
EVALUATION OF TOPIC MODELS FOR

CONTENT-BASED POPULARITY PREDICTION ON

SOCIAL MICROBLOGS

by

Axel Magnuson

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

May 2016

c© 2016
Axel Magnuson

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Axel Magnuson

Thesis Title: Evaluation of Topic Models for Content-Based Popularity Prediction

on Social Microblogs

Date of Final Oral Examination: 17 December 2015

The following individuals read and discussed the thesis submitted by student Axel
Magnuson, and they evaluated his presentation and response to questions during the final
oral examination. They found that the student passed the final oral examination.

María Soledad Pera, Ph.D. Chair, Supervisory Committee

Timothy Andersen, Ph.D. Member, Supervisory Committee

Edoardo Serra, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by María Soledad Pera, Ph.D., Chair
of the Supervisory Committee. The thesis was approved for the Graduate College by
John R. Pelton, Ph.D., Dean of the Graduate College.

Dedicated to my many teachers

iv

ACKNOWLEDGMENTS

The author wishes to deeply thank Dr. Maŕıa Soledad Pera and Dr. Vijay Dialani

for their invaluable guidance in my degree. Special recognition is due to Dr. Maŕıa

Soledad Pera, whose exceptional effort in guiding this thesis went far above the call

of duty. He would additionally like to thank the wonderful staff and faculty of Boise

State University for their persistence and diligence in educating him, alongside his

many colleagues. Among them, he wishes to name Dr. Amit Jain, Dr. Timothy

Andersen, and Dr. Elena Sherman for their exceptional capacities as educators.

Furthermore, the author owes any of his achievement in life to the kind generosity

of the those who have guided and supported him throughout his life. In particular,

he would like to thank his Mother, Father, and Brother for their profound support

and love. He would also like to thank a long line of inspiring teachers including David

Pover, Tatia Totorica, AlejAndro Anastasio, and Dr. Arun Ram. The author wishes

to acknowledge the incredible impact that all of those above have had on his life

and their utter necessity in the production of this work. He owes thanks to the kind

support of his many colleagues, especially Deepa Mallela, Nevena Dragovic, and Jim

Pelton. Finally, he would like to thank Dr. Vijay Dialani and Dr. Edoardo Serra for

their roles in providing the funding necessary to support the author throughout his

endeavor.

v

ABSTRACT

Online social networks are an increasingly central medium of communication in

the 21st century. We have seen a proliferation of competing social networks that

differentiate themselves by serving different niches of communication. Among these,

Twitter has risen to prominence as a leader among microblogging communities,

characterized by publicly visible 140-character messages called tweets. The wide

visibility of Twitter messages has enabled some users to curate large followings,

and has facilitated content creators who wish to reach as many viewers as possible.

Researchers have since investigated many methods for predicting which messages will

become popular or even go viral on Twitter. Although there are many facets to this

research problem, and various methods of approaching it have been proposed, we note

that anyone who wants to create a popular Twitter account will sooner or later have

to produce popular content. In this study, we investigated the content-based approach

of predicting popular tweets based only on the text they contain. Particularly, we

asked whether topic models can be used to identify topics of discussion that are more

likely to be associated with popular tweets. In the process, we explored methods for

collecting and processing a large-scale corpus of Twitter content. Our experiments

found that while topic-based prediction methods could lead to effective popularity

prediction, they were outperformed by other, simpler content-based methods.

vi

TABLE OF CONTENTS

ABSTRACT . vi

LIST OF TABLES . ix

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xiii

1 Introduction . 1

1.1 Popularity Prediction and Influence Analysis . 2

1.2 Topic Models . 5

1.3 Research Aims . 7

2 Thesis Statement . 9

3 Dataset . 10

3.1 Twitter Statuses . 10

3.1.1 Twitter API . 11

3.1.2 Collection . 13

3.2 Processing Techniques . 14

3.2.1 Big Data . 15

3.2.2 Local Analysis . 22

vii

4 Hashtags and LLDA for Popularity Prediction 23

4.1 Using Hashtags for Popularity Prediction . 24

4.2 Identifying the Topic Spaces of Hashtags . 32

4.2.1 Labeled Latent Dirichlet Allocation . 32

4.2.2 Token Correlation . 35

5 Direct Popularity Prediction with SLDA . 39

5.1 Parameter Selection for SLDA . 43

5.1.1 Sweep 1E5–1 . 44

5.1.2 Sweep 1E5–2 . 53

5.1.3 Sweep 1E5–3 . 63

5.2 SLDA Performance Analysis . 66

6 Conclusion . 71

6.1 Future Works . 72

REFERENCES . 74

A Computing Resources . 78

A.1 BDServer Hadoop Cluster . 78

A.2 Infolab . 78

A.3 Sweet Chedda . 79

viii

LIST OF TABLES

3.1 Example Twitter REST Endpoint Rate Limits 11

3.2 Twitter Streaming Endpoints . 12

3.3 Filter Limits on statuses/filter . 13

3.4 InfluenceFlow Dataset Statistics . 16

3.5 TClean Cleaning Steps . 18

3.6 TClean Cleaning Statistics . 20

4.1 p̂A Classification Performance . 27

4.2 p̂A Logistic Classifier Performance . 29

4.3 p̂B Clasification Performance . 31

4.4 p̂B Logistic Classifier Performance . 31

4.5 Summary of Hashtag Predictor Performance Metrics 31

4.6 Run Times for LDA and LLDA tests . 35

4.7 p̂C Clasification Performance . 36

4.8 p̂C Logistic Classifier Performance . 36

4.9 Summary of Hashtag Predictor Performance Metrics 37

5.1 Model Parameters for sLDA . 41

5.2 Estimation Parameters for sLDA . 44

5.3 Ranges for sLDA Sweep 1E5–1 . 45

5.4 Static Parameters for sLDA Sweep 1E5–1 . 46

ix

5.5 Measurements from sLDA Sweep 1E5–1 . 46

5.6 Sweep 1E5–1 Dimensionality vs Timing Regression Results 51

5.7 Ranges for sLDA Sweep 1E5–2 . 57

5.8 Pearson’s r Correlations of L̂emk . 58

5.9 Static Parameters for sLDA Sweep 1E5–3 . 64

5.10 Ranges for sLDA Sweep 1E5–3 . 64

5.11 Tested Predictive Models . 67

5.12 Summary of Predictor Performance . 67

5.13 Popular Topics and Their Most Frequently Assigned Words 70

A.1 BDServer Node System Specifications . 78

A.2 Infolab System Specifications . 79

A.3 SweetChedda System Specifications . 79

x

LIST OF FIGURES

3.1 Daily Collection Volumes for 2014 through 2015 14

3.2 Effect of t1 Threshold on Remaining Word Count rVn on the domains

t1 ∈ [15, 300] and t1 ∈ [3× 102, 2× 104] . 20

3.3 Effect of t1 Threshold on Remaining Document Count rDn on the do-

mains t1 ∈ [15, 300], t1 ∈ [3× 102, 2× 104], and t1 ≥ 2× 104 21

4.1 p̂A Classification ROC Curve . 27

4.2 p̂A Logistic Classifier Visualization . 29

4.3 p̂A Logistic Classifier Receiver Operating Characteristic 30

4.4 A Plate Notation Representation of LLDA [31] 33

4.5 p̂C Logistic Classifier ROC Curve . 37

5.1 A Plate Notation Representation of sLDA [23] . 41

5.2 Sweep 1E5–1 Mean Log Loss and Mean Elapsed Time 48

5.3 Error % of Sweep 1E5–1 Mean Log Loss and Mean Elapsed Time 49

5.4 3σemk of Sweep 1E5–1 Mean Log Loss and Mean Elapsed Time 50

5.5 Sweep 1E5–1 Dimensionality vs Timing Regression 52

5.6 Sweep 1E5–1 Log Loss vs Elapsed Time . 54

5.7 Sweep 1E5–1 Log Loss vs Elapsed Time, Stratified by e, m, and k 55

5.8 Sweep 1E5–1 Log Loss vs Elapsed Time Split By k ∈ K 56

5.9 Sweep 1E5–2 Mean Log Loss and Mean Elapsed Time 59

xi

5.10 Error % of Sweep 1E5–2 Mean Log Loss and Mean Elapsed Time 60

5.11 3σemk of Sweep 1E5–2 Mean Log Loss and Mean Elapsed Time 61

5.12 Dimensionality vs Log Loss for Sweep 1E5–2 . 62

5.13 m vs Log Loss for Sweep 1E5–2 . 62

5.14 k vs Log Loss for Sweep 1E5–2 . 63

5.15 k vs Log Loss for Sweep 1E5–3 . 65

5.16 sLDA Classification ROC Curve . 68

5.17 Multinomial Naive Bayes Classification ROC Curve 68

5.18 Bernoulli Naive Bayes Classification ROC Curve 69

5.19 Ensemble Logistic Classification ROC Curve . 69

xii

LIST OF ABBREVIATIONS

AUC – ROC Area Under Curve

FPR – False Positive Rate

LDA – Latent Dirichlet Allocation

LLDA – Labeled Latent Dirichlet Allocation

OANC – Open American National Corpus

OSN – Online Social Network

PGM – Probabilistic Graphical Model

ROC – Receiver Operating Characteristic

sLDA – Supervised Latent Dirichlet Allocation

TFIDF – Term Frequency Inverse Document Frequency

TPR – True Positive Rate

UGC – User Generated Content

xiii

1

CHAPTER 1

INTRODUCTION

Over the past two decades, online social networks (OSNs) such as Twitter, Facebook,

YouTube, and Instagram have established themselves as central institutions in the

realm of human socialization and interpersonal communication. They have especially

disrupted traditional media industries, making online media both more accessible

to authors and more reliant on interpersonal connections for visibility [20]. User

generated content (UGC) has seen great proliferation under this environment, leading

to a flourishing of blogs, videos, and messages all highly interconnected through OSN

platforms.

Of particular interest are microblogging platforms such as Twitter, which continue

to see widespread adoption and have become active, vibrant communities for online

interaction [18]. In the microblogging format, users form connections by “following”

other accounts, and post short 140-character messages that are visible to their own

followers. For the purposes of this thesis, these messages are also referred to inter-

changeably as “tweets” or “statuses.”1 Any user may follow and interact with any

other user, distinguishing Twitter from more closed social networks like Facebook,

which require the “followee” to reciprocate the relationship before the users can

interact.

1To be precise, we say that all tweets are statuses and all statuses are messages. However, the
converse relations do not necessarily hold.

2

The Twitter microblogging platform has gained particular prominence in the area

of real-time news and citizen journalism. Partially due to its public format, UGC on

Twitter has the potential to gain viral popularity and achieve far-reaching impact [20].

This also makes Twitter a convenient target for academic study, as the majority of

its content is public and freely accessible. However, with messages limited to 140

characters or less, it also presents novel challenges for content-based approaches that

rely on larger document lengths.

