually related to its

content. We hypothesize that this relation also exists in term of readability. In

other words, it is natural to assume that the readability of a document will be

similar to the readability of the resources linked in the document. Therefore, we

also create an extended version of D with information extracted from resources

linked in D.

3.5.6 Metadata Features

Metadata based features can be useful in environments where text access is limited

(i.e., copyrighted material), or the text contains some structure than can influence

readability (i.e., webpages). An exploration of this type of feature allows MultiRead

to expand the types of texts it can handle. A description of each metadata-based

feature is provided below.
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Web Page Related Features

Web pages usually contain enough textual context to be assessed by textual readabil-

ity features. However, the layout and the design of a website also play an important

role for predicting the readability of a web-page. A web page full of colors can be

oriented towards a younger audience, who usually have low reading skills, while a

black and white one can be more professional and therefore more adult oriented. To

explicitly account for this fact MultiRead considers the frequencies of HTML and

CSS tags in a web page, i.e., tags that are responsible for the design and structure of

the web page, i.e., D in our case. One feature is created for each web page-related

tag, i.e., denoted tHTML, as follows:

HTMLRatio(D, tHTML) =
|freq(D, tHTML)|

|Dw|
(3.15)

where |Dw| is the total number of words inD, tHTML is an HTML tag and |freq(D, tHTML)|

is the total number of occurrences of tHTML in D.

Book Related Features

Even if books contain large amounts of textual content, access to their content is

usually restricted due to copyright limitations. This makes traditional readability

techniques not work on this type of resource. However, as Denning et al. [46]

demonstrated, the reading level of a book can be predicted by analyzing metadata

about the book that is freely available, even in the absence of sample text.

Following the success reported in [46], MultiRead considers the genre and library

of congress subject heading [10] assigned to books, in order to further inform the

readability prediction process, in case D is a book for which few sample text is
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available to process. While genre refers to “a category of artistic, musical, or literary

composition characterized by a particular style, form, or content” [68], e.g., fiction

or drama, subject headings are a “ set of keywords used by librarians to categorize

and index books according to their themes” [64], e.g., Trolls, Green or the natural

language form, e.g., Green Trolls, and the subdivision form, e.g., FantasyMythical

CreaturesTrollsGreen.”

Similarly to semantic closeness computed using Equation 3.10, MultiRead also

considers the proximity of genre and subject heading distribution of D with respect

to the genre and subject headings distributions observed on sample books categorized

in R levels of text difficulty. Analyzing the degree of similarity between genres and

subject headings assigned to D and those assigned to books for which their level

of difficulty is known allows MultiRead to collect further evidence to determine the

readability level of D.

3.6 Fusioning Strategy

Individually, the features presented in the previous section can only produce a rough

estimate of the reading level of a document, as they only quantify the degree of

difficulty of a text from a single perspective. Best results can only be achieved when

those features are used in tandem. For doing so, MultiRead takes advantage of

Random Forests [34] a machine learning strategy based on multiple decision trees and

bagging. The rest of this section describes how this learning model works, starting

from background techniques.
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3.6.1 Supervised Machine Learning

Supervised machine learning [84] refers to the process of learning a model from labeled

data, in order to be able to use it for predicting unknown labels for new data. More

formally, each instance x in a collection X is represented as x :< f1, ..., fn, z >, where

fi is a feature that describes x and z is the known prediction class for x. Using

instances in X, a model β is learned that is later applied for predicting the class of

any new instance for which z is unknown.

In MultiRead, X corresponds to a labeled corpora of documents for which their

corresponding readability level is known. Each document (i.e., x) is associated with

a feature representation (based on the features described in Section 3.5) and a pre-

defined degree of text difficulty (i.e., class z). The model β is generated using X and

the Random Forest algorithm, which is based on multiple decision trees.

3.6.2 Decision Tree

As previously stated, MultiRead depends upon an algorithm based on decision trees

to predict the readability level of D. A decision tree is a structure oriented to make

a decision that takes the shape of a tree. Each node of the tree represents a question,

and each branch of that node is a possible answer to that question. For example a

node can ask Is the door open? and each branch has an answer to that Yes/No. The

decision making process starts at the question at the root and ends in one leaf of the

tree. Each leaf has a label which is the result of the whole decision process. Going

back to MultiRead each question in a node just asks about the value of a specific

feature f and each branch represent a range of possible values, e.g. f < 1.

Many machine learning strategies for prediction focus on automatically generating
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Figure 3.8: Decision Tree

a decision tree over a labeled training dataset, that can later be used to classify any

new, unlabeled instance. Among the most popular are C4.5 (J48) [93] and ID3 [92].

These models offer high expressiveness as the tree can grow infinitely creating more

branches, potentially being able to learn any combination of data. However, this high

expressiveness makes decision trees very prone to overfitting, a common machine

learning issue where a model also learns about the noise of a certain dataset and loses

its generalization power, failing to predict on new unlabeled data.

3.6.3 Bagging

In order to improve accuracy and avoid overfitting, bagging strategies can be used.

Bagging [33] or boostrap aggregating is an ensemble meta-algorithm oriented to

improve accuracy of machine learning algorithms by reducing variance and proneness

to ovefitting. The idea behind the algorithm is simple, instead of generating a model

over all the data available, multiple models over random subsamples of the data

are generated. This way each model will not be as overfitted to the entirely of data,
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because it has only learned about a portion of it. At the same time, the full dataset will

still be used, but the knowledge acquired will be distributed among several models.

For generating the final prediction each model will submit a vote, which will be

averaged to get the final prediction of the system. As an example, tree bagging (see

Figure 3.9) refers to the technique of bagging applied to decision trees, which is the

base of Random forests.

Figure 3.9: Example of a tree forest

3.6.4 Random Forest

Random forest refers to a model where decision trees are used within a bagging

strategy. As a peculiarity, apart from using a randomized subsample of the data for

generating each model, random forests also use a random subsample of the features

[75]. Benefits of random forests include high learning power while being less prone

than decision trees to overfitting, high accuracy compared to other learning algorithms

and efficient scaling, as the model can be easily parallelized given its distributed

nature [34]. In addition, the structure of Random Forests match well with the needs
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of MultiRead, given the sparse nature of the features employed in MultiRead that

can be defined for any given document for prediction purposes. Containing multiple

small models, i.e., decision trees, we believe that each of those can specialize in a

certain aspect of MultiRead. Some tree may just specialize in tweets for English,

while others will be more focused on other languages and document types.

