
THE PROTEOLYSIS OF APOLIPOPROTEIN E IN ALZHEIMER’S DISEASE 

 

 

 

 

 

by 

Julia Love 

 

 

 

 

 

A thesis 

submitted in partial fulfillment 

of the requirements for the degree of 

Master of Science in Biology 

Boise State University 

 

August 2016  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2016 

Julia Love 

ALL RIGHTS RESERVED  



BOISE STATE UNIVERSITY GRADUATE COLLEGE 

 

 

DEFENSE COMMITTEE AND FINAL READING APPROVALS 
 

 

of the thesis submitted by 

 

 

Julia Love 

 

 

Thesis Title: The Proteolysis of Apolipoprotein E in Alzheimer’s Disease 

 

Date of Final Oral Examination: 26 April 2016 

 

The following individuals read and discussed the thesis submitted by student Julia Love, 

and they evaluated her presentation and response to questions during the final oral 

examination. They found that the student passed the final oral examination.  

 

Troy Rohn, Ph.D.    Chair, Supervisory Committee 

 

Kenneth A. Cornell, Ph.D.   Member, Supervisory Committee 

 

Juliette Tinker, Ph.D.    Member, Supervisory Committee 

 

The final reading approval of the thesis was granted by Troy Rohn, Ph.D., Chair of the 

Supervisory Committee. The thesis was approved for the Graduate College by Jodi 

Chilson, M.F.A., Coordinator of Theses and Dissertations. 

 



iv 

DEDICATION 

This thesis is dedicated to my parents Paul and Cynthia Love, my brother Philip 

Love, and all of my friends who have supported and encouraged me along the way. 



v 

ACKNOWLEDGEMENTS 

There have been many people who have contributed to this work and my 

academic growth over the course of pursuing my Master’s degree. These individual 

contributions have not gone unnoticed and are an important part of my thesis work. First 

and foremost, I would like to thank Dr. Troy Rohn for being available with a willing 

attitude whenever I needed assistance, for his steadfast support and care, and for 

providing me with every opportunity to exceed what I thought were my limitations. In 

addition, I appreciate the time and effort he has put forth in helping me write and submit 

several publications. I would like to thank my committee members Dr. Kenneth Cornell 

and Dr. Juliette Tinker for their support and helpful suggestions throughout my time here 

at Boise State University. 

I would like to thank my fellow lab members Ryan Day, Collin Wheeler, and 

Dustin Theis for their availability and help carrying out the experiments in this thesis. I 

would like to thank my professors, especially Dr. Eric Hayden and Dr. Kristen Mitchell, 

for their support in the classroom, and in the next steps of my graduate career. 

This thesis could not have been completed without the funding provided by 

National Institutes of Health Grant 1R15AG042781-01A1 and by the Alzheimer’s 

Dementia Foundation (Boise, ID). 



vi 

ABSTRACT 

Harboring the apolipoprotein E4 (APOE4) allele is the greatest genetic risk factor 

associated with late-onset (sporadic) Alzheimer’s disease (AD), however the mechanism 

by which apoE4 contributes to the pathology of AD is unknown. The proteolysis of 

apoE4 has been suggested to contribute to AD pathology due to a possible toxic gain, or 

loss of function. In order to determine if apoE4 is being cleaved, we designed and 

characterized a site-directed cleavage antibody directed at position D151 of full length 

human apoE4. The antibody (nApoECFp17) detected a predicted ~17 kDa fragment 

following incubation with the proteases Type-1 collagenase, and matrix 

metalloproteinase (MMP)-1and 9. Once the nApoECFp17 amino-terminal antibody was 

applied to frontal cortex AD brain sections, it revealed nuclear labeling of glial cells and 

neurofibrillary tangles (NFTs). In addition, nApoECFp17 regionally localized with the 

protease MMP-9 in plaque-rich regions in vivo, suggesting apoE4 may be cleaved 

extracellularly. Together these data suggest a novel cleavage event of apoE4 by Type-I 

collagenase and MMP-1 and 9, generating an amino-terminal fragment that is then taken 

up by glial cells and localizes to the nucleus. This fragment localizing to the nucleus 

purposes a new role of apoE4 in AD pathology where apoE may alter gene expression. 
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INTRODUCTION 

Although the first case of Alzheimer’s disease (AD) was described more than 100 

years ago, there is still no cure or any effective treatments for this disease. It is known 

that AD is pathologically characterized by the presence of beta amyloid plaques (Aβ-

plaques) and neurofibrillary tangles (NFTs). Current dogma suggests that Aβ formation 

precedes the formation of NFTs and collectively has become known as the Amyloid 

Cascade Hypothesis. Current AD research is focused on either targeting the initial 

formation of Aβ-plaques, and/or how Aβ-plaques and NFTs cause their toxic effects in 

the brain. The focus of my thesis investigates the role of apolipoprotein E (apoE) 

proteolysis in promoting AD pathology. The proteolysis of apoE may drive AD 

pathology by either gaining a new toxic function, losing its normal function, or both. Due 

to the possible loss and/or gain of function following proteolysis of apoE, the research 

conducted in this work focuses on apoE’s production of a toxic fragment that may 

influence NFT and Aβ-plaque formation. 

The Brain 

The brain is a very complex organ both in structure and function in the human 

body. The brain connects us with our world by allowing us to interact with sensory 

stimuli. It is vital in connecting us with one another by processing language and emotion. 

Most importantly, the cerebral cortex of the brain is responsible for many of the higher 

executive functions that contribute to distinguishing humans from other species. The 
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brain is a very powerful organ of which we have only scratched the surface in 

discovering its true capabilities. 

The human central nervous system consists of the brain and spinal cord. Through 

a network of nerve cells and connections, information from the central nervous system is 

distributed throughout the body. The brain is composed of grey matter (cell bodies, 

dendrites, and axon terminals of neurons) and white matter (axons that connect parts of 

the grey matter together), which is encased in a bony structure called the cranium. The 

brain consists of two cell types, neurons and glial cells. Neurons are specialized cells that 

transmit nerve impulses, and are the fundamental units of the nervous system. The 

structure of a neuron consists of a central cell body housing the nucleus, an axon for 

signal transduction, and dendrites for receiving information. The brain is composed of 

roughly 100 billion neurons, however, there are 10-50 times that number of glial cells in 

the human brain. Unlike the communication functionality of neurons, glial cell function is 

to protect and support neurons. Glial cells provide oxygen, insulation, hold neurons in 

place, and clean up cellular debris. There are three types of glial cells; 1) astrocytes, 

which are star-like cells that link neurons to blood vessels 2) oligodendrocytes, which 

support and insulate axons and 3) microglia, which are systemically analogous to white 

blood cells. 

