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ABSTRACT 

Remote sensing based quantification of semiarid rangeland vegetation provides 

the large scale observations required for monitoring native plant distribution, estimating 

fuel loads, modeling climate and hydrological dynamics, and measuring carbon storage. 

Fine scale 3-dimensional vertical structural information from airborne lidar and improved 

signal to noise ratio and radiometric resolution of recent satellite imagery provide 

opportunities for refined measurements of vegetation structure.  

In this study, we leverage a large number of time series Landsat 8 vegetation 

indices and lidar point cloud - based vegetation metrics with ground validation for scaling 

aboveground shrub and herb biomass and cover from small scale plot to large, regional 

scales in the Morley Nelson Snake River Birds of Prey National Conservation Area 

(NCA), Idaho. The Landsat vegetation indices were trained and linked to in-situ 

measurements (n = 141) with the random forest regression to impute vegetation biomass 

and cover across the NCA. We also validated our model with an independent dataset (n = 

44), explaining up to 63% and 53% of variation in shrub cover and biomass, respectively. 

Forty six of the in-situ plots were used in a model to compare the performance of lidar 

and Landsat data in estimating vegetation characteristics. Our results demonstrate that 

Landsat performs better in estimating both herb (R2 ~ 0.60) and shrub cover (R2 ~ 0.75) 

whereas lidar performs better in estimating shrub and total biomass (R2 ~ 0.75 and 0.68, 

respectively). Using the lidar only model, we demonstrate that lidar metrics based on 

shrub height have a strong correlation with field-measured shrub biomass (R2 ~ 0.76). 
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We also compare processing the lidar data with raster-based and point cloud-based 

approaches. The results are scale-dependent, with improved results of biomass estimation 

at coarser scales with point cloud processing. Overall, the results of this study indicate 

that Landsat and lidar can be efficiently utilized independently and together to estimate 

biomass and cover of vegetation in this semi-arid rangeland environment. 
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1 CHAPTER ONE: INTRODUCTION AND BACKGROUND 

1.1 Statement of Problem 

The sagebrush-steppe represents one of the largest and most imperiled ecosystems 

in the North American continent (Miller et al. 2011; Barbour and Billings 2000). Arid 

and semi-arid ecosystems cover approximately one-third of the Earth’s land surface and 

millions of square kilometers in the American Intermountain West (Schlesinger et al. 

1990). However, the combination of increased fire frequency in lower elevation 

rangelands due to the spread of invasive exotic species like cheatgrass (Bromas tectorum) 

and medusahead (Taeniatherum caputmedusae) and juniper encroachment in higher 

elevation rangelands has resulted in a dramatic decrease in sagebrush (Artemisia 

tridentata) presence (Anderson and Inouye 2001; Knick 1999;  Miller et al. 2011). Also, 

human activity such as urban and increased agricultural development, off-road vehicle 

activity and poorly managed livestock grazing have caused a large decrease in sagebrush-

dominated rangelands. Only <10% of historic sagebrush-steppe ecosystem is estimated to 

be unaltered by human activities in the United States (West 1999 ). 

Native shrubs like sagebrush are one of the most important plants on western 

rangelands from an ecological point-of-view. They are home to and provide food for 

imperiled animals like greater sage grouse (Centrocercus urophasianus) and pygmy 

rabbits (Brachylagus idahoensis) (Storch 2007; Shipley et al. 2006) . Sagebrush provides 

habitat for nearly 100 species of birds, hosts of invertebrates, reptiles and small mammals 

(Connelly et al. 2000). Thermal and security cover is also provided by sagebrush for 
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wildlife like pheasants, chukar, sharp tailed grouse and sage grouse (Eberhardt et al. 

1984). A change in the sagebrush distribution will likely cause a decline in the population 

of these species, some of which are already highly imperiled. 

Distribution of sagebrush across rangelands is also important for continuation of the 

hydrologic and carbon cycle (Ursino 2007; Pierson et al. 2003). Mature and big 

sagebrush plants have a two-part root system, a deep tap root and a shallow diffuse root 

system. The tap root system brings deep soil moisture and nutrients to the soil surface by 

“hydraulic lift” which is available for roots of other understory plants (Cardon et al. 

2013). Disturbance such as overgrazing, fire or invasion of non-native plants results in 

the decrease of aboveground biomass which ultimately mirrors in a decrease in root 

biomass. The decrease in sagebrush biomass and cover also results in less organic matter 

which is an important factor in aggregate formation and stability (Heitschmidt and Stuth 

1991). This decreases water holding capacity of soil and infiltration and increases the 

surface flow. Sagebrush also plays a crucial role in the hydrological cycle of water-

limited regions (Wilcox 2010). Evapotranspiration is a major component of soil water 

content in rangelands and about 96% of incoming precipitation has been shown to be 

returned to the atmosphere by vegetation such as sagebrush (Branson et al. 1976). Several 

studies (Angell et al. 2001; Shrestha and Stahl 2008) have also shown the critical role that 

sagebrush plays in the terrestrial carbon storage.  

Quantification of vegetation characteristics in rangelands is essential for the 

management, conservation and restoration of native plant communities. Studies have 

shown that aboveground biomass and percent cover of vegetation in rangelands are 

important for modeling vegetation dynamics, estimating pre-fire and post-fire fuel loads, 
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measuring carbon storage, assessing habitat quality and managing changes in native 

species (Polley et al. 2007; Storch 2007; Rengsirikul et al. 2011;  Angell et al. 2001; 

Shrestha and Stahl 2008). Biomass and cover are also strong indicators of ecosystem 

structure and productivity that informs a range of applications such as assessing forage 

potential, species dominance, and wildlife habitat conditions (Polley et al. 2007; 

Rengsirikul et al. 2011; Chen et al. 2012). Vegetation structure is also important for the 

study of functional plant biology and growth analysis, and the calculation of net primary 

production and growth rates (Golzarian et al. 2011). 

Various methods are available for in-situ measurement of biomass (Sala and 

Lauenroth 1982; Clark et al. 2008; Bonham 2013) but almost all are either destructive, 

labor intensive, expensive or only practical for small areas. Common methods include 

harvesting (Sims and Singh 1978, Sala and Lauenroth 1982), clip-and-weigh (Bonham 

2013), visual estimation (Waite 1994), and point-intercept sampling (Clark et al. 2008). 

The destructive biomass measurement method is considered most accurate because it 

involves clipping, oven-drying, and weighing the plant material; however this method is 

also expensive and labor intensive (Bonham 2013). Point-intercept sampling is a non-

destructive method that is relatively inexpensive, but it involves taking multiple 

individual field measurements for each species of interest to statistically represent its 

biomass (Clark et al. 2008). Percent vegetation cover is generally measured by visual 

estimation, line intercept sampling or through photographic methods, but these methods 

can be prone to observer bias and may produce unreliable results (Luscier et al. 2006). 

Moreover, while these field-based methods may be accurate and effective at a plot level, 

they are not easily scaled to the larger landscape.  
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1.2 Use of Remote Sensing Techniques 

New advancements in remote sensing technology have brought promising results to 

quantify not only biomass and cover but other vegetation characteristics of rangelands 

(e.g., shrub height, leaf area index, fuel load) (Hudak et al. 2009). Remote sensing 

technologies offer potential solutions for extending biomass collected in-situ to a range of 

spatial scales in a cost-efficient manner (Mitchell et al. 2011). Passive spectral remote 

sensing techniques employ visible and near infrared (NIR) regions from aerial and 

satellite optical sensors for assessing spectral characteristics of vegetation. 

Photosynthetically active vegetation typically reflects in the green and NIR, absorbs in 

the red and blue wavelengths and exhibits strong absorption properties in wavelengths 

where atmospheric water is present. Spectral remote sensing takes these variations into 

account and measures vegetation characteristics using a combination of spectral bands 

called Vegetation Indices (VI). These VI, including the Normalized Difference 

Vegetation Index (NDVI), Ratio Vegetation Index (RVI), Green Vegetation Index (GVI), 

Perpendicular Vegetation Index (PVI), Soil Adjusted Vegetation Index (SAVI), 

Transformed Soil Adjusted Vegetation Index (TSAVI), are known to provide meaningful 

information linked to plant cover, health, water content, environmental stress, and other 

characteristics (Zandler et al. 2015; Basso et al. 2004; Richardson and Everitt 1992). 

Multi-temporal monitoring of large scale landscape change of vegetation is possible 

using spectral remote sensing because of the availability of imagery archives dating back 

several decades. It is challenging, however, to quantify vegetation in semiarid 

environments because the vegetation is typically low in stature, spectrally indeterminate, 

and generally has low density or plant surface area (Mitchell and Glenn 2009). This 
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causes the signals coming from vegetation to be mixed with those coming from bare soil. 

Landsat 8’s Operational Land Imager (OLI) has a pushbroom configuration generating 

16-bit images with at least an eight fold increase in signal-to-noise ratio than previous 

Landsat missions, which may have the potential to improve detection of vegetation 

structure in high soil mixing environments (Roy et al. 2014).  

Light Detection and Ranging, or lidar, can also provide practical, economical and 

reliable estimates of biomass and cover. Lidar is an active remote sensing technology 

with a proven ability to map aboveground biomass in forested ecosystems (He et al. 

2013, Chen et al. 2012). Its capability of separating vegetation from ground is unique in 

comparison to optical remote sensing instruments (Campbell and Wynne 2011). Lidar is 

an active form of remote sensing that uses a series of short pulses of a narrow beam of 

coherent light, typically the infrared wavelength, from its sensor. The laser hits an object 

or surface at an acute angle and a portion of energy is returned to the sensor. The time 

delay and angle of the backscattered energy is used to measure the distance between the 

sensor and the reflecting surface. Multiecho sensors can detect several returns from a 

single pulse including first and last returns, which typically represent near the top of the 

canopy and the underlying ground surface, respectively (Jones and Vaughan 2010). 

These assembled returns, called the lidar point cloud, can be sorted, filtered and 

processed to provide information for ground and non-ground targets. In Airborne Laser 

Scannin (ALS, hereafter lidar), pulses of light (produced by a laser) are emitted from an 

instrument mounted in an aircraft and directed to the ground in a scanning pattern (Farid 

et al. 2008).  



6 

 

Lidar technology has proven useful due to its ability to obtain range and orientation 

information by capturing three-dimensional (3-D) data (Su and Bork 2007). The 3-D 

characteristic makes lidar a powerful tool to study vegetation characteristics. For more 

than a decade, lidar has been successfully used to measure forest volume, height and 

biomass (Lefsky et al. 2002; Zimble et al. 2003; Andersen et al. 2005; Hall et al. 2005). 

Remote sensing vegetation characteristics of shrubs in rangelands using lidar has also 

been of interest (Ritchie et al. 2006; Streutker and Glenn 2006; Su and Bork 2007; Glenn 

et al. 2011). However, the application of lidar in shrublands is marred by the low 

vegetation height and sparsely distributed vegetation across a uniform surface (Estornell 

et al. 2012). Many shrub-steppe communities have irregular morphology and are less than 

2 m tall. Hence laser pulses that hit within shrub canopies can be misclassified as ground 

rather than canopy (Riaño et al. 2007). This causes accuracy problems for defining 

individual elements and estimating vegetation heights. 

The terrestrial form of lidar is Terrestrial Laser Scanning (TLS), which operates at 

close range and has a higher point density in comparison to airborne or satellite based 

lidar. Although useful for measuring small areas, TLS point clouds can suffer from 

occlusion effects, which occur when laser beams are reflected from foreground objects 

such as stems and canopies, and objects behind are completely or partially missed . 

Although airborne lidar point density is lower (usually ~ 10 points / m2) than TLS density 

(≥ 500 points/ m2), airborne lidar is not as limited as TLS to small geographic areas 

(typically few thousand square meters) (Vierling et al. 2012). Thus, because the 

geographic coverage of lidar data is typically much larger than TLS, it is a 

complementary tool to TLS to scale vegetation characteristics from a small plot to a 
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regional level. Another benefit of airborne lidar is that unlike spectral remote sensing, the 

spectral signal mixing effect from soil is minimized (although the lidar beam may hit 

portions of branches). Despite the previous research and applications of lidar in rangeland 

ecosystems (e.g. Vierling et al. 2012; Li et al. 2015), using lidar to estimate biomass has 

been largely unexplored.  

1.3 Use of Statistical Models 

There is a strong link between plant height and other biophysical characteristics 

including cover, biomass, density and canopy volume (Dubayah et al. 2000). Three 

dimensional lidar point clouds can be used to model plant height to exploit these 

relationships (Bork and Su 2007). Studies have also demonstrated empirical correlation 

of spectral indices from Landsat 8 with vegetation attributes (Li et al. 2013; Ding et al. 

2014). These remote sensing variables can be correlated with the biophysical vegetation 

characteristics in the field using a number of statistical methods such as regression 

analysis (Laurin et al. 2014; García-Gutiérrez et al. 2011), Hierarchical Bayesian 

modeling (Wilson et al. 2011), random forest (Hudak et al. 2008) and Artificial Neural 

Networks (Debouk et al. 2013). It is not uncommon to see a large number of predictor 

variables with a relatively modest number of ground-truth observations in remote sensing 

applications. This can potentially lead to over-fitting of models via high-dimensional data 

problems (Zandler et al. 2015). Regression analysis is widely adopted to relate field and 

remotely sensed data. However, in regression identifying suitable variables for 

meaningful correlation is critical as some variables are weakly related to the ground data 

and strongly related to each other (Mutanga et al. 2012; Montgomery et al. 2012; 

Fernandes and Leblanc 2005; Ahmed et al. 2015). Furthermore, regression analysis 
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involves assumptions of normality and homogeneity, which might not be satisfied with 

remote sensing datasets (Montgomery et al. 2012).  

Recently, random forest (RF) has gained considerable attention in the field of remote 

sensing due to classification and computational accuracy, and the capability to provide a 

measure of variable importance (Mitchell et al. 2013; Guan et al. 2012; Pal 2005). This 

thesis study has a large number of predictors with a comparatively small sample size.  

Random forest is preferred over other methods in this study as the RF models result in 

smaller prediction variance and bias and better model performance (Mitchell et al. 2015). 

Random forest is a machine learning algorithm that uses a tree-based classifier technique 

developed by (Breiman 2001) that addresses the limitation of classification and 

regression trees (CART) by using a large number of decision trees. Random forest is an 

iterative classification tree statistical approach where bootstrap samples are drawn to 

construct multiple ‘trees’; each grown with a randomized subset of predictors (Brieman 

2001).  These ‘trees’ cast a unit vote for the most popular class to classify an input vector 

(Pal 2005; Breiman 1999). Thus, with RF we can estimate the best ‘predictors’ among the 

variables developed from a lidar point cloud and Landsat spectral data to quantify 

biomass and cover in a rangeland.  

1.4 Conclusion 

This study assesses the capability of Landsat 8 and lidar to quantify biomass and 

cover of native and non-native shrubs and herbs at a large-landscape scale. A reliable and 

cost effective method to estimate biomass and cover would provide important baseline 

vegetation data for monitoring of and managing the sagebrush-steppe. This baseline data 

could potentially be used to guide restoration of native rangeland ecosystems, evaluate 
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wildlife habitat, classify livestock grazing resources, and identify areas for applying fuels 

reduction and fire management strategies. This study is intended to develop methods to 

scale vegetation biomass and cover from fine to coarse scales using lidar and spectral 

data, and to assess the accuracy of these methods. Subsequent chapters will describe the 

process in detail and illustrate results. 

