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ABSTRACT 

Research supports the claim that classrooms with teachers who respond to student 

thinking in the mathematics classroom will see greater student gains and student success 

(Lamon, 1996; Sleep & Boerst, 2012). The topic of fractions is both difficult to teach and 

learn, but has important implications on future success in mathematics and in life. This 

study set out to explore the ways in which student work is influenced by characteristics of 

number line fraction tasks. By examining task type, number line structure, and number 

choice this study shares the way these task characteristics influenced student strategies. 

The relationship between task characteristic and student work is examined qualitatively; 

in addition to how well each task characteristic uncovers three key conceptual 

understanding fraction ideas: partitioning, iterating, and unitizing. Additionally, this 

study looks at which task characteristics better highlight informal or intuitive 

understanding of these key ideas and in what ways. The findings can be used to inform 

the selection of fraction tasks for the classroom.
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CHAPTER ONE: BACKGROUND AND PURPOSE 

Comprehension of and competence with fractions is a crucial mathematical 

understanding (Siegler, Thompson, & Schneider, 2011; Wilkerson et al., 2015). Student 

performance with fractions is a predictor for future success in other areas of mathematics 

(Bailey, Hoard, Nugent, & Geary, 2012; Fuchs et al., 2013) and even success in 

adulthood (Siegler & Pyke, 2012a; Vukovic et al., 2014). Yang, Reys, & Wu (2010) 

described fraction knowledge as foundational mathematical knowledge. 

Fraction knowledge is difficult for students to acquire (Behr, Lesh, Post, & Silver, 

1983; Lamon, 1996) as it requires a shift from whole number thinking to rational number 

understanding (Ni & Zhou, 2005). Additionally, there are different contexts through 

which fractions are taught and most common textbooks only focus on one or two areas of 

rational number (Boesen, Lithner, & Palm, 2010), leaving other contexts that may help 

students develop more thorough understandings of rational number behind (Behr et al., 

1983; Behr & Post, 1988). Despite students having informal understandings of rational 

number before kindergarten (Brizuela, 2006), many students struggle with concepts of 

rational number throughout their elementary and secondary years (Yang et al., 2010). 

Fraction knowledge is difficult to teach (Behr, Wachsmuth, & Post, 1985; Ni & 

Zhou, 2005; Pitta-Pantazi, Gray, & Christou, 2004; Siegler & Pyke, 2012a; Zaslavsky, 

2005) and is an area where many teachers struggle (Behr et al., 1985; Vukovic et al., 

2014; Wong, 2013). Most teachers have seen there are a number of areas where students 
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can become confused when learning about fractions due to different misconceptions and 

varying levels of prior knowledge (Ni & Zhou, 2005). The understanding of each student 

differs from one to the other. How can teachers inform their pedagogical approaches 

when teaching fractions to meet the individual needs of each student? 

Mathematical tasks are defined in this study as a paper and pencil assessment 

given to students to solve. Mathematical tasks are one influencing factor used for 

informing teachers’ instructional practices. Teachers use tasks to identify student 

informal and formal understanding of mathematical concepts (Boesen et al., 2010). The 

use of mathematical tasks in the classroom is important and the selection of tasks even 

more so (Mitchell & Clarke, 2010). 

Mitchell and Clarke (2010) called for more information regarding student 

responses to fraction tasks, “In order to continue to refine tasks that may prove useful in 

establishing fraction growth points in later studies, close attention must be paid to the 

children’s explanations of their answers to tasks.” (p.372) Understanding student work 

and strategies around rational number will give more information regarding building and 

using fraction tasks in the most useful way in the classroom. 

 
Figure 1.1 Theoretical Frameworks for Study 
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With the understanding of the influential role of tasks in the mathematics 

classroom, the purpose of this study is to uncover more information about fraction tasks 

and student responses to different tasks. The theoretical framework for this study (as 

shown in figure 1.1) displays the parts of the relationships between task, student 

response, and teacher response. This study will be studying the relationship between task 

and student response. This study will not study teacher responses. 

Responding to Student Thinking 

Mathematical tasks are one way teachers can address or respond to student 

thinking. In order to teach effectively, it is imperative that teachers engage students’ prior 

knowledge and use their informal and formal understanding to help them make sense of 

new learning (Lamon, 1996; Sleep & Boerst, 2012). Tasks can be used to help teachers 

uncover and address student thinking. 

Making formative assessment part of regular teaching practices is one way 

teachers can acquire this knowledge about their students’ thinking. The implementation 

of formative assessment in the classroom will enhance student mathematical 

understanding and give teachers more insight into the best ways to address each student’s 

mathematical understanding (Heritage & Niemi, 2006; Wong, 2013). 

The Role of Tasks in Teaching and Learning Fractions 

One way teachers gain insight into student understandings is through 

mathematical tasks. As Sidevenall, Lithner, and Jader (2015) stated, “Tasks are a 

cornerstone of students’ work with mathematics.” (p.533) Not all mathematical tasks will 

highlight student thinking or understanding well (Wing & Beal, 2004). For example, 

students may be given a task that asks them to name the amount of fourths it takes to 
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make a unit of one. Students may be able to answer the question as 4 1 4⁄ ths, but may not 

be able to demonstrate how to create a fourth correctly or how to model 4 1 4⁄ ths.    Tasks 

that uncover key understandings of fractions would be of greater use in the mathematics 

classroom (Simon, 2006). 

Mathematical task characteristics influence student work or strategies in different 

ways. Boesen et al., (2010) found  students confronted with procedural mathematical 

tasks (similar to those found in common textbooks) did not use new reasoning to solve 

problems. Similarly, Cwikla (2014) found most students have informal understandings of 

fractions and are unable to connect with the formal language and symbols used when 

learning and exploring fraction ideas. Fraction tasks that rely heavily on language or 

symbols may display a lack of understanding. Teachers may be left without a clear 

understanding of what their students know due to the informal understanding that may be 

hindered by the symbols and language used in a task. 

Different kinds of tasks will promote different levels of student reasoning (Boesen 

et al., 2010; Pitta-Pantazi et al., 2004; Sullivan, Clarke, & Clarke, 2009; Sullivan, 

Warren, & White, 2000). Depending on the type of problem, students will use different 

strategies or reasoning to solve it (Hunting, 1999; Sidenvall et al., 2015). A study 

conducted by Brinker (1997) found students seemed to have more success in solving 

problems that prompted them to rely on informal strategies. Where one strategy a student 

uses may highlight conceptual or procedural knowledge, another strategy may not 

(Lamon, 1996). 

 Furthermore, different models appear to appeal to different ways of student 

thinking-each model with its own strengths and weaknesses (Bruner, 1966; Heron, 2014). 
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A model is a representation used to help students make sense of conceptual knowledge 

and can be displayed through hands-on methods as well as through pictorial or symbolic 

representations (Bruner, 1966). Hannula (2003) found when students completed two 

fraction tasks with two linear models (a bar model and a number line) their results were 

not consistent. Lamon (1996) found that student partitioning strategies were situationally 

specific. That is, not all tasks reveal what students know about fractions in the same way 

or to the same level or degree. 

Statement 

The purpose of this study is to identify fraction task characteristics that will help 

teachers better understand specific conceptual understandings students have about 

fractions. 

Research Questions 

What task characteristics influence student work or thinking around fractions and in what 

ways? 

What task characteristics highlight informal or intuitive understanding? 

Significance 

“Mathematical tasks are important for teaching, and the nature of student learning 

is determined by the type of task and the way it is used.” (Sullivan et al., 2009) Teachers 

rely heavily on textbooks for mathematical tasks (Hodges, Cady, & Collins, 2008). Many 

mainstream textbooks contain procedural tasks, many with algorithms and procedures 

explained within the task itself. These tasks reveal very little to teachers about what 

students know about fractions (Cady, Hodges, & Collins, 2015; Niemi, 1996). 
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With such importance placed on fraction understanding, tasks that help teachers 

address student misconceptions and build on informal knowledge will help teachers 

address student needs and help students succeed in their acquisition of fraction 

knowledge. Boesen, Lithner, and Palm (2010) declared a need for more information 

about the task characteristics used in mathematical tasks and the student reasoning 

required. 

Some tasks show students arriving at correct or incorrect answers, but do not 

uncover what students do and do not know. This could be detrimental in a classroom 

where a teacher relies heavily (or solely) on these tasks and the corresponding responses. 

Well-chosen tasks can prompt explanations from students that lend insight into different 

aspects of their fraction knowledge (Mitchell & Clarke, 2010). 

Some fraction tasks are easily solved by students because they do not challenge 

the way students think about fractions compared to the way they think about whole 

numbers. Some tasks (particularly part-whole tasks) allow students to still work with 

fractions using whole number thinking (Freeman & Jorgensen, 2015; Niemi, 1996). 

Long-Term Impact 

Stafylidou and Vosnidou (2004) found student interpretations of fractions shown 

in models revealed their misconceptions. Tasks that highlight student misconceptions will 

provide the students with an opportunity to have those misconceptions addressed by their 

teachers. Addressing student misconceptions and strengthening their conceptual 

understanding will impact their procedural understanding in a positive way (Niemi, 

1996). Students with both strong procedural and conceptual understanding will be more 

likely to observe long-term success in mathematics (Siegler et al., 2011). 
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A better understanding of how student thinking and student work around fractions 

is influenced by task characteristics may also lead to the adoption of better tasks among 

teachers and curriculum developers. The use of tasks in the classroom that uncover 

conceptual student knowledge, would lead to the following claims: 

Improving the Classroom Environment 

Students with limited fraction understanding may require interventions or 

differentiated instruction. The intervention that is given to a student needs to be 

appropriate in terms of what part of the conceptual understanding they are lacking 

(Vukovic et al., 2014). Each student will have different misconceptions that need to be 

addressed as well as differing informal or formal understanding which teachers can build 

on. One way to increase students’ likelihood for success is to foster a classroom where 

student needs are being addressed individually. 

Tasks highlighting student understanding will provide students and teachers more 

opportunities to discuss the structure of the mathematics (Niemi, 1996). Having 

discussions regarding the tasks will improve the quality of discourse in the classroom 

surrounding the concept of rational number (Cramer, Post, & delMas, 2015). This 

improved discourse will assist student learning as they begin to understand the unique 

language of fractions. 

Discovering tasks that highlight student thinking regarding fractions can and 

should also serve as formative assessment. The use of formative assessment may lead to 

greater success in the classroom (Heritage & Niemi, 2006). The National Council for 

Teaching Mathematics (2000) emphasized the importance of teacher analysis of student 

representation as a means of gaining insight into student thinking. 
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This section covered the role tasks play in the mathematics classroom—

specifically in teaching fractions. Tasks play an important role and, as Simon (2006) 

declared, help determine student key understanding through careful observation of 

student work. The careful selection of tasks can positively impact student learning in the 

classroom. More information regarding student strategies on fraction tasks is needed 

(Mitchell & Clarke, 2010) in order to make more informed decisions when selecting 

fraction tasks. 