Given the aforementioned arguments and the empirical study presented in the

Section 4.4, which verifies the correctness of relying on such a model, we implemented

MultiRead so that it incorporates the Random Forest model as its feature fusioning

strategy.
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CHAPTER 4

EVALUATION

In order to validate the correctness and effectiveness of MultiRead we conducted an

in-depth study using several datasets and metrics, which we describe in Sections 4.1

and 4.2. The study is driven by the questions we used to guide our research process: (i)

What is the best alternative to fuse evidence (i.e., features) that capture information

about documents from different perspectives?, (ii) Which subset of features most

influences the readability prediction process?, (iii) Can the performance of a multi-

purpose readability tool be consistent among documents of different types, languages,

and length?, (iv) Is the tool capable of assessing readability of documents with a more

fine-grained degree of difficulty than just simple and complex?, and (v) Are readability

formulas/tools consistent when estimating the readability level of the same document

in different languages?

Note that, even if MultiRead is designed to be language independent, for practical

purposes the results of our evaluation pertain to assessments on corporas in three

languages that are representative of the diversity of existing languages: English,

Spanish, and Basque, i.e., a germanic, a romance, and a pre-indioeuropean language,

respectively.
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4.1 Datasets

The ideal dataset for designing, developing, and evaluating MultiRead would be a

multilingual leveled dataset that would contain the exact same documents written in

different languages, as well as human judgments in terms of readability scores for each

document. However, to the best of our knowledge, such a dataset does not currently

exist. Consequently, we have identified various sets of leveled documents in English,

Spanish, and Basque, that can suit MultiRead’s needs and can be used for evaluation

purposes. These datasets are summarized in Table 4.1 and described below.

Table 4.1: Overview of the datasets used for validating the design and performance
of MultiRead

Dataset Sources Languages
Document

Type
Size

Number of
Target
Levels

BookData CLDC.com En Books 120 12
DMOZData DMOZ.com En Websites 1000 2
Ikasbil Ikasbil.eus Eu Documents 1000 5
TwitterData Twitter En Tweets 22000 6

VikiWiki
Vikipedia.org
Wikipedia.org

En, Es, Eu Documents 12798 2

ParallelData Albalearning.com En, Es Documents 100 1

Vikidia vs. Wikipedia

Wikipedia [13] is an online encyclopedia publicly available for multiple languages. At

the same time, Vikidia [11] is a simplified version of the former, containing a sample

of the most popular articles of Wikipedia written in a relatively low reading level,

so that people with average reading skills, such as children or language learners, can

understand them. Using these two sources, we generated a dataset containing all

the articles in Vikidia and their corresponding complex counterparts in Wikipedia.
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This translated into VikiWiki, a two-level (simple or complex), multilingual (English,

Spanish and Basque) dataset comprised of 12798 documents: 1767 documents in

English, 4184 in Spanish and 448 in Basque for both simple and complex level.

Twitter Dataset

Currently, there is no dataset available that contains social media resources labeled

with their corresponding readability level. Therefore we built one by taking advantage

of a Twitter sample of 172M tweets extracted using Twitter’s API on 2014 [76, 77]. We

followed the simple, yet effective approach presented by Zhang et al. [112] which takes

advantage of happy birthday messages for determining the age of Twitter users. In

doing so, we identified that age of (some of the) Twitter users in our sample, resulting

in a dataset of 22k tweets, each of which labeled with the age of the respective author.

We are aware that the age of a person is not exactly the same as his expected reading

level. Therefore, we split the tweets into six age ranges, following the ranges defined

by Levinston [73]. These ranges refer to a person’s developmental stages, which given

the lack of benchmarks, we consider appropriate to be used as different readability

levels. In other words, tweets in this dataset are categorized using six different levels

of text difficulty.

DMOZ Webpages

DMOZ [8] is the most comprehensive online directory publicly available. It contains

links to thousands of categorized webpages. Among these categories, we can identify

sites targeting children or mature audiences. Based on these labels,we created a

webpage dataset comprised of 500 children-oriented webpages and 500 non-children

oriented webpages. As the reading abilities of children are often less developed than
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those of an adult, for experimental purposes we considered documents corresponding

to children as simple documents and remaining ones as complex.

Books

We use the book dataset created by Denning et al. [46] using information obtained

from the Children’s Literature Comprehensive Database Company (CLCD)[6]. This

dataset is comprised of 120 books (written in English) that contain book-related

information, including title, genre, subject heading and short textual snippets. Fur-

thermore, each book is associated with its readability level in a K-12 1 scale, which

is used as the target readability level for experimental purposes.

Ikasbil

Ikasbil [4] is an online resource for learning Basque that contains different media

contents, such as articles, videos, or audio contents. Every resource on the site is

labeled given its complexity, using the reading level grading system defined by the

Common European Framework of Reference for Languages (CEFR). The dataset

contains 200 documents written in Basque for each of the 5 reading levels defined by

CEFR.

Parallel corpus

A parallel corpus is a set of documents that is exactly translated into several lan-

guages. This translation needs to be sentence aligned, i.e., each sentence needs to

match exactly another sentence in the other languages. We gathered a parallel corpus

1K-12 is a term used to refer to primary and secondary grades in American Education System.
The system comprises a total of 12 grades, from kindergarten to 12th grade.
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from albalearning.com [5], a website oriented to language learning. This corpus is

comprised of around 100 documents written in English and Spanish, that are sentence

aligned but are not associated with any particular readability label.

4.2 Metrics

To quantify the performance of MultiRead, we use a number of well-known Infor-

mation Retrieval and Machine Learning metrics often applied to evaluate readability

prediction formulas/tools.

Accuracy

Accuracy is used for estimating the performance of a prediction system. It stands for

the ratio of correctly classified instances among all instances.

Accuracy =
Correctly Classified Instances

Total Instances
(4.1)

where an instance in our case is a test document which is treated as correctly classified

only when the predicted readability level matches the known readability level of the

document.

Mean Average Error

Mean average error (MAE)[82] refers to the average displacement of the predictions

of a system from the true value. It is commonly useful as a substitute of the

accuracy metric when prediction values are not binary and instead have some inherent

ordinality.
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MAE =
1

n

n∑
i=1

|fi − yi| (4.2)

where |fi − yi| is the absolute error, where fi is the prediction and yi the true value

and n the number of instances considered.

In our case, n refers to the size of the dataset considered for evaluation purposes,

yi is the known readability level associated with a given instance in the dataset, and

fi is the readability level predicted for the instance using a readability assessment

formula/tool.

Cohen’s Kappa

Cohen’s Kappa [79] measures the agreement among different raters. It is usually used

to measure how faithful is an information source provided by various human judges,

based on the extent to which they agree with each other. This metric can be also

applied to measure agreement among prediction systems.

