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ABSTRACT 

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant and 

high-affinity ligand for the aryl hydrocarbon receptor (AhR). Exposure to TCDD elicits a 

spectrum of toxic effects, many involving aberrant cell proliferation, activation, and 

differentiation. The liver is a target organ for TCDD toxicity, and increasing evidence 

indicates that AhR signaling regulates genes that coordinate deposition and remodeling of 

the extracellular matrix (ECM) in the liver. Hepatic stellate cells (HSCs) are central to 

ECM remodeling in the liver. We recently reported that TCDD treatment increases the 

activation of human HSCs in vitro. The goal of this study was to determine if TCDD 

increases HSC activation in vivo using a mouse model of experimental liver fibrosis and 

to determine the consequences of TCDD treatment on ECM remodeling. To elicit 

fibrosis, C57BL6/ male mice were treated twice weekly for 8 weeks with 0.5 ml/kg 

carbon tetrachloride (CCl4). TCDD (20 µg/kg) was administered once a week during 

weeks 7 and 8. Results indicate that TCDD increased liver damage in CCl4-treated mice 

and increased activation of HSCs. However, TCDD treatment did not increase collagen 

deposition in the liver, nor did it exacerbate fibrosis. Instead, TCDD modulated 

expression and activity of ECM remodeling molecules associated with enhanced matrix 

turnover. These results support the hypothesis that TCDD increases HSC activation in 

vivo, and modulates ECM remodeling in response to chronic liver injury. 
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CHAPTER ONE: INTRODUCTION 

HALOGENATED AROMATIC HYDROCARBONS 

Halogenated aromatic hydrocarbons (HAHs) are a family of toxic environmental 

pollutants that include dibenzofurans, naphthalenes, biphenyls, and chlorinated dibenzo-

p-dioxin (Poland & Knutson, 1982). They have similar structures (Figure 1) and produce 

a similar pattern of toxic responses. Due to their ability to accumulate and persist in the 

environment, HAHs are also referred to as persistent organic pollutants (POPs) (Jones & 

de Voogt, 1999). The persistence of these chemicals is due to the fact that they tend to be 

lipophilic, which allows them to partition into the organic material in soils and into lipid 

compartments of organisms. Furthermore, these chemicals are typically resistant to 

biodegradation and metabolism (Jones & de Voogt, 1999), which allows them to 

bioaccumulate in the food chain (Poland & Knutson, 1982). These characteristics 

increase the likelihood of organisms becoming exposed to HAHs in the environment and 

through the food chain. 

 

 

 

 

 

Figure 1. Structure of HAHs 
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2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) 

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic and well-studied 

HAH and serves as the prototype for understanding how the HAH family of chemicals 

elicits toxicity (Poland & Knutson, 1982). The basic chemical structure of all dioxins 

consists of two benzene rings connected by two oxygen atoms and substituted with four 

to eight chlorine atoms. The various positions of the chlorine atoms give rise to up to 75 

dioxin congeners (Schecter et al., 2006). TCDD contains chlorine atoms at positions 2, 3, 

7, and 8 on the benzene rings (Figure 2).  

TCDD is often found in complex mixtures of HAHs, and it can persist in both 

environmental and biological samples that are exposed to such mixtures. In the 

environment, TCDD is primarily degraded by photolysis, which occurs when UV light 

(in the presence of a hydrogen donor) splits chlorine atoms off of TCDD (Skene et al., 

1989). However, the penetration of UV light into soil is typically shallow, which 

contributes to the long half-life of TCDD in soil, which can be 10 to 100 years (Seike et 

al., 2007, Sinkkonen & Paasivirta, 2000). TCDD also persists in the human body because 

there is no process for metabolizing it. Adipose tissue and liver are major storage sites for 

TCDD (Schecter et al., 1989).  The half-life in the body is dependent on dose and body 

composition, and high amounts of body fat lead to increased persistence (Schecter et al., 

2006). Recent studies report that the half-life in humans is approximately 1 to 2 years 

(Sorg et al., 2009). 
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Figure 2.  Chemical structure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 

 

TCDD Toxicity. 

In animals, the toxic effects of TCDD include endocrine alterations, 

developmental and reproductive toxicity, hepatotoxicity, immunosuppression, 

carcinogenesis and death (Bock, 1994; Birnbaum, 1995). Studies of TCDD toxicity in 

humans have been primarily based on accidental exposures in which TCDD was found as 

part of a complex mixture. The most appropriate way to estimate the potential health risk 

of mixtures of dioxins is to express the toxicity as if a chemical mixture under study were 

pure TCDD (Van den Berg et al., 1998). The total dioxin toxic equivalency (TEQ) value 

has been adopted internationally to express the toxicity of mixtures of dioxins. The TEQ 

equals the toxic equivalency factor, which expresses the toxic potencies of HAHs relative 

to that of TCDD, multiplied by the weight of the compound (Van den Berg et al., 1998; 

Safe, 1993). In the general population, it is estimated that the mean TCDD TEQ level is 6 

ng/kg in adipose tissue and 2 ng/kg in serum (Aylward & Hays, 2002). Current mean 

serum lipid TCDD levels are estimated to be between 0.5 and 1 ng/kg in the general 

population (Aylward & Hays, 2002). These levels are within the margins of exposure 

limits for some toxicological outcomes of TCDD, such as developmental reproductive 

toxicity, which is associated with TCDD body burden levels as low as 0.1 to 8 ng/kg 
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(White & Birnbaum, 2009). The observation of toxic effects of TCDD at these low 

exposure levels underscores the importance of understanding mechanisms of TCDD 

toxicity in order to adequately assess human health risks.  

Sources of TCDD 

TCDD is typically produced as an unintentional byproduct of industrial 

manufacturing and combustion processes. A classic historical example of unintentional 

TCDD production occurred during the manufacturing of the herbicide Agent Orange, 

which was used as a defoliant during the Vietnam War from the early 1960s to the early 

1970s.  Agent Orange was a 50/50 mixture of 2,4,5-trichlorophenooxyacetic acid (2,4,5-

T) and dichlorophenoxyacetic acid (Hites, 2011). 2,4,5-Trichlorophenol serves as the raw 

material to produce 2,4,5-T, and TCDD was produced as a byproduct of this reaction.  

2,4,5-T was further used to produce other herbicides. Although the quantity of TCDD 

impurity was small in these products, their widespread use sometimes resulted in the 

release of TCDD into the environment at levels that required clean up (Hites, 2011). 

In addition to the use of TCDD-contaminated herbicides and other products, 

industrial accidents represent another source of human exposure to TCDD. For example, 

in 1976, in the town of Meda, Italy, an explosion at a chemical manufacturing plant 

produced a chemical cloud that was blown by the wind to the south. This cloud, which 

contained TCDD and a mix of other toxic chemicals, fell on the town of Seveso, where it 

contaminated soil, killed small animals, and caused dermal lesions in exposed humans.  

From the most contaminated areas, 730 people were eventually evacuated (Hites, 2011). 

Blood levels of TCDD in random samples of inhabitants in the most contaminated zones 

were between 9.8 and 89.9 ppt (Landi et al., 1998). Another example of human exposure 
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to TCDD was in the early 1970s in the town of Times Beach, Missouri. A contractor used 

TCDD-contaminated oil from a chemical manufacturing plant to spray unpaved streets to 

control dust (Hites, 2011). By 1982, the town of Times Beach was evacuated and 

eventually disincorporated. It was not until 2001 that the Times Beach site was 

determined to no longer pose a significant threat to public health or the environment. 

Since the mid-1980s, when it became apparent that dioxins were a public health issue, 

lower amounts of dioxins have been entering the environment due to the abandonment of 

chlorinated phenol chemistry by large sectors of the chemical industry (Hites, 2011).   

Currently, the combustion of waste products – particularly municipal waste and 

backyard burning of household waste – is the prominent source of TCDD in the 

environment (Dearfield et al., 2013). These wastes often contain chlorine-based plastics, 

which form TCDD during combustion. Once released into the atmosphere, TCDD 

adsorbs onto dust particles and settles onto vegetation and in bodies of water, and 

accumulates in the soil. Livestock are exposed to TCDD through consumption of 

contaminated vegetation and feedstock, whereas humans are primarily exposed to dioxin 

through the consumption of TCDD-laden animal products (Dearfield et al., 2013). 

Because it is lipophilic and poorly metabolized, TCDD partitions into the lipid 

compartments of organisms and bioaccumulates in the food chain. Therefore, the more 

animal fats consumed, the greater the risk of exposure to TCDD.  

TCDD-Regulated Gene Battery  

Dioxins induce a number of xenobiotic metabolizing enzymes, including two 

enzymes in the cytochrome P450 family, Cyp1a1 and Cyp1a2, and four non-P450 

enzymes: Nqo1, Ald3a1, Ugta6, and Gstal (Nebert et al., 2000). This group of genes is 



6 

 

identified as a battery, which describes a set of functionally linked genes that are 

regulated in response to a particular endogenous or exogenous signal (Nebert et al., 

2000). The cytochrome P450 enzymes are almost exclusively Phase I metabolizing 

enzymes that metabolize substrates through oxidative degradation. The addition of 

oxygen into a substrate by Phase I enzymes can produce reactive intermediates, which 

can be carcinogenic, mutagenic, and/or toxic (Nebert et al., 1990). The four non-P450 

enzymes in the gene battery are Phase II metabolizing enzymes and act on the 

oxygenated intermediates produced during Phase I reactions. Phase II enzymes produce 

hydrophilic metabolites that are easily excreted (Nebert et al., 1990). The coordination of 

Phase I and Phase II enzymatic reactions is critical for ensuring metabolic clearance of 

foreign substances from the body. 

Of all of the dioxins, TCDD is the most potent inducer of cytochrome P450 1A1, 

which is also known as aryl hydrocarbon hydroxylase (AHH). AHH is an enzyme that 

oxygenates substrates, resulting in their metabolism (Whitlock, 1999). Although TCDD 

is a substrate for AHH, the positioning of the chlorine atoms on TCDD inhibits 

oxygenation.  Therefore, TCDD is not metabolized through AHH activity. In fact, there 

are no known breakdown products of TCDD at all.  The failure of TCDD to be 

metabolized in the body directly contributes to the long half-life of TCDD and its 

persistence in organisms (Whitlock, 1999).  

It was found in the C57BL/6 and DBA/2 mouse strains that the extent of AHH 

induction by TCDD varied according to the strain of mice (Thomas et al., 1972). Studies 

in strains that were unresponsive to TCDD identified a single genetic locus that conferred 

TCDD inducibility of AHH. This locus was named the Ah locus (Thomas et al., 1972). In 
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these unresponsive mice, TCDD induced Cyp1a1 to a lesser extent than in responsive 

mice, resulting in 10 times less induction of AHH activity (Nebert et al., 1975). 

Subsequently, the protein product of the Ah locus was identified and characterized as a 

receptor called the aryl hydrocarbon receptor (AhR), which was found to bind to TCDD 

(Nebert et al., 1975; Merchant et al., 1992). These studies further demonstrated that the 

AhR controls the transcription of Cyp1a1 in response to TCDD.  

 

ARYL HYDROCARBON RECEPTOR (AhR) 

The AhR is a soluble protein in the Per-ARNT-Sim (PAS) family of basic helix-

loop-helix (bHLH) transcription factors. The PAS superfamily is named for the 

Drosophila circadian rhythm protein period (Per) protein, the mammalian AhR nuclear 

translocator (ARNT) protein, and the Drosophila neurogenic single-minded (Sim) protein 

(Burbach et al., 1992; Schmidt et al., 1993). Proteins in this family contain a conserved 

domain, referred to as a PAS domain, of approximately 250 to 300 amino acids. The 

primary amino acid sequence of the PAS domain is evolutionarily conserved across 

vertebrate species and functions in detection of and adaptation to environmental changes, 

such as circadian rhythm, hypoxia, and small metabolites (Nguyen & Bradfield; 2008, Gu 

et al., 2000). As a PAS protein, the AhR facilitates adaptation to environmental changes 

through the mechanism of ligand binding and upregulation of xenobiotic metabolizing 

enzymes, such as those in the cytochrome P450 family (Gu et al., 2000). The PAS 

domain contains two subdomains of approximately 50 amino acids: PAS-A and PAS-B. 

A schematic structure of the AhR protein is shown in Figure 3. The PAS domain is 

involved in hetero- and homodimerization with other PAS proteins and the docking of 
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molecular chaperone heat shock 90 (Hsp90) proteins (Abel & Haarmann-Stemmann, 

2010). The AhR binds a ligand at the PAS-B domain, which induces AhR activation and 

subsequent gene transcription (Coumailleau et al., 1995). The AhR is the only protein in 

this family that is ligand-activated, so it is the only receptor in the bHLH/PAS family. 

 

 

 

 

 

Figure 3. Schematic of functional domains within the AhR protein. This 
representation depicts domains that are common to the bHLH/PAS family of proteins and 
domains that are important in the classical pathway of AhR activation. 

In the absence of TCDD, the AhR resides in the cytosol, where it is associated 

with cofactors such as tyrosine kinase c-src, two heat shock 90 proteins, the co-chaperone 

p23, and a protein called the immunophilin-like AhR interacting protein (AIP) (Ma & 

Whitlock, 1997; Denis et al., 1988; Perdew, 1988; Abel & Haarmann-Stemmann, 2010). 

These cofactors maintain the AhR in a transcriptionally inactive state. Activation of the 

AhR occurs when TCDD binds the PAS-B domain of the receptor, which causes 

dissociation of the cofactors and reveals a nuclear localization sequence that permits the 

AhR to enter the nucleus (Lees & Whitelaw, 1999). Once in the nucleus, the AhR forms a 

heterodimer with another bHLH/PAS family member called the Ah receptor nuclear 

translocator (ARNT) and becomes transcriptionally active. Binding to ARNT is required 

to direct the AhR to enhancer elements of genomic targets (Gu et al., 2000). The 

AhR/ARNT transcription factor binds DNA at consensus sequences known as xenobiotic 
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response elements (XREs), which contain the core bases 5’-GCGTG-3’ in the promoter 

and enhancer regions of target genes (Lees & Whitelaw, 1999; Abel & Haarmann-

Stemmann, 2010). The ability of the AhR/ARNT heterodimer to bind DNA at XREs is 

mediated primarily through the basic region of the helix-loop-helix domain (Ko et al., 

1997). Gene transactivation is accomplished through the transactivation domain of the 

AhR, which interacts with adjacent TATA and CCAATT boxes (Ko et al., 1997). After 

the AhR/ARNT dimer binds DNA, several co-activators, such as SRC-1, p300, CBP, and 

Brg-1, are recruited to the complex. These co-activators not only relax the chromatin 

structure through histone modification, but also recruit components of the general 

transcription machinery to induce gene expression (Wang & Hankinson, 2002).  Figure 4 

illustrates the classical pathway of gene transcription by the AhR/ARNT transcription 

factor. In the absence of AhR nuclear translocation and DNA binding, TCDD loses many, 

if not all, of its toxic effects (Bunger et al., 2003; Bunger et al., 2008). 

In mice, the Ah locus was found to have two alleles: Ahrb and Ahrd. The mouse 

strains C57BL/6 and DBA/2 are commonly used to contrast the responsiveness of the two 

alleles. C57BL/6 mice express the Ahrb allele, whereas DBA/2 mice express the Ahrd 

allele (Poland et al., 1994). The Ahrb allele is more responsive to TCDD than the Ahrd 

allele, resulting in an approximate 10-fold difference in the dose of TCDD required to 

induce AHH activity (Nebert et al., 1975). It has been shown that point mutations in the 

Ahrd allele lower the ligand binding affinity, which accounts for the reduced sensitivity 

observed in mice that express this allele (Poland et al., 1994). Another way to evaluate 

species responsiveness to TCDD is to compare the dose of chemical required to produce 

lethality in 50% of the test population. This dose is referred to as the LD50. AhR point 
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mutations affecting ligand-binding affinity are shown to account for variations in the 

LD50 of TCDD between different strains of mice as well as between species. For 

example, the oral LD50 of TCDD in a guinea pig is estimated at 0.6 μg/kg, whereas the 

LD50 in a rabbit is 115 μg/kg (Schwetz et al., 1973). 