1.5 Thesis Organization 

This thesis consists of an introductory overview in Chapter 1 and two separate, 

independent and self-contained research manuscripts. Chapter 2 contains the first 

manuscript which builds on scaling biomass of rangeland vegetation from the plot to 

larger scales covered by lidar data available to the study. Lidar metrics are used as a 

proxy to estimate biomass and random forest is used to develop the model. Chapter 3 

contains the second manuscript in which vegetation characteristics are scaled to a 

regional level. Landsat 8 is used to develop metrics that can be used in a random forest 

model to estimate biomass and cover. We also compare the performance of Landsat 8 to 

that of lidar, in order to better understand the capabilities and limitations of both of these 

remote sensors. Chapter 4 contains concluding remarks on the significance and potential 

of the work. The thesis ends with an appendix of raw reference data from the analysis of 

this research that can be useful for future studies and research.  
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2 CHAPTER TWO: MANUSCRIPT ONE - AIRBORNE LIDAR BASED 

ESTIMATION AND SCALING OF SEMIARID BIOMASS USING RANDOM 

FOREST VARIABLE SELECTION 

Abstract 

Quantifying aboveground total biomass of the sagebrush-steppe ecosystem can 

provide valuable information for a host of applications, including modeling climate and 

hydrological dynamics, estimating fuel loads, measuring carbon storage, assessing habitat 

quality and managing environmental changes. Various forms of remote sensing data have 

been used for biomass estimation modeling, typically across medium to broad landscape 

scales. In this study, we used airborne Light Detection and Ranging (lidar) data to 

estimate aboveground biomass in a sagebrush-steppe landscape that has largely been 

degraded by past land use and invaded by non-native annual grasses and forbs. We 

incorporated vegetation vertical structure information obtained from lidar data with 

ground-measured-validation data, allowing us to scale shrub and grass biomass 

measurements obtained from small field sites (1-100m plots) to a larger landscape scale ( 

~ 75,164 hectares). Various vegetation metrics and statistics derived from the airborne 

lidar were trained and linked with the aboveground biomass data measured in the field 

using random forest (RF) regression. Our results demonstrated that lidar-derived metrics 

based on vegetation height had a strong correlation with the field-measured biomass (R2~ 

0.74). These developed relationships were then used to scale biomass estimates to the 

larger study area using imputation techniques. We also compared raster processing 
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techniques with point cloud processing and demonstrated that point cloud processing of 

lidar data significantly improved estimation of biomass at coarser scales. The RF method 

used in the study was well suited to determine the most important metrics for estimating 

biomass in rangelands with sparse vegetation cover.  

2.1 Introduction 

Aboveground biomass (‘AGB’ or ‘biomass’ hereafter) is a strong indicator of 

ecosystem structure and productivity that informs a range of applications such as forage 

potential, species dominance and wildlife habitat analysis (Polley et al. 2007; Rengsirikul 

et al. 2011; Chen et al. 2012). Although the AGB per unit area is low, dry rangelands 

cover one fifth of the earth’s land area and thus play a significant role as a carbon sink 

and provider of essential ecosystem services (Perez-Quezada et al. 2011; Zandler et al. 

2015). Accurate estimation of AGB in rangeland ecosystems is important for modeling 

vegetation dynamics, estimating fuel loads, measuring carbon storage, assessing habitat 

quality and monitoring changes in native species (Storch 2007; Rengsirikul et al. 2011;  

Angell et al. 2001; Shrestha and Stahl 2008). Hence, estimation of AGB can be used by 

resource managers to develop effective monitoring, conservation and restoration 

strategies in rangelands and to ensure their sustainability (Guo 2007; Brown and Archer 

1999; Pieper 1988).  

The sagebrush-steppe once extended across hundreds of millions of hectares in 

western US rangelands and is now one of the most imperiled ecosystems in the continent 

(Barbour and Billings 2000; Miller et al. 2011). Several sagebrush species (e.g. Artemisia 

tridentate, Artemisia arbuscula) and short bunchgrass species (e.g. Festuca idahoensis) 

are common natives of the sagebrush-steppe ecosystem. Factors such as invasion of 
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nonnative species, wildfire, overgrazing, urbanization and climate change are responsible 

for the degradation of these rangelands (Hemstrom et al. 2002; Miller and Rose 2006). In 

particular, increased fire frequency due to the spread of invasive nonnative species, such 

as cheatgrass (Bromus tectorum), medusahead (Taeniatherum caputmedusae) and 

encroachment of juniper (Juniperus spp.) has resulted in a dramatic decrease in sagebrush 

presence (Knick 1999; Wisdom et al. 2005; Miller et al. 2011). These changes resulted in 

a decline of already imperiled animals like greater sage grouse (Centrocercus 

urophasianus) and pygmy rabbits (Brachylagus idahoensus) which depend on sagebrush 

for habitat, food and shelter (Storch 2007; Shipley et al. 2006; Connelly et al. 2000). 

Degradation of sagebrush also affects the hydrologic cycle in dry lands due to less 

organic matter (Heitschmidt and Stuth 1991), decreased evapotranspiration (Branson et 

al. 1976; Wilcox 2010) and absence of “hydraulic lift” (Cardon et al. 2013).  

Various direct and indirect methods are available for in-situ measurements of AGB 

of sagebrush and other shrubs (Sala and Lauenroth 1982; Clark et al. 2008; Bonham 

2013). Some of the most common methods include harvesting (Sims et al. 1978, Sala and 

Lauenroth 1982), clip-and-weigh (Bonham 2013), visual estimation (Waite 1994), and 

point-intercept sampling (Clark et. al 2008). A destructive biomass measurement is 

considered most accurate because it involves clipping, oven-drying, and weighing the 

plant material; however this method is also expensive and labor intensive (Bonham 

2013). Point-intercept sampling is a non-destructive alternative method that is relatively 

inexpensive, but it involves taking multiple individual measurements for each species of 

interest to statistically represent its biomass (Canfield 1941; Clark et al. 2008). These 

field-based methods are accurate and effective, but are not easily scaled across the 
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landscape and are time consuming. Moreover, these field methods are unlikely to be 

affordable to conduct and are unlikely to capture important changes in rangelands that are 

occurring at a swift pace across large areas (Vierling et al. 2012; Bonham 2013).  Hence, 

there is a need for new techniques to estimate AGB accurately over a large area while 

being repeatable, automated and cost effective. 

Remote sensing has often been cited as a tool for facilitating advances in 

understanding rangeland ecosystems and facilitating their management (Tueller 1992). 

Retrieving AGB from remote sensing data is advantageous compared to the labor and 

time intensive field methods because it can provide multi-scale contiguous estimates, 

ideally suited for modeling over broad scales and time (Li et al. 2015). In particular, 

Light Detection and Ranging (lidar) holds promise of effectively studying vegetation 

characteristics due to its ability to obtain range and orientation information by capturing 

three-dimensional data (Su and Bork 2007). Optical remote sensing also has been 

extensively used to estimate AGB but the use of vegetation indices and/or leaf area index 

(LAI) in rangelands are strongly affected by soil background, as well as small stature and 

sparse arrangements of shrubs creating a mixed pixel effect (Glenn et al. 2005; Chopping 

et al. 2008; Zandler et al. 2015). This is a major limitation for optical remote sensing, but 

a minor limitation in lidar. Thus, lidar has a significant advantage over other remote 

sensing based biomass estimation techniques (Campbell and Wynne 2011).  

For more than a decade, lidar has been successfully used in forest applications such 

as measuring volume, height and AGB (Lefsky et al. 2002; Hall et al. 2005; Ku et al. 

2012; Lin et al. 2012; Zheng et al. 2013). Lidar also has been increasingly used to study 

vegetation characteristics of shrubs (e.g., shrub height, canopy cover, leaf area index) in 
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rangelands (Ritchie et al. 2006; Streutker and Glenn 2006; Su and Bork 2007; Glenn et 

al. 2011; Hudak et al. 2009). There is a strong link between shrub height and other 

biophysical characteristics (e.g. cover, AGB, canopy volume) (Bork and Su 2007) 

emphasizing the importance of metrics developed from three dimensional point clouds. 

However, limited lidar research has been focused on estimating and scaling AGB in 

semiarid rangeland ecosystems. Many species and vegetation in shrub-steppe have 

irregular morphology, low stature (less than 2m tall), low density and small canopy 

surface area. These characteristics increase the probability of the laser pulse to be 

misclassified as ground rather than canopy (Riaño et al. 2007; Mitchell and Glenn 2009). 

This problem can be addressed to a certain extent by supplementary ground 

measurements, increases in lidar point density and attention to canopy penetration (Glenn 

et al. 2011). Hence, more research and exploration will allow novel approaches to 

successfully quantify AGB from 3D point clouds in dry rangelands.  

Metrics derived from lidar (e.g. mean height, variance of height, canopy relief ratio 

etc.) can be correlated with biophysical vegetation characteristics in the field using 

statistical methods such as regression analysis (Laurin et al. 2014; García-Gutiérrez et al. 

2011), Hierarchical Bayesian (Wilson et al. 2011), random forest (Hudak et al. 2008a), 

and Artificial Neural Networks (Debouk et al. 2013). Traditionally, regression analysis 

has been widely adopted for predicting AGB (Baskerville 1972; García-Gutiérrez et al. 

2011; Hudak et al. 2006; Zolkos et al. 2013) and more generally for use with predicting 

modeling to relate field and remotely sensed data (Lefsky et al. 2002; Fernandes and 

Leblanc 2005; Berterretche et al. 2005; Haack and Rafter 2010). Regression analysis 

provides the unbiased minimum squared error estimate of response variables using a 
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linear combination of regressors, but commonly involves a set of assumptions such as 

non-multicollinearity, normality, homogeneity and independence of residuals 

(Montgomery et al. 2012; Fernandes and Leblanc 2005). Machine learning techniques are 

increasingly used in non-linear relational models and high dimensional data sets to reduce 

the effects of the correlation assumption for regression (Breidenbach et al. 2010; 

Vauhkonen et al. 2010; Gleason and Im 2012). Recently, random forest (RF) has gained 

considerable attention in the field of remote sensing due to the classification and 

computational accuracy, and the capability of providing a measure of variable importance 

(Mitchell et al. 2013; Guan et al. 2012; Pal 2005). RF is a machine learning algorithm 

that addresses the limitations of Classification and Regression Trees (CART) by 

bootstrapping samples to iteratively construct a large number of decision trees each 

grown with a randomized subset of predictors (Breiman 2001). These ‘trees’ cast a unit 

vote for the most popular class to classify an input vector in RF classification (Pal 2005; 

Breiman 1999). In regression mode, RF takes the average of the ‘trees’ to make a 

prediction. 

 RF has been shown to be more accurate than simple regression techniques for 

biomass estimation (Gleason and Im 2012; Powell et al. 2010). It doesn’t require 

assumptions about the relationship between dependent and independent variables and is 

well suited for analyzing complex non-linear and possibly hierarchical interactions in 

large data sets like this study (Olden et al. 2008; Ahmed et al. 2015).  RF grows a large 

numbers of trees which does not over fit the data, keeps bias low by random predictor 

selection and thus can provide better models for prediction (Prasad et al. 2006). Thus, RF 
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can select the best predictors among many variables developed from a lidar point cloud 

for biomass estimation.  

The objective of this study was to estimate AGB in a shrub-steppe rangeland using 

airborne lidar-derived vegetation metrics and to extend these estimates to a larger 

coverage of lidar. We derived 35 metrics from both lidar point clouds and rasterized 

products at four different resolutions, as a proxy for the estimation of AGB. The result 

suggests that there is a strong relation between AGB and height-based vegetation metrics, 

and these metrics can explain up to 76% of the variability in field biomass measurements. 

We also show that there is no substantial difference between biomass estimation at 

different resolutions when using point-clouds, whereas resolution has a significant impact 

on biomass estimation when using rasterized images.  

2.2 Study Area and Data 

2.2.1 Study Area 

The study area is located within the Morley Nelson Snake River Birds of Prey 

National Conservation Area (NCA), a shrub-steppe rangeland once dominated by big 

sagebrush (Artemisia tridentata). The NCA encompasses about 242,800 hectares of the 

Snake River Plain ecoregion in southwestern Idaho, USA (Fig. 1. 1). It contains other 

native species including shadescale (Altriplex confertifolia), winterfat (Ceratoides 

lanata), budsage (Artemisia spinescen), and rabbitbrush (Chrysothamnus visciflorus) 

including rapidly invading annual nonnatives like cheatgrass (Bromus tectorum). The 

NCA receives 20 cm precipitation, 74 days with high temperature greater than 32° C, and 

98 days with a low temperature below 0° C in an average year. The average annual 

maximum temperature is about 20° C and the minimum temperature is 6° C (WRCC, 
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2012). The native vegetation assemblage is composed of an understory of biological 

crusts and sparse native bunchgrass (Festuca idahoensis), overlain by an open canopy of 

shrubs ranging up to 1.5 m tall (Anderson 2014). Since 1980, over half of the NCA has 

burned resulting in a mosaic of plant communities, with compositions spanning a 

gradient between intact native shrublands, shrublands degraded by biological invasion 

and wildfire, and grasslands where native plants have been fully replaced by cheatgrass 

and other invasive annuals. Currently 37% or less of the NCA retains an intact native 

shrubland community (USDI, 2008).  

 
Figure 1.1. The Morley Nelson Snake River Birds of Prey National Conservation 
Area (NCA), located in southwest Idaho, United States. This study took place in the 

northwestern portion of the NCA. 

2.2.2 Field Sampling 

In the summer of 2012 and 2013, a total of forty six (n = 46), 100 m by 100 m (one 

hectare) field plots were established at locations throughout the northwestern NCA by the 

US Geological Survey, Forest and Rangeland Ecosystem Science Center (USGS FRESC) 
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(Shinneman et al. 2011). This area was chosen based on the availability of airborne lidar 

data (see below). A stratified random sampling approach was used to select the plots, and 

the corners of each plot were precisely located using a survey-grade GNSS (Global 

Navigation Satellite System). The sites were selected based on accessibility and the goal 

of capturing a range of plant community compositions. The sampling design for each 1-

ha plot included a 3 by 3 grid of 9 subplots of 1 m2 each, with 25 m spacing between 

subplots (Fig. 1. 3). Over the 46 plots, a total of 414 subplots were established. 

Vegetation within the subplot was then destructively sampled and classified as either 

herbaceous or shrub. If shrubs were too bulky to be harvested efficiently, a portion was 

collected for reference and the number of equivalent portions remaining in the quadrat 

was estimated. The harvested vegetation was oven dried and weighed, and biomass 

across each 1-ha plot was then calculated as the average from the nine subplots for the 

herbaceous and shrub classes. 

Herbaceous cover ranged from 0 to 100% and shrub cover from 0 to 87%. Across 

all 414 subplots, herbaceous had a mean biomass of ~ 144 g and shrub had a mean 

biomass of ~ 414 g. The summary is listed in Table 1. 1. The distribution of the field data 

was skewed towards smaller biomass values (Fig. 1. 2). Only two plots had more than 

300 g/ m2 herbaceous biomass.  

Table 1.1 Statistics of vegetation cover and biomass from the field sites. The 
results are from n=414 subplots (1 m2) nested inside n=46 plots. 
 Herbaceous 

Cover (%) 
Shrub Cover          
(%) 
 

Herbaceous 
Biomass       
(g/m2) 

Shrub Biomass 
(g/m2) 

Minimum 0 0 2 0 
Maximum 100 87 1207 3301 
Mean ± SE 39 ± 1.47 12 ± 0.85 144 ± 7 414 ± 20 
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Figure 1.2 Frequency distribution of the in-situ shrub and herbaceous biomass 

(n=46) with bins of 100 g/ m2. 
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 b) 

 
Figure 1.3 Study area within the NCA and (a) lidar coverage and distribution of 

sampled field plots over the study site and (b) schematic of the field sampling 
procedure. 