κ = 1− 1− p0
1− pe

(4.3)

where p0 is the relative observed agreement among raters and pe is the hypothetical

probability of chance agreement. If there is full agreement κ = 1, if there is no

agreement κ = 0.

Pearson’s Correlation

Pearson’s correlation [82] measures how dependent are two variables on each other.

It can be used to determine a variable with redundant information or the prediction

power of a variable with respect to a class. A positive correlation coefficient between
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any two variables means that for every positive increase of one variable, there is a

positive increase in the other. A negative coefficient, on the other hand, means that

for every positive increase of one variable, there is a negative decrease of the other

one. When the value is close to 0 the two variables are not related.

r(X, Y ) =

n∑
i=1

(xi − x)(yi − y)

2

√
n∑

i=1
(xi − x)2 2

√
n∑

i=1
(yi − y)2

(4.4)

where X and Y are any two variables, x = 1
n

n∑
i=1

xi is the average of X; and y = 1
n

n∑
i=1

yi

the average of Y .

4.3 Evaluation Strategies

In this Section we present several evaluation strategies oriented to ensure the validity

of the results of this study.

N-Fold Cross Validation

N -fold cross validation [82] refers to a technique used to ensure that the assessments

obtained for a system using a dataset (regardless of the metric considered) will be

generalizable to unknown independent data. This technique splits data into N folds,

each of which contains 1
N

of the data instances. In N different rounds, N−1 folds are

used for training purposes and 1 fold for testing. The results of each round are then

be averaged to obtain a less biased result than what we would obtain just manually

splitting the data in one training and one testing set.
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Leave-one-out

Leave-one-out [82] is an specific case of N -fold cross validation where the number of

folds is equal to the number of instances in the data. This strategy can be useful in

environments where the number of data instances is very limited and as much data

as possible is needed for training. However, given the number of rounds is the same

as the number of instances in the data it can also be computationally expensive in

large datasets.

4.4 Which learning model performs better for MultiRead?

Objective The aim of this experiment was to determine which feature fusion strat-

egy fits best for MultiRead, influencing the final decision of which learning model will

MultiRead use. For doing so, we analyzed the performance of MultiRead using several

learning models. As MultiRead is oriented to multiple document types and languages,

the best fusion model for it is the one that consistently performs adequately for all

contexts for which MultiRead can be applied.

Dataset To identify the most suitable model, we conducted an empirical study.

In order to remove any positive bias that can influence the final evaluation of the

system, this study was performed on disjoint datasets, which include 600 documents

from the VikiWiki dataset (100 for each language and source), 200 tweets equally

distributed among reading levels, 200 webpages from DMOZData also uniformly

distributed among reading levels, and 20 books randomly selected from the CLDC

dataset. Each of these datasets were used separately for training and testing.
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Compared Learning Models We considered several learning models for this

experiment. However, we present the most significant ones, i.e., top-3 models in

terms of accuracy (Random Forest [34], Decision Tree [93] and Multilayer Perceptron

[82]) and the most popular among other readability assessment strategies (Support

Vector Machines [103]).

Results Table 4.2 shows the accuracy ratios achieved for each learning model and

individual language, as well as the average accuracy obtained by each analyzed

model. This accuracy was calculated using a leave-one-out framework over the VikiWi

dataset. Random Forest is the model that achieves the best results among the models,

regardless of the language considered. These improvements, in terms of accuracy,

are statistically significant, as determined using a paired T-Test with a confidence

of p < 0.05 with respect to the counterparts considered in this study. Support

Vector Machines, on the other hand, obtained low accuracy. This is surprising, given

that they are one of the most-used tools for readability prediction [29]. A a more

in-depth analysis of instances indicated that instances with a lot of missing values

were often misclassified by this model, which leads us to determine that data sparsity

is the reason for this decrease in accuracy. It is also worth noting the effect the

language of the documents have in determining the accuracy of a model. In fact, all

models achieve consistently better accuracy ratios for English than for Basque. Given

that we used the same features for all the three languages, we can attribute this to

two reasons: (1) predicting Basque readability is more complex and (2) the lack of

precision of Basque NLP tools makes readability features less precise too, hindering

final readability predictions.

We also calculated the accuracy using the aforementioned sampled datasets, which
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Table 4.2: Accuracy obtained by MultiRead using different fusion strategies on a
disjoint sample of VikiWiki.

English Spanish Basque All
Random Forest 96.6% 83.1% 81.1% 87.7%
Decision Tree 91.4% 82.9% 79.8% 85.4%
Multilayer Perceptron 84.3% 78.5% 78.4% 81.8%
Support Vector Machines 70.5% 65.1% 62.3% 68.4%

allowed us to quantify and compare the performance of different fusion models, when

applied to non-traditional documents, such as tweets, webpages and books. Based on

the accuracy ratios reported in Table 4.3, we verified that Random Forests achieve

better or comparable performance with respect to those achieved by its counterparts

(p < 0.05). Therefore, given its consistency among all languages and types of

documents we determined that Random Forests is the learning model that best fits

MultiRead.

Table 4.3: Accuracy obtained by MultiRead using different fusion strategies to predict
the readability level of documents of different type.

Long Snippets Social Webpages Books
Random Forest 87.7% 83.1% 79.2% 45.1%
Decision Tree 85.4% 82.9% 77.6% 40.4%
Multilayer perceptron 81.8% 80.1% 79.3% 46.7%
Support Vector Machines 68.4% 81.3% 75.9% 44.2%

4.5 Which feature subset performs better for MultiRead?

Objective As described in previous sections, a good feature set is what determines

the effectiveness of a machine learning-based system, and therefore what will deter-

mine the overall effectiveness of MultiRead. The objective of this experiment is to
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extensively analyze the influence each feature (or group of features) incorporated in

MultiRead has in predicting the reading level of a document.

Dataset The dataset used for this experiment is comprised of 3000 documents

from the VikiWiki dataset equally distributed among languages (English, Spanish

and Basque) and source (Vikidia and Wikipedia). Even if this dataset has more than

3000 documents, we discarded some documents in English and Spanish in order to

evenly balance the distribution among languages in the dataset. We also included 1000

tweets, 500 webpages and 120 books as separate datasets. Note that this dataset is

completely disjoint from the one used in 4.4 to remove any bias. It is also important

to note that we converted all readability levels into a binary range, i.e., simple or

complex, splitting the readability levels in two halves (the most complex half and the

most simple half) for those document types for which the class was not binary.

Table 4.4: Accuracy obtained by MultiRead using each group of features.