Although the mechanisms of TCDD toxicity remain poorly understood, most 

TCDD toxicity is attributed to changes in gene transcription (Walisser et al., 2005; 

Bunger et al., 2003; Bunger et al., 2008). Studies within the last decade have shown that 

the AhR can alter gene transcription at sites distinct from consensus XREs. In fact, a new 

“non-consensus” XRE (NC-XRE) was recently identified that contains a 5’-GGGA-3’ 

tetranucleotide motif instead of the 5’-GCGTG-3’ core that was originally identified 

(Huang & Elferink, 2012). Furthermore, the AhR was found to bind this NC-XRE in an 

ARNT-independent manner (Huang & Elferink, 2012). A subsequent report from the 

same group demonstrated that the AhR binds to the NC-XRE after dimerizing with 

another protein called Krupple-like factor 6 (Wilson et al., 2013).  Another study found 

that the AhR interacts with nuclear factor-kappa beta (NF-κB) subunit RelA to activate c-

myc gene transcription (Kim et al., 2000; Tian et al., 1999).  Also, the AhR can associate 

with the NF-κB subunit RelB to mediate interleukin-8 gene transcription (Vogel et al., 

2007b). The identification of these AhR/non-ARNT heterodimers illustrates the 

complexity of understanding mechanisms of AhR activity and the ramifications of AhR 

activation on gene expression. This is further complicated by the finding that over 20 

thousand mouse genes have been reported to have putative XREs (Dere et al., 2011). 

However, in a hepatic global gene expression analysis, only 1,896 of these genes were 
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differentially expressed following TCDD treatment. Furthermore, 593 of these 

upregulated genes did not contain an XRE (Dere et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Pathways of AhR-regulated gene transcription. AhR activation by 
exogenous or endogenous ligand induces nuclear translocation. In the nucleus, the AhR 
binds to another transcriptional regulatory protein, and the heterodimer is recruited to 
DNA response elements of target genes. (A) In the classical pathway of AhR activation, 
the AhR modulates gene transcription by heterodimerizing with ARNT and binding to 
XREs. (B) According to recently identified alternative pathways of AhR activation, the 
AhR forms heterodimers with non-ARNT proteins, such as KLF6, RelA and RelB.  Each 
AhR heterodimer targets a unique, non-XRE, sequence of DNA. 

TCDD Hepatotoxicity 

The AhR is highly expressed in the liver and contributes to the physiology of liver 

development, as the liver of AhR-null mice is about half the size of the liver in wild-type 

mice (Fernandez-Salguero et al., 1996). Another prominent feature of AhR-null mice is a 

defect in the development of the liver vasculature, resulting in patent ductus venosus.  
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The liver in AhR-null mice also exhibits pronounced fibrosis in the portal tract 

(Fernandez-Salguero et al., 1995). Finally, AhR-null mice display impaired retinoic acid 

catabolism, which results in elevated levels of retinoic acid, retinol, and retinyl palmitate 

(Gonzalez & Fernandez-Salguero, 1998). These findings support the notion that 

endogenous AhR signaling plays an important role in liver development and homeostasis. 

The liver is a target organ for TCDD toxicity and has higher overall levels of 

TCDD than any other tissue except adipose tissue (Schecter et al., 1989). The majority of 

research done on TCDD hepatotoxicity has focused on how TCDD treatment impacts 

hepatocytes, which comprise approximately 80% of the total liver volume (Kmieć, 2001). 

Hepatocytes are the major contributors to Cyp1a1 induction in response to TCDD and 

mediate gross markers of TCDD hepatotoxicity, such as hepatomegaly, which refers to 

enlargement of the liver due to hypertrophy and hyperplasia of hepatocytes (Bock & 

Köhle, 2006). The direct action of TCDD on hepatocytes also produces increased serum 

alanine aminotransferase (ALT) levels and pathological changes in the liver (Walisser et 

al., 2005). Nevertheless, non-parenchymal cells in the liver also express a functional AhR 

and are also putative targets for the toxic effects of TCDD. In addition to the 

aforementioned endpoints of hepatotoxicity, TCDD elicits the following toxic outcomes 

in the liver: inflammation, dysregulation of vitamin A homeostasis, steatosis, modulation 

of hepatocyte proliferation, and fibrosis.  These endpoints of TCDD hepatotoxicity are 

discussed in further detail below.  

Liver inflammation 

In rodents, TCDD treatment has been shown to elicit moderate multifocal 

inflammatory foci in the liver (Kopec et al., 2010). These foci consist mainly of 
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mononuclear cells and a smaller number of neutrophils (Boverhof et al., 2006). 

Inflammatory cells are drawn to sites of injury by the action of chemokines. Increased 

levels of the chemokines monocyte chemoattractant protein-1 (MCP-1) and keratinocyte 

chemoattractant (KC) have been observed in mice exposed to a single dose of TCDD 

(Vogel et al., 2007a). MCP-1 attracts macrophages, and KC, which is the mouse homolog 

for IL-8, attracts neutrophils to sites of injury. Both MCP-1 and IL-8 have been shown to 

be directly regulated by the AhR in response to TCDD (Sun et al., 2004; Vogel et al., 

2007b). 

Dysregulation of vitamin A homeostasis 

The liver stores 80% of the body’s vitamin A, which is essential for the 

maintenance of retinoid homeostasis in tissues and organs (Schreiber et al., 2012). 

Vitamin A is involved in development and growth, vision, epithelial differentiation, 

immune function and reproduction (Ross et al., 2000). Vitamin A is converted to retinol 

and stored in lipid droplets inside hepatic stellate cells (HSCs), which are non-

parenchymal cells in the liver. TCDD has been shown to reduce the accumulation of 

vitamin A in the rodent liver (Thunberg et al., 1980; Håkansson & Ahlborg, 1985). Loss 

of vitamin A has been attributed to increased mobilization and excretion of retinoids from 

the liver, which coincides with increased kidney and serum retinoid concentrations 

(Håkansson & Ahlborg, 1985). When liver cells were separated, vitamin A levels in the 

non-parenchymal fraction of the liver from TCDD-treated rats were 30% lower than in 

control rats, whereas vitamin A content in parenchymal cells was not affected by TCDD 

(Håkansson & Hanberg, 1989). Along these same lines, we recently found that TCDD 

inhibits lipid droplet storage in cultured human HSCs (Harvey et al., 2016). Hence, the 
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consequences of TCDD on vitamin A homeostasis may be due to direct effects of TCDD 

on HSCs, rather than on hepatocytes.  

Steatosis 

TCDD-induced hepatic steatosis is characterized by an increase in hepatic 

triglycerides, vacuolization, and inflammatory cell infiltration in the liver (Angrish et al., 

2012). TCDD treatment induces hepatic steatosis in mice treated with a single dose of 

TCDD or with a single dose of TCDD in conjunction with a high fat diet (Lu et al., 2011; 

Angrish et al., 2012). The vacuolization that occurs during TCDD-induced hepatic 

steatosis results from the accumulation of triglycerides in hepatocytes and their 

subsequent packaging into lipid droplets (Boverhof et al., 2006). Exposure to TCDD 

increases levels of hepatic triglycerides by enhancing their uptake into hepatocytes and 

also by inhibiting their secretion (Lu et al., 2011; Lee et al., 2010). Furthermore, 

microarray studies have revealed that TCDD increases expression of genes involved in 

lipid metabolism and immune responses (Boverhof et al., 2006; Sun et al., 2004) 

Modulation of hepatocyte proliferation 

Exposure to TCDD has been shown to suppress hepatocyte proliferation in vitro 

(Kolluri et al., 1999) and in the mouse liver during regeneration (Bauman et al., 1995; 

Mitchell et al., 2006). Specifically, TCDD suppresses S-phase progression by eliciting a 

G1 cell cycle arrest (Kolluri et al., 1999; Mitchell et al., 2006). This cell cycle arrest 

appears to result from the TCDD-mediated induction of p27Kip1, which inhibits passage 

through the G1/S checkpoint of the cell cycle. In addition, TCDD can cause the AhR to 

associate with the E2F transcription factor to suppress the expression of genes needed for 

S-phase progression (Elferink, 2003; Puga et al., 2000). Finally, a recent study found that 
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TCDD-induced suppression of in vivo hepatocyte proliferation also depends on induction 

of the p21Cip1 gene (Jackson et al., 2014). Hence, there are multiple mechanisms by 

which TCDD may modulate hepatocyte proliferation, and this is an ongoing area of 

research.  

It is interesting to note that the AhR can function as both a tumor suppressor and 

as a tumor promoter. Activation of the AhR by TCDD enhances tumor incidence in the 

liver of rodents (Pitot et al., 1980). However, TCDD is not considered genotoxic, in that 

it does not bind to DNA and cause mutations. Instead, its mode of action has been 

determined to be one of tumor promotion (Pitot et al., 1980). It is thought that TCDD 

promotes tumor development by modulating the rate of cell division, terminal 

differentiation, or apoptosis (Mandal, 2005). In contrast, it has been suggested that 

endogenous AhR activity (in the absence of TCDD) is important for suppressing tumors.  

This is supported by the finding that tumorigenesis increases when the AhR is absent 

altogether (Fan et al., 2010). Thus, in the presence of TCDD, the AhR functions as a 

tumor promoter, whereas in the absence of exogenous ligand, it functions as a tumor 

suppressor. 

Fibrogenesis 

Fibrogenesis is a wound healing response characterized by the synthesis and 

deposition of extracellular matrix (ECM) material (Brenner et al., 2000). Liver fibrosis 

refers to a pathological condition in which injury and inflammation drive the deposition 

of abnormal or excessive ECM (Wynn, 2008). TCDD treatment is shown to increase 

fibrogenic gene expression (Andreasen et al., 2006). There is some evidence to suggest 

that the AhR regulates fibrogenic processes, as fibrotic lesions are observed in the liver of 
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AhR-null mice (Fernandez-Salguero et al., 1996). Furthermore, several studies indicate 

that expression of fibrosis-related genes is modulated when the AhR is activated by 

TCDD.  For example, chronic treatment of mice with TCDD was found to increase 

expression of the gene that encodes collagen type I (Pierre et al., 2014), which is the 

primary collagen involved in liver fibrosis. Using a zebrafish model of fin regeneration, 

Andreasen et al. reported that TCDD treatment altered the expression of numerous genes 

involved in ECM synthesis and remodeling, including matrix metalloproteinases, tissue 

inhibitor of matrix metalloproteinases and collagen 1a1 (Andreasen et al., 2006). Given 

the fibrotic phenotype of AhR-null mice, as well as the reported consequences of TCDD 

treatment on ECM remodeling activity, it is logical to speculate that AhR signaling could 

contribute to the regulation of fibrogenesis in the liver.  However, no studies to date have 

determined how TCDD treatment impacts the pathogenesis of liver fibrosis, which is the 

focus of the research project described herein.  

 

TCDD and Hepatic Stellate Cells 

HSCs are non-parenchymal liver cells that lie at the interface of liver homeostasis 

and disease, as they have the ability to promote inflammation, innate immune responses, 

and wound healing (Ishibashi et al., 2009). HSCs are uniquely positioned in the 

perisinusoidal space (Space of Disse), which facilitates their close interaction with 

parenchymal hepatocytes, endothelial cells, and Kupffer cells (Figure 5) (Hui & 

Friedman, 2003). When quiescent, HSCs function in retinoid homeostasis.  In fact, 

quiescent HSCs store 80% of the body’s vitamin A (Schreiber et al., 2012).  Chronic liver 

injury provokes HSCs to transition to a myofibroblast-like phenotype and acquire 
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fibrogenic properties. A range of liver insults, including viral hepatitis, steatohepatitis, 

toxicant exposure, and autoimmune disorders, can cause chronic liver injury (Bataller & 

Brenner, 2005). Activated HSCs are characterized by loss of vitamin A storage, enhanced 

proliferation, contractility, expression of αSMA, chemokine and growth factor 

production, and deposition of fibrillar collagens (Friedman, 2000).  

 

 

 

 

 

 

 

 

 

 

Figure 5. Cell distribution in the normal liver. Figure based on illustration in Hui & 
Friedman, 2003. 

Liver fibrosis is a pathological condition characterized by excessive accumulation 

of ECM. Fibrosis results from a wound healing response to chronic injury and is 

characterized by an imbalance of ECM deposition and protease activity (Ghosh et al., 

2013). In response to chronic liver injury, which is typically accompanied by unresolved 

inflammation, activated HSCs are the central mediators of liver fibrosis (Lee & 

Friedman, 2011). These cells synthesize collagen type I, pro-fibrogenic mediators, as 

well as proteases and other molecules that contribute to ECM turnover and remodeling 
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(Duarte et al., 2015). Liver fibrosis is a potentially reversible response, as removal of the 

insult or accompanying inflammation can cause HSCs do undergo apoptosis or revert to a 

quiescent state (Schuppan & Kim, 2013). However, the mechanisms by which HSCs 

become activated or revert to quiescence remain unclear. 

There is some evidence that to support the notion that HSC activation may be an 

intriguing and overlooked target for TCDD toxicity. For example, TCDD is known to 

decrease vitamin A storage in the liver, which supports the notion that TCDD may 

modulate the ability of HSCs to regulate retinoid homeostasis (Hanberg et al., 1998; 

Håkansson & Hanberg, 1989; Håkansson & Ahlborg, 1985; Thunberg et al., 1980). In 

fact, given that one characteristic of activated HSCs is the loss of retinoid storage, it is 

conceivable that TCDD treatment increases HSC activation. However, there is a scarcity 

of data regarding the effects of TCDD on HSCs in vivo. One study demonstrated that the 

TCDD-induced loss of hepatic vitamin A did not correlate with changes in the number of 

HSCs or in expression of the HSC activation marker, αSMA (Hanberg et al., 1996). In 

contrast, another study found that TCDD treatment increased both αSMA and collagen 

type I in the mouse liver, and this occurred through an AhR-dependent mechanism 

(Pierre et al., 2014). Although this study did not directly examine the consequences of 

TCDD on HSCs, increased expression of these molecules is consistent with increased 

HSC activation. 

Another reason to consider the possibility that HSCs are targeted by TCDD is 

based on the finding that HSCs retain TCDD for a relatively long period of time. In fact, 

the half-life of TCDD in hepatocytes is approximately 13 days, whereas the half-life of 

TCDD in HSCs is estimated at 52 days (Håkansson & Hanberg, 1989). It stands to reason 
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that the long half-life of TCDD in HSCs increases the likelihood of toxicity occurring in 

these cells. Furthermore, it leaves open the possibility that HSCs are direct cellular 

targets for TCDD toxicity. This is supported by recent studies in our lab, which show that 

TCDD treatment increases activation of the human HSC line, LX-2, leading to loss of 

vitamin A storage, increased proliferation, and increased αSMA expression, as well as 

increases in other endpoints of activation (Harvey et al., 2016).  

Given the diverse role of HSCs in liver homeostasis, as well as the contribution of 

activated HSCs to liver fibrosis, TCDD-mediated disruption of this population of cells 

could underlie the development of numerous hepatotoxic effects. Understanding how 

exposure to TCDD impacts HSC activation in vivo will be important for identifying a 

possible role for the AhR in regulation of fibrogenesis and for elucidating mechanisms of 

TCDD hepatotoxicity.  

 

TCDD and ECM Remodeling 

The ECM is composed of a network of proteins and sugars in the interstitial space 

and provides a physical scaffold and structural support for cells (Duarte et al., 2015). The 

ECM can regulate various cellular functions through tissue stiffness, contact with cell 

receptors, and the sequestration and release of factors involved in cell proliferation and 

differentiation (Karsdal et al., 2015). The composition of the ECM is important for 

regulating the activity and phenotypes of cells that are in contact with it. Indeed, 

dysregulation of ECM metabolism and deposition is now recognized to be associated 

with the development of chronic liver disease (Friedman, 2000; Duarte et al., 2015).  
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In addition to impacting HSC activation and fibrogenesis, it is also possible that 

TCDD dysregulates ECM remodeling. Studies indicate that AhR activation can regulate 

genes involved in ECM deposition, such as collagens, as well as genes involved in ECM 

metabolism, such as matrix metalloproteinases (MMPs) (Andreasen et al., 2007; Pierre et 

al., 2014). In fact, TCDD treatment increases expression of ECM proteases in many cell 

lines, including bronchial epithelial cells, prostate cancer cells, and melanoma cells, as 

well as in zebrafish (Tsai et al., 2014; Haque et al., 2005; Villano et al., 2006; Andreasen 

et al., 2007). These reports support the idea that AhR signaling may contribute to chronic 

liver injury and fibrosis through the dysregulation of ECM deposition, composition, or 

breakdown. One of the goals of the research described in this dissertation was to 

determine how TCDD impacts molecules involved in ECM maintenance. For this reason, 

descriptions of some of these key molecules, including collagen and MMPs, are provided 

below. 