As microblogging gains traction, the value of becoming an influential participant

has become increasingly apparent. Many participants use Twitter as a means to

advance their business goals or public image, and treat it as more of a marketing

vector than an avenue of self expression [26]. An influential Twitter account can be a

highly valued asset for both businesses and individuals [26]. To this end, many users

attempt to leverage microblog features, such as hashtags and follow reciprocation,

in order to increase their own influence in the system. As microblogs guide more

eyes to online content, the study of predicting popularity and influence has become

increasingly valuable for the tasks of trend forecasting, studying social dynamics, and

predicting real-world events [15]. These efforts commonly fall into the related fields

of popularity prediction and influence analysis, both of which we draw from in this

work.

1.1 Popularity Prediction and Influence Analysis

Influence analysis and popularity prediction are two distinct but related areas of

study in social media. Influence analysis measures the ability of one actor or entity

to elicit a change in a social system. This could take the straightforward form

3

of retweets or favorites, or it could be the more abstract measure of an inferred

force within a system. Across the surveyed papers, many different definitions of

influence were proposed, using a wide variety of problem formulation. While early

influence measures relied largely on relationship graphs between users [19], more

recent work has begun to incorporate social media-specific features [9, 17, 37]. These

later influence measures add value by offering greater and more specific predictive

value than their predecessors. These works on influence analysis often conceptualize

influence on a latent feature of users or communities, remaining relatively stable

between individual messages [9, 17, 19].

Cha et al. made the famous observation that indegree, or number of followers, is

not necessarily a good measure of user influence [11]. They measured influence by a

user’s propensity to spawn retweets or mentions, and found that influence was gained

through a deliberate effort by users, and involved limiting tweets to a single topic.

This final point is particularly interesting from our perspective. It provides initial

evidence that carefully crafting tweets towards topical content is indeed an effective

method of building user influence.

Other approaches rely on more sophisticated structural measures than indegree.

TwitterRank is one such paper that proposes a method of quantifying user influence

using a modified PageRank algorithm [35]. While these user-based influence studies

are somewhat tangential to our study, the methods they use to measure influence can

inform our own influence metrics.

Unfortunately, predicting influential tweets is a difficult and unreliable endeavor [7].

Even the measurement of what makes something or someone “influential” is a difficult

definition to pin down [12]. In contrast, popularity prediction is a more classic

problem formulation, attempting to predict a particular popularity metric over time.

4

In Twitter, this most often takes the form of retweet events, although favorites and

replies could also be considered [15, 16, 33]. These problem formulations are more

straightforward, allowing researchers to more easily measure their results. In fact,

papers on influence measurement have used popularity prediction as a benchmark to

quantify the performance of novel methods [17].

Much of the underlying value of a message’s popularity comes from its wide

visibility in a network. In fact, for all practical purposes, the visibility of a message

and its popularity are equivalent. The primary mechanism by which messages gain

visibility on Twitter is by being retweeted, where a user reposts another user’s

content to their own followers in an attributed manner. In this way, the message

reaches followers who may not have seen it originally. Similar additional exposure is

given to messages that are favorited or replied to, but with somewhat different social

implications. Current popularity prediction methods can be roughly segmented into

two approaches. The first attempts to predict popularity as a traditional machine

learning task, using various relevant features to make predictions about how much a

message will be retweeted [8, 14–16]. Although many relevant factors and methods

have been explored, this is still a large, open area of research. Due to the complexity

and variability of OSN communities, it remains difficult to predict popularity from

traditional tweet features. The second group of prediction methods instead investigate

the time dynamics of retweets. By recognizing patterns of retweets over time early

in a message’s lifecycle, they estimate the total popularity that the message can be

expected to achieve [15, 32]. While this has led to effective results, and definitely

informs us as to the process by which tweets gain popularity over time, it provides

very little information as to the causative factors of a message’s popularity.

Within the former predictive methods, many features can be considered. Factors

5

such as hashtags, URLs, and number of friends and followees have all been shown

to be viable predictive features for whether or not a message will be retweeted [33].

However, in the works surveyed, few methods used the content of tweets themselves to

predict popularity signals such as retweets. This begs the question of to what degree

the message text itself can be used to predict tweet popularity. Particularly, does the

topical content of a tweet influence its popularity? To address this question, we can

apply modern topic modeling techniques to the twitter dataset in order to correlate

topical features with retweet probability. Of course, topic modeling techniques have

been applied to related problems such as predicting the adoption rate of hashtags [21]

and community-level diffusion extraction [17]. However, applications of topic models

in message popularity prediction are surprisingly sparse.

1.2 Topic Models

Topic models provide a quantitative layer for reasoning around natural language

documents. Although the qualities and specifics vary from model to model, all rest on

the assumption that natural language content pertains to one or more topics and that

there exists a strong relationship between the content of a document and the topics

to which it pertains. Since authors seldom tag their content with topical semantics,

topic modelling must both derive meaningful topic representations and accurately

infer the topic assignments of content.

One early and ubiquitous topic model, Latent Dirichlet Allocation (LDA), was

published in 2003 [10]. LDA is a probabilistic graphical model for the latent topics

of a collection of documents. In LDA, topics are represented as multinomial priors

distributed on vocabulary, indicating the likelihood of a word occurring given that

6

particular topic. The key innovation of LDA is to consider that each document

could pertain to a mixture of topics, and assign topics not by document but by

word. In the inference process, documents are similarly assigned multinomials across

topics representing the likelihoods that a given word in the document pertains to

a particular topic. While LDA has been demonstrated to work well on a diverse

range of documents, it does not do well with the short, colloquial form of Twitter

documents [38]. However, Mehrotra et al. [24] propose a method that alleviates the

shortcomings of LDA on Twitter without altering the mechanics of LDA. In this study,

the authors aggregate tweets into larger documents by pooling them by hashtag. This

pooling method leads to an increased coherency in topic models.

Many subsequent topic models have expanded the LDA model by either altering

the characteristics of topics or by introducing additional variables that affect topic

assignment [17, 29, 31, 34]. Labeled LDA introduces the concept that documents can

be assigned labels that correspond to topics [31]. Ramage et al. [29] later apply

this system to Twitter by characterizing the topical tendencies of different users. In

addition to hashtags, they treat social signals and emoticons as topic labels. This

is an interesting direction, but the use of emoticons and social signals is somewhat

divergent from this study. Although there are many variations, we focused primarily

on topic models that, similar to LDA, represent documents as topic multinomials.

This provided a useful representational mapping from word space to a more stable,

normalized space, and allowed us to reason quantitatively in this space. It also

captured the intuitive insight that although documents may be very different in

vocabulary, they can still pertain to similar topics.

LDA is notable partly because it is an unsupervised algorithm. It does not rely

on training labels to derive topic vectors or assignments. It is therefore similar to

7

classical clustering algorithms or unsupervised multilabel classification. In this case,

both document classifications and class characteristics are learned properties of the

system. Topic weights towards particular words are the class characteristics and one

of the primary focuses of LDA analysis. However, they are represented as multinomial

vectors with one dimension per word in the corpus vocabulary. Topic vectors therefore

instrinsically exhibit a high dimensionality, which must be mitigated for any in-depth

analysis.

1.3 Research Aims

In the field of content-based popularity prediction on microblogs, we found little

research pertaining to how topic models might be applied to the prediction task.

However, there appeared to be a salient link between hashtags, popularity, and topic

models [24, 33]. We therefore aimed to address the following questions in our work:

1. How can topic models be applied to popularity prediction?

2. Can hashtag-based popularity prediction techniques be extended to untagged

messages using topic modeling techniques?

3. Are there any advantages to using topic models over other popularity prediction

techniques?

In the remainder of this work, we discuss our efforts to address these questions.

In Chapter 3, we discussed our methods in collecting a large corpus of randomly

sampled Twitter messages, and the techniques we used to clean and process this

dataset for analysis. In Chapter 4, we explore how hashtags can be used as both

a popularity prediction feature and a label for topic vectors. We also measure the

8

accuracy of a model that uses both of these properties to predict the popularity of

untagged messages. Finally, in Chapter 5 we measure the performance of supervised

topic models in the popularity prediction task.

9

CHAPTER 2

THESIS STATEMENT

In this study, we hypothesized that the topical content of a tweet had a correlative

relationship with its popularity. Furthermore, we hypothesized that this topical

content could be sufficiently captured by LDA-based topic models, and that this

correlation could be used to predict the popularity of new content. Our experiments

found that while these topic models were successful in prediction tasks, they could

be outperformed by other, simpler methods.

10

CHAPTER 3

DATASET

Dataset collection and storage comprised a large portion of our time spent on this

study. Although Twitter messages are publically available, we will show how the

collection process itself placed limitations on our sampling methods. We will also

show how this affected the nature of our resulting dataset, and what subsequent

efforts we made to address perceived limitations.

3.1 Twitter Statuses

The primary dataset collected for this study was five months of Twitter activity ex-

tracted from Twitter’s public streaming API. Although additional data was gathered

by these means, this timespan represented the largest and most contiguous collection

run performed by this study. The dataset was large enough to present scalability

problems for some data processing stages, so Hadoop was used for data storage

and distributed processing, which drastically reduced iteration time in these stages.

Using these methods, we were able to collect a nearly-contiguous five-month sample

from January through May, 2015, consisting of 2.5T of raw JSON logged from the

sample-stream endpoint.

11

3.1.1 Twitter API

Twitter offers two publicly accessible developer APIs: a REST interface and a Stream-

ing API. Early in this thesis, we investigated the viability of each for our purposes.

The REST API offers a comprehensive suite of http endpoints for application devel-

opers to interact with Twitter. However, to prevent abuse, all of these endpoints are

strictly rate limited at rates that make data collection tasks prohibitively slow. Many

rate limits are on a per-user basis, allowing authenticated applications to operate as

proxies for users. However, in the case of data collection where there is only one end

user, these additional allowed queries are not applicable. Table 3.1 shows a small

selection of relevant endpoints and their rate limits [4]. In practice, these rate limits

ruled out graph-based analyses, which would have required querying the REST API

to obtain friend/follower information on a subset of Twitter users. At 1 paged query

per and with users who have thousands of followers, reconstructing a social graph

would have been prohibitive.

REST Endpoint User Auth Requests / Min App Auth Request / Min

friends/list 1 2
friends/ids 1 1

followers/list 1 2
statuses/lookup 12 6
search/tweets 12 30
users/show 12 12

Table 3.1: Example Twitter REST Endpoint Rate Limits

The Twitter Steaming APIs, while still technically REST endpoints, eschew the

classic request/reply model for one where http replies consist of long-running streams

of data. There are four categories of streaming APIs: Public APIs, User Streams,

Site Streams, and The Firehose [5]. Table 3.2 shows all endpoints exposed in the

12

Twitter Streaming APIs. Of these, User Streams and Site Streams provide services

oriented towards web applications that provide Twitter streams from the perspective

of authenticated users. Although we considered establishing collections from the

perspective of volunteer users, we ultimately dismissed this approach as impractical

from a bureaucratic standpoint. Of the remaining options, the Twitter Firehose

returns every status produced on Twitter and requires special access permissions. At

over 500 million tweets per day [6], Firehose users need special infrastructure just

to receive these data much less store them. Although we initially explored grants

and relationships that would allow access to this API, we eventually decided that

the engineering challenges surpassed the potential benefit to our project. This left

the Public API, which provides the statuses/sample and statuses/filter endpoints.