2.2.3 Airborne Lidar Data Acquisitions 

The discrete small footprint lidar data were collected over 65,194 hectares in 2012 

and 9,970 hectares in 2013, with a ALS60 system (Leica Geosystems, Heerbrugg, 

Switzerland) operated by Watershed Sciences (Corvallis/Portland, OR), with a point 

density of ~ 8 points per m2. The 46 field plots were spatially nested in the lidar 

footprints. The lidar system was set to acquire ≥ 148,000 laser pulses per second and was 

flown at 1,500 meters above ground level, with a scan angle of 48° (±12°) from nadir 

(field of view). An opposing flight line side-lap of ≥ 50% (i.e. 100% overlap) was 

maintained to increase point density. The absolute vertical accuracy (RMSEz) was about 

0.03 m and the relative accuracy was about 0.024 m. The vertical accuracy was primarily 

assessed from ground check points on open, bare earth surfaces with level slope (< 20°) 

by the vendor. 

2.2.4 Lidar Data Processing 

Lidar point cloud data were buffered and height filtered using the ‘BCAL Lidar 

Tools’ developed for semiarid vegetation (http://bcal.boisestate.edu/tools/lidar; Streutker 
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and Glenn 2006). The height filtering classifies lidar points into ground and vegetation 

points. The filtering was performed using 5 m canopy spacing, a 5 cm ground threshold, 

nearest neighbor interpolation and 40 iterations. Two groups of metrics were calculated 

from resulting vegetation points: metrics based on numerical values (e.g. elevation, 

canopy height) and metrics based on the density of points (e.g. canopy density). We 

calculated 33 metrics previously used by Evans et al. 2009 and two additional metrics 

based on Foliage Height Diversity (FHD) (MacArthur and MacArthur 1961; Maltamo et 

al. 2014). The FHD measures the foliage arrangement of the plant in the vertical direction 

and increases by additional layers or by a greater evenness of foliage cover among each 

layer (Sasaki et al. 2012). All 35 vegetation metrics developed for this study are listed in 

Table 1. 2. In order to explore the effect of rasterization of the point cloud on vegetation 

metric calculations, we conducted two separate analyses of the 35 metrics, for each plot. 

The first was to average the metrics extracted from the rasterized vegetation products of 

the plot and the second was to average the metrics directly from the point cloud of the 

same plot, with no rasterization. Both rasterized and non-rasterized (or point cloud based) 

multiband vegetation metrics were produced in four resolutions: 1 m, 7 m, 30 m and 100 

m pixel sizes, capturing the spectrum of resolution popular in spectral remote sensing. 

The Matlab software (Matlab version R2014a, The MathWorks, Inc., Natick 

Massachusetts, United States) was used to extract the vegetation metrics from the point 

cloud. These metrics were analyzed at the 100 m by 100 m (1-ha) plot scale and at the 

70m by 70m scale (Fig. 1. 3). The 70m by 70 m scale was used to reduce the spatial 

dimensions to encompass the field plot design with the purpose of providing a 

comparison to the 1-ha plot size by disregarding the non-contributing portion of the plot. 
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Table 1.2 Lidar metrics and their descriptions used in the analysis.  

Lidar Metrics Description 

Minimum Height (Hmin) The minimum of all height points within each pixel 

Maximum Height (Hmax) The maximum of all height points within each pixel 

Height Range (Hrange) The difference of maximum and minimum of all height 
points within each pixel 

Mean Height (Hmean) The average of all height points within each pixel 

Median Absolute 
Deviation from Median 
Height (HMAD) 

The MAD value of all height points within each pixel 

HMAD = 1.4826 x median(|height - median height|) 

Mean Absolute Deviation 
from Mean Height (HAAD) 

 The AAD value of all height points within each pixel 

HAAD = mean(|height - mean height|) 

Height Variance (Hvar) The variance of all height points within each pixel 

Height St. Deviation (Hstd) The standard deviation of all height points within each pixel 
This is also called 'absolute vegetation roughness' 

Height Skewness (Hskew) The skewness of all height points within each pixel 

Height Kurtosis (Hkurt) The kurtosis of all height points within each pixel 

Interquartile Range (HIQR) 
of Height 

The IQR of all height points within each pixel 

HIQR = Q75-Q25, where Qx is xth percentile 

Height Coefficient of 
Variation (HCV) 

The coefficient of variation of all height points within each 
pixel 

Height Percentiles (H5, 
H10, H25 etc.) 

The 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of 
all height points within each pixel 

Number of Lidar Returns The total number of all points within each pixel 

Number of Lidar 
Vegetation Returns (nV) 

The total number of all the points within each pixel that are 
above the specified crown threshold value (CT) 

Number of Lidar Ground 
Returns (nG) 

The total number of all the points within each pixel that are 
below the specified ground threshold value (GT) 



23 

 

Total Vegetation Density 
(Veg_density) 

The percent ratio of vegetation returns and ground returns 
within each pixel.  

Density = nV/nG*100 

Vegetation Cover 
(Veg_cov) 

The percent ratio of vegetation returns (nV) and total returns 
within each pixel 

Percentage of Ground 
Return (pG) 

Percent of points within each pixel that are below the 
specified Ground Threshold 

Percent of Vegetation in 
Height Range (pH1, pH2.5, 
pH10 etc.) 

Percent of vegetation in height ranges 0-1m, 1-2.5m, 2.5-
10m, 10-20m, 20-30m, and >30m within each pixel 

Percent of Vegetation = Number of vegetation returns in the 
range/Total vegetation returns 

Canopy Relief Ratio 
(CRR) 

Canopy relief ratio of points within each pixel.  

Canopy relief ratio = ((Hmean - Hmin))/((Hmax - Hmin)) 

Texture of Heights (Htext) Texture of height of points within each pixel. Texture = St. 
Dev. (Height > Ground Threshold and Height < Crown 
Threshold) 

Foliage Height Diversity 
(FHDall)- All points 

Foliage arrangement in the vertical direction. 

FHDall =- ∑pi *ln pi where pi is the proportion of horizontal 
foliage coverage in the ith layer to the sum of the foliage 
coverage of all the layers 

Foliage Height Diversity- 
Points above ground 
threshold (FHDGT) 

FHD calculated only from the points above the ground 
threshold.  

 

2.3 Statistical Analysis 

2.3.1 Regression Analysis 

Regression analysis was performed to model the relationship between lidar 

derived metrics and field AGB at 1 m raster resolution. Total and shrub biomass were 

considered dependent variables and the 35 lidar derived vegetation metrics were 

considered independent variables. The common problem with linear regression and its 
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use in biomass estimation is multicollinearity within the independent variable which 

might lead to the violation of basic assumptions (Baskerville 1972; Routledge 1990; Lu 

and Chen 2012).  Hence, we used the regression approach adopted by Lefsky et al. 

(2002), which selected the two most important independent variables that were not 

collinear to each other using the Pearson’s correlation coefficient and thus not violating 

the basic assumptions of regression.   

2.3.2 Random Forest (RF) Regression for Variable Selection 

To further assess the relationship between field level biomass with vegetation 

metrics developed from lidar, we also used the non-parametric machine learning 

approach, random forest. This study has ‘broad data’ i.e. many predictors with 

comparatively low sample size.  Random forest is preferred over other methods here as 

its results have smaller prediction variance and bias and better model performance 

(Prasad et al. 2006; Mutanga et al. 2012; Mitchell et al. 2015). We used SPM Suite 

(Salford Predictive Modeler Software Suite version 7, Salford Systems, San Diego, CA) 

for the implementation of the RF algorithm.  

Each RF regression run generated 2000 trees and the maximum number of variables 

considered per node was kept equal to the square root of the number of variables for the 

run (Breiman 1999; Breiman 2001). All 35 predictor variables (Table 1. 2) were used to 

perform the initial RF run and each of them were ranked based on their predictive power. 

The predictive power of the variable or variable ranking was performed by a ‘Standard 

Method’: in each tree in the forest, a variable was tested by first scrambling its values and 

then measuring the decline of accuracy in the model. This means, if a variable substituted 

with incorrect values can predict the target accurately, then the variable has no relevance 
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to predicting the outcome and hence is assigned a low score (SPM user guide, 2013). For 

the best variable selection, we used the backward feature elimination method where 

lowest performing variables were iteratively removed until the best model was obtained. 

The best models for total AGB, shrub biomass and herb biomass were determined based 

on the highest coefficient of determination (R2), lowest root-mean-square error (RMSE) 

and maintaining model parsimony (number of predictor variables were kept as low as 

possible). The variable selection was done not only to reduce the explanatory variables 

but also to understand which explanatory variables are most suitable to estimate biomass 

(Ismail et al. 2010). The analyses were performed for all four resolutions for both raster 

and point cloud i.e. 1m, 7 m, 30 m and 100 m. We also performed a separate analysis for 

two different dimensions of raster plots across a 1 m scale: 100 m by 100 m (1ha) and 70 

m by 70 m.  

2.3.3 Nearest Neighbor (NN) Imputation 

The best variables selected in RF were used in a Nearest Neighbor imputation with 

1 m pixels in the R statistical computing environment (R Development Core Team 2013). 

In the NN imputation, the estimates for the attributes of interest (e. g. biomass) are 

produced as weighted averages of the attributes of the reference observation. The 

reference observations are similar in terms of a distance metric calculated in the predictor 

space formed by the independent variable (best variables selected by RF) (Vauhkonen et 

al. 2010; Hudak et al. 2008b). NN imputation methods can use different distance metrics 

to determine the similarity between target and reference records, including Euclidean, 

Mahalanobis, Minkowski, fuzzy etc. (Eskelson et al. 2009). However the reference data 

should cover the entire phenomenon of interest or field site to make an accurate 
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imputation. Hence, the process was applied to the available lidar coverage to get a 

contiguous map of biomass. A R package, yaimpute, was used which has a built-in 

function to calculate NN distances based on the RF proximity matrix (Crookston and 

Finley 2008; Hudak et al. 2008a). A detail explanation of imputation, its types and its 

fundamental difference with interpolation can be found in Hudak et al. 2008a, 2008b. 

2.4 Results 

2.4.1 Regression Analysis 

The Pearson’s correlation analysis identified the metric ‘Standard Deviation of 

Height’ (or Absolute Vegetation Roughness) as the variable with highest correlation with 

total AGB (Pearson’s correlation r = 0.85) and shrub biomass (Pearson’s correlation r = 

0.84). A regression analysis of total AGB with Standard Deviation of Height provided us 

with the following equation with an R2 of 0.72 and P values < 0.05:  

Total AGB=12374.67 x Standard Deviation of Height - 142.058  

Analysis of the residuals obtained from the above equation was correlated with 

the remaining of the 34 metrics and ‘Skewness of Height’ was found to have the highest 

correlation (Pearson’s correlation r = 0.39). Hence ‘Skewness of Height’ was added to 

the equation resulting in an R2 of 0.78, P value < 0.05 and F statistic <0.05:  

Total AGB = 10230 x Standard Deviation of Height + 386 x Skewness of 

Height -226.416  

Applying the same methodology to the shrub biomass (SB), provided the 

following model with an R2   of 0.76, P value < 0.05 and F statistic < 0.05: 

SB=25655.23 x Standard Deviation of Height - 19052.4 x Mean Absolute 

Deviation from Median Height -169.626 
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The graphs presenting the relationship between observed and predicted total AGB 

and shrub biomass are shown in figure 1. 4 and figure 1. 5 respectively. The negative 

shrub biomass shown in figure 1. 5 may be explained by artifacts from the lidar height 

filtering contributed by herbaceous cover. The herbaceous cover is sensitive to lidar but 

not taken into account by the shrub biomass model.   

A leave-one-out cross-validation performed using the ‘boot’ package in R statistical 

software (R Development Core Team 2013) yielded a RMSE of approximately 139 g for 

total AGB and 128 g for shrub biomass. The ‘k’ parameter was 46 (i.e. number of rows) 

to make the k-fold validation into a leave-one-out cross validation. 

 
Figure 1.4 Comparison between observed total AGB and total AGB predicted 

from regression analysis. 
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Figure 1.5 Comparison between observed shrub biomass and shrub biomass 

predicted from regression analysis. 

2.4.2 Random Forest Raster Analysis 

Lidar derived metrics were found to have a strong relationship with in-situ total 

AGB and shrub biomass using RF regression model. Lidar metrics, including ‘Mean 

Absolute Deviation (AAD) of Height’ and ‘Standard Deviation of Height’ from the 1 m 

raster image predicted the total biomass with an R2 of 0.73 and RMSE of 146 g per m2 

while shrub biomass was predicted with an R2 of 0.76 and RMSE of 125 g per m2 (Table 

1. 3).   

However, as the raster resolution decreased, the prediction capability of lidar 

metrics was also reduced with R2 of 0.70 at 7 m raster, 0.58 at 30 m raster and 0.42 at 100 

m for total AGB. Prediction of shrub biomass using raster analysis was also found to be 

scale dependent. 
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Table 1.3 Results of random forest regression using raster data processing for 
total and shrub biomass at different resolutions. R2 and RMSE values are estimated 
using “out-of-bag” testing. The R2 value of random forests regression model is the 
percent variance computed as the ratio of Mean Square Error and Variance of 
target response subtracted from 1.  

 Area(ha)  Resolution(m) R2  RMSE(g/m2) Best Predictors 

 
 
 

Total 
biomass 
 

1 1  
 

0.74 141 Hstd, HAAD, H90, 
HSkew, Hvar, Htext 

1 7  
 

0.70 152 Htext, FHDGT, H95, 
HAAD 

1 30  
 

0.58 180 FHDGT, nV, HAAD, 
H5 
 

1 100  
  

0.52 188 FHDGT, nV, H16, 
HAAD 
 

 
 
Shrub 
biomass 
 

1 1  
 

0.76 152 Hstd, HAAD , HCV, 
Hrange, FHDall 

1 7  0.67 143 Htext, FHDGT, HAAD 
 

1 30  
 

0.50 176 FHDGT, HAAD, HCV 

1 100  0.4 184 Htext, H50, pG, nG 
 

We also considered a reduced plot size of 70 m by 70 m to test the effect on biomass 

estimation.  In comparison to the 100 m plot, the reduced plot size didn’t improve the 

estimation of biomass: total AGB was predicted with an R2 of 0.68 (RMSE=156 g) and 

shrub biomass with R2 of 0.75 (RMSE = 126 g). Hence for further analyses, we only 

considered the plot size of 100 m by 100 m. The results are presented in Table 1. 4.  
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Table 1.4 Results of random forest regression for total biomass and shrub 
biomass at 70m x 70m plot level. R2 and RMSE values are estimated using “out-of-
bag” testing. The R2 value of random forests regression model is the percent 
variance computed as the ratio of Mean Square Error and Variance of target 
response subtracted from 1.  