Shallow Morphological Syntactic Semantic Social Metadata
English 75.4% 52.2% 76.3% 60.8% 60.9% 53.3%
Spanish 70.6% 64.8% 78.2% 61.3% NA NA
Basque 55.4% 65.2% 80.3% 62.0% NA NA
Overall 63.1% 57.1% 78.5% 61.2% 60.8% 53.3%

Result In order to measure the predictive importance of each feature, we grouped

them given their linguistic category and trained MultiRead using only one feature set

at a time. We computed the accuracy of the model generated by each feature subset

for each individual language using 10-cross fold validation. As presented in Table

4.4, syntactic features are the ones with most predictive power, followed by shallow

and semantic features. This was expected, given that the superiority of syntactic
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features was also reported by other readability studies [45, 67], demonstrating their

robustness in both short and long documents. Morphological features have one of the

lowest accuracy overall. However, looking into more detail, we noticed that this low

accuracy is caused by their low performance for the English language, as the accuracy

value for this groups of features for English is significantly lower than for Spanish and

Basque. This result is expected, as English morphology is not as rich as Spanish’s

or Basque’s morphology. A similar pattern was observed for shallow features, where

the accuracy for Basque is significantly lower than the one achieved by the two other

languages, demonstrating that shallow features are not as successful for this language.

Semantic features are the most consistent among all languages. We hypothesize

that this is due to the use of concepts, that are language independent, in contrast

to syntactic or shallow features that can depend on the grammar and vocabulary

of each language. Social and metadata features, only available for English due to

dataset constraints, have some predictive power on their own, which validates our

hypothesis: for documents with short textual information, considering data inherent

from the type of the document has a positive influence in terms of correctly predicting

the readability of the document.

In order to perform a deeper analysis, apart from the feature groups, we also

performed the same study for each individual feature, identifying the top 10 features

that most influence the readability prediction process for each language. For doing

so, we calculated the correlation for each feature used in MultiRead. The lists of

top-10 for each English, Spanish and Basque are described in Table 4.5, Table 4.6,

and Table 4.7.

Based on the correlation numbers presented in the tables, we further demonstrate

that it is harder to predict the readability level for texts in Basque than text in
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English: the correlations reported for the top-10 ranked features for Basque are half

of the Pearson’s correlation reported for the corresponding features for English.

Further analysis of the features indicate that shallow features are prominent among

the highest-correlated features for English, as the unique term ratio and the average

sentence length are both among the top-3 features. Unique term ratio is the highest-

correlated feature for Spanish, with a slightly lower correlation. This feature, however,

does not even appear in top-10 features for Basque. We argue that obtaining unique

terms for Basque is less precise, as Basque lemmatization is more complex, and thus

this feature is not a strong indicator for readability prediction in Basque.

As previously illustrated in Table 4.4, morphology is not an important aspect to

consider for predicting the readability of texts in English. This is further verified

based on the fact that no morphological features appear among the top-10 features

for English, while four morphological features are shown among the top-10 for Spanish

and two among the top-10 features for Basque. We also observed that connectors are

very influential for Basque readability prediction, as six features out of ten reported

in Table 4.7 are based on connectors.

Table 4.5: Top 10 most influential features in terms of readability prediction with
their correlation values for English.

Correlation Feature
.70 (Shal) Unique Term Ratio
.62 (Shal) Period Ratio
.55 (Shal) Sentence Length
.47 (Syn) Probability of a noun modifier with a direct object as child
.46 (Syn) Probability of an adverb from the root node
.43 (Sem) Cohesion
.42 (Syn) Probability of a subject from the root node
.41 (Syn) Probability of an object from the root node
.41 (Shall) Ratio of opening punctuations
.40 (Syn) Probability of a modifier from the root node
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Table 4.6: Top 10 most influential features in terms of readability prediction with
their correlation values for Spanish.

Correlation Feature
.59 (Shal) Unique Term ratio
.48 (Shal) Period Ratio
.44 (Morph) Ratio of present tense
.42 (Morph) Probability of semiauxiliars
.42 (Morph) Probability of indicative mood
.37 (Syn) Probability of a noun followed by a punctuation
.37 (Shal) Sentence Length
.37 (Syn) Probability of a puntuctuation from the root node
.34 (Syn) Probability of a determinant followed by a noun
.31 (Morph) Probability of indefinite determiners

Table 4.7: Top 10 most influential features in terms of readability prediction with
their correlation values for Basque.

Correlation Feature
.32 (Syn) Probability of a punctuation followed by a connector
.28 (Syn) Probability of a modifier followed by a punctuation
.32 (Syn) Probability of a connector followed by a punctuation
.27 (Morph) Probability of present tense
.24 (Morph) Probability of indicative mood
.23 (Syn) Probability of a connector with a punctuation as a child
.23 (Syn) Probability of a connector from the root node
.22 (Syn) Probability of an adverb
.21 (Syn) Probability of a connector that has a modifier as a child
.21 (Syn) Probability of a connector that has another connector as a child

Correlation with the reading level, however, is not the only important aspect for

a feature. MultiRead considers around 11k features, most of them being 0 or non

applicable in most of the documents, generating a very sparse set of features for each

document. In order to amend this issue, it is also important to have redundancy, in

terms information captured by one or more features examined by MultiRead. This
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Figure 4.1: Correlations of shallow features

way, if some features cannot be computed for a document, other similar features can

replace them to still be able to produce accurate readability level predictions.

The correlations between all shallow features can be seen in Figure 4.1. The

figure describes a high correlation between the average term length and the ratio of

simple terms, as well as average sentence length and unique term ratio. This high

correlation, implies that when any one the features of the pairs is missing or fails for

some reason, the other can be used as replacement, ensuring the consistency and

robustness of MultiRead. A similar effect can be observed in Figure 4.2, where

the correlation for 250 random features is depicted. For visualization purposes,

features have been clustered given their correlation, generating several groups of

highly correlated features. Those clusters take the form of big blue squares, where
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Figure 4.2: Correlations of 250 random features

each of the features in the square is highly correlated with all other features in it. We

can see several clusters in the figure, demonstrating that there are indeed group of

features that can be replace with others, in terms of capturing necessary information

for readability prediction purposes.

4.6 How does MultiRead perform? (overall, by language, by

document type)

Objective So far, we analyzed MultiRead’s performance in terms of the models and

features it considers. However, it is imperative to evaluate its overall performance

and compare it with that obtained by other readability prediction tools, which is the
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focus of this experiment.

