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ABSTRACT 

Herbivores select plants and patches that generally maximize nutrient intake and 

minimize intake of plant secondary metabolites (PSMs).  Protein is important for growth, 

reproduction and maintenance, but maximizing intake of protein is often limited by 

concentrations of PSMs that are potentially toxic to herbivores and energetically 

expensive to process. However, the consequences of ingesting PSM are often dose-

dependent.  At high doses, PSMs generally have negative physiological effects and are 

avoided, but some PSMs can be therapeutic against parasites at low doses and could 

therefore be selected.  We used Greater Sage-grouse (Centrocercus urophasianus, 

hereafter, sage-grouse) to test how PSMs influence diet selection and parasite loads in a 

free-ranging avian herbivore.  Specifically, we examined selective foraging by sage-

grouse and how foraging patterns influence habitat use throughout winter at a mixed 

sagebrush site.  We found that selective foraging did not influence landscape-scale 

habitat selection between two species of sagebrush.  However, more fine-scale selection 

was influenced by PSMs and structural characteristics within a species. We also 

examined how selective foraging may influence parasite loads in sage-grouse. We tested 

the relationship between intake of PSMs, intestinal exposure of parasites to PSMs, and 

parasite loads. Parasite loads in sage-grouse were correlated with higher concentrations of 

PSMs, suggesting that PSMs may make sage-grouse more susceptible to parasites, or that 

parasites are resistant to sagebrush PSMs.  This research informs basic science on 

foraging ecology, parasitology, and habitat use by an avian herbivore.  Additionally, it 
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provides information to managers about factors that influence diet selection and potential 

health consequences of ingested PSMs by wildlife. 
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GENERAL INTRODUCTION 

Herbivores have abundant food supplies of varying nutritional quality, and must 

select the highest quality resources from those available (Sinclair et al. 1982).  For 

example, herbivores select plants and patches that generally maximize nutrient intake and 

minimize intake of plant secondary metabolites, or PSMs (Guglielmo et al. 1996, Stolter 

et al. 2005, Frye et al. 2013).  Intake of PSMs is regulated because PSMs are potentially 

toxic to herbivores and processing ingested PSMs can be energetically expensive 

(Sorensen and Dearing 2006, Au et al. 2013, Forbey et al. 2013).  Therefore, animals 

regulate exposure to PSMs via behavioral (Wiggins et al. 2003) and physiological 

mechanisms (Sorensen and Dearing 2006, Estell 2010).  Additionally, because protein is 

important for growth, reproduction and maintenance, herbivores generally select for high 

protein food resources. (Chastel et al. 1995, DeGabriel et al. 2009).  Acquisition of 

protein can be limited by dietary PSMs, further increasing the importance of minimizing 

intake of PSMs (Jakubas et al. 1993, Guglielmo et al. 1996, DeGabriel et al. 2009, Au et 

al. 2013).   

However, side effects associated with PSM consumption are dose-dependent.  At 

high doses, PSMs generally have negative physiological effects, but some PSMs may be 

therapeutic at low doses (Forbey et al. 2009).  For example, some PSMs have anti-

parasitic properties (Zhu et al. 2013).  While generalist herbivores occasionally exploit 

PSMs for their therapeutic properties (Huffman and Seifu 1989, Huffman 1993, Huffman 

1997, McLennan and Huffman 2012, Su et al. 2013), specialist herbivores may not be 
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able to exploit this resource.  Specialist herbivores face a number of challenges that may 

limit their ability to self-medicate for parasites, including energy constraints and PSM-

resistant parasites.  Self-medication, to my knowledge, has not been evaluated in 

specialist herbivores, and is an important aspect of wildlife health. 

Greater Sage-grouse (Centrocercus urophasianus, hereafter, sage-grouse) are 

specialist avian herbivores that feed almost exclusively on sagebrush (Artemisia spp.) 

during the winter months (Patterson 1952, Remington and Braun 1985, Thacker et al. 

2012).  Sagebrush synthesizes a suite of PSMs (sesquiterpene lactones, monoterpenes and 

phenolics) that make the shrubs less palatable.  As sagebrush obligates, sage-grouse 

require intact sagebrush habitats for both cover and forage throughout the year.  Sage-

grouse habitat is declining rapidly, and this decrease has been associated with population 

declines throughout the range of the species (Schroeder et al. 2004, Aldridge et al. 2008, 

Bruce et al. 2011).  Currently, sage-grouse occupy approximately half of their estimated 

pre-settlement range (Schroeder et al. 2004).  It is therefore important to understand 

resource use thoroughly, and factors that influence the health of sage-grouse, to best 

conserve or restore habitats that maximize the success of sage-grouse. 