 

Collagen 

As mentioned previously, chronic TCDD treatment was found to increase 

collagen type I in the mouse liver (Pierre et al., 2014). However, less is known about the 

consequences of TCDD on other types of collagen. In addition to collagen type I, four 

other types of collagens are important for chronic liver disease: III, IV, V, and VI. All of 

these collagens, as well as collagen type I, have important roles in fibrogenesis, and all of 

them increase in response to chronic injury (Chen et al., 2014; Yamamoto et al., 1984; 

Murata et al., 1984; Ala-Kokko et al., 1987). Collagen types I and III are fibrillar-type 

collagens and are considered hallmarks of fibrotic disease (Chen et al., 2014). Collagen 
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type I forms thick fibrils that predominately comprise scar tissue, while collagen type III 

forms finer fibrils that can be found in granulation tissue during the early stage of wound 

healing (Chen et al., 2014). Collagen type IV is a nonfibril-forming collagen and a main 

component of basement membranes that form at the basal site of epithelia, endothelia, 

and around interstitial cells (Chen et al., 2014; Karsdal et al., 2015). In the liver, collagen 

type IV combines with lamina to form a basement membrane-like structure. Changes in 

these basement membranes have been linked to activation and deactivation of HSCs 

(Guyot et al., 2006). Collagen type V forms fine fibrils, which are constituents of larger 

fibrils of collagens I and III (Chen et al., 2014). Finally, collagen type VI is a nonfibril 

collagen that forms networks in basement membranes, dominating the subendothelial 

space (Chen et al., 2014). 

Fibrillar collagens can persist from months to years and, in the absence of disease, 

define the shape of tissues (Sottile & Hocking, 2002). Collagen molecules form chains 

that intertwine to form a trimeric left-handed helix (Canty & Kadler, 2005). These 

collagen chains are comprised of a repeating GLY-X-Y triplet responsible for the left-

handed helix structure. At the N- and C- terminal domains are globular structures called 

propeptides that do not contain the repeating GLY-X-Y triplet motif.  Proline and 

hydroxyproline usually occupy the X and Y positions. The propeptides play a role in 

collagen folding and processing. One left-handed helix can intertwine with two other left-

handed helices to form a right-handed triple-helix (Canty & Kadler, 2005). Depending on 

the tissue type, collagen fibrils can reach diameters of ~500 nm and lengths of ~300 nm. 

The fibrils can be homotrimeric or heterotrimeric depending on the type of collagen. 

Table 1 identifies genes of the various chains that make up collagens in the liver. 
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Table 1: Collagens in the liver 

Collagen Type Genes Structure / Function 
I COL1A1 Fibril / Scar formation 
 COL1A2 

 
 

III COL3A1 
 

Fibril / Granulation tissue and forms dimers with type I 

IV COL4A1 Network / basement membrane 
 COL4A2  
 COL4A5 

 
 

V COL5A1 Fibril / Increases size of type I fibrils 
 COL5A2  
 COL5A3 

 
 

VI COL6A1 Network, basement membrane 
 COL6A2  
 COL6A3  

 

Collagen Biosynthesis 

Collagen molecules are assembled from procollagen molecules (Canty & Kadler, 

2005). Biosynthesis of collagen begins in the endoplasmic reticulum (ER), where 

procollagen is cotranslationally translocated into the lumen. The chaperone protein 

HSP47 assists with folding and aggregation of procollagen (Kawasaki et al., 2015). 

However, proper folding will not occur without conversion of proline residues to 

hydroxyproline residues, which requires prolyl 4-hydroxylase and its cofactor, vitamin C.  

In the absence of hydroxylation, unfolded procollagen remains within the ER, which 

results in ER stress (Kawasaki et al., 2015). Procollagen is transported from the ER to the 

Golgi apparatus for the addition of N-linked oligosaccharides (Jürgensen et al., 2011, 

Canty & Kadler, 2005). Then it is transported to the plasma membrane through the 

secretory pathway. To trigger fibril self-assembly, the N- and C- propeptides are 

removed.  Collagen fibril growth is thought to occur by lateral and end-to-end fusion of 
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collagen fibrils in the ECM and also by the gradual accumulation of collagen molecules 

(Canty & Kadler, 2005).  

Other molecules found in the ECM, such as decorin and integrin receptor α2 

(ITGA2), can modulate collagen fibrillogenesis.  Decorin can delay fibril assembly, 

which results in reduction of fibril diameter (Keene et al., 2000), and ITGA2 can 

modulate fibril accretion (Girgert et al., 2010).  Additionally, both decorin and ITGA2 

can affect the bioavailability and bioactivity of transforming growth factor (TGF)-β1, 

which is implicated in the induction and maintenance of excess matrix production 

through activation of HSCs (Huijun et al., 2005; Kawelke et al., 2011).  

Another molecule important in fibrillogenesis is lysyl oxidase (LOX).  This 

enzyme initiates the process of covalent intra- and intermolecular cross-linking of 

collagens (Perepelyuk et al., 2013). Cross-linking increases the size of fibrils, which 

increases the stiffness of the collagenous matrix (Liu et al., 2015). Considering the role 

that collagen deposition has in liver pathologies, perturbations at key collagen 

biosynthesis and fibrillogenesis steps could have diverse and even detrimental effects on 

liver homeostasis and disease. 

 

Matrix Metalloproteinases (MMPs) 

Following the build up of ECM molecules during a wound healing response, 

enzymes are needed to catabolize those molecules and return homeostasis to the ECM. 

MMPs are the largest class of proteinases that break down ECM molecules (Duarte et al., 

2015).  TCDD treatment has been shown to increase MMPs in cell lines as well as in a 

zebrafish model of fin regeneration (Tsai et al., 2014; Haque et al., 2005; Villano et al., 
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2006; Andreasen et al., 2007). There are over 24 MMPs, which are divided into five main 

subgroups according to their substrate specificity: collagenases, stromelysins, gelatinases, 

matrilysins, and membrane-type MMPs (Rivera et al., 2010; Duarte et al., 2015). There 

are five constitutively expressed MMPs in the human liver, MMP-1, -2, -3, -11 and -14, 

and five constitutively expressed in the rodent liver, MMP-2, -3, -11, -13, and -14 (Table 

2) (Duarte et al., 2015; Calabro et al., 2014). In the fibrotic human and rodent liver, 

MMP-8 and MMP-9 are also expressed (Arthur, 2000). Activated HSCs are the major 

producers of MMPs (Duarte et al., 2015). However, Kupffer cells in both human and 

rodent livers also express MMP-9, and neutrophils express MMP-8 (Arthur, 2000; Duarte 

et al., 2015). Furthermore, in the mouse liver, it has been found that hepatocytes can 

express MMP-2, -9, -13, and -14 (Calabro et al., 2014). MMPs are secreted into the ECM 

in an inactive form (proMMP) that must be cleaved in order to function as a protease. 

MMP activity depends on zinc ion cofactors at the catalytic site (Duarte et al., 2015). 

Mechanisms of MMP activation in vivo are still poorly understood.  

 

Table 2. MMPs expressed by HSCs and heptocytes in the liver. 

MMP: Expressed in the liver by: Type: 
1 Human HSCs  Collagenase 
2 Human and rodent HSCs and 

 

Gelatinases 
3 Human and rodent HSCs and 

 

Stromelysin 
11 Human and rodent HSCs and 

 

Stromelysin 
13 Rodent HSCs and Hepatocytes Collagenase 
14 Human and rodent HSCs and 

 

Membrane-

  

  



25 

 

MMP Activation 

There are a number of potential mechanisms mediating activation of proMMPs in 

vitro (Ra & Parks, 2007). First, MMPs can be activated by cysteine switch, which 

involves an interaction between the thiol of a conserved cysteine residue in the 

prodomain and the zinc ion in the catalytic site (Figure 6) (Van Wart & Birkedal-Hansen, 

1990). Disruption of this thiol-zinc interaction is a required step in the activation of all 

proMMPs. Second, MMPs can undergo allosteric activation, which is a component of the 

cysteine switch in which the thiol-zinc interaction is disrupted by chemicals such as 

sodium dodecyl sulfate.  Third, MMP activation can occur through furin activation.  

Furin is a serine protease that cleaves the prodomain of MMPs that contain a furin 

cleavage site. Only about one-third of MMPs have furin cleavage sites. Fourth, some 

activated MMPs can cleave the prodomain of proMMPs in vitro and activate MMPs, 

although this mechanism is still poorly understood in vivo (Suzuki et al., 1990; Nagase et 

al., 1992). Finally, MMPs can be activated by plasmin and other serine proteinases. 

Plasmin is a serine protease from the precursor plasminogen.  Plasmin is widely 

supported as an in vivo activator of proMMPs (Creemers et al., 2000; Monea et al., 2002; 

Ra & Parks, 2007). Evidence for this mechanism is derived from studies in plasmin 

knockout mice that demonstrate a correlation between absence of plasmin and decreased 

MMP activation (Ra & Parks, 2007; Creemers et al., 2000). 
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Figure 6. Typical conserved domains of the secreted MMP enzyme.  Abbreviations: 
Pro, prodomain; Fr, furin cleavage site; Zn2+, zinc binding site; Hx, hemopexin-like 
repeat. 

MMP Inhibition 

MMP activity can be controlled through direct inhibition of the catalytic site or 

through suppression of MMP activation mechanisms. One method of suppressing MMP 

activation is through the activity of plasminogen activator inhibitor-1 (PAI-1), which 

blocks the conversion of plasminogen to plasmin (Bergheim et al., 2006).  Tissue 

inhibitor of matrix metalloproteinases (TIMPs) are endogenous inhibitors of MMP 

activity and include TIMP-1, -2, -3, and -4 (Duarte et al., 2015; Yoshiji et al., 2000; 

Visse & Nagase, 2003; Piperi & Papavassiliou, 2012; Fowell et al., 2011). TIMPs bind to 

MMPs in a 1:1 stoichiometric ratio and inactivate the catalytic site (Ra & Parks, 2007). 

During chronic liver injury, activated HSCs are the primary source of TIMPs, which 

supports the inclusion of TIMPs as markers of HSC activation (Fowell et al., 2011; Boers 

et al., 2006).  

OVERVIEW OF RESEARCH PROJECT 

In summary, there is substantial evidence to support the notion that activation of 

the AhR by TCDD may dysregulate wound healing processes in the liver. For example, 

exposure to TCDD reportedly increases activation of HSCs, although this has not been 

definitively proven in vivo. Activated HSCs produce collagen type I, which has been 

shown to be upregulated by TCDD. During chronic liver injury, deposition of collagen 
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type I increases ECM stiffness and produces fibrosis, a pathological condition for which 

there is no treatment. The ECM is degraded by matrix metabolizing enzymes, and TCDD 

treatment has been shown to modulate expression of molecules involved in ECM 

metabolism, such as MMPs and TIMPs. Based on these findings, it is logical to speculate 

that TCDD treatment could impact the development of fibrosis in response to chronic 

liver injury. 

The goal of the research presented in this dissertation was to determine how 

exposure to TCDD modulates in vivo HSC activation and the development of liver 

fibrosis. To this end, we needed a model system of chronic liver injury in which HSCs 

are robustly activated, leading to the demonstrable development of fibrosis. One model 

that meets these requirements is chronic administration of carbon tetrachloride (CCl4), 

which is a well-characterized model of experimental liver fibrosis (Scholten et al., 2015). 

CCl4 hepatotoxicity is dependent on metabolic activation by cytochrome P4502E1 to 

form the trichloromethyl free radical, CCl3 (Wong et al., 1998). The plasma membrane 

and membranes of organelles are targets of the CCl3 radical in hepatocytes. The resulting 

lipid peroxidation causes necrosis in central lobular regions of the liver (Weber et al., 

2003).  The resulting liver injury activates HSCs, resulting in measurable fibrosis 

endpoints, including collagen deposition (Scholten et al., 2015). In brief, the 

experimental design we used was based on administering CCl4 twice a week for 8 weeks 

to evoke HSC activation and fibrosis. TCDD was then added during the last two weeks of 

the experiment. This experimental approach was used for all of the studies described in 

this proposal.  In Chapter Two, we tested the hypothesis that exposure to TCDD increases 

HSC activation, liver damage, and fibrosis in CCl4-treated mice. HSC activation was 



28 

 

measured based on expression of αSMA and other activation markers. Liver damage was 

assessed based on gross markers of hepatotoxicity and histopathological analysis. 

Collagen deposition and fibrosis were measured using several biochemical techniques, as 

well as by histological analysis. Finally, we conducted a cursory analysis to identify the 

effects of TCDD on the activity and expression of several key molecules involved in 

ECM remodeling.   

Results from these experiments led us to conduct a more extensive 

characterization of the consequences of TCDD treatment on ECM molecules. These data 

are presented in Chapter Three. Specifically, we tested the hypothesis that TCDD 

modulates the expression of molecules involved in ECM maintenance, including 

molecules that are important for collagen export and cross-linking. We also measured 

expression of enzymes that break down ECM components, as well as molecules that 

regulate enzyme activity in the ECM.  

The results from Chapter Two and Chapter Three are summarized in the final 

chapter of this dissertation, which also includes future directions for this area of research. 
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CHAPTER TWO: 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN (TCDD) 

INCREASES NECROINFLAMMATION AND HEPATIC STELLATE CELL 

ACTIVATION BUT DOES NOT EXACERBATE EXPERIMENTAL LIVER 

FIBROSIS IN MICE 

ABSTRACT 

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental 

contaminant and high-affinity ligand for the aryl hydrocarbon receptor (AhR). Increasing 

evidence indicates that AhR signaling contributes to wound healing, which involves the 

coordinated deposition and remodeling of the extracellular matrix. In the liver, wound 

healing is attributed to the activation of hepatic stellate cells (HSCs), which mediate 

fibrogenesis through the production of soluble mediators and collagen type I. We recently 

reported that TCDD treatment increases the activation of human HSCs in vitro. The goal 

of this study was to determine if TCDD increases HSC activation in vivo using a mouse 

model of experimental liver fibrosis. To elicit fibrosis, C57BL6/ male mice were treated 

twice weekly for 8 weeks with 0.5 ml/kg carbon tetrachloride (CCl4). TCDD (20 µg/kg) 

was administered once a week during weeks 7 and 8. Results indicate that TCDD 

increased liver-body-weight ratios, serum alanine aminotransferase activity, and hepatic 

necroinflammation in CCl4-treated mice. Likewise, TCDD treatment increased mRNA 

expression of HSC activation and fibrogenesis genes, namely α-smooth muscle actin, 

desmin, delta-like homologue-1, TGF-β1, and collagen type I. However, TCDD 

treatment did not exacerbate fibrosis, nor did it increase the collagen content of the liver. 
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Instead, TCDD increased hepatic collagenase activity and increased expression of matrix 

metalloproteinase (MMP)-13 and the matrix regulatory proteins, TIMP-1 and PAI-1. 

These results support the hypothesis that TCDD increases HSC activation in vivo. 

Furthermore, increased HSC activation and fibrogenesis in response to TCDD may be 

counteracted by concomitant alterations in extracellular matrix remodeling. 

 

INTRODUCTION 

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant 

and ligand for the aryl hydrocarbon receptor (AhR). The AhR belongs to the basic helix-

loop-helix/PAS family of transcription factors and regulates gene expression through 

heterodimerization with the nuclear protein ARNT (Hankinson, 1995) as well as through 

interactions with other transcriptional regulatory proteins (Jackson et al., 2015). Changes 

in gene expression are believed to mediate TCDD toxicity, although the mechanisms by 

which this occurs are incompletely understood. In addition to mediating TCDD toxicity, 

the AhR contributes to tissue homeostasis by regulating proliferation, differentiation and 

apoptosis (Barouki et al., 2007). 

Increasing evidence indicates that AhR signaling is important for tissue repair, 

which is a complex process that includes angiogenesis, inflammation, regeneration, and 

extracellular matrix (ECM) remodeling (Eming et al., 2014). Exposure to TCDD was 

found to inhibit tissue re-growth in a zebrafish model of fin regeneration (Mathew et al., 

2006; Zodrow and Tanguay, 2003). TCDD treatment also inhibited rodent liver 

regeneration induced by partial hepatectomy (Bauman et al., 1995;  Mitchell et al., 2006). 