Compared Strategies We compare MultiRead with 3 traditional readability for-

mulas, commonly used by institutions and schools for determining the readability of

a text, i.e., Flesch [54], Dale-Chall [42] and Smog [81] readability formulas. Note

that we also planned to compare MultiRead with the only other system developed

for more than one language, which is the system presented by Clercq et al. [44] (See

Section 2 for further details). Unfortunately, obtaining the dataset for that system

was not possible.

Dataset For this experiment we used the same dataset as in Section 4.5, comprised

of 3000 WikipediaVsVikidia articles, 1000 tweets, 500 webpages and 120 books.

Table 4.8: Comparison of accuracy for different readability assessment strategies.

Flesch Dale-Chall SMOG MultiRead
WikipediaVsVikidia (English) 70% 72% 69% 96%
WikipediaVsVikidia (Spanish) 65% 68% 66% 83%
WikipediaVsVikidia (Basque) 57% 59% 57% 81%
Tweets 28% 30% 29% 80%
Webpages 65% 57% 67% 82%
Books 23% 27% 21% 53%

Result As shown in Table 4.8, MultiRead outperforms the other 3 readability

assessment strategies in all the cases. The difference is specially significant when

estimating the readability levels of tweets, books and documents in the Basque version

of the VikiWiki dataset. This difference demonstrates the value of both social and

metadata features, as well as some morphological and syntactical features specifically

designed for Basque. Books accuracy, however, is low compared to other document
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types, which is natural, given the lack of text in these documents and the number

of possible readability levels (i.e., 12 level), which makes the prediction task more

difficult than when only two levels are considered (i.e., simple and complex).

4.7 How well does MultiRead perform when the prediction

of readability goes beyond binary levels?

Objective All the experiments performed so far evaluated the effectiveness of Mul-

tiRead using binary readability values, i.e., simple or complex. The reason for this

lies in the lack of large datasets labeled for more than two readability levels. To

validate that MultiRead is indeed multipurpose and can also work in a non-binary

environment, we conducted an initial experiment based on one of the few multilevel

datasets available.

Dataset For this experiment, we took advantage of the Ikasbil dataset. This dataset

is comprised of 1000 documents written in Basque and uniformly distributed among

5 readability levels (i.e., 200 documents per level).

Compared Strategies As we have done for previous experiments, we compare our

results with those obtained by Flesch, Dale-Chall and Smog for for the same dataset.

Table 4.9: The performance of MultiRead on the the Ikasbil multilevel dataset, in
terms of accuracy and mean average error.

Flesch Dale-Chall Smog MultiRead
Mean Average Error 1.8 1.9 1.8 0.7
Accuracy 27% 25% 31% 62%
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Result As shown in Table 4.9, MultiRead outperforms the readability assessment

strategies considered in this experiment in terms of both accuracy and mean average

error. An accuracy of 62% might may seem low compared to the accuracy ratios

reported for Basque in previous experiments. This is due to a higher number of

possible readability values for prediction. However, a deeper exploration of the

misclassified instances revealed that the error in classification is, on average, 0.7, as

reported by computing the Mean Average Error measure on the same dataset. This

low error rate demonstrates that not only the discrepancy in readability prediction

error is of less than one readability level on the average, but also this error is justifiable

in readability assessment as even human experts have discrepancy when determining

the reading level of a text [56].

4.8 Are readability predictions of MultiRead the same for

different languages?

Objective As previously mentioned, one of the benefits of multilingual readability

assessment is the possibility to use it for ensuring correct translation of documents, as

translators can verify that the readability level of the translated document is faithful

for the one of the original documents. For this, we need to make sure that the

readability predictions for a same text translated to different languages are similar.

Therefore in this experiment we measure the agreement of MultiRead’s readability

predictions among different languages and compare it to other readability assessment

strategies.
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Dataset Given the lack of multilevel multilingual datasets publicly available, we use

two different datasets for this experiment. First, we use WikipediaVsVikidia to train

MultiRead, using 3000 texts, 500 per language and reading level. In addition, we take

advantage of a parallel corpus in English and Spanish to conduct this experiment.

Note that the intent of this experiment is only to assess the agreement of MultiRead

predictions, but not their accuracy. Therefore we do not require to know the reading

level of each document in the parallel corpus, as we just need to know that the

documents are exact translations of each other.

Table 4.10: Inter Language agreement of readability predictions.

Flesch Dale-Chall Smog MultiRead
Ratio of agreement 57% 61% 63% 84%
Kappa 0.19 0.21 0.22 0.69

Result We calculated the readability for each sentence and their corresponding

translation in the parallel corpus. Table 4.10 shows the agreement on the prediction

of each pair of sentences, for different readability assessment strategies. MultiRead

shows the highest agreement among the predictions of readability for each sentences

pair, outperforming other strategies by 20% of agreement. This is translated into a

Cohen’s Kappa value of 0.69 which describes a Good agreement, while the values for

other strategies show a Poor agreement based on Altman’s categorization [21].
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this manuscript we introduced MultiRead, a multipurpose readability assessment

system pioneer in its area. MultiRead is capable of handling documents of multiple

languages, format and length. MultiRead takes advantage of multiple textual patterns

that portray a text from different perspectives and fusions this information using

Random Forests, in order to predict the readability level of the text.

We explored and designed multiple features based on different textual information:

shallow features, that examine basic textual information, such as sentence length,

morphological features, that capture information pertaining to how words are formed,

syntactic features, that analyze the structure of sentences, semantic features, that

go beyond words in a text to take advantage of concepts, and social and metadata

features, that serve in lieu of textual content, when text is practically non-existent or

the document type is non-traditional (e.g., a tweet). Social-related features, specially

those referring to the data inherent of stylings and wtitting patterns observed on

social media sites, which are increasingly more prominent nowadays, are a major

contribution of our word as these features based on hashtags, shorthand notation,

and emoticons, are usually overlooked by traditional readability assessment formu-

las/tools.

We performed an in-depth study to validate the correctness of MultiRead and
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acquire in-depth knowledge about the data and tools common among Language,

Information Retrieval, Machine Learning, and Natural Language Processing areas

of study, which gave us the opportunity to understand the benefits and constraints of

multipurpose readability assessment systems, such as the one discussed in this thesis.

The study revealed MultiRead is capable of predicting the readability of a document

regardless of its language or type, outperforming other commonly used readability

prediction strategies such as Flesch or Dale-Chall. In addition, we demonstrated that

the novel social features we introduced are of great value for readability level predic-

tion of social documents, such as tweets, that are of special difficulty for traditional

readability assessment formulas/tools given their short length and non-traditional

use of text. Finally, we also proved the agreement of MultiRead predictions in

documents translated to other languages, making the tool usable for applications

that need readability assessment for more that one language at a time.

