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ABSTRACT 

Advancing growing seasons and prey abundance drive earlier breeding in dietary 

specialists because, ultimately, consumers benefit by timing their reproduction to 

coincide with peak prey abundance. The selective pressure to breed earlier may be lower 

for species that forage on diverse prey items that vary in abundance both spatially and 

temporally. The selective pressure may be reduced further if predators have access to a 

mosaic of habitats, each of which having different shifts in growing seasons. We studied 

whether earlier breeding of a predatory generalist, the American kestrel (Falco 

sparverius) nesting in a mosaic of habitat types was associated with changes in local 

growing seasons and prey abundance. The study area was predominately mixed 

sagebrush steppe/invasive grass cover types and irrigation-dependent cover types, which 

included crops, pastures, and lawns. Both cover types could typically be found within an 

American kestrel’s territory. From 1992-2015, we examined the potential relationship 

between prey abundance (small mammals) and Normalized Difference Vegetation Index 

(NDVI), recorded seasonal changes in NDVI to estimate the start of the growing season 

(SoGS) in irrigated and non-irrigated land covers, and used annual SoGS estimates to 

predict the timing of kestrel nesting. Finally, we related changes in the timing of SoGS in 

irrigated land cover to planting of crops and weather. The positive relationship between 

maximum NDVI values and small mammal abundance indicated that as maximum NDVI 

values increased so did small mammal abundance. This suggested that NDVI was a 

useful proxy for estimating shifts in the timing of prey abundance over time. NDVI-
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estimated SoGS advanced significantly in irrigated land cover (β = -1.09 ± 0.30 SE) but 

not in non-irrigated land cover (β = -0.57 ± 0.53). Date of kestrel nest initiation was 

positively associated with the SoGS in irrigated land cover and the date of nest initiation 

advanced 15 days in the last 24 years. Irrigated SoGS advance was associated with earlier 

planting of crops following warmer winters, which is a commonly reported human 

adaptation to climate change. Within their territories, most kestrels had access to both 

irrigated (shifting SoGS) and non-irrigated (no change in SoGS) land covers, suggesting 

that kestrels may preferentially track prey in irrigated land cover compared to prey from 

non-irrigated land cover. Kestrels may track irrigated SoGS because irrigated land cover 

provided higher quality prey, or earlier prey abundance may enable kestrel response to 

other selective pressures on nesting phenology, such as seasonal declines in fecundity or 

competition for high-quality mates. Future studies of climate change and wildlife in 

human-dominated environments should consider synergies between climate and human 

adaptations. Finally, studies of climate change effects should consider utilizing direct 

measures of growing seasons, such as NDVI, that may be more reliable indicators of 

environmental change than temperature alone. 
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INTRODUCTION 

Shifts in breeding phenology are a common biological response to climate 

change. There is evidence of earlier breeding in amphibians (Beebee 1995; Gibbs & 

Breisch 2001), reptiles (Telemeco, Elphick & Shine 2009), birds (Brown, Li & Bhagabati 

1999; Dunn & Winkler 1999; Hussell 2003; Torti & Dunn 2005), and mammals (Reale et 

al. 2003; Millar & Herdman 2004) from Antarctica to North America and Europe.  

Earlier breeding is a common pattern affecting diverse taxa, but most hypotheses 

regarding climate change and breeding phenology have been generated from studies of 

passerine birds that specialize on insects (Crick et al. 1997; Forchhammer, Post & 

Stenseth 1998; Both et al. 2004). In these systems, warming spring temperatures have 

affected plant phenology and insect emergence. Early peaks in prey abundance increases 

the selective pressure to nest earlier because birds benefit by timing their reproduction to 

coincide with periods of high food abundance (Lack 1954) and, for some species, nesting 

phenology has advanced (Crick et al. 1997; Dunn & Winkler 1999; Both & Visser 2005; 

Pearce-Higgins, Yalden & Whittingham 2005; Bauer et al. 2010). 

The ability of primary productivity and prey phenology to drive change in avian 

nesting phenology is most likely to occur when birds specialize on relatively few prey 

species that exhibit synchronous, highly peaked abundance (van Noordwijk, McCleery & 

Perrins 1995), or when most of a bird’s different prey species experience common 

phenology shifts (Dunn & Winkler 1999). If and the extent to which generalists or 

species that forage in mixed habitat types are as affected by changes in primary 
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productivity and prey abundance is unclear. Generalist may be less likely to advance their 

breeding phenology in response to one (or a few) prey species because they often forage 

on a variety of prey items with asynchronous abundance patterns (Both et al. 2010) or 

heterogeneous distributions. These species may have the potential to switch among 

possible prey items or change their distribution, whereas specialist species may be forced 

to adjust their nesting phenology to match the timing of their prey. Further, rates of 

change in primary productivity and prey abundance will vary with different plant species 

that require different numbers of growing degree days to germinate or flower. Species 

that live in a mosaic of vegetation types may experience different rates of phenological 

changes in prey abundance. 

Phenology shifts may be further confounded by changes in human activities for 

species that nest in human-dominated landscapes (Plummer, Siriwardena, Conway, 

Risely & Toms 2015). In the Northern Hemisphere, growing seasons are lengthening and 

late frosts are occurring significantly earlier (Schwartz, Ahas & Aasa 2006). Farmers are 

adapting to these changes by planting crops earlier each year and introducing new 

cultivars which has resulted in plants with higher biomass and increased yield (Kucharik 

2006). Without these adaptations to climate change, crops such as maize may have 

experienced substantial losses in yield, but they have instead increased their overall yield 

(Liu, Hubbard, Lin & Yang 2013). Changes in planting and growing degree days (GDDs) 

could result in accelerated changes in nesting phenology in human systems when 

compared to natural systems. 

Unfortunately, it can be difficult to establish coupled phenology change without 

long-term studies on both predators and prey. In lieu of prey data, many studies have 
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used remote sensing data to measure land cover characteristics that may act as a proxy for 

prey abundance (Pettorelli et al. 2005; Balbontin et al. 2009; Trierweiler et al. 2013; Cole 

et al. 2015; McKinnon, Stanley & Stutchbury 2015). Specifically, the amount of infrared 

and visible red light absorbed or reflected back into space can be indexed by Normalized 

Difference Vegetation Index (NDVI) (Reed et al.1994; Pettorelli et al. 2011). Growing, 

green vegetation has higher NDVI values than sparse, less photosynthetically active 

plants (Pettorelli et al. 2011). Seasonal changes in NDVI can be used to estimate the start 

of growing season (SoGS), and track the increase in vegetation greenness that may elicit 

a response from primary consumers like insects and small mammals (Reed et al. 1994). 

For example, Trierweiler et al. (2013) used NDVI as a proxy for grasshoppers and found 

that wintering Montagu’s harriers (Circus pygargus) tracked grasshoppers across West 

Africa spatially and temporally. Cole, Long, Zelazowski, Szulkin & Sheldon (2015) 

showed that NDVI predicted prey abundance for great tits (Parus major) and blue tits 

(Cyanistes caeruleus) and that reproductive phenology for both species could be 

predicted using NDVI. 

American kestrels (Falco sparverius) are small falcons that feed on small 

mammals, reptiles, insects, and birds (Smallwood & Bird 2002). Kestrels are secondary 

cavity-nesters and use a variety of habitats that include shrub and grasslands and 

agricultural and suburban areas (Bird & Palmer 1988). In southwestern Idaho, for 

instance, American kestrels occupy nesting territories often containing both sagebrush 

steppe and invasive grass habitats and irrigation dependent (crops, pastures, and lawns) 

habitats. For American kestrels in this region, the start of nesting (nest initiation) has 

advanced approximately 15 days between 1992 and 2015. Earlier nesting by American 
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kestrels has been associated with warmer winter minimum temperatures, but there have 

not been concomitant changes in spring temperatures (Heath, Steenhof & Foster 2012). 