Regeneration is regulated by numerous soluble mediators, including transforming growth 
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factor (TGF)-β1, which is also a potent pro-fibrogenic molecule (Ho and Whitman, 2008;  

Levesque et al., 2007; Thenappan et al., 2010; Werner and Grose, 2003). Interactions 

between AhR and TGF-β1 pathways have been documented, and AhR deficiency was 

found to increase secretion of TGF-β1 (Guo et al., 2004; Santiago-Josefat et al., 2004;  

Zaher et al., 1998). It stands to reason that AhR signaling may also contribute to the 

regulation of fibrogenesis, and this notion is supported by the observation that AhR-null 

mice display fibrotic lesions in the liver (Fernandez-Salguero et al., 1995; Schmidt et al., 

1996). 

Fibrogenesis is initiated in response to injury and inflammation and results in 

ECM synthesis (Kisseleva and Brenner, 2008). Exposure to TCDD was found to alter the 

expression of ECM proteins, including collagen and fibronectin (Andreasen et al., 2006; 

Aragon et al., 2008;  Nottebrock et al., 2006;  Riecke et al., 2002). The AhR is also 

implicated in regulating the expression of matrix metalloproteinases (MMPs), which 

contribute to ECM remodeling through degradation of matrix proteins. For example, 

TCDD treatment was shown to increase MMP expression in human keratinocytes, 

prostate cancer cells, and melanoma cells, and in zebrafish during fin regeneration 

(Andreasen, et al., 2006; Haque et al., 2005; Murphy et al., 2004; Villano et al., 2006). 

Additionally, TCDD was found to increase plasminogen activator inhibitors -1 and -2 

(PAI-1, -2) (Gohl et al., 1996;  Son and Rozman, 2002). These serine proteases inhibit 

the activation of plasmin, which cleaves ECM molecules and activates pro-MMPs (Lu et 

al., 2011). Hence, TCDD is implicated in the modulation of both ECM synthesis and 

degradation. 

Liver fibrosis is characterized by the abnormal or excessive deposition of ECM in 
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response to injury and unresolved inflammation (Friedman, 2000). Liver fibrosis is 

mediated by hepatic stellate cells (HSCs), which are non-parenchymal cells that normally 

function in vitamin A storage. Upon injury, HSCs become activated, lose this storage 

capacity, and assume a myofibroblast-like phenotype characterized by proliferation, 

contractility, chemokine and growth factor production, and synthesis of fibrillar collagens 

(Puche et al., 2013). TCDD is known to decrease vitamin A levels in the rodent liver, 

which supports the idea that TCDD might increase HSC activation (Hakansson and 

Hanberg, 1989). Indeed, we recently found that TCDD treatment increases activation of 

the human HSC line, LX-2 (Harvey et al., 2016). However, the consequences of TCDD 

on HSC activation in vivo are unclear. One study reported that treatment of rats with a 

single dose of TCDD had no effect on expression of the HSC activation marker α-smooth 

muscle actin (αSMA) (Hanberg et al., 1996). However, another study recently found that 

chronic administration of TCDD in mice increased the expression of αSMA and collagen 

type I (Pierre et al., 2014). 

The goal of this study was to determine how TCDD impacts in vivo HSC 

activation and fibrosis development during liver injury elicited by carbon tetrachloride 

(CCl4). In the liver, CCl4 is biotransformed by cytochrome P4502E1 into a 

trichloromethyl radical that causes lipid peroxidation resulting in membrane damage 

(Wong et al., 1998). Chronic administration of CCl4 causes widespread hepatocellular 

damage that promotes collagen deposition by activated HSCs (Mederacke et al., 2013). 

We tested the hypothesis that TCDD treatment increases HSC activation and exacerbates 

liver fibrosis. We measured liver damage, expression of HSC activation markers, 

collagen synthesis and deposition, and the expression and activity of ECM remodeling 
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molecules. 

MATERIALS AND METHODS 

Animal Treatment. Male C57BL/6 mice (8-10 weeks old; Charles River, 

Wilmington, MA) were injected i.p. with 0.5 ml/kg CCl4 (Sigma-Aldrich, St. Louis, MO) 

diluted in corn oil twice a week for 8 weeks. The ratio of CCl4 to corn oil was 1:10. 

Control mice (“Ctrl”) were injected with corn oil alone. During the last two weeks of the 

experiment, mice were treated weekly with TCDD (20 µg/kg by gavage; Cambridge 

Isotope Laboratories, Andover, MA) diluted in peanut oil or with peanut oil alone 

(“Veh”). Animals were euthanized at the end of the experiment, and liver was either 

flash-frozen in liquid nitrogen or fixed in Ultra Light Zinc Formalin Fixative (PSL 

Equipment, Vista, CA). Serum was collected and stored at -80° C until assayed. Six to 

seven mice were used per treatment group. All animal experiments were approved by the 

Institutional Animal Care and Use Committee at Boise State University.   

 

Serum Alanine Aminotransferase (ALT) Activity. Serum samples were diluted 

1:10 in phosphate buffered saline (PBS). ALT activity was measured using the Infinity 

ALT (GPT) reagent (Thermo Fisher Scientific, Waltham, MA) according to the 

manufacturer’s protocol. This kinetic assay is based on the rate of decrease in absorbance 

due to the oxidation of NADH. The assay was read every 45 seconds for 3 minutes, and 

activity was expressed as U/L. Samples were run in duplicate. 

 

Histopathology. Fixed liver tissue was paraffin-embedded and cut into 2-µm 

sections. Tissue sections were either stained with hematoxylin and eosin or with Sirius 
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Red as described elsewhere (Junqueira et al., 1979). Images of stained tissues were taken 

with an Olympus BX53 compound microscope. Stained liver tissue was scored for 

necroinflammation and fibrosis by a board-certified pathologist based on the Ishak 

Modified Histological Activity Index System (Ishak et al., 1995). 

 

Quantitative Real-Time RT-PCR. Total RNA was extracted from 20 mg of 

frozen liver tissue using the E.Z.N.A.® Total RNA Kit (Omega Bio-Tek, Norcross, GA). 

RNA concentration and purity were measured by ultraviolet (UV) absorbance, and 

quality was assessed on an agarose bleach gel (Aranda et al., 2012). RNA was reverse-

transcribed using the Applied Biosystems High Capacity cDNA reverse transcription kit 

(Thermo Fisher Scientific). Gene-specific primers (Table 1) were used for quantitative 

real-time RT-PCR (qRT-PCR), which was performed using Roche FastStart Essential 

DNA Green Master reaction mix on a LightCycler® 96 thermocycler (Roche, 

Indianapolis, IN). Three biological replicates were assayed per treatment group, and all 

samples were run in duplicate. Relative quantification was estimated using the ∆∆Cq 

method normalized to GAPDH (Schmittgen and Livak, 2008). 

  



43 

 

Table 1. Mouse primer sequences used for qRT-PCR 

Gene Primer Sequence (5’ to 3’) Temp (°C) 
Col1a1 GTC CCT GAA GTC AGC TGC ATA 

TGG GAC AGT CCA GTT CTT CAT 
60 

Desmin AGC GTG ACA ACC TGA TAG ACG 
TGA AGC TCA CGG ATC TCC TCT 

60 

DLK-1 GGA GAA AGG CCA GTA CGA ATG 
CTG TTG GTT GCG GCT ACT AT 

58 

GAPDH CAA TGA CCC CTT CAT TGA CC 
GAT CTC GCT CCT GGA AGA TG 

60 

MMP-13 GCC CTG GGA AGG AGA GAC TCC AGG 
GGA TTC CCG CAA GAG TCG CAG G 

55 

PAI-1 TTC AGC CCT TGC TTG CCT C 
ACA CTT TAC TCC GAAGTC GGT 

60 

TIMP-1 CAC GGG CCG CCT AAG GAA CG 
GGT CAT CGG GCC CCA AGG GA 

60 

TGFβ1 TGC TAA TGG TGG ACC GCAA 
CAC TGC TTC CCG AAT GTC TGA 

60 

αSMA TCC TCC CTG GAG AAG AGC TAC 
TAT AGG TGG TTT CGT GGA TGC 

60 

   

 

Immunofluorescence Detection of αSMA. Liver tissue sections were 

deparaffinized, rehydrated, and incubated at 95°C for 30 minutes in Tris-EDTA buffer 

(10 mM Tris, 1 mM EDTA, 0.5% Tween-20, pH 9). Tissue sections were permeabilized 

in TBS (50 mM Tris, 150 mM NaCl, pH 7.6) with 0.025% Triton X-100 for 10 minutes 

at room temperature followed by blocking for 2 hr in immunofluorescence buffer (TBS 

with 1% bovine serum albumin and 2% fetal bovine serum). Cy3-conjugated anti-αSMA 

antibody (Sigma-Aldrich) was diluted 1:1000 and incubated on tissue sections overnight 

at 4°C. Nuclei were stained with DAPI, and cover slips were mounted with Permount. 

Expression of αSMA protein was visualized with a Zeiss LSM 510 confocal microscope 

using a 20X objective. Staining was quantified using ImageJ software (US National 
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Institutes of Health), and the amount of αSMA staining was expressed as a percentage of 

total area stained. 

 

Western Blotting. Frozen liver tissue was homogenized in 50 mM HEPES, 150 

mM NaCl, 10% Glycerol, 0.1% Tween 20, 7.5 mM EDTA, and 7.5 mM MgCl2*6H2O. 

Protein content was determined using a DC™ Protein Assay kit  (Bio-Rad Laboratories, 

Inc., Hercules, CA), and homogenates were diluted to 5 mg/ml. Pepsin (2000 U/mg; 

VWR, Radnor, PA) was diluted to 2 mg/ml in 2 N HCl. For the digestion, 10 µl of this 

pepsin preparation was added to 100 µl of homogenate (500 µg protein), and the sample 

was incubated for 2 hours at 20ºC. Samples were then neutralized with 10 µl of 2 N 

NaOH and resuspended in SDS loading buffer (100 mM Tris-Cl pH 6.8, 4% SDS, 0.2% 

bromophenol blue and 20% glycerol) containing 400 mM β-mercaptoethanol). Pepsin-

digested samples (6 µl/lane) and undigested samples (25 µg protein/lane) were resolved 

on an 8% SDS-polyacrylamide gel, transferred to nitrocellulose, and incubated with anti-

collagen type I antibody (EMD Millipore, Hayward, CA) or anti-actin antibody (Santa 

Cruz Biotech, Dallas, TX). Blots were then incubated with HRP-conjugated secondary 

antibodies, and bands were visualized with Pierce™ ECL Western Blotting Substrate 

(Thermo Scientific).  

 

Hydroxyproline Quantification by LC/MS. Sample prep: Frozen liver samples 

(10 mg) were homogenized in 100 μl reagent-grade H2O and hydrolyzed in 100 μl 

hydrochloric acid (12 M) at 95°C for 20 hours. Hydrolyzed samples were transferred to 

Phree® phospholipid removal columns (Phenomenex, Torrance, CA) and centrifuged at 



45 

 

1000 x g for 10 minutes. The resulting filtrates were transferred to autosampler vials for 

analysis. Linear calibration curves were constructed for quantification by spiking 

hydrolyzed homogenates with known concentrations of hydroxyproline standard. LC-MS 

conditions: Hydroxyproline levels were analyzed by LC-MS using a Dionex Ultimate 

3000 LC system (Dionex, Sunnyvale, CA) attached to a Bruker MaXis Quadrupole-

Time-of-Flight (Q-TOF) mass spectrometer equipped with an electrospray ionization 

(ESI) source (Bruker Daltonics, Billerica, MA). Chromatographic separation was 

performed using a Synergi Hydro reverse phase column (150 x 2.0 mm, 4µm, 

Phenomenex, Torrance, CA) with a guard column and a flow rate of 150 µL/min. The 

column temperature was maintained at 40°C during the analysis. Samples were housed in 

an autosampler at 4°C. One µL of each sample was injected onto the column. The LC 

elution mobile phases consisted of A (5% methanol, 94.7% water, 0.2% formic acid) and 

B (94.5% acetonitrile, 0.2% formic acid). The gradient began at 0% B for 5 minutes, and 

increased linearly to 80% B over 5 min and maintained at this percentage for a further 10 

min as a washing step. A post-column infusion of isopropanol (2mL/h) was used to 

enhance ionization. ESI-Q-TOF conditions: Analysis was performed in positive ion 

mode with a spray voltage of 3000V, endplate offset of -500V, nebulizer gas pressure of 

1.5 bar, dry gas flow rate of 8 L/min, and dry gas temperature of 200°C. Peak area of the 

extracted ion chromatogram of hydroxyproline (132.067 [M+H]) were used for 

quantification. 

 

In Situ Zymography. Collagenase activity was measured using in situ 

zymography of zinc-formalin fixed liver tissue as described elsewhere (Hadler-Olsen et 
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al., 2010; Kumar et al., 2014). Briefly, liver tissue sections (8 µm) were heated at 58°C 

for 12 hr, deparaffinized, and rehydrated. DQTM collagen (Thermo Fisher Scientific) was 

dissolved in reagent grade water and diluted 1:50 in a reaction buffer containing 50 mM 

Tris-HCl, 150 mM NaCl, and 5 mM CaCl2 (pH 7.6). Tissue sections were incubated with 

the DQ-collagen solution for 12 hr at 37°C. Nuclei were stained with 4’,6-diamidino-2-

phenylindole (DAPI), and cover slips were mounted with Permount. Fluorescent images 

were taken with an EVOS fluorescence microscope using a 20X objective. 

 

Immunohistochemistry for MMP-13. Paraffin-embedded liver tissue sections (2 

µm) were incubated with an anti-MMP-13 antibody (#ab75606, Abcam, Cambridge, 

MA) overnight at 4°C. Tissues were then stained with 3,3-diaminobenzidine using a 

commercially available kit (R&D Systems, Minneapolis, MN). Tissues were 

counterstained with hematoxylin. Images were captured with an Olympus BX53 

compound microscope, and staining was quantified using ImageJ software.  

 

Statistical Analyses. Statistical analyses were performed using Prism version 6.0 

(GraphPad Software, La Jolla, CA). Data were evaluated by two-way analysis of variance 

followed by a Bonferroni’s multiple comparisons test to evaluate differences between 

treatment groups. Data were considered significantly different at p < 0.05. 
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RESULTS   

Hepatotoxic effects of TCDD in CCl4-treated mice. 

To investigate how TCDD treatment impacts liver damage and fibrogenesis 

during chronic CCl4 administration, gross markers of hepatotoxicity were evaluated. 

TCDD treatment induced marked hepatomegaly in control-treated and CCl4-treated mice 

(Figure 1), which corresponded with increased liver weights and liver-to-body-weight 

ratios (Table 2). CCl4 treatment alone had no effect on liver weight or liver-to-body-

weight ratios. Serum activity levels of alanine aminotransferase (ALT) were measured as 

an indication of hepatocellular necrosis. Treatment with either TCDD or CCl4 alone 

caused an elevation in serum ALT activity levels, and the combination of the two 

appeared to have an additive effect (Table 2). These results are consistent with other 

endpoints of toxicity reported for mice treated with either TCDD or CCl4. It is worth 

noting that 40% mortality was observed two days after the last injection of TCDD in 

CCl4-treated mice (data not shown), whereas no mortality occurred in the other treatment 

groups. 
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Figure 1. TCDD treatment, but not CCl4 administration, elicits hepatomegaly. 
C57BL/6 mice were treated with CCl4 for 8 weeks, and TCDD (20 µg/kg) was 
administered during the last two weeks. Photographs reveal representative differences in 
liver size among mice in each treatment group. 

 

Table 2. Consequences of TCDD on liver weight, body weight, and serum ALT 
activity in CCl4-treated mice 

 Ctrl/Veh Ctrl/TCDD CCl4/Veh CCl4/TCDD 

Liver weight 1.50 ± 0.07 1.74 ± 0.58a 1.38 ± 0.06 1.72 ± 0.07a 

Body weight 28.93 ± 0.66 27.35  ± 0.77 26.76  ± 0.92 26.25  ± 1.11 
Liver 
weight/body 
weight 

0.052 ± 0.002 0.064 ± 0.002a,b 0.052 ± 0.002 0.066 ± 0.001a,b 

ALT (U/L) 27.22 ± 12.26 198.70 ± 44.27b 130.74 ± 10.38b 282.22 ± 46.67a,b 
Values represent mean ± SEM. ap < 0.05 when compared to CCl4/Veh-treated mice. bp < 0.05 

when compared to Ctrl/Veh-treated mice.   
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TCDD increases necroinflammation in the liver of CCl4-treated mice.  