 Area(m2) Resolution(m) R2 RMSE(g/m2) Best Predictors 

   Total 
biomass 

 

70 x 70 1  
 

0.68 156   FHDall, Hstd, HAAD, 
Hrange, HSkew 

Shrub    
biomass 
 

70 x 70 1  
 

0.75 126   Hstd, Hrange, FHDall, 
HCV 

 

2.4.3 Random Forest Point Cloud Analysis 

We analyzed point clouds at 1 m, 7 m, 30 m and 100 m scales using similar RF 

regression for this purpose. Unlike the raster processing, the increase in pixel size didn’t 

affect the total AGB prediction capability of the point clouds. The total AGB estimation 

ability of the RF model from point clouds was not statistically different from raster 

processing at 1m but was better than predictions using rasters at 7 m, 30 m or 100 m 

resolution. The results are summarized in Table 1. 5.  
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Table 1.5 Results of random forest regression using point cloud processing for 
total biomass and shrub biomass. R2 and RMSE values are estimated using “out-of-
bag” testing. The R2 value of random forests regression model is the percent 
variance computed as the ratio of Mean Square Error and Variance of target 
response subtracted from 1.  

 Area(ha) Resolution(m) R2 RMSE(g/m2) Best Predictors 

 
 
 

Total 
biomass 
 

1  1  
 

0.71 147 HMAD, HSkew, HIQR, HAAD, 
Hstd, Hkurt, H90, HCV 

1  7  
 

0.71 148 Htext, HIQR 

1  30  
 

0.70 151 HAAD, H95, HIQR, pH1,pG 
 

1  100  
 

0.67 160 H90, H95, Htext, 
veg_density 
 

 
 
Shrub 
biomass 
 

1  1  
 

0.73 129 HIQR, Hstd , HMAD, HCV 
 

1  7  0.72 132 Htext, H90, HIQR, HCV 
 

1  30  
 

0.65 146 H90, HIQR, Htext, pH1 

1  100  0.64 151 H95, Htext, pH1, 
GIQR,FHDGT 

 

In contrast to shrub and total biomass, herbaceous biomass was poorly predicted by 

lidar metrics. This was expected as herbaceous vegetation types are short in stature and 

hence differentiating ground from herbaceous returns in lidar is difficult. The results were 

consistent across all scales and all processing approaches and hence only results from 1m 

raster and point cloud are listed in Table 1. 6. 
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Table 1.6 Results of random forest regression for herbaceous biomass. Results 
for raster processing and point cloud processing are also shown. R2 and RMSE 
values are estimated using “out-of-bag” testing. The R2 value of random forests 
regression model is the percent variance computed as the ratio of Mean Square 
Error and Variance of target response subtracted from 1.  

 Area(ha) Source Resolution(m) R2 RMSE(g/m2) Best Predictors 

 
Herbaceo
us 
biomass 

 

1 Raster       1 
 

0.2 6.86 HSkew, Htext  

1  Point       
Cloud 

1 
 

0.19 7.54 HCV, Htext, 
HSkew  

 

2.4.4 Imputation 

A spatially explicit contiguous 1 m aboveground biomass map for the entire lidar 

coverage (~75,164 hectares) was produced by imputation using predictors associated 

with the 1m raster at 1 ha. A cross validation for the RF regression was not performed as 

Out-of-Bag (OOB) error acts as an internal cross-validation and is capable of providing 

an unbiased estimate of error (Naidoo et al. 2012; Prasad et al. 2006; Prinzie and Van den 

Poel 2008). While the results from the linear regression were similar to the RF regression, 

we chose to use the RF results in the final imputation. This was based on the RF 

versatility in handling complex relationships between variables in large data sets and its 

invulnerability from normality, homogeneity and correlation assumptions (Ismail et al. 

2010; Mutanga et al. 2012;  Vincenzi et al. 2011).  
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Figure 1.6 Imputed total AGB map at 1 m resolution of a selected area indicated 
by the brown frame. 
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Figure 1.7 Comparison of imputed shrub and herbaceous biomass maps for a 

selected area indicated by red star. Rectangular box refers to area in Fig. 1. 6. 

2.5 Discussion 

Both the RF and regression models showed a high correlation of lidar derived 

shrub height metrics with total AGB. Interestingly, in nearly all RF models with high R2 

and low RMSE, ‘Standard Deviation of Height’ along with ‘Mean Absolute Deviation 

(AAD) of height’ and ‘Median Absolute Deviation (MAD) of height’ scored higher 

among other predictors of total AGB and shrub biomass. For instance, when used in 

combination, Standard Deviation of Height and AAD at the 1 m scale explained about 

76% of variability in total AGB. ‘Standard Deviation of Height’ alone estimated total 

AGB with R2 of 0.73 using simple linear regression (Fig. 1. 8).  
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Figure 1.8 Simple linear regression between total AGB and Standard Deviation 

of Height 

Standard deviation of vegetation height measures the roughness of vegetation by 

calculating the deviation of all height points within each pixel. Contrary to other variables 

that only take into account true height, this metric represents the variability in vegetation 

height. Our field site is heterogeneous in terms of shrub and herbaceous height and the 

patches of sagebrush are distributed randomly. In related lidar biomass studies, Olsoy et 

al. (2014) and  Li et al. (2015) showed that the volume and percent vegetation cover, 

respectively, are important predictors of total AGB in semiarid rangeland. Li et al. (2015) 

demonstrated that airborne lidar derived percent vegetation cover can explain about 87% 

and 95% of variation in reference biomass at 5 m and 30 m resolutions, respectively. 

Hence, a metric able to capture volume of the shrub (by combining shrub height as well 

as width) as well as percent vegetation cover may be even more efficient in estimating 

biomass in rangeland. Further analysis of these metrics are warranted to better estimate 

the total AGB with lidar measurement. 
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Rangeland lidar studies have generally been limited to assessing shrub height, 

canopy cover, volume, species detection and fire severity (Ritchie et al. 2006; Sankey and 

Bond 2011; Wang and Glenn 2009a). Some studies (Streutker and Glenn 2006; Glenn et 

al. 2011; Spaete et al. 2011) have shown consistent underestimation of vegetation height 

by 30-50% using airborne lidar. The underestimation is attributed to the low probability 

of the laser hitting the top of the canopy (Mitchell et al. 2011). In addition, erroneous 

modeling of ground elevations due to shrubs being close to the ground is possible 

(Vierling et al. 2012). Glenn et al. (2011) suggest using mean point densities > 4 points 

per m2 to accurately model biomass. In this study, we explained 76% of the variability in 

shrub biomass using an average point density of 8 points per m2. The 25% error may be 

credited to the uncertainties associated with sparse vegetation distribution, 

misclassification of canopy as ground and underestimation of the vegetation height 

(Riaño et al. 2007; Streutker and Glenn 2006). 

While Terrestrial Laser Scanning (TLS) has also been employed in many studies, 

volume and height based metrics have been found to better estimate shrub biomass in dry 

land. For example, Olsoy et al. (2014) and Greaves et al. (2015) used TLS point clouds to 

develop a 3-D convex hull and voxel to successfully estimate individual sagebrush 

biomass and Arctic deciduous shrubs, respectively. Ku et al. (2012) demonstrated strong 

correlation of point cloud height variables with biomass at the plot scale using regression 

analysis. The height variables used in their study were maximum height, minimum 

height, standard deviation of height and 25th, 50th, 75th, 90th and 95th percentile of height; 

a subset of metrics used in this study. Vierling et al. (2012) also successfully 

demonstrated shrub characterization in rangelands using point clouds by retrieving shrub 
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heights with a strong correlation (p < 0.01) and R2 of 0.94. Estornell et al. (2012) used 

airborne lidar and multispectral imagery to satisfactorily estimate biomass and volume in 

a Mediterranean shrubland. They used median, standard deviation and percentile of 

height derived from lidar as the best predictors, explaining up to 78% and 84% of 

variability for biomass and volume respectively. Our finding is similar to these studies as 

we found lidar metrics, especially height related metrics as the best predictor of shrub 

biomass.  

The raster data models are most commonly used to represent lidar data as they are 

relatively easy to store and easier to process than point clouds. When point data are 

resampled into a grid space, the 3D data are converted to a 2D grid, causing a loss in 

detail (Yunfei et al. 2008). Raster image creation is based on aggregation of the 

irregularly distributed points returned value in grid cells. For cells that contain no points, 

interpolation is performed. El-Ashmawy and Shaker (2014) compared raster and point 

cloud classification in two areas in British Colombia. They found that the overall 

accuracy of point cloud classification was slightly better than the overall accuracy of 

raster classification. In this study, processing of the point cloud data significantly 

improved the estimation of total AGB and shrub biomass at coarser scales (7 m, 30 m and 

100 m) in comparison to the raster image processing (Table 1. 3 and 1. 5). As shown in 

figure 1. 9, for raster processing, the R2 decreases and RMSE increases as the resolution 

coarsens. However, the resolution of point cloud processing had comparatively negligible 

effect on the total AGB estimation (fig 1. 10). There is almost no loss of detail while 

extracting or averaging information from the original point cloud. This is because the 

point cloud metrics are not produced from interpolation of values. 
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Figure 1.9 Relationship between pixel size and R2 and RMSE in raster data 

processing. As the pixel resolution decreases, the R2 decreases and RMSE increases. 
The figure represents the results from total AGB only but shrub biomass follows a 

similar trend. 

 
Figure 1.10 Relation between pixel size and R2 and RMSE in point cloud 

processing. Comparatively, the cell size has little effect on the R2 and RMSE. The 
figure represents the results from total AGB only but shrub biomass follows a 

similar trend. 

For 1 m resolution, however, the point cloud processing was not significantly 

different than raster data processing. The increased performance of finer raster cell sizes 
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may be credited to what we can term as the ‘edge effect’ and ‘boundary shift effect’. 

When the fine scale rasters are created, the rasterization process takes into account less 

point clouds that are outside of the pixel boundary but are in close proximity. 

Furthermore, while extracting information, the pixel in a raster generally will not 

coincide with the actual plot in the field. But extraction of information from a finer 

resolution is comparatively less influenced by the values from adjoining peripherals 

pixels than coarser pixels (fig 1. 11). This decreases error in the finer resolution and helps 

finer pixel to represent the reality more closely. The results indicate that the rasterization 

method preserves most of the 3D point cloud vegetation characteristics at fine 

resolutions. However, rasterization is not an ideal approach at coarser scales such as 100 

m. 

 
Figure 1.11 Schematic showing the difference in extraction of vegetation 

characteristics due to different raster pixel size. The red cell represents the field plot 
of interest. The black cells in the left figure show coarser resolution pixels and the 

black cells in the right represent finer resolution pixels. 

The results from point cloud processing may be further improved by taking into 

account the intensity (sometime called amplitude) in addition to the 3D information of 

the laser returns. Backscattered laser intensity in lidar is determined by the reflectance 

characteristics of objects in the near infrared spectra which can be used to identify land-
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cover classes (Lang and McCarty 2009; Yoon et al. 2008). Since, lidar intensity and 

structural information can be used to identify same feature, the land-cover classes can be 

used for better qualitative and quantitative visual analysis of vegetation (Wang and Glenn 

2009b). 

As shown in the schematic in figure 1. 3, the averaging of biomass in subplots to 

get the in-situ plot level biomass leaves non-contributing space in the peripheral part of 

the plot. The reduced 70 m by 70 m plots were used to test the effect of these non-

contributing portions of the plot. These reduced spatial dimensions more closely matched 

the field plot design and hence examined the effect of plot size on biomass estimates. 

However, as shown in Table 1. 4, the use of the reduced plot size did not improve results. 

One reason may be that the size of the field plot used in this study was not big enough to 

capture the individual heterogeneity in the distribution of vegetation at a large scale. Thus 

the biomass distribution inside each plot was almost the same, the average biomass and 

hence the estimated biomass was identical between the reduced 70 m by 70 m plot and 

original 100 m by 100 m plot.  

The use of RF imputation methods places a high requirement on in-situ data as the 

biases in the in-situ data are represented in the final results (Vauhkonen et al. 2010). This 

is likely the reason behind the appearance of the long linear features of relatively high 

biomass in the resulting imputation map shown in figure 1. 6. Although the aggregation 

of biomass inside 9 subplots of 1 m2 area might have been representative of herbaceous 

and small shrubs in a 1 ha plot, substantial error in the field data may have been 

introduced because of large shrubs close to the subplot edge. Moreover, an attempt of 

estimating biomass in rangeland without delineating species level classification can have 
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a major disadvantage when vegetation have similar structural arrangements but different 

AGB (Anderson 2014). For example, bluegrass (Poa secunda) which is a perennial can 

be incorrectly identified as cheatgrass which is an annual non-native herbaceous grass. 

2.6 Conclusion 

This study explored the use of lidar to map aboveground biomass in a semi-arid 

rangeland. This will allow a better management of native shrubs and their obligates, 

projection of wildfire and accurate inventory of vegetation in large landscape. Using the 

RF model and linear regression, we successfully established that lidar derived metrics can 

be used as a proxy to estimate biomass and can be further imputed to produce a 

contiguous map covering a large area. We also demonstrated the advantages of point 

cloud processing over raster processing at coarser scales. While this method can be 

reproduced to estimate AGB of sagebrush dominated rangelands, a different set of lidar 

metrics may prove to be better predictors in other rangeland ecosystems, depending on 

the geography, density, stature and distribution of shrubs. Furthermore, the estimation 

process may be further improved by including more representative in-situ data, 

considering the effect of topographic and elevation factors and synergetic use of other 

remote sensing data such as multispectral and hyperspectral data. 
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3 CHAPTER THREE: MANSUCRIPT TWO - IMPUTATION OF VEGETATION 

BIOMASS AND COVER FOR LARGE SCALE MAPPING IN A SEMI-ARID 

RANGELAND USING AIRBORNE LIDAR, LANDSAT 8 AND A MACHINE 

LEARNING ALGORITHM 

Abstract 

Remote sensing based quantification of semi-arid rangeland vegetation provides 

the large scale observations necessary for monitoring native plant distribution, estimating 

fuel loads and measuring carbon storage. Improved signal to noise ratio and radiometric 

resolution of recent satellite imagery and fine scale 3-dimensional information from lidar 

provides opportunities for refined measurements of vegetation structure. We leverage a 

large number of Landsat 8 and lidar-based metrics for prediction of biomass and cover in 

the semi-arid rangeland of the western United States. Time-series Landsat 8 images were 

used to develop 20 ratio-based vegetation indices. Similarly, 35 vegetation metrics, 

including metrics based on numerical values (e.g. elevation, canopy height) and on 

density of points (e.g. canopy density) were developed from airborne lidar point clouds. 

These vegetation indices were trained and linked to in-situ measurements (n = 141) with 

the Random forest regression to impute semi-arid vegetation biomass and cover, resulting 

in a large scale map of these vegetation characteristics. We also validated our model with 

an independent data-set (n = 44), explaining up to 63% of variation in cover and 53% in 

biomass of shrub. Forty six of the in-situ plots were also used in a model to compare 

performance of lidar and Landsat data. Our results demonstrate that Landsat performs 
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better in estimating vegetation cover (R2 = 0.75) whereas lidar performs better in 

estimating shrub biomass (R2 = 0.75). We also examined the effect of topographic 

variables (e.g. slope, aspect and elevation) on the biomass and cover estimates and found 

no significant relationship. This study demonstrates new opportunities of using Landsat 8 

with established lidar approaches to better quantify vegetation in semiarid ecosystems.   