During the research process that lead to MultiRead we had to overcome several

issues, such as the lack of multilingual multidocument readability labeled datasets.

For doing so we explored several textual resources that together, permitted the

assessment of the performance of MultiRead and other tools. This textual resources

will be made available to the community as a byproduct of this thesis.

We anticipate that the availability of a multipurpose readability assessment tool

such as MultiRead will be beneficial for a number of applications. The most obvious

one is the readability prediction of single documents, which now will be possible using

a unique tool that yields reading level predictions in a unified scale regardless of the

language or the document type. Educators, public institutions and librarians will be

able to use a single tool regardless of the text they need to analyze. In addition,

educational applications that make use of multiple readability formulas will no longer
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need to integrate multiple tools, facilitating the process of integration and ensuring

agreement of readability predictions among all languages.

Professional books translators, will also benefit from MultiRead as they will be

able to ensure that their translations are not only correct in terms of content but that

they are also faithful to the intended reading level of the original documents.

Social applications that previously ignored the reading level of documents such

as hashtag recommendation (see Appendix A), user recommendation, advertisement

targeting, re-tweet prediction or search engines oriented to people with diverse reading

abilities [25, 40], will now be able to use MultiRead to improve their performance.

More importantly, any single application dealing with non-traditional users, such

as children, language learners or people with reading difficulties, will be able to inte-

grate readability assessment in tasks such as retrieval of documents, recommendation

or other personalization tasks.

We are aware that there are limitations that still need to be addressed in Mul-

tiRead. While they are beyond the scope of this project, they open new research

avenues that we would like to explore in the future.

The biggest constraint we encountered during our research process was the short-

age of benchmarks. As MultiRead is the first system of its type in the area, we

expected that lack of datasets that contained multilingual documents of different

types labeled according their level of (text) difficulty. However, we did not anticipate

the lack of single language readability assessment benchmarks. There is not official

benchmark for readability assessment that permits the unbiased comparison of results

among other tools that perform the same task. To solve this issue, we plan to develop

a multilingual readability assessment benchmark comprised of multiple types of texts

using human judgments. This would create an unified benchmark, authors could
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use to assess the performance of their system and compare it to others in the area.

However this is not trivial and will require research and professional effort.

Using the aforementioned dataset, we would also like to perform a more in-depth

study that considered more languages beyond English, Spanish and Basque, as well

as expand our assessment in non-binary readability prediction.

Finding text processing tools that fitted MultiRead’s needs was not a trivial task

either. SyntaxNet could have been the perfect tool for developing it. However, given

that it still does not offer some basic features we decided to discard it from MultiRead

for now. However, this tool might be of interest in the near future. Once SyntaxNet

is fully developed, it could be included in MRAS, easily extending MRAS language

compatibility to over 70 languages.

Regarding prediction features, we would also like to explore features that take the

pragmatics of a text into account. Pragmatics study how the general structure of a

text is organized, a fact that we think could be of interest for readability prediction.

We would also like to do more research in more semantic features, as they showed

to be the most consistent among all languages. We would like to use a more precise

technique for extracting concepts than WordNet and take advantage it for building

new features. We are also aware about the relatively poor accuracy provided by book

related features and we plan to do further research in this area.

Even if there is still a long way towards multipurpose readability assessment, we

believe that we established a precedent with the development of MultiRead that will

shape the research future of the readability assessment area.
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[47] Biljana Drndarević, Sanja Štajner, Stefan Bott, Susana Bautista, and Horacio
Saggion. Automatic text simplification in spanish: a comparative evaluation
of complementing modules. In Computational Linguistics and Intelligent Text
Processing, pages 488–500. Springer, 2013.

[48] Mahmoud El-Haj and Paul Edward Rayson. Osman–a novel arabic readability
metric. 2016.



84

[49] Hillary Evans, Morgan G Chao, Cortney M Leone, Michael Finney, and Angela
Fraser. Content analysis of web-based norovirus education materials targeting
consumers who handle food: An assessment of alignment and readability. Food
Control, 65:32–36, 2016.

[50] Bin Fang, Qiang Ye, Deniz Kucukusta, and Rob Law. Analysis of the per-
ceived value of online tourism reviews: influence of readability and reviewer
characteristics. Tourism Management, 52:498–506, 2016.

[51] Lijun Feng. Automatic readability assessment for people with intellectual
disabilities. ACM Special Interest Group on Accessible Computing, (93):84–91,
2009.

[52] Lijun Feng, Martin Jansche, Matt Huenerfauth, and Noémie Elhadad. A
comparison of features for automatic readability assessment. In Proceedings
of the 23rd International Conference on Computational Linguistics: Posters,
pages 276–284. Association for Computational Linguistics, 2010.

[53] Rudolph Flesch. A new readability yardstick. Journal of Applied Psychology,
32(3):221, 1948.

[54] Rudolph Flesch. A new readability yardstick. Journal of Applied Psychology,
32(3):221, 1948.

[55] Jonathan Neil Forsyth. Automatic Readability Prediction for Modern Standard
Arabic. PhD thesis, Brigham Young University, 2014.

[56] Thomas François and Cédrick Fairon. An ai readability formula for french as
a foreign language. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning, pages 466–477. Association for Computational Linguistics, 2012.

[57] Daniela B Friedman, Laurie Hoffman-Goetz, and Jose F Arocha. Health literacy
and the world wide web: comparing the readability of leading incident cancers
on the internet. Medical informatics and the Internet in medicine, 31(1):67–87,
2006.

[58] Kevin Gimpel, Nathan Schneider, Brendan O’Connor, Dipanjan Das, Daniel
Mills, Jacob Eisenstein, Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A Smith. Part-of-speech tagging for twitter: Annotation, features,
and experiments. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies: short papers-
Volume 2, pages 42–47. Association for Computational Linguistics, 2011.



85
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[102] Sanja Štajner and Horacio Saggion. Readability indices for automatic evaluation
of text simplification systems: A feasibility study for spanish. In Proceedings
of the 6th International Joint Conference on Natural Language Processing
(IJCNLP 2013), Nagoya, Japan, pages 374–382, 2013.

[103] Johan AK Suykens and Joos Vandewalle. Least squares support vector machine
classifiers. Neural processing letters, 9(3):293–300, 1999.

[104] Liling Tan and Francis Bond. Building and annotating the linguistically diverse
ntu-mc (ntu-multilingual corpus). Int. J. of Asian Lang. Proc., 22(4):161–174,
2012.