During chronic CCl4 administration, ongoing liver injury and inflammation are 

the driving factors that elicit fibrogenesis (Weber et al., 2003). Histological analysis 

revealed that TCDD treatment alone induced mild inflammation, based on the presence 

of hepatic inflammatory foci that were not present in vehicle-treated mice (Figure 2, A-

D). Analysis of livers from mice treated with CCl4 revealed ballooning degeneration of 

hepatocytes, coagulation necrosis and necrotic bridge formation (Figure 2, E-F). 

Administration of TCDD to CCl4-treated mice evoked widespread coagulation necrosis 

and inflammation (Figure 2, G-H). To further assess liver damage and inflammation, a 

more detailed histopathological analysis was conducted using the Ishak Modified 

Histological Activity Index system (Ishak, et al., 1995). Administration of either TCDD 

or CCl4 alone was determined to increase all four endpoints of necroinflammation 

measured in this system: 1) periportal or periseptal interface (“piecemeal”) necrosis; 2) 

confluent necrosis; 3) focal lytic necrosis, apoptosis, and focal inflammation; and 4) 

portal inflammation (Table 3). Based on the combined score for these endpoints and the 

staging categories of the Ishak system, mice treated with either TCDD or CCl4 were 

determined to display “mild” necroinflammation. In contrast, administration of TCDD to 

CCl4-treated mice resulted in a combined necroinflammation score that was more than 

twice as high. This was due to a marked increase in confluent necrosis, as well as portal 

inflammation and periportal or periseptal interface hepatitis.  
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Figure 2. TCDD increases necroinflammation in the liver of CCl4-treated mice. 
Representative photomicrographs showing pathological changes in the liver based on 
hematoxylin and eosin staining at 100x (A,C,E,G) and 400x (B,D,F,H) magnifications. 
(A, B) Liver from a Ctrl/Veh-treated mouse with normal liver architecture. (C, D) 
Representative liver from a Ctrl/TCDD-treated mouse reveals presence of inflammatory 
foci (“IF”). (E, F) Liver from a CCl4/Veh-treated mouse contains balloon (“B”) cells, 
coagulation necrosis (“CN”) and necrotic bridge (“NB”) formation. (G, H) Liver from a 
CCl4/TCDD-treated mouse reveals widespread coagulation necrosis, infiltration of 
inflammatory cells, ballooning hepatocytes, and necrotic bridges. 

 

Table 3.  Effects of TCDD treatment on necroinflammation during CCl4-induced 
liver fibrosis  

 Ctrl/Veh Ctrl/TCDD CCl4/Veh CCl4/TCDD 
Periportal or periseptal 
interface hepatitis (0-4) 0 1.86 ± 0.34a 1.50 ± 0.22a 4 ± 0a,b 

Confluent necrosis (0-6) 0 1.14  ± 0.26a 1.33  ± 0.21a 5 ± 0a,b 
Focal lytic necrosis, 
apoptosis, and focal 
inflammation (0-4) 

0 1.71 ± 0.29a 1 ± 0 1.33 ± 0.33a 

Portal inflammation (0-4) 0 1.86 ± 0.34a 1.83 ± 0.17a 3.33 ± 0.33a,b 
Combined 
necroinflammation score: 0 6.57 ± 0.81a 

(mild) 
5.67 ± 0.33a 

(mild) 
13.67 ± 0.33a,b 

(severe) 
Necroinflammation was assessed using the Ishak Modified Histological Activity Index System 

(Ishak, Baptista, Bianchi, Callea, De Groote, Gudat, Denk, Desmet, Korb and MacSween, 1995). 

Numbers in parentheses indicate the scoring range for each feature. Values represent mean ± 

SEM. ap < 0.05 when compared to Ctrl/Veh-treated mice. bp < 0.05 when compared to CCl4/Veh-

treated mice.  

 

TCDD increases expression of HSC activation markers. 

Although other myofibroblast precursors exist in the liver, HSCs are the primary 

source of activated myofibroblasts in response to chronic administration of CCl4 

(Iwaisako et al., 2014). To determine how TCDD exposure impacted the activation of 

these cells in response to CCl4, expression of the HSC activation marker αSMA was 
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measured. Based on immunofluorescence staining, αSMA expression increased in 

response to CCl4 treatment (Figure 3A). Quantification of staining revealed that 

administration of TCDD to CCl4-treated mice evoked a 2-fold increase in αSMA 

expression compared to mice treated with CCl4 alone (Figure 3B). While this effect was 

not statistically significant, similar results were produced when mRNA levels were 

measured. In fact, αSMA mRNA expression was about 40 times higher in mice treated 

with both TCDD and CCl4 as compared to all other treatment groups (Figure 3C). A 

similar effect of TCDD was observed in the mRNA levels of desmin (Figure 3D) and 

delta-like homolog 1 (DLK-1; Figure 3E), which are two other markers selectively 

expressed on activated HSCs (Zhu et al., 2012). 
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Figure 3. TCDD increases markers of HSC activation in CCl4-treated mice. (A) 
Immunofluorescence was used to detect expression of alpha-smooth muscle actin 
(αSMA; red) in paraffin-embedded liver tissue; nuclei were stained with DAPI (blue). (B) 
αSMA immunofluorescence staining was quantified and expressed as a percentage of the 
total area stained.  (C-E) Hepatic mRNA levels (mean ± SEM) of αSMA, desmin, and 
DLK-1 are represented relative to Ctrl/Veh-treated mice (n=3). Means that do not share a 
letter are significantly different from each other (p < 0.05). 
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Consequences of TCDD on expression of pro-fibrogenic molecules and fibrosis 

development. 

Based on increased HSC activation, it was logical to hypothesize that TCDD 

treatment would increase fibrogenesis in CCl4-treated mice. Increased production and 

activation of the profibrogenic mediator TGF-β1, as well as synthesis and deposition of 

collagen, are important for the pathogenesis of fibrosis (Kisseleva and Brenner, 2008). 

We found that exposure to TCDD increased TGF-β1 mRNA levels regardless of CCl4 

treatment (Figure 4A). Analysis of mRNA levels of Col1a1, which encodes the alpha-1 

chain of collagen type I, revealed no overt changes in mice treated with TCDD or CCl4 

alone (Figure 4B). However, in mice that received both TCDD and CCl4, Col1a1 mRNA 

levels increased more than 100-fold. 

Fibrosis is characterized by the deposition of fibrillar collagens, which can be 

visualized in tissues stained with Sirius Red. As expected, CCl4 administration increased 

the deposition of collagen in the liver (Figure 4C). However, exposure to TCDD did not 

appear to increase collagen content, and this finding was confirmed when staining was 

quantified (Figure 4D). Liver tissue stained with Sirius Red was also used to stage 

fibrosis on a 0-6 scale using the Ishak Modified Histological Activity Index system. The 

administration of TCDD alone did not initiate fibrosis (Figure 4E). Moderate fibrosis was 

observed in CCl4-treated mice, and TCDD treatment did not increase the fibrosis score in 

these mice.  
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Figure 4. Consequences of TCDD on the development of fibrosis in CCl4-treated 
mice. (A, B) Hepatic mRNA levels (mean ± SEM) of TGFβ1 and Col1a1 expressed 
relative to Ctrl/Veh-treated mice (n=3). Means that do not share a letter are significantly 
different from each other (p < 0.05). (C) Representative photomicrographs of liver tissue 
stained with Sirius Red to visualize collagen deposition (10X magnification). (D) Sirius 
Red staining was quantified and expressed as a percentage of total area (mean ± SEM). 
(E) Sirius Red-stained liver tissues were evaluated and scored for fibrosis based on the 
Ishak Modified Histological Activity Index System (Ishak et al., 1995). This system uses 
numerical scoring (0-6) to evaluate fibrosis-related architectural changes in the liver, such 
as fibrous expansion in portal areas and the development of fibrous septa and bridging. 
Means that do not share a letter are significantly different from each other (p < 0.05).  
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TCDD does not increase the collagen content in the liver of CCl4-treated mice 

Because TCDD treatment did not appear to increase collagen content or fibrosis 

in CCl4-treated mice despite increased mRNA levels of TGF-β1 and Col1a1, we 

performed additional analyses to determine how TCDD impacted the collagen content of 

the liver. Western blot analysis revealed that CCl4 administration increased expression of 

collagen type I protein, and TCDD had no additive effect on protein levels (Figure 5A). 

Further analysis was performed using mass spectrometry to quantify hepatic levels of 

hydroxyproline, which is a major component of collagen (Figure 5B). Results indicate 

that CCl4 administration increased the amount of hydroxyproline in the liver, and no 

overt increases were detected when TCDD was administered to CCl4-treated mice 

(Figure 5C). Collectively, these results reinforce the notion that TCDD treatment does not 

increase the collagen content in the liver of CCl4-treated mice. 



57 

 

 

Figure 5. TCDD treatment does not increase collagen protein levels in the liver of 
CCl4-treated mice. (A) Western blot analysis of collagen type I protein levels in pepsin-
digested liver homogenates. Actin levels were evaluated in undigested liver homogenates 
(25 µg protein/lane). (B) Mass spectrum of hydroxyproline, which was identified based 
on its mass and retention time. Inset: Hydroxyproline standard curve, based on injecting 
different concentrations of hydroxyproline standard and measuring ratio of area to 
concentration. (C) Data represent average hydroxyproline content (mean ± SEM) in liver 
of mice from all four treatment groups (n=3). Means were not significantly different at p 
< 0.05.  
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Collagenase expression and activity is increased in TCDD-treated mice. 

The finding that TCDD increased liver injury, inflammation, and HSC activation 

in CCl4-treated mice but did not exacerbate fibrosis development led us to speculate that 

TCDD may increase collagen breakdown in the ECM. Such a finding would presumably 

explain why TCDD treatment had no overt impact on the collagen content in the liver. 

Using in situ zymography, we found that TCDD markedly increased collagenase activity, 

and this effect was especially pronounced in mice that were treated with CCl4 (Figure 

6A). 

MMP-13 is a prominent murine collagenase that is important for cleavage of 

ECM components, and its expression decreases after induction of liver fibrosis 

(Giannandrea and Parks, 2014). Analysis of MMP-13 protein and mRNA expression 

revealed a trend towards increased expression in response to TCDD, although differences 

between treatment groups were not statistically significant (Figure 6 B-C). MMP activity 

is regulated through interactions with tissue inhibitor of metalloproteinases (TIMP) 

proteins, which reversibly bind to MMPs and inhibit their proteolytic activities. Analysis 

of TIMP expression revealed that TCDD treatment resulted in a 2-fold increase in TIMP-

1 mRNA levels in CCl4-treated mice (Figure 6D). Another mechanism by which MMP 

activity is regulated is by plasmin, which converts pro-MMPs into their active form 

(Giannandrea and Parks, 2014). The conversion of plasminogen to plasmin is inhibited by 

plasminogen activator inhibitors (PAI). Measurement of PAI-1 mRNA levels revealed a 

marked and robust increase in TCDD-treated mice, regardless of CCl4 treatment (Figure 

6E). Taken together, these results indicate that TCDD treatment may dysregulate the 

expression and activity of molecules involved in ECM remodeling. 
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Figure 6.  TCDD treatment increases collagenase activity and alters the expression 
of matrix remodeling molecules. (A) In situ zymography of zinc-buffered, formalin-
fixed mouse liver tissue using DQ-collagen substrate. Green fluorescence (FITC) reveals 
collagenase activity; nuclei were stained with DAPI (blue). Images are representative of 
liver sections from three mice per treatment group. Scale bar depicts 200 μm. (B) 
Representative MMP-13 protein expression detected in paraffin-embedded liver tissue 
using immunohistochemistry (40X magnification). (C-E) Hepatic mRNA levels (mean ± 
SEM) of MMP-13, TIMP-1 and PAI-1 expressed relative to Ctrl/Veh-treated mice (n=3). 
Means that do not share a letter are significantly different from each other (p < 0.05). 
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DISCUSSION  

The goal of this study was to determine how TCDD treatment impacts the in vivo 

activation of HSCs and the subsequent development of liver fibrosis. The CCl4 model of 

experimental liver fibrosis was selected because it elicits robust HSC activation in 

response to liver injury. One of our major findings was that TCDD treatment increased 

liver damage in CCl4-treated mice. This corroborates a recent report that pretreatment of 

mice with TCDD two days prior to a single injection of CCl4 increased liver injury 

compared to mice treated with CCl4 alone (Mejia-Garcia et al., 2013). This effect was 

shown to occur through an AhR-dependent mechanism, as TCDD failed to increase liver 

injury in AhR-null mice treated with CCl4. These same authors also found that TCDD 

treatment increased expression of CYP2E1, which would presumably enhance the 

conversion of CCl4 into the reactive trichloromethyl radical and increase liver damage in 

TCDD-pretreated mice. In light of this report, we also measured CYP2E1 protein levels 

and found that TCDD had no effect on CYP2E1 expression (data not shown). The 

discrepancy between these studies could stem from the fact that Mejia-Garcia et al. 

measured CYP2E1 expression 72 hours after a single dose of TCDD (80 μg/kg), whereas 

we used two doses of TCDD (20 μg/kg), over a period of two weeks. Indeed, dose and 

time effects have been shown for other P450 enzymes (Santostefano et al., 1998). 

It is also possible that TCDD increases liver damage in CCl4-treated mice by 

enhancing liver inflammation. Our observation that TCDD increased the prevalence of 

inflammatory foci in the liver of CCl4-treated mice is consistent with other reports that 

TCDD enhances hepatic inflammation (Pierre et al., 2014). The inflammatory response 

associated with hepatocellular necrosis has been shown to heavily recruit neutrophils, 
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which can induce lipid peroxidation through production of reactive oxygen species 

(Huebener et al., 2015). Hence, recruitment of activated neutrophils to the liver can 

potentially exacerbate hepatocellular necrosis. However, reports vary as to the 

consequences of TCDD treatment on neutrophil recruitment. For example, exposure to 

TCDD was found to increase neutrophil recruitment to the lung during virus infection 

(Teske et al., 2005). But, in a model of liver injury induced by concanavalin A, TCDD 

did not increase the influx of neutrophils to the liver despite increased production of 

neutrophil chemoattractants (Fullerton et al., 2013). At this point, the mechanism by 

which TCDD increases liver damage in our model system is unclear.  

In the present study, use of the CCl4 model system provided the means to elicit 

HSC activation, and then to determine how administration of TCDD impacted these cells. 

Exposure to TCDD was found to increase HSC activation in CCl4-treated mice. This 

finding could be due to a direct effect of TCDD on HSCs, which is supported by our 

previous finding that TCDD treatment directly increases activation of the human HSC 

line, LX-2 (Harvey et al., 2016) However, increased HSC activation could also occur as a 

result of the increased severity of liver damage observed in CCl4/TCDD-treated mice. 

Generally speaking, HSCs have not been extensively investigated as a target for TCDD 

toxicity. Furthermore, few studies of TCDD hepatotoxicity have utilized a model system 

in which robust HSC activation would be expected to occur, so is possible that TCDD-

induced alterations in this population of cells may have been inadvertently overlooked. 

Reports in the literature do indicate that a single dose of TCDD can suppress vitamin A 

storage in the rat liver, which is consistent with HSC activation (Hakansson and Hanberg, 

1989;  Thunberg et al., 1980). However, TCDD was found to have no effect on 
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expression of the HSC activation marker, αSMA. It is conceivable that acute exposure to 

TCDD alone does not provide the stimulus needed to evoke the complete activation of 

quiescent HSCs into myofibroblasts in the rodent liver. Nevertheless, it appears to be 

sufficient to impact this transition in LX-2 cells, which already exist in a quasi-activated 

state (Xu et al., 2005), and in the liver of CCl4-treated mice, in which HSC activation was 

already elicited due to liver damage (Figure 3). Along these same lines, it was recently 

reported that chronic exposure to TCDD increased expression of αSMA and collagen 

type I (Pierre et al., 2014), although HSC activation was not formally assessed. The 

authors of the study reported that chronic TCDD administration increased liver damage, 

and this could have provided the stimulus necessary to initiate HSC activation. Hence, it 

is logical to surmise that investigating how TCDD impacts HSC activity will require the 

use of model systems in which liver injury is substantial enough to evoke robust HSC 

activation. 