Alzheimer’s Disease 

Alzheimer’s disease (AD) is a progressive, irreversible neurodegenerative disease 

characterized by neuronal death and synaptic pruning [1]. AD is the most common form 

of dementia and results in memory deficits, language difficulties, impairment of 

visuospatial abilities, as well as other cognitive impairments [2]. Currently, AD affects 
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over 5 million people in the United States alone and annually costs the national 

healthcare system over 243 billion dollars. The high cost to care for those afflicted with 

AD emphasizes the importance of discovering preventative strategies, and effective 

treatments in hopes of a cure. 

Currently, the mechanisms associated with AD pathology are unclear. However, 

the involvement of Aβ plaques appear to be central in leading to neuronal degeneration. 

Aβ plaques are insoluble aggregates of the amyloid β peptide that collect in the brain 

parenchyma surrounding neurons and glial cells. Production of Aβ results from the 

proteolysis of the amyloid precursor protein (APP) by either α, β, or γ secretases [3]. The 

β secretase cleaves APP, resulting in a soluble amino terminal fragment containing 

extracellular sequences of APP. However, cleavage of APP by the α secretase results in a 

soluble amino terminal fragment, as well as a carboxyl-terminal membrane bound 

fragment. The γ secretase can further cleave the membrane-bound carboxyl-terminal 

fragment or the amino-terminal fragments producing Aβ. The increase in Aβ leads to 

induction of oxidative stress, apoptosis, and disrupted axonal transport, ultimately 

resulting in defective cognitive ability and NFT pathology [3]. 

Research suggests the protein tau contributes to NFT formation in AD. Tau is a 

microtubule associated protein (MAP) and is expressed in the neuronal axon. Tau 

normally functions to stabilize the cytoskeleton by binding to microtubules and also plays 

a role in anterograde transport in neurons and glial cells. Tau can be hyperphosphorylated 

resulting in a decreased binding affinity to microtubules and subsequent aggregation of 

tau into beta sheet structures termed paired helical filaments (PHFs), which then 

aggregate as rope-like structures composed of two fibers twisted around one another [4]. 
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The loss of function of tau in AD decreases the ability of microtubules to bind to tubulin 

for proper assembly and polymerization, increasing the occurrence of aggregating tau 

binding to normal tau [5]. 

Alzheimer’s Disease Diagnosis and Treatment Strategies 

Clinical diagnosis of AD is primarily made by exclusion of other causes of 

dementia. A true diagnosis of AD can only be obtained by performing an autopsy with 

post mortem tissue analysis [6]. Thus, there is a demand for biomarkers associated with 

AD, not only for proper diagnosis, but also to determine susceptibility to AD and to 

assess treatment strategies. Currently, there are no prevention measures that can be taken 

for AD. Drugs on the market to aid with AD treatment are designed to maintain synapses 

and overall neuron function. Examples of AD drug targets are: the hyperphosphorylation 

of tau, NMDA receptor blockade, acetylcholinesterase inhibition or nicotinic receptor 

agonists, and neurotransmitter balance [7]. Aside from the therapeutic approach to help 

control symptoms of AD, disease modifying strategies are also under investigation aimed 

at reducing Aβ levels in the brain and reestablishing tau function. In order to achieve this 

goal, current gene therapy techniques such as lentiviruses or viral vectors are becoming 

more popular [8], as well as cell replacement therapies [9]. Very new on the horizon is 

analyzing the epigenetic component of AD, which could be useful for determining 

biomarkers and predisposition [10]. 

Risk Factors in Alzheimer’s Disease 

The greatest risk factor for AD is advancing age with current statistics indicating 

that 11 percent of those age 65 and older and 32 percent of people age 85 and older are 

afflicted with this disease [11]. There are two types of AD: early-onset familial AD 
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(before age 65) and late-onset or sporadic AD. Early-onset AD is caused by mutations in 

the amyloid precursor protein (APP) or presenilin-1 (PSEN 1) and presenilin-2 (PSEN 2) 

genes. Mutations in these proteins ultimately enhance production of Aβ, which leads to 

an increase in Aβ-plaque deposition. Additionally, the increase in plaque formation could 

be due to a failure to remove or clear Aβ from the brain, contributing to AD pathogenesis. 

Several genetic risk factors are also associated with late-onset AD such as A2M 

(encoding alpha-2-macroglobulin), ABCA1 and 2 (encoding ATP-binding cassette 

transporters 1 and 2, respectively), CLU (encoding clusterin), PICALM (encoding the 

phosphatidylinositol binding clathrin assembly protein) and SORL1 (encoding sortilin-

related receptor gene) TREM2, and APOE4. There are two variants of TREM2 that 

increase the risk of AD by three fold by either stimulating phagocytic activity or by 

decreasing microglial pro-inflammatory responses [12]. However, the greatest genetic 

risk factor is harboring the apolipoprotein E4 (APOE4) allele. The inheritance of one 

copy of APOE4 increases the risk of AD four fold, while inheritance of two copies raises 

the risk about tenfold. Despite the well-known risk associated with inheritance of the 

APOE4 allele, the mechanism by which the apoE4 protein contributes to AD pathology 

has not been definitively established. 

APOE Structure and Function 

Human apoE is polymorphic with three major isoforms, apoE2, apoE3, and 

apoE4, which differ by a single amino acid substitution involving cysteine-arginine 

replacements at positions 112 and 158 [13]. Harboring the APOE3 allele is believed to 

neither increase nor decrease one’s risk of AD, having the E2 form may actually decrease 

one’s risk, while having the E4 allele increases risk. Structurally, apoE4 is a 34 kDa 
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protein composed of 299 amino acids and contains two major domains, referred to as the 

N-terminal and C-terminal domains, which are connected by a short-hinge region [14] . 

ApoE is expressed by astrocytes, some microglia, and in certain circumstances neurons 

[15]. In the CNS, apoE functions to transport cholesterol to neurons through binding and 

uptake by apoE low density lipoprotein (LDL) receptors [16]. Cholesterol released from 

apoE-containing lipoprotein particles is used to support synaptogenesis and the 

maintenance of synaptic connections [17]. Differences among apoE isoforms in these 

processes may negatively impact synaptic plasticity or recovery of neurons from 

neurodegeneration as might occur in AD [18]. 

Proteolysis of APOE 

ApoE4 plays a normal role in lipoprotein transport in the brain, however the 

mechanism by which apoE4 contributes to AD pathogenesis remains elusive. It has been 

hypothesized that apoE4 is much more susceptible to proteolysis than the E2 or E3 form 

due to the numerous proteolytic cleavage sites in the hinge region of apoE4 [19]. 