Limitations 

There are limitations to this study. The research regarding fraction tasks, student 

understanding of fractions, and the instruction of fractions highlight two very important 

influences of fraction understanding that extend beyond the type of fraction task being used 

and outside of the scope of this research. This study will not attempt to control for the 

following: 

Student Background and Prior Knowledge 

Students that do not have sufficient background knowledge have limited solution 

strategies (Hodges et al., 2008). Lamon (1996) found student thinking about rational 

number is heavily based on social practices and norms. Student performance with 

fractions can be predicted by student competence with the four operations of whole 

numbers as well as measurement (Behr et al., 1985; Pearn, 2007). Students with higher 

representational knowledge have been found to do better on measures of fraction 

understanding (Heritage & Niemi, 2006). There are many influences that impact the 

background knowledge that students bring to a classroom prior to learning about rational 

numbers. 
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Instructional Style and Teacher Content Knowledge 

Teacher content knowledge impacts the classroom environment (Mueller & 

Maher, 2009; Zaslavsky, 2005). Students in a classroom with a heavy focus on 

procedural mathematical tasks may have difficulty or lack confidence when encountering 

tasks that press them conceptually (Hecht & Vagi, 2011). The structure of the classroom 

may impact a student’s ability to complete a task or to comfortably attempt solving tasks 

without formal mathematical language or use of symbols. 

Additionally, teacher content knowledge is necessary if conceptual understanding 

tasks are to be used in a way that impacts student understanding in a positive way. 

Teachers should understand the various student models that may arise in student work 

prior to presenting a task to students (Lamon, 2007). Teachers must first have a 

conceptual understanding of the task in order to determine what a student knows when 

attempting to solve a task (Sullivan et al., 2009). Teacher content knowledge will impact 

the classroom prior to this study and will also determine the value of the mathematical 

tasks this study uncovers. 

Assumptions 

This study assumes the tasks given to students are designed to elicit conceptual 

understanding in students. This study assumes the students completing these tasks are 

putting forth their best effort. This study also assumes the influencing factors on student 

work pulled from the sample will also influence the student work of other students of a 

similar population. 

Definitions 

a. Unitizing 
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Unitizing is the ability to name and work with an object or group of objects as a unit or 

whole (“unit of one”). Lamon (1996) describes unitizing as a “Cognitive process for 

conceptualizing the amount of a given commodity or share before, during, and after the 

process.” (p. 171). It requires the separation of the unit or whole into equal parts. 

Unitizing is the ability for a student to answer the question of “how much” after 

partitioning or iterating an object. 

b. Partitioning 

Partitioning is an operation that generates quantity (Lamon, 1996). It requires the 

separation of the unit or whole into equal parts. 

c. Iterating 

Iterating is repeating a value or typically a unit-fraction in order to produce identical 

copies of it. Iterating a value can also look like repeating the same distance on a number 

line with a fractional value—repeated line segments with a value of 1 4⁄ for example. 

Iterating has a different meaning in mathematics when used regarding fractions compared 

to other places in math. 

d. Model 

Bruner (1966) discussed 3 different modes of representation. He theorized that each 

mode of representation was a way to store and keep new knowledge in memory. The 

three modes are briefly described below: 

 Enactive-This describes hands-on modeling of mathematical concepts or 

understanding. Students actually act or work out the problems with manipulatives. 

With fractions this may include fraction bars or fraction strips. 
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 Iconic-This describes using visual drawings or images to convey understanding. 

This can be referred to as the “pictorial” stage. With fractions this may include 

bar models, number line models, and different part-whole or set models drawn 

out. 

 Symbolic-This describes the “abstract” stage where students are able to use 

sophisticated or formal mathematical symbols or language to describe what is 

happening. With fractions this may include written equations, comparisons, and 

the use of mathematical language when describing fractional relationships such as 

the relationship between the numerator and denominator. 

For this study, iconic representations are primarily used and discussed when referring to 

“models.” 

e. Unit Fraction 

f. The Common Core State Standards (2010) require students to understand the 

concept of unit fractions by the end of 3rd grade. A unit fraction is a fraction 

with a numerator of one, which becomes the unit students can then count by 

or iterate to develop a new fraction (Strother, Brendefur, Thiede, & Appleton, 

2016). Students can also see that the denominator indicates how many unit 

fractions are required in order to create or make a unit of one. 1 3 ⁄ is an 

example of a unit fraction. As students develop an understanding of the unit 

1
3⁄  they can then begin to see 2 3⁄  as two copies (or iterations) of 1 3⁄ .
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CHAPTER TWO: REVIEW OF LITERATURE 

In order to design and administer the fraction tasks for this study, research 

regarding student thinking around fractions and fraction tasks characteristics were 

examined. The research regarding student thinking around fractions was used to build a 

task framework and also to contribute to the methodology of categorizing student work. 

The research regarding task characteristics was used to narrow the task framework and to 

then create the assessment framework from which the tasks for this study were created. 

Foundational Fraction Understandings 

The following are three key understandings that have emerged from this review of 

literature: the student ability to unitize and recognize the unit (Clarke & Roche, 2009; 

Cramer et al., 2015; Gabriel et al., 2012) and partitioning, and iterating (Brizuela, 2006; 

Hunting, 1999; Lamon, 1996). Unitizing, partitioning, and iterating are foundational to 

student understanding of fractions. These understandings may manifest in informal or 

formal strategies, but are the building blocks for a solid understanding of fraction and 

rational number. Research also suggests that students demonstrate these key ideas in 

different ways (Lamon, 1996). Recognizing the way students approach tasks that 

highlight this foundational knowledge is central to creating fraction tasks that highlight 

important conceptual understandings of fractions. 

Of course there are many more concepts that could be deemed foundational than 

the three reviewed in this chapter. The concepts of equivalence (Taube, 1997; Vance, 
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1993) and measurement understanding (Fuchs et al., 2013; Geary et al., 2008) are just a 

few additional foundational concepts that emerged in this review of literature. For the 

purpose of this study the foundational components of unitizing, partitioning, and iterating 

are the primary focus in building a task framework. 

Unitizing 

Unit is the basis for the construction of fraction ideas (Taube, 1997) In order for 

students to work with, model, and truly understand rational number, they must be able to 

identify the unit of one (Heron, 2014; Stafylidou & Vosniadou, 2004; Strother et al., 

2016). When a child is able to identify the unit instead of look for the number of parts, it 

demonstrates potential conceptual understanding (Lamon, 1999). 

In order to press students conceptually, providing them with opportunities to 

reunitize will highlight deeper levels of thinking and understanding (Lamon, 1996). An 

ability to reunitize would manifest in a student who is able to identify the unit as the new 

unit of one change. For example, a student may look at a bar model split into ten 

equivalent pieces. Those pieces could each represent a value of one if the bar is equal to 

ten, seen as ten miles for example. A teacher may then ask students to rename the value 

of each piece if the bar is now equivalent to one—now seen as one mile. Each equally 

partitioned piece is now equivalent to  1 10⁄ . Student understanding of unit is a 

foundation of fractions. Understanding the way students work with units and the ability to 

recognize the unit will tell a teacher much about what a student knows or needs—

specifically if this foundational knowledge even exists. 
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Partitioning and Iterating 

Partitioning by young children was identified by Hunting (1999) as pre-fraction 

knowledge. Partitioning and iterating are strategies students likely have a great deal of 

informal understanding about due to socialized ideas about fair-sharing (Brizuela, 2006). 

Partitioning relies on intuitive knowledge (Charles & Nason, 2001) Observing the way 

that students partition or identifying their ability to partition, can divulge a lot about their 

mathematical understanding. 

Simply put, partitioning is taking any amount and splitting or decomposing that 

amount. Equipartitioning is partitioning the whole into equivalent pieces (Brizuela, 

2006). A student may partition a number line to show 3 4⁄  with or without equi-

partitioning. A student who does not equipartition may make the correct number of 

partitions needed—cutting a number line into 4 parts, for example. Each partition in the 

number line, however, would not be equivalent in size even though each partition is 

meant to represent 1 4⁄ . 

 Economy in partitioning, as Lamon (1996) calls it, is also telling. A student may 

partition the line into halves and then only partition the second half in half again to make 

fourths. The way that student decomposed the whole would be as 1 2⁄  + 1 4⁄   + 1 4⁄ . A 

student may also partition the line into fourths and count each fourth to appropriately 

represent fourths. The way that student decomposed the whole would be as 1 4⁄  + 1 4⁄  + 

1
4⁄  + 1 4⁄ . Each idea is accurate, but the approaches are different. The approach a student 

uses uncovers a great deal about what informal and/or formal understandings that student 

may hold. Partitioning is another foundational mathematical understanding—requiring 
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mathematical tasks that will allow students to display their ability to partition as well as 

their approaches to partitioning. 

Students partition in different ways. Some students might use what Davis and 

Pitkethly (1990) termed a “dealing procedure” where students distribute pieces equally 

among people. This strategy is often employed in students working with discrete objects 

(Hunting, 1999). When working with continuous items, students might be more likely to 

use what Confrey (1987) called “splitting” where students partition items into equal 

shares using a systematic strategies. 

Even with the use of these two strategies, teachers can learn a lot from the way a 

student might “deal” when partitioning. Hunting (1999) discussed the different ways 

students partition and distribute: one to one, many to one, combinations of the previous 

two strategies, non-systematically, or by trial and error. 

Student partitioning strategies tend to follow a developmental path where they 

start with halving, and then double those to find powers of two. From there students 

become more comfortable partitioning into even numbered pieces still relying on the 

strategy of halving. Eventually students overcome the need to halve and embrace new 

strategies that allow them to partition into odd numbers. By the end, students use 

multiplicative reasoning to partition—for example, trisecting into thirds to create ninths 

(Lamon, 1996). Additionally, looking at student strategies in regard to economy is telling 

as well. Students who partition using economical strategies demonstrate mastery of key 

understandings of rational number (Lamon, 1996). 

The idea of building or creating a unit of one is supported by the Rational Number 

Project (Behr & Post, 1988; Behr et al., 1985). Building an amount through repetition of 
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a unit is essentially the concept of iterating in mathematics. Iterating requires taking a 

unit and repeating, or copying, that unit in order to build an amount. Understanding how 

many iterations are required to make a unit of one ties directly into unitizing. An example 

of iterating might be taking a line segment that is given a distance of 1 3⁄  and copying 

that same distance to create a new distance. A student could make three copies of 1 3⁄  to 

make one or four copies of 1 3⁄  to make 4 3.⁄  

Iterating is another key understanding needed for developing competence with 

fractions. The body of research surrounding iterating is not as through or rich as that 

which covers partitioning. The research on iterating is convincing (McCloskey & Norton, 

2009; Norton et al., 2014). If partitioning is such a key understanding it would make 

sense that the inverse of partitioning, iterating, would hold a valuable place in fraction 

knowledge as well. In fact, Norton et al. (2014) states that iterating tasks also require 

partitive reasoning and designed partitive reasoning tasks that required students to both 

iterate and partition. 

Student Understanding of Fractions 

Students develop fraction knowledge through a number of different trajectories 

(Vukovic et al., 2014). In order to create tasks that will help identify the way students are 

developing fraction understanding, it is important to clearly research and discuss both the 

ways in which students demonstrate fraction knowledge and the common misconceptions 

that occur when learning about fractions. 

Conceptual Versus Procedural Understanding 

There are two overarching kinds of mathematical tasks and two kinds of 

mathematical understanding: conceptual and procedural. Conceptual knowledge 
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describes student understanding of mathematical concepts. Gabriel et al.(2012) defined 

procedural knowledge as, “sequences of actions that can be put to play to solve specific 

problems.” (p.138). The researchers defined conceptual understanding as, “the 

knowledge of central concepts and principles and their interrelations in a particular 

domain.” (p.137). Procedural knowledge describes student ability to compute or calculate 

mathematical problems through procedures. With procedural knowledge, the solutions 

given by students are usually deemed correct or incorrect with little insight into student 

understandings or misconceptions. 