Our objectives were (1) to evaluate whether advancing nesting phenology American 

kestrels living in heterogeneous habitats with access to both irrigated and non-irrigated 

land covers was associated with changes in the timing of prey abundance and the onset of 

the growing season; and (2) assess the potential influence of weather and human 

activities on changes in the start of the growing season (Figure 1). To do this we: 1) 

evaluated whether NDVI could be used as a reliable index of seasonal prey abundance, 2) 

used NDVI to estimate changes in the SoGS and, presumably, seasonal prey abundance, 

from 1992-2015, 3) evaluated the potential relationship between the changes in NDVI 

over time and corresponding changes in the nest initiation dates of American kestrels, and 

4) assessed the relationship between the SoGS and winter temperatures and the timing of 

planting of crops by local farmers  

Methods 

Study Area 

The southwestern Idaho study area (43º N 116 º W) included between 90-126 nest 

boxes available to kestrels depending on the year (Steenhof & Heath 2009). The nest 

boxes were placed on highway signs along Interstate 84, on trees in rural residential areas 

near Kuna, Idaho, and on wooden poles throughout agricultural and exurban areas south 

of Boise and Meridian, Idaho. Kestrels also had the opportunity within our study area to 

nest in old trees and buildings as well as boxes erected by others. A 900m radius around 

each nest box was considered a “nesting territory” because it represented a confined 
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location where kestrels nested and no more than one pair bred there at a time (Newton & 

Marquiss 1982; Steenhof & Heath 2013). 

The study area was 65 km x 22 km and encompassed approximately 1000-km2 of 

open agricultural and sagebrush steppe land cover. The agricultural areas (referred to as 

irrigated land cover) primarily consisted of irrigated cropland where potatoes, barley, 

spring wheat, winter wheat, alfalfa, and sugar beets were often planted. The sagebrush 

steppe (referred to as non-irrigated land cover) was primarily a mixture of sagebrush and 

invasive grasses. Most kestrel territories in our study area contained both irrigated and 

non-irrigated land covers. The 53 kestrel territories sampled within our study area 

contained an average of 59.42 ± 32.44 % irrigated and 39.8 ± 32.44 % non-irrigated 

systems (�̅� ± SE, Strasser 2010). 

Normalized Difference Vegetation Index (NDVI) 

NDVI values were estimated using Landsat 5 and 8 images (data provided 

courtesy of the U.S. Geological Survey) of the study area (path 42, row 30) taken every 

16 days from 1992-2015 (except for January 2012-mid April 2013 when the Landsat 5 

satellite was down until Landsat 8 satellite started). All image files were calibrated in 

ENVI version 5.2 (Exelis Visual Information Solutions, Boulder, Colorado) by 

calculating the radiance values and then calculating the top of atmospheric (TOA) 

reflectance values (Appendix A). Landsat 5 images were calibrated and TOA reflectance 

was determined using calculations described by Chander & Markham (2003) and 

revisited by Chander, Markham & Helder (2009). Landsat 8 images were calibrated and 

TOA reflectance was determined using the calculations described in the Landsat 8 (L8) 
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Data Users Handbook (2016). NDVI was calculated using the calibrated images and 

Equation 1 for Landsat 5 and Equation 2 for Landsat 8 (Appendix A).  

Landsat 5 NDVI: (Band 4 – Band 3) / (Band 4 + Band 3)        (eqn. 1) 

Landsat 8 NDVI: (Band 5 – Band 4) / (Band 5 + Band 4)        (eqn. 2) 

We selected 34 non-irrigated and 37 irrigated, 80 x 70 m sites within our study 

area using ArcGIS 10.1 (Esri 2012, Redlands, CA). These sites included 28 sites where 

we also conducted prey surveys (see below). All sites were selected in a stratified random 

fashion from kestrel territories where no land use change had occurred between 1992 and 

2015 and were all in close proximity to a kestrel nest box. Although the majority of 

kestrel territories contained both irrigated and non-irrigated habitat, we classified a site 

based on the 80 x 70 m site closest to the kestrel nest box. The NDVI layers created in 

ENVI were loaded into ArcGIS 10.1 and maximum NDVI values were extracted for each 

individual site. We selected maximum NDVI values because minimum values can be 

contaminated by cloud cover and ground conditions (Pettorelli et al. 2005; Bradley, 

Jacob, Hermance & Mustard 2007). All images were visually inspected for cloud cover 

and any images with greater than 25% cloud cover obscuring our overall study area were 

excluded from the analysis. For all images with less than 25% cloud cover obscuring the 

overall study area, individual 80 x 70 m sites were inspected and removed from analyses 

if obscured by clouds. Once maximum NDVI values for each site were extracted, all 

values were sorted and combined into two groups based on habitat type (irrigated or non-

irrigated) within the 80 x 70 m site. Because of differences in vegetation (Bradley et al. 

2007), we created separate estimates for prey (see below) and NDVI in irrigated and non-

irrigated land covers. Seasonal trends in NDVI for the exact 80 x 70 m grid where prey 
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surveys were conducted (see below) were compared for the seasonal trends in prey 

abundance for each of the 28 sites to determine if NDVI could be used as a proxy for 

prey abundance. 

To account for any missing values due to cloud contamination or unavailable 

data, a combination of approaches was used. When missing two data points or less, linear 

interpolation was used to fill the missing data. A third order harmonic regression analysis 

that was trained by the year before and the year after was used to generate an average 

annual NDVI curve. If the values were less than the next known NDVI value, the annual 

curve values were used to replace missing data gaps (Brooks, Thomas, Wynne & 

Coulston 2012). At times the third order harmonic regression was influenced by large 

data gaps and would estimate erroneously high NDVI values. Annual curve values were 

not used if they were greater than adjacent known NDVI values because erroneous 

maximums could influence the start of the growing season (see below). This resulted in a 

few remaining data gaps that were replaced by weekly averages of known NDVI values. 

Annual NDVI curves and 3-day moving averages were plotted and the date at which the 

moving average intercepted the annual NDVI curve was considered the SoGS because it 

signifies the date NDVI makes a sudden increase and could be explained by 

photosynthetic activity (Reed et al. 1994). 

Prey Surveys 

The mix of irrigated and non-irrigated cover types around their nest boxes 

provides kestrels with multiple food providing systems from which to choose. Based on 

camera surveillance data at nest boxes, the main prey items of American kestrels in our 

study area were small mammals (Appendix B). Seasonal abundance of small mammals 
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was assessed using presence/absence data collected from track plates enclosed in tubes 

modified from the design of Drennan, Beir & Dodd (1998), Glennon, Porter & Demers 

(2002), and Wiewel, Clark & Sovada (2007). The tubes were 30 cm long on top and 20 

cm long on the bottom and were constructed of two halves of plastic rain gutter taped 

together on one side and held shut by one rubber band. This design allowed the track 

plates to be rainproof, light weight, and easy to deploy (Drennan et al. 1998; Glennon et 

al. 2002; Wiewel et al. 2007). The track plates were 18 cm long aluminum flashing 

placed on the bottom of the tube and held in place by Velcro. Each end of the track plate 

was covered by a felt pad that was coated in ink, a 1:1 mixture of lamp black 

(DanielSmith, Inc., Seattle, WA, USA) and paraffin oil (STE Oil Company, Inc., San 

Marcos, TX, USA). A piece of white paper between each felt pad recorded footprints. 