Although the hinge region is particularly susceptible to proteolysis, there is evidence to 

support other susceptible regions of apoE4 such as the N-terminal and C-terminal 

domains [20]. In mouse models, production of apoE by neurons is associated with apoE 

fragmentation, whereas production of apoE by astrocytes is not [19]. Neuronal 

proteolysis of apoE4 occurs preferentially in regions of the brain that are susceptible to 

AD and neurodegeneration [21]. Additionally, proteolysis of apoE4 occurs to a greater 

extent than for apoE3, and is associated with enhanced phosphorylation of tau [21]. There 

are several studies that have demonstrated the presence of fragmented apoE4 in the AD 
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brain [19, 21, 22], supporting the hypothesis that the proteolysis of apoE4 could 

contribute to neuropathology and neurodegeneration in AD. 

When apoE4 is cleaved, two distinct domains are produced and each are 

associated with a specific pathological structure in the AD brain; the C-terminal domain 

of apoE4 binds to beta amyloid and primarily localizes to plaques [22, 23], while the N-

terminal domain mainly localizes to NFTs [19]. ApoE4 fragments produced by 

proteolytic cleavage have been found to be associated with either a toxic gain of function 

or a loss of normal function. Altered function of apoE4 due to the high susceptibility of 

apoE4 to proteolysis may be responsible for the heightened risk associated with 

inheritance of the APOE4 allele. 

APOE Proteolysis Leads to a Loss of Function 

The main function for apoE in the CNS is to transport cholesterol. As mentioned 

previously, proteolysis of apoE occurs in neurons, not in astrocytes. In normal conditions, 

neurons express very little apoE. However, expression of apoE is increased in neurons 

under circumstances requiring neuronal repair, remodeling, and response to injury [24, 

25]. ApoE may be providing the necessary cholesterol for neuronal repair as well as 

synapse formation, plasticity, and repair [26]. The efficiency of apoE4 to transport 

cholesterol and maintain neurons in response to injury may be reduced when compared 

with the E2 and E3 isoforms and this could be due to lower levels of the apoE protein in 

the brain following proteolysis of the protein [27]. 

In addition to the role of apoE in cholesterol transport, apoE also plays a role in 

the clearance of Aβ deposition in the AD brain. It is hypothesized that apoE binds to Aβ 

and induces a pathological β-sheet conformational change in Aβ [28]. Studies have 
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reported that apoE3 and E2 form more stable complexes with Aβ and to a much greater 

extent than E4 [29], and therefore, the better binding efficiency of apoE3 and E2 may 

enhance Aβ clearance compared with apoE4 [30]. In a recent study, an AD mouse model 

crossed with mice expressing C-terminal-truncated apoE4 showed these mice had a lower 

affinity for beta amyloid and reduced ability to clear beta amyloid [31]. Additionally, the 

APOE allele dosage is associated with increased plaque deposits in AD [32]. In a large 

cerebrospinal fluid (CSF) study of cognitively normal middle-aged people (“at risk” for 

AD), Aβ deposition was associated with low CSF levels of Aβ42 [34]. In carriers of the 

APOE4 allele, lower CFS levels of Aβ42 were observed, emphasizing analysis of CSF 

levels as pre-clinical detection tool for tracking of AD in “at risk” individuals [33]. 

APOE Proteolysis Leads to a Toxic Gain of Function 

The proteolytic cleavage of apoE4 not only may lead to a loss of function, but it 

may also produce a toxic-gain of function. The cleavage of apoE4 produces N- and C- 

terminal fragments that are neurotoxic in nature [22, 34, 35]. It has been hypothesized 

that these fragments are generated following intraneuronal processing of apoE4 [22]. The 

N-terminal fragment containing the receptor binding region of apoE4 (1-191) is 

responsible for binding with tau [36] as well as the hyperphosphorylation of tau, a key 

step in the evolution of NFTs [21]. The neurotoxicity of N-terminal fragments may also 

promote the underlying pathology of AD by producing tangle-like inclusions, which are 

similar to early NFTs both in vitro and in animal models [19, 34, 35]. The C-terminal 

fragment containing the lipid- binding region (171-272) of apoE4 interacts with 

mitochondria and C-terminal fragments have been shown to impair function and integrity 

of mitochondria [34]. In addition, apoE4  fragments may lead to mitochondrial 
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dysfunction by binding to mitochondrial proteins and enzymes and altering their 

activities [37]. Another possible toxic gain of function involves oxidative stress. In this 

regard, a specific fragment of apoE4 promotes cellular uptake of extracellular Aβ leading 

to the formation of reactive oxygen species [38]. Finally, in a transgenic AD mouse 

model, expression of a C-terminal-truncated fragment of apoE4 resulted in behavioral 

deficits and a failure to clear Aβ deposition [31]. These results support the notion that 

fragments produced from the proteolysis of apoE4 gain a toxic function and enhance the 

underlying pathological mechanisms of AD. 

Hypothesis 

The exact nature of the protease involved in cleaving apoE4 is unknown although 

several candidate proteases have been reported including cathepsin D [39], a 

chymotrypsin-like protease [19], aspartic proteases [40], and caspases [23]. Previous 

studies on the proteolysis of apoE4 in AD have identified the presence of a ~18 kDa band 

in the human AD brain extracts, suggesting cleavage near position D154 of the mature 

form of apoE4 (299 amino acids) [19, 22]. This site was chosen based on it being a 

putative caspase consensus cleavage site. Rohn et al. synthesized and characterized a site-

directed cleavage antibody aimed at specifically recognizing this ~18 kDa fragment of 

apoE4 found in AD samples. However, results indicated a protease other than caspase 

was cleaving apoE4 at this site. Therefore, examination of an additional caspase-cleavage 

consensus site with apoE4 was undertaken that would produce a slightly smaller amino-

terminal fragment (~17 kDa) following putative cleavage of apoE4 by caspase-3 [23]. 

Thus, an additional site-directed antibody was designed to target position D151 just 
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upstream of D154 [23], which will be referred to as nApoECFp17 for the duration of this 

work. 

Matrix metalloproteinases (MMPs) are a family of calcium-requiring and zinc-

containing endopeptidases and evidence has suggested that MMPs may play an important 

role in the pathogenesis of AD [41]. Type IV collagenase or MMP-9 is a major MMP that 

is expressed and released by neurons, microglia, and astrocytes [42]. MMP-9 has also 

been identified in neuroinflammation [42]. ApoE4 has been previously associated with 

brain inflammation and AD patients with the E4 allele show increased microglial 

activation compared with AD patients not carrying the E4 allele [43].  In a study 

conducted by Dafinis et al., a particular apoE4 fragment lead to increased extracellular 

levels of MMP-9 [38]. The hypothesis tested in my thesis is that full length apoE4 is a 

target for proteolytic cleavage by MMP-9, resulting in a predicted ~17 kDa fragment and 

this fragment is present in the AD brain. 
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METHODS 

Materials 

Human recombinant apoE4 and E3 proteins purified from E. coli were purchased 

from ProSci Inc. (Poway, CA). Activated human recombinant caspase-3 was purchased 

from Calbiochem (San Diego, CA). The anti-apoE4 N-terminal full-length rabbit 

polyclonal antibody was purchased from Aviva Systems Biology Corp. (San Diego, CA). 