The research supporting the assessment and instruction focused on conceptual 

knowledge is convincing. Most of the research defends the claim that students can 

demonstrate procedural understanding without conceptual understanding (Hecht & Vagi, 

2011; Niemi, 1996; Pitsolantis & Osana, 2013; Sidenvall et al., 2015; Siegler et al., 2011; 

Wilkerson et al., 2015). Assessing conceptual knowledge focuses both on the correctness 

of the answer on the approach or reasoning a student used in order to arrive at an answer. 

A student can use sensible reasoning, but still arrive at an incorrect answer (Lithner, 

2008). The student’s approach tells us more than the answer in many cases. The 

Standards for Mathematical Practice put forth by the Common Core State Standards 

(Officers, 2010) encourage the development of conceptual knowledge (Heron, 2014). 

Simon (2006) said, “One of the most common uses of understanding is knowing 

why something is true or appropriate.” (p.360). Conceptual knowledge involves intuitive 

knowledge (Pitsolantis & Osana, 2013), reasoning (Wilkerson et al., 2015), and 

connecting relationships (Gabriel et al., 2012) which assist students in arriving at the 

answer to “why.”  Tasks that highlight student conceptual understanding about 
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knowledge will tell teachers which students understand the “why” as well.  This study 

explored the task characteristics that influence student work and highlight both formal 

and informal understandings as well as common misconceptions through the use of tasks 

designed to assess conceptual knowledge. With the knowledge that understanding and 

assessing conceptual knowledge will allow teachers insight into student misconceptions 

(Niemi, 1996) this study focused on conceptual knowledge as that is the type of 

knowledge that highlights student understanding for teachers. 

Models 

Student mathematical models uncover what a student understands and has 

learned, both conceptually and procedurally. Of models, Heritage and Niemi (2006) 

stated, “The value of representations as a source of information about the students’ 

mathematical thinking has been widely recognized.” (p.267). Conceptual knowledge is 

tied closely to representations or models (Bruner, 1966; Niemi, 1996). There are physical 

models that are represented with paper and pencil, manipulatives, or using digital tools. 

There are also mental models, those are models that people have in their minds to help 

make sense of different mathematical concepts. Getting the mental models represented 

physically is one way to access and assess student thinking as Heritage and Niemi (2006) 

suggested. 

A number line is a line that represents numbers from negative infinity to positive 

infinity (see Figure 2.1). Students and adults possess what researchers term a “mental 

number line” (Ebersbach, Luwel, & Verschaffel, 2015) which is a mental model. The 

mental number line is explained as a number line individuals visualize when working 

with fractions. Each mental number line varies from person to person, but some 
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consistencies regarding factors like number choice have been discovered through 

research. Mental representations (including the mental number line) are heavily discussed 

in mathematical research regarding fractions. The intuitive fraction knowledge students 

possess is often also held as a mental representation (Cramer et al., 2015). Representing 

mental representations externally is the essence of and will highlight deeply-rooted 

mathematical ideas that need to be addressed (Goldin & Kaput, 1996) 

Understanding about the mental number line that students possess and the way 

they operate with it can indicate different levels of thinking and understanding about 

student thinking (Pitta-Pantazi et al., 2004). For example students often use reference 

points when working with number line estimation (Ebersbach et al., 2015). Identifying 

their reference points will help teachers determine the level of sophistication of 

understanding of rational number. Half as a reference point tends to reveal informal and 

immature rational thinking as half is often the first fraction that students understand and 

work with (Hunting, 1999). Students who scale their reference point to greater or less 

than ½ indicate greater sophistication and understanding. In addition, students who are 

capable of estimating on a number line tell a teacher that the student has a strong 

understanding of number (Ebersbach et al., 2015), which leads to a greater potential for 

understanding rational number (Hannula, 2003) . 

 
Figure 2.1 Example of a Number Line 
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Misconceptions 

Thinking of fractions as numbers is one of the most cited misconceptions about 

fractions (Hannula, 2003; Siegler & Pyke, 2012a). Students often overlook or do not 

grasp the fact that fractions are numbers that fit on a number line and denote a distance 

from zero. Bodies of research support what Ni and Zhou (2005) found regarding whole 

number bias (Booth & Newton, 2012; Meert, Gregoire, & Noel, 2010; Pearn, 2007). 

Students working with rational number tend to address fraction ideas with the rules that 

apply to whole numbers and do not apply to fractions. Some examples of whole number 

bias include understanding that there are no whole numbers between two consecutive 

whole numbers (i.e. there are no whole numbers between 1 and 2). Unlike whole 

numbers, there is an infinite number of rational numbers between 1 3⁄  and 1 2⁄ . Students 

often apply the whole number understanding that an increase in value occurs when the 

increase of digits occurs or simply see one digit as greater than another. This is displayed 

in student work or student reasoning when a student thinks that 1 10⁄  is greater than 1 5⁄  

because 10 is greater than 5. Another way whole number bias may reveal itself is when 

students work with and handle numerators and denominators of two separate entities 

(Clarke & Roche, 2009; Cramer & Wyberg, 2009; Meert et al., 2010). This whole 

number approach to dealing with fractions is detrimental to a students’ ability to unitize 

fractions. This whole number bias plays a role in student acquisition of fraction 

knowledge and heavily influences student misconceptions and informal thinking about 

fractions (Ni & Zhou, 2005). 

Not understanding the unit is another misconception shared among students. 

Specification of the unit is a key understanding. Students may see a fraction like 3 4⁄  and 
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see it as “3 out of 4” but they are unable to answer the question “3
4⁄  of which unit?” 

(Hannula, 2003). This becomes problematic when a student may be working with 3 4⁄  of 

a whole partitioned into 12 pieces to represent a 12-pack of soda. 

While an understanding of half is a foundational and early piece of fractional 

understanding, there is another common misconception regarding half. Wong (2013) 

found that many students treated half as an action rather than a location. This may be 

because students develop a knowledge of half beginning as a qualitative unit and 

progressing to a quantitative unit as Hunting (1999) found. 

Learning Progressions of Fractions 

Student acquisition of fraction knowledge can follow different progressions, or 

trajectories. That is, there are certain foundational understandings that students must first 

acquire before moving forward. There are a number of different task or model 

progressions presented in research for the pathways in which students develop an 

understanding of rational number. Each progression may be specific to the type of 

fraction understanding acquired. Lamon (1996) and Pothier and Sawada (1983) explored 

the developmental progression of student partitioning strategies. Cramer and Wyberg 

(2009) explored the way students learn and understand different part-whole models. 

Hannula (2003) explored the progression of students understanding of the number line 

from 5th to 7th grade. Throughout this review of literature, some generalizable trajectories 

have been discovered. These trajectories or ideas about trajectories can be found in 

varying types of tasks and among different levels of student thinking. 

Students tend to enter school with an idea of fair sharing as the most commonly 

found informal understanding of rational numbers (Brizuela, 2006; Cwikla, 2014; 
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Wilkerson et al., 2015). From there, student understanding of fraction often proceeds with 

students developing a partitive understanding of unit fractions (Norton et al., 2014). 

Thompson and Saldanha (2004) found that the progression of fraction understanding 

moves from additive reasoning to multiplicative reasoning. Students as early as 

kindergarten are asked to split food items equally among a certain number of people 

(Cwikla, 2014). In this early stage, students understand the need to split into the same 

number of pieces, but the students do not necessarily understand sharing equally sized 

pieces. For example, students may split a granola bar into 6 pieces to share among six 

people, but the pieces may not all be the same size. This budding understanding of 

rational number concepts begins with partitioning. 

From the early stages of partitioning, student understanding of fractions often 

continues with students developing both a partitive and iterative understanding of unit 

fraction which Norton et al. (2014) explains as “both partitioning and iterating.” (p.354). 

That is students understand more than just how many equal pieces or parts to divide the 

unit of one into, but also understand the base unit that can be iterated to make that unit of 

one. Here students see a number such as 4 6⁄  as an amount that can be made with 4 

iterations of 1 6⁄  (Strother et al., 2016). 

Thompson and Saldanha (2004) found the progression of fraction understanding 

moves from additive reasoning to multiplicative reasoning. This move is extremely 

complex, but at the earliest stages might show in a student that begins to understand that 

in order to create 9ths out of 3rds, each 3rd should be partitioned into three. Students with 

this understanding would also understand the inverse and recognize that 9ths can also be 

composed into 3rds as well. Students who understand how the numerator changes in these 
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situations are on their way to mastering multiplicative thinking at this level. For example, 

a student who understands that the more time the total unit is split, the smaller each piece 

becomes is demonstrating an understanding the relationship between the numerator and 

denominator with multiplicative reasoning. 

Building a Task Framework 

There are many different types of fraction tasks and even more influences on task 

outcomes within the task (Mueller & Maher, 2009; Sidenvall et al., 2015). Lesh, Post, 

and Behr (1988) identify five representation modes for mathematical tasks: real-world 

contexts, pictures, written language, manipulatives, and symbols. Some tasks may 

overlap and contain more than one representation. Cramer, Post, and delMas (2015) 

stated that fraction tasks should include physical objects, diagrams, and real-world 

situations. There are many ways to build a task framework regarding these influential 

factors with a large breadth of research supporting ideas about what makes a 

mathematically rich task. In order to create a reasonable task framework for this study, it 

was necessary to narrow and investigate certain task characteristics. 

The tasks for this study are designed to assess the third grade standards, but will 

explore the impact the understanding of those third grade standards has on the fourth 

grade standard selected. The third grade Common Core State Standards (2010) used to 

help develop the task framework for this study are located in Appendix A. 

Cognitive Demand 

Hodges, Cady, and Collins (2008) discussed the way student understanding is 

enhanced through tasks that require student writing or explaining of representations 

through oral or written language. Koyama (1998) presented tasks to students in a 
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problematic situation and asked the students to justify their solutions in order to see their 

ideas and internal representations. In Niemi’s (1996) study students were asked to solve 

problems and then draw representations and use writing and drawing to demonstrate how 

they knew their strategies were correct. Tasks that ask students to draw, justify, explain, 

and reason not only help students acquire conceptual knowledge, but they also uncover 

that knowledge for teachers. 

“Mathematical reasoning can be found at all levels of mathematical 

understanding.” (Sidenvall et al., 2015). If mathematical reasoning is found at all levels, 

tasks need to be designed in a way that uncovers both informal and formal understanding. 

Words and written representations allow teachers to make inferences about students’ 

thinking (Pearn, 2007; Pitsolantis & Osana, 2013; Pitta-Pantazi et al., 2004). Not all tasks 

are designed to uncover the mathematical reasoning. Tasks that assess conceptual 

understanding and ask students to justify or explain their thinking are more likely to help 

find the reasoning within students. There are many ways of looking at categorizing the 

rigor or cognitive demand of mathematical tasks. This study uses Webb’s (2002) depth of 

knowledge (DOK) for four content areas to assess the cognitive demand of the 

mathematical tasks. 

The DOK level 1 assesses procedural knowledge as it measures students’ ability 

to recall and reproduce. These tasks require students to calculate or apply procedures to 

solve problems. The level of cognitive demand is low and, therefore, the student work 

would likely lack in rich reasoning. Tasks at a DOK level 1 will not provide much, if any, 

insight into student conceptual understanding. Asking students to demonstrate an 
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understanding of fractions by labeling the location of a fraction on a number line would 

be an example of a DOK 1 task. 

The DOK levels 2 and 3 address conceptual knowledge as they assess skills and 

concepts (level 2) and strategic thinking and reasoning (level 3). All of these categories 

of assessment would demand conceptual knowledge from students, though the level of 

conceptual knowledge will vary. These tasks would therefore be more likely to demand 

student reasoning and uncover student conceptual knowledge for teachers (Hess, 2013). 