Traps were baited with a small amount of peanut butter along the top half of the track 

plate tube. Traps were secured in place by two tent stakes. 

Small mammals were sampled near 28 kestrel nest boxes in 2014. At each nest 

box, 20 track plates were placed in a 5 x 4 rectangular trapping grid with 20 m between 

each track plate and all within 100 m of the nest box. Cover types were classified based 

on the vegetation present where small mammals were sampled regardless of cover type in 

the territory surrounding the nest box. Ten track plate plots were in irrigated land cover 

and 18 were in non-irrigated land cover. Track plates were deployed at each nest box site 

for three consecutive days each month from March through July. Trapping order was 

selected in a stratified random order so that the sites sampled last during a previous 

month were not the first sampled the next month, and sites were not trapped in the same 

order each month. Track plates were checked once per day during which time tracks were 
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recorded as present or absent. If tracks were present the paper was replaced, the location 

of trap was recorded, and bait was reapplied. 

Animal tracks were identified using Murie & Elbroch (2005) and, at some trap 

sites, motion-activated trail cameras (Bushnell ® HD Trophy Cameras, Overland Park, 

KS, USA). We used trail cameras placed near several track plates within different kestrel 

territories to obtain visual confirmation of the identity of small mammals visiting traps. 

Ultimately tracks were classified as being from: mountain cottontail (Sylvilagus nuttallii), 

ground squirrel (Urocitellus sp.), or small mammal, the latter of which generally were 

deer mice (Peromyscus maniculatus) and voles (Microtis sp.). Voles and deer mice were 

grouped together because their footprints were of similar size and both were potential 

kestrel prey (Appendix B). 

Nesting Phenology 

From 1992 to 2015, except for 2007, American kestrels nesting in boxes in 

southwestern Idaho were monitored (Steenhof & Heath 2009; Steenhof & Peterson 

2009). Prior to the nesting season each year, nest boxes were cleaned and lined with pine 

shavings. Beginning in early March, boxes were visited every 7-21 days to determine 

kestrel occupancy and clutch size in actual nests. The mean nest discovery dates (average 

date when eggs were first discovered in a nest, regardless of number of eggs) each year 

were used as an index of annual timing of kestrel nesting because clutch initiation dates 

(date first egg was laid) were not available for the years 1992 to 2006 (Steenhof & Heath 

2009). These dates correlated well with hatching dates, as nests discovered early hatched 

early (Pearson correlations analysis: r = 0.89, n = 577, P < 0.001), so we considered them 

to be a reliable index of clutch initiation date. Nest discovery dates for the years 1992 to 
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2015 ranged from 14 March to 12 July and averaged 26 April. Mean nest discovery date 

was used, instead of the median nest discovery date, because monitoring the mean 

nesting event allows for monitoring of population level effects (Reed, Jenouvrier & 

Visser 2013). All methods and protocols described above were approved by the Boise 

State University IACUC review board (IACUC Approval Numbers 006-AC14-005, 006-

01-006, and 006-05-004) and conducted under scientific permits issued to J. Heath from 

state and federal authorities. 

Crop Phenology and Weather 

We obtained Idaho Crop Progress and Condition reports from the USDA National 

Agricultural Statistics Service for years 1992 to 2013 to examine whether some of 

Idaho’s most commonly planted crops were planted earlier in the year over time. The 

USDA stopped reporting district-specific data and transitioned to statewide data in 2014 

so years 2014 and 2015 were excluded from our analysis. We examined planting patterns 

over time for the following crops: barley, potatoes, spring wheat, and sugar beets. 

We used daily winter minimum temperature anomaly data from the Global 

Historical Climatology Network gridded dataset (HadGHCND, National Climatic Data 

Center 2009) station nearest the study area (station 1295) to examine the potential effect 

of winter temperature change on crop planting dates from 1992-2013 (see Heath et al. 

2012). Winter months were November to February to coincide with the months when 

overwintering kestrels were present (Crick & Sparks 1999; Both et al. 2010; Heath et al. 

2012). Daily anomalies were the difference of each daily minimum temperature from a 

daily ‘base value’ (Caesar, Alexander & Vose 2006). Daily ‘base’ minimum temperatures 
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were calculated from the climate station’s minimum temperature records for 1961-1990 

using a five-day window centered on each day (Caesar et al. 2006). 

Statistical Analyses 

Prey Abundance 

An index of small mammal abundance was estimated for each American kestrel 

territory from the presence and absence data collected using track traps following 

methods in Royle & Nichols (2003) in package ‘unmarked’ (Fiske & Chandler 2011). 

Indices were derived using territory and month as covariates. The daily indexes for each 

three day sampling period were averaged for each territory and represented the monthly 

prey abundance at the territory level. The use of NDVI as a proxy for prey abundance 

was validated using a liner mixed-effect model that assessed the potential effects of 

NDVI, cover type, and the interaction between NDVI and cover type on small mammal 

abundance index values and included site as the random effect. 

NDVI and Nesting Phenology 

We examined the potential relationship between mean nest discovery date and 

SoGS for irrigated and non-irrigated land covers using a linear model. We did not 

separate nest discovery dates based on land cover type as with small mammal and NDVI 

analyses because kestrels had access to both land covers surrounding their nest box. We 

examined seasonal changes in maximum NDVI values for 2014 separately for irrigated 

and non-irrigated land covers using linear models with Julian date and Julian date-

squared as predictors. We assessed potential trends in the annual SoGS for irrigated and 

non-irrigated land covers separately using linear models. Annual trends in kestrel nesting 
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phenology were examined using linear models with average nest discovery date as the 

dependent variable and year as the independent variable. 

Crop Phenology and Weather 

We used linear models to determine if the percent of land planted with each crop 

planted was higher earlier in the year from 1992 to 2013. All crop types were combined 

within a single linear model and we used crop type, initial reporting date, and year to 

examine whether the proportion of land planted at initial reporting had changed over 

time. The predictor variable winter temperature anomaly, instead of year, was used to 

examine whether the proportion of land planted with a crop depended on the preceding 

winter weather. Finally, we examined whether the proportion of land planted predicted 

SoGS from 1992 to 2013. All analyses were performed in R v. 3.1.1. Results are 

presented as β ± SE throughout. 

Results 

Prey Abundance 

We deployed a total of 8,280 track plates from March to July and recorded 4,949 

(59.8%) track plates positive with small mammal foot prints, 3,755 (75.9%) of which 

were deer mouse or vole. Monthly abundance index values for non-irrigated trapping 

plots within kestrel territory (n = 18) locations ranged from 0.02 – 2.04 mammals/trap 

(local abundance) and showed a seasonal peak in mid-May. Local abundance values in 

irrigated land cover ranged from 0.02 - 1.84 mammals/trap and peaked in early July 

(Figure 2). For non-irrigated and irrigated land covers, maximum NDVI values peaked on 

10 May 2014 and 9 July 2014, respectively (Figure 3). Thus, temporal changes in 

abundance of small mammals followed a similar pattern as NDVI. There was a 
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significant positive relationship between small mammal abundance and maximum NDVI 

values in both land covers (Linear mixed-effect model: β = 4.81 ± 2.3, P < 0.001, R2 = 

0.34, Figure 4). Therefore, we considered maximum NDVI values to be a predictor of 

seasonal small mammal abundance in both non-irrigated and irrigated land covers. 