PHF-1 was a generous gift from Dr. Peter Davies (Albert Einstein College of Medicine, 

Bronx, NY). Type I collagenase was from Sigma-Aldrich (St. Louis, MO) and purified 

collagenase was from Worthington Biochemical (Lakewood, NJ). Active MMP-1 and the 

mouse monoclonal MMP-9 antibody were purchased from Abcam Inc. (Cambridge, 

MA), while active MMP-9 was purchased from EMD Millipore (Billerica, MA). The 

monoclonal antibodies, Olig-1 and Iba1/AFI1, were purchased from EMD Millipore 

(Billerica, MA). 

Generation of the Polyclonal Site-Directed Cleavage Antibody to ApoE4 

Synthesis of polyclonal antibodies was accomplished using the 7-mer peptide C-

RKRLLRD, which represents the N-terminal upstream neoepitope fragment of apoE4 

generated following cleavage after the aspartic acid residue located at position D151 of 

the mature form of apoE4. Following synthesis, this peptide was coupled to KLH and 

injected into two rabbits. The resulting sera (verified by ELISAs, Fig. 2) were used to 

affinity purify antibodies using a Sulfolink™ column (Thermo Scientific) coupled with 

the peptide used as an immunogen. For this antibody, synthesis of peptides, injections of 
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immunogens, and collection of antisera were contracted out to Bethyl laboratories 

(Montgomery, TX). 

ELISA 

To verify the polyclonal site-directed cleavage antibody, 40µl of the N-terminal 

neopeptide fragment of apoE4 following cleavage at position D151 was mixed with 

coating buffer and added to 32 wells of a Dynex plate, covered, and incubated overnight 

on a rocker at 4°C. TTBS (pH 7.5) was used to wash the plate after each incubation. 300 

µl of blocking buffer was added to each well and was covered to incubate for 1 hour at 

37° C. Dilutions of the pre-immunized and immunized sera ranged from 1:250- 1:32000. 

The 1:250 dilution contained 4 µl of either pre-immunized or immunized serum and 996 

µl of diluting buffer. Serial dilution was carried out until the 1:32000 dilution. After the 

blocking stage, each dilution was added to the corresponding well and incubated for 2 

hours at 37°C. The secondary antibody was a 1:5000 dilution of horseradish peroxidase 

(HRP). The plate was washed and 100 µl of the secondary solution was added to each 

well to incubate for 1 hour at 37°C. The plate was washed and 100 µl of TMB Microwell 

Peroxidase substrate was added to each well. After 4 minutes, 100 µl TMB Stop solution 

was added to each well. The plate was then read at a wavelength of 450 nm.  

Cell-free assays/Western Blots 

For the proteolysis of apoE4, 40 µg of purified human recombinant apoE4 was 

incubated with active human recombinant caspase-3 at 37° C overnight in 2x reaction 

buffer containing 10 mM DTT. Type I collagenase, purified collagenase, MMP-1, and 9 

experiments were carried out utilizing a reaction buffer containing 100 mM Tris-HCL, 10 
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mM CaCl₂, pH 7.8. The reactions were terminated by adding 5x sample buffer and were 

stored at -20° C. 

For Western blot analysis, samples were separated by 15% SDS PAGE (sodium 

dodecyl sulfate polyacrylamide gel electrophoresis) and transferred to nitrocellulose. 

Transferred gel slabs were stained in Coomassie blue to verify equal loading between 

samples. Nitrocellulose membranes were incubated in nApoE4CF antibody (1:500) 

overnight at 4°C and primary antibodies were visualized using goat anti-rabbit HRP-

linked secondary antibody, incubated for 1 hour at room temperature (1:5,000; Jackson’s 

Laboratory, West Grove, PA), followed by ECL detection. 

Immunoprecipitation and Mass Spectrometry 

Immunoprecipitation experiments were conducted by incubating the 

nApoECFp17 antibody with apoE4 samples digested with Type I collagenase. To 

terminate the actions of Type I collagenase, 100 mM EDTA (ethylenediamine tetra-acetic 

acid) was added at the conclusion of the experiment. Samples were incubated overnight 

at 4°C with nApoECFp17 antibody and then 50 µl of Protein A agarose beads were added 

for 2 hours at 4°C. The agarose beads were then spun down and washed 3X in PBS. 

Samples were prepared for Western blot analysis as described above utilizing a 

commercial antibody that recognizes the extreme amino-terminus of full-length apoE4. 

For mass spectrometry experiment samples were separated by 15% SDS PAGE 

and gel slices were excised from SDS-PAGE gels and digested with trypsin. Briefly, 

excised bands were destained in 25 mM ammonium bicarbonate/50% acetonitrile 

overnight at 4°C. Gel slices were dehydrated in 100% acetonitrile for 10 minutes at room 

temperature, followed by reduction in 10 mM DTT for 60 minutes at 37°C. Next, 
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alkylation was performed in 55 mM iodoacetamide for 60 minutes at room temperature in 

the dark. Protein samples were digested with trypsin in 10 mM ammonium bicarbonate 

overnight at 30°C. Digested peptides were separated using reversed phase 

chromatography (Thermo Scientific Easy-nLC II) and infused into a Velos Pro Dual-

Pressure Linear Ion Trap Mass Spectrometer for MS/MS using CID fragmentation. 

Results were analyzed with Thermo Scientific’s Proteome Discoverer software (v1.3) and 

the Mascot search engine probing the human SwissProt database. Search parameters 

included carbamidomethyl (C) fixed modification, oxidation (M) variable modification, 

maximum of 2 missed cleavages, and 1.5 Da peptide mass tolerance. 

Human Subjects 

Autopsy brain tissue from the frontal cortex of nine neuropathologically 

confirmed AD cases with known apoE isoform genotype and three age-matched control 

cases were studied. Fixed frontal cortex tissue sections used in this study were provided 

by the Institute for Memory Impairments and Neurological Disorders at the University of 

California, Irvine. Approval from Boise State University Institutional Review Board was 

not obtained due to the exemption granted that all tissue sections were fixed and received 

from University of California, Irvine. Brain tissue obtained from University of California, 

Irvine were anonymized and never identified except by case number. Tissue donors or 

their next of kin provided signed informed consents to the Institute for Memory 

Impairments and Neurological Disorders for the use of their tissues in research (IRB 

2014–1526). Case demographics are presented in Table 1. 
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Immunohistochemistry 

Free-floating 40 μm-thick serial sections were used for immunohistochemistry 

and immunofluorescence as previously described above. For bright-field labeling, 

sections were washed with 0.1 M Tris-buffered saline (TBS), pH 7.4, and then pretreated 

with 3% hydrogen peroxide in 10% methanol to block endogenous peroxidase activity. 