Asking students to construct a number line to complete the unit of one and then reason 

about their strategy would be an example of a DOK 2 or 3 task. 

The DOK level 4 looks at extended thinking. This combines both procedural and 

conceptual knowledge, but is meant to be used after material has been assessed and 

understood at other levels. Tasks that demand too much rigor from students with weak or 

unsophisticated understanding often result in students shutting down without sharing 

what they know or understand (Boesen et al., 2010; Sullivan et al., 2000). Asking 

students to critique a sample of student work with a mislabeled number line would be an 

example of a DOK 4 task. 

For the purpose of this study, which is to create tasks that evaluate all levels of 

student conceptual understanding around fractions, the tasks created will be at DOK level 

2 or 3. Tasks at a DOK level 2 or 3 are more likely to be used for understanding 

conceptual knowledge at a level that is more likely to uncover students’ conceptual 

understanding. 
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Context 

Behr, Harel, Post, & Silver (1983) narrowed Kieren’s (1976) 7 subconstructs of 

fraction understanding to 5: part-whole, measure, operator, ratio, and quotient. These 

subconstructs essentially give 5 different contexts (or constructs) in which students need 

to understand fractions. Students’ actions regarding the modeling of a fraction are 

influenced by the context given to the solution (Hannula, 2003). Therefore, without a 

clear context, students modeling 1 4⁄  may represent that amount as a distance from zero 

or as a part-whole relationship. Identifying a clear context for fraction tasks is essential in 

designing the assessment framework for this study. 

Measure is one of the 5 subconstructs identified by Behr, Harel, Post, & Silver 

(1983) Tasks in the context of fractions as measure often have an inferior role in the 

classroom (Fuchs et al., 2013). Meaning measurement tasks are uncommon among 

curricular materials and textbooks, which makes them unfamiliar to students (Siegler et 

al., 2011; Sullivan et al., 2009). This has been shown in research studies where students 

will indicate adequate fraction knowledge in the completion of part-whole tasks and be 

unable to locate the same fraction they used in the part-whole task on a number line 

(Hannula, 2003). 

Understanding fractions as measure is considered crucial (Gabriel et al., 2012) but 

is also considered perhaps one of the least intuitive (Hannula, 2003). In a study conducted 

by Freeman and Jorgensen (2015), the problem types created were all real-world linear 

context to support the measurement understanding of fractions. When students began, 

they started using part-whole representations, but as they noticed the linear context, 

began to shift toward linear models. Hannula (2003) remarked that students may solve 
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part-whole fraction problems with greater ease, but that the understanding of fractions as 

measure is what supports students’ understanding of operations with fractions. Student 

achievement with fractions as magnitude is linked to greater overall mathematics 

achievement from 5th to 8th grade (Siegler & Pyke, 2012a; Siegler et al., 2011). 

Gabriel et al. (2012) discovered that asking students to represent fractions as magnitudes 

helped children to connect to the foundational idea of unity in fractions. One could then 

argue that using fractions as measure in tasks to inform instruction might highlight 

student understanding of the unit or unitizing. 

Fractions in the context of measure hold a great deal of significance and 

influence. Fraction misconceptions around whole number bias may be addressed by 

understanding fractions as measure. As Siegler and Pyke (2012a) pointed out, “The only 

property that all real numbers have in common is that they have magnitudes that can be 

located and ordered on number lines.” (p.1994). 

The context of fractions as measure will be the context for the tasks for this study. 

Fractions as measure allow exploration of student responses and influencing 

characteristics beyond the commonly-used and easily accessed part-whole tasks (Ni & 

Zhou, 2005). Additionally, this study is exploring tasks at a 3rd grade level that are 

designed to meet standards aimed at understanding fractions as measure. 

Models 

Bruner’s (1966) work explores both the necessity for modeling in order to 

construct understanding and the progression of modeling students go through as they 

work through the construction of understanding. Student modeling progression begins 

with enactive representations which include physical objects that can be manipulated. In 
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students developing an understanding of fraction, enactive modeling may involve the use 

of fraction strips. Iconic representations are the next level of progression and might 

include a student drawing a bar model on paper-often the transition from enactive to 

iconic takes place as students are asked to draw their enactive representations on paper. 

Eventually, students become comfortable modeling their thinking and conceptual 

understanding through pictures and drawings. Finally, students will model their 

understanding through symbolic notation which includes the sophistication of using 

formal mathematical language through an equation or formula. 

Using models in fraction tasks is essential to creating strong tasks that elicit 

strong understanding (Son, 2011). When it comes to representing fractions:  area, length, 

and set are the most commonly used models (Cady et al., 2015) and would be considered 

iconic modeling of fraction concepts. Each model has its own sets of strengths and 

weaknesses. Additionally, some tasks are more likely to fit particular contexts, standards, 

or learning goals more effectively. A set model, for example, is not designed to work 

with fractions as measure. Models designed to look at fractions as measure are the 

number line and other linear models like the bar model. 

Researchers tend to agree that the number line is a necessary mathematical 

representation, but that the abstraction of this representation often results in 

misconceptions or erroneous thinking. Heron (2014) identified problems with the number 

line being as simple as not understanding its conventions—such as reading from left to 

right or counting the spaces between numbers rather than the tick marks or numbers 

themselves. A study conducted by Tunk-Pekkan (2015) found that students performed 
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significantly lower on number line tasks than other fraction tasks, but that those tasks 

required more advanced fractional thinking. 

Number line models can be challenging and useful for identifying a student’s 

ability to understand unit because they often contain more than one whole (Heron, 2014). 

A student’s ability to identify the unit on a number line may be a strong indicator of an 

ability to unitize or understand the unit. Niemi (1996) recognized this about the use of a 

number line, “Successful use of the number line requires at least two types of knowledge 

not implied by other representations: coordination of multiple units simultaneously and 

understanding that fractions are numbers representing relations between other numbers.” 

(p. 353) 

The number line is considered a continuous model. There is conflicting research 

regarding the use of continuous versus discrete models (Lamon, 1996). Discrete models 

are those consisting of singular objects that can be counted, whereas a continuous model 

is made of a unit that must be divided (Hunting, 1999). Studies conducted by Wilkerson 

et al.(2015) and Wing and Beal (2004) found students performed better on tasks using 

discrete models in comparison to continuous models. On the other hand, the suggestion 

of the Rational Number Project (Behr et al., 1985) is that students work with continuous 

models first and progress to the use of discrete models later—as they apply the 

knowledge they gained with continuous models to discrete models. With the 

consideration of this research and the standards being addressed and assessed by the 

mathematical tasks, the number line was the model used. 
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Task Characteristic Comparison Framework 

Each task type and characteristic plays a role in uncovering student knowledge 

and misconceptions about fraction. Several influencing factors are discussed in an 

attempt to determine the task framework best fit for this study. 

Influencing Task Characteristics 

Within the narrowed framework for creating tasks for this study, considering the 

remaining characteristics opens the framework up again. It is with the intent of 

discovering how the remaining task characteristics influence student work and what that 

student work uncovers that this study hopes to compare both number choice and the 

number line design used within these partitioning and iterating tasks. 

Number Choice 

Number choice research around fractions focuses on both numerator and 

denominator and how each of those impacts computation and mental representations of 

number lines. Student informal understanding of fractions begins with halves and 

progresses to more sophisticated and economical thinking (Brizuela, 2006; Hunting, 

1999; Lamon, 1996). According to Pothier and Sawada’s (1983) 5 levels of partitioning, 

number choice matters. Students use their most intuitive and informal understanding of 

half as a starting point and progress from even to odd denominators when completing 

partitioning tasks. Student partitioning strategies will reflect student understanding by the 

way students partition a model to represent the denominator. 

In Niemi’s (1996) study, he chose 5 different fractions to assess student 

understanding:1 2⁄  ,2 4⁄ , 2 3⁄ , 4 6⁄ , and 3 2⁄  based on the level of difficulty present in the 

representation of each fraction. Siegler et al. (2011) found that the two most common 
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fractions that were correctly represented on number line estimation tasks were 1 2 ⁄  and 

1
4⁄  and those fractions also elicited the most accurate estimates. This aligns with the 

research by Pothier and Sawada (1983) regarding the intuitive nature and ease of working 

with half and then half of half. 

Number choice has also been shown to impact the comparison of fractions. 

Distance effects, as they have been named, have been found when studying response 

times when comparing pairs of fractions. The further apart the two fractions are on the 

number line, the shorter the response time. The closer together the two fractions are on 

the number line, the longer it takes both children and adults to compare them (Meert et 

al., 2010). 

Research about number choice can help teachers draw conclusions about student 

thinking. With half being a foundational understanding, one can conclude that students 

using half as a starting point when partitioning, are at the beginning of their 

understanding of fractions. Furthermore, in the study completed by Pothier and Sawada 

(1983), they found students go through five stages of partitioning strategies. It is not until 

the fourth stage that students are able to successfully partition odd-numbered 

denominators. Whether or not students are successfully partitioning into odd-numbered 

denominators can help teachers more accurately place them on the learning trajectories 

for foundational concepts of fraction understanding. 

This study compared student work with even and odd-numbered denominators. 

While the research suggests that students working with odd-numbered denominators may 

struggle more without strong formal backgrounds (Niemi, 1996; Pothier & Sawada, 

1983; Siegler & Pyke, 2012b), this study is not simply looking at student solutions, but 
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also student approaches. How do student partitioning strategies differ with even-

numbered denominators compared to odd-numbered denominators? Does number choice 

impact student ability to unitize? What does a task with an odd-numbered denominator 

offer teachers that a task with an even-numbered denominator does not? 

Number Line Models 

There are two, more commonly used, types of number lines used in fraction tasks. 

Filled number lines which are lines marked into proportional segments and open (or 

empty) number lines are blank lines where the partitioning is left to the students 

(Diezmann, Lowrie, & Sugars, 2010). Some empty number lines have a start and end 

point, but there are no partitions between those two points. Other empty number lines are 

left completely blank. In addition, some empty number lines have an end point, others are 

continuous indicating that the numbers continue to in infinitely in both directions. 

Steffe and Olive (2009) found that when students are doing the actual physical 

partitioning of regions and lengths, that new understanding is being developed or 

demonstrated rather than when presented with pre-partitioned models. Allowing students 

to do the partitioning themselves taps into intuitive knowledge (Cwikla, 2014; Lamon, 

1999). Gaining insight into that intuitive knowledge is a primary goal of this study. 

There is research behind each model and how its implementation in the classroom 

can lead to success, but there is little research surrounding the solution strategies students 

use with both number line models. What kind of student thinking might an empty number 

line elicit versus a structured number line and vice versa. 

Through the literature review of this study, was narrowed to the context, level of 

cognitive demand, and the model that will be used. The framework for tasks was first 
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narrowed down through the context of measure. The tasks were at a Depth of Knowledge 

level 2 or 3 and used a number line model with zero marked. From there, this study 

examined how the influencing characteristics of number choice and number line model 

impact the student work that results from these tasks. Using this assessment framework, 

the different types of student understanding that those characteristics uncover in student 

work are examined and discussed. 

Purpose of Study 

The purpose of this study was to identify the way students respond to different 

types of fraction tasks and what conceptual student knowledge is uncovered or influenced 

by these tasks in relation their characteristics. 

Goals of Study 

This study was designed to assist both teachers in teaching and students in 

learning about fractions. With limited resources for fraction materials that encourage 

conceptual understanding, such as textbooks and other common curricular materials 

(Hodges et al., 2008), teachers are often left to address the difficult concept of fraction 

without  materials better equipped to assess student understanding (Behr et al., 1983). 