NDVI 

Between 1992 and 2015, SoGS for irrigated and non-irrigated land covers ranged 

from 12 March to 29 April and from 4 February to 7 April, respectively (Figure 5). SoGS 

significantly advanced by 26 ± 14 days (�̅� ± SE) from 1992-2015 in irrigated land cover 

(Linear regression: β = -1.09 ± 0.3, F1, 21 = 13.35, P < 0.002), but not for non-irrigated 

land cover (β = -0.57 ± 0.53, F1, 21 = 1.14, P = 0.30). 

Nesting Phenology 

From 1992-2015, excluding 2007, there were 1069 kestrel nest discoveries 

ranging in date from 14 March to 9 July. The mean nest discovery dates ranged from 18 

April to 11 May and showed a significant advancement of 15 days over 24 years (Linear 

regression: β = -0.61 ± 0.12, F1, 21 = 26.64, P < 0.001, Figure 6). Kestrel nest discovery 

dates were related to SoGS in irrigated land cover (β = 0.32 ± 0.08, F1, 20 = 16.08, P < 

0.001, Figure 7), but not the SoGS in non-irrigated land cover (β = 0.07 ± 0.07, F1, 20 = 

1.03, P < 0.32, Figure 8). 

Crop Phenology and Weather 

From 1992-2013, the percent of each crop planted was higher on the first day of 

reporting when controlling for crop type and day of report, which likely reflects earlier 

planting (Linear regression: β = 0.87 ± 0.39, F1,80 = 5.03, P < 0.03, Figure 9). Warmer 

winter temperature anomalies resulted in a higher percentage of crops being planted on 
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the first day of reporting the following spring (β = 6.59 ± 2.41, F1, 72 = 7.50, P = 0.008, 

Figures 10). As farmers planted their crops earlier in the year, the NDVI estimated SoGS 

significantly advanced (β = - 0.75 ± 0.21, F1, 72 = 12.51, P < 0.001, Figure 11). This 

suggests that farmers are having an impact on the SoGS in irrigated land cover by 

advancing the emergence of vegetation, and is consistent with NDVI-based SoGS for 

irrigated land cover (Figure 1). 

Discussion 

We found that NDVI was a reliable indicator of seasonal prey abundance and that 

annual NDVI patterns from 1992-2015 indicated that the SoGS has advanced in irrigated, 

but not non-irrigated land cover within our study area in southwestern Idaho. American 

kestrel nest initiation was positively associated with the SoGS in irrigated land cover. The 

SoGS has advanced in irrigated land cover because farmers planted earlier after warmer 

winters, and winter temperatures tended to increase during the years we studied it 

(Linderholm 2006). To our knowledge, this is the first evidence of human adaptation to 

climate change possibly affecting the phenology of wildlife. 

Earlier planting after warmer winters is consistent with other studies that have 

found significantly earlier growing seasons in croplands after warm winters (Linderholm 

2006). We did not find concomitant advances of SoGS in non-irrigated land cover. 

Although vegetation in these areas were also experiencing increased growing degree 

days, the rate of change in growing degree days was not as rapid as the rate of change in 

planting in irrigated land cover, resulting in habitat-specific trends in SoGS. This is likely 

due to farmers planting cold tolerant crop strains capable of growing in cooler 

environments (Kucharik 2006). 
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Kestrels in our study area typically have access to both irrigated and non-irrigated 

land covers around their nest box, but kestrel phenology throughout the study area was 

only associated with SoGS in irrigated land cover. Peaks in small mammal abundance in 

irrigated land cover have potentially advanced by 26 days since 1992, whereas, kestrels 

have only advanced nest initiation by 15 days. Access to non-shifting systems may 

reduce the selective pressure to track changes on irrigated systems, resulting in 

differential rates of change between SoGS and kestrels. In our area, the kestrels feeding 

in areas dominated by irrigated land cover primarily foraged on small mammals and 

insects, but kestrels feeding in areas dominated by non-irrigated land cover had a more 

varied diet consisting of insects, reptiles, birds, and a lower proportion of small mammals 

(Appendix B). However, these diet differences have no apparent effects on nest success 

(Heath unpub. data). For generalist species, or those feeding in heterogeneous habitats, 

mismatch between peaks of some prey in some areas are unlikely to have the same fitness 

consequences as mismatches for a specialist species (Visser & Both 2005). Alternatively, 

earlier prey abundance in irrigated land cover may enable kestrel response to other 

selective pressures on nesting phenology, such as seasonal declines in local fitness 

(Steenhof & Heath 2009, 2013) or competition for high-quality mates. In recent years, the 

earliest nesting kestrels have successfully produced two clutches of offspring (Steenhof 

& Peterson 1997; Heath unpub. data). This would suggest that there may be additive 

effects of other drivers of population change contributing to the positive association 

between irrigated SoGS and kestrel phenology and that kestrel reproduction rates are 

likely to increase with earlier nesting. However, whether increased energetic costs of 

raising multiple broods decreases kestrel survival is unknown. 
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Previously kestrel nesting phenology was described as being correlated with 

winter minimum temperature anomalies, and not spring temperature anomalies (Heath et 

al. 2012). Further, advancement in kestrel nesting phenology was hypothesized to be the 

result of reduced overwintering and pre-breeding constraints from warmer winters and 

seasonal declines in local fitness (Heath et al. 2012). By using NDVI data and focusing 

on the vegetation across our study area, we found that, although spring temperatures have 

not increased, the SoGS has advanced owing to human response to climate change. This 

result highlights the need for direct and reliable indicators of environmental change. 

Other studies of common agricultural species, such as European starlings (Sturnus 

vulgaris), have found nesting phenology to be associated with winter temperatures rather 

than spring temperatures (Williams et al. 2015). Given the number of wildlife species that 

depend on agricultural systems for portions of their annual life cycle, agricultural climate 

adaptations are likely to be a significant driver of biological change. Further, human 

activities, such as land-use change, recreation, and urbanization, which may not be 

climate adaptive, can act with climate change to affect species distributions, abundance, 

and phenology (Pautasso 2012). Eurasian blackcaps (Sylvia atricapilla), for example, 

have altered wintering behaviour and migration strategies as a result of warmer winters 

and backyard bird feeding (Plummer et al. 2015). 

This study demonstrates the multitude of factors that have potential to contribute 

to changes in reproductive phenology of individual species and in broader biological 

systems. As human systems begin to shift in response to climate change, understanding 

the relationships between alterations in either or both climate and human activity will 

become increasingly important. This study also demonstrates the importance of 
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considering full annual cycles (Balbontín et al. 2009; Williams et al. 2015; Sicurella, 

Musitelli, Rubolini, Saino & Ambrosini 2016) when discussing climate change, as 

winter, not spring temperatures, predict the timing of the SoGS, especially in agricultural 

systems (Appendix C). 

Moving Forward 

It is largely unknown what effect timing of changes in prey abundance will have 

on those predators with access to multiple food providing systems. More research needs 

to be done on similar predators to determine what impacts climate change will have on 

the timing of events in their annual cycle. This study provides insight into at least one 

case of a predator with access to multiple systems tracking a single food source.   
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Figures 

 
Figure 1. The schematic for the American kestrel system in southwestern Idaho, 

USA for 1992 to 2015. Warmer winter temperatures as well as the human decision 

to plant crops earlier have resulted in an earlier SoGS in irrigated land cover only. 

