

DEVELOPING AN ABAC-BASED GRANT PROPOSAL WORKFLOW

MANAGEMENT SYSTEM

by

Milson Munakami

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

December 2016

© 2016

Milson Munakami

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Milson Munakami

Thesis Title: Developing an ABAC-based Grant Proposal Workflow Management

System

Date of Final Oral Examination: 13th October 2016

The following individuals read and discussed the thesis submitted by student Milson

Munakami, and they evaluated his presentation and response to questions during the final

oral examination. They found that the student passed the final oral examination.

Dianxiang Xu, Ph.D. Chair, Supervisory Committee

Jyh-haw Yeh, Ph.D. Member, Supervisory Committee

Jidong Xiao, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Dianxiang Xu, Ph.D., Chair of the

Supervisory Committee. The thesis was approved by the Graduate College.

iv

DEDICATION

This thesis is proudly dedicated to my beloved parents and lovely wife for their

endless love, encouragement, and support.

v

ACKNOWLEDGEMENTS

I certainly did not get here by myself. Therefore, I want to thank all those who

helped turned this dream into reality. I would like to express my sincere gratitude to all the

people who supported me and made this thesis possible. First of all, I would like to extend

my heartfelt gratitude to my wonderful advisor, Dr. Dianxiang Xu, who guided and walked

me through this project. He is an excellent mentor and advisor. His invaluable advice,

encouragement, motivation, and untiring guidance will help me in my future endeavor. I

am also indebted to my committee members Dr. Jyh-haw Yeh and Dr. Jidong Xiao for their

expert advice, help, and support.

I would like to extend my sincere appreciation to the Department of Computer

Science at Boise State University for providing this excellent opportunity to pursue my

Master of Computer Science degree and financially supporting me with a research

assistantship without which the completion of my research would not have been possible.

Besides, I would like to thank my dear friends and all the REU (Research Experiences for

Undergraduates) students in Dr. Xu’s lab for their lovely companionship. Otherwise, it

would have been a mundane experience. My special, sincere and deep gratitude to my

family members for their endless love, support, encouragement, motivation, and believing

in me and my ability to succeed.

vi

Lastly, I want to thank my wife, Nisha. During writing and completion of this thesis

work, Nisha has supported me, encouraged me, and provided valuable suggestions to

complete this paper on time.

vii

ABSTRACT

In the advent of the digital transformation, online business processes need to be

automated and modeled as workflows. A workflow typically involves a sequence of

coordinated tasks and shared data that need to be secured and protected from unauthorized

access. In other words, a workflow can be described simply as the movement of documents

and activities through a business process among different users. Such connected flow of

information among various users with different permission level offers many benefits along

with new challenges. Cyber threats are becoming more sophisticated as skilled and

motivated attackers, both insiders and outsiders, are equipped with advanced and diverse

penetration tools and techniques. So apart from standard functional requirements, security

is a critical requirement for such systems. We need to have a new approach to more secure

design, configuration, implementation, and management of workflow systems. In this

paper, we propose a new software design model when developing a workflow system that

inherently decouples the system level functional requirements from the security

specifications. This externalization of authorization from the code makes it more flexible

to support dynamic business agility. Moreover, the proposed model is combined with

contextual information to accommodate dynamic access control enforcement. The given

architecture provides outstanding levels of control, security, privacy and compliance with

regulatory standards by using more fine-grained static as well as dynamic Attribute Based

Access Control (ABAC) policies. We also develop a viable implementation called Grant

viii

Proposal Workflow Management System (GPWFMS) that supports not only functional

and security specifications of workflow but also extended complex features like

Obligations and Delegation of Authority which is lacking in the much existing literature.

ix

TABLE OF CONTENTS

DEDICATION ... iv

ACKNOWLEDGEMENTS ...v

ABSTRACT .. vii

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS .. xiv

CHAPTER ONE: INTRODUCTION ..1

1.1 Background ..1

1.1.1 Attribute Based Access Control ..4

1.1.2 Case Study of a Workflow Management System5

1.1.3 Obligation and Delegation of Authority ...10

1.2 Problem Statement ...11

1.3 Objective ..14

1.4 Outline..16

CHAPTER TWO: RELATED WORKS ...17

2.1 Access Control ...17

2.2 XACML ...18

2.3 Obligation ..22

2.4 Delegation of Authority ...23

x

CHAPTER THREE: SYSTEM REQUIREMENTS ..25

3.1 Functional Requirements ...25

3.2 Security Requirements ...29

3.2.1 ABAC ...31

3.2.2 Obligation ...34

3.2.3 Delegation of Authority ..38

3.3 Access Control and Obligations in XACML ...45

3.4 Delegation in XACML ..47

CHAPTER FOUR: SYSTEM DESIGN AND IMPLEMENTATION49

4.1 Architecture..49

4.1.1 RESTful Services ..53

4.1.2 Database ..55

4.1.3 Morphia ...57

4.1.4 Balana ...57

4.2 Design and Implementation of Obligation Mechanism57

4.3 Design and Implementation of Delegation Mechanism62

CHAPTER FIVE: VALIDATION AND EVALUATION ..68

5.1 Testing..68

5.2 Results ..71

5.3 Threats to Validity ...71

CHAPTER SIX: CONCLUSION ..74

REFERENCES ..76

APPENDIX A ..81

xi

Use Case Descriptions for GPWFMS ..82

APPENDIX B ..102

State Diagram of GPWFMS with Delegation ..103

APPENDIX C ..104

Attribute Metadata Definition ..105

APPENDIX D ..109

Functional and Access Control Requirements ...110

APPENDIX E ..151

Policy Requirement Description ..152

APPENDIX F...153

Policy Rule with Obligation...154

APPENDIX G ..155

XACML Request Format example ..156

APPENDIX H ..157

XACML Response Format example with Obligations ..158

xii

LIST OF TABLES

Table 1 Generalized Use cases for GPWFMS ... 27

Table 2 Attribute Dictionary Definition ... 32

Table 3 Requirement for Add proposal by Tenured/Tenured-track Faculty 33

Table 4 Requirement for Delete proposal by PI .. 36

Table 5 Requirements for Approve by Department Chair 37

Table 6 Use Case for Department Chair Delegates Associate Chair. 42

Table 7 Security Rules formulated for GPWFMS ... 58

Table 8 GPWFMS Test Results ... 71

xiii

LIST OF FIGURES

Figure 1 Proposal workflow life cycle without Delegation 5

Figure 2 Grant Proposal Data Sheet Page 1 .. 8

Figure 3 Grant Proposal Data Sheet Page 2 .. 9

Figure 4 XACML Policy Language Model ... 20

Figure 5 High-Level Design of XACML Enforcement Architecture 21

Figure 6 Use Cases for GPWFMS with Delegation of Authority 28

Figure 7 Conceptual Delegation Model .. 41

Figure 8 A simple example of Delegation Process in GPWFMS 44

Figure 9 XACML Access Control Policy Rule without Obligations 46

Figure 10 XACML Access Control Policy Rule with Obligations 46

Figure 11 Static Delegation Access Control Policy Rule.. 47

Figure 12 Dynamic Delegation Access Control Policy Rule 48

Figure 13 Modular Design of GPWFMS .. 50

Figure 14 GPWFMS Block diagram ... 51

Figure 15 Application Architecture of GPWFMS .. 52

Figure 16 Obligations Expression Format... 59

Figure 17 Obligation processing in GPWFMS ... 61

Figure 18 Delegation User Interface ... 63

Figure 19 Delegation processing in GPWFMS ... 65

Figure 20 Testing Model in GPWFMS ... 69

xiv

LIST OF ABBREVIATIONS

WFMS Workflow Management System

GPWFMS Grant Proposal Workflow Management System

ABAC Attribute Based Access Control

RBAC Role Based Access Control

XML Extensible Markup Language

XACML eXtensible Access Control Markup Language

DOA Delegation of Authority

SOA Service-Oriented Architecture

OSP Office of Sponsored Programs

PI Principal Investigator

Co-PI Collaborative Principal Investigator

IRB Institutional Review Board

REST REpresentational State Transfer

API Application Programming Interface

JSON JavaScript Object Notation

PAP Policy Administration Point

PIP Policy Information Point

PDP Policy Decision Point

PEP Policy Enforcement Point

1

CHAPTER ONE: INTRODUCTION

With the advancement of cloud computing, Bring Your Own Device (BYOD) and

Internet of Things (IoT), organizations are trying to adopt such new technologies to develop

and implement autonomous workflow management systems (WFMSs). This digital

transformation is bringing a new paradigm shift in the organization breaking the traditional

approach of manual paper-based workflow management. Such online WFMSs focus on

helping people to perform their tasks better and faster. However, the same level of security

and automation is required by the organization along with promoting collaboration and

information sharing among its stakeholders. As such fast-paced business processes are

automated commonly referred as ‘workflow automation’ many security challenges need to

be considered to streamline the work associated with each process step to make it more

secure and flexible. Such dynamic and adaptive WFMS needs to provide a way to adapt to

the vibrant and changing organizational needs to fulfill both system/functional and security

requirements. As the threat landscape is changing and becoming more diverse and

advanced, we need to architect, design, implement, and manage the security and privacy

requirements in a way that allows users to focus on work and improve business operations

rather than handling and tackling new security challenges associated with each task.

1.1 Background

Web-based WFMSs are widely becoming popular due to its high demand and

adaptation of digital transformation in modern organizations. They are extensively used to

2

aid and streamline business processes in numerous application domains such as office

automation, finance, and banking, healthcare, telecommunications, manufacturing, and

production [1][2]. In such distributed workflow system, which usually deals with multiple

users, shared resources, and environments; this is even more crucial to secure its critical

assets. A general objective of such workflow management systems is to support increased

workflow automation and security requirements in complex real-world environments

involving heterogeneous, autonomous, and distributed information systems [3].

The increasing interest in replacing paper-based workflow into internet based

online workflow systems make it vulnerable to security attacks and threats from outsiders

as well as from insiders. Using autonomous workflow systems can leverage significant

advantages to organizations by reducing paperwork, accelerating collaborations and

providing better Quality of Service (QoS) to their customers. To fulfill and address such

fundamental driving force behind each organization, developers need to have a firm

understanding of their business objectives as well as security requirements. Apparently,

due to developers’ lack of understanding of business-oriented access control requirements,

they can create many loopholes in the application. These security potholes can be easily

exploited and impose high-security risks to the overall organizational goal.

In particular, the majority of available workflow systems do not yet support

externalizing authorization from a business process. In these models, access is defined and

controlled by each application’s backend database or via hard-wiring within the code-level

which can make them harder to address the dynamic organizational changes and

restructuring processes. To make such a WFMS more secure and maintainable, we need to

separate the business logic from the security features so that authorization logics do not

3

need to be within the code, but rather can be created and maintained external to the

application.

With this separation of authorization from the functional business process, however,

modeling, designing, composing and testing of such applications become harder and time-

extensive. As it involves diverse and distributed stakeholders accessing the same resources

from different environments and ‘context’ that is beyond the predefined organizational

boundaries in such application. There is always risks of sensitive information

disclosure/leakage, unauthorized data access/breaches, identity theft and lack of privacy

protection. Workflow processes can be complex and deal with more sensitive data across

many different users that require varying degrees of information confidentiality and data

security mechanisms. Such workflow applications need to provide a way to control the

access to the information based on user’s authority, privacy levels and other various

implicit contexts.

Each workflow activities can act as an entry point for potential security threats and

attacks, such as unauthorized access to the protected sensitive organizational information

and leakage of critical personal data. The essential solution for data compliance and

leakage prevention is controlling who can access what and when in accord to a set of pre-

defined rules, routes, user roles, and privilege definitions. Such paradigm shift is increasing

the complexity of workflow software architecture, design, and implementation. Hence, a

more efficient and secure system design is needed to protect the significant flow of

sensitive information from data theft and leakage.

4

1.1.1 Attribute Based Access Control

The main challenging problem of cyber security is the protection of shared data

from unauthorized users for which different access control models are introduced. The

concept of role-based access control (RBAC) began with early multi-user, and multi-

application online systems pioneered in the 1970s [4]. The traditional RBAC model is

insufficient in that it cannot describe fine-grained access constraints. It imposes many

limitations for the granularity of permissions among distributed domains, resources, and

users. It does not consider any other contextual information or object attributes except for

role. From an enterprise perspective, RBAC is a passive access control model based on the

direct assignment of roles and permissions that specify no time constraints, which can be

exploited and can cause security threats. Such mechanism can be very messy and

complicated if the organization has hundreds of thousands of users and similar roles that

can lead to “role explosion”. Changes to these associations between roles with privileges

and users with roles are frequent and explicit. Manual change management is required and

causes an unwanted delay on business processes. Such manual revocation of the users from

assigned roles can cause big overhead for the organization administration. Also, inability

to do manual revocation may result in many unforeseen security risks and may not correctly

reflect the business requirements.

RBAC falls short of addressing dynamic fine-grained authorization at runtime. The

shortcomings of traditional RBAC can be tackled by constructing a permission model using

more fine-grained ABAC, which combines the flexible organization structure with the

attribute based access control. ABAC is a relatively new paradigm for handling security

policies. ABAC is more efficient logical access control methodology than RBAC where

5

authorization for activities is determined by analyzing attributes associated with the

subject, object, action, and environment conditions. Due to its fine-grained nature, ABAC

can be used to facilitate secure information sharing within the organization or federated

environment. Unlike RBAC in which job function (role or identity) of a particular user

defines an authority level, ABAC facilitates collaborative policy administration and

auditing. ABAC explains not only WHO can access WHAT but also provides some

additional context like WHEN, WHERE, WHY, and HOW. In simple words, ABAC relies

upon the matching of attributes of the subject, attributes of the object, environment

conditions, and their relationship with defined access control rules.

1.1.2 Case Study of a Workflow Management System

For this research work, we investigated ABAC model with the eXtensible Access

Control Markup Language (XACML) Version 3.0 specification in a real-world application

GPWFMS. In GPWFMS, we try to capture the real-world working process of University

Grant Proposal Submission.

The regular activities in the proposal workflow life cycle are as shown in Figure 1.

Figure 1 Proposal workflow life cycle without Delegation

6

First of all, a research grant proposal is written and initiated by a Principal

Investigator (PI) by filling the proposal information and relevant supporting documentation.

It may include some Collaborative Principal Investigators (Co-PI) and Senior Personnel as

co-authors or contributors. After getting the consent from each involved investigators, when

the PI finds the proposal is ready to be submitted, he/she can submit it to the Department

Chair for approval who will either return it or route it to the next phase in the workflow.

After being approved by the chair, it will await for being reviewed by the Business Manager,

the Institutional Review Board (IRB) and the Dean. This process can get even more complex

and complicated if the proposal involves investigators from multiple departments,

particularly for multidisciplinary efforts. In such case, all departments' authoritative

personnel need to review and approve its content. Anyone of them can obstruct the overall

proposal workflow process and can cause an unprecedented delay in completion of proposal

submission. Once the proposal is approved by the Dean as well as reviewed by IRB if it

involves any compliance issues to comply with Federal, State, and University regulations,

then it must be routed to the University Research Administrator who can disapprove or

withdraw it or can approve it by routing it to the University Research Director. Research

Director can either refuse or delete the whole proposal or can give final approval for

submission. Finally, once it gets approval from the Research Director, University Research

Administrator can submit the proposal. Then University Research Director can archive the

submitted proposal for future use.

As in the above-described usual scenario, it involves different activities that need

administrative users with various position titles and privileges to engage and complete

various tasks. Each activity within the workflow is associated with a subject who needs to

7

ensure the pending task is completed on time, and all obligations are fulfilled before and

after any action is performed. We can view this complex workflow as a multi-layered state

machine which needs to fulfill pre-conditions and post-conditions in each state and some

specific event triggers it from one state to another.

In a typical paper-based proposal management workflow, an authorized user such

as faculty needs to fill-up a lengthy data sheet paper form as shown in Figure 2 and Figure

3, with proposal information and hands it to the next level user such as Department Chair.

Workflow tasks like approving/disapproving a proposal, budget reviewing, etc. which

involves user authorization can be time-consuming. During each phase, the user’s electronic

signature plays a vital role as it indicates the consent from the user that corresponds to

endorsement and commitment to the proposal. They can also request for revisions or

additional information from the PI while reviewing the proposal. The most delaying factor

usually is the length of time to reach a person and for that person to review the document.

This task gets more complicated and tedious when the proposal involves other Co-PIs from

different departments and need to be approved by authorized persons from each

department. To convert such a tedious and time-consuming manual process into a flexible,

reliable and more secure digital automated system is a challenge which respects the integrity

of the workflow as shown in Figure 1 and Appendix B.

GPWFMS is a web-based workflow management system to automate and regulate

the approval process of grant proposal submission which involves the creation, routing,

and processing of grant proposals until completion. In particular, we are looking into a

complicated setup of GPWFMS which may include various subjects trying to perform

certain actions on shared resources that can alter data and control flow.

8

Figure 2 Grant Proposal Data Sheet Page 1

9

Figure 3 Grant Proposal Data Sheet Page 2

10

In GPWFMS, we automate this entire workflow lifecycle so that it is completely

electronic and paperless. The new automated process saves time waiting for paperwork to

traverse around the campus. It also provides a secure and central location to store and

manage all relevant documentations. Organizations intended to enforce privacy and

security regulations will have their access control policies and business rules based on

functional and security requirements. The functional and security mechanisms such as

privacy, access control, and usage control are defined and documented. These access level

rules determine how proposal-related information is managed, processed, routed, and

tracked to make decisions in every step. For example, one rule might be to have conditional

routing of data and tasks based on the status of the proposal and user’s context.

The Unified Modeling Language (UML) based Use Case diagrams with their textual

descriptions are used to formulate such requirements. These formal specifications are

translated into eXtensible Access Control Markup Language (XACML) based authorization

policies by utilizing fine-grained ABAC model. Thus, it requires verification and validation

of the correct access to the requested resources using subject’s access levels which are

determined by subject, action and resource’s attributes. Attributes may be considered

characteristics of entities that may be predefined and pre-assigned a value by an authority.

1.1.3 Obligation and Delegation of Authority

Along with making it more automated and secure, we need to consider the

possibility of having many ‘disconnected users’ who can obstruct the flow of the task.

‘Break-the-glass’ is one approach which helps to prevent such workflow stagnation based

on flexible and dynamic policies. In such break the glass scenarios, sophisticated features

11

such as system and user-level Obligations, Advice, Delegation of Authority (DOA), and

Delegation of Obligations can be helpful so that the task can be completed on time.

Obligations are requirements that have to be fulfilled by the subject before (pre) or

after (post) performing an action on a particular resource. For example, a pre-obligation

requirement is that a user must sign the proposal with the current date time, initial and note

before approving or disapproving it while it is waiting for his approval. As this need is to

be fulfilled by a user, this is an example of user-level obligation. On the other hand, post-

obligation is to notify all associated persons of that proposal about the change via

email. The system performs such post-obligation as a system-level obligation. Moreover,

in current existing workflow systems, there is no way we can impose obligations on any

users based on policy rules.

Proposal workflow life cycle with complex delegation scenario is shown in

Appendix B. Interestingly, issues of DOA can cause a critical security threat to the business

as it provides more administrative authority to any new user (delegatee) in absence or

consent of authority (delegator). Also, each delegation policy can have its obligation

constraints known as delegation of obligations, which need to be enforced and fulfilled by

the delegatee and the system.

1.2 Problem Statement

According to Workflow Management Coalition (WfMC), Workflow is defined as,

“The automation of a business process, in whole or part, during which documents,

information or tasks are passed from one participant to another for action, according to a

set of procedural rules” [5]. The WfMC has published a standardized security workflow

model describing some security services that includes authentication, authorization,

12

access/usage control, audit, data privacy, data integrity and non-repudiation. Such

standards clearly emphasize the major security objective of any workflow system is to

prevent the unauthorized access of classified information. Overall, the workflow modeling

lacks research and standardization on how to design and implement a reliable and secure

workflow specification.

In the study of workflow secure access control models, the task-based access

control (TBAC) and role-based access control (RBAC) are most commonly considered and

applied [6]. As WFMSs are used for critical and strategic applications, security is an

essential and fundamental part of such systems. Many Web-based workflow applications

enhance their safety via access control systems [7][8][9]. Our goal of this research work is

to improve the existing secure software design model that mainly advocates for the use of

TBAC, RBAC [6] and ABAC without the concept of DOA and Obligations. The primary

focus of the security in such model is based on their role in the organization which can

quickly restructure or change in dynamic enterprises; which means the client codes need

to be reconfigured and modified. NIST [10] indicates ABAC as a recommended access

control model for promoting information sharing among diverse and disparate

organizations.