This study identifies fraction task characteristics that best highlight student thinking and 

understanding so teachers can select tasks for their students to more clearly understand 

and address student thinking and understanding. 

This literature review led to the creation of a task framework that assesses 

conceptual understanding of fractions and explores the way characteristics within that 

framework influence student work. Ultimately this study not only provides information 

about how task characteristic influence student thinking, but also contributes to a needed 
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body of research regarding the use of valuable and informative tasks in the mathematics 

classroom. 
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CHAPTER THREE: RESEARCH DESIGN AND METHODOLOGY 

The research design for this study is non-experimental. This study was designed 

to capture and analyze student thinking through examination of work samples on fraction 

tasks designed using the framework developed and discussed in Chapter 2 of this study. 

Evaluating student work from a variety of student mathematic ability levels and socio-

economic status of students was a priority in this study, allowing for the examination of 

student thinking from a variety of backgrounds, in order to capture intuitive and informal 

strategies as well as more formal strategies. Another goal of this study was to highlight an 

intuitive understanding as well misconceptions through the analysis of the student work. 

Participants 

This study looked at the work of 100 third grade student and 100 fourth grade 

students. The students in this study came from 4 different schools and 9 different 

classrooms. These schools represent varying levels of socio-economic status. Three of the 

schools are Title 1 schools. The schools represent varying levels of student prior 

knowledge. See Table 3.1 for a summarization of the schools used in this study. 

 

 

 

 

 



36 

 

 

 

Table 3.1 Student Sample Summary 

 

Setting 

The tasks for this study were administered during spring semester after students 

had completed their unit on fractions. The tasks were administered during normal school 

hours in their normal classroom setting. The tasks took approximately 20 minutes to 

complete. The process was briefly discussed with the students prior to them receiving the 

tasks. The students were told (by their teacher) that the tasks would be looked at in order 

to find better ways to write fraction tasks but that they would not be assessed or graded 

on their work and were asked to do their best. 

The Instrument 

A review of the research on influential task characteristics was completed during 

the literature review and the assessment framework was created in order to narrow the tasks 

for this study. Using assessment framework, tasks were created. Each task was designed to 

prompt students to either iterate or partition and each task shared the same level of 

cognitive demand, mathematical model, and context—as discussed in Chapter 2 of this 

study. The two instruments used in this study were developed from the set of fraction tasks 
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found in Appendix B. Two worksheets (Form H and Form J) containing 6 fraction task. 

The worksheets were created from a set of 12 tasks created based on the framework from 

Chapter 2. One iterating task was created for each category and two partitioning tasks were 

created. The tasks were divided into 2 worksheets. Each worksheet contained a task with 

one of the task characteristics shown in Table 3.2. The instruments were evenly distributed 

in each classroom--that is, in each classroom half of the students received Form H and half 

of the students received Form J. 

Administration of Tasks 

Administration of the tasks took place in general education classrooms to third 

and fourth grade students. The students were given time in class to work on the tasks with 

paper and pencil. No teacher assistance was given to help solve the problems, but 

teachers could reread instructions if needed. Tasks were collected after they were 

completed on the same day. 

Analysis, Evaluation, and Categorization of Tasks 

The tasks were analyzed first quantitatively and then qualitatively. The task 

outcomes were analyzed first by relative frequencies. The percentage correct was 

determined for each task category from the task matrix. The purpose of the quantitative 

analysis was to provide insight as to which, if any, tasks are easier. This was taken into 

consideration as the qualitative analysis was explored. One of the goals of this analysis 

was to determine whether or not tasks that may be easier to complete correctly offer the 

same quality of information accompanying student work. Additionally, the analysis of 

percentage correct was used to determine whether there are any significant differences in 
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student performance on tasks with a certain type of task characteristic compared to the 

other. 

Table 3.2 Matrix for Task Framework 

 

The qualitative analysis for this study  borrowed from Thomas’(2006) general 

inductive approach. Student responses were examined evaluating first for correctness, 

and then strategies and explanations. Both correct and incorrect student responses were 

evaluated qualitatively. Student work was categorized based on the use of the same 

reasoning or the highlighting of the same misconception. Once categories were created, 

they were given names and definitions, and examples of student work highlighting each 

strategy were collected. Student work was examined a second time to ensure that it fit the 

definition and the work was comparable to the selected student work. 
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Each column in the matrix was then evaluated in order to determine whether or 

not certain task characteristics influenced the student strategies more than another. 

Student strategies within each construct of the matrix were also explored to determine 

how, if at all, task characteristics influenced student work or student strategies. Strategies 

were analyzed and compared to the foundational fraction understanding and fraction 

learning progressions discussed in Chapter 2 of this study in order to better understand 

the student thinking represented in both correct and incorrect responses. The student 

approaches are described in Chapter 4 of this study. 

There were many similar strategies used for all of the tasks in this study. As such, 

the percentage of students using each strategy on each type of task was also calculated. 

Determining whether or not a certain strategy was more prevalent on one type of fraction 

task compared to another was necessary in order to draw conclusions about the tasks and 

their influence on student work. 

Student Interviews 

Ten students from one 4th grade classroom were interviewed after the analysis and 

categorization of student work. Mitchell and Clarke (2010) interviewed students after 

completing tasks to identify whether their solutions were representative of procedural or 

conceptual knowledge. Likewise, Brinker (1997) found that students could solve a 

problem using the same representations, but interpret those representations in different 

ways. As a result of these findings, interviews became a crucial part of this study in order 

to be sure that the student work being analyzed was being interpreted correctly. In order 

to avoid inaccurate generalizations, interviewing students helped clarify the student 
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thinking used to complete the tasks, lending more confidence to the analysis of the 

student work on the tasks. 

Students from the final classroom administration of tasks were observed as they 

completed the tasks. If the approaches were similar to the more-commonly used 

strategies of the students from the other classrooms, the students were selected for 

interviews. This allowed for greater insight to student thinking across the study. In the 

interviews, each student was asked to explain their process, why they chose that process, 

approach, or strategy, and any questions that were specific to that task. 

Limitations 

Teachers from all classrooms used in this study have completed additional 

professional development regarding teaching number concepts conceptually-including 

fractions. The professional development was part of a statewide initiative which was 

required of all teachers. The professional development each teacher completed may 

impact the way they teach number concepts and the language they use, which may impact 

the student strategies and student reasoning found in this study.
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CHAPTER FOUR: FINDINGS 

This chapter outlines the process of analyzing both the student strategies used on 

the tasks created. Both process and the outcomes of the quantitative and qualitative 

analysis are described in detail. The quantitative analysis is described first as it was a 

precursor to further exploration of the examination of the student strategies uncovered 

through the study. 

Quantitative Analysis 

The quantitative analysis of student work first looked at whether each problem 

was solved correctly or incorrectly. Each task was broken down by its characteristics and 

the percentage correct for each characteristic was calculated as shown in Table 4.1. 

Percent Correct by Task Characteristic 

 While filled number line tasks were correct for more than 50% of students, tasks 

with empty number lines were solved correctly by less than 50% of the students. 

Partitioning tasks were solved correctly by more students than iterating tasks when 

working on empty number lines. The odd-numbered denominator tasks were solved 

correctly by more students than even-numbered tasks on iterating tasks, but the inverse is 

true for students solving partitioning tasks with odd-numbered denominators. 
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Table 4.1 Percent Correct by Task Characteristic 

 

Qualitative Analysis 

A central aim of this study was to determine which task characteristics may help 

uncover student conceptual understanding of fractions, particularly looking at 

partitioning, iterating, and unitizing strategies. The analysis of student work found the 

ability to unitize often appeared to be intertwined with student partitioning or iterating 

strategies. The strategies for partitioning and iterating are discussed separately and the 

ability (or inability) to unitize is described within each partitioning or iterating strategy. 
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The student strategies used throughout these tasks often overlapped with some 

task characteristics. As such, each student strategy is discussed and explained in this 

chapter. The strategy is named, the task characteristics that influence the strategy are 

explained, and the strategy is described. An example of the student thinking is described 

through student reasoning used during interviews or their written explanations given on 

each task. An example of student work for each strategy is provided after the description 

of each strategy. The student strategies used in the tasks are described and illustrated with 

examples in Table 4.2. Figure 4.1 below outlines the structure of the qualitative analysis 

of each student strategy. 

 
Figure 4.1 Organization of Qualitative Analysis of Each Strategy 

Student Partitioning Strategies 

Student partitioning strategies were examined on all task types. Student 

partitioning strategies were found primarily in partitioning tasks and each strategy may be 

more influenced by additional task characteristics than others (more fully described 

below). In order to identify partitioning strategies, processes where students generated 

quantity as Lamon (1996) defined it. Most of these strategies demonstrated the 

“systematic splitting” of the number line that Confrey (1987) discussed. Partitioning 

strategies looked at how students partitioned the number line and what reasoning they 
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provided for doing so on open number lined tasks. On filled number lines, student ability 

to partition looked at ways in which students viewed and/or treated each partition in a 

filled number line. Student strategies were analyzed and information about student 

reasoning from the task forms as well as student interviews was used to exemplify each 

strategy and better understand the student reasoning or thinking used when applying a 

strategy or working through each task.  

Equipartitioning by Unit Fraction 

Students who used or demonstrated the ability to equipartition correctly 

partitioned the line segment into equally sized pieces. Each unit fraction is partitioned 

into the same size and labeled with the value of the unit fraction. All partitioning tasks 

uncovered the ability to equipartition. Many of the partitioning tasks for this study used 

fractions greater than 1. In the student interviews, one student took 8 6⁄  and was able to 

partition that number line into 8 1 6⁄  pieces. Students demonstrated unitizing through the 

explanation that the fraction was greater than 1 and therefore 6 1 6⁄ ths    was equivalent to 

a unit of one. A sample of Equipartitioning by Unit Fraction is shown in Figure 4.2 on a 

task where students were given an empty number line with given distance of 8 6⁄  and 

were asked to find the location of “1.” 

 
Figure 4.2 Equipartitioning by Unit Fraction 
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Equipartitioning by Non-Unit Fraction 

Few students in this study demonstrated the ability to partition into non-unit 

amounts. These students partitioned 8 6⁄  into 2 6⁄  segments. The empty number line 

partitioning task with even-numbered denominators was the only task that uncovered this 

strategy. Students reasoned multiplicatively about this strategy stating they “just count by 

2’s.” A sample of Equipartitioning by Non-Unit Fraction is shown in Figure 4.3 on a task 

where students were given an empty number line with given distance of 8 6⁄  and were 

asked to find the location of “1.” 

 
Figure 4.3 Equipartitioning by Non-Unit Fraction 

Unequal Partitioning 

Students demonstrate partitive reasoning by partitioning the correct number of 

times, but do not partition into equally sized pieces. On filled number line tasks, students 

using this strategy did not label the partitions on the number line correctly. Partitioning 

tasks on empty and filled number lines with even-numbered denominators uncovered this 

strategy. In tasks where the partitions are unequal, the student labels them as if they are. 

In tasks where the number line is empty, the student partitions unequally. Student 

thinking that exemplifies this strategy includes explanations such as: “Each cut is 

1
6⁄ . " A student sample of this strategy is shown in Figure 4.4 on a task where students 
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were given an empty number line with given distance of 8 6⁄  and were asked to find the 

location of “1.” 

 
Figure 4.4 Unequal Partitioning 

Inaccurate Partitioning 

Students using this strategy do not make the correct number of partitions. 