The Status Sample endpoint provides a straightforward “small random sample of all

public statuses” [2]. The Status Filter returns public statuses that match one or

more filters. These filters could be set over user IDs, keywords, or locations, under

the constraints specified in Table 3.3. Due to these limitations, we chose to build a

dataset from the Status Sample API. As detailed in Section 3.1.2, the Status Sample

API provided a large volume of data to work with.

Streaming Endpoint Endpoint Type

statuses/sample Public API
statuses/filter Public API

user User Streams
site Site Streams

statuses/firehose Firehose

Table 3.2: Twitter Streaming Endpoints

13

Filter Limit

User IDs 5000 Users
Keywords 400 Words
Location 25 0.5–360 Degrees

Table 3.3: Filter Limits on statuses/filter

3.1.2 Collection

From the outset, our ambition was to collect a terabyte-scale dataset of Twitter

messages in order to counteract the high dimensionality and sparsity of text data.

To this end, our collection and storage platform was the bdserver Hadoop cluster

consisting of one name node and 5 data nodes with a post-redundancy capacity of

26.9T. See Appendix A.1 for details on this machine and its configuration. This

allowed us ample storage for not only the primary dataset but any files produced by

subsequent data processing jobs. The MapReduce and YARN frameworks provided

application-level tools for authoring distributed data processing jobs.

In order to facilitate collection, we authored the Java application twitter-fh to run

for long periods of time on a server with access to a Hadoop file system. In addition

to its collection capabilities, twitter-fh includes a publisher-subscriber architecture

allowing it to be configured for logging, as well as multiple concurrent storage media

and formats. Because Twitter aggressively cuts off multi-account stream subscriptions

from the same machine, it was imperative that twitter-fh be powerful enough to handle

multiple non-trivial stream subscriptions, particularly to the filter stream. This ex-

tensible architecture allowed it to be easily modified when we needed to add additional

behavior such as binned data storage and more complex stream subscriptions.

After its completion, twitter-fh daemon was then run on the bdserver name node

beginning in July 2014. Technical issues and bugfixing prevented it from running

14

continuously, so it intermittently produced collections for the rest of 2014. This was

less of a problem than one might think, as we still had ample data to work with from

its initial collection runs. Rather than prioritizing 100% uptime, we chose to focus

on data exploration of the initial output with the intention of executing a longer

collection run when additional data was necessary. We observed a rough average

of 20G per day in data volume, which we deemed sufficiently large for late-stage

collection. In January 2015, full-time collection was resumed in earnest after fixing

some of the technical issues with the collection program. Figure 3.1 illustrates the

collection timeline for our data. Due to its relative continuity, most experiments were

run considering only the 2015 dataset from January 6th to May 28th. These tweets

were then separated and archived on the HDFS file system.

Aug Sep Oct Nov Dec Jan
2015

Feb Mar Apr May Jun
0

5

10

15

20

25

30

D
a
ily

 G
B

 C
o
lle

ct
e
d

GB

Figure 3.1: Daily Collection Volumes for 2014 through 2015

3.2 Processing Techniques

When we began the data exploration phase of this thesis, we struggled to find a

one-size-fits-all solution for data management. Particularly in the case of LDA-based

PGMs, many of the algorithms necessary for our experiments only had single-threaded

15

reference implementations. In general, these implementations were not designed

for even gigabyte-scale datasets, and did not generalize well on terascale data. To

reimplement many of them in a massively parallel context would be a separate thesis

itself. On the other hand, YARN and MapReduce tools allowed us to easily collect

simple statistics such as mean and standard deviation across our full dataset. In order

to both leverage our large dataset and explore more sophisticated PGMs, we opted

for a multi-stage data pipeline where YARN applications performed the dual tasks of

statistics collection and dataset cleaning. These big data jobs produced much smaller,

heavily filtered datasets suitable for the more sophisticated single-machine analysis

algorithms. An added benefit of this approach was that with an overabundance

of data, we had the luxury of discarding noisy or unhelpful sections of data that

threatened to impede the performance of our topic models.

3.2.1 Big Data

For the initial data processing stages, we made heavy use of the Cascading data

processing framework [1]. This open source framework provided a layer of abstraction

on top of YARN and MapReduce, allowing us to develop data operations in terms of

discrete “nodes,” which were then composed into a minimal number of MapReduce

jobs. This paradigm allowed us to rapidly compose multiple MapReduce stages

into one comprehensive data flow, and made large-scale data processing far more

manageable and efficient. Via either aggregation, filtering or sampling, these data

flows would produce cleaned datasets small enough for use in single-machine analysis.

Although dataset cleaning and processing was an ongoing, iterative task through-

out the thesis, our final dataset discussed below is the most comprehensive in terms

of text cleaning, and produced many of the final results described later in this thesis

16

Unlike earlier dual-role processing tasks, this task was created for the sole purpose

of creating a cleaned corpus suitable for topic modeling. For the sake of brevity, we

refer to this task as the TClean task, and its resulting dataset as the TClean dataset.

Another, earlier dataset was the InfluenceFlow dataset, which performed aggregations

and transformations to produce many derivative dataset features, while performing

less aggressive filtering on the resulting corpus. As we will discuss in Chapter 4, the

resulting size of this dataset eventually proved to be too unwieldly.

InfluenceFlow

The InfluenceFlow dataset was an initially simple tweet processing pipeline made with

the intent of reformatting tweets for use with an L-LDA implementation, which grew

over time to accomodate the various needs of different investigations. Although it

performed many tasks, InfluenceFlow was organized around the principle of maximal

data retention. Therefore, beyond very basic tweet cleaning stages the corpus was

minimally filtered. Table 3.4 shows a number of statistics from different stages of the

InfluenceFlow data processing task.

Metric Count

Raw Tweets 88,509,696
Cleaned Tweets 25,402,948
Hashtagged Tweets 4,691,545
Training Tweets 4,691,319
Testing Tweets 226
Unique Hashtags 1,012,176
Unique Users 9,913,571
User Interactions 19,143,165

Table 3.4: InfluenceFlow Dataset Statistics

17

TClean

The TClean dataset was produced at a late stage in this thesis, as the result of

many earlier lessons learned. Earlier experiments had shown the significant scala-

bility challenges of running new topic models on our dataset. Although large-scale

implementations existed for common models such as LDA, these were highly specific

and difficult to generalize to other candidate models such as LLDA, sLDA, and

COLD. However, simply truncating the data to the first few million tweets would

run the risk of producing a dataset where few similarities could be found across

sparse language features. Instead, TClean was a dataset created to be a smaller,

more manageable tweet corpus while still leveraging the increased sample size of the

larger 2.5T collection.

A key insight was that LDA and its derivatives applied a statistical model to

bag-of-word documents, and therefore, words which only occurred once contributed

negligibly to the final model. Instead, stable models would extract co-occurence

patterns between words and documents in the form of topics. A word could only

be identified as a significant topic indicator if it ocurred relatively frequently in the

corpus.

Therefore, after thorough text cleaning steps, TClean went through a dual filtering

stage where infrequent words were filtered out from all documents, and then docu-

ments falling below a given word count were further removed. By filtering “long-tail

words” in this way, we obtained a subset of Twitter documents biased towards the

modal vocabulary of the corpus. Not only was the dataset reduced to a manageable

size, but the document vocabulary was guaranteed to frequently co-occur within the

corpus. In this way, we were able to restrict the scope of our problem to only consider

18

tweets containing “sufficiently typical” vocabulary. The full cleaning pipeline can be

found in Table 3.5. Note that this process relies on two threshold values, t1 and t2,

which filter out words and documents based on word frequency and document length.

Cleaning Step Description

Language Filter Remove any non-english tweets using metadata
Deletion Notices Remove any tweets which are later deleted
Lowercase Cast all tweet text to lowercase characters
Character Filtering Remove punctuation and numerals
Tokenization Split tweets into words
Stopwords Remove topically neutral stopwords
Stemming Stem words using the Porter Stemmer[28]
Word Frequency Filter Remove words which occur less than t1 = 200 times
Document Length Filter Remove documents with a length less than t2 = 5

Table 3.5: TClean Cleaning Steps

To select appropriate word count threshold, we ran a tangential data flow which

calculated word counts as well as the maximum threshold which would allow each

document d ∈ D to remain in the corpus. We denote these value as sVw and sDd

respectively. We then calculated the number of occurrences for each value, denoted

f ?
n in Equations 3.1 and 3.2. This created an output dataset small enough to analyze

on a traditional single-machine setup. Here a simple transformation gave us r?n

in Equations 3.3 and 3.4, which expresses the number of words and documents,

respectively, that would remain in the corpus for t1 = n. With these values, we

could accurately evaluate the impact of threshold t1 on both the word and document

dimensionality in the resulting dataset.

19

fV
n =

∣∣{w ∈ V | sVw = n }
∣∣ (3.1)

fD
n = |{ d ∈ D | sd = n }| (3.2)

rVn =
∑
i≥n

fV
i (3.3)

rDn =
∑
i≥n

fD
i (3.4)

Upon investigation, we found that t1 had a much more pronounced effect on

remaining word count rV than it did on remaining document count rD. Figure 3.2

depicts rV across varying scales of t1, while Figure 3.3 depicts the similar relationship

of rD and t1. Both cases demonstrate a clear power law distribution, each function

decreasing exponentially. We can also see that for threshold values as high as 20,000,

the number of remaining documents is still over 70,000,000, while the number of

remaining words has dropped to 5,000. This is consistent with our understanding of

the corpus, since we can imagine that no matter how much we restrict the vocabulary,

there will always be more tweets.

We therefore chose a value for t1 that constrained vocabulary size rather than

document count. Our reasoning was that the excessively high t1 required to reduce

the number of documents to a small size would allow for only a trivial vocabulary.

Instead, we chose to set t1 = 200, as shown in Table 3.5. Figure 3.2 shows that

this corresponds to a vocabulary size of roughly 100,000. We expected this size to

be computationally tractable, while still allowing for sufficient word variation. Using

this threshold value, we generated the final TClean dataset, which we refer to in

the rest of this work. Table 3.6 shows the breakdown of tweets in various stages,

indicating that TClean is approximately 12.5% of the original dataset’s size, with a

43% reduction in the threshold filtering stage.