Even though we are experiencing an unprecedented rise in the popularity of

WFMSs, little has been done to take into account the standardization of access control

constraints such as Separation of Duties (SoD), DOA and Obligations. Today’s workflow

systems need to provide the automation of a business process using more coordinated and

collaborated execution of multiple tasks from different entities that may reside outside the

inter-organizational boundaries at distributed environments. On the one hand, such intra-

13

boundaries access demands the system to support for continuous and collaborative business

process that puts the business flows immediately and directly under the control of the

people using the system. On the other hand, it needs to govern all security access control

constraints via centralized and unified XACML policies.

The complexity of real-world workflow application requirements both functional

and non-functional is revealing the limitations of the current security model design. The

dominant traditional security access models are more discretionary and do not consider

contextual information such as date, time, location and environments that allow intruders

to bypass any defined security mechanisms easily. Existing state-of-art digital workflow

solutions have security access controls hard coded at the application level, and also they

do not specify complex access control constraints such as DOA and Obligations in policy

level. Code-level access control logic making such systems rigid, incomplete, less secure

and easy target to the security threats. When access decisions are embedded within the

client applications, it makes it tough to update the decision criteria when the governing

business rule changes. With such rigid software design patterns, it makes it harder to adapt

any changes with the existing applications. Thus, there is a great need for flexibility in

software design and implementation that supports dynamic changing of security policies

based on DOA and obligation constraints. Improper design and implementation of such

access control security constraints may increase critical complications.

Additionally, the presentation layer is all based on developer understanding of the

domain. On the other hand, if we can leverage the power of XACML policy, we can

implement the policy rules on presentation tier that can provide more personalized and

14

business rules oriented user interfaces. Moreover, such interfaces can reflect the changing

need of operations in future without the need of re-coding the application.

In particular, we need to investigate various security concerns in a complex

environment of GPWFMS. One of the many outstanding technical challenges of adaptive

WFMS is that it needs to unify people and resources with diverse features into a more

cohesive way. A secure online workflow system needs to comply with all security

requirements of the organizations alongside their system objectives and should safeguard

all the sensitive information at any point of time. We can achieve this by integrating

organizational access control policies throughout the workflow activities. However, this

does not mean that it needs to imply many restrictive measures during each action from the

user to make it more secure and robust. Such restrictions may degrade the usability or user

acceptance of the overall system and also can impact the system’s performance.

1.3 Objective

Our main contribution is to propose and develop a more secure and reliable

software design model that uses ABAC using XACML policy. These unified policies are

driven by administrative delegation and access control with obligations rules which are

flexible enough to manage and adapt complex system requirements. Using the latest

specification of XACML profile, we can implement policy-driven interface design. Such

policy-based capabilities demonstrate how we can use ABAC in presentation layer not just

as a middle layer between service and database. This flexibility makes the system more

configurable based on a comprehensive and formal set of governance rules rather than hard

coded by a developer and provides a more personalized user experience.

15

These extensions in XACML standard are very helpful toward achieving

sophisticated security features. However, it does not specify the kind of software design

required to handle them properly. Such immaturity of XACML is making these new access

control concepts less applicable and hence there are limited examples and implementations

available. To the best of our knowledge, very few related work has been carried out in the

real use case and implementation of such security model. Thus developed workflow

management system can demonstrate a good use case for implementation of our proposed

software design model that is simple to use and to administrate.

This challenge allows us to develop a good software architecture that can support

system requirements which are common in the real-world dynamic organization. To fulfill

such on-demand security requirement and replace the existing limitation of available

solutions, we are proposing a new software design architecture which implements ABAC

along with advanced access control concepts such as DOA and Obligation to model much

closer to realistic business authorization scenarios. Also, this software model can

externalize authorization by separating Database and Web Services access functionalities

from business policies making it truly agile, powerful, and dynamic. The proposed software

design and architecture makes the authorization mechanism more flexible and useful which

simplifies the task complexity of security administrator and developers. The security

administrator needs to write and update the XACML policies that cover all the functional

and access control security requirements in a central repository. On the other hand, this

approach helps developers focus on business-oriented problems rather than basic service

implementations. As ABAC based policy rules do not require the creation or maintenance

of hierarchical structure as in an RBAC model, such rules need less maintenance and

16

overhead. This model combines the advantages of the new fine-grained ABAC model

along with other security access control constraints. Such combination reduces the risks of

data breaches, sensitive data leakage and identity theft in an organization.

1.4 Outline

The paper is structured as follows. Chapter 1 briefly describes the challenges that

exist in current software development practice, which illustrates the need for flexible and

secure software architecture. Chapter 2 gives an overview of related work in this area. In

Chapter 3, we outline all system requirements that the application needs to comply with

and support. These requirements are the desirable criteria to evaluate the system design

and implementation. Also, it explains how XACML access control policy can be used to

express such security assertions rather than embedding them in code-level. Chapter 4

discusses the development and implementation of an authorization architecture enforcing

our approach to support sophisticated features and requirements of the workflow system.

Chapter 5 describes how the system requirements are used for evaluating our secure design,

along with the result of our automated tests. Also, we explain some of the assumptions

based on which our system security model is constructed. Chapter 6 summarizes our

conclusions, together with the future direction for our research work. The paper also

contains an appendix reporting the detail system use-cases textual description, functional

and security requirements, test results and some policy rule specifications, XACML based

request and response protocol format used by our proposed model.

17

CHAPTER TWO: RELATED WORKS

2.1 Access Control

To accomplish security needs of any adaptive workflows, we can implement access

control mechanisms [7][8][9]. According to National Institute of Standards and

Technology (NIST) - “An access control method where subject requests to perform

operations on objects are granted or denied based on assigned attributes of the subject,

assigned attributes of the object, environment conditions, and a set of policies that are

specified in terms of those attributes and conditions.” [10]. Access control is always

necessary for organizations to offer proper data security and protection. In recent years,

many secure access control models [8][11][12][13] are proposed and studied for

collaborative and intra-organizational environments that express complicated access

control constraint using traditional security methods. Unfortunately, those static access

control models radically fail to meet new regulatory standards and safeguard compliance

demand of a dynamic organization. In a workflow, security involves the implementation of

a secure access control mechanisms to ensure that no subjects are allowed to perform

unauthorized activities on given resources. However, the biggest problem is such objects

can have dynamic attributes and characteristics based on the contextual information

surrounding a request. Contemporary information security mechanisms are often immature

or insufficient in addressing such demanding compliances due to lack of standardization.

18

In distributed systems, models and languages have been widely investigated to

specify access and management of control policies [14]. With the advent of web services

based Service-oriented Architectures (SOA), these frameworks are enhanced to meet

security of the distributed environment. A typical approach is to assign users to one or more

roles, and then to grant security to those roles known as RBAC [4][6]. The system should

be able to define access control to those roles at several levels. Unfortunately, these

information security mechanisms are insufficient to address the complex security

requirements that are more fine-grained and need to support different collaborative

activities such as pre/post obligations and delegation of tasks.

Attribute-based access control is proposed as the perfect access model to overcome

the shortcoming of traditional RBAC model. Movahednejad et al. [15] describe

comparative evaluation and taxonomy of state-of-the-art approaches. Similarly, in other

papers [16][17][18], authors have described the advantages and benefits of ABAC model.

By contrast, our model makes it more fine-grained access control by supporting the

contextual information i.e. time, location and environmental state for any user requests.

2.2 XACML

Use of XACML-based expressive access control policies is proposed to protect the

access of resources in distributed systems that facilitates dynamic access control [19].

Herrmann [20] also explains about the design of a conceptual and logical evaluation

context model based on XACML 3.0 specifications.

XACML is XML-based declarative policy language for defining access control

policies and a related processing model which permits the specification of authorizations

as rules. Granular level of access control can be achieved in XACML as a specialized

19

implementation of ABAC. Furthermore, XACML is a generic framework recognized by

OASIS standard1 for access control which ideally provides standardization,

expressiveness, modularity, interoperability, and efficiency [21][22]. The XACML

specification defines a declarative fine-grained, attribute-based access control policy

language, a reference architecture, and a processing model describing how to match access

requests according to the stored policy rules. XACML standards address and determine

how security authorization requests are handled internally.

An XACML policy P can be formalized using 5-tuple (S, R, A, C, Ob) [23], where

S is a set of subjects, R is a set of resources, A is a set of actions, C is a set of permission

conditions which can be evaluated to either true or false and Ob is a set of obligations.

XACML architecture is a suitable choice for our model because of its:

i. Expressive power in expressing policies.

ii. Computational simplicity in access algorithms.

iii. A natural language translation from business policies to access rules.

iv. Standardized processing model which supports the externalization of the

access decision from the business logic.

As shown in Figure 4, XACML Policy Language Model composes of many components.

The policies may consist of different access control constraints in the form of policy sets,

policies, decision rules, conditions, etc. for defining access level to the resources for a user.

The main elements of the XACML Policy Language model are:

1. Policy Sets: A policy set consists of one or more policies, other policy sets

and a declaration for policy-combining algorithms.

1 https://www.oasis-open.org/standards

20

2. Policies: A policy includes a set of rules, a resolution for appropriate rule-

combining algorithms, a set of obligations and advice, and a target.

3. Rules: A Rule is the simplest unit of policy. A policy can comprise of one

or many rules that can evaluate to Permit, Deny, Indeterminate, or Not Applicable.

Figure 4 XACML Policy Language Model

Each access control rule may consist of a condition, an effect, and a target to

provide the fine-grained security.

• Conditions are statements about attributes that can evaluate either True,

False or Indeterminate.

• The effect returns value Permit or Deny based on the satisfied rule.

21

• Target in policy helps in determining whether or not a rule is relevant for a

request.

• As a policy can have multiple rules, it is evident that it can generate different

decisions based on different conflicting rules. To minimize that risk Rule-combining

algorithms are used which resolve such conflicts and always try to outcome only one

decision per policy.

Figure 5 High-Level Design of XACML Enforcement Architecture

The XACML reference architecture as shown in Figure 5, highlights all the logical

components of XACML as well as their internal interactions and authorization flows. It

can be viewed as interactions of four top-level components as described below:

• The policy administrator defines and manages policies and policy sets at the

Policy Administration Point (PAP). XACML supports a variety of

22

underlying infrastructures for policy and attribute storage. The policy

repository stores the rules, policies, and policy sets that are used for access

control.

• Policy Information Point (PIP) behaves as a metadata of attribute values

(i.e. a resource, subject, environment conditions) and can be federated.

• The Policy Decision Point (PDP) analyzes the resource access request with

the matching rules, policies, policy sets and returns a decision to the caller.

• The Policy Enforcement Point (PEP) forwards the incoming request for

access or authorization decision to the XACML context handler with a

predefined format that specifies the details about the attributes of the

subjects, resources, actions, and the environment. Placement of PEP

directly influences the overall system performance.

• Once the policy is evaluated successfully, the PEP will either permit access

or deny the access to the service requester for the requested resource and

action. Also, the decision includes associated obligations and advice along

with the reply if any.

2.3 Obligation

Mbanaso et al. [24] proposed a model that uses obligations of trust to negotiate

between the client and service provider to adequately preserve the user's privacy. This

communication is based on XACML standard and applicable to be integrated into

distributed access control systems. In the distributed settings, without more secure access

control methods there is always the risk of leakage of business-critical and personal assets.

Another paper by Sans et al. [25] explains how policy language can be used to express both

23

contextual permissions and obligations. Such usage control mechanisms are used while

evaluating and enforcing the policies. Although, they lack the concept and support for

dynamic changes in policies that are inevitable in today’s distributed systems. Elrakaiby et

al. [26] had formalized the enforcement and management of obligation policies in which

they had used the concepts of action specification languages and the Event Condition

Action based on different states of obligations. Unlike general two types of obligations i.e.

Pre and Post, in this article, they also identified Ongoing obligations which are activated

when resource usage starts. Also during the enforcement and fulfillment of usage-control

obligations, these different types of obligations are enforced by validating and verifying

different obligation states and state transitions.

2.4 Delegation of Authority

There are some papers [27][28][29][30], which try to extend XACML standard to

support effective delegation of authority. Many of such existing literature are based on

RBAC model. As in research [31], authors have proposed an Attribute-Based Delegation

Model (ABDM) and its extension ABDMx. But in the core, it is also using role-based

access control and lack of many features of DOA such as revocation. In Chadwick and

Fatema’s work [32], policy-based authorization is explained to secure critical data and

protect the privacy of users. In this research, authors have utilized XACML Profile-based

policies on data to achieve Human to Human delegation and administration. However, this

monotonic delegation model lacks any provision for revocation which can bring lots of

security challenges to the proposed model. These limitations make it incomplete and less

fine-grained secure approach to facilitate delegation. In Tomaiuolo’s paper [33], a generic

open source framework for issuing and verifying delegation chains based on trust is

24

proposed. This revelation emphasizes the importance of a need for standardization and a

common set of protocols to enforce delegation. Similarly, regarding workflow security,

formal methods for delegation [34] in workflow management system is developed.

However, it has not produced any tangible tool to support the claim regarding benefits of

their approach. All these works are theoretical propositions and lack any proofs.

Apparently, when these theoretical aspects are implemented in software, many real

challenges emerge which are not considered.

25

CHAPTER THREE: SYSTEM REQUIREMENTS

 Before presenting the object-oriented system architecture, we are required to

specify the functional and security requirements which the model aimed to satisfy and then

outline the core principles that will be implemented during the design process. The

proposed system design is architected and designed in such a way that every functionality

is highly configurable so that it can support modification in requirements in the future. This

step is similar to the traditional software engineering practice, where the security features

are often built in an ad-hoc manner. In this principle, design model (business logic) and

security model are treated as different tasks. Based on this low-level system specifications,

the overall system operational and security requirements are collected as shown in

Appendix D.

3.1 Functional Requirements

Workflow system involves business process specifications that hold all the business

logics as technical requirements. A business process involving some tasks needs to function

effectively to meet its business goals. The primary purpose of any business processes is to

increase customer satisfaction and reduce costs for an enterprise. The functional

requirements help us to find out those core business values and describe overall operational

processes of a business model. System functional requirement analysis is done based on

UML models such as Use Case and its extensive textual descriptions. The object-oriented

software development process begins with detailed UML diagrams where system

26

requirements are expressed in use cases. A use case is a graphical methodology used in

system analysis to identify, clarify, and organize system requirements. The UML use case

is used to explain a set of interactions between systems and users in a particular

environment to achieve a specific goal. In GPWFMS environment, regular workflow

system activities like to create, update, submit, delete, update, sign, delegate, revoke,

approve, disapprove, withdraw, and archive a proposal during various phases are the

typical proposal workflow functional needs. The proposal needs to be circulated to

Department Chair, Business Manager, Dean, IRB, and University Research Administrator,

University Research Director for review, approval, and signatures. Reasonable

modifications to the proposal are permitted up to the submission. But, we need to make

sure those tasks are visible only to the authorized users at any given time.

Using UML specification, we can identify all possible subjects, resources, and

actions for our application. The behavior of use case is usually described in natural

language, and these informal descriptions explain the allowed and denied accesses of actors

to the system. For example, Department Chair is authorized to Approve, Disapprove,

Delegate and Revoke actions and each action also includes Notify event. Overall functional

requirements of GPWFMS can be generalized as shown in Table 1.

27

Table 1 Generalized Use cases for GPWFMS

Use case Description

1. Create/add a proposal. Allow the user to create/add a new proposal

to the system as Principal Investigator (PI).

2. Delete the proposal. Allow PI and Research Director to delete

the proposal.

3. Update the proposal. Allow PI and Co-PIs to update the proposal.

4. Submit the proposal. Allow PI and University Research

Administrator to submit the proposal.

5. Delegate the rights. Allow Department Chair (delegator) to

delegate his tasks (all or some) to Associate

Chair (delegatee) from the same

department.

6. Revoke the delegated rights. Allow delegator to revoke the delegated

tasks from the delegate.

7. Approve/disapprove the proposal. Allow all authorized users i.e. Department

Chair, Dean, Associate Chair (Delegated),

etc. to approve/disapprove the proposal.

We have documented such functional requirements in use case diagram as shown

in Figure 6, and their detailed textual descriptions are listed in Appendix A.

28

Figure 6 Use Cases for GPWFMS with Delegation of Authority

These use cases describe the mapping between actors and entities for an application

to fulfill all its functions. A use case diagram corresponds to one low-level view of a model

of a system where every object is regarded as protected and every access to an entity that

is not part of use case is considered unauthorized. Such use cases implicitly define an access

policy that adheres to the principle of least privilege [35].

To function properly, GPWFMS provides user management that helps to manage

users, their corresponding position details, and other personal information. Similarly, it

also requires having proposal management section where the user can search for their

associated tasks and make changes to them from a central location. To fully function

delegation features, it needs to provide a unified way to handle Human to Human

delegation services called as delegation management. Also, a customized notification

29

service is desirable which will alert and also sends an email to the corresponding users

about any changes to their proposal and requires their attentions. These desired

specifications usually help us to understand the business processes and how can we

automate them by driving interactions between various participants and the system.

For example, once PI submit the proposal to Department Chair for approval then

the “Submit” button should not be visible to the same user navigating same proposal next

time, whereas the “Approve” button should be displayed when Department Chair logs into

the system. Developers can perform this kind of assertion in code level with writing lots of

conditional statements. Such hard-coded security statements introduce complication

making the application more rigid to any future changes and maintenance tasks in business

logic. At the same time, it increases lines of code that introduces more application-

dependent errors and security loopholes in an application.

Such low-level system requirements ensure a consistent model for development and

allow a developer to break down the monolithic applications into smaller modular services

that can interact with each other. In GPWFMS, such RESTful (Representational State

Transfer) Application Programming Interfaces (API)-based services are designed in such

a way that it supports the pre-defined functional requirements in an efficient manner

ensuring a high-quality business application. However, in these functional specifications,

the underlying security measures of the services are not considered.

3.2 Security Requirements

Security is the most powerful and efficient measure in software design to make it

more robust and secure. It is equally necessary to implement and enforce non-functional

security-related features in any application along with system function. However, one

30

problem with security requirements is that developers do not have expertise knowledge

about secure software development. Beside this, security requirements are difficult to

analyze and model [36] [37].

The potential attacks can occur not only from outsiders but also from within the

system by the users who can misuse their assigned privileges. Such insider attacks can

range from violating compliance goals, revealing confidential information, or altering

workflow behavior. Therefore, to make the workflow system more secure along with

fulfilling all the functional requirements, we need to assure that the proposed model meets

essential goals of secure software design as explained below:

1. Confidentiality: The tasks (both normal and delegated) should not be disclosed

to any other user. The private or sensitive personal and proposal information

needs to be protected from unauthorized access or modification.

2. Integrity: Only authorized user can view whom the tasks that are assigned.

Additionally, each activity needs to be validated and authorized as well as all

the obligations (both pre and post responsibilities) accompany with that task

must be enforced and fulfilled by the user during this process otherwise is not

allowed.

3. Availability: All the tasks assigned to the user by the system or by another user

(delegation) need to be visible and accessible to the user. Unless that privilege

is forcibly revoked, expired or corresponding business rules are changed by the

policy administrators.

4. Accountability: As proposal workflow involves many authorization actions that

have access to sensitive data, proper caution needs to be taken to ensure that all

31

the measures are recorded and logged. These audit logs will help to back-track

activities quickly and can be very helpful during the forensic investigation.

Therefore, the system requires providing facilities to easily create records and

reports describing sensitive information including who and when any particular

data was accessed.

3.2.1 ABAC

The least-privilege policy that is implicitly defined by use case specifications may

not be sufficient to counter all security risks. ABAC using XACML access control policy

is strongly recommended [38] to achieve above-mentioned high-level functional and non-

functional (security) goals. First of all, the processing model needs to be identified and

enforced an access control policy at the service side. These policies are defined and written

according to the business standards and provide the guidelines for access control to the

system. The information modeled in the requirement analysis phase can be immediately

used to generate fine-grained ABAC policies. These requirements can be translated into

plain English format as listed in Appendix E that makes the business rules easy to

understand and translate into access control policy.

A simple access control rule can be expressed in the human readable format as:

A “Tenured/Tenured-track faculty” is allowed to add a new “Whole Proposal”.

We proposed a bottom-up approach for more refined security based on attributes

held by each user and resource in an organization. With ABAC, we can easily add any

additional context using various attributes (i.e. Subject, Action, Resource, and

Environment or user defined attributes, etc.) to any request while a user is trying to access

a resource. The final decision is based on information about the subject, resource,

32

environmental, and more hidden contextual information, that are often expressed as

attributes and their corresponding values. An attribute is a property of an object; an

authorization credential is a statement or assertion about an attribute. In particular, a

credential must be based on defined attributes for a subject and during each action which

validates and matches the pre-defined policy constraints. Restrictive authorization and

administration can be handled by the implementation of XACML security policies based

on these attributes; that can establish who can view, edit, and authorize specific parts of

the proposal.