Normalized Difference Vegetation Index (NDVI) was used as a proxy for prey 

abundance as well as a measure of the SoGS for both irrigated and non-irrigated 

land covers. American kestrels are advancing their timing of nesting by 15 days in 

order to capitalize on the advancing peak in prey abundance occurring in irrigated 

land cover. 
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Figure 2. Small mammal abundance as a function of calendar date during 2014 

for 18 plots in non-irrigated land cover (squares and solid line) and 10 plots in 

irrigated land cover (triangles and dashed line) in southwestern Idaho, USA. 

Abundance peaked in mid-May and early July for non-irrigated and irrigated land 

covers, respectively. 
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Figure 3. NDVI as a function of calendar date for 10 plots in irrigated land cover and 

18 plots in non-irrigated land cover during 2014 in southwestern Idaho, USA. Non-

irrigated land cover (squares) reached maximum NDVI around 10 May and differed from 

irrigated land cover (triangles) which reached maximum NDVI around 9 July. 
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Figure 4. Relationship between monthly residual small mammal abundance 

(when accounting for trapping site and land cover type) and maximum NDVI in 

southwestern Idaho for 2014. The solid and dotted lines represent the predicted 

relationship and 95% confidence interval, respectively.  
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Figure 5. Relationship between SoGS and year for 1992 to 2015 in southwestern 

Idaho, USA. The SoGS has significantly advanced by 26 days in irrigated locations 

only (triangles and dashed line). The SoGS has not significantly advanced in non-

irrigated locations (circles and solid line) during this same period of time. The solid 

and dashed lines represent the predicted relationships and the dotted lines represent 

the 95% confidence intervals. 
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Figure 6. Relationship between American kestrel mean nest discovery dates and 

year for 1992 to 2015 in southwestern Idaho, USA. Nest discovery dates have 

significantly advanced by 15 days. Mean nest discovery date was used to represent 

nest initiation date because the two have been shown to be highly correlated 

(Steenhof & Heath 2009). The solid and dotted lines represent the predicted 

relationship and the 95% confidence intervals, respectively. 
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Figure 7. Relationship (and 95% confidence intervals) between American 

kestrel mean nest discovery date and the NDVI estimated SoGS in irrigated land 

cover from 1992 to 2015 in southwestern Idaho, USA. 
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Figure 8. Relationship (and 95% confidence intervals) between American 

kestrel mean nest discovery date and the NDVI estimated SoGS in non-irrigated 

land cover from 1992 to 2015 in southwestern Idaho, USA. 
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Figure 9. Relationship (and 95% confidence intervals) between the residual 

percentage of fields planted, when accounting for crop type and date of reporting, 

and year for 1992 to 2013 in southwestern Idaho, USA. Crop types included barley, 

potatoes, spring wheat, and sugar beets. 
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Figure 10. Relationship (and 95% confidence intervals) between the residual 

percentage of fields planted, when accounting for crop type and date of reporting, 

and winter minimum temperature anomalies for 1992 to 2013 in southwestern 

Idaho, USA. Warmer winter temperature anomalies resulted in a higher percentage 

of barley, potatoes, spring wheat, and sugar beets being planted on the first day of 

reporting the following spring. 
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Figure 11. Relationship (and 95% confidence intervals) between SoGS and 

residual percentage of fields planted, when accounting for crop type and date of 

reporting, for 1992 to 2013 in southwestern Idaho, USA. As the proportion of fields 

planted by farmers in southwestern Idaho increased, the NDVI estimated SoGS 

significantly advanced. 
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APPENDIX A 

Analysis of Normalized Difference Vegetation Index Data 
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Normalized Difference Vegetation Index (NDVI) 

NDVI 

Normalize Difference Vegetation Index (NDVI) is just one of many vegetation 

indexes that can be used in a similar fashion and is calculated on a -1 to 1 scale using 

Equation A1: 

NDVI = (NIR – RED) / (NIR + Red)       (Equation. A1) 

where NIR is data from the near-infrared, and RED are data from the visible red section 

of the electromagnetic spectrum (Reed et al. 1994). NDVI is based on the amount of 

infrared and visible red light absorbed or reflected by a plant back into space (Reed et 

al.1994 & Pettorelli et al. 2011). Growing, green vegetation has higher NDVI values than 

sparse, less photosynthetically active plants (Pettorelli et al. 2011). 

Steps for obtaining and downloading Landsat imagery 

For this research, NDVI values were estimated using Landsat 5 and 8 imagery, 

which was available for download courtesy of the U.S. Geological Survey 

(http://earthexplorer.usgs.gov, see “Steps for obtaining Landsat imagery”). Images of the 

study area (path 42, row 30) were taken every 16 days from 1992-2015 (except for 

January 2012-mid April 2013 when the Landsat 5 satellite was down until Landsat 8 

satellite started). Once downloaded, Landsat images were unzipped to reveal 11 

individual color bands, a copy of the image, and a metadata file (see “Steps for obtaining 

Landsat imagery” below). 

Steps for obtaining Landsat imagery: 

1. Landsat imagery can be obtained from the website http://earthexplorer.usgs.gov/ 
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 You must register and request a login to obtain large amounts of data from this 

website. Do so before you begin by clicking “Register” at the top right corner. 

Always login before searching for data. 

2. On the Search Criteria Tab: 

 Search for our study area: enter Path 42 Row 30 in the appropriate boxes.  

 You can search for specific date ranges as well. This is important when searching 

for long term data sets because the website only provides 100 available files at a 

time.  

3. On the Data Sets Tab: 

 Click on Landsat Archive and select appropriate Landsat satellite. 

4. Click the Results icon at the bottom of the page. 

5. Click the Results Tab to see all the archived files from your search. 

6. Select all of the files you want to download by clicking the floppy disc icon next to 

each image. This will allow you to bulk download all of the files. 

7. Once all files have been selected, click the “Item Basket” icon. Then click “Proceed to 

Checkout” and USGS will send you an email with directions for obtaining the files or 

you may begin downloading immediately. 

Steps for downloading Landsat imagery: 

1. To download the files you will need to download the Bulk Download Application 

(BDA) by clicking the “Bulk Download Application” link. 

2. Once downloaded, open the BDA program and login. The bulk collection of files will 

be present after logging in. 
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3. Select a location on your computer to download the files to and begin downloading the 

files. 

4. The files will download zipped and must be unzipped.  To quickly unzip files, 

download an unzipping program such as 7-zip file manager. 

5. Go to the location you downloaded your file to and unzip the file. Then unzip the file a 

second time in order to find the individual bands and the metadata file. 

Steps for calibrating Landsat imagery 

The metadata files were loaded into ENVI version 5.2 (Exelis Visual Information 

Solutions, Boulder, Colorado) for calibration following the steps described in Chander & 

Markham (2003) and revisited in Chander, Markham & Helder (2009) (see “Steps for 

calibrating Landsat imagery” below). The first step was to calculate radiance (Lλ) using 

Equation A3 (Chander et al. 2009): 

𝐿𝜆 =  
(𝐿MAXλ − LMINλ)

(𝑄𝑐𝑎𝑙𝑚𝑎𝑥−𝑄𝑐𝑎𝑙𝑚𝑖𝑛)
(𝑄𝑐𝑎𝑙𝑚𝑎𝑥 − 𝑄𝑐𝑎𝑙𝑚𝑖𝑛) + 𝐿𝑀𝐼𝑁𝜆            (eqn. A3) 

where 

Lλ = spectral radiance at the sensor’s aperture [ W / (m² sr μm)] 

Qcal = Quantized calibrated pixel value [DN] 

Qcalmin = Minimum quantized calibrated pixel value corresponding to LMINλ [DN] 

Qcalmax = Maximum quantized calibrated pixel value corresponding to LMAXλ [DN] 

LMINλ = spectral at-sensor radiance that is scaled to Qcalmin [W / (m² sr μm)] 

LMAXλ = spectral at-sensor radiance that is scaled to Qcalmax [W / (m² sr μm)] 

Radiance was calculated manually using the Band Math tool within ENVI and required 

the specific value for each of the variables which was found in the metadata file. Next, 

top of atmospheric (TOA) reflectance was calculated using Equation A4 (Chander et al. 
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2009). TOA reflectance requires ESUNλ (mean exoatmospheric solar irradiance) which 

was not recorded by the Landsat 8 satellites so it was estimated using Equation A5 

(Department of the Interior U.S. Geological Survey 2015). 