20

Figure 3.2: Effect of t1 Threshold on Remaining Word Count rVn on the domains
t1 ∈ [15, 300] and t1 ∈ [3× 102, 2× 104]

Cleaning Stage Count

Input Tweets 703,558,103
Language Filter 172,432,743
Deletions 149,876,675
Deletion Filter 155,154,459
Threshold Fiter 88,443,396

Table 3.6: TClean Cleaning Statistics

21

Figure 3.3: Effect of t1 Threshold on Remaining Document Count rDn on the
domains t1 ∈ [15, 300], t1 ∈ [3× 102, 2× 104], and t1 ≥ 2× 104

22

3.2.2 Local Analysis

After obtaining a filtered local dataset such as TClean, we needed to run a wide

variety of data exploration and analysis tasks, using tools written in a wide variety

of languages. To facilitate and organize these tasks, we used a minimal, flexible

convention of separating data transformation tasks into separate subfolders, each

with a Makefile and symlinks that would use environment variables to perform its

data analysis task on the correct symlinked dataset. Although somewhat arcane in

comparison to other more sophisticated build tools, this allowed us the flexibility to

use multiple, different tools without constraining ourselves to a particular technology

stack. From here, the final stages of these data flows were typically ipython notebooks,

which illustrated the results for analysis. This was often an iterative process, with

our ipython reports prompting questions which needed additional steps to our data

flow to investigate.

23

CHAPTER 4

HASHTAGS AND LLDA FOR POPULARITY

PREDICTION

Content on Twitter often encorporates special “hashtag” tokens, which are words

prepended with the octothorpe “#” symbol (e.g., “#PorteOuverte” or “#YesAll-

Women”). The web platform then converts these hashtags into hyperlinks to pages

that display collected feeds of all tweets containing a particular hashtag. In this way,

users can follow or participate in larger conversations by labeling their content with

relevant hashtags. Hashtags can be interpreted as intuitive topic labels for content,

curated by the entire microblogging community.

It has also been observed that hashtags play a dual role in social media. In

addition to annotating content with similar topics, hashtags serve as a way for users

to identify with a community. Yang et al. [36] demonstrated that this dual role can

be used to effectively predict future adoption of hashtags by users based on their

membership in a community. This work showed that hashtags symbolize not just

topics but audiences around that topic [36]. Additionally, Suh et al. [33] have found

evidence that hashtags “have a strong relationship with retweetability” [33]. With

our hypothesis that retweetability could be predicted by a tweet’s topical content, we

investigated the use of hashtags as features for retweet prediction.

We sought to confirm the relationship between hashtags and retweets by formu-

24

lating a predictive model that considered only hashtags for popularity prediction. If

an effective model could be established, then it could be extended with topic models

in order to draw the link between text content and hashtags. However, the first step

was to confirm that hashtags were indeed effective features for popularity prediction,

and to formulate a predictive model based on these isolated features.

4.1 Using Hashtags for Popularity Prediction

To model the relationship between hashtags and retweets, we formulated our inputs

as a classic binary prediction problem. Given a tweet’s hashtags as input features

(X), we endeavored to predict whether or not it would be a retweet (y) as a binary

categorical variable. For the purposes of our initial study, we restricted the prediction

problem to only those tweets that contained at least one hashtag in the InfluenceFlow

dataset. As mentioned in Section 3.2.1, this constituted approximately 4.7 million

tweets, or roughly 19% of the cleaned dataset.

Before we can discuss the input features for this model, we must first formalize

how this problem is defined. First, for N documents, let D = [1, N] be a range of

identifying numbers that can be bijected onto the set of documents. This allows for a

convenient handle with which to refer to the documents, as well as an implied ordering

for any matrix that contains information pertaining to the document. Similarly, for

the vocabulary of M unique hashtags within the corpus, let H = [1,M] be a range

of identifying numbers for these hashtags. In order to indicate whether a tweet uses

a hashtag, let I#dh be the indicator for whether document d ∈ D uses hashtag h ∈ H

as defined in Equation 4.1. Similarly, let IRd be the indicator for whether d ∈ D is a

retweet, as defined in Equation 4.2. Finally, we will often need to refer to the subset

25

of all tweets that use a particular hashtag, or all hashtags that a particular tweet uses.

We refer to these with HD and D# as defined in Equations 4.3 and 4.4, respectively.

I#dh =

1 if d ∈ D uses h ∈ H

0 otherwise

(4.1)

IRd =

1 if d ∈ D is a retweet

0 otherwise

(4.2)

HD
d =

{
h ∈ H

∣∣∣ I#dh = 1
}

(4.3)

D#
h =

{
d ∈ D

∣∣∣ I#dh = 1
}

(4.4)

With this formal structure in place, we sought to understand the probability that

a message would be retweeted given its use of a hashtag. We denote this as p#h from

Equation 4.5. Note that since hashtags are the only feature considered in this model,

this probability is assumed to be invariant between documents as per Equation 4.6.

Therefore, we do not index p# by any document d ∈ D. From here we estimate

p# from the observed data as p̂# using the mean from observed data as shown in

Equation 4.9. This was a quantity that could easily be derived from our full dataset

using MapReduce. We also define the counting functions CR and C 6R in Equations 4.7

and 4.8 for use in defining p̂#h as well as later measures.

26

p#h = Pr
(
IRd = 1|I#dh = 1

)
(4.5)

(∀i, j ∈ D)
(

Pr
(
IRi = 1|I#ih = 1

)
= Pr

(
IRj = 1|I#jh = 1

))
(4.6)

CR
h =

∑
d∈D#

h

IRd (4.7)

C 6Rh =
∣∣∣D#

h

∣∣∣− CR
h (4.8)

p̂#h =
CR

h∣∣∣D#
h

∣∣∣ (4.9)

First, we note that p̂# already represents a simple prediction model for whether a

tweet will be a retweet. However, due to its formulation as a conditional probability,

it is only suitable for tweets that use exactly one hashtag. For tweets that use more

than one hashtag, we therefore take the mean of p̂#h across all h ∈ HD
d to derive the

metric p̂A described in Equation 4.10. When we apply this to our test set from the

InfluenceFlow corpus, which contains 206 tweets with one or more hashtags, we can

measure its performance as a predictor. To measure classification performance, we

use two common metrics: log loss (L) as defined in Equation 4.11, and area under

the receiver operating characteristic curves (A or AUC) as defined in Equation 4.12.

While the former aims to demonstrate a reliable error for probability estimates of

binary classifications, the latter showcases the performance of a model across all

possible classification thresholds. The ideal score for a classifier would be L = 0 and

A = 1. The performance of p̂A under these metrics is shown in Table 4.1, along with

its ROC curve in Figure 4.1.

27

p̂Ad =
1

|HD
d |
∑
h∈HD

d

p̂#h (4.10)

L (y, ŷ) = − 1

N

N∑
n=1

[yn log ŷn + (1− yn) log (1− ŷn)] (4.11)

A (y, ŷ) =

∫ 1

0

TPRT (y, ŷ)FPR′T (y, ŷ)dT (4.12)

TPRT (y, ŷ) = True positive rate of ŷ using classification threshold T (4.13)

FPRT (y, ŷ) = False positive rate of ŷ using classification threshold T (4.14)

Metric Score

Log Loss (L) 1.620970
ROC AUC (A) 0.806827

Table 4.1: p̂A Classification Performance

Figure 4.1: p̂A Classification ROC Curve

28

Having established p̂A, we trained a logistic classification model using the scikit-

learn python library [13, 25]. Due to the large size of our dataset, it was impractical to

train this model on each individual tweet. Instead, we relaxed our training algorithm

to treat each unique hashtag as two weighted training points: one for positive retweet

evidence and one for negative retweet evidence. Equations 4.15 through 4.20 express

the training features of such a model. Note that for a given hashtag h ∈ H, the two

observations X2h and X2h−1 take the same value of p̂#h , while their y values are 1 and

0, respectively. Weighting is then used to represent that hashtag’s proportional usage

in the dataset. This model formulation is equivalent to creating one observation of(
p̂#h , I

R
d

)
for every hashtag h in every document d, and then training our logistic

classifier as normal. However, by using weights precomputed by a MapReduce task,

we can drastically reduce the dimensionality of our dataset without any loss in

accuracy.

X2h = p̂#h (4.15)

X2h−1 = p̂#h (4.16)

y2h = 1 (4.17)

y2h−1 = 0 (4.18)

w2h = CR
h (4.19)

w2h−1 = c 6Rh (4.20)

We can see a visualization of the trained model in Figure 4.2. Here the blue dots

depict training points with sizes corresponding to their weights, while the classifier

outputs for different values of p̂A are depicted by the green line. Table 4.2 shows the

29

performance metrics for this classifier on the InfluenceFlow test set, while Figure 4.3

shows its receiver operating characteristic. Here it is evident that while the log loss

has improved significantly, the AUC remains unchanged. This is consistent with

our understanding of the logistic regression, since our classifier can be represented

as a bijection between two monotonically increasing functions. As ROC analysis

measures the performance of any possible classification threshold, every threshold on

the original curve would be mapped to exactly one threshold point on the classifier’s

predictions.

Figure 4.2: p̂A Logistic Classifier Visualization

Metric Score

Log Loss (L) 0.576261
ROC AUC (A) 0.806827

Table 4.2: p̂A Logistic Classifier Performance

30

Figure 4.3: p̂A Logistic Classifier Receiver Operating Characteristic

We also investigated a second probability estimator p̂B as defined in Equation 4.21.

p̂B is similar to p̂A, but weights the mean of p̂#h by the number of occurrences of

hashtag h. Our aim was to create an estimator that was weighted by the evidence

available for each input feature. However, as shown in Tables 4.3 and 4.4, it was

categorically outperformed by p̂A. We therefore gave it very little further attention.

Rather than requiring readers to reread this chapter for comparisons, we have included

a summary of scores in Table 4.5. Here we see that the logistic classifier on p̂A is the

strongest predictor among surveyed methods.

p̂Bd =

∑
h∈HD

d

(
p̂#h

∣∣∣D#
h

∣∣∣)∑
h∈HD

d

∣∣∣D#
h

∣∣∣ (4.21)

31

Metric Score

Log Loss (L) 1.650664
ROC AUC (A) 0.783594

Table 4.3: p̂B Clasification Performance

Metric Score

Log Loss (L) 0.624463
ROC AUC (A) 0.783594

Table 4.4: p̂B Logistic Classifier Performance

X Method L A

Baseline ŷ = E[IRd] 0.693637 0.500000
p̂A ŷ = X 1.620970 0.806828
p̂A Logistic Classifier 0.585102 0.806828
p̂B ŷ = X 1.650664 0.783594
p̂B Logistic Classifier 0.624463 0.783594

Table 4.5: Summary of Hashtag Predictor Performance Metrics

32

4.2 Identifying the Topic Spaces of Hashtags

After measuring the efficacy of hashtags as popularity predictors, we conducted a

series of experiments investigating the possibility of mapping hashtags to topic vectors

and vise versa. We hypothesized that by mapping content to topic-similar hashtags,

we could make popularity predictions on untagged content that outperformed the

baseline. We investigated LLDA as well as TF-IDF as mechanisms for performing

this mapping, but ultimately found them both to be intractable for our purposes.

4.2.1 Labeled Latent Dirichlet Allocation

We have previously noted the role of hashtags as explicit topic labels for content.