[105] Kumiko Tanaka-Ishii, Satoshi Tezuka, and Hiroshi Terada. Sorting texts by
readability. Computational Linguistics, 36(2):203–227, 2010.



89

[106] A Uitdenbogerd. Readability of french as a foreign language and its uses. In
ADCS 2005: The Tenth Australasian Document Computing Symposium, pages
19–25. University of Sydney, 2005.

[107] Hao Xing Wang. Developing and testing readability measurements for second
language learners. 2016.

[108] Barry D Weiss, Mary Z Mays, William Martz, Kelley Merriam Castro, Darren A
DeWalt, Michael P Pignone, Joy Mockbee, and Frank A Hale. Quick assessment
of literacy in primary care: the newest vital sign. The Annals of Family
Medicine, 3(6):514–522, 2005.

[109] Chen-Hsiang Yu and Robert C Miller. Enhancing web page readability for
non-native readers. In Proceedings of the sIGCHI conference on human factors
in computing systems, pages 2523–2532. ACM, 2010.

[110] Eva Zangerle, Wolfgang Gassler, and Gunther Specht. Recommending #-tags
in twitter. In SASWeb 2011, volume 730, pages 67–78, 2011.

[111] Jinxue Zhang, Xia Hu, Yanchao Zhang, and Huan Liu. Your age is no secret:
Inferring microbloggers’ ages via content and interaction analysis. In AAAI
ICWSM, 2016.

[112] Jinxue Zhang, Xia Hu, Yanchao Zhang, and Huan Liu. Your age is no secret:
Inferring microbloggers ages via content and interaction analysis. In Tenth
International AAAI Conference on Web and Social Media, 2016.



90

APPENDIX A

IS READABILITY A VALUABLE SIGNAL FOR

HASHTAG RECOMMENDATIONS?

PUBLISHED AT ACM RECSYS 2016

We present an initial study examining the benefits of incorporating readability indi-

cators in social network-related tasks. In order to do so, we introduce TweetRead,

a readability assessment tool specifically designed for Twitter and use it to inform

the hashtag prediction process, highlighting the importance of a readability signal in

recommendation tasks.

A.1 Introduction

Readability is a measure of the ease with which a text can be read. Usually repre-

sented by a number, it is an indicator used by teachers to classify and find appropriate

resources for students. Several studies have demonstrated the benefits of using read-

ability indicators in educational-related applications, such as book recommendation,

text simplification, or automatic translation. However, applying readability indicators

outside this environment remains relatively unexplored. Social networks could benefit

from readability assessment. Twitter is a social network where users and texts are

the main focus. For this reason, it is natural to think that for Twitter the ease with
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which a tweet can be understood by a user may affect his interest in it, and therefore

influence actions taken, such as re-tweeting, giving a like or replying to the tweet.

The authors of [111] examined the degree to which the age of a user, a feature

strongly correlated with readability, influences who people follow on Twitter, and

demonstrated that Twitter users have a higher chance to follow people of similar age.

Using standard readability measures in text from Twitter, which constrains tweets to

be of at most 140 characters in length, is not a trivial task. The lack of structure and

shortness of those texts make standard natural language analysis techniques ineffi-

cient. With that in mind, we developed TweetRead, a novel readability assessment

tool specifically designed for tweets. TweetRead takes advantage of social information,

such as hashtags or mentions, for predicting the text complexity levels of tweets.

Furthermore, in order to highlight the usefulness of such a tool in social networking

environments, we developed a simple, yet effective, hashtag recommendation strategy

that takes advantage of TweetRead-generated complexity levels of tweets to inform

the hashtag recommendation process.

A.2 TweetRead

TweetRead’s goal is to estimate readability of any given tweet T . However, traditional

Natural language processing techniques are known not to work properly on short and

unstructured text such us the one contained in tweets. Therefore, TweetRead avoids

using traditional NLP strategies and relies on simpler models based on content and

tweet-specific information. TweetRead is based on a logistic regression technique1

1We empirically verified that among numerous supervised techniques, logistic regression was the
most promising one.
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that fuses simple indicators describing T from different perspectives and determines

its text complexity. The indicators considered by TweetRead are described below:

• Extended Flesch. Flesch reading ease formula ) see Figure A.3) is widely

used by teachers for estimating readability of texts for their students. However,

this formula requires the input text to be sufficiently long to give accurate

predictions. Given that tweets are only 140 character long, the accuracy of

Flesch is low for predicting the readability of tweets, as shown in our assessment

in Figure A.2. To address the issue of the textual content, we explore various

strategies that consider tweets that may have similar readability levels. As the

number of tweets considered increases, so does the amount of text we have,

increasing with it the expected precision of Flesch. We considered 3 tweet

groups that may serve as indicators of readability:

– Other tweets by the user. A user is expected to be consistent in his

writing in terms of readability. Therefore, to determine the readability of

a tweet, it may be useful to take advantage of other tweets written by the

same user. For this, the average Flesch of all tweets of the user is used as

readability predictor.

– Tweets by users mentioned Homophily stands for the nature of users

to relate to similar users. It is a principle that widely manifests in social

networks, in terms of aspects such as age, hobbies or profession of users.

Following this principle, our hypothesis for this feature is that users with

same readability also tend to relate to each other more frequently that

random users. Therefore, we consider flesch readability of tweets written

by users mentioned in the tweet as indicator of the readability of the tweet.
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– Tweets that contain same hash-tags Following the same principle

homophily, users we hypothesize that users with similar readability also

share the hashtags they usually user. Therefore, we consider the Flesch

readability of all tweets containing the same hash-tags that the tweet

contains.

• N-gram models. Studies [111] demonstrate that users of same age, tend to

use similar terminology when writing tweets. Considering that age is a very

correlated metric to readability, we take advantage of these writing trends for

readability prediction. For doing so, we create one feature fgramr for each

existing readability group r. Each of feature fgramr is intended to measure

the similarity of term distribution between the collection dr of all the tweets of

readability r and the given tweet. For doing so, we take advantage of the well

known tfIdf formula, considering each dr a document containing all the tweets

of readability r and D the collection of all tweets.

tfidf(t, d,D) = tf(t, d)× idf(t,D) (A.1)

tf(t, d) = f(t, d)| (A.2)

idf(t,D) = log
|D|

|{d ∈ D : t ∈ d}|
(A.3)

The fgramr similarity of a tweet to the group r is computed as the sum of all

tfIdf values of all the terms contained on it.

• Metatags Tweets contain more information than just raw text, they also

contain Twitter specific information such as hash-tags or mentions and social
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information such as emoticons. In order to take advantage of this information

we also consider frequencies of this tags as predictors for readability.