3.1 Introduction 

Native plants in arid and semi-arid regions such as in western North America, 

Africa, Asia and Australia, are threatened by exotic annuals and perennials (Purdie and 

Slatyer 1976; Hobbs and Atkins 1990; Anderson and Inouye 2001; Brooks et al. 2004; 

Liu et al. 2006; Hill et al. 2005; Didham et al. 2007; van Wilgen et al. 2008; Davies and 

Nafus 2013). In North America, sagebrush-steppe constitute the largest temperate semi-

desert and yet are imperiled and critically endangered ecosystems (Barbour and Billings 

2000; Miller et al. 2011). The dramatic decrease of sagebrush (Artemisia tridenta) can be 

largely attributed to increased fire frequency due to the spread of invasive nonnative 

species like cheatgrass (Bromas tectorum), medusahead (Taeniatherum caputmedusae) 

and juniper (Juniperus spp.) (Knick 1999; Wisdom et al. 2005; Miller and Rose 2006; 

Miller et al. 2011). The change in sagebrush results in a decline of already endangered 

animals such as the greater sage grouse and pygmy rabbits (Connelly et al. 2004; Shipley 

et al. 2006; Storch 2007), a decline of organic matter, evapotranspiration and hydraulic 

lift in soil (Branson et al. 1976; Heitschmidt and Stuth 1991; Wilcox 2010; Cardon et al. 

2013) and a loss in carbon sequestration (Angell et al. 2001; Shrestha and Stahl 2008). 

Accurate and cost-effective characterization of the spatial distribution of native and non-

native plants and quantification of their biomass in drylands are crucial for measurements 
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of carbon storage, estimation of fire fuel loads, developing restoration strategies and 

ensuring sustainability of native ecosystems.  

Various methods are available for in-situ measurements of aboveground biomass 

and percent cover of vegetation in semi-arid ecosystems. Some of the most common 

methods include harvesting  (Sims and Singh 1978, Sala and Lauenroth 1982), clip-and-

weigh (Bonham 2013), visual estimation (Waite 1994), and point-intercept sampling 

(Clark et. al 2008). Remote sensing methods are complementary to these traditional 

methods as remote sensing can provide multi-scale contiguous estimates over space and 

through time (Wilson et al. 2011; Lu 2006; Zolkos et al. 2013). Multispectral, 

hyperspectral, radar and airborne lidar are used extensively in studies to develop 

attributes that can be then statistically related to vegetation characteristics (Lu and Chen 

2012; Mitchard et al. 2012; Swatantran et al. 2011; Asner et al. 2010). Recent studies 

have also up-scaled vegetation characteristics to regional, national and even global scales 

using remote sensing data, resulting in high spatial coverage with low uncertainties 

(Lefsky 2010; Wilson et al. 2011; Mitchell et al. 2015; Li et al. 2015). Heterogeneity in 

cover types and land surfaces, however, challenges the upscaling when performed at very 

large scales (Hufkens et al. 2008; Wu and Li 2009).    

Selection of suitable predictor variables derived from remote sensing data is a 

critical step for developing a vegetation biomass or percent cover model. In passive 

optical remote sensing, spectral indices must be able to empirically correlate with 

vegetation attributes and be able to differentiate vegetation from soil features (Todd et al. 

1998). Previous studies have shown that there is a relationship between vegetation cover 

and biomass with vegetation indices (Purevdorj et al. 1998; Avitabile et al. 2012). It has 
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been widely demonstrated that vegetation indices are more sensitive than individual 

spectral bands to vegetation parameters (Jackson and Huete 1991; Huete et al. 2002; 

Price et al. 2002; Glenn et al. 2008; Yang et al. 2012). Robinson and Novelly (2009) 

point out three issues to be considered when choosing appropriate indices for arid and 

semi-arid rangelands with sparse vegetation and low leaf area index: i) low reflectivity of 

vegetation in the infrared portion of spectrum; ii) greater influence of background soil 

reflectance and; iii) limitation in performance of indices using the difference in red and 

near infrared bands due to the senescence of grasses and shrubs. Remote sensing indices 

used in characterizing vegetation in semi-arid rangelands can be characterized into three 

types. The first type of indices are ‘Simple ratio based’ that considers that all vegetation 

isolines converge at a single point (e.g. NDVI, SVI and VCI). The second type is ‘soil 

adjusted vegetation indices’ that account for soil brightness variations (e.g. SAVI, 

GSAVI and SATVI) and the third type is ‘perpendicular vegetation indices’ that consider 

vegetation isolines parallel to the soil line (e.g. BI, GVI and WI) (Zandler et al. 2015; 

Basso et al. 2004). Algorithms such as the Normalized Difference Vegetation Index 

(NDVI) have been widely accepted and empirically correlated to structural parameters 

such as Leaf Area Index (LAI) (Vazirabad et al. 2011). The tasseled cap brightness and 

wetness indices are responsive to variations in total reflectance and sensitive to soil-plant 

moisture respectively, which makes them useful for estimating biomass and cover (Crist 

1983; Todd et al. 1998). Similarly, soil adjusted indices have been shown to be important 

in drylands as they account for soil-vegetation spectral mixing caused by sparse 

vegetation cover (Eitel et al. 2009; Veraverbeke et al. 2012). The inherent challenges in 

semi-arid ecosystems, including the short stature, sparse vegetation, considerable bare 
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ground and multiple species with similar characteristics, are not yet explored with data 

from the relatively new Landsat 8 Operational Land Imager (OLI) (Glenn et al. in press). 

As the latest member of the Landsat family of remote sensing satellites, Landsat 8 uses a 

push-broom scanner which receives stronger signals and improved signal-to-noise ratio 

performance (Li et al. 2013). 

One of the major limitations of Landsat is that the data saturation in sites with 

high biomass and penetrable canopies in low cover areas generate large uncertainties (Lu 

2005; Sivanpillai et al. 2009; Frank and Tweddale 2006). However, lidar can overcome 

this shortcoming because of its ability to obtain range and orientation information by 

capturing three-dimensional structural data (Su and Bork 2007). Lidar has been 

extensively used in forest applications for characterizing canopy structure or measuring 

volume, height and biomass (Lefsky et al. 2002; Zimble et al. 2003; Andersen et al. 2005; 

Hall et al. 2005; Lin et al. 2012). Vegetation characteristics of shrubs in rangelands using 

lidar has also been of interest to several studies (Ritchie et al. 2006; Streutker and Glenn 

2006; Su and Bork 2007; Glenn et al. 2011). But studies using lidar are typically confined 

to the areal extent of lidar, which is generally smaller than an individual Landsat scene. 

Hence, there has also been effort on deriving metrics from both lidar and spectral remote 

sensing and relating this information with vegetation features using statistical models 

(Erdody and Moskal 2010; Hartfield et al. 2011; Swatantran et al. 2011; Estornell et al. 

2012;  Lu and Chen 2012; Naidoo et al. 2012). Ancillary topographic data, fire events 

and climatic factors have also been incorporated into the modeling process to understand 

their influence on biomass and percent cover (Watson et al. 1998; Liu et al. 2003; Osumi 

et al. 2003; Stokes et al. 2008; Balch et al. 2013). Specifically, topographic variables like 
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slope, aspect, elevation or texture have been shown to correlate with vegetation 

characteristics (Sternberg and Shoshany 2001; Powell et al. 2010; Avitabile et al. 2012).  

In remote sensing applications, it is not uncommon to see a large number of 

predictor variables with a relatively modest number of ground-truth observations. This 

creates a high-dimensional problem which may lead to over-fitting of models (Zandler et 

al. 2015). Regression analysis is widely adopted to relate field and remotely sensed data 

but identifying suitable variables for meaningful correlation is critical in regression as 

some variables are weakly related to the ground data and strongly related to each other 

(Mutanga et al. 2012; Montgomery et al. 2012; Fernandes and Leblanc 2005; Ahmed et 

al. 2015). Furthermore, regression analysis involves assumptions of normality and 

homogeneity which may not always be satisfied with the available datasets (Montgomery 

et al. 2012).  

Alternatively, non-parametric machine learning approaches like random forest 

(RF) are gaining considerable attention to select suitable variables and modeling due to 

their versatility and computational accuracy in high-dimensional, non-normal and non-

linear remote sensing applications (Mitchell et al. 2013; Guan et al. 2012; Pal 2005). RF 

is an improvement over classification and regression trees (CART). RF bootstraps 

samples to iteratively construct a large number of decision trees each grown with a 

randomized subset of predictors (Breiman 2001). RF models can be used in either 

classification or regression approaches.  These ‘trees’ cast a unit vote for the most 

popular class to classify an input vector in a RF classification (Pal 2005; Breiman 1999). 

In regression mode, RF takes the average of the ‘trees’ to make a prediction. As the 

response variables (biomass and cover) are numerical and continuous, we confine our 



61 

 

attention to regression random forest models (Vincenzi et al. 2011) rather than 

classification. The RF model doesn’t require assumptions about the relationship between 

dependent and independent variables and is well suited for analyzing complex non-linear 

and possibly hierarchical interactions in large data sets (Olden et al. 2008; Ahmed et al. 

2015).  RF grows a large number of trees which does not over fit the data and the random 

predictor selection keeps biases low. RF also has an internal cross-validation mechanism 

and thus provides better models for prediction (Prasad et al. 2006; Naidoo et al. 2012).  

In this study, we investigated the utility and limitation of Landsat and lidar 

derived metrics in mapping aboveground vegetation biomass and cover in a semi-arid 

rangeland in a National Conservation Area (NCA) located in western United States. 

Different random forest models were developed and the results were compared with in-

situ data independently for Landsat and lidar. We used spectral indices as a proxy to 

successfully extend the biomass and cover model for the whole NCA. The study 

presented here reveals the capabilities and weaknesses of both Landsat and lidar and 

identifies the coupling of multiple sensors for improved modeling results. 
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3.2 Study Area and Data 

3.2.1 Study Site 

 
Figure 3.1 Location of field plots and lidar coverage in the study site. 

The research was carried out in a semiarid shrub-steppe rangeland once dominated 

by big sagebrush located within the Morley Nelson Snake River Birds of Prey National 

Conservation Area (NCA). The NCA encompasses about 242,800 hectares of the Snake 

River Plain ecoregion in southwestern Idaho, USA (Fig. 3. 1). It also contains other 

native species including shadscale (Altriplex confertifolia), winterfat (Ceratoides lanata), 

budsage (Artemisia spinescen), rabbitbrush (Chrysothamnus visciflorus) and  rapidly 

invading annual exotic like cheatgrass (Bromus tectorum). In an average year, the NCA 

receives 20 cm precipitation, 74 days with a high temperature greater than 32° C, and 98 

days with a low temperature below 0° C (WRCC, 2012). The native vegetation 

assemblage is composed of an understory of biological crusts and sparse native 

bunchgrass (Festuca idahoensis), overlain by an open canopy of shrubs ranging up to 1.5 

m tall (Anderson, 2014). Since 1980, over half of the NCA has burned resulting in a 
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mosaic of plant communities, with compositions spanning a gradient between intact 

native shrublands, shrublands degraded by biological invasion and wildfire, and 

grasslands where native plants have been fully replaced by cheatgrass and other invasive 

annuals. Currently 37% or less of the NCA retains an intact native shrubland community 

(USDI, 2008).  

3.2.2 Acquiring Landsat 8/OLI and Ancillary Data 

A time series of three surface reflectance Landsat 8 Operational Land Imager 

(OLI) images from April 11, June 30 and October 4 2013 in path/row 41/30 were 

acquired covering the field site. These specific dates were chosen to cover the growing 

season and correspond to 2013 field sampling efforts. Field sampling also occurred in 

2012, but Landsat 8 data were not available for that period. The cloud cover over the 

2013 images were < 1.5 %. Of the 11 bands of Landsat 8, 6 bands (blue, green, red, NIR, 

SWIR 1, and SWIR 2) of OLI were used to produce vegetation indices at 30m pixel scale 

for each image date. 

Slope, aspect and elevation were calculated from an ASTER GDEM (product of 

METI and NASA) to include topographic attributes as possible proxies in the model and 

to account for site suitability and background soil conditions (Zandler et al. 2015). 

3.2.3 Field Sampling 

In the summer of 2012 and 2013, a total of 141 1-ha plots were established at 

locations throughout the western NCA by the United States Geological Survey, Forest 

and Rangeland Ecosystem Science Center (USGS FRESC) (Shinneman et al. 2011). A 

stratified random sampling approach was used to select the locations of these plots, and 

the corners of each plot were precisely located using a survey-grade Global Navigation 
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Satellite System (GNSS). The sites were selected considering the accessibility and to 

capture a variety of plant community compositions. The sampling design included a 3 x 3 

grid of nine 1 m2 subplots with 25 m spacing between them inside a 1-ha field plot, for a 

total of 1269 subplots. In our analysis, we modified the 1-ha plot to utilize the inner 70 m 

x 70 m area because the Landsat OLI sensor has a pixel size of 30m and an accuracy of 

12 m resulting in a calculated minimum size of plot of 54 m (USGS, 2013). This also 

provided an additional 6 m to provide for GPS horizontal deviation and 10 m as a buffer 

distance to minimize side effects (Zandler et al. 2015).    

Aboveground vegetation within the subplots were destructively sampled and 

classified as herbaceous or shrub. All forbs, herbs and grasses (native and non-native) 

were lumped into a single herbaceous category (hereafter referred to as herb). Litter was 

also included in the herb class as it was difficult to separate litter from grass in the field. 

If shrubs were too bulky to be harvested efficiently, a portion was collected for reference 

and weighing and the number of equivalent portions remaining in the quadrat was 

estimated (Anderson 2014). The harvested vegetation was oven dried, weighed and 

biomass at each plot was estimated as the average from the nine subplots by herb and 

shrub class. SamplePoint Software (Booth et al. 2006) was used for photo plot analysis 

and to produce cover estimates of herb and shrub for the 1 m subplots which were later 

averaged to produce average cover for the 70 m x 70 m plots. We included grass, forbs 

and litter in the herbaceous category as it was difficult to separate litter and grass in the 

field.  

Based on the 141 plots, herbaceous cover ranged from 10 to 100% and shrub 

cover from 0 to 48%. Similarly, the herbaceous class had a mean biomass of ~ 157 g/m2 
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and shrub had a mean biomass of ~ 118 g/m2 (Table 3. 1). The distribution of the field 

data was skewed towards smaller biomass values (Fig. 3. 2a). With regards to cover, the 

distribution of shrub was skewed towards smaller values whereas herb was skewed 

towards higher values (Fig. 3. 2b). Almost one third of the plots didn’t have any shrub 

cover.  

Table 3.1 Summary of vegetation cover and biomass based on 1 ha field data 
(n=141).  

 Herb Cover 
(%) 

Shrub Cover 
(%) 

Herb Biomass 
(g/m2) 

Shrub Biomass 
(g/m2) 

Minimum 10 0 5 0 
Maximum 100 48 804 954 
Mean ± SE 72 ± 2 7 ± 1 157 ± 9 118 ± 16 
Standard Deviation 23 11 104 197 
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(a) 

 
(b) 

 
Figure 3.2 Frequency distribution of the in-situ (a) biomass and (b) percent cover 

of herb and shrub (n=144). 
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3.2.4 Airborne Lidar Data Acquisitions 

Discrete small footprint lidar data were collected over 65,194 hectares in 2012 

and 9,970 hectares in 2013, with a ALS60 system (Leica Geosystems, Heerbrugg, 

Switzerland) operated by Watershed Sciences (Corvallis/Portland, OR), with a point 

density of ~ 8 points per m2 and a vertical accuracy of ~ 3 cm. The lidar system acquired 

approximately ≥ 148,000 laser pulses per second and was flown at 1,500 meters above 

ground level, with a scan angle of 48° (±12°) from nadir (field of view). An opposing 

flight line side-lap of ≥ 50% (i.e. 100% overlap) was maintained to reduce shadowing and 

increase point density. The absolute vertical accuracy (RMSEz) was about 0.03 m and the 

relative accuracy was about 0.024 m. The vertical accuracy was primarily assessed from 

ground check points on open, bare earth surface with slope, by the vendor. Of the141 

field plots, 46 plots were spatially nested within the lidar footprints. 