Labeled Latent Dirichlet Allocation (LLDA) is a topic model that accomodates ex-

plicit topic labels, and has previously been successfully applied to recommendation

tasks on microblogs [30, 31]. Using hashtags as topic labels, we investigated the use

of LLDA in mapping hashtags to topic vectors. The advantage of this approach was

that under the LLDA model, every hashtag maps to a single topic vector. Therefore,

by estimating the topic distribution of an unlabeled document, its hashtag mapping

would be made explicit by the model.

LLDA extends the LDA model by adding document labels that have a one-to-one

correspondence with topics, and if a document has one or more labels, then the

document may only draw words from the corresponding topics. Unlabeled topics

are unrestricted and behave the same as in the LDA model. This generative model

for LLDA is expressed in Equations 4.22 through 4.28. Figure 4.4 shows the same

generative model in plate notation.

33

βk ∼ Dir(η) ∀k ∈ K (4.22)

Λd,k ∼ Bernoulli(Φ) ∀d ∈ D, ∀k ∈ K (4.23)

L
(d)
ij =

1 if Λdi = j

0 otherwise

∀d ∈ D (4.24)

α(d) = L(d) × α ∀d ∈ D (4.25)

θd ∼ Dir
(
α(d)

)
∀d ∈ D (4.26)

zd,i ∼ Mult (θd) ∀n ∈ Nd,∀d ∈ D (4.27)

wd,n ∼ Mult (βzi) ∀n ∈ Nd,∀d ∈ D (4.28)

Wd,nZd,nθdα βk

η

ΛdΦ

∀n ∈ Nd

∀d ∈ D

∀k ∈ K

Figure 4.4: A Plate Notation Representation of LLDA [31]

For our purposes, we used the open source JGibbLabeledLDA implementation

to apply LLDA using hashtags as labels [3]. The JGibbLabeledLDA project is a

single-core implementation of LLDA that uses collapsed Gibbs sampling for model

estimation [27]. We also made use of JGibbLDA: a similar implementation of LDA,

which also used collapsed Gibbs sampling. Our aim was to estimate an LLDA model

from the full InfluenceFlow training dataset, possibly by running LLDA over the

course of months. It is important to note that under our training regime, there would

34

exist one topic per unique hashtag, which would have an impact on the dimensionality

of our estimated θ and β vectors. Due to the large scale of the training dataset, we

expected this to be a large and long-running task.

Initial runs of the program encountered memory usage exceptions, indicating that

the program was unable to scale to our full-sized dataset. All experiments were

run on the infolab server (As discussed in Appendix A.2) in order to accomodate

these large memory requirements. We therefore scaled back our approach, and ran

JGibbLabeledLDA and the related JGibbLDA to explore its scalability properties.

To control runtime, we created two truncated datasets of 5×103 and 1×105 tweets,

respectively. Table 4.6 shows the runtimes and memory usage of running JGibbLDA

and LGibbLabeledLDA on these datasets. We found that for datasets larger than

1×105, runtimes became unmanageable and excessive memory usage often caused

exceptions during execution. We attributed this result to the increased scale in-

troduced by mapping hashtags to topics, and therefore having one topic for every

unique hashtag. As shown in Table 4.6, the number of topics increases by two orders

of magnitude. We can expect the peak memory usage to similarly expand to at

least 400 GB, which is pushing the abilities of even our high-capacity infolab server.

Furthermore, 1×105 represents only a small fraction of our dataset, indicating that

our LDA and LLDA implementations would be poorly equipped to train on the full

InfluenceFlow corpus.

We concluded that since the upper training limit of 1×105 represented 0.3% of

cleaned tweets in our InfluenceFlow corpus, and 2.1% of all hashtagged tweets in the

same, it was unlikely that LLDA would be an effective tool for mapping content to

hashtags in the larger corpus. Instead, we shifted focus to simpler methods that could

rely on values calculated in MapReduce.

35

Records Algorithm # Topics Time Peak Memory Usage

5×103 LDA 100 2m 16s 1.69 GB
5×103 LLDA 1093 15m 17s 28.19 GB
1×105 LDA 100 45m 36s 4.00 GB
1×105 LLDA 11432 48h 49m 24s Unrecorded

Table 4.6: Run Times for LDA and LLDA tests

4.2.2 Token Correlation

In order to formulate a scalable mapping from content to hashtags, we used a variation

of term frequency inverse document frequency (TFIDF) [22]. Equation 4.32 shows

a TFIDF measure where rather than using tweets as documents, we instead use

hashtags. Equations 4.29 and 4.30 support this measure with relevant definitions of

counting values CD and C#. We use C# to express hashtags as documents consisting

of all words they co-occur with. Equation 4.33 provides a similarity measure between

hashtags and documents. This was used in Equation 4.34 to derive the estimator p̂C .

36

CD
d,w = # of times word w occurs in document d (4.29)

C#
h,w =

∑
d∈D#

h

CD
d,w (4.30)

V D
d = {w ∈ V | CD

d,w ≥ 1 } (4.31)

tfidf (w, h) =
C#

h,w∑
v∈V C

#
h,v

× |H|∣∣∣{ h ∈ H ∣∣∣ C#
h,w ≥ 1

}∣∣∣ (4.32)

sim(d, h) =
1

|t|
∑

w∈V D
d

tfidf (w, h) (4.33)

p̂Cd =

∑
h∈H

(
P̂#
h × sim(d, h)

)
∑

h∈H sim(d, h)
(4.34)

We then applied the measurement techniques from Section 4.2.1 to p̂C . First we

measured the performance of p̂C as a predictor, and then that of the logistic classifier

from Section 4.1 when p̂C was applied as input. Tables 4.7 and 4.8 show the results

of these measurements, while Figure 4.5 shows the corresponding ROC curve. Note

that as in Section 4.1, the ROC curves are identical. Therefore, only one is included

here. Furthermore, a prediction performance summary is again shown in Table 4.9.

Metric Score

Log Loss (L) 0.679541
ROC AUC (A) 0.648648

Table 4.7: p̂C Clasification Performance

Metric Score

Log Loss (L) 0.765525
ROC AUC (A) 0.648648

Table 4.8: p̂C Logistic Classifier Performance

37

Figure 4.5: p̂C Logistic Classifier ROC Curve

X Method L A

Baseline ŷ = E
[
IRd
]

0.693637 0.500000
p̂A ŷ = X 1.620970 0.806828
p̂A Logistic Classifier 0.585102 0.806828
p̂B ŷ = X 1.650664 0.783594
p̂B Logistic Classifier 0.624463 0.783594
p̂C ŷ = X 0.679541 0.648648
p̂C Logistic Classifier 0.765525 0.648648

Table 4.9: Summary of Hashtag Predictor Performance Metrics

38

In these tables, first observe that for ŷ = X, p̂C drastically outperforms p̂A and

p̂B. Although this was an interesting result, we could not derive any meaningful

conclusions from it. As far as we can tell, it is little more than an interesting artifact

of unfitted data. Much more legible were the results showing that L and A of the

logistic classifier are significantly worse for p̂C than that of the p̂A or p̂B. However, p̂C

still outperforms the baseline of ŷ = E
[
IRd
]
. From this, we concluded that hashtags

can be used to predict the popularity of content, but that when available, using

hashtags directly would result in better performance.

Together, the results from Table 4.9 showed that the predictive capacity of hash-

tags could be successfully leveraged when using content to predict popularity. How-

ever, the resulting predictor suffered a loss in performance, most likely due to the noise

introduced in the mapping. Knowing this, we next aimed to compare the performance

of this predictor to other content-based methods. However, before we could continue,

we would need to revisit our dataset in order to construct a manageable corpus for

algorithms that had no available MapReduce implementation.

39

CHAPTER 5

DIRECT POPULARITY PREDICTION WITH SLDA

After concluding our investigation into the use of LLDA on popular hashtags, we

shifted our focus to the potential of using another variant of LDA called Supervised

Latent Dirichlet Allocation (sLDA) [23], which integrates characteristics of both topic

modeling and a supervised learning task. We found this configuration to be an

ideal candidate for a popularity prediction algorithm on topical features due to its

integration of topic models with the supervised learning problem.

Supervised Latent Dirichlet Allocation is a statistical model introduced in col-

laboration with the primary author on LDA, motivated by previous attempts by

researchers to apply LDA to supervised learning tasks [23]. These applications address

problems that can be broadly categorized as cases where text documents have an

associated response variable that must be predicted. Many of these prior attempts

used LDA-based topic models as input features for their regression methods, similar

to our own attempts with LLDA. In contrast, the sLDA model integrates document

response variables with the topic model itself. This allows for the estimation of topic

vectors that are fitted not only to their content, but to the response variable itself.

Integration of the response variable is achieved by formulating a model where

the response is a random variable conditioned on a document’s estimated topics.

This formulation is general enough to accomodate a variety of response types by

40

applying a suitable distribution in the model. For example, if the response variable

is categorical, a multinomial distribution could be used, while a real-valued response

could be modeled with a gaussian distribution. However, both the original paper

and our reference implementation described sLDA where the response is a normally

distributed variable, so we will focus on that case here.

In such a case where the response variable y ∈ R, sLDA takes the model param-

eters described in Table 5.1. With these parameters established, each document and

response is generated as follows:

1. For each document d ∈ D

(a) Draw topic distribution θd ∼ Dir (α).

(b) For each word n ∈ N

i. Draw topic assignment zn|θ ∼ Mult (θ).

ii. Draw word from topic wn|zn, β1:K ∼ Mult (βzn).

(c) Draw response variable y|z1:N , η, σ2 ∼ N
(
η>z̄, σ2

)
.

z̄ =
N∑

n=1

zn (5.1)

In this process, z̄ is the weighted average between drawn topics, as defined in

Equation 5.1. This generative process is illustrated in plate notation by Figure 5.1,

providing a convenient graphical representation.

Knowing this model, we hypothesized that sLDA could be used to predict retweets

based on message content. To this end, we formulated a study where we used an sLDA

predictor on our TClean dataset, using reweets as our response variable, and measured

41

Parameter Description

K Number of topics.
V Number of unique words.
α The document-topic dirichlet parameter
β1:K The topic vectors, each a βk being a V -dimensional multinomial

distribution. In our reference implementation, these are themselves
estimated from a dirichlet prior in the same fashion as an LDA model.

η A vector of response means where ηk is the mean response for topic k.
σ A vector of response deviations where σk is the standard deviation for

topic k.

Table 5.1: Model Parameters for sLDA

Wd,nZd,nθdα

Yd η, σ2

βk

∀n ∈ N

∀d ∈ D

∀k ∈ K

Figure 5.1: A Plate Notation Representation of sLDA [23]

42

the efficacy of this approach. Our experiments with sLDA centered around running

it on our TClean dataset, with a document’s retweet status as its signal variable.

Rather than reimplementing sLDA for our experiments, we sought to use a ref-

erence implementation to save time and effort. Although we considered the original

implementation released by Mcauliffe and Blei [23], we ultimately used the R imple-

mentation found in the “lda” R package on CRAN for its speed and usability. Whereas

the original implementation performs its estimation via variational inference, the R

sLDA implementation instead uses collapsed Gibbs sampling.