Given that TCDD treatment increased the activation of HSCs, which are the 

central mediators of liver fibrosis, it was not surprising that TCDD also increased TGF-

β1 and Col1a1 mRNA levels in CCl4-treated mice. TGF-β1 is activated in response to 

reactive oxygen species generated from chronic liver injury and inflammation (Schon and 

Weiskirchen, 2014), and the active form of TGF-β1 induces Col1a1 expression (Fan et 

al., 2013). Col1a1 expression can also be stimulated by platelet derived growth factor 

(PDGF), a potent mitogen expressed that drives HSC proliferation (Kisseleva and 

Brenner, 2008). There is evidence to suggest that either of these collagen-stimulating 

pathways could be impacted by TCDD treatment (Chang et al., 2007; Jaguin et al., 

2015). 
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Despite increased expression of TGF-β1 and Col1a1 mRNA levels, we found no 

evidence that TCDD treatment exacerbated fibrosis in CCl4-treated mice, based on 

histopathological analysis as well as measurements of collagen and hydroxyproline 

content in the mouse liver. Instead, we found that TCDD may activate pathways leading 

to collagen degradation in CCl4-treated mice, based on increased collagenase activity and 

possibly increased MMP-13 activity in the liver of CCl4/TCDD-treated mice. These 

findings corroborate other studies in which TCDD was reported to increased expression 

of the collagenase MMP-13 in zebrafish and cell culture (Andreasen et al., 2007;  

Andreasen, et al., 2006). It is possible that TCDD directly activates MMP-13 gene 

expression, based on the identification of a consensus XRE in the promoter region of the 

zebrafish MMP-13 gene (Andreasen, et al., 2006) as well as in the mouse MMP-13 gene 

(data not shown). Increased collagenase activity and MMP-13 expression would support 

the notion that increased collagen synthesis in CCl4/TCDD-treated mice is essentially 

balanced by increased collagen breakdown, leading to no net increase in fibrosis when 

compared to mice treated with CCl4 alone.  

Nevertheless, the notion that TCDD increases collagenase activity in CCl4-treated 

mice must be reconciled with the observation that TCDD also increased expression of 

TIMP-1 and PAI-1, which inhibit MMP activity. TIMP-1 directly inhibits MMPs in a 

stoichiometric 1:1 ratio. It is conceivable that TIMP-1 expression increased in 

CCl4/TCDD -treated mice in response to increased MMP-1 expression. However, TIMP-

1 levels in CCl4/TCDD -treated mice could still be insufficient for suppressing MMP 

activity. The other inhibitor, PAI-1, inhibits the conversion of plasminogen to plasmin, 

which activates MMPs. Increased PAI-1 expression could occur in response to elevated 
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TGF-β1 levels in CCl4/TCDD -treated mice (Liu et al., 2010). On the other hand, TCDD 

has been shown to increase PAI-1 directly through binding of the AhR to a non-

consensus XRE in the promoter region of the PAI-1 gene (Wilson et al., 2013). 

Interestingly, binding of the AhR to this non-consensus XRE involves the interaction of 

AhR with KLF6, a transcription factor that is known to represses fibrogenic gene 

expression in quiescent HSCs (Ghiassi-Nejad et al., 2013). It is formally possible that, 

when activated by TCDD, the AhR usurps KLF6 and prevents it from suppressing 

fibrogenic gene expression. Finally, there is evidence to suggest that MMPs can be 

activated through plasmin-independent pathways (Hahn-Dantona et al., 1999;  Suzuki et 

al., 1990), which would allow these proteolytic enzymes to break down collagen despite 

increased PAI-1 expression. 

In summary, results from this study demonstrate that in vivo HSC activation is 

increased by TCDD. Whether this occurs due to a direct effect of TCDD on HSCs or 

through the exacerbation of hepatocellular damage remains to be determined. 

Furthermore, data presented herein support the hypothesis that TCDD treatment can 

modulate ECM remodeling in vivo. Collectively, these findings implicate a role for 

TCDD-induced AhR activation in regulating myofibroblast activation and the 

pathogenesis of fibrosis. 
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CHAPTER THREE: ARYL HYDROCARBON RECEPTOR ACTIVATION BY TCDD 

MODULATES EXPRESSION OF EXTRACELLULAR MATRIX REMODELING 

GENES DURING CHRONIC LIVER INJURY 

ABSTRACT 

The aryl hydrocarbon receptor (AhR) is a soluble, ligand-activated transcription 

factor that mediates the toxicity of the environmental contaminant 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence implicates a role for AhR 

activation in regulating the expression of genes involved in extracellular matrix (ECM) 

deposition and metabolism. We recently reported that TCDD treatment increased 

collagen type I expression, as well as collagen breakdown, during chronic liver injury 

elicited by carbon tetrachloride (CCl4) administration. The goal of the present study was 

to determine how TCDD treatment impacts the expression of genes known to regulate 

collagen synthesis and breakdown in the injured liver. C57Bl/6 male mice were treated 

twice weekly for 8 weeks with 0.5 ml/kg CCl4, and TCDD (20 µg/kg) was administered 

once a week during weeks 7 and 8. TCDD treatment was found to increase expression of 

procollagen genes for collagen types I, III, IV and VI and molecules involved in collagen 

processing and maturation (HSP47, decorin, and lysyl oxidase). Despite these increases, 

there were no overt effects of TCDD on collagen distribution or organization in the 

injured liver. TCDD also enhanced gelatinase activity and mRNA levels of matrix 

metalloproteinases (MMP)-3, MMP-8, MMP-9, and MMP13, as well as the MMP 

inhibitor, TIMP-1. Finally, TCDD increased expression of enzymes in the plasminogen 
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activator/plasmin system that regulates MMP activation. Specifically, TCDD decreased 

plasminogen mRNA levels, but increased mRNA levels of urokinase and tissue 

plasminogen activator (uPA/tPA) and plasminogen activator inhibitor (PAI)-1. These 

findings support the conclusion that TCDD modulates gene expression related to ECM 

remodeling but does not significantly impact collagen deposition during chronic liver 

injury.  

 

INTRODUCTION 

The aryl hydrocarbon receptor (AhR) is a soluble protein in the basic helix-loop-

helix Per/ARNT/Sim family of transcriptional regulators that contribute to developmental 

processes, adaptation to environmental stress, and xenobiotic metabolism (Beischlag et 

al. 2008; Gu et al. 2000; Hankinson 1995). The AhR mediates the toxicity associated 

with exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is an environmental 

contaminant and high-affinity ligand for this receptor (Fernandez-Salguero et al. 1996). 

After ligand binding, the AhR translocates from the cytoplasm to the nucleus, where it 

forms a heterodimer with the AhR nuclear translocator protein (ARNT). The AhR/ARNT 

complex binds to DNA at xenobiotic response elements (XREs) and modulates gene 

transcription. A growing body of evidence indicates that the AhR also interacts with other 

co-regulatory proteins in addition to ARNT and can modulate the expression of genes 

that do not contain XREs (Jackson et al. 2015), which underscores the increasing 

complexity of AhR-mediated gene regulation. Such AhR-dependent changes in gene 

expression are believed to underlie most of the toxic responses to TCDD. In the absence 

of TCDD, endogenous AhR activation is implicated in regulating the expression of genes 
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important for a number of normal developmental and physiological processes (Barouki et 

al. 2007; Mitchell and Elferink 2009). 

Emerging evidence implicates a role for AhR signaling in the deposition and 

metabolism of extracellular matrix (ECM) components. The ECM is comprised of a 

network of proteins, such as collagens, glycoproteins, and proteoglycans, which are 

deposited in interstitial spaces and provide mechanical and structural support to cells 

(Karsdal et al. 2015). The ECM also regulates various cellular processes, such as 

survival, migration, proliferation and differentiation, by modulating tissue stiffness, 

communicating with the intracellular cytoskeleton, and sequestering and releasing growth 

factors (Kim et al. 2011). AhR activation by TCDD has been found to modulate the 

expression of ECM proteins, such as collagen and fibronectin (Andreasen et al. 2006; 

Aragon et al. 2008; Nottebrock et al. 2006; Pierre et al. 2014; Riecke et al. 2002). 

Expression of matrix metalloproteinases (MMPs), which are responsible for the 

degradation of ECM components, also appears to be targeted by TCDD. For example, in 

vitro TCDD treatment has been shown to increase MMP expression in human 

keratinocytes, prostate cancer cells, and melanoma cells (Haque et al. 2005; Murphy et 

al. 2004; Villano et al. 2006). Insight into the effect of TCDD on ECM maintenance and 

remodeling also stems from studies in a zebrafish regeneration model, in which 

amputation of the caudal (tail) fin initiates epimorphic regeneration accompanied by a 

wound healing response. Using this model, Andreasen et. al. reported that TCDD 

treatment increased the expression of MMP-9 and MMP-13 (Andreasen et al. 2007). In 

addition, exposure to TCDD induced a localized fibrosis in the regenerating fin, where 

collagen accumulated as an unorganized fibrotic deposit at the basement membrane. In a 
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separate study, gene expression analysis revealed that the largest number of genes 

impacted by TCDD during fin regeneration were those involved in ECM remodeling and 

structure (Andreasen et al. 2006). Collectively, these reports support the notion that 

TCDD dysregulates ECM homeostasis, and this most likely occurs through a mechanism 

that includes AhR-mediated changes in gene expression. 

Disruptions of ECM metabolism and deposition are known to impact the 

development of liver disease (Duarte et al. 2015; Friedman 2000). Liver fibrosis is a 

pathological condition characterized by the deposition of excessive or abnormal ECM 

components, including collagen type I (Friedman 2000). In the liver, collagen is 

synthesized by myofibroblast precursors, namely hepatic stellate cells (HSCs). Upon liver 

injury, HSCs transition from quiescent, vitamin A-rich cells into activated 

myofibroblasts, characterized by increased proliferation, contractility, and synthesis of 

collagen type I (Friedman 2008). One well-established model system to investigate HSC 

activation and ECM modulation is experimental liver fibrosis induced by chronic carbon 

tetrachloride (CCl4) administration. In the liver, CCl4 is metabolized by cytochrome 

P4502E1 to a trichloromethyl radical that causes membrane damage through lipid 

peroxidation (Wong et al. 1998). Chronic treatment of mice with CCl4 causes widespread 

centrilobular necrosis and inflammation, which drive HSC activation and the 

development of fibrosis (Mederacke et al. 2013). 

We recently found that exposure to TCDD increased liver damage and HSC 

activation in mice treated with CCl4 for 8 weeks (Lamb et al. in review). However, 

TCDD did not increase the deposition of collagen or the severity of liver fibrosis in CCl4-

treated mice, despite increased expression of genes encoding collagen type I and the 
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potent profibrogenic mediator, transforming growth factor (TGF)-β1. Results further 

indicated that TCDD increased collagenase activity in the liver of CCl4-treated mice. 

Increased breakdown of ECM in CCl4/TCDD-treated mice could explain why collagen 

deposition and fibrosis development were not exacerbated, despite increases in other 

endpoints of fibrogenesis.  

Collagen biosynthesis begins with the transcription of procollagen genes and is 

facilitated by various intercellular and extracellular molecules (Frantz et al. 2010). For 

example, heat shock protein-47 (HSP47), within the endoplasmic reticulum, is required 

for proper triple helical folding and trafficking of procollagen to the Golgi apparatus 

(Widmer et al. 2012). Another molecule, decorin, facilitates collagen fibril assembly in 

the extracellular matrix during fibrillogenesis (Baghy et al. 2012). Skin fibroblasts, 

lacking decorin, produce significantly thinner collagen fibrils then the same fibroblasts 

with exogenously added decorin and mice lacking the decorin gene have enhanced 

expression of TGF-β1, resulting in increased hepatic fibrosis (Ruhland et al. 2007; Baghy 

et al. 2011). Lysyl oxidase (LOX) catalyzes cross-linking of collagen fibers, which marks 

the last step in collagen biosynthesis (Liu et al. 2015).  

Collagen breakdown is achieved through the activity of numerous MMPs. MMP 

expression is regulated at the transcriptional level, and these proteins are synthesized as 

inactive zymogens called proMMPs (Caley et al. 2015). MMP activity is regulated by 

enzymatic inhibition and activation. Endogenous proteins called tissue inhibitors of 

metalloproteinase (TIMPs) inhibit MMP activity. Numerous mechanisms activate MMPs, 

including the plasminogen activator/plasmin system (Duarte et al. 2015). Plasmin is 

produced through the cleavage of plasminogen by tissue plasminogen activator (tPA) and 
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urokinase plasminogen activator (uPA), and this pathway is suppressed by plasminogen 

activator inhibitor (PAI)-1. Plasmin can directly convert proMMPs into enzymatically 

active MMPs, and some of these active MMPs can further activate other proMMPs.  

The goal of the present study was to determine how TCDD treatment impacts the 

expression of genes related to ECM synthesis, deposition, and breakdown during chronic 

liver injury induced by CCl4 administration. We measured gene expression related to 

collagen synthesis, processing, and cross-linking and assessed the impact of TCDD on 

the organization and dispersion of fibrillar collagens in the injured liver. Expression of 

MMPs and the molecules that activate or inhibit them were also measured to determine 

how TCDD modulates ECM breakdown. 

 

MATERIALS AND METHODS 

Animals.  Male C57BL/6 mice (8-10 weeks old; Charles River, Wilmington, MA) 

were injected i.p. with 0.5 ml/kg CCl4 (Sigma-Aldrich, St. Louis, MO) diluted in corn oil 

or with corn oil alone (“Ctrl”) twice a week for 8 weeks. During the last two weeks of the 

experiment, mice were gavaged once weekly with 20 µg/kg TCDD (Cambridge Isotope 

Laboratories, Andover, MA) diluted in peanut oil or with peanut oil alone (“Vehicle”). At 

the end of the experiment, animals were euthanized, and liver was either flash-frozen in 

liquid nitrogen or fixed in Ultra Light Zinc Formalin Fixative (PSL Equipment, Vista, 

CA). All animal experiments were approved by the Institutional Animal Care and Use 

Committee at Boise State University and conducted according to the established policies 

and guidelines of this committee. 
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Quantitative Real-Time RT-PCR.  Total RNA was extracted using the Omega 

Bio-Tek E.Z.N.A.® Total RNA Kit, and genomic DNA was eliminated using the Omega 

RNAse Free DNAse Set (Norcross, GA) from 20 mg of frozen liver tissue. RNA 

concentrations and purity were measured by ultraviolet (UV) absorbance. Quality and 

elimination of genomic DNA were assessed using an agarose bleach gel (Aranda et al. 

2012). RNA was reverse-transcribed using the Applied Biosystems High Capacity cDNA 

reverse transcription kit (Thermo Fisher Scientific, Waltham, MA). Gene-specific 

primers (Table 1) were used for quantitative real-time RT-PCR (qRT-PCR), which was 

performed using a Light Cycler® 96 Thermocycler and FastStart™ Essential DNA Green 

Master reaction mix (Roche, Indianapolis, IN). All samples were analyzed in duplicate 

from three mice per treatment group. Relative quantification was estimated using the 

∆∆Cq method normalized to GAPDH (Schmittgen and Livak 2008). 

 

Table 1. qRT-PCR primers and annealing temperatures used in this study. 