Sections were subsequently washed in TBS with 0.1% Triton X-100 (TBS-A) and then 

blocked for thirty minutes in TBS-A with 3% bovine serum albumin (TBS-B). Sections 

were further incubated overnight at room temperature with the antibodies at the described 

concentrations above. Following two washes with TBS-A and a wash in TBS-B, sections 

were incubated in anti-rabbit or mouse biotinylated anti-IgG (1 hour) and then in avidin 

biotin complex (1 hour) (ABC, Elite Immunoperoxidase, Vector Laboratories, 

Burlingame, CA, USA). The primary antibody was visualized using brown DAB 

substrate (Vector Laboratories). 

Immunofluorescence Microscopy 

For immunofluorescence co-localization studies, experiments were initiated by 

incubating in primary antibody overnight followed by application of the ABC, Elite 

Immunoperoxidase kit on day 2 (Vector Laboratories, Burlingame, CA, USA). In this 

case, instead of completing the staining use DAB substrate, we employed Alexa fluor 

488-labeled tyramide (green, Ex/ Em=495/519) that was purchased as part of the TSA 

(Tyramide signal amplification) kit #12 (Life technologies, Green Island, NY). Following 

labeling with the primary antibody, sections were washed 3X in Tris buffer followed by 

incubations in Tris A (15 minutes) and Tris B (30 minutes). Sections were then incubated 

with the second primary antibody overnight at room temperature. On day 3, sections were 
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incubated with secondary biotinylated-SP (long spacer) AffiniPuregoat anti-mouse or 

rabbit IgG for 1 hour (Jackson Immuno Research Labs (West Grove, PA). This was 

followed by incubation in streptavidin Alexa Fluor 555 conjugate for 1 hour (Life 

technologies, Green Island, NY). Following 3X washes in Tris buffer, sections were 

mounted and cover slipped using Pro-Long Gold Antifade with DAPI (Life 

technologies). To determine if cross-reactivity to reagents was a factor in double-labeling 

experiments, experiments were replicated with the antibodies in reverse. 

An Olympus BX60 microscope with fluorescence capability equipped with a 

MagnaFire SP software system for photomicrography was employed for microscopic 

observation and photomicrography of the diaminobenzidine (DAB)-labeled and 

fluorescent sections. The fluorescent molecules were excited with a 100-W mercury 

lamp. Fluorescent-labeled molecules were detected using a filter set having a 460–500-

nm wavelength band pass excitation filter, a 505-nm dichroic beam splitter, and a 510–

560-nm band pass emission filter. 

Confocal Microscopy 

For confocal immunofluorescence imaging, the primary antibodies were 

visualized with secondary antibodies tagged with either Alexa Fluor 488 or Alexa Fluor 

555 (Invitrogen, Carlsbad, CA). Images were taken with a Zeiss LSM510 Metasystem 

combined with the Zeiss Axiovert Observer Z1inverted microscope and ZEN2009 

imaging software (Carl Zeiss, Inc., Thornwood, NY). Confocal Z-stack and single plane 

images were acquired with an Argon (488 nm) and a HeNe (543 nm) laser source. Z-

stacks images were acquired using a 20x Plan-Apochromat (NA 0.8) objective, emission 

band passes of 505–550 nm for the detection of the green channel, Alexa Fluor 488 and 
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550–600 nm for detection of the red channel, Alexa Fluor 555. All images displayed are 

2-D, maximal intensity projections generated acquired Z-stacks. Single plane images 

were acquired with a 63x Plan-Apochromat oil-immersion objective (NA 1.4) with 

emission long pass of 505 nm for the detection of the green channel using Alexa Fluor 

488 and 550–600 nm for the detection of the red channel using Alexa Fluor 555. 

Quantification and Statistical Analysis 

Statistical difference between the average number of nApoE4CFp17-positive 

NFTs in 3 AD cases from each allelic combination of ApoE3/ApoE3, ApoE3/ApoE4, and 

ApoE4/ApoE4A was determined using Student’s two-tailed T-test. To determine the 

percent co-localization, a semi-quantitative analysis was performed by taking 40X 

immunofluorescence, overlapping images from three different fields in frontal cortex 

brain sections of three separate AD cases. Capturing was accomplished by using a 2.5x 

photo eyepiece and a Sony high resolution CCD (charged-coupled device) video camera 

(XC-77). As an example, to determine the percent co-localization between Iba-1 and 

nApoE4CFp17, photographs were analyzed by counting the total number of double-

labeled cells per 40X field for each case, and the number of cells labeled with each 

antibody alone. Statistical differences in this study were determined using Student’s two-

tailed T-test employing Microsoft Office Excel. 
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RESULTS 

In a previous study, we identified a ~17 kDa band when incubating human 

recombinant apoE with activated caspase-3 [23]. Based on results from that study, we 

designed a site-directed cleavage antibody based on a caspase-cleavage recognition site at 

position D151 (LLRD) of the full-length form of apoE4 that would give a predicted 

amino-terminal fragment of ~17 kDa (Fig. 1). Following synthesis of a 7-mer peptide 

RKRLLRD, this peptide was coupled to KLH and injected into rabbits. Peptide-specific 

anitbodies were affinity purified from resulting sera, which was verified by ELISA (Fig. 

2). Western blot analysis was performed to determine if nApoECFp17 could label the 

predicted 17 kDa fragment following incubation with caspase-3. Figure 3A shows that 

we were unable to detect any band following incubation of full-length apoE4 with 

caspase-3. We hypothesized that since apoE4 is a secreted protein, any potential protease 

would be located extracellularly, therefore we next tested collagenase. Incubation of 

recombinant apoE4 with Type I collagenase generated a ~17 kDa fragment that was 

detected by nApoECFp17 (Fig. 3A, second lane, left panel). The nApoECFp17 antibody 

did not react with full-length apoE4, nor did the antibody detect any fragments following 

incubation with recombinant apoE3 (Fig. 3A, left panel). To confirm the specificity of 

nApoECFp17, we preformed immunoprecipitation experiments by incubating 

nApoECFp17 with apoE4 that had been digested with Type I collagenase. The 

nApoECFp17 antibody immunoprecipitated a ~17 kDa fragment that was detected by 

Western blot using an apoE4 antibody whose epitope is at the extreme amino-terminus of 
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apoE4 (Fig. 3B). Additionally, mass spectrometry of the 17 kDa band indicated 77% 

sequence coverage of amino acids 1-151 of apoE4. 