3.3 Methodology 

3.3.1 Spectral Vegetation Indices (VI) 

In addition to the six spectral bands of the OLI sensor, we developed 20 spectral 

indices from the OLI spectral bands for each plot (Table 3. 2). For all soil adjusted 

indices, we used a 0.25 soil correction factor (Glenn et al. in press). The spectral bands 

and vegetation indices were used in our statistical model to relate to the field data.  
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Table 3.2 Overview of the spectral indices from Landsat 8 OLI used in this 
study.  

Indices Formula Reference 

GI/ SVI NIR / Red Sivanpillai et al. 
(2009) 

Phua and Saito (2003) 

VCI MIR / NIR Sivanpillai et al. 
(2009) 

NDVI NIR - Red / NIR + Red Tucker et al. (1983) 

TVI √(NDVI+0.5) Phua and Saito (2003) 

Nellis and Briggs 
(1992) 

DVI SWIR1- SWIR2 Phua and Saito (2003) 

MIRI SWIR2 - Red/ SWIR2 + Red Sivanpillai et al. 
(2009) 

 Green + Red - Wallace and Thomas 
(1998) 

STVI-1 SWIR2 x Red/NIR Thenkabail and Ward 
(1994) 

MSI SWIR/NIR Hunt Jr. and Rock 
(1989) 

MSI2 SWIR2/NIR  

NDWI (NIR-SWIR)/(NIR+SWIR) Gao (1996) 

NDWI2 (NIR-SWIR2)/(NIR+SWIR2)  

NBR (SWIR1-SWIR2)/(SWIR1+SWIR2) Escuin et al. (2008) 

GVI -0.2941 * Blue - 0.243 * Green -0.5424 * Red 
+ 0.7276 * NIR - 0.0713 * SWIR1 - 0.1608 * 
SWIR2 

Kauth and Thomas 
(1976) 

Baig et al. (2014) 

BI 0.3029 * Blue + 0.2786 * Green + 0.4733 * 
Red + 0.5599 * NIR + 0.508 * SWIR1 + 
0.1872 * SWIR2 

Kauth and Thomas 
(1976) 
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Baig et al. (2014) 

WI 0.1511 * Blue + 0.1973 * Green + 0.3283 * 
Red + 0.3407 * NIR -0.7117 * SWIR1 - 
0.4559 * SWIR2 

Kauth and Thomas 
(1976) 

Baig et al. (2014) 

SAVI [(NIR1-Red) /(NIR1+Red+L)] x (1+L) 

L=Soil Correction factor; L=0.25 

Huete (1988) 

GSAVI [(NIR-green)/(NIR + Green + L)] x (1+L) 

L=0.25 

Sripada et al. (2006) 

MSAVI [2 x NIR+1-√((2 x NIR+1)2 – 8 x  

(NIR - Red))]/2 

Qi et al. (1994) 

SATVI [(NIR1-Red) /(NIR1+Red+L)] x  

(1+L)- SWIR1/2 ; L=0.25 

Marsett and Jiaguo 
(2006) 

 

3.3.2 Lidar Data and Derivative Processing 

Lidar point cloud data were buffered and height filtered using the ‘BCAL Lidar 

Tools’ developed for semiarid vegetation (http://bcal.boisestate.edu/tools/lidar; Streutker 

and Glenn 2006.. Height filtering classifies lidar points into ground and vegetation points. 

The filtering was performed using a 5 m canopy spacing, a 5 cm ground threshold, 

nearest neighbor interpolation and 40 iterations. The resulting vegetation points were 

rasterized into multiband vegetation metrics at one meter raster resolution, calculated 

directly on the binned point clouds (Table 3. 3). These 35 metrics were developed with 

the intention to use them as a proxy for vegetation characteristics such as density, 

biomass, volume, cover etc. A description of lidar metrics and their use in biomass 

modeling can be found in (Dhakal et al. 2016).  
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Table 3.3 Lidar metrics and their descriptions used in the analysis.  

Lidar Metrics Description 

Minimum Height (Hmin) The minimum of all height points within each pixel 

Maximum Height (Hmax) The maximum of all height points within each pixel 

Height Range (Hrange) The difference of maximum and minimum of all height 
points within each pixel 

Mean Height (Hmean) The average of all height points within each pixel 

Median Absolute 
Deviation from Median 
Height (HMAD) 

The MAD value of all height points within each pixel 

HMAD = 1.4826 x median(|height - median height|) 

Mean Absolute Deviation 
from Mean Height (HAAD) 

The AAD value of all height points within each pixel 

HAAD = mean(|height - mean height|) 

Height Variance (Hvar) The variance of all height points within each pixel 

Height St. Deviation (Hstd) The standard deviation of all height points within each pixel 
This is also called 'absolute vegetation roughness' 

Height Skewness (Hskew) The skewness of all height points within each pixel 

Height Kurtosis (Hkurt) The kurtosis of all height points within each pixel 

Interquartile Range (HIQR) 
of Height 

The IQR of all height points within each pixel  

HIQR = Q75-Q25, where Qx is xth percentile 

Height Coefficient of 
Variation (HCV) 

The coefficient of variation of all height points within each 
pixel 

Height Percentiles (H5, 
H10, H25 etc.) 

The 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of 
all height points within each pixel 

Number of Lidar Returns The total number of all points within each pixel 

Number of Lidar 
Vegetation Returns (nV) 

The total number of all the points within each pixel that are 
above the specified crown threshold value (CT) 

Number of Lidar Ground 
Returns (nG) 

The total number of all the points within each pixel that are 
below the specified ground threshold value (GT) 
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Total Vegetation Density 
(Veg_density) 

The percent ratio of vegetation returns and ground returns 
within each pixel.  

Density = nV/nG*100 

Vegetation Cover 
(Veg_cov) 

The percent ratio of vegetation returns (nV) and total returns 
within each pixel 

Percentage of Ground 
Return (pG) 

Percent of points within each pixel that are below the 
specified Ground Threshold 

Percent of Vegetation in 
Height Range (pH1, pH2.5, 
pH10 etc.) 

Percent of vegetation in height ranges 0-1m, 1-2.5m, 2.5-
10m, 10-20m, 20-30m, and >30m within each pixel 

Percent of Vegetation = Number of vegetation returns in the 
range/Total vegetation returns 

Canopy Relief Ratio 
(CRR) 

Canopy relief ratio of points within each pixel 

Canopy relief ratio = ((Hmean - Hmin)) / ((Hmax - Hmin)) 

Texture of Heights (Htext) Texture of height of points within each pixel. Texture = St. 
Dev. (Height > Ground Threshold and Height < Crown 
Threshold) 

Foliage Height Diversity 
(FHDall)- All points 

Foliage arrangement in the vertical direction 

FHDall =- ∑pi * ln pi where pi is the proportion of horizontal 
foliage coverage in the ith layer to the sum of the foliage 
coverage of all the layers 

Foliage Height Diversity- 
Points above ground 
threshold (FHDGT) 

FHD calculated only from the points above the ground 
threshold  

 

3.3.3 Modeling Approach 

For the Landsat analyses we randomly selected 97 field plots for calibration and 

used the remaining 44 plots for independent validation. We first modeled the relationship 

between biomass and cover with remote sensing variables (spectral bands, spectral 

indices and topographic data) using a RF regression. The biomass was subcategorized 

into total, shrub and herb biomass; cover was categorized into shrub and herb cover and 
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individual models were developed for each category. We used the SPM Suite (Salford 

Predictive Modeler Software Suite version 7, Salford Systems, San Diego, CA) for the 

implementation of the RF algorithm. Each RF regression run generated 2000 trees and 

the maximum number of variables considered per node was kept equal to the square root 

of the number of variables for the run (Breiman 1999; Breiman 2001). All predictor 

variables were used to perform the initial RF run and each of them were ranked based on 

their predictive power using the ‘Standard Method’. In each ‘tree’ in the ‘forest’, a 

variable was tested by first scrambling (substituting) its values and then measuring the 

decline of accuracy in the model caused by the substitution. This means if a variable 

substituted with incorrect values can predict the target accurately, then the variable has no 

relevance to predicting the outcome and hence is assigned a low score (SPM user guide, 

2013). A backward feature elimination method was used for the best variable selection 

method, where lowest performing variables were iteratively removed until the best model 

was obtained. The best models for all five categories were determined based on the 

highest coefficient of determination (R2), lowest root-mean-square error (RMSE) and 

maintaining model parsimony (number of predictor variables were kept as low as 

possible). The variable selection was done not only to reduce the explanatory variables 

but also to understand the most suitable explanatory variables to estimate biomass and 

cover (Ismail et al. 2010).   

The best variables selected for five categories (shrub biomass, herb biomass, total 

biomass, shrub cover and herb cover) were then used in Nearest Neighborhood (NN) 

Imputation across 30 m pixels to produce a contiguous map for each category separately. 

This imputed map was validated using the remaining independent plots (n = 44). The 
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imputation was performed in the R statistical computing environment (R Development 

Core Team 2013) using the yaimpute package (Crookston and Finley 2008; Hudak et al. 

2008). In NN imputation, the estimates for the attributes of interest (e.g. biomass, cover) 

are produced as weighted averages of the attributes of the reference observation (e.g. 

spectral information). But unlike interpolation, imputation reference records should cover 

the entire phenomenon of interest or field site to make an accurate estimation. NN 

imputation methods can use different distance metrics to determine the similarity 

between target and reference records, including Eculidean, Mahalanobis, Minkowski, 

fuzzy etc. (Eskelson et al. 2009). For this study, we used a proximity matrix obtained 

from the RF method (Crookston and Finley 2008). 

In order to compare the performance of Landsat 8 OLI with lidar, we ran two 

additional RF analyses with a) OLI and topographic metrics and; b) lidar metrics. These 

analyses were performed over the area of the lidar footprints and corresponding 46 field 

plots. The analyses were performed independently for five categories: shrub cover, herb 

cover, total biomass, shrub biomass and herb biomass and the best variables for each 

category were determined. 

3.4 Results 

3.4.1 Calibration and Validation of OLI 

The RF model indicated that the reflectance bands and indices developed from 

OLI were better in predicting vegetation cover than biomass. The model explained 63% 

and 69% variance in shrub and herb cover with a RMSE of 7% and 13% respectively 

(Table 3. 4). However, shrub and herb biomass were predicted with a R2 of 0.60 and 

0.49, and RMSE of 126 g/m2 and 65 g/m2, respectively. Regarding the variable 
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importance, the spectral information and indices acquired from images in summer and 

fall were more dominant than those acquired in spring. Soil adjusted indices and tasseled 

cap indices were among the important variables in each RF run. However, we did not 

find any statistically significant relationship of topographic variables with biomass or 

cover in the study site. 

In order to assess the reliability of the model, the performance was tested against 

the independent dataset that was excluded from the model development and included 

randomly chosen plots (n=44). The validation model had a comparatively lower 

explanatory power than the calibration model. The results indicated our model explained 

63% of variation in herb cover and only 30% of herb biomass, 44% of shrub cover, 53% 

of shrub biomass and 37% of total biomass (Table 3. 4).  

Table 3.4 Random forest results for calibration and validation model of OLI. 
The RMSE values of cover predictions are in units of % and biomass predictions 
are in g/m2. The variables are labeled by respective date and metric from Table 2. 2.  

 Calibration (n=97) Validation (n=44) 

 
 R2   RMSE (g/m2) Variables   R2 RMSE (g/m2) 

Shrub 
Cover 

0.63 7 June30 SATVI, 
June30 GVI, 

Oct4 SAVI, Oct4 
MSAVI, 

June30 NBR 

0.44   8 

Herbaceous 
Cover 

0.69 13 Oct4 MIRI, 
June30 MSI, 

Oct4 Green, 

June30 SATVI 

0.63   16 

Total 
Biomass 

0.54 147 June30 SATVI, 
June30 GVI, 

Oct4 NIR, Oct4 

0.37    158 
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MSAVI, 

Oct4 Red, Oct4 
SAVI 

Shrub 
Biomass 

0.60 126 June30 SATVI, 
June30 GVI, 
Oct4 MSAVI,  

June30 NDWI, 

Oct4 GSAVI 

0.53   128 

Herb 
Biomass 

0.49 65 Apr11 NIR, 
June30 MSI, 

June30 NIR, 
Oct4 NIR 

0.3   64 

 

3.4.2 Biomass and Cover Maps 

We scaled our RF models of biomass and cover to create spatially explicit 

contiguous maps of biomass and percent cover (Fig. 3. 4). The imputed map covered the 

entire NCA (~ 75,164 hectares) using imputation. The imputed maps are relevant for the 

year and resolution in which we created the models (2013, 30 m pixel resolution).  Based 

on the imputation, the NCA contained ~ 344925 kg of herbaceous biomass and ~ 313420 

kg of shrub biomass in 2013.   
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 (a) 

 
 (b) 

 
Figure 3.3 Summary distribution of (a) biomass and (b) percent cover in the 

NCA after imputation.  
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The frequency distribution of the estimated biomass and cover (Fig. 3. 3) is 

similar with in-situ training data (Fig. 3. 2). The imputed maps demonstrated that more 

than 70% of NCA has shrub biomass less than 100 g/m2 and 50% of land with less than 

100 g/m2 of herb biomass in 2013. Similarly, more than 68% of NCA has shrub cover of 

10% or less. However, herb cover was distributed more evenly throughout the NCA in 

2013 (Fig. 3. 3).  

(a) 
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(b) 

 
(c) 
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(d) 

 
(e) 

 
Figure 3.4 Imputed map at Landsat resolution of a) herb biomass, b) shrub 

biomass, c) total biomass, d) herb cover, and e) shrub cover. 
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3.4.3 Comparison of Landsat OLI Performance with Lidar 

A comparison of the RF models from lidar and Landsat OLI demonstrated the 

ability of lidar to comparatively better predict vegetation characteristics of shrubs with a 

high R2 and low RMSE. The lidar model explained about 75% variance in shrub biomass 

and cover with a RMSE of 126 g/m2 and 6.7%, respectively. The Landsat model 

performed similarly for shrub cover with a R2 of  0.75 and RMSE of 6.5%. For shrub 

biomass, however, the Landsat model explained 61% of variance and RMSE of 151 g/m2.  

Based on the explained variance and RMSE, lidar metrics were better in predicting shrub 

biomass than OLI variables. Similarly, lidar explained 68% of variability while Landsat 

explained 57% of variability of total biomass. However, the lidar model was not able to 

predict the biomass and cover of herbaceous plants satisfactorily (R2 < 0.22), whereas 

OLI variables predicted herb cover and biomass with a R2 of more than 0.57 (Table 3. 5).  

Table 3.5 Comparison of RF model (n=46) performance with Landsat 8 OLI 
and lidar. RMSE is in the units of g / m2 for biomass predictions and % for cover 
predictions. The OLI metrics are labeled by date and metric from Table 2. 2. The 
lidar metric are labeled from Table 2. 3. 