Gene Primer Sequence Annealing 
Temp (°C) 

Col1a1 FWD: GTCCCTGAAGTCAGCTGCATA 
REV: TGGGACAGTCCAGTTCTTCAT 

 

60 

Col3a1 FWD: CCTGGTGGAAAGGGTGAAAT 
REV: CGTGTTCCGGGTATACCATTAG 

 

62 

Col4a3 FWD: TCCTGGGGAAATGGGAAAGC 
REV: CTGCCTACGGATGGTTCTCC 

 

64 

Col4a5 FWD: TGCTCCTGAGAGATCGGCTT 
REV: GTTATGCTGGTGCACTTGGG 

 

58 

Col6a1 FWD: TCCCACCCACACAGAACAAC 
REV: CACTGAGAGGTGTCGTGTCC 

 

58 

Col6a2 FWD: TGACGCTGTTCTCTGACCTG 
REV: TTGTGGAAGTTCTGCTCGCC 

58 
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Col6a3 FWD: CTGATGGCACCTCTCAGGAC 
REV: GTCACTTCCAACATCGAGGC 

 

58 

Dcn FWD: AAGGGGGCCGATAAAGTTTC 
REV: CTGGGTTGAAAACCTCCTGC 

 

58 

Lox FWD: CTGCACACACACAGGGATTG 
REV: AGCTGGGGTTTACACTGACC 

 

56 

Mmp2 FWD: ACCCAGATGTGGCCAACTAC 
REV: TACTTTTAAGGCCCGAGCAA 

 

63 

Mmp3 FWD: GTCCTCCACAGACTTGTCCC 
REV: GGGAGTTCCATAGAGGGACTGA 

 

65 

Mmp8 FWD: TACAGGGAACCCAGCACCTA 
REV: GGGGTTGTCTGAAGGTCCATAG 

 

64 

Mmp9 FWD: AAGGCAGCGTTAGCCAGAAG 
REV: GCGGTACAAGTATGCCTCTGC 

 

63 

Mmp13 FWD: 
GCCCTGGGAAGGAGAGACTCCAGG 
REV: GGATTCCCGCAAGAGTCGCAGG 

 

55 
 

Mmp14 FWD: GCCCTCTGTCCCAGATAAGC  
REV: ACCATCGCTCCTTGAAGACA 

 

58 

Plat FWD: CAGAGATGAGCCAACGCAGA 
REV: TTCGCTGCAACTTCGGACAG 

 

58 

Plau FWD: CATCCAGTCCTTGCGTGTCT 
REV: CCAAGTACACTGCCACCTTCA 

 

62 

Plg FWD: ACTCAAGGGACTTTCGGTGC 
REV: TCAGATACTCGACGCGGTTG 

 

58 

Serpine1 FWD: TTCAGCCCTTGCTTGCCTC 
REV: ACACTTTACTCCGAAGTCGGT 

 

60 

Serpinh1 FWD: GGGAACGGATCGCTCCAAA 
REV: GGACCTGTGAGGGTTTACCAG 

 

67 
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Timp1 FWD: CACGGGCCGCCTAAGGAACG 
REV: GGTCATCGGGCCCCAAGGGA 

 

60 

Timp2 FWD: GCCAAAGCAGTGAGCGAGAAG 
REV: CACACTGCTGAAGAGGGGGC 

 

56 

Timp3 FWD: AAGAAAAGAGCGGCAGTCCC 
REV: TTTGGCCCGGATCACGATG 

 

60 

Timp4 FWD: TATGGTAGGTGGGCTGACTGT 
REV: AGTTGAGACAGTGGGAGTAGGA 

64 

 

Measurement of Collagen Fibril Organization. Fixed liver tissue was paraffin-

embedded, cut into 2-µm sections, and stained with Sirius Red as described elsewhere 

(Junqueira et al. 1979). Birefringence of stained liver tissues was visualized using an 

Olympus BX53F polarizing microscope. Photographs were taken at 600x magnification 

to focus on septa formation in the damaged liver of CCl4-treated mice. Images were then 

converted to 8-bit grayscale and analyzed with FiberFit software to calculate fiber 

dispersion (κ) (Morrill et al. 2016). Ten images were analyzed from each mouse liver; 

three mice were evaluated per treatment group. Septa formation was not detected in the 

livers of mice that did not receive CCl4, and these samples were excluded from the 

FiberFit analysis. 

 

In Situ Zymography. Gelatinase activity was examined using in situ zymography 

of zinc-formalin fixed liver tissue as described elsewhere (Hadler-Olsen et al. 2010; 

Kumar et al. 2014).  Briefly, tissue sections (8 μm) were heated at 58°C for 12 hours then 

deparaffinized and rehydrated. DQ™-gelatin (Thermo Fisher Scientific) was dissolved in 

reagent-grade water and diluted 1:50 in a 50 mM Tris-HCl buffer containing 150 mM 

NaCl, and 5 mM CaCl2 (pH 7.6). Tissue sections were incubated with the DQ™-gelatin 
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solution for 12 hours at 37°C. Nuclei were stained with 4’,6-diamidino-2-phenylindole 

(DAPI), and cover slips were mounted with Permount (Thermo Fisher Scientific). 

Fluorescent images were taken with an EVOS™ fluorescence microscope (Thermo 

Fisher Scientific) with a 20X objective. Fluorescence was quantified using ImageJ 

software (US National Institutes of Health) and expressed as a percentage of the area in 

the microscope field of view. 

 

Statistical Analysis. Statistical analyses were performed using Prism (version 6; 

GraphPad Software, La Jolla, Ca.). Data were evaluated by two-way analysis of variance 

followed by a Bonferroni’s multiple comparisons test to evaluate differences between 

treatment groups. Data were considered significantly different at p < 0.05. 

 

RESULTS 

Consequences of TCDD treatment on procollagen mRNA levels in CCl4-treated 

mice. 

To determine how TCDD treatment impacts procollagen synthesis during chronic 

liver injury, we measured the mRNA levels of genes that encode procollagen type I and 

III (fibrillar collagens) and types IV and VI (non-fibrillar collagens). Chronic CCl4 

treatment significantly increased Col1a1 and Col4a5 in the mouse liver (Figure 1). 

Administration of TCDD to CCl4-treated mice further increased expression of Col1a1 but 

not Col4a5. Trends indicated that CCl4-treatment also increased transcript levels of 

Col3a1 and Col6a3, but these elevations were not statistically significant. Nevertheless, 

the combination of TCDD and CCl4 significantly increased transcript levels of both of 
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these procollagen genes compared to mice that did not receive CCl4. Finally, TCDD 

treatment elevated Col4a3 mRNA levels in mice that were not treated with CCl4, but this 

increase was not observed in mice that received both TCDD and CCl4. Collectively, these 

findings support a general trend in which exposure to TCDD increases procollagen gene 

expression in the liver of CCl4-treated mice. Moreover, TCDD impacts the expression of 

procollagen isoforms that encode both fibrillar and non-fibrillar collagens.  

 

 

Figure 1. Consequences of TCDD treatment on collagen mRNA levels in the liver of 
CCl4-treated mice. Collagen mRNA expression was measured by qRT-PCR and 
normalized to GAPDH. Data represent mean (± SEM) of three mice per treatment group. 
Within the data set for each gene, means that do not share a letter are significantly 
different from each other (p < 0.05). 

 

TCDD increases mRNA levels of collagen processing molecules in CCl4-treated 

mice. 

Collagen synthesis requires not only expression of procollagen genes, but also 

processing of procollagen, assembly of fibrils, and cross-linking of fibers. To identify 

how TCDD impacts these events during CCl4-induced liver injury, we measured 
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transcript levels of Serpinh1 (HSP47), Lox (LOX), and Dcn (decorin). HSP47 is required 

for proper folding and trafficking of procollagen, whereas decorin, and lysyl oxidase 

contribute to fibril assembly and fiber cross-linking in the ECM (Canty and Kadler 2005; 

Widmer et al. 2012). Results indicate that when TCDD was administered to CCl4-treated 

mice, Serpinh1 and Lox mRNA levels increased 4 to 6 fold compared to mice treated 

with CCl4 alone (Figure 2). In contrast, Dcn mRNA levels were significantly decreased in 

CCl4/TCDD-treated mice. These results support the notion that TCDD significantly 

modulates the expression of genes encoding collagen-processing molecules during 

chronic liver injury. 

 

Figure 2. TCDD treatment alters expression of collagen processing molecules in the 
liver of CCl4-treated mice. Transcript levels of Serpinh1 (HSP47), Dcn (decorin) and 
Lox (lysyl oxidase) were measured by qRT-PCR and normalized to GAPDH. Data 
represent mean (± SEM) of three mice per treatment group. Within the data set for each 
gene, means that do not share a letter are significantly different from each other (p < 
0.05). 
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TCDD treatment does not affect collagen fiber organization in the liver of CCl4-

treated mice.  

The observation that TCDD altered the expression of ECM processing molecules 

in CCl4-treated mice led us to speculate that it would subsequently impact the fibrillar 

collagen network. To test this, collagen fibers were visualized in liver tissue stained with 

Sirius Red, which aligns with fibrillar collagens and enhances their birefringence under 

cross-polarized light (Junqueira et al. 1979; Rich and Whittaker 2005). Polarized 

microscopy of stained tissue revealed the presence of thick, strongly birefringent yellow 

fibers in the septa of livers from CCl4-treated mice (Figure 3A). However, based on 

visual inspection, TCDD treatment had no overt impact on the appearance of collagen. 

The effects of TCDD on collagen fiber organization were further evaluated using the free 

software application, FiberFit, which provides a rapid, two-dimensional analysis of fiber 

networks (Morrill et al. 2016). Results indicate that TCDD had no effect on fiber 

dispersion, which is a measure of disorder (Figure 3B). Hence, despite the TCDD-

mediated increase in expression of procollagen genes and genes encoding collagen-

processing molecules, TCDD did not appear to dysregulate collagen fiber organization in 

the ECM. 
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Figure 3. Exposure to TCDD does not impact collagen fiber organization in the liver 
of CCl4-treated mice. (A) Polarized microscopy facilitates the visualization of collagen 
fiber birefringence in liver tissue stained with Sirius Red (600x magnification). 
Photomicrographs depict representative fibers in septa of liver from a mouse treated with 
CCl4 and peanut oil vehicle (left) or with CCl4 and TCDD (right). Scale bars represent 10 
µm. Collagen network organization was evaluated by analyzing Sirius Red-stained liver 
tissues with the FiberFit software application (Morrill et al. 2016). Ten photomicrographs 
were evaluated per mouse; three mice were analyzed in each treatment group. Data 
represent mean (± SEM) fiber dispersion (B). No statistically significant changes were 
found between treatment groups (p < 0.05). 

 

Expression of ECM remodeling enzymes is elevated in the presence of TCDD. 

ECM maintenance requires not only the synthesis and deposition of matrix 

molecules, but also their degradation and turnover, which is regulated by the proteolytic 

activity of MMPs. MMP expression is largely regulated at the transcriptional level 
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(Rodriguez et al. 2010). To determine how TCDD treatment impacts MMP gene 

expression in the liver of CCl4-treated mice, we measured transcript levels of mouse 

MMPs known to be important in chronic liver injury. Mmp-8 and Mmp-13 encode 

enzymes that function primarily as collagenases, and expression of these genes was 

markedly increased by TCDD, regardless of CCl4 treatment (Figure 4). Mmp-2 and Mmp-

9 are referred to as gelatinases, and they degrade not only gelatin, but also collagen type 

IV, laminin, elastin and fibronectin (Rodriguez et al. 2010). While TCDD had no effect 

on Mmp-2 transcript levels, it increased Mmp-9 expression in CCl4-treated mice. 

Likewise, the combination of TCDD and CCl4 increased Mmp-14 (membrane-type 

MMP) expression compared to mice treated with TCDD alone, although this increase 

was modest. Mmp-3 (stromelysin) mRNA levels were about 3 to 5 times higher in 

TCDD-treated mice, regardless of CCl4 treatment. Generally speaking, these results 

support the conclusion that TCDD treatment increases MMP gene expression during 

CCl4-induced liver injury. 
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Figure 4. Effects of TCDD treatment on mRNA levels of MMPs in the liver of CCl4-
treated mice. MMP mRNA expression was measured by qRT-PCR and normalized to 
GAPDH. Data represent mean (± SEM) of three mice per treatment group. Within the 
data set for each gene, means that do not share a letter are significantly different from 
each other (p < 0.05). 

 

TCDD increases gelatinase activity in the liver of CCl4-treated mice. 

MMP activity is central to ECM remodeling and has been implicated in both the 

promotion and attenuation of liver injury (Duarte et al. 2015). We recently found that 

TCDD treatment increased collagenase activity in the liver of CCl4-treated mice (Lamb et 

al. in review). During fibrotic liver injury, collagenases cleave the native helix of fibrillar 

collagens to produce gelatin, which can be degraded by MMPs, namely MMP-2 and 

MMP-9 (Iredale et al. 2013). We used in situ zymography to measure gelatinase activity 

in the liver. Whereas gelatinase activity was barely detectable in mice treated with 

CCl4/Veh (Figure 5A), it was significantly induced when TCDD was administered to 

CCl4-treated mice (Figure 5B). When administered alone, TCDD did not increase 

gelatinase activity.  
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Figure 5. TCDD treatment increases gelatinase activity in the liver of CCl4-treated 
mice. (A) In situ zymography of zinc-buffered, formalin-fixed liver tissue using DQ™-
gelatin. Green fluorescence indicates gelatinase activity. Photomicrographs (100x 
magnification) are representative of three mice per treatment group. Scale bars represent 
400 μm. (B) Quantification of gelantinase activity based on the percentage of green 
fluorescence coverage per field of liver tissue. Ten fields were analyzed per mouse; three 
mice were evaluated per treatment group. Data represent mean (± SEM) of three mice per 
treatment group. Means that do not share a letter are significantly different from each 
other (p < 0.05). 

Consequences of TCDD treatment on TIMP mRNA expression in CCl4-treated 

mice 

MMP activity is not only regulated by gene expression, but also by controlled 

enzymatic activation and inhibition (Caley et al. 2015). All known MMPs can be 

inhibited by four homologous members of the TIMP family. TIMP1 is a strong inhibitor 

of many MMPs, but the gelatinases MMP-2 and MMP-9 are also inhibited by other 

TIMPs. For example, TIMP2, TIMP3 and TIMP4 can inhibit MMP-2 activity, and 

TIMP3 inhibits MMP-9 (Caley et al. 2015). Analysis of TIMP gene expression 

confirmed our previous finding that TCDD treatment increased Timp1 expression (Figure 

6). It further revealed that TCDD had no impact on the mRNA level of Timp2, Timp3, or 

Timp4 regardless of CCl4 treatment (Figure 6). Hence, modulation of TIMP gene 

expression by TCDD appears to be limited to Timp1. 
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Figure 6. Consequences of TCDD treatment on TIMP mRNA levels in the liver of 
CCl4-treated mice. TIMP mRNA expression was measured by qRT-PCR and 
normalized to GAPDH. Data represent mean (± SEM) of three mice per treatment group. 
Within the data set for each gene, means that do not share a letter are significantly 
different from each other (p < 0.05). 

 

TCDD treatment modulates expression of molecules in the plasminogen 

activator/plasmin system. 

MMP activation is regulated through numerous mechanisms, including the 

plasminogen activator/plasmin system, in which tPA and uPA mediate the conversion of 

plasminogen to plasmin, which directly activates numerous proMMPs (Duarte et al. 

2015). PAI-1 suppresses MMP proteolytic activity by inhibiting tPA/uPA, and the PAI-1 

gene is known to be regulated by AhR activity (Huang and Elferink 2012; Son and 

Rozman 2002; Wilson et al. 2013). To determine how TCDD impacted this pathway of 

MMP activation, we measured expression of Plg (plasminogen), Plat (tPA), Plau (uPA), 

and Serpine1 (PAI-1). Results indicate that TCDD induced a modest, yet statistically 
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significant, decrease in Plg mRNA levels in CCl4-treated mice (Figure 7). Levels of Plat 

and Plau expression were markedly elevated in CCl4/TCDD-treated mice, with Plat 

levels being about 12-times higher than levels in control mice. Finally, exposure to 

TCDD increased PAI-1 (Serpine1) gene expression regardless of CCl4-treatment. Hence, 

based on gene expression data, TCDD treatment modulated the expression of the 

plasminogen activator/plasmin system. 

 

 

Figure 7. Exposure to TCDD modulates expression of genes in the plasminogen 
activator/plasmin system. Transcript levels of Plg (plasminogen), Plat (tPA), Plau 
(uPA) and Serpine1 (PAI-1) were measured by qRT-PCR and normalized to GAPDH. 
Data represent mean (± SEM) of three mice per treatment group. Within the data set for 
each gene, means that do not share a letter are significantly different from each other (p < 
0.05). 
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DISCUSSION 

The present study investigated the consequences of TCDD treatment on 

expression of molecules involved in collagen biosynthesis and ECM metabolism during 

chronic liver injury. We recently reported that exposure to TCDD increased HSC 

activation and mRNA levels of TGF-β1 and collagen type I in the injured liver without 

increasing hepatic collagen content or exacerbating fibrosis (Lamb et al. in review). This 

led us to speculate that TCDD treatment may dysregulate ECM remodeling activities, 

including collagen synthesis.  