More detail metadata information about attributes and their corresponding category

and potential values used in GPWFMS are listed in Appendix C. As shown in Table 2, for

the defined access control rule, we can easily identify various attributes by looking into the

pre-defined attribute metadata information.

Table 2 Attribute Dictionary Definition

Attribute Category Type Value

position.type urn:oasis:names:tc:

xacml:1.0:subject-

category:access-

subject

http://www.w3.org/2001

/XMLSchema#string

Tenured/Tenured-

track Faculty

proposal.section urn:oasis:names:tc:

xacml:1.0:attribute-

category:resource

http://www.w3.org/2001

/XMLSchema#string

Whole Proposal

proposal.action urn:oasis:names:tc:

xacml:1.0:attribute-

category:action

http://www.w3.org/2001

/XMLSchema#string

Add

33

By comparing with the pre-defined attribute dictionary, for the given access control

rule we can find out that the subject attribute is ‘position.type’ which has a value of

‘Tenured/Tenured-track faculty’, the action attribute is ‘Add’ and the resource attribute is

‘Whole Proposal’.

The above-mentioned system requirement can be tabulated as shown in Table 3.

Table 3 Requirement for Add proposal by Tenured/Tenured-track Faculty

Action: Add

Rule Pre-Condition Post-

Condition

Pre-

Obligation

Post-

Obligation

Add Proposal by

Tenured/Tenured

-track Faculty

position.type =

Tenured/Tenured-track

faculty

proposal.section =

Whole Proposal

proposal.action = Add

The access control requirement as mentioned above specifies that the request of a

Tenured/Tenured-track faculty to add a proposal will be allowed without any

postconditions and attached obligation constraints. This kind of security requirement

shows a normal access attempt by a user holding some pre-defined attributes to perform

some actions on a secure resource.

XACML policy is written based on the pre-defined mapping between attribute

metadata and XACML attributes in the access control rules. This pre-defined attribute

information is used as a dictionary and is used to perform lookup during request creation

and response validation. Such support for metadata of attributes makes the design flexible

34

to support federated attributes that are usually distributed in heterogeneous, distributed

environment.

Such fine-grained access control produces a more secure and reliable system.

Hence, it is desirable to have compact and adequate policies in the system that can satisfy

all pre-defined requirements. These localized and unified security policies are used by the

application to decide on any request from a user to perform actions on given resources

depending on the provided contextual information. Using centralized security policies and

mechanisms eliminates the tedious, repetitive, and labor-intensive manual procedures

required to provision and manage security measures. The policy-driven system design will

help to work seamlessly in its dynamically changing runtime environment.

3.2.2 Obligation

The proposed system needs to enforce any associated obligations before and after

any tasks are performed. Severe security threats can occur if such constraints are not

entirely implemented. There are two types of obligation Pre-obligation and Post-

obligation; both are non-negotiable, and the system is required to enforce and apply them

thoroughly. Pre-obligation which specifies the responsibilities a user/system need to fulfill

before accessing and performing any tasks on a resource. On the other side, Post-obligation

refers to the user/system's accountability after the action is either permitted or denied.

In GPWFMS, as we described in Table 4 and Table 5 below, access control rules

can include one or both types of obligations. The pre-obligation constraint is to sign the

proposal before approving it, and post-obligation is to notify via email with a rationale to

the next person and all other associated users on the workflow. We can also classify

obligations based on whether they will be carried out by the user or the system itself. For

35

example, the signing of a proposal is done by the user, so it is user obligation. On the other

hand, sending an email is a system-level obligation performed by the system.

For example, another access control rule with having only post-obligation can be

written in plain English format as below:

1. “PI” can “Delete” a “Proposal” when SubmittedByPI = NOTSUBMITTED

and not been already deleted without any pre-obligation but with Post-

obligation: Send Email to all Investigators such as PI, CO-PIs, and Senior

Personnel.

Here, the subject attribute is ‘proposal.role’ which has a value of ‘PI’, the action

attribute is ‘Delete’, the resource attributes are ‘Whole Proposal’ and

‘READYFORAPPROVAL’ and needed pre-conditions are that the proposal has neither

already been submitted nor deleted. Additionally, the system needs to fulfill some

obligation constraints to complete this authorization request successfully. As we can see,

neither PI nor the system has any pre-obligation, but the system needs to enforce and satisfy

the defined post-obligation requirement after successful access of the proposal. As

identified in the given policy rule, the system needs to send an email to PI, Co-PI, and

Senior Personnel (post-obligation) after deletion of the proposal.

The requirement as described above for deleting a proposal by PI is tabulated as

shown in Table 4.

36

Table 4 Requirement for Delete proposal by PI

Action: Delete

Rule Pre-Condition Post-

Condition

Pre-

Obligation

Post-

Obligation

Delete

Proposal by

PI

SubmittedByPI =

NOTSUBMITTED

DeletedByPI =

NOTDELETED

proposal.role = PI

proposal.section = Whole

Proposal

proposal.action = Delete

 System sends

an email to

PI, Co-PI, and

Senior

Personnel

The above-listed access control requirement describes the request of a user with

proposal role of PI to delete a proposal that will be allowed if it is not yet submitted and

removed. But while fulfilling this authorized access, the system needs to send an email to

all associated PI, Co-PI, and Senior Personnel of that proposal.

Another access control constraint used in GPWFMS that involves both pre and post

obligations as expressed and represented in the human readable format that follows:

2. “Department Chair” can “Approve” a “Proposal” when

ApprovedByDepartmentChair = READYFORAPPROVAL with Pre-obligation:

Chair needs to Sign it first and Post-obligation: Send Email to all Investigators

such as PI, CO-PIs, and Senior Personnel.

Here, the subject attribute includes ‘Department Chair’, the action attribute is

‘Approve’, the resource attributes are ‘Whole Proposal’ and ‘READYFORAPPROVAL’

and needed conditions are that the proposal does not have any compliance information, and

also all involved department chairs have already signed it.

37

The authorization constraint as mentioned above with obligations constraints can

be listed as shown in Table 5.

Table 5 Requirements for Approve by Department Chair

Action: Approve

Rule Pre-Condition Post-

Condition

Pre-

Obligation

Post-

Obligation

Approve

Proposal by

Department

Chair

ApprovedByDepartmentChair

= READYFORAPPROVAL

position.title = Department

Chair

proposal.section = Whole

Proposal

proposal.action = Approve

signedByAllChairs = true

irbApprovalRequired = false

ApprovedBy

DepartmentC

hair =

APPROVED

ApprovedBy

BusinessMan

ager =

READYFOR

APPROVAL

Department

Chair signs

the

proposal

System

sends an

email to PI,

Co-PI,

Senior

Personnel,

Business

Manager

The access control requirement as mentioned above stipulates that the request of a

Department Chair to approve a proposal can only be granted when the proposal is waiting

for approval. If all of the defined access control conditions are satisfied, then the system

allows the user with position title of Department Chair to approve a proposal. Additionally,

the system also needs to enforce and implement all obligations criteria. First of all, the user

needs to sign the proposal, otherwise, approve action is not permitted (pre-obligation).

After the user has signed the proposal, the system then must send an email to PI, Co-PI,

Senior Personnel, and Business Manager (post-obligation). Also, the system needs to

update the status of the proposal to indicate that it is now waiting for Business Manager

Approval.

38

3.2.3 Delegation of Authority

Apart from standard functional features, GPWFMS also requires understanding the

possibility of a potential obstruction in the workflow processes. GPWFMS allows some

authorized users to delegate all or subset of their tasks/rights to another authorized person

for completing the job on time. Besides, it needs to be flexible enough to support delegation

requirements, such as delegation of authority, delegation of obligations, temporary

delegation, transfer mode and revocation.

The key issue is evident in the real-world scenario such as how to model the DOA

in which one user can hand over his/her authority to another user for a given period and

allow for revoking that privilege afterward? In our proposed delegation model, we consider

Human to Human delegation even though there are other forms of these delegations that

exist including Human to Human, Human to Machine, Machine to Human and Machine to

Machine [39]. The basic idea behind Human to Human delegation is that an authorized

entity is allowed to forward his authority to another active object for timely completion of

a task.

We tried to use and satisfy some of the salient characteristics that are mentioned in

[39][40] to describe the behavior of our delegation model.

1. Monotonicity: “Monotonicity” defines the power possesses by delegator after

delegation. For simplicity of design and implementation, we used Non-monotonic

(Transfer) mode of delegation [41] in which delegator cannot use his delegated

rights parallel with delegatee after delegation process. Since delegatee cannot

delegate acquired permissions further, therefore our delegation model is limited to

only one step delegation.

39

2. Permanence: “Permanence” describes the duration of delegated rights. In the

proposed model, we allow the delegator to choose the limited date range so that

delegation is only valid for that specified period. This temporary nature of

delegation gives the system a level of security as the delegated policy will be

inapplicable once the applied time is expired. Thus, manual revocation from the

delegator is not necessary since auto-revocation is supported.

3. Totality: “Totality” characteristic defines the completeness of delegated rights i.e.

partial delegation or total delegation [40]. In this model, we supported both types

of totality features of delegation. If a delegator prefers the partial delegation, then

the delegator can assign and select only a subset of access rights. This granular level

permission based delegation refines the delegator's need. Such distinction of

delegation rights allows the delegator to segregate the highly confidential tasks

from others during delegation process and enable them to delegate based on trust

level with delegatee. Such refinements prevent any unwanted risk of access due to

handing over all available rights to delegator's subordinates.

4. Revocation: “Revocation” is used to take away delegated rights from delegatee in

two ways namely; forced-revocation or auto-revocation [42]. Such revocation can

be performed manually or automatically. In forced-revocation, a delegator can

revoke delegated privileges any time whereas, in auto-revocation, delegated

privileges automatically revoked upon expiry of duration. Both of such revocation

is supported and implemented in the proposed delegation model.

Delegation is an essential and desirable feature in any modern enterprise. In the

field of access control, it is extremely crucial to have a delegation that helps to simplify the

40

administrator tasks and to coordinate collaborative work securely, especially with the

increase in shared information and distributed systems. Apparently, the delegation of

tasks/rights to another authorized user is a very useful real-world situation by which

workflow continues to successful completion even in unwanted situations like user or

resource unavailability or overloaded with tasks. The delegation of authority is an essential

business requirement in an enterprise or organization where different users need to perform

dynamic business processes in a heterogeneous computing environment. Without DOA,

tasks cannot be divided among users which result in the individual user being overloaded

with pending tasks.

The delegation need is based on business rules and can change over time, which

can be stored in static delegation policy. For such dynamic transfer of responsibilities, the

system needs to allow adding new dynamic delegation policy in the policy repository at

runtime. Hence, the system needs to be secure enough to support and reflect dynamically

added delegation policy rules. The proposed delegation model needs to support both static

and dynamic access control policies.

However, to model delegation constraint into a real-world software is a challenge,

as it brings lots of complexities, risk and privacy issues associated with individual user’s

privileges and permissions. This decentralization of authorization can impose severe

security risks to the organization by exposing high-level privileges to individual users. As

delegation can cause a critical security threat to a workflow system, provision and

mitigation approaches need to be implemented on any WFMS.

41

Figure 7 Conceptual Delegation Model

As depicted in Figure 7, this delegation model constitutes of interactions among

delegator, delegatee, resources, access rights/privileges. The delegation of tasks among

users is a powerful technique for managing the complexity of modular and adaptive

applications. The primary requirement of any delegation model is to specify who can

delegate what? For example, a delegator can delegate only a subset of his rights at a given

context.

A delegation of authority is a suitable approach for handling such exception cases.

The proposed model needs to tackle such break-the-glass scenarios as they can have

security implications. This feature allows the authority to ensure alternative execution

routing path to the workflow process that makes WFMS more flexible and efficient. An

alternative route makes the workflow continuous and unobstructed even in the absence of

a particular user at any stage. This feature helps the organization to fully utilize the

available resources by allowing users to provision, manage, and de-provision their

privileges. Trust gives a notion of achieving such security constraints [42]. If the given

trust level is exploited, then that can be the point of security attacks and poses a threat to

the whole system.

42

An example of a static delegation rule used in GPWFMS is expressed and

represented in the human readable format as:

“Department Chair” can “Delegate” his actions “Approve/Disapprove” to

“Associate Chair” from his own Department when ApprovedByDepartmentChair =

READYFORAPPROVAL.

Here, the subject attribute includes ‘Department Chair’, the action attribute is

‘Approve’ and the resource attribute is ‘READYFORAPPROVAL’ without any further

constraints.

The above-mentioned complicated delegation scenario from GPWFMS can be

illustrated in use case as shown in Table 6.

Table 6 Use Case for Department Chair Delegates Associate Chair.

Use case # UC-6

Use case name Department Chair Delegates Associate Chair of his/her own

Department.

Actors Department Chair

Goal Department Chair Delegates Associate Chair of his/her own

Department.

Preconditions 1. The actor has an account on the system.

2. The actor’s position title must be Department Chair.

Main Flow 1. The actor logged into the system.

2. The actor selects “Delegation” menu.

3. The actor selects “Add New Delegation” action.

4. The system receives the actor request and redirects the user to

the new delegation page.

43

5. The actor selects the “Delegate To” that is bind to delegate

users based on policy rule specified such as User with

position title of Associate Chair from his/her own

Department.

6. The actor selects the “Delegate Actions” by selecting multiple

checkboxes based on a policy defined for current actor’s

context.

7. The actor selects the range of temporal delegation period

using starting date and ending date for the delegation.

8. The actor fills the reason for the current delegation.

9. The actor saves the delegation information.

10. The system sends notifications to the selected delegatee and

current delegator.

11. The system records that on the delegation audit log.

Post-condition 1. The system saves the delegation with correct data submitted

by the actor.

2. The actor can access the delegation for edit and revocation.

Alternative

Flow

NONE

Exception

Flow

NONE

Recovery

Flow

NONE

The above-mentioned delegation scenario for the workflow system can be

illustrated as shown in Figure 8. The Department Chair is allowed to delegate all or a

subset of his access rights/tasks (such as Approve/Disapprove Proposal, etc.) to the

Associate Chair that is defined in static delegation policy. In a general case, there are no

44

rules for Associate Chair in the system as there are no pre-defined access control rules for

users in that position title. Apparently, when the Associate Chair tries to perform any of

these tasks, he is denied access.

Figure 8 A simple example of Delegation Process in GPWFMS

For instance, let's consider the Department Chair from the Computer Science

department wants to go on a vacation for a specified duration of time. The challenge is

“What will happen to any proposal that is waiting for his approval?” Such unforeseen

situations indeed lead to obstruction and unwanted delays to the overall flow of the system

and can hinder the overall business goals. Therefore, to mitigate this exceptional situation,

he is allowed to delegate a subset of his available tasks to the Associate Chair from his

department. In such a scenario, he gives his subordinate his trust and permission to carry

out the necessary actions. Also, he can revoke this temporarily delegated rights from his

45

assistant once he comes back or anytime he wants. Delegation and Revocation are

important concepts that are essential for modeling and reasoning dynamic distributed

systems. Such delegation of authority feature is desired in any adaptive and dynamic

workflow system which provides proper document routing and real-time decisions making.

3.3 Access Control and Obligations in XACML

In our proposed system design, a policy administrator or generator, who understands

the organization’s security needs and business goals, can design customizable, XML-based

access control policies, and host them in a central policy repository. To maintain proper

authorization between different users and resources in GPWFMS, we have designed and

implemented a series of XACML policy rules as shown in Appendix F.

Access control policy contains business rules defining overall functional and

security specifications of the system. Besides, this policy also describes all actions

applicable and available to a user based on given contextual information.

For instance, the security requirement as explained in Table 3 can be declared as a

general XACML access control policy rule without any obligations constraints as shown

in Figure 9.

46

Figure 9 XACML Access Control Policy Rule without Obligations

Within such policy rules, we can define security constraints for each action so that

each decision can reply along with required obligation needs. Then the application can

quickly implement and enforce those obligation requirements. This new concept of

constrained tasks to be followed before or after a request makes the software more secure

and user more accountable.

For example, the access control specification listed in Table 5 can be converted into

corresponding access control policy rule as shown in Figure 10.

Figure 10 XACML Access Control Policy Rule with Obligations

47

3.4 Delegation in XACML

Our proposed model classifies XACML server-side delegation policies into two

main categories:

Static Delegation Policy: This includes global administrative rules that define who

can delegate what kind of actions to whom. That sort of policy is based on the business

logic of an organization and can change in future. Such rules define some special rights

assigned to users that enable writing and directly influence effective delegation policy in

the system at runtime. These delegation administrative constraints confirm that the

delegated rights accessible to the delegator and transfer of such rights are allowed. For

instance, the delegation requirement listed as use case description in Table 6, can also be

expressed with static delegation policy rule as shown in Figure 11. This kind of

administrative delegation rule allows delegators to create dynamic delegation rules about

individual sets of resources.

Figure 11 Static Delegation Access Control Policy Rule

48

Dynamic Delegation Policy: This kind of administrative policy is created

dynamically based on delegator’s requirements and also includes a rule to support

revocation of delegation tasks by the principle delegator. For instance, this shown dynamic

delegation rule allows an Associate Chair (delegatee) to perform Approve and Disapprove

tasks (Actions) on the proposal (Resource) from the same department (Computer Science)

as an authority (delegator) on given delegation period. The delegator maps a dynamic

relationship between a delegatee and a resource so that system understands the dynamic

delegation rules.

Figure 12 Dynamic Delegation Access Control Policy Rule

49

CHAPTER FOUR: SYSTEM DESIGN AND IMPLEMENTATION

The basic concept for workflow-enabled applications is the association of

executable tasks with each step in the business process. To develop guidelines for the

design of a workflow, we first need to understand an overview of the organizational needs

that need to be satisfied in the workflow life cycle. Our proposed system design provides

a holistic approach for implementing attribute-based access control in Service Oriented

Architecture (SOA). With the rising popularity of distributed systems, the management of

workflow for an organization, which involves different levels of users and resources, needs

more time and effort. High level of collaboration and information sharing requires such

systems to be more secure and reliable while utilizing all available organizational resources

efficiently. Implementation and enforcement of secure access control mechanisms in an

SOA environment are considered a complex challenge [43].

4.1 Architecture

GPWFMS is built based on SOA environment in which decoupled services interact

with each other by exchanging a standardized REST-based message format without

consideration of the underlying implementation. It involves presentation, business logic,

data access, and data storage layers. The user is provided with a generalized and user-

friendly interface that acts as the top-most layer of the application, which translates the

response from the system to a readable format. The logical business layer processes and

communicates data between the layers. This middle layer provides building blocks for

50

aggregating loosely coupled or decoupled services as a sequencing process aligned with

business goals. The data storage layer consists of a NoSQL database that allows persistent

data access.

Figure 13 Modular Design of GPWFMS

As shown in Figure 13, GPWFMS is designed based on a scoped and modular

approach for a typical 3-tier application architecture and to support the pre-defined system

requirements. In this architectural pattern, the front end client can communicate with web

services via REST call from the user interface layer. The business layer controls all

functionalities of the application, and the data access layer allows the backend database to

be connected with the application via a database Input/output (I/O) interface. We enforce

policy based access control mechanisms in all three layers. Along with these steps, the

system requirements for both security and functional are implemented and validated.

A representative block diagram of the authorization architecture employed in

GPWFMS is shown in Figure 14.

51

Figure 14 GPWFMS Block diagram

During development of any workflow systems, we consider the coordination of

activities, resources, data, and applications. The component diagram shown in Figure 15

demonstrates the underlying interactions between various elements in our monolithic

application. As shown in Figure 15, proposal management system requires a series of

functions from the creation of a research proposal to the final submission. Specifically, the

standard enterprise workflow functionality along with instant notification features with

customizable and configurable user-friendly interfaces are designed. These services

include various time-consuming and user-centric activities. Based on the workflow status

of a proposal, it initiates an automated process and routes the document toward the

appropriate users. This automation allows each user to quickly identify and view their

current tasks along with the anticipated workload.

52

Figure 15 Application Architecture of GPWFMS

The user handling is carried out by ‘User Management’ functions that include

services like adding, deleting, updating any user and their details. The proposal information

is handled by ‘Proposal Management’ services that include many activities such as saving,

updating, deleting, submitting, approving, disapproving, withdrawing, and archiving

53

proposal documents. The ‘Delegation’ features include services, like delegating and

revoking delegation are also supported. The system needs to handle task automation

automatically, for this functionality the ‘Event Notification’ service sends email alerts to

users with notification of the changes to the proposal. The ‘Process Monitoring and

Reporting’ functionality allows monitoring currently available documents in the system.