After our experiences with LLDA, we deemed the challenge of running sLDA on

the full-scale dataset to be out of scope of our project, and instead invested our time

on creating the new TClean dataset described in Section 3.2.1. It is important to note

that in order to achieve data reduction, TClean aggressively filters content from the

original dataset down to content with a “representative” vocabulary, meaning that

any results we arrive at are for a particular kind of tweet. Specifically, the results of

this study describe the performance of sLDA on tweets that satisfy the vocabulary

frequency constraints described in Section 3.2.1, which corresponds to a tweet using a

sufficient “median vocabulary” of tokens that occur more frequently than most within

the corpus.

For our experiments, we formulated the prediction problem as a machine learning

task. The features X and response variables y were document word counts and a

retweet indicator, respectively, as described in Equations 5.2 and 5.3.

43

Xdw = # of occurences of w in d (5.2)

yd =

1 if d is a retweet

0 otherwise

(5.3)

In these experiments, we aimed to answer the following questions:

1. What sLDA parameters led to the best retweet predictions?

2. How did these predictions compare to our hashtag-based model in Chapter 4?

3. Were these predictions sufficiently accurate to indicate a correlation between

tweet topics and retweets?

5.1 Parameter Selection for SLDA

For the purposes of our experiment, our ultimate goal was a configuration of sLDA

that produced predictions as accurately as possible. However, our reference imple-

mentation took multiple tuning parameters, some of which had large impacts on the

ultimate running time of the process. Other parameters had little impact on running

time, but would need to be adjusted to maximize performance. We first investigated

parameters with high impacts on time performance to see if we could observe trends

in speed and performance. From there, we used our results to run longer sLDA runs

using the knowledge we had gained from shorter runs.

Altogether the reference sLDA implementation took 7 tuning parameters, as

described in Table 5.2. Of these, the variables α, η, β, and σ could all be roughly

estimated from model averages, and had no impact on the running time of the model

estimation. The remaining three, m, e, and K, all had an impact on the running

44

time, in addition to the dimensionality of the dataset itself. While e and m modulated

the number of gibbs sampling sweeps and the number of expectation maximization

iterations, respectively, k controlled the number of latent topics that would be used

in the model. These were the variables we chose to focus on in our preliminary runs,

so that we could gather performance data that could later inform more expensive

computations.

Parameter Description

K,α, η, β, σ Model parameters. See Table 5.1.
e The number of Gibbs sampling sweeps to make over the entire corpus

for each iteration of EM.
m The number of EM iterations to make.

Table 5.2: Estimation Parameters for sLDA

5.1.1 Sweep 1E5–1

In order to investigate these relationships, we first ran a series of parameter sweeps on

our sLDA implementation. These initial sweeps focused on parameters that impacted

the running time of the model, such as e, m, k, which run on a relatively small dataset.

In each sweep, we measured both the runtime of our sLDA fitting (t) as well as its

predictive performance, hoping to establish metrics on both. For our performance

metric, we chose the log-loss metric (L) from Equation 4.11, as it is a natural fit for

a binary response variable and a probabilistic prediction. For convenience, we have

restated its formula in Equation 5.4 below.

45

L = − 1

N

∑
i=1

yi log (ŷi) + (1− yi) log (1− ŷi) (5.4)

ŷd = Predicted yi given Xi (5.5)

First, we truncated the TClean dataset down to its first 105 tweets, denoting this

new dataset TClean5. This allowed us to run sLDA estimations in a shorter amount

of time, which seemed reasonable as the original authors used datasets with even

fewer documents in their original paper [23]. After truncation, TClean5 was split

into randomly sampled training and testing sets, at a ratio of 80% training records to

20% testing. Training records were further segmented into 3 equally sized validation

folds (F = 3), again using random sampling.

The sweep itself was then performed across the range of values described in

Table 5.3. For each iteration in the sweep, a sLDA model would be cross-validated

over the validation folds using parameters from the range in Table 5.3, as well as the

static parameters described in Table 5.4. We measured both the time elapsed while

estimating the model, as well as the log-loss prediction performance of the estimated

model on the held-out validation fold. With 3 validation folds, this allowed us to take

the mean and standard deviation of each parameter set, in order to confirm that our

measurements were representative for a given parameter set. Table 5.5 provides a

summary of these measurements, as well as the derived values used in later analysis.

All runs were performed on the Sweet Chedda machine discussed in Appendix A.3.

Parameter Start End Step Size

e 10 80 10
m 2 10 2
k 10 40 10

Table 5.3: Ranges for sLDA Sweep 1E5–1

46

Parameter Value

F 3
α 1/K
β 1/V
η Retweet signal mean in training set
σ2 Retweet signal variance in training set

Table 5.4: Static Parameters for sLDA Sweep 1E5–1

Measure Description

Lf
emk Log loss for sLDA model on training fold f with parameters e, m, and

k. See Equation 5.4.

L̂emk Mean log loss for sLDA model with parameters e, m, and k. See
Equation 5.6.

σL
emk Standard deviation of log loss for sLDA model on training fold f with

parameters e, m, and k. See Equation 5.7.

ErrLemk Estimated 3σ error of L̂emk as a percentage of its value. See Equation 5.8.

tfemk Elapsed seconds for training sLDA model on training fold f with pa-
rameters e, m, and k.

t̂emk Mean elapsed seconds for sLDA model with parameters e, m, and k. See
Equation 5.6.

σt
emk Standard deviation of elapsed seconds for sLDA model on training fold

f with parameters e, m, and k. See Equation 5.7.
Errtemk Estimated 3σ error of t̂emk as a percentage of its value. See Equation 5.8.

Table 5.5: Measurements from sLDA Sweep 1E5–1

L̂emk =
1

F

∑
f∈F

Lf
emk (5.6)

σv
emk =

√
1

F

∑
f∈F

(
vfemk − v̂emk

)2
(5.7)

Errvemk = 100× 3σv
emk

v̂emk

(5.8)

47

The measured effects of e, m, and k on L̂ and t are summarized in Figure 5.2, which

illustrates L̂emk and t̂emk for all permutations of e, m, and k. Figure 5.3 illustrates the

corresponding values of ErrLemk and Errtemk. From these figures, we drew the following

key observations:

1. Almost all Erremk error bars fell below 3% of their values, indicating that there

would likely be little variation between estimation runs in relation to measured

values. Outliers were primarily for low values of t̂emk.

2. Despite this, the magnitude of 3σemk is often greater than the differences be-

tween L̂emk and t̂emk for different values of input parameters. This would suggest

that it is not uncommon to have observations where one set of parameters

outperforms another, even when its average performance would be worse. In

other words, due to the variations between folds, the advantage of one parameter

set over another is only measurable over multiple folds.

3. For k = 10, L̂emk indicated little visual correlation with any values of e or m.

However, as k increased to higher values, L̂emk displayed a negative correlation

with both e and m values, particularly for the higher values of k = 30 and

k = 40.

4. L̂emk also seemed to take lower values for higher k.

Although all of these observations were subjective and qualitative interpretations

of the data, together they provided early evidence suggesting that our hypothesis

was correct, and sLDA could be used to predict retweets to at least some measurable

degree. Furthermore, they indicated that e, m, and k all had a positive predictive

impact on the system. However, the cost of increasing any of these variables was the

48

Figure 5.2: Sweep 1E5–1 Mean Log Loss and Mean Elapsed Time

49

Figure 5.3: Error % of Sweep 1E5–1 Mean Log Loss and Mean Elapsed Time

50

Figure 5.4: 3σemk of Sweep 1E5–1 Mean Log Loss and Mean Elapsed Time

51

increased time required to estimate the corresponding model. Therefore, we aimed

to discover the combinations of e, m, and k that would yield optimal prediction

performance for a given timeframe.

Before exploring what such an optimal combination would look like, we first took

some time to establish the relationship between e, m, k, and t̂emk. If we were to

vary any one of these constants, holding the others fixed, we would expect the time

complexity to increase linearly. Therefore, we hypothesized that t̂emk ≈ c×e×m×k,

for some c ∈ R≥0. However, since this was a minor corrolary to our study, we chose to

validate this empirically rather than performing a complexity analysis. To this end,

we derived the dimensionality measure Dimemk defined in Equation 5.9 and performed

a linear regression between Dimemk and t̂emk, in addition to measuring the Pearson

correlation coefficient. The results are listed in Table 5.6, as well as displayed visually

in Figure 5.5. With a correlation coefficient of r ≈ 0.999155, we were confident in

the linear relationship between Dimemk and t̂emk. This would be useful later, when

we wanted to run sLDA estimations for a particular duration.

Dimemk = e×m× k (5.9)

Parameter Value

Slope 0.008330
Intercept 1.448136
RValue 0.999155
PValue 0.000000
StdErr 0.000016

Table 5.6: Sweep 1E5–1 Dimensionality vs Timing Regression Results

Having firmly established the relationship between our model parameters and

52

Figure 5.5: Sweep 1E5–1 Dimensionality vs Timing Regression

53

sLDA estimation time, we then turned to examining the more ambiguous relationship

between these variables and L̂emk. Figure 5.6 provides an entry point for this relation-

ship, suggesting the trend that as we spend more time estimating our model, the log

loss of its predictions will decrease. Seeking to investigate this relationship further,

Figure 5.7 displays the same scatter plot with logistic regression lines overlayed for

different values of e, m, and k. Although this is far from a conclusive solution, we can

observe that while regression lines for e and m are somewhat disordered, those for the

k plot show a clear anticorrelation between k and L̂emk. Even for measurements of

roughly the same duration, a higher k seems to correlate to better performance in the

model. We found this relationship to be less qualitatively obvious in our explorations

of e and m. Figure 5.8 deconstructs Figure 5.7 further by separating measurements

by their k value. Here we can see that trendlines for k decrease in slope as k increases.

This would suggest that not only is a higher k better, but it has a higher potential

for performance gains as the model runs longer.

It is important to note that the previous observations are all qualitative in nature.

Although these trends are highly suggestive, they do not alone indicate any sort of

optimal combination of e, m, and k, nor the tradeoffs associated with sacrificing one

for another. After numerous attempts, we still struggled to tease out this deeper

relationship between L̂emk and e, m, and k. We eventually decided to perform a

second sweep, using what we knew about the time complexity of our problem to run

another sweep across e, m, and k that held time constant.

5.1.2 Sweep 1E5–2

Sweep 1E5–2 was run as a followup to Sweep 1E5–1, using much of the same method-

ology. Like Sweep 1E5–1, it was a parameter sweep that ran 3-fold cross-validations

54

Figure 5.6: Sweep 1E5–1 Log Loss vs Elapsed Time

55

Figure 5.7: Sweep 1E5–1 Log Loss vs Elapsed Time, Stratified by e, m, and k

56

Figure 5.8: Sweep 1E5–1 Log Loss vs Elapsed Time Split By k ∈ K

57

of sLDA models parameterized on e, m, and k. However, Sweep 1E5–2 used our

knowledge of t̂emk from Section 5.1.1 to select values for e, m, and k, which had the

same runtime by holding Dimemk constant. Having confirmed the correlation between

Dimemk and L̂emk, we hoped that by isolating it from the equation we could shed some

light on the interplay between e, m, and k in the same time context.