 Landsat8 OLI Lidar 

 R2 RMSE Variables R2 RMSE Variables 

Shrub 
Cover 

0.75 6.5 June30 
SATVI, 

Oct4 GSAVI, 

Apr11 DVI 

0.74 6.7 Hrange, FHDAll 

Herbaceous 
Cover 

0.6 12.5 Apr11 DVI, 

June30 MSI, 
June30 VCI, 

June30 
SATVI, Oct4 
BI 

0.21 17.5 Hrange, HIQR 
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Total 
Biomass 

0.57 177 Oct4 BI, Oct4 
NIR, 
Elevation, 
Oct4 SWIR, 

Oct4 MSAVI 

0.68 156 FHDAll, Hstd, 
AAD, Hrange, HSkew 

Shrub 
Biomass 

0.61 151 June30 DVI, 
Oct4 BI, 

Elevation, 
Apr11 DVI 

0.75 126 Hstd, Hrange, 
FHDAll, HCV 

Herb 
Biomass 

0.57 57 June30 
GSAVI, 

June30 
MSAVI, 

June30 SWIR, 
Oct4 GVI 

0.12 83 H10, HSkew, CRR, 
AAD 

 

3.5 Discussion 

3.5.1 Selection and Performance of Predictor Variables 

The results suggest that spectral indices developed from OLI alone are able to 

explain up to 69% of variability in herbaceous cover and up to 60% in shrub biomass in 

the total study area. Our results also demonstrate that corrected or adjusted indices were 

chosen over simple unadjusted indices in the analyses. For example, soil adjusted 

variables (e.g. SATVI, SAVI, GSAVI) were important predictors in all RF models. 

Similarly, GVI developed from a tasseled cap transformation of OLI was also an 

important predictor. The GVI measures the scattering of infrared radiation resulting from 

the cellular structure of green vegetation and absorption of visible radiation by plant 

pigments (Baig et al. 2014). Results in Table 3. 4 also demonstrate that near infrared 

(NIR) and indices derived from SWIR (e.g. MIRI, MSI), acquired mostly in summer and 
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fall, have a strong relationship with herbaceous characteristics. This can be explained by 

the senescence of herbs, such as cheatgrass, in our field site during that time of year. The 

SWIR bands are sensitive to water content, and hence reflection generally increases as 

the vegetation dries. Similarly, NIR is sensitive to healthy plant pigments and can 

indicate unhealthy vegetation with low reflectance values. These reflectance values might 

have helped in separation of high and low biomass data and aided for a better model 

prediction. Similar trends were also followed by the Landsat analysis with the smaller 

sample size (n=46). 

Another noteworthy observation is the strong relationship of indices derived from 

multiple acquisitions dates of Landsat 8 with both biomass and cover estimations. The 

phenological characteristics and soil moisture uptake of predominant annual i.e. 

cheatgrass and perennial i.e. sagebrush are different and changes over season which 

makes it relatively easy to identify and monitor using temporal remote sensing data and 

methods. The seasonal phenological transitions captured in a multi-temporal dataset 

allowed vegetation from multiple functional groups to be unmixed from each other and 

from the background soil which might have led to better predictions in the model. This 

compares favorably with the work of Shoshany and Svoray (2002), Clinton et al. (2010), 

and Sant et al. (2014). Using a subset of the sample size of this study, Glenn et al. (in 

press) also demonstrated the use of multi-temporal spectral data for successful 

discrimination of vegetation cover types relative to the unchanging soil background.  

The model developed using lidar metrics showed strong correlation with 

vegetation characteristics of shrub but lower agreement with that of the herb class, which 

is not counter intuitive. The results are in par with the findings of Dhakal et al. (2016) 
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who concluded that due to the very short stature of herbaceous vegetation, it is 

challenging to differentiate ground from herbaceous returns using airborne lidar. The OLI 

spectral information was able to provide fairly good results for estimating both herb 

cover (R2 ~ 0.70) and biomass (R2 ~ 0.50). Importantly, optical data were found to be 

more correlated to vegetation density than to its vertical structure, demonstrated by high 

correlation of optical metrics with shrub and herb cover compared to their biomass. This 

was in par with the findings of Avitabile et al. (2012).  

While our study didn’t find topographic variables (slope, aspect and elevation) as 

important predictors of biomass and cover, several other studies have established the 

relationship between topographic variables and vegetation characteristics citing water 

availability, evapotranspiration and wind or grazing pattern as the influencing factors 

(Sternberg and Shoshany 2001; Osumi et al. 2003; Powell et al. 2010; Zandler et al. 

2015). The results from our study simply infer that though topographic variables might be 

closely related to many essential biophysical factors controlling vegetation, they did not 

contain any additional information than OLI variables for cover and biomass estimations 

(Dirnböck and Dullinger 2004; Avitabile et al. 2012). Also, topography at our study site 

did not contain significant variation, which might have limited the influence of the 

topographic variables in the models. Sivanpillai et al. (2009) also evaluated topographic 

ancillary data to estimate sagebrush cover but did not find any statistically significant 

explanatory value above and beyond Landsat spectral information. They surmise that the 

highly disturbed nature of the study area may have limited the explanatory power of the 

topographic variables. A further comprehensive study is required to ascertain the role of 
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topographic variables in quantifying vegetation characteristics in the light of availability 

of new and improved remote sensing data.  

3.5.2 Necessity of Data Fusion 

An interesting observation in this study was the ou-tperformance of OLI variables 

in estimating herb characteristics and out-performance of lidar metrics in estimating 

shrub characteristics, relative to each sensor. While lidar obtains its ability of estimating 

vegetation structure from capturing the structural information, OLI uses spectral 

information to record biophysical and biochemical attributes of vegetation. Lidar has 

been shown to be have an advantage over passive spectral remote sensing methods in 

providing vertical distribution of canopy elements both in rangeland and forested 

ecosystems (Bork and Su 2007; Zolkos et al. 2013). Unlike spectral indices, lidar is less 

prone to saturation effects even at higher biomass yet may not differentiate between 

stress and healthy vegetation (Huete et al. 1997; Lefsky et al. 2002; Hyde et al. 2006; 

Rosenqvist et al. 2003). Lidar is less prone to the spectral soil-vegetation mixing problem 

but expensive for wall-to-wall coverage and known to underestimate the true height of 

vegetation (Streutker and Glenn 2006).  Hence, lidar and spectral data are complementary 

in the semi-arid rangeland studied here.  

Zolkos et al. (2013) were able to estimate biomass to within ~ 10% of field 

measurements using a fusion of lidar and passive optical sensors in forested ecosystem. 

Glenn et al. (in press) used a synergy of Landsat 8 OLI and lidar in the same field site as 

this study, to show an improvement in the estimation of biomass and cover. The R2 

improved from 0.52-0.56 when using OLI or lidar-based metrics in isolation to 0.68 in 

the combined OLI-lidar model for biomass. Bork and Su (2007) combined multispectral 
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imagery and lidar for classification of rangeland vegetation with 83.9% of overall 

accuracy. Similarly, Mitchell et al. (2015) estimated cover using hyperspectral and 

discrete return lidar explaining 58% of variance in cover in a similar rangeland. Hence, 

future applications should take advantage of multi-sensor fusion where possible to reap 

the benefit of data integration in low stature ecosystem management.  

3.5.3 Relation Between Cover and Biomass 

We analyzed the relationship between cover and biomass for herbaceous and 

shrubs in the field as well as in the imputed Landsat-based map. A linear regression from 

in-situ measurements demonstrated a strong relation between shrub biomass and cover 

(Fig. 3. 5) but a weak correlation between herb biomass and cover. Our result implies that 

shrub cover can explain about 86% variance in biomass of shrub. This is consistent with 

the findings of Li et al. (2015) who found shrub biomass in a rangeland study site was 

highly related to percent vegetation cover (R2 = 0.87).  Shrubs are higher in stature than 

herbs and their heights are representative of both volume and biomass which in turn are 

highly related to percent cover. However, biomass prediction of herbs using cover 

measurements, is challenging because of the short stature. The herb class in our field site 

was composed of grasses and forbs, including annuals like cheatgrass (Bromas tectorum), 

Russian thistle/tumbleweed (Salsola spp.), medusahead (Taeniatherum caputmedusae) 

and perennials such as bunchgrass (Festuca idahoensis), intermediate wheatgrass 

(Thinopyrum intermedium), Russian wild rye (Psathyrostachys juncea), etc. Unlike 

perennials, annual herbs have a higher percent cover, higher density and occupy less 

volume, which will lead to an overestimation of biomass in remote sensing. However, 

analysis of the imputed map had a different result - the correlation between cover and 
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biomass increased for herb and decreased for shrub. These differences may be explained 

by the continuous distribution and higher density of herbs across the field site which was 

easily detected by the passive spectral sensors. On the other hand, heterogeneity in the 

distribution of shrub together with its low density made its detection more challenging at 

a large scale with Landsat. 

(a) In-situ measurements 
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(b) Estimation from imputation 

 

 
Figure 3.5 Relationship between cover and biomass in shrub and herb from  

(a) in-situ measurements and (b) imputation for all n=144 plots. There is a 
significant relationship between shrub biomass and cover in the field measurements. 
Imputed estimation showed that the correlation between shrub biomass and cover 
decreased while correlation between herb biomass and cover increased relative to 

field measurements 

3.6 Conclusion 

Large scale estimation of vegetation attributes is important to understand climate 

regulation through carbon storage and to better manage conservation efforts for 

ecological services. Using multi-temporal Landsat 8 OLI spectral data and a machine 
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learning approach, we have demonstrated the large scale mapping of biomass and percent 

cover in semi-arid rangeland in western Unites States. We validated our model with an 

independent data set and underscore the importance of soil adjusted vegetation indices as 

important predictors in a study site with sparse vegetation. We also validated lidar as an 

important remote sensing technique, especially to measure shrub attributes. We have 

demonstrated our approach to be successful in mapping herb/shrub characteristics but it is 

also too coarse to be able to sub classify into native-non-native or between herbs, forbs or 

grasses.   

These findings are reflective of the in-situ data collected for model run. The 

biases which might have been introduced during field collection are extended to the 

model runs. This resulted in the imputed map with the majority of plots statistically 

skewed towards high herbaceous cover. This might explain the reason behind the 

comparatively low performance of the independent OLI validation model. Similarly, our 

models are limited in their capacity to address the heterogeneity in the field site. Larger 

field plots with a higher field samples  are desirable to keep the biases low. Given the 

heterogeneity in drylands, no one technique may be sufficient enough to map the 

vegetation characteristics at a larger scale. Hence, we stress developing models with a 

fusion of spectral and lidar data to improve the prediction capabilities and keep 

uncertainties low. This study can be used to plan future remote sensing surveys in 

drylands. It can also provide baseline information on shrub biomass and cover, albeit 

with error, for informed management decisions for ecosystem management, wildfire 

mitigation and increasing resilience to climate change.   
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4 CHAPTER FOUR: CONCLUSIONS 

Both of the research papers presented in this thesis explore the potential of remote 

sensing data and statistical methods to better understand ecosystem information across a 

semi-arid rangeland ecosystem at large scales.  In chapter 2, we incorporated airborne 

lidar with ground validation for scaling shrub and herb biomass from the plot level to a 

larger area covering the entire lidar footprint. We found a strong correlation of height 

based lidar metrics with field-measured biomass of shrub. We also compared raster 

processing techniques with point cloud processing and demonstrated that point cloud 

processing of lidar data significantly improves the estimation of biomass at coarser scales 

(e.g. 100 m); however at fine scales, raster processing is equivalent to point cloud 

processing. Similarly, in chapter 3, we leveraged a large number of Landsat 8 and lidar 

metrics for successful prediction of biomass and cover of shrubs at the regional scale. 

Our results demonstrate that Landsat performs better in estimating vegetation cover 

whereas lidar performs slightly better in estimating biomass of shrubs. We summarize the 

key findings of the research briefly as: 

1) The vegetation cover and biomass of shrubs were successfully modeled using 

time-series multispectral imagery (Landsat 8) and airborne lidar.  

2) We found that the best model to describe vegetation cover fractions included 

vegetation indices calculated from multiple acquisition dates of Landsat 8. The time-

series data represented phenological transitions of the vegetation in the model.  
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3) Lidar was found to estimate shrub biomass slightly better than Landsat. The 

limitation of lidar is its high expense to map large areas. 

4) Point cloud processing of lidar data significantly improves the estimation of 

biomass at the coarser scale (e.g. 100 m) compared to raster processing. 

5) Lidar could not satisfactorily model herbaceous biomass (R2 < 2) because of 

the low ground cover and low stature of the herbs.  

6) As per our imputed map, the NCA contained ~ 344925600 g of herbaceous 

biomass and ~ 313420200 g of shrub biomass in 2013. Similarly, more than 70% of NCA 

has shrub biomass less than 100 g/m2 and 50% of land with less than 100 g/m2 of herb 

biomass. More than 68% of NCA has shrub cover of 10% or less.  

These findings are reflective of the in-situ data collected for the model runs. The 

biases which might have been introduced during field collection are extended to the 

model runs. This resulted in the imputed map with the majority of plots statistically 

skewed towards high herbaceous cover. This might explain the reason behind the 

comparatively low performance of the independent OLI validation model. Similarly, our 

models are limited in their capacity to address the heterogeneity in the field site. A larger 

field plot with a higher number of samples  are desirable to keep the biases low.  

Our findings also illustrate the necessity of a critical assessment of available 

remote sensing platforms before implementing any project. This might mean, for 

example, the consideration of the tradeoff between the accuracy required and available 

resources before choosing between lidar and Landsat. For projects with limited funds or a 

large study area, freely available multi-temporal Landsat 8 might be the best resource. 

For other projects demanding higher structural information, the use of lidar dataset can be 
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much more conducive. Multisensor fusion can also be an alternative for applications that 

require additional predictive power for vegetation characteristics in low stature 

ecosystems. 

The results presented herein are important steps toward scaling semi-arid 

rangeland ecological characteristics at the regional level. This is particularly significant in 

landscapes such as our study site which is rapidly transforming to non-native grassland 

from native shrub-steppe communities. The process, methods and results outlined here 

are important for modeling climate and hydrological dynamics, managing changes to the 

ecosystem, quantifying vegetation characteristics, estimating pre-fire and post-fire fuel 

loads, measuring carbon storage and assessing habitat quality. The remote sensing 

techniques described here will supplement the extensive and time-consuming field data 

collections over large and inaccessible areas. The remote sensing techniques may also 

help decision makers to take apt management decisions with lower uncertainties over 

large areas. More importantly, the methods and results of this research provide scientific 

references, resources and a framework to future studies trying to understand the 

ecosystem dynamics in semi-arid rangelands of the western United States using remote 

sensing.  
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6 APPENDIX 

6.1 An Application: Effect of Wildfire on Biomass And Cover 

What follows below is a simplified approach to study the effect of wildfire on 

biomass and cover by using historical fire data for the NCA from 1957 to 2014, 

demonstrating one of many applications of this research. For this analysis, the biomass 

and cover maps obtained from the Landsat imputations were compared against fire 

frequency for the entire NCA. We studied the resulting relationships, individually for 

herbaceous and shrub.  

6.1.1 Fire Data 

We used the US Geological Survey (USGS) historic fire perimeter data from 1957 

to 2014 for the fire analyses. The data was compiled from GeoMAC (Geospatial Multi-

Agency Coordination Group), MTBS (Monitoring Trends in Burn Severity) and USGS 

databases (see Balch et al. 2013). The fire analyses were performed using fire frequency, 

earliest recorded fire year and most recent fire year. For fire perimeters, we assumed that 

a given location could only burn once per year and hence removed any duplicate 

perimeters. 

6.1.2 Relation with Fire Frequency 

An analysis of imputed herb and shrub percent cover and biomass with the fire 

data revealed differences in the response of the vegetation with respect to fire. As shown 

in figure A. 1 after each successive fire event, herbaceous communities were generally 

more efficient in recovering than shrub communities. Also, in the second and sixth fire 
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counts, the post-fire herb cover and biomass was found to surpass the pre-fire cover and 

biomass (see concave shape of graph, fig. A. 1). However, shrub was found to regenerate 

slower after successive fire events (convex shape in fig. A.1).  