This service also enables users to create reports containing detailed information on current

workload, future workload, obstructions, etc. based on “historic” processing data. The ‘File

Service’ allows the user to upload and download files from the system. During each step,

information about ‘Tracking and Logging of Activities’ are recorded and logged onto the

system that supports non-repudiation security requirements.

To achieve a goal of designing a loosely coupled workflow management system,

GPWFMS uses the following tools and techniques:

4.1.1 RESTful Services

Software applications (especially popular web applications) are using open well-

designed web services i.e. APIs, and using such public authorization services provides

more interoperability among numerous distributed systems. API-driven REST based

architecture allows having shared, on-demand and scalable services. REST is a stateless

architecture which involves resources that are represented as Unified Resource Locators

(URLs). The standard approach is to expose a set of web services to the rest of the world

via the API Gateway. Such exposed web API endpoints permit any external applications

to call the services of a workflow engine from outside the organizational boundaries.

RESTful web services enforce a centralized and shared business logic across distributed

system. REST can consume data streams in multiple formats such as plain text, XML and

54

JavaScript Object Notation (JSON). This flexible feature makes REST the ultimate choice

for client-side development.

In GPWFMS, APIs are used to connect enforcement points which control access to

sensitive information. Access control checks along with RESTful services help to prevent,

detect and stop unwanted access to the system. Such web services are easy to develop and

deploy. Additionally, they are usually lightweight, inexpensive to host and maintain.

GPWFMS implements JAVA based RESTful web services (JAX-RS) to interact with the

front-end client and backend database records via AJAX (Asynchronous JavaScript and

XML). We create RESTful web services using the reference implementation of JAX-RS

2.0 i.e. Jersey which provides Client APIs to the front end.

Such RESTful web services abstract all the complex working mechanism of such

access control by providing developers easy to use interfaces. This high-level abstraction

allows developers to focus on business logic rather than understanding underlying complex

security policies. The functional and security requirements are defined by XACML access

control policies and using the XACML framework; the policy enforcement is implemented

and achieved under this standard architecture. Additionally, each service is bound with

underlying access control capabilities to make them more secure and to fulfill all functional

and security requirements of the system.

Within the API level, the security authorization, authentication, and attestation is

performed based on requested information and available XACML policies. However, one

of the critical issues while using such publicly visible services is security. Any unwanted

hackers can obtain user’s confidential information and can perform unauthenticated works

via those public services. To prevent such unwanted risks, we need to increase their

55

security, reliability and to enforce access control based on user’s requests. In GPWFMS,

user authentication relies on the identity of the user from the login context where a unique

session token is assigned to a particular user to validate their credentials and persist till they

switch their account or logs off the system.

4.1.2 Database

Contained within this system is a database that stores relevant entity’s information.

To manage the attributes of every subject and object, they must have corresponding entries

in a database that allows attribute retrieval and comparisons. The proposed robust

architectural solution allows the system to generate, store and analyze enormous amounts

of information with increased speed and scale. To overcome such data-driven requirements

we choose, MongoDB2 was the best suited No-SQL backend database.

Traditional ‘relational’ database models store information in hierarchical rows and

columns in a tabular format. However, such mappings and relationships are impossible in

complex datasets harvested from vast and concurrent data streams. MongoDB is more

document-oriented because each document is stored as JSON objects and as attribute-value

pairs. With a document like structure, it allows quick retrieval and faster processing of data

while making it more readable and scalable for the user.

Four primary database collections are used in GPWFMS, namely Users, Proposals,

Notifications, and Delegations.

The User database collection holds the detailed information of a user as well as login

information necessary to authenticate the user into the system during login.

User information includes the following data:

2 https://www.mongodb.org/

56

• User account data: A user account name and password.

• User detail information: A user’s given names, contact information (such as

addresses, phone numbers, and email addresses), and departmental

position/role information.

The Proposal database collection contains sensitive information for a proposal,

including various critical information related to it. A general proposal includes:

• Project information: Proposal specific information, such as the project type,

title, and date related information.

• Financial information: Budget details, sponsorship information, and cost

sharing information.

• Investigator information: Details about PI’s, Co-PI’s and senior personnel.

• Signature information: Signatures and notes from corresponding authorized

users.

The Notification database collection stores information regarding recent changes to

the data (user, proposal, etc.) and notifies the appropriate users.

The Delegation database collection contains information about the delegator,

delegatee, delegated actions, duration of delegation and the reason for the delegation.

Additionally, to support Revocation of an individual delegation, each time a

delegator assigns a delegation, a new dynamic delegation policy id is generated. The id is

then added into the delegation PolicySet template at runtime. It is crucial to store

dynamically created policy’s id in the PolicyId attribute of dynamic delegation Policy node.

The dynamic mapping between delegator and policy is also stored in the Delegation

57

collection so that revocation can be enforced based on the user authentication and the stored

policy information.

4.1.3 Morphia

Morphia3 is a lightweight library for mapping Java objects to and from the

MongoDB database. Morphia is an Open Source Fluent Query API that uses annotations

and standards to interact with code and database. It adds a layer of abstraction between

Datastore and Data Access Object (DAO) of Java application that makes working with Java

exceedingly comfortable with MongoDB. It makes working with data in Java easy as it

creates a data persistence interface in between. Morphia is MongoDB’s Java Persistence

API (JPA4) which handles data access operations with less code. We can easily customize

persistence and common data access patterns like Morphia’s datastore and DAO as per

application’s need.

4.1.4 Balana

Balana5 is an open source XACML Implementation by WSO26 that supports

XACML version 3.0 specifications and creates Policy Decision Point instances that can be

embedded in web service level.

4.2 Design and Implementation of Obligation Mechanism

The architected solution prospect of the model is comprehensive and extensive with

the use of latest XACML specification. In XACML v3.0 specification, the underlying

evaluation context model and the authorization decision request format is generalized.

3 https://github.com/mongodb/morphia
4 https://en.wikipedia.org/wiki/Java_Persistence_API
5 https://github.com/wso2/balana
6 http://wso2.com/

58

The total numbers of security access control rules defined in GPWFMS is shown

in Table 7:

Table 7 Security Rules formulated for GPWFMS

No. of Access Control

Rules

No. of Rules with

Obligations

No. of Static

Delegation rules

Total

93 49 4 97

XACML 3.0 Core specification supports obligations but does not distinguish

between the different obligations types. Therefore, there is a significant need to extend the

feature of XACML to support such obligations types. The latest obligation specification

that is extended in XACML 3.0 defines that each definition of the obligation contains a

unique identifier and can include zero or many lists of parameters, each with a locally

unique name and data type. XACML allows us to describe an obligation method and its

parameters as an attribute assignment so the actual definition of its syntax and semantics

can be implemented quickly. Even though the XACML policy language is very flexible,

there is currently no generic method to specify the obligations send from PDP to PEP.

There is no standard conceptual model for obligations and their enforcement. Obviously,

conflicts may arise among a set of responsibilities that require the need to keep account of

relations between obligations for accuracy. The PEP is responsible for decoding and

checking each response for any obligations constraints and negotiates to enforce the

embedded constraints. Finally, PEP keeps track of the obligations' state and imposes the

restrictions. Although this is an important issue, especially to support privacy, advanced

tracking of data flow is quite neglected and not properly handled by XACML.

59

Depending on the nature of the obligation, it can be viewed as an additional

restriction on the access right. An XACML obligation is an action to be performed before

and after a particular event is triggered. Specifying obligations in access control policies is

more secure and flexible than hard-wired in code-level. The ability to configure the

obligation requirements externally in XACML policies enables a security administrator to

activate or deactivate such security requirements dynamically without restarting or

redeploying the running service. All associated obligations are replied along with the

authorization decision in response to each system actions as shown in Appendix H. The

actual interpretation of these obligation constraints is done by the developers and can be

easily enforced and implemented in the client code.

Figure 16 Obligations Expression Format

A rule or policy or policy set may contain one or more obligations. In GPWFMS,

we have 49 access control rules that include obligations (either per/post or both) attached

to them as shown in Appendix D and E. As seen in Figure 16, the scope of an obligation

expression in an XACML rule is bound to the target and condition of the rule containing

it. Such obligation requirements can be associated with both Permit/Deny decisions as

specified in the FulfillOn attribute of obligation expression. During the evaluation, when

60

the effect of the policy or policy set matches the value of the FulfillOn attribute of the

obligation, then only that requirement is returned along with the authorization result. To

support two different types of obligations, we define XACML policy rules with AttributeId

attribute with value obligationType for the first obligation expression element as shown in

Figure 16. To denote pre-obligation, we assign the attribute with the string value of

preobligation whereas to denote post-obligation we assign the value of postobligation.

61

Figure 17 Obligation processing in GPWFMS

62

The overall control flow for any regular access attempt in GPWFMS is illustrated

in Figure 17. For every access attempt, our model generates the request based on metadata

information of attributes. It then sends the generated request, as shown in Appendix G,

towards Balana to validate the attributes value and to determine the authorization. Balana

looks for any match in Access Control and Dynamic Delegation Policy. Whenever the

matched policy is found, those attribute values are also returned from Balana to the

application as a combined decision with results as shown in Appendix H. If the

authorization decision includes pre-obligations, those requirements are enforced and

performed by the application first. If all pre-obligations are correctly executed, and the

decision is Permit, then the system allows the requested access to the secure resource. If

this response results in Deny decision, then the system prohibits access to the resource and

tries to check if it includes any post-obligations in authorization decision. If no such

obligation constraints exist, then the system follows the normal workflow path. This

control flow is also applicable to delegation based access request from a delegatee to access

a resource. In such a case, Delegation of Obligations needs to be fulfilled and enforced by

the application as each delegated task can also bear some obligations to the delegatee and

the system.

4.3 Design and Implementation of Delegation Mechanism

Our workflow system will provide any delegator with a user-friendly web interface

as shown in Figure 18. The given screenshot shows the delegator can specify all delegable

users and tasks to be delegated via provided unified user-friendly interface. This policy-

driven delegation provides an abstract view that hides the details from the delegator about

the complexity of delegation access control policies. This centralized interface allows the

63

delegator to see, grant and revoke access rights in an easy and unified way without

understanding the underlying technical details. However, the actual mapping from the

high-level abstract view to the low-level access control is handled by the proposed

delegation model.

Figure 18 Delegation User Interface

In RBAC, it demands a significant number of delegation be created and managed

with the number of roles and resources increase. However, this can be minimized by using

the ABAC model which reduces the complexity of security administration. Policies based

on security constraints fully control the proposed delegation model, thereby reducing the

code level conditional ‘if-then-else' implementation. Assignment of the delegation are

based on time, workload and users’ attributes. Often such delegations are short-lived and

come into play when certain conditions are satisfied [34]. Based on delegator’s

64

requirements, effective administrative policies are generated, as shown in Figure 12, and

dynamically added to the policy repository.

Using delegation the global administrators/authorized users can provision some

constrained administrative/user rights to the local administrators/users. The dynamic and

decentralized delegation distributes the privileges that make the workflow more flexible

and scalable. The given system supports dynamic delegation that can create delegation

policies on the fly without the need of redeployment of the application. Authority is often

granted to an alternative subject if the primary subject is absent for an extended amount of

time. Such situation can interrupt the normal businesses workflow hence someone must be

available to act on the former’s behalf. This scenario typically occurs when there are not

enough users to process the workload or if a user wants to offload tasks to their

subordinates. For such situations, it is necessary to add additional resources to the

workflow system. Thus, by dynamic delegation, the workflow system offers the user the

ability to change the routing process during execution, preventing obstruction of the

workflow. While delegation is an important feature to keep pace with the dynamic nature

of business, it is necessary to monitor and assure that none of the security constraints are

violated. This model provides the delegation log facilities that can be very helpful for

forensic investigations. During the provision of DOA, it should have minimal errors and

ensures uniformity between all user permissions while making delegation a straightforward

and risk-free activity.

In our delegation model, the delegation rights are differentiated from the normal

access control rights. However, during evaluation, both access control and administrative

delegation policies work together to generate a single decision. Underlying complex

65

processing of delegations is performed by our proposed model based on the control flow

diagram shown in Figure 19.

Figure 19 Delegation processing in GPWFMS

For each delegation attempt, the application generates a delegation based request

that is validated using a pre-defined attribute dictionary. Once verified, the request is

forwarded to Balana to process the request and attempt to match with an existing static

delegation policy written in XACML format. During this process, Balana looks up

66

attributes and their corresponding values in attributes’ metadata information. According to

the evaluation, the resulting decision is replied, and the application receives the

corresponding response. If the authorization decision is permitted, then the delegator’s

requirements dynamic delegation policy rules are generated for the delegated users and

actions. Thus, dynamically created rules are added to the dynamic delegation policy set

template so that a new delegation route for the delegatee. If the decision is to deny the

delegation attempt, then the request is not fulfilled by the system.

Recent work [44] tries to add delegation extension to XACML 3.0 to express the

right to administrate XACML policies within XACML itself using Administration and

Delegation Profile. The delegation profile draft explains how to negotiate for the right to

issue a policy, but has not provided any rules for removing a policy. In our proposed model,

delegation is achieved by creating new dynamic delegation rules during the delegation

process to define all access and delegation privileges in an XML format using XACML

policy specifications. This effective delegation policy is automatically added to the policy

store so that the system can directly reflect the changes at runtime.

We adopted a secure and flexible revocation model in WFMS, which gives a

delegating user (delegator) power to revert the privileges from the one he has delegated

(delegatee). Both delegation and revocation take account of time constraints, so our system

must account for this provision. As delegation can cause a critical security threat to a

workflow system, provision and mitigation approaches are implemented on GPWFMS

using XML based policies. The solution provides a rule for both forced or auto-revocation

methods to the delegator to avoid any uncontrolled delegation propagation to the delegatee.

In our model, revocation can be performed automatically when the delegation context is

67

no longer active, or manually by an authorized user i.e. delegator. User revocation is

performed by allowing and deleting dynamically generated delegation policies from the

policy repository.

68

CHAPTER FIVE: VALIDATION AND EVALUATION

The new proposed design model implemented in GPWFMS need to be properly

tested and evaluated based on all pre-defined system specifications. The model needs to be

tested using test cases that reflect a particular business function. To do so, we need to select

some specific test criteria which define possible inputs data and test oracles for verification.

5.1 Testing

Testing is a crucial step to analyze and evaluate the design implementation by

developers. It intends to assure the quality of an application by finding defects or any

security vulnerabilities that may have been introduced at the code level. Often developers

are required to build their test harnesses based on business scenarios. The system should

incorporate mechanisms to verify the API behavior using a set of appropriate testing tools

and techniques. Therefore, to build the GPWFMS according to our requirements and free

of errors, proper continuous testing is carried out. The pre-defined system requirements act

as the acceptance criteria for GPWFMS.

The following definitions are used to clarify the distinction between functional and

security policy testing.

1. Functional Testing: This involves generating and executing test cases based on

the use cases and business requirements. For example, a faculty can add a

proposal.

69

2. Security Policy Testing: It involves the activity of designing and evaluating test

cases governed by written access control policy. The primary focus of security

policy based testing is to explore many security flaws as possible. For example,

the faculty must be either Tenure or Non-tenured track to add a proposal.

Figure 20 Testing Model in GPWFMS

As illustrated in Figure 20, the overall testing steps are performed to verify the

design and implementation compliance with the pre-defined system specifications, e.g.

functional and security requirements. System requirement testing involves testing of both

operational and security policy that encompasses security as well as functional

requirements. The pre-defined specification documents defined in UML diagram includes

the technical description of the mainstream workflow scenarios as well as other non-

functional security concerns.

70

System requirement testing is an essential step as it involves the testing of

implementation of the proposed design. By thoroughly examining the system, it provides

enough confidence in the system design, functional, and security implementation. Also,

repeated and adequate testing ensures that our developed application contains high-quality

codes.

Examining all the logical rules with proper implementation using manual

inspection is a lengthy and tedious task. Therefore, it is always desirable to automate the

process with the help of test cases and scripts. The automatic generation and execution of

test cases are obtained using Selenium WebDriver7. Our testing methodology uses a

combination of Selenium IDE8, Selenium WebDriver, and JUnit9. Selenium IDE is a

firefox browser plugin that records user actions on the visible aspects of an application. On

the other hand, Selenium WebDriver is an Object-Oriented API that supports Data Driven

Testing and Cross Browser Testing for test cases created using element locators and

WebDriver methods/commands. In contrast to time-consuming and tedious manual testing,

test automation tools such as Selenium allow verification of all possible workflow and

alternative scenarios in a repeatable manner. The use of programming logic in each test

case along with the overall flow of information allows complete testing of a secure

workflow application. For a selection of test criteria, we select a particular test scenario

during the workflow process, that involves both functional and security access control.

Using Selenium WebDriver, a total of 53 different test cases are written, tested, and

deployed that covers most of the mainstream workflow scenarios.

7 http://docs.seleniumhq.org/projects/webdriver/
8 http://docs.seleniumhq.org/projects/ide/
9 http://junit.org/junit4/

71

These scenarios simulate various user tasks and business activities. Based on the

test scenario, we validate the test oracle that defines the expected permission or prohibition

for a particular action by the user. The testing and verifying the compliance of all access

scenarios independently which makes the overall system design more secure and robust

providing high levels of security. We use an incremental strategy to test scenarios such as

the test cases, since such test cases are dependent on each other and can be reused. The

security policy test cases are built in the complement of existing system level functional

test cases. Hence, we can test and verify both requirements at the same time.

5.2 Results

Table 8 GPWFMS Test Results

 #Total Test Cases Test Result

GPWFMS 53 Pass

The given Table 8, shows the overall test results from the automated testing. The

results indicated that our all test cases have successfully passed. This result proves that our

automated testing’s coverage is high, almost all pre-defined system requirements that are

mapped as access control policies are tested successfully and implemented in a secure

manner. This result gives great assurance that our system’s implementation code is

operating correctly with good software quality and as desired on any valid input test data.

5.3 Threats to Validity

Complex business logics in XACML policy can be expressed in different ways.

This high expressiveness results in a high degree of complexity and makes the evaluation

of the policy in the enforcement step more difficult. It is highly desirable that workflow

system evaluates security rules within a satisfactory (low) complexity. Such evaluation

72

complexity is not entirely considered by our preferred open source PEP engine, Balana.

Therefore, we overlooked such need. However, it can penalize our overall system

performance. Immaturity of such available PEP engines to fully implement all features of

recently proposed XACML specification is another constraint of our proposed architecture.

We explore on-premise deployment of our proposed design, where the latency

between PEP to PDP and attribute retrieval is minimal. In GPWFMS, PEP is placed near

the resource and embedded within the same process as the services so that it improves the

overall system performance. Processing complexity is one of the trade-offs while choosing

security over performance. As business requirements increase and scale, the complex

nature of computation and storage increases with the resulting large number of low-level

access control rules. Also, there is a need for regular maintenance and audit of XACML

policies, which can be difficult over time.

Our approach assumes that the communication channel is secure. One constraint is

that access to web services need to be secured using authentication steps allowing only

legitimate access requests. Such communication between front end client and the RESTful

services is considered protected and secure using a secured protocol such as Transport

Layer Security (TLS) or Secure Sockets Layer (SSL). Hence, the request and response

communication cannot be intercepted by any attackers as well as sensitive attribute values

are hidden or encrypted from them. Apparently, security of web service is another issue

that is ignored in this work. Many secure authentication mechanisms can be implemented

to make sure the only legit user can access the open web services. This authentication

approach adds an extra dimension to the security of overall system architecture.

73

Due to the limited time constraints, we are unable to test all random scenarios and

measure load and performance throughput of the system based on other policy rules like

delegation and dynamic rules. However, our testing results indicate that the overall policy

formation and handling used by our system is done correctly and can be generalized to any

additional rules.

74

CHAPTER SIX: CONCLUSION

This study presented a complete conceptual framework of secure software design

model with a viable implementation, which is missing in many existing literature works.

Moreover, the API-driven reusable components are combined with context awareness to

accommodate dynamic access policy enforcement. Also, it supports sophisticated features

like Obligations and Delegation. We formulate conditions where such intricate features are

desirable and have discussed the way to achieve these criteria in the context of the XACML

architecture using ABAC. We propose a new reference software design model for ABAC

based systems with obligations and delegation of authority rights. The proposed novel

design allows externalization of authorization from code-level and provides secure

abstracted services. This model also describes how the associated obligations (pre/post)

with each action are enforced based on access control rules and how different users handle

the dissemination of authority. So, using the proposed software design, we can solve the

challenges such as automation and security managements alongside we can seamlessly

integrate different access control constraints to make it more secure and robust.