In this sweep, we chose to select Dimemk approximately corresponding to runtimes

of t̂emk ∈ {180, 300, 420} (3–7m). This led to Dimemk taking the values in Table 5.7,

which also describes the sweep ranges for m and k. The e variable was fixed by the

other time sensitive parameters, as described in Equation 5.10 (in order to satisfy the

relationship defined in Equation 5.9). Other parameters were identical to those used

in Sweep 1E5–1, as described in Table 5.4.

Parameter Start End Step Size

Dimemk 21000 49000 14000
m 2 10 2
K 50 250 50

Table 5.7: Ranges for sLDA Sweep 1E5–2

e =
Dimemk

mk
(5.10)

The measured effects of m and k on L̂ and t are again summarized in Figure 5.9.

In this case, values of e are implicit and can be determined from Equation 5.10. As

with Sweep 1E5–1, we again quantify Erremk in Figure 5.10 and 3σemk in Figure 5.11

to confirm that the measured values are representative in our dataset. You will see

that σemk and Erremk take similar values to Sweep 1E5–1, with the exception of some

anomalously high values for σt
emk. However, since high precision time estimation is

not the focus of this study, we focused primarily on Figure 5.9. Here we can observe

58

the obvious anticorrelation between L̂emk and k. However, the other anticorrelations

with e, m, and Dimemk from Sweep 1E5–1 are all less apparent. This could perhaps

be explained by the large difference in scale between k and the other parameters.

Before investigating further, we confirmed that our observation from Section 5.1.1,

that L̂emk and Dimemk are anticorrelated, still held for Sweep 1E5-2. Figure 5.12

illustrates that this still appears to be the case. As dimensionality of sLDA increases,

the mean log loss of its predictions can be observed to steadily decrease. We quantify

this relationship in Table 5.8 by calculating Pearson’s r correlation coefficient between

Dimemk and L̂emk. The resulting value of ρDim,L̂ = −0.178 tells us that the anticor-

relation is noisy, but measurable. Although it is difficult to accurately measure the

significance of this correlation, it provides a baseline of comparison between Dimemk,

m, and k.

X ρX,L̂

m -0.021126
k -0.754449
Dimemk -0.178567

Table 5.8: Pearson’s r Correlations of L̂emk

From here, we can quantify the qualitative trends we observed in Figure 5.9 by

drawing similar plots for m and k. First, we investigate m in Figure 5.13. Here we

can see that unlike Dimemk, no trend can be observed between m and L̂emk. If there

is any corelation between the two, it is entirely lost within the noise of the data.

This differs drastically with k, as depicted in Figure 5.14. Here we can see a clear

downward trend as we increase k, as well as an anticorrelation in Table 5.8 that is

significantly larger than our baseline of ρDim,L̂.

59

Figure 5.9: Sweep 1E5–2 Mean Log Loss and Mean Elapsed Time

60

Figure 5.10: Error % of Sweep 1E5–2 Mean Log Loss and Mean Elapsed Time

61

Figure 5.11: 3σemk of Sweep 1E5–2 Mean Log Loss and Mean Elapsed Time

62

Figure 5.12: Dimensionality vs Log Loss for Sweep 1E5–2

Figure 5.13: m vs Log Loss for Sweep 1E5–2

63

Figure 5.14: k vs Log Loss for Sweep 1E5–2

These patterns were consistent with our own understanding of the sLDA model,

and the difference between e or m and k. Whereas e and m are variables that control

the number of iterations given for the model to converge, k increases the model’s

available degrees of freedom. Therefore, after e and m are set to values sufficiently

large enough for the model to converge, we would expect very little improvement

in performance by increasing them further. On the other hand, increasing k allows

a fitted model to capture additional information. The lack of any discernible trend

between m and L̂emk suggests that for the values considered in Sweep 1E5–2, the

model has entirely converged.

5.1.3 Sweep 1E5–3

Having clearly established that k was the only variable having a measurable impact

on performance, we ran Sweep 1E5–3 with the intention of exploring the limits of k’s

benefits in relation to the other variables. Dimemk and m were set to the fixed values

in Table 5.9, while k’s range was increased to [50, 1250] as detailed in Table 5.10. We

64

continued to adjust e according to Equation 5.10 as in Sweep 1E5–2, as well as 3-fold

cross validation. It is important to note that in this sweep we still hold dimensionality

constant, meaning that as we increase k, we have fewer iterations available in e to

converge on a solution.

Parameter Value

Dimemk 35,000
m 2

Table 5.9: Static Parameters for sLDA Sweep 1E5–3

Parameter Start End Step Size

K 50 1250 50

Table 5.10: Ranges for sLDA Sweep 1E5–3

From the results in Sweep 1E5–3, we found that as k increased, its benefits were

eventually reversed. Figure 5.15 depicts the mean Log Loss of our sLDA model as

we vary k, along with its associated error bars. We can see that the model exhibits

optimal mean performance at k = 600, which corresponds to e = 29. However, it is

also notable that these results are fairly noisy, and given the various local minima

surrounding k = 600, it is possible that the true minimizing value for k might be as

low as 350 or as high as 750 if we were to increase our sample size. Nonetheless, this

operational range gives us enough information to estimate roughly optimal parameters

for larger dataset sizes.

There are two possible explanations for the occurrence of this performance mini-

mum. The first, and possibly more obvious explanation, was that for values of e < 29

the model was insufficiently converged, resulting in a performance degradation that

outweighed any benefits of further increasing k. Alternatively, it could be that higher

65

Figure 5.15: k vs Log Loss for Sweep 1E5–3

66

values of k did a poorer job of capturing information, contrary to our assumptions of

the model. However, investigating this distinction was beyond the scope of our goals.

We instead concluded that we should use k = 600 when training our final model for

use on the test set, and moved on to measuring the performance of sLDA on the

held-out testing set.

5.2 SLDA Performance Analysis

Having determined good estimates for optimal parameters for sLDA, we moved on to

testing it against the held-out test set, and comparing its performance to a number

of other benchmarks. We proceeded to train our sLDA model on the full TClean

training set, alongside our reference models, and then test them on the corresponding

held-out test set. We found that although sLDA succeeded at predicting retweets to

some degree, it was outperformed by another widely available model.

In addition to sLDA, we trained the two Naive Bayes models shown in Table 5.11,

as well as an ensemble classifier to test the possibility of combining the output of

sLDA with that of our best performing classifier. For the sLDA model, we chose

tuning parameters of e = 200, m = 3, and k = 600. Here we used the optimal k

ascertained in Section 5.1, but chose to increase our e and m values in order to avoid

the accuracy tradeoff discussed at the end of the same section. We also evaluated a

simple baseline, where every prediction y was equal to the retweet ratio in the training

set.

While the sLDA model continued to use the “lda” R package, the rest of the models

were trained and tested using the “scikit-learn” python module. For consistency, we

exported sLDA predictions to csv, and then compared them in scikit-learn using the

67

Model X Parameters

sLDA Token Counts e = 200,m = 3, k = 600
Multinomial Naive Bayes Token TFIDF
Bernoulli Naive Bayes Hashtag Count
Ensemble SGD Logistic Classifier sLDA & Naive Bayes loss = Log-Loss

Table 5.11: Tested Predictive Models

same methods as the other models. Table 5.12 shows a performance summary of

the evaluated models, while Figures 5.16 through 5.19 show the corresponding ROC

curves. SLDA performed better than the simple baseline and the hashtag-based

Bernoulli Naive-Bayes, but was outperformed by the text-based Multinomial Naive-

Bayes. We then took the output of sLDA and Multinomial Naive Bayes and used

them as inputs to an Ensemble SGD Logistic Classifier to test the hypothesis that

by combining both approaches, we could outperform Multinomial Naive Bayes alone.

However, we found that the ensemble classifier had significantly worse log-loss than

Multinomial Naive Bayes, indicating that the noise introduced by considering both

outputs outweighed the gain in information.

Model L A

sLDA 0.611700 0.683622
Simple Baseline 0.665830 0.500000
Multinomial Naive Bayes 0.563959 0.741970
Bernoulli Naive Bayes 0.628331 0.607087
Ensemble SGD Logistic Classifier 0.595622 0.704890

Table 5.12: Summary of Predictor Performance

Although sLDA was outperformed by Multinomial Naive Bayes, we continued to

investigate sLDA for its descriptive properties. Table 5.13 shows the 5 most popular

topics from our sLDA model, as measured by their estimated ηk. This provides an

68

Figure 5.16: sLDA Classification ROC Curve

Figure 5.17: Multinomial Naive Bayes Classification ROC Curve

69

Figure 5.18: Bernoulli Naive Bayes Classification ROC Curve

Figure 5.19: Ensemble Logistic Classification ROC Curve

70

insight into popularity which is more nuanced than a simple Naive Bayes approach.

Qualitatively, we can see themes of fashion, romance, and money in the first three

topics listed. This could easily inform potential content creators. This white-box

approach of giving qualitative descriptions of popularity is a key benefit to sLDA

over other algorithms, which in some cases may make it more desirable than higher-

performing algorithms.

Topic k 328 44 221 147 347
ηk 1.326110 1.258460 1.210058 1.139367 1.137893

Word 1 httpt girl befor thi
Word 2 look gui work iv see
Word 3 jean hi stai heard take
Word 4 #mycalvins ar art thi princess
Word 5 model love lil seen good
Word 6 underwear thei bank thing coupl
Word 7 morn boyfriend tip sai hope
Word 8 ar human awai ur week

Table 5.13: Popular Topics and Their Most Frequently Assigned Words

We concluded that although sLDA is a sub-optimal algorithm for general content-

based popularity prediction on twitter, it remained useful for its capacity to qualita-

tively describe popular topics. We conjecture that in some cases, application devel-

opers may prefer it for this capability, despite the availability of higher performing

alternatives.

71

CHAPTER 6

CONCLUSION

Popularity prediction on Twitter has received wide attention in the academic com-

munity. Of particular interest is content-based prediction, which despite its intrinsic

challenges on short messages provides many actionable insights for content creators.

In this study, we have detailed the role topic models can play in content-based

popularity prediction on Twitter. We found that topic models are indeed capable

of predicting retweets on Twitter, but they are outperformed by more established

methods such as Naive Bayes classification.

In Chapter 3, we detailed our methods for collecting and storing 2.5T of Twitter

data, gathered over the course of five months. As our study progressed, we developed

more sophisticated data processing techniques in order to reconcile its scale with our

analysis tools. We found that more sophisticated algorithms were generally designed

for significantly smaller datasets, and adapted to this by developing the TClean

dataset to accomodate more aggressive truncation. It is our hope that the datasets

and collection tools from this chapter will continue to serve subsequent studies into

microblog dynamics.

In Chapter 4, we showed prediction techniques using hashtags could be employed

to predict retweets, consistent with previous works that identified them as strong

predictive factors. We then demonstrated a technique for extending their predictive

72

capacity to untagged messages by correlating hashtags with their vocabulary. We

also discussed some of the technical challenges of applying the relevant LLDA topic

model to perform this mapping, and presented a scalable TFIDF-based alternative.