Partitions are made and may or may not be equal in size, but the number of partitions 

made is not based on the number of unit fractions needed to make a unit of one. Students 

working on tasks with fractions greater than one, may make as many partitions as the 

numerator indicates rather than the denominator, but then used those partitions to rename 

the denominator. In filled number line tasks, these students label each partition with a 

denominator that matches the number of partitions. For example, in a number line 

partitioned into 8 1 6⁄ ths, the student labels a number line partitioned into eighths. This 

strategy was found in partitioning tasks with filled number lines and both even and odd-

numbered denominators and in empty number line partitioning tasks with odd numbered 

denominators. One student interviewed explained this process as, “there are 8 pieces, so 

each piece is 1 8⁄ th.” None of the students who used this strategy were able to correctly 

locate the unit of one. A sample of  the Inaccurate Partitioning is found in Figure 4.5 on a 

task where students were given an filled number line, with eight partitions, given distance 

of 8 6⁄  and were asked to find the location of “1.” 
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Figure 4.5 Inaccurate Partitioning 

Comparative 

Students demonstrating this strategy know that 8 6⁄  > 1 so they make a single 

partition or only label one partition made on the filled number line and place “1” 

somewhere before 8 6 ⁄ on the number line. These students do not demonstrate estimation 

of the number of unit fractions needed to count back or place the 1 before the fraction 

greater than 1.All partitioning tasks in this study uncovered student work or thinking 

using comparative reasoning, though it was more commonly used with open number line 

tasks. In student interviews, students who used comparative reasoning made statements 

such as, “This is bigger than 1 so 1 is closer to 0.” A sample of Comparative Reasoning is 

found in Figure 4.6 on a task where students were given an empty number line with given 

distance of 8 6⁄  and were asked to find the location of “1.” 

 
Figure 4.6 Comparative  

Student Iterating Strategies 

Student iterating strategies were examined on all task types. Iterating strategies 

were found primarily in iterating tasks and each strategy may be more influenced by 
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additional task characteristics than others (more fully described below). With the research 

on student iterating strategies lacking in depth, the analysis of these strategies came from 

a combination of understanding the definition of iterating as making repeated copies of 

an amount and seeing iterating as copying rather than cutting. The examination of 

iterating strategies looked at how students iterated a line segment and what reasoning 

they provided for doing so on open number lined tasks. On filled number lines, student 

ability to iterate looked at ways in which students viewed and/or counted each iteration or 

partition on a number line. On filled number lines, student work treated each partition as 

a “copy” of a unit fraction rather than a piece that had been decomposed. Student 

strategies were analyzed and categorized. The information about student reasoning from 

the task forms as well as student interviews was used to exemplify each strategy and 

better understand the student reasoning or thinking used when applying a strategy or 

working through each task. 

Equal Iteration 

Students demonstrating equal iteration on open number lines made copies or 

iterations of the line segments accurately. Students made marks or used fingers to 

accurately copy the same size represented for each unit fraction or other fractional 

amount. Students demonstrating this strategy on filled number line tasks labeled each line 

segment as a copy of the unit fraction. This strategy was found on all iterating tasks. 

Students using this strategy reasoned that in order to create a unit of one they would need 

to “jump,” “copy,” or “iterate” enough unit fractions to build the unit of one. An example 

of Equal Iteration is shown in Figure 4.7 on a task where students were given a filled 
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number line with five equipartitions and the first partition is given a value of 1 3⁄  and 

asked to find the location of “1.” 

 
Figure 4.7 Equal Iteration  

Unequal Iteration 

Students demonstrating Unequal Iteration on open number lines made copies or 

iterations of the line segments that were not equal in size. Students demonstrating this 

strategy on filled number line tasks labeled each point on a number line incorrectly. This 

strategy was found on all iterating tasks. Students using this strategy demonstrated an 

understanding of how many unit fractions or non-unit fractions were required to make a 

unit of one, but did not show that the line segments representing each fractional amount 

should be the same size. Students using this strategy in the interviews, did not attempt to 

use their fingers or any other strategy to correctly make copies. An example of Equal 

Iteration is shown in Figure 4.8 on a task where students were given a line segment with a 

distance of 2 6⁄  and were asked to find the location of “1.” 

 
Figure 4.8 Unequal Iteration  
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Iteration by Non-Unit Fraction 

Students demonstrating Iteration by Non-Unit Fraction copied a line segment with 

a value of a non-unit fraction, such as 2 6⁄  to build a unit of one. This strategy was found 

only on open number line iterating tasks with even-numbered denominators. Students 

reasoning that supported this strategy explained their process using additive or 

multiplicative reasoning with phrases like, “skip counting by 2 6⁄ ” or “ 2 x 3 = 6 so I need 

3 copies of this (pointing to the line segment with a value of 2 6⁄ .)” An example of 

Iteration by Non-Unit Fraction is shown in Figure 4.9 on a task where students were 

given a line segment with a distance of 2 6⁄  and were asked to find the location of “1.” 

 
Figure 4.9 Iteration by Non-Unit Fraction 

Unwritten Iteration 

Students demonstrating Unwritten Iteration made imaginary or mental copies or 

iterations of the line segments until reaching a unit of one. Students only marked the unit 

of one and did not make any additional marks on their paper. Some students accurately 

placed the unit of one while others were not as accurate. This strategy was only found on 

open number line iterating tasks. Students using this strategy demonstrated an 

understanding of how many unit fractions or non-unit fractions were required to make a 

unit of one in interviews, but may not clearly show it on paper. During student 

interviews, some students would count over with their fingers to make copies, while other 

students using this strategy simply stated, “It would be about here because you would 
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copy this amount 3 times.”  A sample of Unwritten Iteration is shown in Figure 4.10 on a 

task where students were given a line segment with a distance of 2 6⁄  and were asked to 

find the location of “1.” 

 
Figure 4.10 Unwritten Iteration  

Partitioning Instead of Iterating 

Students using this strategy partitioned on line segments that were meant to be 

iterated. For example, on a line segment labeled 1 3⁄ , students would partition the 

segment and number it according to their understanding. Some students may place 0 at 

the end, 1 2⁄  in the middle, and 1 at the end. Other students placed “1” on the number line 

without explanation or reasoning. This strategy was found only on iterating tasks on open 

number lines. A sample of Partitioning Instead of Iterating is shown in Figure 4.11 on a 

task where students were given a line segment with a distance of 1 3⁄  and were asked to 

find the location of “1.” 

 
Figure 4.11 Partition Instead of Iterate  
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Inaccurate Comparative  

Students demonstrating inaccurate comparative reasoning reasoned about the unit 

of one in relation to the given fraction, but did not accurately compare. Students with this 

strategy placed 1 after a fraction greater than one and added to (or made iterations on) the 

number line in order to demonstrate this. While some students equally iterated the unit 

fraction past the number line, others simply added to the number line without 

demonstrating strategic iterative reasoning. All partitioning tasks in this study uncovered 

student work or thinking using inaccurate comparative reasoning, though it was more 

commonly used with open number line tasks. One student reasoned “since this is a 

fraction, it is less so 1 should be out here.” A sample of Inaccurate Comparative is found 

in Figure 4.12 on a task where students were given an empty number line with a distance 

of 4 3⁄ and were asked to find the location of “1.” 

 
Figure 4.12 Inaccurate Comparative   

Student Partitioning and Iterating Strategies 

Norton et al. (2014) described “both partitioning and iterating” (p.354) as part of 

the progression of partitive reasoning and the development of fractional knowledge. 

Some student strategies in this study found that students used both partitive and iterative 

strategies in order to solve the tasks.  
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Partitioning then Iterating 

Some fraction tasks uncovered the strategy of Partitioning then Iterating. With a 

given unit fraction and distance on filled number line, students partitioned to find the unit 

fraction between two points and then iterated the unit fraction to name the location of a 

new point or the unit of “1.” On open number lines this strategy was shown as students 

partitioned a non-unit fraction into a unit fraction and then iterated the unit fraction to 

build the unit of “1.” This strategy was found on all iterating tasks with even-numbered 

denominators. Students using this strategy understood that size was important in order to 

accurately iterate. One student in an interview described distance between point A and B 

“bigger than this (pointing to the space between 0 and Point A).” Students who 

recognized this, often correctly partitioned or correctly labeled the partition between A 

and B and then iterated that amount or “counted up” from that amount to name a new 

location. A sample of Partitioning then Iterating is shown in Figure 4.13 on a task where 

students were given a filled number line with non-equal partitions and given the distance 

of the first partition (1
4⁄ ). Students were asked to find the location of the Point B as well 

as the location of “1.” 

 
Figure 4.13 Partitioning then Iterating  

Distance from Zero 

Students demonstrated partitive and iterative reasoning with this strategy. First 

students equipartitioned or recognized and labeled each partition on a filled number line 
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and then unitized, through counting (or iterating) by unit or non-unit fractions until 

reaching a unit of one. This strategy was influenced by partitioning tasks with both kinds 

of number lines and even and odd-numbered denominators. Students interviewed with 

this strategy used phrases like, “I cut into 4 1 3⁄ rds and then counted by each third until I 

got to 3 3⁄ .Which is the same as 1.” A sample of this strategy is shown in Figure 4.14 on 

a task where students were given a filled number line with five equipartitions and the first 

partition is given a value of 1 3⁄  and asked to find the location of “1.” 

 
Figure 4.14. Distance from Zero Strategy 

 

Distance from Fraction Greater than 1 

Students who demonstrated partitive and iterative reasoning with this strategy did not 

equipartition the entire line segment or label and work with each partition of a filled 

number line. Instead, these students counted back from a fraction greater than one until 

reaching a unit of one. On empty number line tasks, students reasoned about the unit size 

and estimated or mentally partitioned in order to count back the spaces as accurately as 

possible. Unitization was demonstrated with reasoning about the amount greater than one 

that needed to be “counted back” in order to reach one. This strategy was influenced by 

partitioning tasks with both kinds of number lines and even and odd-numbered 



55 

 

 

 

denominators. Students in interviews (and on the worksheets) used phrases like, 

“subtracting,” “counting back,” and “it’s just 1 3⁄  more than 1.”  A sample of this strategy 

is shown in Figure 4.15 on a task where students were given an empty number line with a 

distance of 4 3⁄ and were asked to find the location of “1.” 

 
Figure 4.15 Distance from Fraction Greater than 1 

Non Partitioning or Iterating Student Strategies 

          Some strategies did not demonstrate student ability to partition or iterate. These 

tasks highlighted student misconceptions, but those misconceptions were not in relation 

to partitioning or iterating strategies. These strategies are described below. 

Whole Number Reasoning 

Students using Whole Number Reasoning, ignored the fractions or treated the 

fractions as whole numbers. They either counted by whole numbers on the number line, 

or they saw the unit fraction (or numerator) as the same as “1.” On a line segment with a 

length of 2 6⁄ , for example, students using whole number reasoning would partition the 

segment to the unit fraction of 1 6 ⁄  and claim that 1 6⁄  = 1. If counting by whole 

numbers, students either treated the numerator, denominator, or both as whole numbers—

increasing one or both when moving to the right of the number line. This strategy only 

showed up on open number line iterating tasks with odd-numbered denominators, filled 

number line partitioning tasks with even-numbered denominators, and filled number line 
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partitioning tasks with odd-numbered denominators. Students using this strategy would 

point to the numerator of “1” and claim that was “1.” A sample of Whole Number 

Reasoning is shown below in Figure 4.16 on a task where students were given an filled 

number line, with eight partitions, given distance of 8 6⁄  and were asked to find the 

location of “1.” 