The successful development, implementation, and validation of Grant Proposal

Workflow Management System act as a proof-of-concept to the proposed software security

architecture which is equally applicable to any other domain. Our strategy integrates secure

architecture and design practices in the software development lifecycle to protect the

overall application. The testing results prove that the proposed design model is a simple

75

yet general technique to specify and enforce fine-grained access control to maintain data

integrity and confidentiality. Hence, the proposed software architecture applies to any

workflow system that involves a group of people and their associated privileges.

Supporting scalability is considered as future work for this research. The advanced

workflow system on top of the proposed model consists of many RESTful services that can

be accessed by many users simultaneously. Rigorous testing of web services to handle

multiple parallel requests is not conducted. Such tests can help to find out bottleneck and

can provide a path for improving the performance. The level of security of the proposed

model depends on the correctness of the written policies. Hence, accuracy and reliability

of the written access control policies are a critical consideration. The manual task of

defining and forming access control policy by security administrator is a cumbersome and

tedious task. Due to the manual intervention of human factor, the policy definition and

formulation process may lead to inconsistencies and errors that can cause a severe security

risk to the overall system. This risk can be minimized by providing a level of automation

and correction checking for access control policies. Our architectural model allows the

system to contain a complete and non-repeating set of rules. In our delegation model, we

have restricted some of the advanced delegation features like grant delegation, chained

delegation, and multi-step delegation due to processing complexity. In future, such

sophisticated delegation features can be explored and implemented within our proposed

model.

76

REFERENCES

[1] S. Chaari, F. Biennier, C. Ben Amar, and J. Favrel, “An authorization and access

control model for workflow,” First Int. Symp. Control. Commun. Signal Process.

2004., no. April, pp. 141–148, 2004.

[2] E. Bertino, E. Ferrari, and V. Atluri, “The specification and enforcement of

authorization constraints in workflow management systems,” ACM Trans. Inf.

Syst. Secur., vol. 2, no. 1, pp. 65–104, 1999.

[3] D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview of workflow

management: From process modeling to workflow automation infrastructure,”

Distrib. Parallel Databases, vol. 3, no. 2, pp. 119–153, 1995.

[4] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-Based

Access Control Models,” IEEE Comput., vol. 29, no. 2, pp. 38–47, 1995.

[5] D. Hollingsworth, “Glossary, Terminology and Glossary, 3rd Edition. Document

No WFMC-TC-1011. Workflow Management Coalition. Winchester, 1999,”

ReVision, 1999.

[6] W. Huang and L. Wang, “Research of TRBAC model and the application in

library management,” in Information Management and Engineering (ICIME),

2010 The 2nd IEEE International Conference on, 2010, pp. 337–339.

[7] S. Lakkaraju and D. Xu, “Integrated Modeling and Analysis of Attribute Based

Access Control Policies and Workflows in Healthcare,” 2014 Int. Conf. Trust.

Syst. their Appl., pp. 36–43, 2014.

[8] L. Sainan, “Task-role-based access control model and its implementation,” 2010

2nd Int. Conf. Educ. Technol. Comput., pp. V3-293-V3-296, 2010.

77

[9] Y. Liu, K. Xu, and J. Song, “A task-attribute-based workflow access control

model,” Proc. - 2013 IEEE Int. Conf. Green Comput. Commun. IEEE Internet

Things IEEE Cyber, Phys. Soc. Comput. GreenCom-iThings-CPSCom 2013, pp.

1330–1334, 2013.

[10] V. C. Hu, K. Scarfone, and R. Kuhn, NIST Special Publication 800-162 DRAFT -

FINAL Guide to Attribute Based Access Control (ABAC) Definition and

Considerations NIST Special Publication 800-162 DRAFT - FINAL Guide to

Attribute Based Access Control (ABAC) Definition and Considerations. 2013.

[11] W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong, “Access control in collaborative

systems,” ACM Comput. Surv., vol. 37, no. 1, pp. 29–41, 2005.

[12] Y. Lu and L. Zhang, “Domain administration of task-role based access control for

process collaboration environments,” in 5th International Conference on

Information Assurance and Security, IAS 2009, 2009, vol. 1, pp. 643–647.

[13] J. Zhang, J. Sun, N. Li, and C. Hu, “A conditioned secure access control model on

multi-weighted roles in workflow system,” in 2005 International Conference on

Control and Automation, 2005, vol. 2, p. 1068–1073 Vol. 2.

[14] N. Damianou, N. Dulay, and E. Lupu, “The ponder policy specification

language,” Proc. Policy 2001 Work. Policies Distrib. Syst. Networks, pp. 18–39,

2001.

[15] H. Movahednejad, S. Bin Ibrahim, M. Sharifi, H. Bin Selamat, and S. G. H.

Tabatabaei, “Security-aware web service composition approaches,” Proc. 13th

Int. Conf. Inf. Integr. Web-based Appl. Serv. - iiWAS ’11, p. 112, 2011.

[16] E. Yuan and J. Tong, “Attributed Based Access Control (ABAC) for web

services,” Proc. - 2005 IEEE Int. Conf. Web Serv. ICWS 2005, vol. 2005, pp.

561–569, 2005.

[17] T. Priebe, W. Dobmeier, and N. Kamprath, “Supporting attribute-based access

control with ontologies,” Proc. - First Int. Conf. Availability, Reliab. Secur. ARES

2006, vol. 2006, pp. 465–472, 2006.

78

[18] H. Shen and F. Hong, “An Attribute-Based Access Control Model for Web

Services,” Proc. Seventh IEEE Int. Conf. Parallel Distrib. Comput. Appl.

Technol., pp. 74–79, 2006.

[19] R. Lepro, “Cardea : Dynamic Access Control in Distributed Systems,” NAS Tech.

Rep. NAS-03-020, pp. 1–31, 2003.

[20] J. Herrmann, “Access Control in OGC Web Service based Architectures

Categories and Subject Descriptors,” Access, pp. 60–67, 2011.

[21] R. Abassi, F. Jacquemard, M. Rusinowitch, and S. G. El Fatmi, “XML access

control: From XACML to annotated schemas,” 2010 2nd Int. Conf. Commun.

Networking, ComNet 2010, no. October 2015, 2010.

[22] M. Lischka, “Dynamic obligation specification and negotiation,” Proc. 2010

IEEE/IFIP Netw. Oper. Manag. Symp. NOMS 2010, pp. 155–162, 2010.

[23] H. Jebbaoui, A. Mourad, H. Otrok, and R. Haraty, “Semantics-based approach for

detecting flaws, conflicts and redundancies in XACML policies,” Comput. Electr.

Eng., vol. 44, pp. 91–103, 2015.

[24] U. M. Mbanaso, G. S. Cooper, D. W. Chadwick, and A. Anderson, “Obligations

of trust for privacy and confidentiality in distributed transactions,” Internet Res.,

vol. 19, no. 2, p. 153, 2007.

[25] T. Sans, F. Cuppens, and N. Cuppens-Boulahia, “A framework to enforce access

control, usage control and obligations,” Ann. des Telecommun. Telecommun., vol.

62, no. 11–12, pp. 1329–1352, 2007.

[26] Y. Elrakaiby, F. Cuppens, and N. Cuppens-Boulahia, “Formal enforcement and

management of obligation policies,” Data Knowl. Eng., vol. 71, no. 1, pp. 127–

147, 2012.

[27] D. W. Chadwick, S. Otenko, and T. A. Nguyen, Adding support to XACML for

multi-domain user to user dynamic delegation of authority, vol. 8, no. 2. 2009.

[28] A. . Fallis, “Communications and Multimedia Security,” J. Chem. Inf. Model.,

vol. 53, no. 9, pp. 1689–1699, 2013.

79

[29] L. X. Feng and F. D. Guo, “Composing administrative scope of delegation

policies based on extended XACML,” Proc. - IEEE Int. Enterp. Distrib. Object

Comput. Work. EDOC, pp. 467–470, 2006.

[30] S. Fischer-Hübner, C. Lambrinoudakis, and J. Lopez, “Trust, Privacy and

Security in Digital Business: 12th International Conference, TrustBus 2015

Valencia, Spain, September 1-2, 2015 Proceedings,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9264,

no. October, p. 5, 2015.

[31] C. Ye, Z. Wu, and Y. Fu, “An attribute-based delegation model and its

extension,” J. Res. Pract. Inf. Technol., vol. 38, no. 1, pp. 3–16, 2006.

[32] D. W. Chadwick and K. Fatema, “A privacy preserving authorisation system for

the cloud,” in Journal of Computer and System Sciences, 2012, vol. 78, no. 5, pp.

1359–1373.

[33] M. Tomaiuolo, “dDelega:,” Int. J. Inf. Secur. Priv., vol. 7, no. 3, pp. 53–67, 2013.

[34] V. Atluri and J. Warner, “Supporting Conditional Delegation in Secure Workflow

Management Systems,” Proc. Tenth ACM Symp. Access Control Model. Technol.

- SACMAT ’05, p. 49, 2005.

[35] J. H. Saltzer and M. D. Schroeder, “The Protection of Information in Computer

Systems,” Proc. IEEE, vol. 63, no. 9, pp. 1278–1308, 1975.

[36] B. Nuseibeh and S. Easterbrook, “Requirements Engineering: A Roadmap,” in

Proceedings of the Conference on The Future of Software Engineering, 2000, pp.

35–46.

[37] P. T. Devanbu and S. Stubblebine, “Software Engineering for Security: A

Roadmap,” in Proceedings of the Conference on The Future of Software

Engineering, 2000, pp. 227–239.

[38] K. Hasebe, M. Mabuchi, and A. Matsushita, “Capability-based delegation model

in RBAC,” Proceeding 15th ACM Symp. Access Control Model. Technol. -

SACMAT ’10, p. 109, 2010.

80

[39] E. Barka and R. Sandhu, “Framework for role-based delegation models,” Proc. -

Annu. Comput. Secur. Appl. Conf. ACSAC, vol. 2000–Janua, pp. 168–176, 2000.

[40] A. Ali, U. Habiba, and M. A. Shibli, “Taxonomy of Delegation Model,” 2015

12th Int. Conf. Inf. Technol. - New Gener., pp. 218–223, 2015.

[41] J. Crampton and H. Khambhammettu, “Delegation in role-based access control,”

in International Journal of Information Security, 2008, vol. 7, no. 2, pp. 123–136.

[42] L. Bussard, A. Nano, and U. Pinsdorf, “Delegation of access rights in multi-

domain service compositions,” Identity Inf. Soc., vol. 2, no. 2, pp. 137–154, 2009.

[43] Z. Malik and A. Bouguettaya, Trust Management for Service-Oriented

Environments, 1st ed. Springer Publishing Company, Incorporated, 2009.

[44] Oasis, “eXtensible Access Control Markup Language,” OASIS Stand., no.

February, p. 141, 2005.

81

APPENDIX A

82

Use Case Descriptions for GPWFMS

1. Add/Create proposal:

This use case represents the process of adding/creating a proposal by Tenured/Non-

Tenured Faculty.

Use case # UC-1

Use case name Create/Add proposal.

Actor Principal Investigator (PI)

Goal To create a new proposal.

Preconditions 1. The actor has an account on the system.

2. The actor job position should be Tenured/Non-Tenured track

Faculty.

Main Flow 1. The actor login to the system.

2. The actor selects the “Add new Proposal” action.

3. The system receives the actor request and redirects the user to the

new proposal page.

4. The actor fills the “Investigator Information” by filling the Co-PI

and Senior Personal by selecting the “Add Co-PI” action and “Add

Senior Personnel” action.

5. The actor fills the “Project Information” section. The actor fills the

“Project Title, Project Type, Due Date, Project Period: From, TO: Type

of Request, and Location of Project” fields.

6. The actor fills the “Sponsor and Budget Information” by filling:

“Name of Granting Agency, Direct Costs, Total Costs, F&A Costs, and

F&A Rate” fields.

7. The actor fills “Cost Share Information” by filling: “Is Institutional

committed cost share included in the proposal? And Is Third Party

committed cost share included in the proposal?” fields.

8. The actor fills the “University Commitments” by filling: “Will new

or renovated space/facilities be required? Will rental space be

83

required? and Does this project require institutional commitments

beyond the end date of the project?” fields.

9. The actor fills the “Conflict of Interest and Commitment

Information” section by filling: “Is there a financial conflict of interest

related to this proposal? Has the financial conflict been disclosed? and

Has there been a material change to your annual disclosure form?”

fields.

10. The actor fills the “Compliance Information” section by filling:

“Does this project involve the use of Human Subjects? Does this project

involve the use of Vertebrate Animals? Does this project include

Biosafety concerns? and Does this project have Environmental Health

& Safety concerns?” fields.

11. The actor fills the “Additional Information” section by filling:

“Do you anticipate payment(s) to foreign nationals or on behalf of

foreign nationals? Do you anticipate course release time? and Are the

proposed activities related to Center for Advanced Energy Studies?”

fields.

12. The actor fills the “Collaboration Information” section by filling:

Does this project involve Non-funded collaborations?” filed.

13. The actor fills the “Proprietary/Confidential Information” section

by filling: “Does this proposal contain any confidential information

which is Proprietary that should not be publicly released? Will this

project involve intellectual property in which the University may own or

have an interest?” fields.

14. The actor fills the “Certification/Signatures” section by filling:

“Signature(s), Date and Note” fields.

15. The actor fills “Appendices” section by using the file upload action.

16. The actor selects the save action to keep the proposal.

17. The system sends notifications to the Co-PI(s) and senior personal.

18. The system records the request in the user audit log

84

Post-Condition 1. The system saves the proposal with correct data submitted by the

actor.

2. The actor can access the proposal.

Alternative flow NONE

Exception flow NONE

Recovery flow NONE

2. Delete proposal by principal investigator (PI) use case:

This use case represents the process of deleting proposal by PI.

Use case # UC-2

Use case name Delete a proposal by PI

Actor Principal Investigator (PI)

Goal To delete the proposal document.

Preconditions 1. The proposal not submitted by PI.

Main Flow 1. The actor login to his/her account.

2. The actor selects the proposal by selecting edit action.

3. The actor selects the “Delete” action.

4. The system processes the requests and deletes the proposal.

5. The system sends a confirmation message.

6. The system sends notification PI, Co-PI, Senior Personnel.

7. The system records that in user audit log

8. The system records that in the system log file.

Post-Condition 1. The system successfully deletes the proposal sheet.

2. The actor cannot find, open, and/or edit the proposal.

Alternative flow 2.a The actor uses the notification tab to select the proposal

2.a.1 The actor selects check the notification tab

2.a.2 The actor selects the proposal. The use case continuous at The

Actor Deletes proposal in MF.

Exception flow NONE

Recovery flow NONE

85

3. Co-PI signs and updates the proposal.

This use case represents the process of Signing the proposal by Co-PI.

Use case # UC-3

Use case name Co-PI signs and updates the proposal.

Actor Co-PI

Goal Co-PI signs and updates the proposal.

Preconditions 1. The Co-PI is added to the proposal by PI.

Main Flow 1. The actor login to his/her account.

2. The actor select the proposal by selecting edit action.

3. The actor can update “Investigator Information” section in the

proposal.

4. The actor signs the proposal by filling the signature, date, and note

fields.

5. The system updates the proposal status and saves it.

6. The system sends a confirmation message.

7. The system records that on the user audit log.

8. The system records in the system log.

Post-Condition 1. The proposal status changed to ready to submit by PI.

Alternative flow 2.a The actor uses the notification tab to select the proposal

2.a.1 The actor selects check the notification tab

2.a.2 The actor selects the proposal. The use case continuous at The

actor signs the proposal in MF.

Exception flow NONE.

Recovery flow NONE.

4. Submission proposal by principal investigator (PI) use case description:

This use case represents the process of submission of a proposal by PI to Department

Chair.

Use case # UC-4

Use case name Submit proposal by principal investigator (PI).

86

Actor Principal Investigator (PI)

Goal To submit the proposal to the department chair.

Preconditions 1. The PI created the proposal and signed it.

2. The Co-PI(s) signed the proposal.

3. The proposal status not submitted.

Main Flow 1. The actor login to account.

2. The actor selects “My proposals” action.

3. The actor selects the proposal by selecting the edit proposal action.

4. The system opens the proposal in edit mode.

5. The actor signs the proposal.

6. The actor selects the submit action.

7. The system sends a notification to the department chair, PI, Co-PI(s)

and Senior Personnel.

8. The system records the request in the user audit log.

Post-Condition 1. The proposal Status changed to waiting for chair approval.

2. The actor has read access to the proposal.

Alternative flow 2.a The actor uses the research engine

2.a.1 The actor inserts the proposal information in the search fields.

2.a.2 The system returns the search result.

2.a.3 The actor selects the proposal. The use case continuous at The actor

selects the submit action in MF

Exception flow 4.a Co-PI(s) not signed the proposal

4.a.1 The system shows an error message that Co-PIs are not signed on

the proposal.

Recovery flow NONE

5. Department Chair approve/disapprove the proposal.

This use case represents the process of approving and disapproving a proposal by

Department Chair.

Use case # UC-5

87

Use case name Department Chair approve/disapprove the proposal.

Actors Department Chair

Goal Department Chair approve/disapprove proposal.

Preconditions 1. The proposal is signed by all Co-PI.

2. The proposal is signed by the PI.

3. The proposal is submitted by PI.

4. The proposal status is ready for Chair approval.

Main Flow 1. The actor logged into the system.

2. The actor selects “My proposal” action.

3. The actor selects the proposal by selecting “edit” action.

4. The actor signs the proposal by filling the signature, date, and note

fields.

5. The actor approves or disapproves the proposal by selecting

approve/disapprove action.

6. If the actor approves the proposal, the system will send notifications

to the PI, Co-PI, IRB and University Business Manager, Else, the

system will send a notification to system sends an email to PI, Co-PI,

and all Department Chairs.

7. The system updates the proposal status and saves it.

8. The system sends a confirmation message.

9. The system records that on the user audit log.

10. The system records in the system log.

Post-condition 1. If the actor approved the proposal, the proposal status will change to

Ready for Business Manager Approval and/or IRB.

2. If the actor disapproves the proposal, the proposal status will change

to not submitted.

88

Alternative Flow 2.a The actor uses the notification tab to select the proposal

2.a.1 The actor checks and opens the notification tab

2.a.2 The actor selects the proposal. The use case continuous at The

actor approves/disapproves the proposal in MF.

Exception flow NONE

Recovery flow NONE

6. Department Chair Delegates Associate Chair.

This use case represents the process of Delegation of Authority by Department Chair to

Associate Chair of his/her own Department

Use case # UC-6

Use case name Department Chair Delegates Associate Chair of his/her own Department.

Actors Department Chair

Goal Department Chair Delegates Associate Chair of his/her own Department.

Preconditions 1. The actor has an account on the system.

2. The actor’s position title must be Department Chair.

Main Flow 1. The actor logged into the system.

2. The actor selects “Delegation” menu.

3. The actor selects “Add New Delegation” action.

4. The system receives the actor request and redirects the user to the

new delegation page.

5. The actor selects the “Delegate To” that is bind to delegate users

based on policy rule specified such as User with position title of

Associate Chair from his/her own Department.

6. The actor selects the “Delegate Actions” by selecting multiple

checkboxes based on a policy defined for current actor’s context.

89

7. The actor selects the range of temporal delegation period using

starting date and ending date for the delegation.

8. The actor fills the reason for the current delegation.

9. The actor saves the delegation information.

10. The system sends notifications to the selected delegatee and current

delegator.

11. The system records that on the delegation audit log.

Post-condition 1. The system saves the delegation with correct data submitted by the

actor.

2. The actor can access the delegation for edit and revocation.

Alternative Flow NONE

Exception Flow NONE

Recovery Flow NONE

7. Department Chair revokes delegation from Associate Chair.

This use case represents the process of Revocation of Delegation of Authority by

Department Chair from his/her Delegatee.

Use case # UC-7

Use case name Department Chair Revokes Delegation of Authority from Associate Chair of

his/her own Department.

Actors Department Chair

Goal Department Chair Revokes Delegation of Authority from Associate Chair of

his/her own Department.

90

Preconditions 1. The actor has an account on the system.

2. The actor’s position title must be Department Chair.

3. The actor must have existing Delegation.

Main Flow 1. The actor logged into the system.

2. The actor selects “Delegation” menu.

3. The actor chooses a specific delegation by selecting the Edit

delegation action.

4. The system opens the selected delegation in edit mode.

5. The actor chooses the Revoke action.

6. The system sends notifications to the chosen delegatee and current

delegator.

7. The system records that on the delegation audit log.

Post-condition 1. The system saves the delegation with revocation status.