During fibrosis, the collagen content in the liver can increase up to ten-fold 

(Rojkind et al. 1979). Our results indicate that TCDD treatment alone increased mRNA 

levels of Col1a1 and Col4a3. This observation corroborates other reports in which 

exposure to TCDD increased collagen type I and IV (Aragon et al. 2008; Nottebrock et 

al. 2006; Pierre et al. 2014; Riecke et al. 2002; Thackaberry et al. 2005). In CCl4/TCDD-

treated mice, there was a marked increase in expression of Col3a1, Col4a5, Col6a1, 

Col6a2, and Col6a3 mRNA compared to Ctrl/Veh-treated mice. Collagen type III is 

structurally similar to collagen type I and is the first collagen to increase during chronic 

liver disease (Wells 2008). Collagen type IV is the primary component of basement 

membranes, and its expression increases during fibrosis (Ala-Kokko et al. 1987). 

Collagen type VI is also upregulated in liver fibrosis and has been shown to stimulate 

DNA synthesis and inhibit apoptotic cell death in HSCs in vitro (Mak et al. 2014). This is 

intriguing because we previously reported that exposure to TCDD increases HSC 

proliferation in vitro (Harvey et al. 2016) and increases HSC activation markers in the 

liver of CCl4-treated mice (Lamb et al. in review). It is possible that increased expression 
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of collagen type VI, as well as other types of collagen, contributes to the effects of TCDD 

in the CCl4 model system. 

The finding that certain collagen genes were upregulated by TCDD treatment 

only, while others were increased by the combination of TCDD and CCl4, implies that the 

AhR may differentially regulate gene expression in the healthy and injured liver. 

Increasing evidence supports a role for AhR signaling in regulating collagen deposition, 

including the discovery that AhR knockout mice develop liver fibrosis and have elevated 

TGF-β1 and collagen expression (Carvajal-Gonzalez et al. 2009; Fernandez-Salguero et 

al. 1995; Zaher et al. 1998). In addition, it was recently reported that AhR knockdown 

increased Col1a1 and Col4a4 mRNA levels in retinal pigment epithelial cells and 

choroidal endothelial cells (Choudhary et al. 2015). Collectively, these findings implicate 

a role for AhR activity in regulating collagen gene expression. Future studies that 

investigate how AhR knockdown impacts gene expression during chronic liver injury 

will expand our understanding of how the AhR regulates ECM remodeling during states 

of health and disease.  

Not only did TCDD increase the expression of collagen genes, but it also 

modulated gene expression for several key proteins involved in collagen synthesis. For 

example, administration of TCDD to CCl4-treated mice increased gene expression of 

HSP47, which resides in the endoplasmic reticulum and is involved in the folding and 

shuttling of collagen molecules to the Golgi (Kawasaki et al. 2015). Increased HSP47 

levels reportedly contribute to fibrosis by facilitating the excessive assembly and 

intracellular processing of procollagen molecules, leading to fibrotic lesions (Taguchi and 

Razzaque 2007). Furthermore, suppression of HSP47 expression was found to reduce 
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collagen accumulation and delay fibrotic progression (Sunamoto et al. 1998). Both 

procollagen and HSP47 gene expression are regulated by TGF-β1 (Pan and Halper 2003). 

We previously found that TGF-β1 gene expression was increased in CCl4/TCDD-treated 

mice, and speculate that this could drive HSP47 and Col1a1 expression in our model 

system. However, TCDD treatment was shown to suppress both Col1a1 and HSP47 gene 

expression during fin regeneration in zebrafish, despite increased TGF-β1 expression 

(Andreasen et al. 2007; Andreasen et al. 2006). 

Decorin is a secreted proteoglycan that has a dual role in liver fibrosis. First, it 

functions as a naturally occurring TGF-β1 antagonist, and its genetic ablation has been 

shown to increase ECM deposition, impair matrix degradation, and increase HSC 

activation (Baghy et al. 2012). Second, decorin facilitates the development of normal 

collagen morphology by binding to the collagen triple helix and preventing the lateral 

fusion of fibrils (Weber et al. 1996). We found that TCDD suppressed decorin gene 

expression in CCl4-treated mice. Other studies demonstrate a possible role for AhR 

signaling in decorin expression. For instance, decorin expression was increased in 

fibroblasts and vascular smooth muscle cells from AhR-knockout mice (Chang et al. 

2007; Guo et al. 2004).  

LOX initiates the cross-linking of collagen fibers, which is important for collagen 

organization and perhaps also for conferring resistance to proteolytic degradation by 

MMPs (Kagan and Li 2003). Consistent with this role of LOX, administration of the 

irreversible LOX inhibitor β-aminopropionitrile (BAPN) to CCl4-treated mice was 

reported to reduce collagen cross-linking and produced fibrotic septa with less organized 

collagen fibers (Liu et al. 2015).  Our finding that TCDD increased LOX expression in 
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CCl4-treated mice could possibly be explained as a compensatory response to increased 

collagen synthesis, as could the TCDD-induced increase in HSP47. It is worth noting that 

Andreasen et al. found that TCDD treatment suppressed not only LOX2 and HSP47 

expression during zebrafish fin regeneration, but also prolyl-4-hydroxylase α1 and 2, 

which help stabilize collagen crosslinks (Andreasen et al. 2006). Based on the role of 

these molecules in collagen processing and organization, their reduced expression may 

underlie the accumulation of disorganized collagen observed in the regenerating fin tissue 

(Andreasen et al. 2007). In contrast, we found no evidence that TCDD impacted collagen 

fiber organization in the liver of CCl4-treated mice. Increased expression of LOX and 

HSP47, as well as decreased expression of decorin, could be one possible explanation for 

this observation. 

One of the most consistently reported consequences of TCDD treatment on ECM 

remodeling is increased MMP expression (Hillegass et al. 2006). TCDD treatment 

increases the expression and activity of MMPs in numerous and diverse cell types, 

including keratinocytes, macrophages, and endometrial cells (Igarashi et al. 2005; 

Murphy et al. 2004; Vogel et al. 2004). In the zebrafish model of fin regeneration, TCDD 

upregulated MMP-13 (Andreasen et al. 2006). Similarly, TCDD increased expression of 

MMP-13, as well as other MMPs, in the fetal mouse heart (Thackaberry et al. 2005). 

These reports support our observation that TCDD increased Mmp-3, Mmp-8, Mmp-9, 

Mmp-13 and Mmp-14 in the mouse liver. MMP-8 and MMP-13 function primarily as 

collagenases, and these were robustly increased by TCDD regardless of CCl4 treatment. 

This is intriguing because it supports our previous finding that TCDD increases 

collagenase activity in the liver of CCl4-treated mice (Lamb et al. in review). During 
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ECM breakdown, MMPs with collagenase activity will partially denature collagen, 

resulting in the production of gelatin, which is metabolized primarily by the gelatinases 

MMP-2 and MMP-9 (Duarte et al. 2015). Decreased gelatinase activity, particularly 

MMP-2, is associated with increased liver fibrosis development (Preaux et al. 1999). The 

increase in gelatinase activity we observed in CCl4/TCDD-treated mice could reflect a 

compensatory response to increased collagenase activity. Furthermore, TCDD also 

increased expression of MMP-3 (stromelysin) and MMP-14 (membrane-type), both of 

which have been found to exhibit some collagenase and gelatinase activity. 

MMP activity is inhibited through interactions with TIMP proteins, as well as 

other endogenous inhibitors (Arpino et al. 2015). TIMP1, in particular, is associated with 

ECM proteolysis during fibrosis, and Timp1-/- mice display increased liver injury, 

inflammation, and fibrosis following CCl4-treatment (Wang et al. 2011). TIMP1 is a 

strong inhibitor of most MMPs except some of the membrane-type MMPs. However, the 

gelatinase MMPs are inhibited by other TIMPs as well. Specifically, TIMP1 and TIMP3 

inhibit MMP-9, and TIMPs 2, 3 and 4 inhibit MMP-2 (Baker et al. 2002). In the CCl4 

model system, TCDD treatment increased TIMP1 but had no effect on expression of 

TIMPs 2, 3 or 4. Thus, it is possible that the expression of TIMPs in CCl4/TCDD-treated 

mice was not sufficient to counteract MMP activity. Other studies have reported that 

TIMP expression is modulated by in vitro and in vivo TCDD exposure as well 

(Andreasen et al. 2006; Hanlon et al. 2005; Martinez et al. 2002; Mizutani et al. 2004). 

Our results demonstrate that TCDD treatment produced changes in the 

plasminogen activator/plasmin system that modulates MMP activation. TCDD was found 

to modestly but significantly decrease plasminogen expression in CCl4-treated mice. 
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Because MMPs are activated by plasmin, which is produced from plasminogen, this 

would presumably lead to decreased MMP activation. Given that TCDD increased both 

collagenase and gelatinase activity in the CCl4 model system, it is possible that the 

observed decrease in plasminogen gene expression was not physiologically relevant. It is 

also possible that increased expression of tPA and uPA compensated for any decrease in 

plasminogen expression. The TCDD-mediated increase in uPA gene expression 

corroborates another report showing that TCDD upregulated uPA protein in a human 

keratinocyte cell line (Gaido and Maness 1995). It is interesting to note that this TCDD-

induced increase in uPA appeared to occur through a post-transcriptional mechanism that 

included changes in mRNA stability (Gaido and Maness 1995; Shimba et al. 2000). This 

same study reported that TCDD increased PAI-2 at the transcriptional level. PAI-1 

expression is also recognized as an AhR-regulated target gene and is transcriptionally 

induced by TCDD through a mechanism that involves heterodimerization of the AhR 

with KLF-6 and the recruitment of this complex to a non-consensus XRE (Huang and 

Elferink 2012; Son and Rozman 2002; Wilson et al. 2013). We found that TCDD 

treatment increased PAI-1 gene expression regardless of CCl4 treatment and presume that 

this reflects a direct effect of TCDD through AhR-regulated gene expression. Based on 

our finding that TCDD did not suppress collagenase or gelatinase activity in CCl4-treated 

mice, it is possible that increased PAI-1 expression in CCl4/TCDD-treated mice failed to 

offset increased tPA/uPA activity. However, MMPs can also be activated through non-

plasmin pathways, which leaves open the possibility that MMP activation is increased in 

CCl4/TCDD-treated mice despite inhibition of the plasminogen activator/plasmin system 

by PAI-1.  
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In conclusion, results from this study demonstrate that AhR activation by TCDD 

modulates ECM remodeling during chronic liver injury. TCDD treatment was found to 

increase expression of procollagen genes and molecules involved in collagen processing 

and maturation. Despite these increases, there were no overt effects of TCDD on collagen 

distribution or organization in the injured liver. Furthermore, TCDD enhanced gelatinase 

activity and mRNA levels of several MMPs and TIMP-1. Finally, TCDD increased 

expression of enzymes in the plasminogen activator/plasmin system that negatively 

regulates MMP activation. These findings support the conclusion that TCDD modulates 

gene expression related to ECM remodeling but does not significantly impact collagen 

deposition during chronic liver injury.  
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CHAPTER FOUR: SUMMARY AND FUTURE DIRECTIONS 

SUMMARY 

The overall goal for the studies presented in this dissertation was to determine the 

consequences of TCDD treatment on in vivo HSC activation and ECM remodeling. 

Specifically, we focused our efforts on elucidating these effects during the development 

of fibrosis in response to chronic liver injury. To do this, we used a mouse model of 

repeated administration of CCl4, which elicits liver damage and stimulates HSC 

activation, leading to the development of fibrosis. Our major findings were that exposure 

to TCDD increased liver damage, increased HSC activation, and dysregulated ECM gene 

expression, but did not exacerbate liver fibrosis.  

Exposure to TCDD was shown to increase liver damage in CCl4-treated mice.  

This is supported by the observation that TCDD treatment elevated serum ALT activity 

and doubled the combined necroinflammation score in CCl4-treated mice. Increased 

inflammation is important because it can perpetuate liver injury and facilitates the 

development of fibrosis.   

HSCs are the central mediators of fibrosis, and we found that TCDD treatment 

enhances the activation of these cells in the liver of mice treated with CCl4. This 

observation corroborates our previous finding that TCDD treatment increases the 

activation of a human HSC line (Harvey et al., 2016). It also supports the notion that 

TCDD may directly affect HSCs. This idea is interesting because HSCs have not been 

particularly well studied as a cellular target for TCDD toxicity. These cells may have 
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been overlooked due to the fact that TCDD does not appear to elicit robust changes in 

these cells when they are quiescent, which would occur in the healthy liver. Instead, it is 

possible that TCDD may only affect these cells as they are becoming activated or already 

in a state of activation. For this reason, the use of the CCl4 model system, in which HSCs 

are known to be activated, is well suited studying how TCDD impacts HSCs.  

It is unclear if the TCDD-induced increase in HSC activation in vivo is due to a 

direct or indirect effect of TCDD.  It is possible that TCDD could directly target HSCs 

and activate them through changes in AhR-regulated gene expression. Many of the genes 

that we see upregulated by TCDD in the CCl4 model system are attributed to HSCs, 

which supports the idea that HSCs could be directly affected by TCDD.  However, it is 

also possible that TCDD activates HSCs indirectly by increasing hepatocyte damage, 

which could exacerbate inflammation and oxidative stress and further activate HSCs. 

Considering the role that HSCs have in liver homeostasis and pathology, understanding 

how TCDD disrupts this cell population may reveal novel mechanisms of TCDD 

hepatotoxicity.  

Exposure to TCDD dysregulated the expression of genes involved in ECM 

maintenance and remodeling. TCDD treatment was found to modulate genes involved in 

synthesis, processing, and cross-linking of collagen, as well as enzymes and inhibitors 

involved in ECM remodeling. One of the characteristics of activated HSCs is increased 

deposition of collagen type I into the ECM. However, we found that TCDD treatment 

failed to increase the collagen content in the liver despite the TCDD-induced increase in 

Col1a1 mRNA. The incongruences between collagen mRNA levels and hepatic collagen 

protein content could not be explained by TCDD-induced expression of genes involved in 
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collagen synthesis and fibril formation. However, the finding that TCDD-induced 

expression and activity of MMPs could indicate that any increase in collagen synthesis by 

TCDD may be counteracted by increased collagen degradation. Changes in ECM 

remodeling activities could explain why TCDD treatment failed to exacerbate liver 

fibrosis in CCl4-treated mice, despite increased liver injury and HSC activation. 

Understanding how TCDD impacts ECM remodeling, as well as HSC activation, could 

lead to identifying a new role for the AhR in limiting the development of fibrosis. This is 

significant because there are currently no FDA-approved, anti-fibrotic therapies. 

 

FUTURE DIRECTIONS 

Based on the finding that TCDD increases activation of HSCs in vivo, it is logical 

to next address whether HSCs are the direct cellular target for TCDD or if increased HSC 

activation occurs due to the effect of TCDD on hepatocytes. One approach to address this 

question would be to determine the effect of TCDD treatment in the CCl4 model system 

using mice in which either HSCs or hepatocytes do not express an AhR. To this end, the 

Cre-Lox recombination technology would be particularly suitable for selectively deleting 

the AhR in either HSCs or in hepatocytes in the mouse liver. This system is based on the 

activity of an enzyme called Cre recombinase, which targets DNA sequences called Lox 

elements, which are inserted onto either side of a target gene (Orban et al., 1992). 

Activity of the Cre recombinase can be controlled through the use of promoter sequences 

that are only expressed in specific cell types. When the Cre recombinase is expressed in a 

particular cell type, it will then target the Lox elements and delete the target gene. 

Currently, our laboratory is breeding mice that have the AhR gene flanked by Lox, with 
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Cre recombinase expression being regulated either by the albumin promoter for AhR 

deletion in hepatocytes, or by the GFAP promoter to delete the AhR in HSCs.  

Using these Cre-Lox mice in the CCl4 model system, it should be relatively 

straightforward to determine if TCDD-induced activation of HSCs is dependent on 

expression of the AhR in hepatocytes or HSCs. Endpoints for testing HSC activation 

would include those described in Chapter Two. If we found that TCDD induced HSC 

activation in mice that did not express the AhR in hepatocytes, then we would conclude 

that HSCs are either directly targeted by TCDD, or that TCDD induces HSC activation 

indirectly through another mechanism that does not involve hepatocytes. However, if 

exposure to TCDD failed to activate HSCs in these mice, then we would conclude that 

HSC activation requires expression of the AhR in hepatocytes. The next step would be to 

determine if HSC activation required expression of the AhR in HSCs. This would be 

addressed by performing the same experiments using Cre/GFAP mice, in which the AhR 

is deleted in the HSC population. Understanding how exposure to TCDD impacts HSC 

activation in vivo will be important for identifying a possible role for the AhR in 

regulation of fibrogenesis and for elucidating mechanisms of TCDD hepatotoxicity. 
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