 
Figure 4.16 Whole Number Reasoning 

Inaccurate Number Line Construct  

Students demonstrating Inaccurate Number Line Construct strategy solve the 

problems with limited understanding of the constructs of a number line rather than 

reasoning about fractions. These students place “1” at the end of the number line because 

“One goes at the end.” This strategy was found on all iterating tasks. A sample of  the 

Inaccurate Number Line Construct strategy is shown below in Figure 4.17 on a task 

where students were given a filled number line with non-equal partitions and given the 

distance of Point A (1
5⁄ ). Students were asked to find the location of the Point B as well 

as the location of “1.” 

 
Figure 4.17 Inaccurate Number Line Construct  
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Student Strategy Summary 

Sixteen different student strategies were used on the fraction tasks in this study. Some 

strategies were more common than others. The table below summarizes each strategy, the 

task characteristics that resulted in that strategy, and the frequency with which that 

strategy was used within each task characteristic. A brief description is given for each 

strategy, a student work sample, and whether or not that strategy indicates a potential to 

unitize. 

Coding for Table 

The task characteristics in the table are named with a coding system. The first 

letter of the name is E or F indicated Empty Number Line Tasks (E) or Filled Number 

Line Tasks (F). The next part of the name includes It or Pa indicating Iterating Tasks (It) 

or Partitioning Tasks (Pa). The last part of the name includes an E or O indicating Even-

Numbered Denominators (E) or Odd-Numbered Denominators (O). For example a task 

code of : E-It-E indicates an empty number line iterating tasks with even-numbered 

denominators. The percentage following each task code indicates the percentage of each 

strategy found within each task characteristic.  

 

Strategy Name Found in 

____ 

 

Tasks 

Description Example Indicates 

Ability to 

Unitize? 

  Partitioning Strategies 

Equipartitioning 

by Unit Fraction 

E_Pa_E 

(25%) 

E_Pa_O 

(18%) 

F_Pa_E 

(27%) 

Partitions are 

made into 

equally-sized 

segments to 

represent the unit 

fraction.  

 

Yes 
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F_Pa_O 

(10%) 

 

 

Equipartitioning 

by Non-Unit 

Fraction 

E_Pa_E 

(2%) 

Partitions are 

made into 

equally-sized non 

unit fractional 

line segments.  

 

 

 

Yes 

Unequal 

Partitioning 

E_Pa_E 

(5%) 

E_Pa_O 

(8%) 

F_Pa_E 

(8%) 

F_Pa_O 

(3%) 

The number of 

partitions made is 

correct, but the 

partitions are 

unequal in size.  

 

Yes 

Inaccurate 

Partitioning 

E_Pa_O 

(8%) 

F_Pa_E 

(8%) 

F_Pa_O 

(3%) 

An inaccurate 

number of 

partitions are 

made. Partitions 

may or may not 

be equal in size, 

but the number of 

partitions is not 

equivalent to the 

number needed to 

make a unit of 

one.  

 

 

 

 

 

No 

Comparative E_Pa_E 

(16%) 

E_Pa_O 

(21%) 

F_Pa_E 

(10%) 

F_Pa_O 

(9%) 

Reasoning about 

the value of the 

fraction in 

relation to the 

unit of one is used 

to determine 

whether or not the 

fraction is greater 

or less than 1 and 

then is placed 

either to the left 

or right of the 

fraction on the 

 

No 
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number line to 

indicate that 

comparative 

relationship. 

Iterating Strategies 

Equal Iteration E_It_E 

(15%) 

E_It_O 

(16%) 

F_It_E 

(10%) 

F_It_O 

(8%) 

Copies of 

the line 

segment 

representi

ng a 

fractional 

value are 

made in 

order to 

compose a 

new 

fraction. 

The line is 

added to 

by same 

sized 

pieces 

copied as 

accurately 

as 

possible.  

 

Yes 

Unequal Iteration E_It_E 

(10%) 

E_It_O 

(10%) 

F_It_E 

(4%) 

F_It_O 

(6%) 

The 

correct 

number of 

iterations 

are made 

to create a 

unit of 

one, but 

each 

iteration is 

not the 

same size.  

 
Yes 

Iteration by Non-

Unit Fraction 

E_It_E 

(3%) 

A correct 

number of 

iterations 

of non-

unit 

fractions 

were 

 

Yes 
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made to 

create a 

unit of 

one. The 

non-unit 

fractions 

iterations 

were the 

same size 

for the 

same 

value.  

Unwritten 

Iteration 

E_It_E 

(5%) 

E_It_O 

(7%) 

Each 

iteration 

of the line 

segment is 

made with 

fingers or 

mentally 

iterating 

before 

placing 

and 

labeling a 

new 

location. 

Not every 

iteration is 

drawn or 

labeled. 

 

Yes 

Inaccurate 

Comparative 

E_Pa_E 

(16%) 

E_Pa_O 

(17%) 

F_Pa_E 

(6%) 

F_Pa_O 

(9%) 

The given 

fraction 

(fraction 

greater 

than 1) is 

seen as 

less than 1 

and 

additions 

(or 

iterations) 

are made 

to the 

number 

line in 

order to 

 

No 
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place “1” 

to the 

right of 

the 

fraction.  

Partitioning 

Instead of 

Iterating 

E_It_E 

(3%) 

E_It_O 

(6%) 

The line 

segment is 

partitioned

, numbers 

disregarde

d, and 

partitions 

are made 

to a line 

segment 

intended 

to be 

iterated.  

 

No 

Partitioning and Iterating Strategies 

Partitioning Then 

Iterating 

 

E_It_E 

(17%) 

F_It_E 

(13%) 

A line 

segment is 

first 

partitioned 

to find the 

unit 

fraction. 

The unit 

fraction is 

then 

iterated to 

build a 

specified 

amount or 

name a 

point. 

 

Yes 

Distance from 

Zero 

E_Pa_E 

(25%) 

E_Pa_O 

(18%) 

F_Pa_E 

(27%) 

F_Pa_O 

(10%) 

Partitions 

are made 

and 

students 

count 

iterate or 

label the 

partitions 

while 

counting 

up from 

 

Yes 
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zero. The 

number of 

iterations 

from zero 

indicate 

the value 

of the 

fraction. 

Distance from 

Fractions Greater 

than 1 

E_Pa_E 

(25%) 

E_Pa_O 

(27%) 

F_Pa_E 

(39%) 

F_Pa_O 

(32%) 

Partitions 

are only 

made to 

count the 

number of 

unit 

fraction 

iterations 

needed to 

subtract or 

move to 

the left on 

the 

number 

line from 

the 

fraction 

greater 

than 1.  

 

Yes 

Non Partitioning or Iterating Strategies 

Whole Number 

Reasoning 

E_It_ O 

(9%) 

F_It_E 

(6%) 

F_Pa_ O 

(2%) 

A unit 

fraction is 

treated as 

a unit of 

one. The 

numerator 

of 1 is 

seen as 

having a 

value of 

one. Some 

students 

locate the 

unit 

fraction 

and others 

partition 

 

Student reasons that 𝟏 𝟔⁄  is equivalent to “1.” 

No 
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to find the 

unit 

fraction 

and name 

that 

location as 

“1.” 

Inaccurate 

Number Line 

Construct 

E_It_E 

(3%) 

E_It_O 

(6%) 

F_It_E 

(25%) 

F_It_O 

(31%) 

The unit 

of “1” is 

treated as 

having the 

same 

location 

on all 

number 

lines—

usually “at 

the end” 

and is 

placed at 

the end of 

a line 

segment 

or filled 

number 

line.  

 

No 
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CHAPTER FIVE: DISCUSSION 

Results 

The exploration of the student strategies served to answer the research questions 

presented at the beginning of this study: What task characteristics influence student work 

or thinking around fractions and in what ways? What task characteristics highlight 

informal or intuitive understanding? While all tasks offered insight into student 

conceptual understanding of fractions, not all offered the same information. Additionally, 

some task characteristics better highlighted student understanding of partitioning, 

iterating, or unitizing-which are the key fractional understandings discussed during the 

review of literature for this study. 

Quantitative Analysis 

The quantitative analysis of this study was brief and provided a starting place for 

the analysis of the student work. The tasks were divided by characteristic and the 

percentage of correct responses on each task was calculated as shown in Table 4.1. The 

scores of percent correct were very similar—all hovering around 50%. These results may 

agree with the results of the study conducted by Tunk-Pekkan (2015) which found that 

students perform lower on fraction tasks on number lines compared to other types of 

fraction tasks. Additionally this supports the claims made by Cady, Hodges, and Collins 

(2015) and Niemi (1996) suggests that the lack of measurement contexts and number 

lines in fraction tasks impact student ability to operate on a number line. 

One intention of calculating the percentage correct at the beginning of the analysis 

of student work was to highlight any differences in student scores that may indicate 

whether one task is easier to solve than another and to identify any differences in scores 
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that may highlight some influential factors of particular task characteristics. The scores 

did not indicate large differences in the abilities for students to score correctly from one 

task type to another. 

Qualitative Analysis 

The qualitative analysis is the heart of this study. This section aims to answer the 

research questions that drove this study through describing themes that emerged in 

student work as influenced by different task characteristics. Some task characteristics 

more clearly impacted student work than others, those relationships are discussed in this 

section. 

Partitioning Versus Iterating Tasks 

Some interesting findings emerged regarding partitioning and iterating tasks such 

as 

 Partitioning tasks highlight informal or intuitive understanding; 

 Partitioning tasks result in reasoning with addition and subtraction; 

 Iterating tasks highlight more sophisticated student thinking as well as 

more misconceptions; 

 Both partitioning and iterating tasks highlight partitioning and iterating 

strategies; 

 Many of the commonly used partitioning and iterating strategies students 

used were similar in nature to one another on both partitioning and 

iterating tasks 

While all task characteristics seemed to highlight informal understanding on some 

level, strategies such as the Comparative and Inaccurate Comparative strategy, which 
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were only found on partitioning tasks, highlight a very low level of formal understanding 

of fractions, a level of understanding that may not be assessed through other types of 

tasks. These informal and intuitive approaches are informative to teachers and researchers 

and were found only on partitioning tasks. In addition, some strategies encountered are 

more commonly found in school and in research texts such as unit and non-unit 

partitioning and iterating strategies, others such as the comparative or distance strategies 

are not as common if discussed at all. This suggests the comparative and distance 

strategies uncover informal or intuitive understanding. These strategies were only found 

on partitioning tasks. Perhaps partitioning is more intuitive than iterating and therefore 

tasks that are designed to get at partitioning are more likely to uncover informal or 

intuitive knowledge. 

On partitioning tasks, students reasoned with addition and subtraction in ways 

they did not on iterating tasks. Strategies such as: Distance from Zero and Distance from 

Fractions Greater than 1 often used addition (Distance from Zero) and subtraction 

(Distance from Fractions Greater than 1). Students using these two strategies were very 

clearly adding or subtracting in both their paper/pencil work and in their language. 

Phrases like “more than,” “less than,” “counting up,” and “counting back” were most 

commonly found in these strategies which were only found on partitioning tasks. 

It was only on iterating tasks that students did not iterate and used Partitioning 

Instead of Iterating as well as using the Inaccurate Number Line Construct. Iterating tasks 

also demonstrated student use of Unwritten Iteration and Iteration by Non-Unit Fraction--

two strategies that may indicate greater sophistication of student understanding based on 

the work of Behr  et al. (1985). Finding a potential hierarchy in the partitioning tasks was 
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not as common. While Partitioning by Non-Unit Fraction may indicate greater 

sophistication of student understanding (Lamon, 1996), fewer students used the more 

sophisticated partitioning strategies (2%) than the more sophisticated iterating strategies 

(12%). This is surprising considering  partitioning tends to be a more intuitive approach 

for students (Brizuela, 2006). 