2. The actor cannot access the delegation for edit and revocation again.

Alternative Flow 3.a The actor uses the Revoke action to revoke the delegation

3.a.1 The actor selects a specific delegation.

3. a.2 The actor selects and confirms the Revoke delegation action. The

use case continuous at The actor revokes the delegatee in MF.

Exception Flow NONE

Recovery Flow NONE

8. Business Manager approves/disapproves the proposal.

This use case represents the process of approving and disapproving a proposal by Business

Manager.

Use case # UC-8

Use case name Business Manager approve/disapprove proposal.

91

Actors Business Manager

Goal Business Manager Approve/Disapprove the proposal.

Preconditions 1. The proposal signed by all Department Chair.

2. The proposal approved by all Department Chair.

3. The proposal status is ready for Business Manager approval.

Main Flow 1. The actor is logged in.

2. The actor selects “My proposal” action.

3. The actor selects the proposal by selecting “edit” action.

4. The actor can edit the “Sponsor and Budget Information” section in

the proposal.

5. The actor signs the proposal by filling the signature, date, and note

fields.

6. The actor approves or disapproves the proposal by selecting

approve/disapprove action.

7. If the actor approves the proposal, the system will send notifications

to the PI, Co-PI, IRB and the Dean, Else, the system will send a

notification to system sends an email to PI, Co-PI, Department

Chair, IRB, and all Business Managers.

8. The system updates the proposal status and saves it.

9. The system sends a confirmation message.

10. The system records that on the user audit log.

11. The system records in the system log.

Post-condition 1. If the actor approved the proposal, the proposal status would change

to ready for Dean’s approval.

2. If the actor disapproves the proposal, the proposal status will change

to not submitted.

Alternative Flow 2.a The actor uses the notification tab to select the proposal

2.a.1 The actor checks and opens the notification tab

92

2.a.2 The actor selects the proposal. The use case continuous at The

actor approves/disapproves the proposal in MF.

Exception Flow NONE

Recovery Flow NONE

9. Approve/Disapprove Proposal by Dean use case:

This use case represents the process of approving and disapproving a proposal by Dean.

Use case # UC-9

Use case name Approve/Disapprove proposal by dean.

Actor Dean

Goal To approve/disapprove the proposal.

Preconditions 1. The proposal signed by all Business Manager.

2. The proposal approved by all Business Manager.

3. The proposal status is ready for Dean approval.

Main Flow 1. The actor login to his/her account.

2. The actor selects the proposal by selecting edit action.

3. The actor signs the proposal by filling the “Signature, Date and

Note” fields.

4. The actor approves or disapproves the proposal by selecting

approve/disapprove action.

5. If the actor approves the proposal, the system will send notifications

to the PI, Co-PI, Senior Personnel and University Research

Administrator, Else, the system will send a notification to PI, Co-PI,

Senior Personnel, Department Chair, Business Manager, Dean,

University Research Administrator, University Research Director

and IRB.

6. The system updates the proposal status and saves it.

7. The system sends a confirmation message.

8. The system records that on the user audit log.

93

Post-Condition 1. If the actor approved the proposal, and the IRBs approved the

proposal status changed to the ready for Research administrator

approval else the status will stay ready for IRB approval.

2. If the actor disapproves the proposal, the proposal status changed to

not submitted, and, clear all signatures.

Alternative flow 2.a The uses the notification tab to select the proposal

2.a.1 The actor selects check the notification tab

2.a.2 The actor selects the proposal. The use case continuous at The

actor approves/disapproves the proposal in MF.

Exception flow NONE.

Recovery flow NONE.

10. IRB approve/disapprove the proposal.

This use case represents the process of approving and disapproving a proposal by IRB.

Use case # UC-10

Use case name IRB approve/disapprove proposal.

Actors IRB

Goal Business Manager approve/disapprove proposal.

Preconditions 1. The proposal status is ready for IRB approval.

2. The proposal has a compliance

Main Flow 1. The actor is logged in.

2. The actor selects “My proposal” action.

3. The actor selects the proposal by selecting “edit” action.

4. The actor signs the proposal by filling the signature, date, and note

fields.

5. The actor approves or disapproves the proposal.

94

6. If the actor approves the proposal, the system will send notifications

to the PI, Co-PI, Senior Personnel and Research Administrator, Else,

the system will send a notification to system sends an email to PI,

Co-PI, and all Department chair.

7. The system updates the proposal status and saves it.

8. The system sends a confirmation message.

9. The system records that on the user audit log.

Post-condition 1. If the actor approved the proposal and the Deans approved, the

proposal status will change to the ready for Research

Administrator’s approval else will remain ready for Dean approval.

2. If the actor disapproves the proposal, the proposal status will change

to not submitted.

Alternative Flow 2.a The actor uses the notification tab to select the proposal

2.a.1 The actor checks and opens the notification tab.

2.a.2 The actor selects the proposal. The use case continuous at The

actor approves/disapproves the proposal in MF.

Exception Flow NONE.

Recovery Flow NONE.

11. Approve/Disapprove proposal by Research Administrator.

This use case represents the process of approving and disapproving a proposal by

Research Administrator.

Use case # UC-11

Use case name Approve/Disapprove proposal by Research Administrator.

Actor Research Administrator

Goal To approve/disapprove the proposal.

Preconditions 1. The proposal status is ready for Research Administrator.

95

Main Flow 1. The actor login to his/her account.

2. The actor selects the proposal by selecting edit action.

3. The actor signs the proposal by filling the signature, date, and note

fields.

4. The actor can update the following sections of the proposal, such as

“Investigator Information”, “Project Information”, Sponsor and

Budget Information”, “Cost Share Information”, “University

Commitments”, “Conflict of Interest and Commitment

Information”, “Compliance Information”, “Additional Information”,

“Collaboration Information”, “Proprietary/Confidential

Information”, “Certification/Signatures”, and “OSP Section”.

5. The actor approves or disapproves the proposal.

6. If the actor approves the proposal, the system will send notifications

to the PI, Co-PI, Senior Personnel and University Research

Director, Else, the system will send a notification to PI, Co-PI,

Senior Personnel, Department Chair, Business Manager, Dean,

University Research Administrator, University Research Director

and IRB.

7. The system updates the proposal status and saves it.

8. The system sends a confirmation message.

9. The system records that on the user audit log.

10. The system records in the system log.

Post-Condition 1. If the actor approved the proposal, the proposal status changed to

ready for Research Director approval.

2. If the actor disapproves the proposal, the proposal status changed to

not submitted, and, clear all signatures.

Alternative flow 2.a The actor uses the notification tab to select the proposal

2.a.1 The actor selects check the notification tab

2.a.2 The actor selects the proposal. The use case continuous at The

actor approve/disapprove the proposal in MF.

Exception flow NONE.

96

Recovery flow NONE.

12. Withdraw the proposal by Research Administrator.

This use case represents the process of withdrawing a proposal by Research

Administrator.

Use case # UC-12

Use case name Withdraw proposal by Research Administrator.

Actor Research Administrator

Goal To withdraw the proposal.

Preconditions 1. The proposal status ready for research administrator approval.

Main Flow 1. The actor login to his/her account.

2. The actor selects the proposal by selecting edit action.

3. The actor signs the proposal by filling the “Signature, Date and

Note” fields.

4. The actor withdraws a proposal by selecting the withdraw action.

5. The system updates the proposal status and saves it.

6. The system sends the confirmation message.

7. The system sends a notification to the PI, Co-PI, Senior Personnel

Department Chair, Business Manager, Dean, University Research

Administrator, University Research Director and IRB The system

records that on the user audit log.

8. The system records the request in the user audit log.

9. The system records in the system log.

Post-Condition 1. The proposal status changed to withdrawn.

2. The proposal cannot be updated by PI.

Alternative flow 2.a The actor uses the notification tab to select the proposal

2.a.1 The actor selects check the notification tab

2.a.2 The actor selects the proposal. The use case continuous at The

actor withdraw proposal in MF.

Exception flow NONE.

97

Recovery flow NONE.

13. Approve/Disapprove proposal by Research Director:

This use case represents the process of approving and disapproving a proposal by

Research Director.

Use case # UC-13

Use case name Approve/Disapprove proposal by Research Director.

Actor Research Director

Goal To approve/disapprove the proposal.

Preconditions 1. The proposals signed by all research administrators.

2. The proposal approved by all research administrators.

3. The proposal status is ready for Research Director approval.

Main Flow 1. The actor login to his/her account.

2. The actor selects “My proposal” action.

3. The actor selects the proposal by selecting edit action.

4. The actor can update the “OSP” section fields in the proposal.

5. The actor signs the proposal by filling the “Signature, Date and

Note” fields.

6. The actor approves or disapproves the proposal by selecting the

approve/disapprove action.

7. If the actor approves the proposal, the system will send notifications

to the PI, Co-PI, Senior Personnel, University Research

Administrator, Else, the system will send a notification to System

sends an email to PI, Co-PI, Senior Personnel, Department Chair,

Business Manager, IRB and all Deans.

8. The system updates the proposal status and saves it.

9. The system sends a confirmation message.

10. The system records that on the user audit log.

Post-Condition 1. If the actor approved the proposal, the proposal status changed to

ready for search administrator submission.

98

2. If the actor disapproves the proposal, the proposal status changed to

not submitted, and, clear all signatures.

Alternative flow 2.a The actor uses the notification tab to select the proposal

2.a.1 The actor selects check the notification tab

2.a.2 The actor selects the proposal. The use case continuous at The actor

approve/disapprove the proposal in MF.

Exception flow NONE.

Recovery flow NONE.

14. Delete proposal by Research Director use case:

This use case represents the process of deleting proposal by Research Director.

Use case # UC-14

Use case name Delete proposal by Research Director

Actor Research Director

Goal To delete the proposal.

Preconditions 1. The proposal status is ready for Research Director Approval.

Main Flow 1. The actor login to his/her account.

2. The actor selects the proposal by selecting edit action.

3. The actor selects the “Delete” action.

4. The system processes the requests and deletes the proposal.

5. The system sends a confirmation message.

6. The system sends a notification to PI, Co-PI, Senior Personnel,

Department Chair, Business Manager, Dean, University Research

Administrator, University Research Director and IRB.

7. The system records that in user audit log

8. The system records that in the system log file.

Post-Condition 1. The system successfully deletes the proposal sheet.

2. The proposal status will change to deleted.

3. The PI cannot updates/edits the proposal.

4. The PI cannot be submitted again.

99

Alternative flow 2.a The actor uses the notification tab to select the proposal

2.a.1 The actor selects check the notification tab

2.a.2 The actor selects the proposal. The use case continuous at The

actor Delete proposal in MF.

Exception flow NONE

Recovery flow NONE

15. Submit the proposal by Research Administrator:

This use case represents the process of submitting a proposal by Research Administrator.

Use case # UC-15

Use case name Submit proposal to research administrator.

Actor Research Administrator

Goal To submit the proposal.

Preconditions 1. The proposal approved by all research directories.

2. The proposals status ready for research administrator submission

Main Flow 1. The actor login to his/her account.

2. The actor selects the proposal by selecting edit action.

3. The actor can update the following sections of the proposal, such as

“Investigator Information”, “Project Information”, Sponsor and

Budget Information”, “Cost Share Information”, “University

Commitments”, “Conflict of Interest and Commitment

Information”, “Compliance Information”, “Additional Information”,

“Collaboration Information”, “Proprietary/Confidential

Information”, “Certification/Signatures”, and “OSP Section”.

4. The actor signs the proposal by filling the “Signature, Date and

Note” fields.

5. The actor submits a proposal.

6. The system updates the proposal status and saves it.

7. The system sends the confirmation message.

100

8. The system sends a notification to the PI, Co-PI, Senior Personnel,

Department Chair, Business Manager, Dean, University Research

Director and IRB.

9. The system records request on the user audit log.

10. The system records request on the system log.

Post-Condition 1. The proposal status changed to be submitted by research

administrator.

Alternative flow 2.a The actor uses the notification tab to select the proposal

2.a.1 The actor selects the notification tab.

2.a.2 The actor selects the proposal. The use case continuous at The

actor signs the proposal in MF.

Exception flow NONE.

Recovery flow NONE.

16. Archive proposal by Research Director.

This use case represents the process of the archiving proposal by Research Director.

Use case # UC-16

Use case name Archive proposal.

Actor Research Director

Goal To archive the proposal.

Preconditions 1. The proposal approved by Research Administrator.

Main Flow 1. The actor login to his/her account.

2. The actor selects the proposal by selecting edit action.

3. The actor selects the “Archive” action.

4. The system processes the requests and archives the proposal.

5. The system sends a confirmation message.

6. The system sends a notification to PI, Co-PI, Senior Personnel,

Department Chair, Business Manager, Dean, University Research

Administrator, University Research Director and IRB.

7. The system records that in user audit log.

101

8. The system records that in the system log file.

Post-Condition 1. The proposal status changed to archived

2. The proposal cannot be updated by any actor.

Alternative flow 2.a The actor uses the notification tab to select the proposal

2.a.1 The actor selects check the notification tab

2.a.2 The actor selects the proposal. The use case continuous at The

actor selects Archive proposal in MF.

Exception flow NONE.

Recovery flow NONE.

102

APPENDIX B

1
0
3

State Diagram of GPWFMS with Delegation

104

APPENDIX C

1
0
5

Attribute Metadata Definition

Attribute Category Type Value

SubmittedByPI urn:oasis:names:tc:xacml:1.0:at

tribute-category:resource

http://www.w3.org/2001/X

MLSchema#string

SUBMITTED, NOTSUBMITTED

ReadyForSubmissionByPI urn:oasis:names:tc:xacml:1.0:at

tribute-category:resource

http://www.w3.org/2001/X

MLSchema#string

True, False

DeletedByPI urn:oasis:names:tc:xacml:1.0:at

tribute-category:resource

http://www.w3.org/2001/X

MLSchema#string

DELETED, NOTDELETED

ApprovedByDepartmentC

hair

urn:oasis:names:tc:xacml:1.0:at

tribute-category:resource

http://www.w3.org/2001/X

MLSchema#string

APPROVED, DISAPPROVED,

READYFORAPPROVAL,

NOTREADYFORAPPROVAL

ApprovedByBusinessMan

ager

urn:oasis:names:tc:xacml:1.0:at

tribute-category:resource

http://www.w3.org/2001/X

MLSchema#string

APPROVED, DISAPPROVED,

READYFORAPPROVAL,

NOTREADYFORAPPROVAL

ApprovedByIRB urn:oasis:names:tc:xacml:1.0:at

tribute-category:resource

http://www.w3.org/2001/X

MLSchema#string

APPROVED, DISAPPROVED,

READYFORAPPROVAL,

NOTREADYFORAPPROVAL

1
0
6

ApprovedByDean urn:oasis:names:tc:xacml:1.0:at

tribute-category:resource

http://www.w3.org/2001/X

MLSchema#string

APPROVED, DISAPPROVED,

READYFORAPPROVAL,

NOTREADYFORAPPROVAL

ApprovedByUniversityRe

searchAdministrator

urn:oasis:names:tc:xacml:1.0:at

tribute-category:resource

http://www.w3.org/2001/X

MLSchema#string

APPROVED, DISAPPROVED,

READYFORAPPROVAL,

NOTREADYFORAPPROVAL

WithdrawnByUniversityR

esearchAdministrator

urn:oasis:names:tc:xacml:1.0:at

tribute-category:resource

http://www.w3.org/2001/X

MLSchema#string

WITHDRAWN, NOTWITHDRAWN

ApprovedByUniversityRe

searchDirector

urn:oasis:names:tc:xacml:1.0:at

tribute-category:resource

http://www.w3.org/2001/X

MLSchema#string

APPROVED, DISAPPROVED,

READYFORAPPROVAL,

NOTREADYFORAPPROVAL

DeletedByUniversityRese

archDirector

urn:oasis:names:tc:xacml:1.0:at

tribute-category:resource

http://www.w3.org/2001/X

MLSchema#string

DELETED, NOTDELETED

SubmittedByUniversityRe

searchAdministrator

urn:oasis:names:tc:xacml:1.0:at

tribute-category:resource

http://www.w3.org/2001/X

MLSchema#string

SUBMITTED, NOTSUBMITTED

ArchivedByUniversityRes

earchDirector

urn:oasis:names:tc:xacml:1.0:at

tribute-category:resource

http://www.w3.org/2001/X

MLSchema#string

ARCHIVED, NOTARCHIVED

position.type urn:oasis:names:tc:xacml:1.0:su

bject-category:access-subject

http://www.w3.org/2001/X

MLSchema#string

Tenured/Tenured-track Faculty, Non-Tenured-

track research Faculty, Teaching Faculty,

Research staff, Professional staff, Administrator

1
0
7

position.title urn:oasis:names:tc:xacml:1.0:su

bject-category:access-subject

http://www.w3.org/2001/X

MLSchema#string

Distinguished Professor, Professor, Associate

Professor, Assistant Professor, Research

Professor, Associate Research Professor,

Assistant Research Professor, Clinical Professor,

Clinical Associate Professor, Clinical Assistant

Professor, Visiting Professor, Visiting Associate

Professor, Visiting Assistant Professor, Lecturer,

Senior Lecturer, Adjunct Professor, Research

Associate, Research Scientist, Senior Research

Scientist, IRB, Business Manager, University

Research Administrator, Department

Administrative Assistant, Department Chair,

Associate Chair, Dean, Associate Dean, Research

Administrator, University Research Director

proposal.role urn:oasis:names:tc:xacml:1.0:su

bject-category:access-subject

http://www.w3.org/2001/X

MLSchema#string

PI, Co-PI, Senior Personnel

proposal.section urn:oasis:names:tc:xacml:1.0:at

tribute-category:resource

http://www.w3.org/2001/X

MLSchema#string

Whole Proposal, Investigator Information,

InvestigatorInformation.PI,

InvestigatorInformation.Co-PI,

InvestigatorInformation.Senior-Personnel, Project

1
0
8

Information, Sponsor and Budget Information,

Cost Share Information, University

Commitments, Conflict of Interest and

Commitment Information, Compliance

Information, Additional Information,

Collaboration Information,

Proprietary/Confidential Information,

Certification/Signatures, OSP Section,

Appendices, Audit Log

proposal.action urn:oasis:names:tc:xacml:1.0:at

tribute-category:action

http://www.w3.org/2001/X

MLSchema#string

Add, Add Co-PI, Add Senior Personnel, Save,

Submit, Approve, Disapprove, Withdraw,

Archive, Delete, View, Edit

device.type urn:oasis:names:tc:xacml:1.0:su

bject-category:environment

http://www.w3.org/2001/X

MLSchema#string

Android Device, Windows Device, iOS Device

network.type urn:oasis:names:tc:xacml:1.0:su

bject-category:environment

http://www.w3.org/2001/X

MLSchema#string

Campus, Outside Campus

department urn:oasis:names:tc:xacml:1.0:su

bject-category:access-subject

http://www.w3.org/2001/X

MLSchema#string

Computer Science, Electrical Engineering,

Computer Engineering, Physics, Chemistry

109

APPENDIX D

110

Functional and Access Control Requirements

Action: Add

Rule Action Pre-Condition Post-

Condition

Pre-

Obligation

Post-

Obligations

1. AddProposalByFa

culty-Rule1

Add A New

Proposal by

Tenured/Tenured-

track faculty

(Permit)

position.type = Tenured/Tenured-track

faculty

proposal.section = Whole Proposal

proposal.action = Add

1

1. 1

.