(a) 

  
(b) 

 
Figure A.1 Graph showing change in a) average biomass and b) average percent 
cover with respect to fire frequency in the study site. The biomass and cover value 

are computed from the respective imputed map. 

We also analyzed historical fire events with in-situ field plots. The frequency 

distribution of fire events showed that among all 141 plots, 35% of plots were never 
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burned and about 1% of plots were burned 7 times (Fig. A. 3). None of the plots were 

burned 6 times.  

 
Figure A.2 Frequency distribution of plots with respect to fire events. 

The in-situ field plots were first grouped with respect to their burn frequencies, 

and then the mean values of the vegetation characteristics were calculated for each plot. 

The in-situ values versus fire events revealed a similar pattern as the imputed results.  As 

shown in figure A. 3, shrubs were found to be less resilient to regeneration compared to 

herbs after successive fire events. 

  

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7

N
um

be
r o

f p
lo

t (
in

 %
)  

Fire frequency 



121 

 

(a) 

  
(b) 

 
Figure A.3 Graph showing change in a) field average biomass and b) field 

average percent cover with respect to fire frequency. None of the field plots burned 
six times.  

6.1.3 Implication of Fire Events 

Herbaceous plants were more efficient at recovering from wildfire than shrubs in 

our field site. Studies have found non-native grasses to be resilient to fire and even 
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benefit from it, especially in areas of low rainfall (D’Antonio and Vitousek 1992; Balch 

et al. 2009; Taylor et al. 2014). Nonnative annuals like cheatgrass are a widespread herb 

community in North America and they are known to displace native shrub after 

subsequent fire (Chambers et al. 2007; Knapp 1996; Clinton et al. 2010). This is largely 

due to the “head start” they get for rapid growth in spring after the seed germination in 

fall or early winter. After the fire in summer, these annual exotic can again grow in fall 

whereas the perennial native shrubs like sagebrush need decades to recover 

(Klemmedson and Smith 1964). Moreover, increased fire occurrence, intensity and 

severity have been associated with these nonnative annual grasses because of their fine 

fuel biomass, increased flammability and high percent cover increasing fuel continuity 

and density (Whisenant 1990; Brooks et al. 2004; Balch et al. 2013; Davies and Nafus 

2013). Whisenant (1990) found a fire return interval of 3-5 years in cheatgrass-dominated 

rangeland whereas the estimation for native sagebrush-dominated rangeland was 60-100 

years. Balch et al. (2013) found cheatgrass-dominated rangelands to be nearly four times 

more prone to fire than native land cover. This positive feedback loop created by the 

vicious grass-fire circle replaces the native shrub in North American shrubland with non-

native herbs. 

Beside fire, climate change can be a major factor determining the growth and 

production of vegetation in drylands, especially for annuals (Watson et al. 1998; Stokes 

et al. 2008). Cheatgrass cover and biomass are promoted by wet and warm conditions 

during the fall and spring (Knapp 1998). Sala and Lauenroth (1982) demonstrated the 

ecological significance of precipitation in semiarid land and Fynn and O’Connor (2000) 

observed marked effect on variability, especially in herbaceous production. Smith et al. 
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(2000) showed incremental trend in above ground production of invasive grasses in arid 

climate by the atmospheric increase of CO2.  

The produced maps here were also studied in the context of historical events to 

determine a cursory effect of fire in biomass and cover. However, we cannot ignore the 

fact that the regeneration of vegetation is a highly complex phenomenon and doesn’t 

necessarily depend on fire events only. Hence, further study specifically targeted towards 

the temporal change of plant communities is important to determine the major causes of 

fluctuations in percent cover and biomass in our study site.  

6.2 Stepwise Regression Between Biomass and Lidar Metrics 

Regression is the predictive modeling technique most broadly used for relating 

field and remotely sensed data (Hudak et al. 2008). In addition to RF variable selection 

and Ordinary Regression, Stepwise Regression (with backward elimination) were also 

performed separately for both total biomass (AGB) and shrub biomass as independent 

variables and 35 lidar derived vegetation metrics as the independent variables.  The 

results from these two regression models provided an independent check on the RF result.  

A stepwise regression also showed a high correlation between lidar metrics and 

total and shrub biomass. The regression was performed with backward elimination. We 

created a model with total biomass (Y variable) and only twelve lidar metrics (X 

variable) that had the highest correlation (Pearson’s coefficient) with total biomass. 

Based on P-values we eliminated variables that performed poorly in the model until we 

had two of the most important variables and a satisfactory R2.   This gave us the 

following regression equation for total biomass with an R2 of 0.76 and both P values and 

significance of F ≤ 0.05: 
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AGB=109987.16 x Standard Deviation of Height  -126780.89 x Mean Absolute 

Deviation from Height -74.63. 

Similarly, the stepwise regression was performed for shrub biomass (SB) only and 

resulted in the following equation with an R2 of 0.77 and both P values and significance 

of F ≤ 0.05: 

SB=137950.9 x Standard Deviation of Height 8 – 164885 x Mean Absolute 

Deviation from Height – 143.53. The negative shrub biomass shown in figure A. 5 are 

likely artifacts from height filtering contributed by herbaceous plants, picked up by the 

lidar but not taken into account by shrub biomass model.   

 
Figure A.4 Comparision between observed AGB and AGB predicted from 

stepwise regression. 
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Figure A.5 Comparison between observed shrub biomass and shrub biomass 

predicted from stepwise regression. 

The analysis of the residual showed a random pattern signifying homoscedasticity 

and normality of the data (Fig. A. 6 and A. 7). 

 
Figure A.6 Residual analysis of stepwise regression for AGB 
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Figure A.7 Residual analysis of stepwise regression for shrub biomass 

These results further support our conclusion that variables of height are important 

metrics to estimate biomass in rangeland. 
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6.3 R Code for Imputation 

library(raster) 

library(rgdal) 

require(parallel) 

library(randomForest) 

library(snow) 

library(yaImpute) 

#This is the training data csv used in Salford Systems 

training <- read.csv("C:/test/summer_new.csv") 

#select the column of the target variable  

y <- subset(training, select = c(Sagebrush)) 

#select the columns of predictors 

x <- subset(training, select = c(bB12, bB33, bB36)) 

#the randomforest model. Include 

rfMode="regression" for regression or leave out for 

classification 

sagebrush.rf <- yai(x=x, y=y, method="randomForest", 

rfMode="regression",  ntree= 2000) 

#this is where the output file is saved. Make sure name 

matches the column name used in y 

outfile <- list(Sagebrush = "C:/Sagebrush.asc") 

#Create a list of the ascii grids to be used for 

the imputation. Make sure the names match the #column 

names used in x 
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xfile <-list(bB12 = "C:/re_12.asc", bB33 

="C:/re_33.asc", bB36= "C:/re_36.asc") 

# The imputation. Make sure you the same name of the 

randomforest model is being called 

AsciiGridImpute(sagebrush.rf, xfile, outfile) 
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6.4 MATLAB Code for Calculating Vegetation Metrics 

% This code reads LAS files in a folder and calculates the 

vegetation metrics (#35) with point cloud without using BCAL 

LIDAR tool 

 

clear all;  close all; 

%A=LASreadAll('43116C4405_ 3.las'); 

file=dir('H:\project\paperI\subsetLAS\2012_2013_100m\*.las'

); 

for q=1:length(file) 

    A=LASreadAll(file(q).name); 

    classA=A.classification; 

    vegA=A.pointSourceID; 

    n=length(vegA); 

    Zfactor=0.01; 

    Z=vegA*Zfactor; 

    vegZ=Z(classA==3); 

     

     

    CT=0.15; %Crown threshold value 

    GT=0.05; %Ground threshold value 

     

    i=0; 

    j=0; 
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    nV=length(vegZ(vegZ>CT));%number of vegetation return 

FLAG 

    nG=length(Z(Z<GT));%number of Ground return FLAG 

    VegDent=(nV/nG)*100; %FLAG 

    VegCover=(nV/n)*100; 

     

    %% For FHD 

    FHD=0; 

    for nb=1:20 %number of bins 

        bht=0.1*nb; %bin height 

        np(nb)=length(vegZ(vegZ<bht & vegZ>(nb-1)*0.1 & 

vegZ> CT)); 

        pnp(nb)=(np(nb)/nV); 

        if pnp(nb)~=0 

            FHD=FHD+(pnp(nb)*log(pnp(nb))); 

        end 

    end 

    FHD=-(FHD); 

     

    %% For FHD-Points above ground threshold 

    FHDGT=0; 

    for nb=1:(max(vegZ)/0.1) %alternate way to find the 

number of bins 

        bht=0.1*nb; %bin height 

        np(nb)=length(vegZ(vegZ<bht & vegZ>(nb-1)*0.1 & 

vegZ> GT)); 
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        pnp(nb)=(np(nb)/nG); 

        %if pnp(nb)~=0 

        FHDGT=FHDGT+(pnp(nb)*log(pnp(nb)));%FHDGT-Points 

above ground threshold 

    end 

    FHDGT=-(FHDGT); 

    %For calculation of Percent of vegetaion in height 

range 

    p1=length(vegZ(vegZ<1&vegZ>0)); 

    p2=length(vegZ(vegZ<2.5&vegZ>1)); 

    p3=length(vegZ(vegZ>2.5 & vegZ<10)); 

    p4=length(vegZ(vegZ>10 & vegZ<20)); 

    p5=length(vegZ(vegZ>20 & vegZ<30)); 

    p6=length(vegZ(vegZ>30)); 

     

    MinH=min(vegZ); 

    MaxH=max(vegZ); 

    RangeH=MaxH-MinH; 

    MeanH=mean(vegZ); 

    MedianH=median(vegZ); 

    MAD=1.4826*median(abs(vegZ-MedianH)); 

    AAD=mean(abs(vegZ-MeanH)); 

    VarH=var(vegZ); 

    SDH=std(vegZ); 

    SkewH=skewness(vegZ); 

    KurtH=kurtosis(vegZ); 
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    IQRH=iqr(vegZ); 

    Coeffvar=SDH/MeanH; 

    a=prctile(vegZ,5); 

    b=prctile(vegZ,10); 

    c=prctile(vegZ,25); 

    d=prctile(vegZ,50); 

    e=prctile(vegZ,75); 

    f=prctile(vegZ,90); 

    g=prctile(vegZ,95); 

    LiDAR_Return=n;%flag 

    CanRR=((MeanH-MinH)/(MaxH-MinH)); 

    TH=std(vegZ(vegZ>GT & vegZ<CT)); 

    GRet=(nG/n)*100; %flag 

     

     

     

    P1=(p1/n)*100; 

    P2=(p2/n)*100; 

    P3=(p3/n)*100; 

    P4=(p4/n)*100; 

    P5=(p5/n)*100; 

    P6=(p6/n)*100; 

     

    %saving all the matrices in one variable 

    %VegMat=zeros(q,35);%preallocating for speed 

    VegMat(q,1)=MinH; 
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    VegMat(q,2)=MaxH; 

    VegMat(q,3)=RangeH; 

    VegMat(q,4)=MeanH; 

    VegMat(q,5)=MAD; 

    VegMat(q,6)=AAD; 

    VegMat(q,7)=VarH; 

    VegMat(q,8)=SDH; 

    VegMat(q,9)=SkewH; 

    VegMat(q,10)=KurtH; 

    VegMat(q,11)=IQRH; 

    VegMat(q,12)=Coeffvar; 

    VegMat(q,13)=a; 

    VegMat(q,14)=b; 

    VegMat(q,15)=c; 

    VegMat(q,16)=d; 

    VegMat(q,17)=e; 

    VegMat(q,18)=f; 

    VegMat(q,19)=g; 

    VegMat(q,20)=LiDAR_Return; 

    VegMat(q,21)=nV; 

    VegMat(q,22)=nG; 

    VegMat(q,23)=VegDent; 

    VegMat(q,24)=VegCover; 

    VegMat(q,25)=GRet; 

    VegMat(q,26)=P1; 

    VegMat(q,27)=P2; 
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    VegMat(q,28)=P3; 

    VegMat(q,29)=P4; 

    VegMat(q,30)=P5; 

    VegMat(q,31)=P6; 

    VegMat(q,32)=CanRR; 

    VegMat(q,33)=TH; 

    VegMat(q,34)=FHD; 

    VegMat(q,35)=FHDGT; 

     

     

    %exporting as an excel file 

end 

 

%xlswrite('vegmatrix.xlsx',VegMat); 

 

%end 
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6.5 Abbreviation of the Vegetative Indices Used 

 

Table A.1 Abbreviation of the VI used 

Indices and Ancillary data Formula 

Greenness Condition Index(GI) / 
Simple Vegetation Index (SVI) 

NIR/Red 

Vegetation Condition Index(VCI) MIR/NIR 

MIR=SWIR2 

Normalized Difference Vegetation 
Index (NDVI) 

NIR-Red/NIR+Red 

Transformed Vegetation Index (TVI) √(NDVI+0.5) 

Differenced Vegetation Index (DVI) NIR2-MIR 

MIR=SWIR2 

NIR2=SWIR1 

Mid-IR/Red Reflectance 
Index(MIRI) 

MIR-Red/MIR+Red 

MIR=SWIR2 

B7-B4/B7+B4 

Tasseled cap brightness(BI) 0.3029Blue+0.2786Green+0.4733Red+0.
5599NIR+ 

0.508SWIR1+0.1872SWIR2 

Tasseled cap greenness(GVI) -0.2941Blue-0.243Green-
0.5424Red+0.7276NIR-0.0713SWIR1-
0.1608SWIR2 

-0.2941B2-0.243B3-
0.5424B4+0.7276B5-0.0713B6-0.1608B7 

Tasseled cap wetness(WI) 0.1511Blue+0.1973Green+0.3283Red+0.
3407NIR-0.7117SWIR1-0.4559SWIR2 

 

Soil Adjusted Vegetation 
Index(SAVI) 

[(NIR1-Red) /(NIR1+Red+L)] x (1+L) 

L=Soil Correction factor 



136 

 

[(B5-B4) /(B5+B4+0.25)] x (1+0.25) 

Green Soil Adjusted Vegetation 
Index (GSAVI) 

[(NIR-green)/(NIR+green+L)]x(1+L) 

[(B5-B3)/(B5+B3+0.25)]x(1+0.25) 

Modified Soil Adjusted Vegetation 
Spectral Index (MSAVI) 

[2 x NIR+1-√((2 x NIR+1)2 – 8 x (NIR - 
Red))]/2 

[2 x B5+1-√((2 x B5+1)2 – 8 x (B5 – 
B4))]/2 

Soil Adjusted Total Vegetation Index 
(SATVI) 

[(NIR1-Red) /(NIR1+Red+L)] x (1+L)-
NIR2/2 

[(B5-B4) /(B5+B4+0.25)] x (1+0.25)-
B6/2 
L=Soil Correction factor 

NIR2=SWIR1 

Stress-related Vegetation Index 1 
(STVI-1) 

MIR x Red/NIR 

MIR=SWIR2 

Moisture Stress Index(MSI) SWIR/NIR 

B6/B5 

Moisture Stress Index2(MSI2) SWIR2/NIR 

B7/B5 

Normalized Difference Water 
Index(NDWI) 

(NIR-SWIR)/(NIR+SWIR) 

(B5-B6)/(B5+B6) 

Normalized Difference Water 
Index2(NDWI2) 

(NIR-SWIR2)/(NIR+SWIR2) 

Normalized Burn Ratio2 (NBR) (SWIR1-SWIR2)/(SWIR1+SWIR2) 

(B6-B7)/(B6+B7) 
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