Flesch = 206.835− 1.015(
totalwords

totalsentences
)− 84.6(

totalsyllables

totalwords
)

Figure A.1: Flesch reading ease

Unlike traditional readability formulas that tend to map readability levels with

school grades, to tailor TweetRead to the Twittersphere, we consider six levels of text

complexity following Levinston’s [74] adult development stages.

A.3 Hashtag Recommendation

Hashtags are character strings used to represent concepts on Twitter, starting with

a # symbol. They are a core Twitter feature and serve classification and search

purposes. Their unrestricted nature, however, creates difficulties, including the fact

that the same concept can be represented by different hashtags, hindering the search

process of a concept [110]. For example, tweets related to the Monaco Formula

1 Grand Prix can be searched using #monacoGP, #monacoF1GP or #monacoF1

retrieving different results. Hashtag recommendation aims at identifying suitable

hashtags a user can include in his tweet to reduce the space of tags generated [110]

and facilitate the ease with which he and other users can locate the corresponding

tweet.

Given that (i) the scope of this paper is to validate the importance of considering

a text complexity signal to enhance a recommendation task and (ii) multiple and

increasingly complex systems have been developed for hashtag recommendation [59],
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we base our study on an existing framework for hashtag recommendation presented

in [110]. Given a tweet T , the proposed framework identifies existing hashtags

to recommend by following two major steps: (1) generate candidate hashtags by

recommending hashtags present in similar tweets, using tf-idf a based similarity and

(2) rank hashtags from retrieved candidate tweets using different strategies. The

strategies presented in [110] include:

• Similarity. Prioritizes hashtags included on tweets that have the closes simi-

larity to T , as estimated using the well-known tf-idf similarity measure.

• Global popularity. Prioritizes hashtags based on their respective frequency

of occurrence on Twitter.

• Local popularity. Prioritizes hashtags based on their frequencies of occurrence

among the tweets retrieved in response to T .

We enhance the proposed strategies by taking advantage of TweetRead, as follows:

• TweetRead. Prioritizes candidate hashtags that have the same or similar text

complexity (estimated using TweetRead) with respect to T .

• PopularityTweetRead. Prioritizes hashtags based on their frequencies of

occurrence among tweets whose readability level is estimated to match T ’s.

• SimilarityTweetRead. Prioritizes candidate hashtags based on their respec-

tive ranking scores computed using Similarity only on tweets whose readability

level is estimated to match T ’s .



96

Table A.1: Comparison of hash-tag recommendation strategies

Similarity GlobalPopularity LocalPopularity TweetRead SimilarityTweetRead PopularityTweetRead
Mean Reciprocal Rank 0.47 0.19 0.40 0.23 0.52 0.50
First Relevant doc. on avg. 2.14 5.14 2.51 4.39 1.93 2.02

A.4 Initial Assessment

In this section, we discuss an initial evaluation on TweetRead, as well as its applica-

bility for suggesting hashtags.

A.4.1 TweetRead

Given that readability of social content is an unexplored area, benchmark datasets

that can be used for evaluation purposes are unavailable. For this reason, we built

our own dataset. We initially gathered 172M tweets over an 8-month period using

Twitter streaming API. For the purpose of this experiment we assume that the age

of people exactly corresponds to their readability level, and that each tweet written

by a user will have the same readability level as its author. With that in mind, we

followed the framework presented in [111], which examines patterns such as “happy

xth birthday”, for determining the age of Twitter users. In doing so, we eliminated

from our dataset, users (and their corresponding tweets) from whom age could not

be determined. Thereafter, we grouped labeled tweets into 6 age groups, which

translates into a uniformly distributed dataset of 22k tweets with their corresponding

readability levels. We followed a 10-cross-fold validation strategy and measured the

accuracy of the predicted readability levels with respect to the ground truth. As

shown in Table A.2, TweetRead significantly outperforms the baselines considered for

this assessment: Flesch [54] and Spache [99], which are two well-known, traditional

readability measures. The reported results demonstrate the need for readability
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strategies that examine information beyond standard text analysis, if they are meant

to be successfully used in the social networking context.

Table A.2: Performance evaluation of TweetRead vs. baselines.

Flesch Spache TweetRead
27% 31% 81%

A.4.2 Hashtag recommendation

For evaluating the strategies for hashtag recommendation presented in Section 3, we

used the aforementioned dataset. We treated the hashtag of each corresponding tweet

as the ground truth. In other words, for each tweet T , we generated the correspond-

ing top-N hashtag recommendations and considered relevant the ones matching the

hashtags in T . As in [110], we used the recall measure to evaluate performance and

determine to which extend the correct hashtags were recommended within the top

N generated suggestions. As shown in Figure A.2, even if readability on its own

is not a sufficient factor to suggest hashtags, when combined in-tandem with other

content-based and/or popularity strategies, it leads to the improvement of the overall

hashtag recommendation process.

Figure A.2: Hashtag recommendation assessment.
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To further highlight the improvement achieved by the use of readability, we

computed the Mean Reciprocal Rank (MRR) metric for each of the ranking strategy

considered. This metric represents in which rank is the first relevant document found

in average. We consider hash-tags as documents and the only relevant hash-tag is the

one that appears in the ground-truth for the input tweet.

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

Figure A.3: Mean Reciprocal Rank (MRR), where Q represents the tested tweets and
ranki the position of the first relevant hash-tag

The results, show that on average the first relevant hash-tag is found at position

1.93 on average for the strategy that combines readability and similarity, being the

one that best results achieved in terms of MRR. The best non-readability based

strategy is the one that relies on similarity which on average retrieves documents on

2.14 position.

A.5 Conclusion and Future Work

In this paper, we presented TweetRead, a novel readability assessment tool specifically

designed to predict the readability of tweets. We also discussed the initial study

conducted to demonstrate the benefit of using a readability signal in the hashtag rec-

ommendation task, which yielded promising results. In the future, we plan to explore

other applications of readability in social networks, such as user recommendation,

advertisement targeting or re-tweet prediction. We will also explore techniques to

further enhance TweetRead and adapt it to other social networks beyond Twitter.
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APPENDIX B

COMPARISON OF FEATURES USED BY A

REPRESENTATIVE SAMPLE OF READABILITY

ASSESSMENT TOOLS/FORMULAS
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Figure B.1: Features examined by a sample of readability prediction strategies. In
this Figure, languages processed by the considered strategies include: Basque (EU),
English (EN), Chinese (CH), Arabic (AR), Italian (IT), French (FR), Dutch (NL)
and Spanish (ES).