Add A New

Proposal by Non-

Tenured-track

research faculty

(Permit)

position.type = Non-Tenured-track research

faculty

proposal.section = Whole Proposal

proposal.action = Add

2. CannotAddPropos

alByOtherStaff-Rule2

Cannot Add a New

Proposal by other

Staff (Deny)

position.type = <Teaching faculty ||

Research staff || Professional staff ||

Administrator>

proposal.section = Whole Proposal

proposal.action = Add

Action: Add Co-PI

Rule Action Pre-Condition Post-

Condition

Pre-

Obligation

Post-

Obligations

1
1
1

3. AddCo-PIByPI-

Rule3

Co-PI can be Added

by PI (Permit)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

proposal.section =

InvestigatorInformation.Co-PI

proposal.action = Add Co-PI

4. CannotAddCo-

PIByCoPI-Rule4

Co-PI cannot be

Added by Co-PI

(Deny)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

ReadyForSubmissionByPI = False

proposal.section =

InvestigatorInformation.Co-PI

proposal.action = Add Co-PI

Action: Add Senior Personnel

Rule Action Pre-Condition Post-

Condition

Pre-

Obligation

Post-

Obligations

5. AddSeniorPersonn

elByPI-Rule5

Senior Personnel can

be Added by PI

(Permit)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

proposal.section =

InvestigatorInformation.Senior-Personnel

proposal.action = Add Senior Personnel

6. AddSeniorPersonn

elByCoPI-Rule6

Senior Personnel can

be Added by Co-PI

(Permit)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

ReadyForSubmissionByPI = False

1
1
2

proposal.section =

InvestigatorInformation.Senior-Personnel

proposal.action = Add Senior Personnel

Action: Save

Rule Action Pre-Condition Post-

Condition

Pre-

Obligation

Post-

Obligations

7. SaveProposalByFa

culty-Rule7

Save a New Proposal

by Tenured/Tenured-

track faculty

(Permit)

position.type = Tenured/Tenured-track

faculty

proposal.section = Whole Proposal

proposal.action = Save

 System sends

an email to

PI, Co-PI,

Senior

Personnel

 Save a New Proposal

by Non-Tenured-

track research

faculty (Permit)

position.type = Non-Tenured-track research

faculty

proposal.section = Whole Proposal

proposal.action = Save

 System sends

an email to

PI, Co-PI,

Senior

Personnel

8. SaveProposalByPI

-Rule8

Update an Existing

Proposal by PI

(Permit)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

proposal.role = PI

proposal.section = Whole Proposal

proposal.action = Save

If PI, Co-PIs

have signed

then

ReadyForSu

bmissionByP

I = True

else

 System sends

an email to

PI, Co-PI,

Senior

Personnel

1
1
3

ReadyForSu

bmissionByP

I = False

9. SaveProposalByC

o-PI-Rule9

Update Existing

Proposal by Co-PI

(Permit)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

ReadyForSubmissionByPI = False

proposal.role = Co-PI

proposal.section = Whole Proposal

proposal.action = Save

If PI, Co-PIs

have signed

then

ReadyForSu

bmissionByP

I = True

else

ReadyForSu

bmissionByP

I = False

 System sends

an email to

PI, Co-PI,

Senior

Personnel

Action: Submit

Rule Action Pre-Condition Post-

Condition

Pre-

Obligation

Post-

Obligations

10. SubmitProposalBy

PI-Rule10a

Submit Proposal by

PI (Permit)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

ReadyForSubmissionByPI = True

proposal.role = PI

proposal.action = Submit

If all PI, Co-

PIs have

signed then

SubmittedBy

PI =

PI signs the

proposal

System sends

an email to PI,

Co-PI, Senior

Personnel,

1
1
4

Condition:

signedByAllCoPIs =true

SUBMITTE

D

ApprovedBy

DepartmentC

hair =

READYFOR

APPROVAL

else

ReadyForSu

bmissionByP

I = False

Department

Chair

If

signedByAllC

oPIs = true

11. NotSubmitProposa

lByPI-Rule10b

Not Submit Proposal

by PI (Deny)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

ReadyForSubmissionByPI = True

proposal.role = PI

proposal.action = Submit

Condition:

signedByAllCoPIs =false

12. NotSubmitProposa

lByCoPI-Rule11

Not Submit Proposal

by Co-PI (Deny)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

ReadyForSubmissionByPI = False

proposal.role = Co-PI

proposal.action = Submit

12a.SubmitProposalByUn

iversityResearchAdminist

rator-Rule12a

Submit By

University Research

SubmittedByUniversityResearchAdministra

tor = NOTSUBMITTED

SubmittedBy

UniversityRe

searchAdmin

University

Research

Administrat

System sends

an email to PI,

Co-PI, Senior

1
1
5

Administrator

(Permit)

ApprovedByUniversityResearchDirector =

APPROVED

position.title = University Research

Administrator

proposal.action = Submit

Condition:

irbApprovalRequired =false

istrator =

SUBMITTE

D

or signs the

proposal

Personnel,

Department

Chair,

Business

Manager,

Dean,

University

Research

Administrator

12b.SubmitProposalByUn

iversityResearchAdminist

rator-Rule12b

Submit By

University Research

Administrator

(Permit)

SubmittedByUniversityResearchAdministra

tor = NOTSUBMITTED

ApprovedByUniversityResearchDirector =

APPROVED

position.title = University Research

Administrator

proposal.action = Submit

Condition:

irbApprovalRequired =true

SubmittedBy

UniversityRe

searchAdmin

istrator =

SUBMITTE

D

University

Research

Administrat

or signs the

proposal

System sends

an email to PI,

Co-PI, Senior

Personnel,

Department

Chair,

Business

Manager,

Dean,

University

Research

Director and

IRB

Action: Approve

1
1
6

Rule Action Pre-Condition Post-

Condition

Pre-

Obligation

Post-

Obligations

13a.ApproveProposalByD

epartmentChair-Rule13a

Approve By

Department Chair

(Permit)

ApprovedByDepartmentChair =

READYFORAPPROVAL

position.title = Department Chair

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllChairs = false

all

department

chairs have

not signed

Department

Chair signs

the proposal

System sends

an email to PI,

Co-PI, Senior

Personnel,

Department

Chair

13b.ApproveProposalByD

epartmentChair-Rule13b

Approve By

Department Chair

(Permit)

ApprovedByDepartmentChair =

READYFORAPPROVAL

position.title = Department Chair

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllChairs = true

irbApprovalRequired = false

if all

department

chairs have

signed then

ApprovedBy

DepartmentC

hair =

APPROVED

ApprovedBy

BusinessMan

ager =

READYFOR

APPROVAL

Department

Chair signs

the proposal

System sends

an email to PI,

Co-PI, Senior

Personnel,

Business

Manager

13c.ApproveProposalByD

epartmentChair-Rule13c

Approve By

Department Chair

(Permit)

ApprovedByDepartmentChair =

READYFORAPPROVAL

position.title = Department Chair

if all

department

Department

Chair signs

the proposal

System sends

an email to PI,

1
1
7

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllChairs = true

irbApprovalRequired = true

chairs have

signed then

ApprovedBy

DepartmentC

hair =

APPROVED

ApprovedBy

BusinessMan

ager =

READYFOR

APPROVAL

(if IRB

required then

ApprovedBy

IRB =

READYFOR

APPROVAL

)

Co-PI, Senior

Personnel,

IRB and

Business

Manager

14a.ApproveProposalByB

usinessManager-Rule14a

Approve By

Business Manager

(Permit)

ApprovedByBusinessManager =

READYFORAPPROVAL

position.title = Business Manager

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllBusinessManagers = false

All Business

Managers

have not

signed.

Business

Manager

signs the

proposal

System sends

an email to PI,

Co-PI and

Senior

Personnel,

Business

Manager

1
1
8

14b.ApproveProposalByB

usinessManager-Rule14b

Approve By

Business Manager

(Permit)

ApprovedByBusinessManager =

READYFORAPPROVAL

position.title = Business Manager

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllBusinessManagers = true

irbApprovalRequired = false

If all

Business

Managers

have signed,

then

ApprovedBy

BusinessMan

ager =

APPROVED

ApprovedBy

Dean =

READYFOR

APPROVAL

Business

Manager

signs the

proposal

System sends

an email to PI,

Co-PI and

Senior

Personnel,

Dean

14c.ApproveProposalByB

usinessManager-Rule14c

Approve By

Business Manager

(Permit)

ApprovedByBusinessManager =

READYFORAPPROVAL

position.title = Business Manager

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllBusinessManagers = true

irbApprovalRequired = true

ApprovedByIRB =

READYFORAPPROVAL

If all

Business

Managers

have signed,

then

ApprovedBy

BusinessMan

ager =

APPROVED

ApprovedBy

Dean =

READYFOR

APPROVAL

Business

Manager

signs the

proposal

System sends

an email to PI,

Co-PI and

Senior

Personnel,

Dean and IRB

1
1
9

(if IRB

required then

ApprovedBy

IRB =

READYFOR

APPROVAL

)

14d.ApproveProposalByB

usinessManager-Rule14d

Approve By

Business Manager

(Permit)

ApprovedByBusinessManager =

READYFORAPPROVAL

position.title = Business Manager

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllBusinessManagers = true

irbApprovalRequired = true

ApprovedByIRB = APPROVED

If all

Business

Managers

have signed,

then

ApprovedBy

BusinessMan

ager =

APPROVED

ApprovedBy

Dean =

READYFOR

APPROVAL

(if IRB

required then

ApprovedBy

IRB =

APPROVED

)

Business

Manager

signs the

proposal

System sends

an email to PI,

Co-PI and

Senior

Personnel,

Dean

1
2
0

15a.ApproveProposalByD

ean-Rule15a

Approve By Dean

(Permit)

ApprovedByDean =

READYFORAPPROVAL

position.title = Dean

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllDeans = false

All Deans

have not

signed

Dean signs

the proposal

System sends

an email to PI,

Co-PI, Senior

Personnel,

Dean

15b.ApproveProposalByD

ean-Rule15b

Approve By Dean

(Permit)

ApprovedByDean =

READYFORAPPROVAL

position.title = Dean

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllDeans = true

irbApprovalRequired = false

If all Deans

have signed,

then

ApprovedBy

Dean =

APPROVED

ApprovedBy

UniversityRe

searchAdmin

istrator =

READYFOR

APPROVAL

Dean signs

the proposal

System sends

an email to PI,

Co-PI, Senior

Personnel,

University

Research

Administrator

15c.ApproveProposalByD

ean-Rule15c

Approve By Dean

(Permit)

ApprovedByDean =

READYFORAPPROVAL

position.title = Dean

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

If all Deans

have signed,

then

ApprovedBy

Dean =

APPROVED

If

Dean signs

the proposal

System sends

an email to PI,

Co-PI, Senior

Personnel,

IRB

1
2
1

signedByAllDeans = true

irbApprovalRequired = true

ApprovedByIRB =

READYFORAPPROVAL

ApprovedBy

IRB =

READYFOR

APPROVAL

then

ApprovedBy

IRB =

APPROVED

)

15d.ApproveProposalByD

ean-Rule15d

Approve By Dean

(Permit)

ApprovedByDean =

READYFORAPPROVAL

position.title = Dean

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllDeans = true

irbApprovalRequired = true

ApprovedByIRB = APPROVED

If all Deans

have signed,

then

ApprovedBy

Dean =

APPROVED

If

ApprovedBy

IRB =

APPROVED

then

ApprovedBy

UniversityRe

searchAdmin

istrator =

READYFOR

APPROVAL

)

Dean signs

the proposal

System sends

an email to PI,

Co-PI, Senior

Personnel and

University

Research

Administrator

1
2
2

16a.ApproveProposalByI

RB-Rule16a

Approve By IRB

(Permit)

ApprovedByIRB =

READYFORAPPROVAL

position.title = IRB

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllIRBs = false

irbApprovalRequired = true

All IRBs

have not

signed

IRB signs

the proposal

System sends

an email to PI,

Co-PI, Senior

Personnel and

IRB

16b.ApproveProposalByI

RB-Rule16b

Approve By IRB

(Permit)

ApprovedByIRB =

READYFORAPPROVAL

position.title = IRB

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllIRBs =

trueirbApprovalRequired = true

approvedbydean = APPROVED

If all IRBs

have signed,

then

ApprovedBy

IRB =

APPROVED

(

if

ApprovedBy

Dean =

APPROVED

then

ApprovedBy

UniversityRe

searchAdmin

istrator =

READYFOR

IRB signs

the proposal

System sends

an email to PI,

Co-PI, Senior

Personnel and

University

Research

Administrator

1
2
3

APPROVAL

)

16c.ApproveProposalByI

RB-Rule16c

Approve By IRB

(Permit)

ApprovedByIRB =

READYFORAPPROVAL

position.title = IRB

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllIRBs = true

irbApprovalRequired = true

ApprovedByBusinessManager =

APPROVED

If all IRBs

have signed,

then

ApprovedBy

IRB =

APPROVED

(

if

ApprovedBy

BusinessMan

ager =

APPROVED

then

ApprovedBy

UniversityRe

searchAdmin

istrator =

READYFOR

APPROVAL

)

IRB signs

the proposal

System sends

an email to PI,

Co-PI, Senior

Personnel and

University

Research

Administrator

16d.ApproveProposalByI

RB-Rule16d

Approve By IRB

(Permit)

ApprovedByIRB =

READYFORAPPROVAL

position.title = IRB

proposal.section = Whole Proposal

proposal.action = Approve

If all IRBs

have signed,

then

ApprovedBy

IRB =

IRB signs

the proposal

System sends

an email to PI,

Co-PI, Senior

Personnel,

1
2
4

Condition:

signedByAllIRBs = true

irbApprovalRequired = true

ApprovedByBusinessManager =

READYFORAPPROVAL

APPROVED

(

if

ApprovedBy

BusinessMan

ager =

READYFOR

APPROVAL

then

ApprovedBy

BusinessMan

ager =

APPROVED

)

Business

Manager

16e.ApproveProposalByI

RB-Rule16e

Approve By IRB

(Permit)

ApprovedByIRB =

READYFORAPPROVAL

position.title = IRB

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllIRBs = true

irbApprovalRequired = true

approvedbydean =

READYFORAPPROVAL

If all IRBs

have signed,

then

ApprovedBy

IRB =

APPROVED

(

if

ApprovedBy

Dean =

READYFOR

APPROVAL

then

IRB signs

the proposal

System sends

an email to PI,

Co-PI, Senior

Personnel and

Dean

1
2
5

ApprovedBy

Dean =

APPROVED

)

17a1.ApproveProposalBy

UniversityResearchAdmin

istrator-Rule17a1

Approve By

University Research

Administrator

(Permit)

ApprovedByUniversityResearchAdministrat

or = READYFORAPPROVAL

position.title = University Research

Administrator

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllResearchAdmins = false

All

University

Research

Administrato

rs have not

signed

University

Research

Administrat

or signs the

proposal

System sends

an email to PI,

Co-PI, Senior

Personnel,

University

Research

Administrator

17a2.ApproveProposalBy

UniversityResearchAdmin

istrator-Rule17a2

Approve By

University Research

Administrator

(Permit)

ApprovedByUniversityResearchAdministrat

or = READYFORAPPROVAL

position.title = University Research

Administrator

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllResearchAdmins = true

if all

University

Research

Administrato

rs have

signed, then

ApprovedBy

UniversityRe

searchAdmin

istrator =

APPROVED

ApprovedBy

UniversityRe

searchDirect

University

Research

Administrat

or signs the

proposal

System sends

an email to PI,

Co-PI, Senior

Personnel,

University

Research

Director

1
2
6

or =

READYFOR

APPROVAL

18a1.ApproveProposalBy

UniversityResearchDirect

or-Rule18a1

Approve by

University Research

Director (Permit)

ApprovedByUniversityResearchDirector =

READYFORAPPROVAL

position.title = University Research Director

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllResearchDirectors = false

All

University

Research

Directors

have not

signed

University

Research

Director

signs the

proposal

System sends

an email to PI,

Co-PI, Senior

Personnel and

University

Research

Director

18a2.ApproveProposalBy

UniversityResearchDirect

or-Rule18a2

Approve by

University Research

Director

(Permit)

ApprovedByUniversityResearchDirector =

READYFORAPPROVAL

position.title = University Research Director

proposal.section = Whole Proposal

proposal.action = Approve

Condition:

signedByAllResearchDirectors = true

If all

University

Research

Directors

have signed,

then

ApprovedBy

UniversityRe

searchDirect

or =

APPROVED

University

Research

Director

signs the

proposal

System sends

an email to PI,

Co-PI, Senior

Personnel and

University

Research

Administrator

Action: Disapprove

Rule Action Pre-Condition Post-

Condition

Pre-

Obligation

Post-

Obligations

1
2
7

19. DisapprovePropos

alByDepartmentChair-

Rule19

Disapprove by

Department Chair

(Permit)

ApprovedByDepartmentChair =

READYFORAPPROVAL

position.title = Department Chair

proposal.section = Whole Proposal

proposal.action = Disapprove

ApprovedBy

DepartmentC

hair =

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

If Co-PI>0

ReadyForSu

bmissionByP

I = False

Clear all

signature

Department

Chair signs

the proposal

System sends

email to PI,

Co-PI and

Senior

Personnel,

Department

Chair

20a1.DisapproveProposal

ByBusinessManager-

Rule20a1

Disapprove By

Business Manager

(Permit)

ApprovedByBusinessManager =

READYFORAPPROVAL

position.title = Business Manager

proposal.section = Whole Proposal

proposal.action = Disapprove

Condition:

irbApprovalRequired = false

ApprovedBy

BusinessMan

ager =

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

Business

Manager

signs the

proposal

System sends

email to PI,

Co-PI and

Senior

Personnel,

Department

Chair and

Business

Manager

1
2
8

ApprovedBy

IRB =

NOTREAD

YFORAPPR

OVAL

If Co-PI>0

ReadyForSu

bmissionByP

I = False

Clear all

signature

20a2.DisapproveProposal

ByBusinessManager-

Rule20a2

Disapprove By

Business Manager

(Permit)

ApprovedByBusinessManager =

READYFORAPPROVAL

position.title = Business Manager

proposal.section = Whole Proposal

proposal.action = Disapprove

Condition:

irbApprovalRequired = true

ApprovedByIRB = APPROVED

ApprovedBy

BusinessMan

ager =

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

ApprovedBy

IRB =

NOTREAD

YFORAPPR

OVAL

Business

Manager

signs the

proposal

System sends

email to PI,

Co-PI and

Senior

Personnel,

Department

Chair

Business

Manager,

IRB

1
2
9

If Co-PI>0

ReadyForSu

bmissionByP

I = False

Clear all

signature

20a3.DisapproveProposal

ByBusinessManager-

Rule20a2

Disapprove By

Business Manager

(Permit)

ApprovedByBusinessManager =

READYFORAPPROVAL

position.title = Business Manager

proposal.section = Whole Proposal

proposal.action = Disapprove

Condition:

irbApprovalRequired = true

ApprovedByIRB =

READYFORAPPROVAL

ApprovedBy

BusinessMan

ager =

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

ApprovedBy

IRB =

NOTREAD

YFORAPPR

OVAL

If Co-PI>0

ReadyForSu

bmissionByP

I = False

Business

Manager

signs the

proposal

System sends

email to PI,

Co-PI and

Senior

Personnel,

Department

Chair

Business

Manager,

IRB

1
3
0

Clear all

signature

21a1.DisapproveProposal

ByDean-Rule21a

Disapprove by Dean

(Permit)

ApprovedByDean =

READYFORAPPROVAL

position.title = Dean

proposal.section = Whole Proposal

proposal.action = Disapprove

Condition:

irbApprovalRequired =false

ApprovedBy

Dean =

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

If Co-PI>0

ReadyForSu

bmissionByP

I = False

Clear all

signature

Dean signs

the proposal

System sends

an email to

PI, Co-PI,

Senior

Personnel,

Department

Chair,

Business

Manager and

Dean

21a2.DisapproveProposal

ByDean-Rule21a2

Disapprove by Dean

(Permit)

ApprovedByDean =

READYFORAPPROVAL

position.title = Dean

proposal.section = Whole Proposal

proposal.action = Disapprove

Condition:

ApprovedBy

Dean =

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

Dean signs

the proposal

System sends

an email to

PI, Co-PI,

Senior

Personnel,

Department

Chair,

Business

1
3
1

irbApprovalRequired = true

ApprovedByIRB = APPROVED

If Co-PI>0

ReadyForSu

bmissionByP

I = False

Clear all

signature

Manager,

IRB and

Dean

21a3.DisapproveProposal

ByDean-Rule21a3

Disapprove by Dean

(Permit)

ApprovedByDean =

READYFORAPPROVAL

position.title = Dean

proposal.section = Whole Proposal

proposal.action = Disapprove

Condition:

irbApprovalRequired = true

ApprovedByIRB =

READYFORAPPROVAL

ApprovedBy

Dean =

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

If Co-PI>0

ReadyForSu

bmissionByP

I = False

Clear all

signature

Dean signs

the proposal

System sends

an email to

PI, Co-PI,

Senior

Personnel,

Department

Chair,

Business

Manager,

IRB and

Dean

22a.DisapproveProposalB

yIRB-Rule22a

Disapprove By IRB

(Permit)

ApprovedByIRB =

READYFORAPPROVAL

position.title = IRB

ApprovedBy

IRB =

IRB signs

the proposal

System sends

an email to

PI, Co-PI,

1
3
2

proposal.section = Whole Proposal

proposal.action = Disapprove

Condition:

irbApprovalRequired = true

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

If Co-PI>0

ReadyForSu

bmissionByP

I = False

Clear all

signature

Senior

Personnel,

Department

Chair and

IRB

22b.DisapproveProposalB

yIRB-Rule22b

Disapprove By IRB

(Permit)