𝜌𝜆 =  
𝜋∙𝐿𝜆∙𝑑2

ESUN𝜆 ∙cos𝜃𝑠
                                                         (eqn. A4) 

where 

ρλ = Planetary TOA reflectance [unitless] 

π = Mathematical constant equal to ~ 3.14159 [unitless] 

Lλ = Spectral radiance at the sensor’s aperture [W / (m2 sr μm)] 

d = Earth-Sun distance (astronomical units) 

ESUNλ =   Mean exoatmospheric solar irradiance [W / (m2 μm)] 

θs = Solar zenith angle [degrees9] 

                       𝐸𝑆𝑈𝑁 = (𝜋 ∙ 𝑑2) ∙
(𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚) 

(𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚)
                          (eqn. A5) 

where 

π = Mathematical constant equal to ~ 3.14159 [unitless] 

d2 = Earth-Sun distance (astronomical units) 

Steps to calibrate files in ENVI: 

1. Open ENVI (64-bit). 

2. Go to “File” and select “Open” 

3. Select the desired metadata file to be calibrated.  

 To read the metadata file name to determine date: 

LC80420302013108LGN01_MTL 

  LC8 means Landsat 8, could be LC5 for Landsat 5 

Year: LC80420302013108LGN01_MTL  
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Julian Date: LC80420302013108LGN01_MTL 

4. Search for the Band Math tool in the Toolbox search option.  

5. To calculate Radiance: [(radiance max-radiance min)/(qcal max-qcal min)*(band# -

1+– radiance min)] 

 For Landsat 5, enter:    

Band 3: ((264.0+1.170)/254)*(B3-1)-1.170     

Band 4: ((221.0+1.510)/254)*(B4-1)-1.51           

 For Landsat 8, enter: 

Band 4: ((radiance_max_band_4-radiance_min_band_4)/65534)*(B4-1) +  

 radiance_min_band_b4 

Band 5: ((radiance_max_band_5-radiance_min_band_5)/65534)*(B5-1) + 

 radiance_min_band_b5  

 Note: 

 1. Radiance maximum and radiance minimum can be found in the metadata file. 

6. Click “OK” and it will say that B3 or B4 is an unknown variable. You must select the 

correct band number within the Landsat file you just uploaded. 

7. Save the file. 

8. To calculate Reflectance: 

 For Landsat 5, enter: 

 Band 3: (!π*B3*(Earth Sun Distance)2)/(ESUN * cos((90-sun elevation)*!π 

/180)) 

 Band 4: (!π *B4*(Earth Sun Distance)2)/(ESUN* cos((90-sun elevation)*!π 

/180))   
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 Notes:  

 1. ESUN for Landsat 5 was provided by Chander &  Markham (2003): 

     Band 3: 1536 

       Band 4: 1031 

 2. Earth sun distance and sun elevation are found in the metadata file. 

 3. When asked to select B3 and B4, select the bands corrected for radiance. 

 For Landsat 8, enter: 

 Band 4: (!π*B4*(Earth Sun Distance)2/ ESUN *cos((90-sun elevation)*!π /180)) 

 Band 5: (!π*B5*(Earth Sun Distance)2/ ESUN *cos((90-sun elevation)*!π /180)) 

 Notes: 

 1. ESUN was not collected for Landsat 8 and must be estimated using equation: 

    ESUN = (π ∗ d2) ∗ radiance maximum /reflectance maximum 

 2. When asked to select B3 and B4, select the bands corrected for radiance. 

 3. When asked to select B4 and B5, select the bands corrected for radiance. 

Steps for calculating NDVI and extracting NDVI values from ArcGIS 

NDVI was calculated using the Band Math tool in ENVI instead of the NDVI tool 

provided in order to insure that correct reflectance files were used (see “steps for 

calculating NDVI” below). NDVI was calculated using Equation A6 for Landsat 5 

images and Equation A7 for Landsat 8 images because the NIR and Red bands changed 

in number when satellite 8 started. 

NDVI = (Band 4 – Band 3) / (Band 4 + Band 3)            (eqn. A6) 

where 

Band 4 = Near-infrared Light 
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Band 3 = Visible Red Light 

NDVI = (Band 5 – Band 4) / (Band 5 + Band 4)           (eqn. A7) 

where  

Band 5 = Near-infrared Light 

Band 4 = Visible Red Light 

Once NDVI files were created in ENVI, they were saved as TIFF files so that they 

could easily be imported into ArcGIS 10.1 (Esri 2012, Redlands, CA). ArcGIS 10.1 was 

used to draw a polygon that represented our 1000 km2, irregularly shaped study area. The 

GPS locations of 71 kestrel nest boxes were imported into ArcGIS 10.1 and landscape 

type was classified as irrigated or non-irrigated, resulting in 37 irrigated and 34 non-

irrigated locations. The nest boxes selected were at locations in which no land use change 

had taken place during our study period. An 80 x 70 m polygon was drawn directly in 

front of the kestrel nest box to represent the area where prey surveys were conducted in 

2014. This established NDVI values and local prey abundance values as the same spatial 

scale. 

Each NDVI image was visually examined to determine if cloud cover was present 

and potentially impacting the underlying NDVI value. The image was not used if >25% 

of the study area was obscured by clouds. If <25% of the study area was covered by 

clouds, each individual 80 x 70 m site was examined to determine if it was obscured. The 

NDVI data was thrown out if the individual site was obscured in any way. Maximum 

NDVI values were extracted for each individual site. We selected maximum NDVI 

values because minimum values can be contaminated by cloud cover and ground 

conditions (Pettorelli et al. 2005 & Bradley et al. 2007). All maximum NDVI values were 
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grouped based on vegetation type and Julian date. The highest maximum NDVI value 

within each vegetation type was considered the NDVI value for that Julian date.  

Steps to calculate NDVI: 

1. For Landsat 5, enter: (B4-B3)/(B4+B3) 

 Note: 

 1. Band 3 and 4 must be the reflectance bands you just made. 

2. For Landsat 8, enter: (B5-B4)/(B5+B4) 

 Note: 

 1. Band 5 and 4 must be the reflectance bands you just made. 

3. Once the NDVI tile appears, go to File-> Save as -> Save as… (ENVI, NITF, TIFF, 

DTED). Then select the NDVI file you just made, click ok. Click the “output Format” 

and select TIFF. TIFF files are easily loaded in ArcGIS. 

 Steps for getting NDVI values from ArcGIS: 

1. Open ArcGIS and create a study area shape file or individual locations where NDVI is 

to be examined. If using individual locations, be sure to name them appropriately and 

combine all shape files into one large file. This will reduce the need to extract NDVI 

from each individual location. 

2. Add the NDVI TIFF file created in ENVI to ArcGIS by selecting “Add Data” and 

following prompts. 