Finally, we explored the efficacy of supervised topic models for popularity pre-

diction in Chapter 5. We presented our techniques for tuning sLDA’s configuration

parameters and identified the parameters that would yield optimal performance for

our scenario. We then measured this performance and compared it to benchmark

algorithms such as Naive Bayes and logistic regression. We found that although sLDA

could make some retweet predictions successfully, it was outperformed by these more

established baselines.

In summary, we found that while it was possible to predict retweet popularity

based solely on a tweet’s content, topic models were not the best tool for the job.

More established methods such as Naive Bayes were more effective for popularity

prediction tasks. Instead, the utility of topic models may be seen in their capacity

to identify popular topics of discussion, and therefore provide a more transparent

description of tweet popularity.

6.1 Future Works

The research conducted here could provide the foundation for many future works.

Among them are:

• More sophisticated optimization of sLDA parameter searches. Although the

iterative sweeps in Chapter 5 gave us sufficient information to continue with

our experimentation, potential performance improvements could be realized by

searching for optimal parameters via non-linear programming algorithms.

73

• Large-scale implementations of prediction algorithms. With the scale at which

messages occur in social media, any candidate prediction algorithm needs to be

able to analyze messages at scale for it to be used in production. While our

study focused on performance over scalability, there is a growing need for any

candidate algorithm to scale well.

• Time-aware analysis. The current training regime considers a dataset where the

test set is sampled randomly from within the corpus. It would be an interesting

point of study to see how well a model’s predictive performance varied across

time. The length of our TClean corpus would lend itself well to this area of

investigation.

• Leveraging qualititative descriptions from topic models. Descriptions of popular

topics by sLDA are perhaps its most distinguishing features from other models.

If time permitted, we would have liked to explore different applications that

made use of this feature.

74

REFERENCES

[1] Cascading — cascading. http://www.cascading.org/projects/cascading/. Ac-
cessed: 2015-11-05.

[2] Get statuses/sample — twitter developers. https://dev.twitter.com/
streaming/reference/get/statuses/sample. Accessed: 2015-11-04.

[3] myleott/jgibblabeledlda. https://github.com/myleott/JGibbLabeledLDA. Ac-
cessed: 2015-12-02.

[4] Rest apis — twitter developers. https://dev.twitter.com/rest/public. Accessed:
2015-11-04.

[5] The streaming apis — twitter developers. https://dev.twitter.com/
streaming/overview. Accessed: 2015-11-04.

[6] Twitter usage statistics - internet live stats.
http://www.internetlivestats.com/twitter-statistics/. Accessed: 2015-11-04.

[7] Eytan Bakshy, Jake M Hofman, Winter A Mason, and Duncan J Watts. Every-
one’s an influencer: quantifying influence on twitter. In Proceedings of the fourth
ACM international conference on Web search and data mining, pages 65–74.
ACM, 2011.

[8] Peng Bao, Hua-Wei Shen, Junming Huang, and Xue-Qi Cheng. Popularity
prediction in microblogging network: a case study on sina weibo. In Proceedings
of the 22nd international conference on World Wide Web companion, pages
177–178. International World Wide Web Conferences Steering Committee, 2013.

[9] Bin Bi, Yuanyuan Tian, Yannis Sismanis, Andrey Balmin, and Junghoo Cho.
Scalable topic-specific influence analysis on microblogs. In Proceedings of the
7th ACM international conference on Web search and data mining - WSDM ’14,
pages 513–522, New York, New York, USA, 2014. ACM Press.

[10] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.
The Journal of Machine Learning Research, 3:993–1022, March 2003.

75

[11] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and P Krishna Gummadi.
Measuring user influence in twitter: The million follower fallacy. ICWSM, 10(10-
17):30, 2010.

[12] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and P Krishna Gummadi.
Measuring user influence in twitter: The million follower fallacy. ICWSM, 10(10-
17):30, 2010.

[13] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of
statistical learning, volume 1. Springer series in statistics Springer, Berlin, 2001.

[14] Shuai Gao, Jun Ma, and Zhumin Chen. Effective and effortless features for
popularity prediction in microblogging network. In Proceedings of the 23rd
International Conference on World Wide Web, WWW ’14 Companion, pages
269–270, Republic and Canton of Geneva, Switzerland, 2014. International World
Wide Web Conferences Steering Committee.

[15] Shuai Gao, Jun Ma, and Zhumin Chen. Modeling and predicting retweeting
dynamics on microblogging platforms. In Proceedings of the Eighth ACM In-
ternational Conference on Web Search and Data Mining, pages 107–116. ACM,
2015.

[16] Liangjie Hong, Ovidiu Dan, and Brian D. Davison. Predicting popular messages
in twitter. In Proceedings of the 20th International Conference Companion on
World Wide Web, WWW ’11, pages 57–58, New York, NY, USA, 2011. ACM.

[17] Zhiting Hu, Junjie Yao, Bin Cui, and Eric P Xing. Community Level Diffusion
Extraction. In Sigmod’15, pages 1555–1569, New York, New York, USA, May
2015. ACM Press.

[18] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why we twitter:
understanding microblogging usage and communities. In Proceedings of the 9th
WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network
analysis, pages 56–65. ACM, 2007.

[19] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of
influence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining - KDD ’03,
page 137, New York, New York, USA, August 2003. ACM Press.

[20] Dominic L Lasorsa, Seth C Lewis, and Avery E Holton. Normalizing twitter:
Journalism practice in an emerging communication space. Journalism studies,
13(1):19–36, 2012.

76

[21] Zongyang Ma, Aixin Sun, and Gao Cong. On predicting the popularity of newly
emerging hashtags in twitter. Journal of the American Society for Information
Science and Technology, 64(7):1399–1410, 2013.

[22] Christopher D Manning and Hinrich Schütze. Foundations of statistical natural
language processing. MIT press, 1999.

[23] Jon D Mcauliffe and David M Blei. Supervised topic models. In Advances in
neural information processing systems, pages 121–128, 2008.

[24] Rishabh Mehrotra, Scott Sanner, Wray Buntine, and Lexing Xie. Improving
lda topic models for microblogs via tweet pooling and automatic labeling. In
Proceedings of the 36th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’13, pages 889–892, New York,
NY, USA, 2013. ACM.

[25] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. The
Journal of Machine Learning Research, 12:2825–2830, 2011.

[26] Adam L Penenberg. Viral loop: from Facebook to Twitter, how today’s smartest
businesses grow themselves. Hachette Books, 2009.

[27] Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic
Smyth, and Max Welling. Fast collapsed gibbs sampling for latent dirichlet
allocation. In Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 569–577. ACM, 2008.

[28] Martin F Porter. An algorithm for suffix stripping. Program, 14(3):130–137,
1980.

[29] Daniel Ramage, ST Dumais, and DJ Liebling. Characterizing Microblogs with
Topic Models. In ICWSM, 2010.

[30] Daniel Ramage, Susan Dumais, and Dan Liebling. Characterizing Microblogs
with Topic Models. In ICWSM, 2010.

[31] Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D Manning.
Labeled LDA : A supervised topic model for credit attribution in multi-labeled
corpora. In Conference on Empirical Methods in Natural Language Processing,
number August, pages 248–256, 2009.

77

[32] Manuel Gomez Rodriguez, Jure Leskovec, and Bernhard Schölkopf. Modeling
information propagation with survival theory. arXiv preprint arXiv:1305.3616,
2013.

[33] B. Suh, Lichan Hong, P. Pirolli, and Ed H. Chi. Want to be retweeted? large scale
analytics on factors impacting retweet in twitter network. In Social Computing
(SocialCom), 2010 IEEE Second International Conference on, pages 177–184,
Aug 2010.

[34] Li Wei and Andrew McCallum. Pachinko allocation: DAG-structured mixture
models of topic correlations. ICML ’06: Proceedings of the 23rd international
conference on Machine learning, pages 577–584, 2006.

[35] Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. Twitterrank: Finding topic-
sensitive influential twitterers. In Proceedings of the Third ACM International
Conference on Web Search and Data Mining, WSDM ’10, pages 261–270, New
York, NY, USA, 2010. ACM.

[36] Lei Yang, Tao Sun, Ming Zhang, and Qiaozhu Mei. We know what@ you#
tag: does the dual role affect hashtag adoption? In Proceedings of the 21st
international conference on World Wide Web, pages 261–270. ACM, 2012.

[37] Jiawei Zhang. University of Illinois at Chicago Phd Qualifier Examination Paper
Link Prediction across Heterogeneous Social Networks : A Survey. 2014.

[38] WayneXin Zhao, Jing Jiang, Jianshu Weng, Jing He, Ee-Peng Lim, Hongfei Yan,
and Xiaoming Li. Comparing twitter and traditional media using topic models.
In Paul Clough, Colum Foley, Cathal Gurrin, GarethJ.F. Jones, Wessel Kraaij,
Hyowon Lee, and Vanessa Mudoch, editors, Advances in Information Retrieval,
volume 6611 of Lecture Notes in Computer Science, pages 338–349. Springer
Berlin Heidelberg, 2011.

78

APPENDIX A

COMPUTING RESOURCES

A.1 BDServer Hadoop Cluster

BDServer refers to the primary BSU Hadoop cluster in use during the majority

of this research. It was used to store our Twitter datasets, as well as perform

MapReduce processing tasks upon them. It consisted of 6 homogeneous machines

with the specifications described in Table A.1. To improve MapReduce performance,

they were internally networked on an InfiniBand interconnect.

CPU Model Intel R©Xeon R©CPU E5-1410
CPU Clock Speed 2.80 GHz
CPU Cache Size 10240 KB
Physical Memory Capacity 16 GB
Physical Memory Type DDR3
HDD System Storage 500 GB
HDD Hadoop Storage 6 TB
SSD Hadoop Storage 128 GB
Operating System CentOS release 6.5 (Final)

Table A.1: BDServer Node System Specifications

A.2 Infolab

The Infolab server was a BSU server with large memory capacity. It was used in the

experiments from Chapter 4 for processes that had high memory requirements. Its

79

specifications are shown in Table A.2

CPU Model AMD OpteronTMProcessor 6320
CPU Clock Speed 2.80 GHz
CPU Cache Size 2048 KB
Physical Memory Capacity 128 GB
Physical Memory Type DDR3
HDD System Storage 1 TB
HDD Data Storage 1 TB
Operating System Ubuntu 14.04.3 LTS

Table A.2: Infolab System Specifications

A.3 Sweet Chedda

Sweet Chedda was a home PC that was used for running a number of experiments.

Its specifications are shown in Table A.3.

CPU Model Intel R©CoreTMi7-4770K CPU
CPU Clock Speed 3.50 GHz
CPU Cache Size 8192 KB
Physical Memory Capacity 16 GB
Physical Memory Type DDR3
HDD System Storage 2 TB
SSD System Storage 500 GB
Operating System Arch Linux

Table A.3: SweetChedda System Specifications