ApprovedByIRB =

READYFORAPPROVAL

position.title = IRB

proposal.section = Whole Proposal

proposal.action = Disapprove

Condition:

irbApprovalRequired = true

ApprovedByBusinessManager =

APPROVED

ApprovedBy

IRB =

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

If Co-PI>0

ReadyForSu

bmissionByP

I = False

IRB signs

the proposal

System sends

an email to

PI, Co-PI,

Senior

Personnel,

Department

Chair, IRB

and Business

Manager

1
3
3

Clear all

signature

22c.DisapproveProposalB

yIRB-Rule22c

Disapprove By IRB

(Permit)

ApprovedByIRB =

READYFORAPPROVAL

position.title = IRB

proposal.section = Whole Proposal

proposal.action = Disapprove

Condition:

irbApprovalRequired = true

ApprovedByBusinessManager =

READYFORAPPROVAL

ApprovedBy

IRB =

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

If Co-PI>0

ReadyForSu

bmissionByP

I = False

Clear all

signature

IRB signs

the proposal

System sends

an email to

PI, Co-PI,

Senior

Personnel,

Department

Chair, IRB

and Business

Manager

22d.DisapproveProposalB

yIRB-Rule22d

Disapprove By IRB

(Permit)

ApprovedByIRB =

READYFORAPPROVAL

position.title = IRB

proposal.section = Whole Proposal

proposal.action = Disapprove

Condition:

irbApprovalRequired = true

ApprovedBy

IRB =

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

IRB signs

the proposal

System sends

an email to

PI, Co-PI,

Senior

Personnel,

Department

Chair,

Business

1
3
4

ApprovedByDean = APPROVED

If Co-PI>0

ReadyForSu

bmissionByP

I = False

Clear all

signature

Manager,

Dean and

IRB

22e.DisapproveProposalB

yIRB-Rule22e

Disapprove By IRB

(Permit)

ApprovedByIRB =

READYFORAPPROVAL

position.title = IRB

proposal.section = Whole Proposal

proposal.action = Disapprove

Condition:

irbApprovalRequired = true

ApprovedByDean =

READYFORAPPROVAL

ApprovedBy

IRB =

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

If Co-PI>0

ReadyForSu

bmissionByP

I = False

Clear all

signature

IRB signs

the proposal

System sends

an email to

PI, Co-PI,

Senior

Personnel,

Department

Chair,

Business

Manager,

Dean and

IRB

23a1.DisapproveProposal

ByUniversityResearchAd

ministrator-Rule23a1

Disapprove By

University Research

ApprovedByUniversityResearchAdministrat

or = READYFORAPPROVAL

ApprovedBy

UniversityRe

University

Research

Administrat

System sends

an email to

PI, Co-PI,

1
3
5

Administrator

(Permit)

position.title = University Research

Administrator

proposal.section = Whole Proposal

proposal.action = Disapprove

Condition:

irbApprovalRequired = false

searchAdmin

istrator =

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

If Co-PI>0

ReadyForSu

bmissionByP

I = False

Clear all

signature

or signs the

proposal

Senior

Personnel,

Department

Chair,

Business

Manager,Dea

n, University

Research

Administrato

r

23a2.DisapproveProposal

ByUniversityResearchAd

ministrator-Rule23a2

Disapprove By

University Research

Administrator

(Permit)

ApprovedByUniversityResearchAdministrat

or = READYFORAPPROVAL

position.title = University Research

Administrator

proposal.section = Whole Proposal

proposal.action = Disapprove

Condition:

irbApprovalRequired = true

ApprovedBy

UniversityRe

searchAdmin

istrator =

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

University

Research

Administrat

or signs the

proposal

System sends

an email to

PI, Co-PI,

Senior

Personnel,

Department

Chair,

Business

Manager,

Dean,

University

1
3
6

If Co-PI>0

ReadyForSu

bmissionByP

I = False

Clear all

signature

Research

Administrato

r and IRB

24a1.DisapproveProposal

ByUniversityResearchDir

ector-Rule24a1

Disapprove by

University Research

Director (Permit)

ApprovedByUniversityResearchDirector =

READYFORAPPROVAL

position.title = University Research Director

proposal.section = Whole Proposal

proposal.action = Disapprove

Condition:

irbApprovalRequired = false

ApprovedBy

UniversityRe

searchDirect

or =

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

If Co-PI>0

ReadyForSu

bmissionByP

I = False

Clear all

signature

University

Research

Director

signs the

proposal

System sends

an email to

PI, Co-PI,

Senior

Personnel,

Department

Chair,

Business

Manager,

Dean,

University

Research

Administrato

r,

University

Research

Director

1
3
7

24a2.DisapproveProposal

ByUniversityResearchDir

ector-Rule24a2

Disapprove by

University Research

Director (Permit)

ApprovedByUniversityResearchDirector =

READYFORAPPROVAL

position.title = University Research Director

proposal.section = Whole Proposal

proposal.action = Disapprove

Condition:

irbApprovalRequired = false

ApprovedBy

UniversityRe

searchDirect

or =

DISAPPRO

VED

SubmittedBy

PI =

NOTSUBMI

TTED

If Co-PI>0

ReadyForSu

bmissionByP

I = False

Clear all

signature

University

Research

Director

signs the

proposal

System sends

an email to

PI, Co-PI,

Senior

Personnel,

Department

Chair,

Business

Manager,

Dean,

University

Research

Administrato

r, University

Research

Director and

IRB

Action: Withdraw

Rule Action Pre-Condition Post-

Condition

Pre-

Obligation

Post-

Obligations

25a1.WithdrawProposalB

yUniversityResearchAdmi

nistrator-Rule25a1

Withdraw By

University Research

WithdrawnByUniversityResearchAdministr

ator = NOTWITHDRAWN

WithdrawnB

yUniversityR

esearchAdmi

 System sends

an email to

PI, Co-PI,

1
3
8

Administrator

(Permit)

ApprovedByUniversityResearchAdministrat

or = READYFORAPPROVAL

position.title = University Research

Administrator

proposal.section = Whole Proposal

proposal.action = Withdraw

Condition:

irbApprovalRequired = false

nistrator =

WITHDRA

WN

ApprovedBy

UniversityRe

searchAdmin

istrator =

NOTREAD

YFORAPPR

OVAL

Senior

Personnel

Department

Chair,

Business

Manager,

Dean,

University

Research

Administrato

r, University

Research

Director

25a2.WithdrawProposalB

yUniversityResearchAdmi

nistrator-Rule25a2

Withdraw By

University Research

Administrator

(Permit)

WithdrawnByUniversityResearchAdministr

ator = NOTWITHDRAWN

ApprovedByUniversityResearchAdministrat

or = READYFORAPPROVAL

position.title = University Research

Administrator

proposal.section = Whole Proposal

proposal.action = Withdraw

Condition:

irbApprovalRequired = true

WithdrawnB

yUniversityR

esearchAdmi

nistrator =

WITHDRA

WN

ApprovedBy

UniversityRe

searchAdmin

istrator =

NOTREAD

YFORAPPR

OVAL

 System sends

an email to

PI, Co-PI,

Senior

Personnel

Department

Chair,

Business

Manager,

Dean,

University

Research

Administrato

r, University

1
3
9

Research

Director and

IRB

Action: Archive

Rule Action Pre-Condition Post-Condition Pre-

Obligation

Post-Obligations

26a1.ArchiveProposalBy

UniversityResearchDirect

or-Rule26a1

Archive By

University Research

Director (Permit)

ArchivedByUniversityResearch

Director = NOTARCHIVED

SubmittedByUniversityResearch

Administrator = SUBMITTED

position.title = University

Research Director

proposal.section = Whole

Proposal

proposal.action = Archive

Condition:

irbApprovalRequired = false

ArchivedByUniversi

tyResearchDirector

= ARCHIVED

ApprovedByUnivers

ityResearchDirector

=

NOTREADYFORA

PPROVAL

 System sends an

email to PI, Co-

PI, Senior

Personnel

Department

Chair, Business

Manager, Dean,

University

Research

Administrator

and University

Director

26a2.ArchiveProposalBy

UniversityResearchDirect

or-Rule26a2

Archive By

University Research

Director (Permit)

ArchivedByUniversityResearch

Director = NOTARCHIVED

SubmittedByUniversityResearch

Administrator = SUBMITTED

position.title = University

Research Director

ArchivedByUniversi

tyResearchDirector

= ARCHIVED

ApprovedByUnivers

ityResearchDirector

=

 System sends an

email to PI, Co-

PI, Senior

Personnel

Department

Chair, Business

1
4
0

proposal.section = Whole

Proposal

proposal.action = Archive

NOTREADYFORA

PPROVAL

Manager, Dean,

University

Research

Administrator

University

Research

Director and IRB

Action: Delete

Rule Action Pre-Condition Post-

Condition

Pre-

Obligation

Post-

Obligations

27. DeleteCo-

PIandSeniorPersonnel

ByPI-Rule27

Co-PI can be deleted

by PI (Permit)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

proposal.section =

InvestigatorInformation.Co-PI

proposal.action = Delete

 Senior Personnel can

be Deleted by PI

(Permit)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

proposal.section =

InvestigatorInformation.Senior-Personnel

proposal.action = Delete

28. DeleteSeniorPerso

nnelByCoPI-Rule28

Senior Personnel can

be Deleted by Co-PI

(Permit)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

ReadyForSubmissionByPI = False

1
4
1

proposal.section =

InvestigatorInformation.Senior-Personnel

proposal.action = Delete

29. CannotDeleteCoPI

ByCoPI-Rule29

Co-PI cannot be

Deleted by Co-PI

(Deny)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

ReadyForSubmissionByPI = False

proposal.section =

InvestigatorInformation.Co-PI

proposal.action = Delete

30. DeleteProposalBy

PI-Rule30

Delete Proposal by

PI (Permit)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

proposal.role = PI

proposal.section = Whole Proposal

proposal.action = Delete

 System sends

email to PI,

Co-PI,

Senior

Personnel

31. CannotDeleteProp

osalByCo-PI-Rule31

Not delete Proposal

by Co-PI (Deny)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

proposal.role = Co-PI

proposal.section = Whole Proposal

proposal.action = Delete

32a1.DeleteProposalByUn

iversityResearchDirector-

Rule32a1

Delete by University

Research Director

(Permit)

DeletedByUniversityResearchDirector =

NOTDELETED

ApprovedByUniversityResearchDirector =

READYFORAPPROVAL

position.title = University Research Director

proposal.section = Whole Proposal

proposal.action = Delete

DeletedByU

niversityRese

archDirector

= DELETED

ApprovedBy

UniversityRe

searchDirect

or =

 System sends

an email to

PI, Co-PI,

Senior

Personnel,

Department

Chair,

Business

1
4
2

Condition:

irbApprovalRequired = false

NOTREAD

YFORAPPR

OVAL

Manager,

Dean,

University

Research

Administrato

r, University

Research

Director

32a2.DeleteProposalByUn

iversityResearchDirector-

Rule32a2

Delete by University

Research Director

(Permit)

DeletedByUniversityResearchDirector =

NOTDELETED

ApprovedByUniversityResearchDirector =

READYFORAPPROVAL

position.title = University Research Director

proposal.section = Whole Proposal

proposal.action = Delete

Condition:

irbApprovalRequired = true

DeletedByU

niversityRese

archDirector

= DELETED

ApprovedBy

UniversityRe

searchDirect

or =

NOTREAD

YFORAPPR

OVAL

 System sends

an email to

PI, Co-PI,

Senior

Personnel,

Department

Chair,

Business

Manager,

Dean,

University

Research

Administrato

r, University

Research

Director and

IRB

1
4
3

Action: View

Rule Action Pre-Condition Post-

Condition

Pre-

Obligation

Post-

Obligations

33. ViewAuditLogBy

PI-Rule33

Audit Log View by

PI (Permit)

proposal.section = Audit Log

proposal.role = PI

proposal.action = View

34. CannotViewAudit

LogByOtherUser-

Rule34

AuditLog not view

by Co-PI, Senior

Personnel,

Department Chair,

Business Manager,

Dean, IRB,

University Research

Administrator,

University Research

Director (Deny)

proposal.section = Audit Log

proposal.role = Co-PI || Senior Personnel ||

position.title = Department Chair || Business

Manager || Dean || IRB || University

Research Administrator || University

Research Director

proposal.action = View

Action: Edit

Rule Action Pre-Condition Post-

Condition

Pre-

Obligation

Post-

Obligations

35. EditProposalSectio

nByPI-Rule35a

Proposal Section

Edit by PI (Permit)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

proposal.section = <Whole Proposal ||

Investigator Information || Project

1
4
4

Information || Sponsor and Budget

Information || Cost Share Information ||

University Commitments || Conflict of

Interest and Commitment Information ||

Compliance Information || Additional

Information || Collaboration Information ||

Proprietary/Confidential Information ||

Certification/Signatures || Appendices>

proposal.role = PI

proposal.action = Edit

36. CannotEditOSPSe

ctionByPI-Rule36

PI Cannot Edit OSP

section (Deny)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

proposal.section = OSP section

proposal.role = PI

proposal.action = Edit

37. EditProposalSectio

nByCoPI-Rule37

Proposal Section

Edit by Co-PI

(Permit)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

ReadyForSubmissionByPI = False

proposal.section = <Investigator

Information || Certification/Signatures ||

Appendices >

proposal.action = Edit

38. CannotEditSomeP

roposalSectionByCoPI

-Rule38

Co-PI cannot Edit

Project Information,

Sponsor and Budget

Information, Cost

Share Information,

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

ReadyForSubmissionByPI = False

proposal.section = <Project Information ||

Sponsor and Budget Information || Cost

1
4
5

University

Commitments,

Conflict of Interest

and Commitment

Information,

Compliance

Information,

Additional

Information,

Collaboration

Information,

Proprietary/Confide

ntial Information,

OSP Section (Deny)

Share Information || University

Commitments || Conflict of Interest and

Commitment Information || Compliance

Information || Additional Information ||

Collaboration Information ||

Proprietary/Confidential Information || OSP

Section>

proposal.action = Edit

39. CannotEditPropos

alSectionBySeniorPer

sonnel-Rule39

Proposal section not

Edit by Senior

Personnel (Deny)

SubmittedByPI = NOTSUBMITTED

DeletedByPI = NOTDELETED

ReadyForSubmissionByPI = False

proposal.section = <Investigator

Information || Project Information || Sponsor

and Budget Information || Cost Share

Information || University Commitments ||

Conflict of Interest and Commitment

Information || Compliance Information ||

Additional Information || Collaboration

Information || Proprietary/Confidential

Information || Certification/Signatures ||

OSP Section || Appendices>

1
4
6

proposal.role = Senior Personnel

proposal.action = Edit

40. EditProposalSectio

nByDepartmentChair-

Rule40

Certification/Signatu

res edit by

Department Chair

(Permit)

ApprovedByDepartmentChair =

READYFORAPPROVAL

proposal.section = Certification/Signatures

position.title = Department Chair

proposal.action = Edit

41. CannotEditPropos

alSectionByDepartme

ntChair-Rule41

Proposal Section not

edit by Department

Chair (Deny)

ApprovedByDepartmentChair =

READYFORAPPROVAL

proposal.section = <Investigator

Information || Project Information || Sponsor

and Budget Information || Cost Share

Information || University Commitments ||

Conflict of Interest and Commitment

Information || Compliance Information ||

Additional Information || Collaboration

Information || Proprietary/Confidential

Information || OSP Section || Appendices>

position.title = Department Chair

proposal.action = Edit

42. EditProposalSectio

nByBusinessManager-

Rule42

Edit by Business

Manager (Permit)

ApprovedByBusinessManager =

READYFORAPPROVAL

proposal.section = <Sponsor and Budget

Information || Certification/Signatures>

position.title = Business Manager

proposal.action = Edit

1
4
7

43. CannotEditPropos

alSectionByBusiness

Manager-Rule43

Not edit by Business

Manager (Deny)

ApprovedByBusinessManager =

READYFORAPPROVAL

proposal.section = <Investigator

Information, Project Information, Cost

Share Information, University

Commitments, Conflict of Interest and

Commitment Information, Compliance

Information, Additional Information,

Collaboration Information,

Proprietary/Confidential Information, OSP

Section, Appendices>

position.title = Business Manager

proposal.action = Edit

44. EditProposalSectio

nByDean-Rule44

Certification/Signatu

res edit by Dean

(Permit)

ApprovedByDean =

READYFORAPPROVAL

proposal.section = Certification/Signatures

position.title = Dean

proposal.action = Edit

45. CannotEditPropos

alSectionByDean-

Rule45

Proposal Section not

edit by Dean (Deny)

ApprovedByDean =

READYFORAPPROVAL

proposal.section = <Investigator

Information || Project Information || Sponsor

and Budget Information || Cost Share

Information || University Commitments ||

Conflict of Interest and Commitment

Information || Compliance Information ||

Additional Information || Collaboration

1
4
8

Information || Proprietary/Confidential

Information || OSP Section || Appendices>

position.title = Dean

proposal.action = Edit

46. EditProposalSectio

nByIRB-Rule46

Certification/Signatu

res edit by IRB

(Permit)

ApprovedByIRB =

READYFORAPPROVAL

proposal.section = Certification/Signatures

position.title = IRB

proposal.action = Edit

47. CannotEditPropos

alSectionByIRB-

Rule47

Proposal Section not

edit by IRB (Deny)

ApprovedByIRB =

READYFORAPPROVAL

proposal.section = <Investigator

Information || Project Information || Sponsor

and Budget Information || Cost Share

Information || University Commitments ||

Conflict of Interest and Commitment

Information || Compliance Information ||

Additional Information || Collaboration

Information || Proprietary/Confidential

Information || OSP Section || Appendices>

position.title = IRB

proposal.action = Edit

48. EditProposalSectio

nByUniversityResearc

hAdministrator-

Rule48

Proposal Section

edit by University

Research

Administrator

(Permit)

ApprovedByUniversityResearchAdministrat

or = READYFORAPPROVAL

Proposal.section = <Investigator

Information || Project Information || Sponsor

and Budget Information || Cost Share

1
4
9

Information || University Commitments ||

Conflict of Interest and Commitment

Information || Compliance Information ||

Additional Information || Collaboration

Information || Proprietary/Confidential

Information || OSP Section ||

Certification/Signatures>

position.title = University Research

Administrator

proposal.action = Edit

49. CannotEditPropos

alSectionByUniversity

ResearchAdministrato

r-Rule49

Appendices not edit

by University

Research

Administrator

(Deny)

ApprovedByUniversityResearchAdministrat

or = READYFORAPPROVAL

Proposal.section = Appendices

position.title = University Research

Administrator

proposal.action = Edit

50. EditProposalSectio

nByUniversityResearc

hDirector-Rule50

Proposal Section

edit by University

Research Director

(Permit)

ApprovedByUniversityResearchDirector =

READYFORAPPROVAL

Proposal.section = Certification/Signatures ||

OSP Section

position.title = University Research Director

proposal.action = Edit

51. CannotEditPropos

alSectionByUniversity

ResearchDirector-

Rule51

Proposal Section not

edit by University

Research Director

(Deny)

ApprovedByUniversityResearchDirector =

READYFORAPPROVAL

Proposal.section = <Investigator

Information || Project Information || Sponsor

and Budget Information || Cost Share

1
5
0

Information, University Commitments ||

Conflict of Interest and Commitment

Information, Compliance Information ||

Additional Information || Collaboration

Information || Proprietary/Confidential

Information || Appendices>

position.title = University Research Director

proposal.action = Edit

151

APPENDIX E

152

Policy Requirement Description

1. A “Tenured/Tenured-track faculty” is allowed to add a new “Proposal”.

2. “PI” can “Delete” a “Whole Proposal” when SubmittedByPI = NOTSUBMITTED and not been already deleted without any pre-

obligation but with Post-obligation: Send Email to all Investigators such as PI, CO-PIs, and Senior Personnel.

3. “Department Chair” can “Approve” a “Whole Proposal” when ApprovedByDepartmentChair = READYFORAPPROVAL

with Pre-obligation: Chair needs to Sign it first and Post-obligation: Send Email to all Investigators such as PI, CO-PIs, and Senior

Personnel.

4. “Department Chair” can “Delegate” his actions “Approve/Disapprove” to “Associate Chair” from his own Department when

ApprovedByDepartmentChair = READYFORAPPROVAL.

5. “Associate Chair” can “Approve” proposal when ApprovedByDepartmentChair = READYFORAPPROVAL with Conditions:

Delegation is active with Pre-obligation: Chair needs to Sign it first and Post-obligation: Send Email to all Investigators such as PI,

CO-PIs, and Senior Personnel.

153

APPENDIX F

1
5
4

Policy Rule with Obligation

155

APPENDIX G

1
5
6

XACML Request Format example

157

APPENDIX H

1
5
8

XACML Response Format example with Obligations

	h.30j0zll
	h.1fob9te
	h.gjdgxs