Selection of sagebrush subspecies by sage-grouse during winter depends upon 

availability and chemistry (Beck 1977, Vasquez 1999, Frye et al. 2013).  Sage-grouse 

select plants and sagebrush species with the highest protein content (Remington and 

Braun 1985, Barnett and Crawford 1994, Gregg et al. 2008, Frye et al. 2013) or lowest 

concentration of PSMs (Remington and Braun 1985, Frye et al. 2013).  Sage-grouse 

foraging patches are often located in areas dominated by “dwarf” species of sagebrush, 

including Artemisia nova and A. arbuscula (Dalke et al. 1963, Connelly et al. 2004, 
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Bruce et al. 2011, Hagen et al. 2011, Arkle et al. 2014), which generally have lower 

PSMs than big sagebrush species (Frye et al. 2013, Ulappa et al. 2014).  However, dwarf 

sagebrush comprises a relatively small proportion of the landscape in some areas, and a 

mix of big sagebrush (A. tridentata) dominates most habitats throughout the Great Basin 

(Beck et al. 2009).  In addition, species, subspecies, and populations of sagebrush vary in 

PSMs, both quantitatively and qualitatively.  For example, sagebrush taxa can be 

identified based on unique chemical profiles (Thacker et al. 2012) and the concentrations 

of each compound (Kelsey et al. 1982).  The toxic and potential therapeutic benefit of 

PSM ingestion against parasites and pathogens is likely to be dependent on the types of 

compounds, the concentration of individual PSMs, and the mixture of compounds 

consumed.  Moreover, the distribution of sagebrush taxa across the landscape is likely to 

change.  For example, three-tip sagebrush (A. tripartita) has a relatively small range 

(Tirmenstein 1999) compared to big sagebrush (Freeman et al. 1991), but populations are 

expected to expand by 1.3% for every 1% increase in temperature (Dalgleish et al. 2011).  

In addition to changes in distribution, the PSM concentrations in sagebrush are expected 

to increase with increased predicted changes in temperature and atmospheric carbon 

(Forbey et al. 2013).  Climate change is also predicted to reduce physiological tolerance 

to PSMs by herbivores (Dearing et al. 2008) and increase pathogenicity of parasites 

(Molnar et al. 2013a; 2013b).  These multi-scale changes in the landscape and physiology 

may alter how sage-grouse interact with sagebrush. Therefore, it is important to 

understand how sage-grouse select patches and individual plants in an environment with 

different types of sagebrush and the potential physiological consequences of selecting 

sagebrush with specific PSM profiles. 
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In the first chapter, I examined selective foraging by sage-grouse and how 

foraging patterns influence habitat use throughout winter at a sagebrush site with co-

dominant Wyoming big sagebrush (A.t. wyomingensis) and three-tip sagebrush (A. 

tripartita).  This habitat was of interest because Wyoming big sagebrush is relatively 

widespread, and the range of three-tip sagebrush is expected to expand (Baker 2006, 

Lesica et al. 2007, Beck et al. 2009, Dalgleish et al. 2011).  Selective foraging can 

influence habitat use at multiple scales (Frye et al. 2013), but did not influence landscape-

scale habitat selection between these species of sagebrush at my site.  However, more 

fine-scale selection was influenced by a variety of chemical and structural characteristics 

for each sagebrush species. 

In the second chapter, I examined how the intake of PSMs may influence parasite 

loads in sage-grouse.  Intestinal parasites are common in sage-grouse (Christiansen and 

Tate 2011) and may influence nutrient acquisition (Nelson 1955) and therefore energy 

available for other activities, including PSM detoxification.  I tested the relationship 

between intake of PSMs, concentrations of unchanged PSMs in the intestines (indicator 

of toxin load), and intestinal parasite loads of Raillietina centrocerci at four sites in 

southern Idaho.  I also evaluated ecological factors that may contribute to parasite loads, 

including site, season, host sex, site elevation, and flock size.  Across all four sites in a 

single season, sage-grouse had higher intestinal parasite loads with higher PSM loads, 

suggesting that PSMs may make sage-grouse more susceptible to parasites, or that these 

parasites are resistant to sagebrush PSMs.  Factors that influenced parasite loads were 

site, season, bird sex, and both diversity and concentration of individual PSMs. 
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To perform this research, I used sage-grouse with necklace-style radio-

transmitters, which allowed us to track individual animals.  Telemetry fundamentals state 

that transmitters should be placed on individuals that represent the population and display 

normal demographic and behavioral traits.  While transmitters are integral to wildlife 

research, they may have negative effects on survival, energetics, or behavior.  For 

example, radio-transmitters decreased lek attendance by sage-grouse (Gibson et al. 2013), 

but for males that do attend leks, necklace-style transmitters (collars) may interfere with 

the male strut display on leks during spring.  Therefore, my third chapter evaluates the 

vocalization characteristics of male sage-grouse with and without collars.  I found that 

several aspects of the strut vocalization differ between collared and non-collared males, 

however not all of these characteristics have not previously been linked to reproductive 

success so the impacts of these differences on reproductive success are unknown. 