Some partitioning tasks and some iterating tasks highlighted strategies that 

demonstrated the ability to both partition and to iterate: Partitioning then Iterating, 

Distance from Zero, Distance from Fractions Greater than 1 

Partitioning and iterating strategies seemed to mirror each other on the different 

task types. For example, while partitive strategies included approaches such as: 

Equipartitioning and Non Equipartitioning, student iterating strategies included 

approaches such as: Equal Iteration and Unequal Iteration. In addition, both partitioning 

and iterating tasks found students using Non-Unit iterating and partitioning 

Student strategies were very similar and very telling of similar, but different 

conceptual understanding regarding unitizing. While students who iterated correctly were 

building or composing a unit of “1,” partitioning tasks demonstrate student understanding 

of how many unit fractions are found within an already created unit of “1.” Teachers 

selecting partitioning versus iterating tasks should be clear in their objectives and goals 

for what evidence they are looking for regarding unitizing as well as partitioning or 

iterating. 

Empty Versus Filled Number Lines 

Notable differences in student work on empty number line tasks compared to 

filled number were observed 
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 The work on empty number lines compared to filled number lines seemed 

more informative overall; 

 Filled number line tasks do not clearly indicate whether a student reasoned 

iteratively or partitively; 

 Empty number lines may better uncover intuitive thinking; 

 Both empty and filled number lines influenced similar actions on the 

number line and unitizing language; 

Tasks using empty number lines resulted in a better understanding of student 

ability to partition and iterate equally. Strategies that represented equipartitioning or 

equal iteration for students on empty number line tasks were clearer about student ability 

to equally partition and iterate as well as student demonstration that equal partitions or 

iterations were important when representing the same number. Only on empty number 

line tasks were strategies such as Unwritten Iteration and Iteration by Non-Unit found. 

On tasks with filled number lines, the ability to partition or iterate equally is not 

demonstrated, but the ability to see each segment as either equal or unequal in size is still 

evident. This evidence of equipartitioning and equal iteration on empty number lines is a 

very informative piece of student understanding. Regarding the work of Lamon  (1996, 

2007) and Pothier and Sawada (1983), these pieces are indicative of the level of 

sophistication in fraction understanding a student holds. 

Another notable difference found on student strategies was in regards to the 

limitations for teachers when working with filled number lines. When operating with 

filled number lines, students could use either iterative or partitive reasoning because the 

number lines were similarly constructed. While the context did influence the ways in 
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which students thought about and worked through each task, the thinking was much more 

difficult to understand through a simple analysis of the task. Student interviews regarding 

student thinking on filled number line tasks were needed in order to clearly understand 

whether students were using iterative or partitive reasoning on each task. Teachers using 

filled number lines should be aware of this limitation. Teachers using filled number line 

tasks should have clear goals of what type of student thinking they hope to uncover, 

carefully select tasks to get at that thinking, and allow for discussion of student 

approaches in order to understand the student strategy used. 

The Inaccurate Number Line Construct approach where students placed 1 “at the 

end” of the number line because it “goes at the end” was found more often on filled 

number line tasks than empty number lines. This may also support the claim that empty 

number lines highlight a student’s intuitive thinking whether correct or not while a filled 

number line may limit the student conceptual knowledge that is uncovered by the task. 

The Inaccurate Number Line Construct approach did not uncover partitive or iterative 

reasoning whereas other informal or intuitive strategies found on empty number line tasks 

did uncover more partitive or iterative approaches. 

In some ways student strategies and thinking were similar on both empty and 

filled number lines. On both empty and filled number lines, students used “jumps” or 

“copies” to iterate. They also used “slices,” or “pieces” when referring to partitioning. 

Students on both tasks used unitizing language such as, “It takes n number of these to 

make the whole,” or “we need n number to make 1.” Interestingly, this language used by 

students is iterative as it talks about building a whole or the number of copies needed, but 

was the same language used on both tasks types and with both partitioning and iterating 
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strategies. Both empty and filled number lines provide insight into conceptual 

understanding of unitizing. 

Even-Numbered Denominators Versus Odd-Numbered Denominators 

The influence number choice had on the student work in this study can be 

summarized with:  

 Number choice was the least influential characteristic 

The research regarding number choice on fraction tasks indicates that students 

will find even-numbered denominator tasks easier to solve (Hunting, 1999). Because the 

even-numbered denominator task were non-unit fractions and the odd-numbered 

denominator tasks used unit fractions, the results found that each task was similar in 

difficulty. This may be due to the fact that the even-numbered denominator tasks in this 

study used non-unit fractions with even-numbered numerators as well. Non-unit fractions 

may be more difficult to operate with and may have increased the difficulty of working 

with even-numbered denominators. 

Aside from the Partitioning by Non-Unit Fraction and Iteration by Non-Unit 

Fraction strategies that were used, no other strategies were influenced by number choice 

on these tasks. Strategies were similarly used at a similar rate regardless of number 

choice. In this study, the number choice of the denominators seemed to have the smallest 

impact on student work compared to other task characteristics. 

Recommendations 

Developing a hierarchy of student strategies was not an aim of this study. 

Through review of the student strategies used in this study as well as the review of 

literature completed for this study, there may be a hierarchical relationship between some 
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of the strategies. These levels of sophistication were briefly touched in the results section 

of this chapter, but are not explored. The results and task framework for this study could 

provide insight into the learning trajectory students experience or the progression 

students go through in developing an understanding of fractions, particularly into the 

less-explored area of iterating. 

While non-unit fractions were not an evaluated task characteristic in this 

framework, it is recommended that they be studied further. Students operating with non-

unit fractions with even-numbered numerators and denominators in this study used 

strategies like Partitioning by Non-Unit Fraction and Iteration by Non-Unit Fraction. 

These fraction types also resulted in students using partitioning and iterating strategies to 

solve tasks—partitioning to find the unit fraction first and then iterating to unitize. 

Another number choice fraction task characteristic to explore would be with 

fractions greater than 1. Some strategies that emerged in this study only found on tasks 

with fractions greater than 1. The Distance strategies on this study were used with 

fractions greater than 1. These strategies are telling—they are partitioning and iterating 

strategies that indicate an ability to unitize. 

The main goal for this study was to contribute to informing teacher pedagogy. 

Teachers who better understand student thinking are able to address student 

misconceptions and press students to greater understanding and sophistication (Hunting, 

1999). Through the creation of task framework for this study and the analysis of student 

work, teachers can make more informed decisions about the tasks they select for students 

to complete. Using the information in both the literature review for this study and from 



72 

 

 

 

Table 4.1 teachers and researchers can make more informed decisions about the tasks 

they select. 

Conclusion 

While this study opens up many more questions to be explored, it does answer the 

initial research questions of this study. This study discovered very little difference in 

approaches to solving fraction tasks with differences in number choice, but did discover 

differences in approaches when students worked on iterating tasks compared to 

partitioning tasks. There were also differences in student work and strategies on empty 

number line tasks compared to filled number line tasks. The ways in which these task 

characteristics influenced student work are discussed at the beginning of this final 

chapter. 

There were some areas that were influenced in very clear ways by task 

characteristics, but not all areas were so influenced. This may provide further 

encouragement for the use of number line tasks in the classroom as all tasks in this study 

uncovered conceptual student understanding. The parts of conceptual understanding 

uncovered may vary from task characteristic to task characteristic, but overall, all the 

number line tasks gave more information about student understanding than simply 

whether the student was correct or incorrect. 

The results of this study validate many of the claims found in the literature review 

of this study. The ideas about student misconceptions of fractions, particularly regarding 

whole number bias,  shared by Behr et al. (1983) and Ni and Zhou (2005) were 

discovered in some student strategies. The partitioning strategies outlined in Pothier and 

Sawada’s (1983) work were similar to those found in the student partitioning strategies in 
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this study. The iterating strategies in this study are similar to the partitioning strategies 

and indicate a similar learning trajectory as outlined in partitioning studies conducted by 

Brizuela (2006) , Lamon (1996), and Pothier and Sawada (1983). The claims about 

number lines highlighting conceptual knowledge made by Hannula (2003) were 

supported in this study as well. 

This study answers to the call from Mitchell and Clarke (2010) to refine fraction 

tasks through looking at how students view and respond to work on these tasks. The 

student work on this task provides insight that can be used to develop tasks with even 

clearer objectives aimed at uncovering student conceptual understanding. 

Ultimately, the results of this study provide insight into the way task 

characteristics influence student work. This study also provides insight into potential 

learning trajectories of fractions. Student work regarding fractions is influenced in 

different ways by different task characteristics and there are certain task characteristics 

that do a better job of highlighting informal or intuitive knowledge, ability to unitize, and 

misconceptions. The work in this study is informative, but mathematics education 

research would benefit from further exploration of these findings.
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CCSS Used in Task Framework 

 

CCSS Standards 

The tasks will be designed to assess the third grade CCSS ("Common Core State 

Standards for Mathematics," 2010; 2013)  for Number & Operations—Fractions. The 

standards that these tasks will address are:  

3.NF.A.2.A 

Represent a fraction 1/b on a number line diagram by defining the interval from 0 to 1 as 

the whole and partitioning it into b equal parts. Recognize that each part has size 1/b and 

that the endpoint of the part based at 0 locates the number 1/b on the number line. 

3.NF.A.2.B 

Represent a fraction a/b on a number line diagram by marking off a lengths 1/b from 0. 

Recognize that the resulting interval has size a/b and that its endpoint locates the 

number a/b on the number line. 

The 4th grade standard shown below is a progression from the 3rd grade standards.  

4.NF.B.3.B 

Decompose a fraction into a sum of fractions with the same denominator in more than 

one way, recording each decomposition by an equation. Justify decompositions, e.g., by 

using a visual fraction model. Examples: 3/8 = 1/8 + 1/8 + 1/8 ; 3/8 = 1/8 + 2/8 ; 2 1/8 

= 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8.

http://www.corestandards.org/Math/Content/3/NF/A/2/a/
http://www.corestandards.org/Math/Content/3/NF/A/2/b/
http://www.corestandards.org/Math/Content/4/NF/B/3/b/
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APPENDIX B 

Fraction Task Form H 
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Fraction Task Form H 

If the line segment below has a distance of 2 6⁄  where would 1 be? 

 

How do you know?  

 

If the line segment below has a distance of 
1

3
, where would 1 be?  

 

How do you know?  

 

If point A is equal to 
1

4
, what is the value of Point B?  

 

Where would 1 be?  

Explain your strategy for finding each solution.  

If Point A is equal to 
1

5
, what is the value of Point B?  
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Where would 1 be?  

Explain your strategy for finding each solution.  

 

If the distance below is 
8

6
, where would 1 be?  

 

How do you know?  

 

If the distance below is 
4

3
, where would 1 be?  

 

How do you know?  
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Fraction Task Form J 

If the line segment below has a distance of 
1

3
, where would 1 be?  

 

How do you know?  

 

If the line segment below has a distance of 
2

6
, where would 1 be?  

 

 

How do you know? 

 

 

If the value of Point A is 
1

4
, what is the value of Point B?  

 

Where would 1 be?  

Explain your strategy for finding each solution.  
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 If the value of Point A is 
1

5
, what is the value of Point B?  

 

Where would 1 be?  

Explain your strategy for finding each solution. 

 

 

If the distance below is 
8

6
, where would 1 be?  

 

How do you know?  

 

If the distance below is 
4

3
, where would 1 be?  

 

How do you know? 

 

 

 