3. To extract NDVI values, use the “Zonal Statistics as Table” tool. Fill in the blanks as 

follows: 

 Input raster or feature zone data: Use the study area or file of multiple small sites. 
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 Zone field: If you have renamed your small sites you will select the column 

header that applies to your column of site names. 

 Input value raster: Use the NDVI TIFF file to be analyzed. 

 Output table: Properly name the file and provide a pathway to the folder where it 

will be saved. 

 Uncheck “Ignore NoData in calculations [optional]” if desired. 

 Leave the Statistics type (optional) as “ALL” to get minimum, maximum, range, 

etc. 

4. Click “OK”. 

5. Open the file that appears in the workspace by right clicking it and selecting “Open”. 

6. Export the file by selecting the “Export” option at the top left corner of the window. 

 Note: 

1. Be sure to save file as a text file because it is easier to import into Excel. 

Interpolating missing data and estimating the Start of the growing season (SoGS) 

Long term NDVI series often experience missing data values due to cloud 

contamination, unavailable files, or irregular sampling intervals. Over the years a number 

of methods for interpolating or correcting data have been used (Reed et al. 1994; Brown 

et al. 2006; Bradley et al. 2007, Hermance, Jacob, Bradley & Mustard 2007; Jönsson & 

Eklundh 2002; Brooks et al. 2012). This study used a combination of approaches to fill 

missing data. When missing two data points or less, linear interpolation was used to fill 

the missing data. A third order harmonic regression analysis that was trained by the year 

before and the year after was used to generate an average annual NDVI curve. If the 

values were less than the next known NDVI value, the annual curve values were used to 
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replace missing data gaps (Brooks et al. 2012). At times the third order harmonic 

regression was influenced by large data gaps and would estimate erroneously high NDVI 

values. Annual curve values were not used if they were greater than adjacent known 

NDVI values because erroneous maximums could influence the start of the growing 

season (see below). This resulted in a few remaining data gaps that were replaced by 

weekly averages of known NDVI values.  

A number of methods have been developed to determine seasonal phenology of 

vegetation using NDVI data. Early methods included establishing a minimum NDVI 

threshold value. The start of the growing season (SoGS) was then classified as the day 

NDVI was greater than the minimum threshold value, but the threshold varied by 

vegetation type, soil background, and light conditions (Reed et al. 1994). A more popular 

method involves Gaussian statistics and using the date NDVI reaches 10% of the yearly 

max as the SoGS (Jönsson and Eklundh 2002). We chose not to use this method because 

the high difference in NDVI values between irrigated and non-irrigated land cover. 

Irrigated land cover has a much higher range of NDVI values and would reach 10% of 

maximum NDVI very early in the season while NDVI values in non-irrigated land cover 

do not change much throughout the season and would therefore take much longer to 

reach 10% of maximum. We selected the method described by Reed et al. (1994) in 

which a three day moving average curve was imposed on the annual NDVI curve. The 

date the moving average crossed the annual curve was considered the SoGS because it 

signifies the date NDVI makes a sudden increase and could be explained by 

photosynthetic activity. We used SigmaPlot 12.0 (Systat Software, Inc., San Jose, CA, 

USA) to plot the annual curves and impose the moving average (Figures A1 & A2).  
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Figures 

 
Figure A1. We used Landsat 5 and 8 imagery to calculate maximum NDVI values 

for our study area for years 1992 to 2015 (excluding 2012). We constructed an 

annual maximum NDVI curve (in green) using a mix of approaches and imposed a 

three day moving average (in black) to calculate the SoGS in non-irrigated land 

cover (Reed et al. 1994). 
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Figure A2. We used Landsat 5 and 8 imagery to calculate maximum NDVI values 

for our study area for years 1992 to 2015 (excluding 2012). We constructed an 

annual maximum NDVI curve (in blue) using a mix of approaches and imposed a 

three day moving average (in black) to calculate the SoGS in irrigated land cover 

(Reed et al. 1994). 
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APPENDIX B 

Nest Camera Use for Diet Validation 
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Nest Camera Methods 

We installed Spy on a Bird LLC cameras (model IP 207W, Winston Salem, NC, 

USA) in five different nest boxes to confirm that the prey species sampled with track 

plates were important components of the kestrel’s diet. Two cameras were installed in 

nest boxes on irrigated land cover, and three on non-irrigated land cover. The cameras 

were installed once the chicks hatched and prey deliveries started and cameras remained 

in place until after all chicks fledged. Cameras were mounted inside either the top or side 

of the nest box depending on how the box opened. The camera was connected to a battery 

via a wire that ran out of the nest box and down to a deep-cycle marine battery buried in 

the ground below the nest box. The cameras were programmed to record any movement 

that occurred and picked up the adult making prey deliveries. All video files were stored 

on a 32GB micro SD card to be reviewed at a later time. Nest boxes were visited every 2-

3 days to change the battery and the micro SD card. Prey items were scored as follows: 

vole, deer mouse, bird, lizard, cricket, cicada, beetle, grasshopper, or unknown. The 

animals were classified using the following characteristics: mammals: tail length, size, 

and color; birds: presence of feathers and anisodactyl feet; lizard: presence of scales, skin 

pattern, and body shape, tail length; invertebrates: size, color, wing length, leg length, 

and presence of antennae. 

Analysis of Nest Camera Data 

To determine the relevance of surveyed prey to kestrel diet we calculated the 

Shannon’s Index to assess biodiversity and compared biodiversity indices between 

irrigated and non-irrigated locations using a t-test (Marti, Bechard & Jaksic 2007).  
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Nest Camera Results 

A total of 5,000 one-minute-long video files were collected from 5 nest boxes in 

2014. Feeding events made up 350 of these segments and included 663 prey items, but 

only 376 were successfully categorized. Items were often unidentifiable due to how 

quickly they were consumed or there was no clear view of item during the prey exchange 

between parent and offspring. Of the 376 identifiable prey items, grasshoppers made up 

39%, small mammals made up 34%, cicadas made up 12%, lizards made up 6%, beetles 

made up 5%, and birds and crickets each made up 2%. We found that prey diversity 

differed significantly between non-irrigated and irrigated locations (Two-sample t-test: t3 

= 3.75, P = 0.03). Prey items in non-irrigated locations were much more diverse and 

included items that were not seen in irrigated locations, but both locations primarily 

consisted of small mammals and insects (Figures B1 and B2).   
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Figures 

 

 
Figure B1. Prey consumption in three nest boxes by American kestrels in non-

irrigated landcover in southwestern Idaho, USA for 2014. Prey items consumed 

varied more and included prey items not observed in irrigated land cover (Figure 

B2). 

beetle

2%

bird

2%

cicada

20%

cricket

3%
deer mouse

8%
grasshopper

43%

lizard

10%

vole

12%



55 

 

 

 

 
Figure B2. Prey consumption in two nest boxes by American kestrels in irrigated 

land cover in southwestern Idaho, USA for 2014. 

 

beetle

9%

bird

1%

cicada

3%

deer mouse

1%

grasshopper

34%

vole

52%



56 

 

 

 

APPENDIX C 

Crop Phenology and the New York Canal 
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Weather and Irrigation Affect Crop Phenology 

The impact of climate change on plant phenology has received much attention 

because of its ties to agriculture and human food resources. Climate change ultimately 

affects human survival through higher temperatures, droughts, floods, rain fall changes 

affecting food security around the world (Tripathi, Tripathi, Chauhan, Kumar & Singh 

2016). As human populations continue to increase, agriculture will need to provide food 

and fiber to meet the increased demand while facing altered climate and depleted natural 

resources (Anwar, Liu, Macadam & Kelly 2013). 