The Type I collagenase originally used was a bacterial collagenase preparation 

that included collagenase, caseinase, clostripain, and tryptic activities. The experiments 

were performed again using purified collagenase as well as MMP-9 and MMP-1 given 

that the MMPs have a high degree of homology with collagenase. When apoE4 was 

cleaved by purified collagenase, high molecular weight bands were produced that were 

detected by nApoECFp17 (Fig. 3C, left panel). These high molecular weight bands 

suggest that the cleavage of apoE4 may result in aggregation. Incubation of full-length 

apoE4 with MMP-9 produced similar results as Type I collagenase, however, incubation 

with MMP-1 produced a high-molecular weight band only when the concentration of 

recombinant apoE4 was doubled (Fig. 3C, left panel). These results suggest 

nApoECFp17 detects an amino-terminal fragment of apoE of ~17 kDa at the cleavage 

site D151, and that MMP-9 can generate this fragment in vitro. In addition, Western blot 

analysis following incubation of apoE3 with MMP-9 indicated that apoE3 is also 

proteolyzed generating in this case only high molecular weight bands (Fig. 5). 

To further test the specificity of the nApoECFp17 antibody, an amino-terminal 

protein fragment of apoE4 was synthesized corresponding to the predicted length 

following cleavage at D151. This amino-terminal fragment (herein termed apoE41-151) 

also contained a 6X histidine (His) tag to facilitate purification from E. coli. In this 

manner, the 6X His tag was attached either at the N-terminal end of apoE41-151 or to the 

C-terminal end of apoE41-151. The addition of the His tag to this fragment greatly 

influenced whether the nApoECFp17 antibody recognized the fragment. Thus, when the 
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His tag was attached to the C-terminal end of apoE41-151, there was limited detection by 

nApoECFp17 in either ELISA assays (Fig. 4A) or Western blot analysis (Fig. 4B). We 

interpret these data to suggest that the addition of the His tag to the C-terminal end of 

apoE41-151 prevented the nApoECFp17 from binding to its epitope on the C-terminal end 

of the fragment. These data further support the specificity of the nApoECF-17 antibody 

for the C-terminal region of apoE4 following cleavage at D151. 

After Western blot analysis confirmed the cleavage of apoE4 in vitro, 

immunohistochemical experiments were done using postmortem frontal cortex brain 

sections from AD cases. In order to establish the staining profile of nApoECFp17 

antibody labeling in AD brain sections, single label, bright-field experiments were carried 

out. The results indicated immunoreactivity by the nApoECFp17 antibody in all AD 

cases examined. The strongest labeling was in neurons (Fig. 6A and B), neuropil threads 

(PHFs with abnormally phosphorylated tau protein) in plaque regions (Fig. 6C), blood 

vessels (Fig 6D), and small circular structures in gray and white matter (Fig. 6E). 

Additional experiments supported the specificity of the nApoECFp17 antibody 

including a lack of staining observed following application of preimmune serum, and 

preadsorption of the affinity-purified antibody with the immunogenic peptide, which 

significantly reduced labeling in serial AD sections (Fig. 7A-D). In addition, there was no 

staining of the nApoECFp17 antibody in aged matched controls, and when AD cases 

were compared with normal cases, there was a significant increase in the number of 

labeled nuclei in AD cases (p=0.0004) (Fig. 7E and F). 

Due to the small size of the circular structures, we hypothesized that the labeling 

was occurring in the nuclei of glia cells. To test the nuclear localization of nApoECFp17 
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in glia cells, the glial markers Iba-1 (to detect microglia), Olig-1 (to detect 

oligodendrocytes, and GFAP (Glial fibrillay acidic protein) (to detect astrocytes) were 

used. In each case, 4’6-diamidino-2-phenylindole (DAPI) was used as the nuclear stain to 

verify the staining that was being observed was nuclear. In Figure 8 A-D and I, the merge 

of the staining of Iba-1, DAPI, and nApoECFp17 in representative frontal cortex AD 

sections indicated approximately 80% of microglia were labeled by nApoECFp17 

antibody. Additionally, the merge of Olig-1, DAPI, and nApoECFp17 indicated about 

27% of oligodendrocytes were labeled with the nApoECFp17 antibody (Fig. 8 E-H, J). 

There was no co-localization of nApoECFp17 with GFAP under similar experimental 

conditions (Fig. 8 K-M). 

To confirm whether the amino terminal fragment labeled by nApoECFp17 

localizes to NFTs as opposed to plaques, double label experiments were conducted with 

the two known tangle markers AT8 and PHF-1. The presence of nApoECFp17 was 

present in fibrillary tangles, a subset of NFTs that were labeled by PHF-1. However, 

nApoECFp17 also stained neurons that were negative for AT8 or PHF-1 (Fig. 9). 

In a final set of experiments, we examined whether nApoECFp17 labeling occurs 

together with MMP-9, an extracellular protease that was able to generate the predicted 

~17 kDa fragment in vitro (Fig. 3C). As an initial approach, we screened representative 

frontal cortex brain sections from AD subjects using bright-field microscopy in single-

label experiments utilizing a human anti-MMP-9 monoclonal antibody. The presence of 

MMP-9 was evident within plaque-rich regions in outer cortical layers and appeared to be 

extracellular as expected (Fig. 10A and B). Next, double-label confocal 

immunofluorescence experiments were undertaken using the same MMP-9 antibody 
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together with nApoECFp17. In this case, although there was no co-localization between 

the two antibodies, the two markers did occur within close proximity to one another 

raising the possibility that MMP-9 may cleave apoE4 in vivo (Fig. 10C-E). 
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DISCUSSION 

Harboring the APOE4 allele increases risk for AD, however, despite exhaustive 

efforts, the mechanism responsible for enhanced risk of harboring this allele remains 

elusive. What separates apoE4 from the other isoforms (E3 and E2) is that apoE4 is more 

susceptible to proteolysis and produces fragments that are neurotoxic in nature [19, 34, 

35]. In order to identify these fragments in the human AD brain, we designed a site-

directed cleavage antibody targeting position D151 of full-length mature form of human 

apoE4. In vitro, this antibody, which we have termed the nApoECFp17 antibody, 

specifically labels an amino-terminal fragment of apoE4 of the correct predicted 

molecular weight of ~17 kDa fragment following cleavage at position D151. Most 

importantly, nApoECFp17 does not interact with full-length apoE4 or E3. Generation of 

this amino-terminal fragment and recognition by nApoECFp17 was only observed with 

recombinant apoE4 and not E3 following digestion with Type I collagenase. In addition, 

immunoprecipitation pull-down experiments using the nApoECFp17 antibody revealed a 

~17 kDa fragment that was detected by a commercial antibody whose epitope was 

located at the extreme amino-terminus of full-length apoE4. Mass spectrometry of the 

~17 kDa fragment indicated a 77% sequence coverage of amino acids 1-151 of apoE4. 

That the epitope for the nApoCFp17 antibody is at the C-terminal end of this amino-

terminal fragment was confirmed following synthesis of ApoE4 1-151 protein fragments. 

A 6X histidine (His) tag was incorporated either at the N- or C-terminal end of ApoE41-

151 to facilitate purification from E. coli. ELISA and Western blot results indicated that 
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the nApoECFp17 antibody was only able to recognize ApoE41-151 in which the His tag 

was attached to the amino-terminal end. Additional experiments in situ using postmortem 

frontal cortex brain sections confirmed the specificity of the nApoECFp17 antibody. 

These immunohistochemical experiments included showing co-localization of 

nApoECFp17 within NFTs and not plaques. Previous studies emphasize this concept of 

amino-terminal fragments localizing specifically with NFTs while carboxyl-terminated 

fragments contribute to AD pathology in aiding in the formation of NFTs, but localize to 

plaques only [19, 22, 23]. Moreover, labeling by nApoECFp17 was prevented following 

preadsorption experiments with the peptide corresponding to the upstream sequence 

(RKRLLRD) that would be generated following cleavage of apoE4 at position D151. 

ApoE is primarily synthesized and secreted from astrocytes and microglia [15], 

but surprisingly, nApoECFp17 strongly labeled nuclei of glial cells as well as NFTs. 

These data suggest that the nApoECFp17 labeled fragment is being cleaved 

extracellularly then taken up by microglia. The amino terminal end of apoE4 includes the 

low-density lipoprotein (LDL) binding domain for full-length apoE because the receptor 

binding region of apoE is 134-151 [15, 19]. The preferential interaction of apoE4 to the 

LDL receptor is due to the arginine at position 112 [44], however the low-density 

lipoprotein receptor protein (LRP) in the same family as the LDL receptor and undergoes 

rapid and constitutive endocytosis. LRP has been suggested to mediate the neuronal 

uptake of cholesterol and other lipids including apoE. The amino-terminal fragment 

produced following cleavage at position D151 may interact with the low-density LRP 

binding region and be taken up by microglia through receptor mediated endocytosis and 



25 

 

 

trafficked to the nucleus. The function of this fragment in nucleus of microglia requires 

further research, but one possible role could be to alter gene expression. 

The final important result from these experiments is that collagenases and MMPs 

are potential proteases capable of cleaving apoE4 or E3. Although the preferential 

proteolysis of apoE4 versus E3 and E2 has been well documented, the exact nature of the 

protease(s) involved in this process has not been definitively identified. In our hands, 

MMP-1 and collagenase produced high-molecular weight complexes in vitro following 

incubation with recombinant apoE4 that were identified following Western blot analysis 

with nApoECFp17. Similar experiments utilizing active MMP-9 were of particular 

interest because it produced the predicted ~17 kDa fragment recognized by nApoECFp17 

following Western blot analysis. Additionally, in the AD brain, nApoECFp17-labeled 

nuclei of microglia were identified in the same areas of the extracellular MMP-9 labeling 

(in plaque-rich regions), which is consistent with where microglia are typically found. 

These data support previous findings showing increased extracellular levels of MMP-9 in 

AD [38] and the breakdown and loss of the integrity of the blood-brain barrier associated 

with AD [45]. 

Together, the results from my thesis suggest a novel role for an amino-terminal 

fragment found in the AD brain. The work from my thesis sets up the stage for further 

research into the mechanism by which apoE4 fragments may be affecting AD 

pathogenesis. The novel finding of the nApoECFp17 labeled amino-terminal fragment 

localizing in the nuclei of microglia offers opportunities to study how this fragment may 

be affecting gene expression. Currently, our lab is continuing to analyze how this 

fragment is internalized through the LRP or LDL receptors using a microglial cell line. 
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Since full-length apoE4 has been thought to traffic to the nucleus and up or down 

regulate various gene expression such as genes associated with apoptosis, pro-

inflammatory cytokines, and microtubule assembly [46], analysis of RNA sequence data 

may shed light into how this fragment affects either signaling pathways or the APOE4 

gene itself. The heightened risk associated with inheritance of the APOE4 allele has been 

hypothesized to stem from the susceptibility of apoE4 to proteolysis more than the E3 or 

E2 forms. Moreover, the enhanced susceptibility of apoE4 to proteolysis suggests apoE4 

loses function or gains toxic functions that contribute to AD pathology, but 

mechanistically remain unexplained. By understanding proteases that are involved in the 

cleavage of apoE4 and how the resulting fragments affect cells in the brain, it could 

ultimately be determined how the fragments affect cell signaling pathways or gene 

expression and establish the role of apoE4 in late-onset AD pathology. 
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FIGURES 

 

 
Figure 1: Synthesis of the nApoECFp17 antibody 
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Figure 2: ELISA: Verification of the polyclonal site-directed cleavage antibody 

ApoE4 titers in immunized rabbits. Pre-immune rabbit serum (red line) measured at an 

absorbance of 450 nm at dilutions from 1:250-1:32,000. And the immunized rabbit serum 

(blue line) confirms the high titer of n ApoECFp17 antibody in sera from immunized 

rabbits.  
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Figure 3: Characterization of a novel site-directed cleavage antibody to 

fragmented apoE4. (A): Preincubation of human recombinant apoE4 but not apoE3 with 

Type I collagenase for 1.5 hours at 37°C results in the generation of a 17 kDa fragment 

recognized by affinity-purified nApoECFp17 antibody (lane 2) following Western blot 

analysis. The right panel depicts the transferred gel slab that was stained with Coomassie 

blue revealing full-length apoE4 and E3 (34 kDa) as well as the associated fragmentation 

pattern following incubation with Type I collagenase. (B): Immunoprecipitation 

experiment with the nApoECFp17 antibody following incubation of full-length apoE4 

with Type I collagenase revealed the presence of a ~17 kDa band on a Coomassie gel 

(left panel) that resulted in an immunoreactive band by Western blot using an animo-

terminal specific antibody to apoE4 (arrowhead, right panel). (C) Identical experiments 

as in Panel A with the exception that purified collagenase (lane 2), MMP-1 (lanes 3 and 

5), or MMP-9 (lane 4) were incubated with recombinant apoE4 (see methods and 

materials for details). Incubation of apoE4 with either purified collagenase as well as 

MMP-1 resulted in the presence of high-molecular weight bands detected by 

nApoECFp17 following Western blot analysis, while incubation of MMP-9 resulted in 

the detection of a 17 kDa band similar to that generated by Type I collagenase. MMP-1 

generated a detectable band only when the apoE4 concentration was doubled (compare 

lanes 3 vs. 5). In both A and C note the specificity of the nApoECFp17 for cleaved 

fragments of apoE4 while no reactivity to full-length apoE was observed. 
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Figure 4: Specificity of nApoECFp17 to the amino terminal of ApoE 1-151. (A) 

ELISA assays in which 96-well plates were coated overnight at 4°C with either ApoE41-

151 with the His tag attached to the C-terminal end (red line), or with the His tag attached 

to the N-terminal end (blue line). The results indicated that the nApoECFp17 antibody 

only recognized ApoE51-151 in which the His tag was attached to the N-terminal end. 