With humans and climate change both capable of altering systems, it is important 

to understand the specific drivers bringing about change. Changes in crop production 

such as earlier planting or using different crop strains are very important to understand 

because they may affect surrounding natural systems (Schwartz et al. 2006). Therefore, 

alternative farming practices, especially earlier planting of crops, may result in resources 

being available earlier in the year and potentially affecting aspects of phenology. 

As shown above, American kestrel nesting phenology in southwestern Idaho has 

advanced by 15 days from 1992 to 2015. This advancement is linked to the start of the 

growing season (SoGS) on irrigated land cover only, which has advanced by 26 days 

from 1992 to 2015. It is possible that the New York Canal, one of the major irrigation 

canals providing water for much of the farming area within our study site, has advanced 

the release of irrigated water over the last 24 years. Farming in Idaho is also heavily 

reliant on available ground water from snowmelt, which we know to have occurred 9 

days earlier between 1980 and 2007 in the local Boise National Forest (Kunkel & Pierce 

2010). We were interested in determining if warmer springs or an increase in growing 
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degree days (GDDs, calculated by adding each day’s maximum and minimum 

temperatures divided by two and subtracting an established base) affected the timing of 

crop planting by local farmers. We were also interested in determining if the cutting of 

alfalfa advanced as a result of warmer winter temperatures, warmer spring temperatures, 

an earlier (SoGS), or a an increase in growing degree days (GDDs), as well as 

determining if the release of irrigation water from the New York Canal has changed over 

time potentially facilitating earlier planting of crops or cutting of alfalfa. 

Methods 

We obtained Idaho Crop Progress and Condition reports from the USDA National 

Agricultural Statistics Service for 1992-2013. In 2014 the USDA stopped reporting 

region specific data and transitioned to statewide data so years 2014 and 2015 were 

excluded from our analysis. Previous research used the date 10% of a crop was planted as 

the initial planting date, but our data rarely included 0% values and first recorded values 

were often near 50% (Kucharik 2008). Therefore, we examined the first reported date of 

planting for barley, potatoes, spring wheat, and sugar beets as well as the first, second, 

and third cutting of alfalfa. Spring and winter temperature anomalies were used to detect 

if seasonal temperature changes affected crop planting or the cutting of alfalfa (see above 

for anomaly information). Winter months were November to February to coincide with 

the months when overwintering kestrels were present and spring months were March and 

April to coincide with the months when migratory birds arrive from overwintering areas 

and initiate nests (Crick & Sparks 1999; Both et al. 2010; Heath et al. 2012). 

We obtained canal water release values from the Idaho Department of Water 

Resources Water Rights Accounting Department for the New York Canal. As canal water 



59 

 

 

 

was released, the daily mean values of discharge in cubic feet per second were recorded. 

Zero values were recorded when no water was released and values quickly reached 1000 

ft3/second once irrigation began. We classified the date that irrigation began as the date 

when values were greater than 1000 ft3/second were recorded.  In years of high snowmelt 

runoff, water was released at rates typically less than 1000 ft3/second for a period of time 

before irrigation began. There were some years when water was released for runoff and 

there was no period of time when water was shut off before irrigation began, but the 

water discharge dramatically dropped before irrigation began. In those years we 

considered the start of irrigation to be the first date discharge was greater than 1000 

ft3/second after a period of low values occurred. 

We used linear models to determine if the percent of land planted with each crop 

was higher earlier in the year from 1992 to 2013. All crop types were combined within a 

single linear model and we used crop type, initial reporting date, and year to examine 

whether the proportion of land planted at initial reporting had changed over time. The 

predictor variables spring temperature anomaly and GDDs, instead of year, were used to 

examine whether the proportion of land planted with a crop depended on spring weather 

or GDDs. In additional linear models, all cutting events were combined and the initially 

reported percent of cutting events were predicted by cutting event number, initial 

reporting date, and the variable of interest. Winter temperature anomaly and SoGS were 

analyzed for years 1992-2013 (excluding 2007). GDD analyses were for years 1992-2011 

(excluding 2007). Spring temperature anomaly analyses were for years 1992-2009 

(excluding 2007). 
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Linear models were also used to determine if the start of irrigation has changed 

over time. In the linear models, the start of irrigation was predicted by the year. Years 

1995 and 2015 were excluded from the analysis because there was no definite transition 

between snowmelt runoff and the start of irrigation. Year 2010 data was unavailable and 

therefore not included in the analysis. All analyses were performed in R v. 3.1.1. 

Results 

Spring temperature anomalies did not predict the percentage of crops planted on 

the first day of reporting (β = - 0.78 ± 3.28, F1, 60 = 0.057, P = 0.813) suggesting that 

winter temperatures have a greater effect on the date of crop planting than spring 

temperatures (see above). The percent of planted crops reported on the first day increased 

as the number of GDDs increased (β = 0.086 ± 0.026, F1, 68 = 10.9, P < 0.002). The 

cutting of alfalfa reported at the beginning of each cutting event followed similar patterns 

as crop planting (see above), with the exception of spring temperature anomalies. 

Warmer winter temperature anomalies resulted in a higher percentage of alfalfa fields 

being cut at the beginning of each cutting session, but not significantly (β = 1.89 ± 1.96, 

F1, 54 = 0.923, P < 0.341). When spring temperature anomalies were warmer, more alfalfa 

was cut at the beginning of each session (β = 5.143 ± 2.23, F1, 45 = 5.11, P < 0.029). The 

percent of alfalfa being cut at the beginning of each session increased as the number of 

GDDs increased, but not significantly (β = 0.086 ± 0.026, F1, 51 = 0.498, P < 0.484). Less 

alfalfa was cut at the beginning of each session when the SoGS occurred later in the year, 

but not significantly less (β = -0.11 ± 0.19, F1, 54 = 0.326, P < 0.57). The start of irrigation 

from the New York Canal did trend earlier, but was not significant (β = -0.39 ± 0.32, F1, 

19 = 1.51, P < 0.24, Figure C1).  
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Discussion 

We were interested in determining if farming practices advanced as a result of 

warmer winter temperatures, warmer spring temperatures, earlier SoGSs, or a an increase 

in GDDs. We used USDA Crop Progress and Condition Reports from 1992-2013 to 

monitor the initially reported percent planted of barley, potatoes, spring wheat, and sugar 

beets, as well as the initially reported percent alfalfa that had been cut at the beginning of 

each of the three alfalfa cutting sessions. We found that spring temperature did not 

predict the percentage of crops planted. We also found that the percent planted increased 

as the number of GDDs increased. Spring temperature anomalies had a more significant 

impact on the cutting of alfalfa than winter temperatures or the number of GDDs. Spring 

temperatures may be more important to the alfalfa because the crop is already in the 

ground and begins to grow as spring temperatures warm. We also found that the New 

York Canal, while not significantly so, has released irrigation water 9.2 days earlier over 

the last 24 years. This earlier release of irrigation water may facilitate the earlier planting 

of many crops across our study area.   
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Figures 

 
Figure C1. Relationship (and 95% confidence interval) between start of irrigation 

and year for 1992 to 2015 in southwestern Idaho, USA. The release of irrigation 

water from the New York Canal in southwestern Idaho has not signfiicantly 

advanced but trended towards a 9.2 day advancement indicating that famers are 

gaining access to irrigation water earlier in the year. 

 

 

 

 

 

  