(B) Similar experiments as in Panel A were performed using Western blot analysis. In 

this case, the nApoECFp17 antibody preferentially immunolabeled the apoE4 fragment in 

which the His-tag was localized to the amino-terminal end (Right panel). The left panel 

shows the identical experiment in utilizing an anti-His antibody that easily labeled both 

protein fragments regardless of the location of the His tag. 
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Figure 5: Incubation of apoE3 with MMP-9 generates high-molecular weight 

bands. Full-length recombinant apoE3 or apoE4 was incubated with activated MMP-9 

for 24 hours at 37° C and reactions were terminated by the addition of 5X sample buffer. 

Protein samples were separated on 15% SDS-PAGE gels, transferred to nitrocellulose, 

and the probed with the nApoECFp17 antibody overnight at 1:500. The Ctl lane is full 

length apoE3 protein incubated in the absence of MMP-9. 
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Figure 6: Detection of fragmented apoE in the frontal cortex of the Alzheimer’s 

disease brain. Representation bright-field staining in AD frontal cortex tissue sections 

following application of the nApoeCFp17 antibody. Low (A) and high (B) magnification 

of neurons llustrate the apparent loss of cell body integrity in the majority of neurons 

labeled with the nApoECFp17 antibody. Staining was also observed in neuropil threads 

within plaque-rich regions (C), along blood vesses (D), and the strongest labeling was 

within small circular structures throughout both gray and white matter  (E). All scale bars 

represent 10 µm. 
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Figure 7: Specificity of the nApoECFp17 antibody labeling in the Alzheimer’s 

disease brain. (A and B): Serial AD frontal cortex sections were immunolabeled with 

immunized serum (A) or preimmune serum (B) with specific staining only observed 

following application of immunized serum. Arrows in Panel A point to stained nuclei 

following application of immunized serum. (C and D): Serial AD frontal cortex sections 

were incubated with nApoECFp17 antibody alone (C), or following preadsorption with 

the peptide used as an immunogen (D). Staining was largely prevented following 

preadsorption with peptide (D). (E): Relative lack of labeling by nApoECFp17 in a 

representative neuropathologically normal case. (F): Panel (i) depicts quantitative results 

of the number of nApoECFp17-labeled nuclei in neuropathologically normal cases (NPN, 

green bars, N=3) and in AD cases (red bars, N=9) following staining of frontal cortex 

sections with nApoECFp17. For each case, the number of labeled nuclei was counted in a 

40X field (N=3 fields, ±SEM). The data indicated a significant increase in the number of 

nuclei labeled in AD cases (p= .0004). Panel (ii) illustrates quantitative analysis of the 

number of nApoECFp17-positive nuclei (per 40 µm field, 3 different fields, ±SEM) in 

specific APOE allele AD cases (N=2). Although higher numbers of nApoECFp17-

positive nuclei were observed for the APOE 4/4 group as compared to the other 

genotypes, a significant difference (p<0.5) was only observed following comparison of 

the APOE 4/4 group to 3/4. 
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Figure 8: Nuclear localization of an N-terminal fragment of apoE within 

microglia of the AD brain. (A-D): Representative images from confocal 

immunofluorescence in AD utilizing the nuclear stain, DAPI, (A), nApoECFp17 (B), the 

microglial specific marker, Iba1 (C), with the overlap image shown in (D). Note the 

strong nuclear localization of the nApoECFp17 antibody (arrow) within labeled 

microglia. (E-H): Identical to Panels A-D with the exception that the oligodendrocyte 

marker, Olig-1, was employed to specifically label oligodendrocytes. (I-J): 

Quantification of microglia (I) or oligodendrocytes (J) double-labeled with nApoECFp17 

indicated co-localization in 80% and 27.5% of microglia and oligodendrocytes, 

respectively. Data show the number of Iba1- or Olig-1-labeled cells alone (blue bars), 

number of nApoECFp17-labeled nuclei (green bars), and the number of cells with both 

antibodies (red bars) identified in a 40X field within frontal cortex AD sections by 

immunofluorescence microscopy (n = 3 fields for 3 different AD cases). (K-M): In 

contrast to the nuclear localization of nApoECFp17 within microglia and 

oligodendrocytes, confocal immunofluorescence double-label experiments with 

nApoECFp17 and the astrocytic marker, GFAP, failed to produce any co-localization 

between these two markers. Scale bars K-M represent 10 µm. 
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Figure 9: Localization of an amino-terminal fragment of ApoE within a subset 

of NFTs of the AD brain. (A-F) Confocal immunofluorescence double-labeling in 

representative frontal cortex sections of the AD brain utilizing the nApoECFp17 antibody 

(green), the tangle marker AT8 (red), and the overlap image showed in (F), but not in the 

majority of neurons labeled with nApoECFp17 (C). (G-H) Identical to panels A-F with 

the exception that the mature tangle marker PHF-1 (red) was used. A subset of fibrillar 

NFTs showed strong co-localization of the nApoECFp17 and PHF-1 (arrowhead I) in 

contrast to AT8 labeling. The blue fluorescence in Panels F and I represent the nuclear 

stain, DAPI. 
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Figure 10: Regional co-localization of extracellular MMP-9 surrounding 

nApoECFp17 labeled neurons in the AD brain. (A-B) Representative bright field 

microscopy in AD frontal cortex brain sections in single label experiments utilizing an 

antibody to MMP-9 labeling gray matter at low magnification (A) and high magnification 

(B). Localization appeared to occur in extracellular plaque-rich regions. (C-E) Confocal 

immunofluorescence double-labeling in representative frontal cortex sections of the AD 

brain utilizing nApoECFp17 (green), MMP-9 (red) reveal regional localization of the two 

antibodies, but not co-localization in the merged image (E). 
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TABLES 

Table 1: Case Demographics 

Group Age (yrs) Sex Cause of death APOE Genotype 

AD 71 M AD 3/3 

AD 61 F AD 3/4 

AD 80 F Dehydration 4/4 

AD 83 F Cardiac Arrest 3/3 

AD 75 F AD 3/4 

AD 65 F AD N/A 

AD 76 M AD 3/3 

AD 77 F Cardiac Arrest N/A 

AD 77 F Sepsis 4/4 

NPN 74 F Cancer N/A 

NPN 65 F Cardiac Arrest N/A 

NPN 67 F Heart Failure N/A 

NPN= neuropathologically normal  
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