In the fourth chapter, I evaluated if sagebrush age was related to phytochemistry, 

and if there is an easy way to estimate plant age in the field.  Given the relationship 

between PSMs and diet selection and parasites, it is important to understand parameters 

that influence variation in PSMs across the landscape.  Age is one factor that can 

influence PSM concentrations, due to trade-offs plants make between growth and defense 

(Messina et al. 2002).  Specifically, age-dependent PSMs can influence herbivores 

(Shiojiri et al. 2011).  Landscape-scale disturbances (e.g. fire, mowing, restoration) can 

alter the age distribution of plants, and therefore the dietary quality of sagebrush.  It is 

therefore important to identify how age influences PSMs and develop methods to 

estimate the age of plants.  I measured the circumference of a plant at the base, and found 

that it was strongly correlated with plant age.  This provides a useful field technique to 
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assess sagebrush recruitment in the field.  However, there was no correlation between 

sagebrush age and any of the phytochemical variables I measured.  Therefore, habitat 

treatments that remove decadent sagebrush are not likely to influence sagebrush forage 

quality, but will remove cover and potentially have other negative ecological impacts 

(Davies et al. 2009, Davies et al. 2012). 

This research informs basic science on foraging ecology, parasitology, and habitat 

use by an avian herbivore.  Additionally, it provides information to managers about 

resource selection and potential health consequences for a species of concern.  This 

information could inform habitat conservation and sagebrush restoration efforts to 

improve habitat quality (Appendix A). 
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CHAPTER ONE: DIET SELECTION BY GREATER SAGE-GROUSE IN POST-FIRE 

HABITATS DOMINATED BY THREE-TIP AND WYOMING BIG SAGEBRUSH 

Abstract 

Diet quality influences habitat use, movement, and reproductive success for free-

ranging herbivores.  Herbivores attempt to consume sufficient nutrients while avoiding 

plant secondary metabolites (PSMs) that act as chemical defenses.  PSMs can have 

harmful effects on herbivores, and they are abundant in sagebrush plants (Artemisia spp.).  

Species of sagebrush have uniquely identifiable chemical profiles, which may influence 

overall diet quality and selection by herbivores.  Three-tip sagebrush (A. tripartita) is a 

dominant or co-dominant shrub species in parts of the Great Basin.  Several studies have 

identified its potential to expand range in post-fire environments because of its ability to 

re-sprout, which will be increasingly important in landscapes faced with more frequent 

fire regimes.  Despite the current and future distribution of this plant, its importance to 

wildlife as a forage resource has been understudied. I evaluated the dietary quality of 

three-tip sagebrush relative to Wyoming big sagebrush for wintering Greater Sage-grouse 

(Centrocercus urophasianus) in south-central Idaho.  I identified winter foraging sites of 

sage-grouse, and then analyzed structural characteristics of plants, crude protein content, 

phenolic concentrations, and monoterpene concentrations in browsed and non-browsed 

plants at these sites.  Three-tip sagebrush had a different chemical profile than the 

sympatric Wyoming big sagebrush (A. tridentata wyomingensis) at foraging patches. 

Three-tip sagebrush had relatively lower protein content, higher monoterpene content, 
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and fewer individual monoterpenes compared to Wyoming big sagebrush.  Browsed 

plants had higher crude protein but similar total monoterpene concentration compared to 

non-browsed plants for both species of sagebrush.  Structural (plant height) and dietary 

(individual monoterpenes and protein) parameters influenced grouse use of both species 

of sagebrush.  At the landscape scale, the different chemistry of three-tip did not 

influence habitat selection by sage-grouse, as both Wyoming and three-tip sagebrush 

were browsed relative to their availability. Therefore, three-tip sagebrush may provide a 

food source that is equivalent to Wyoming sagebrush for sage-grouse in post-fire 

landscapes where other species of sagebrush have not yet recovered. However, three-tip 

and Wyoming big sagebrush may both be less palatable than other species of sagebrush 

and the consequences of relying on three-tip as a dominant forage for sage-grouse or 

other wildlife should be further evaluated.  

Introduction 

Foraging resources available to herbivores vary in nutritional quality.  Thus, 

natural selection likely operates on individuals to seek and use high quality resources 

among those available (Sinclair et al. 1982).  Forage quality helps explain fine-scale and 

large-scale habitat use since not all plants provide the same nutritional benefit (Anderson 

et al. 2010).  Herbivores generally select plants and patches to maximize nutrient intake 

and minimize intake of plant secondary metabolites, or PSMs (Guglielmo et al. 1996, 

Stolter et al. 2005, Frye et al. 2013).  Additionally, herbivores choose structural 

characteristics that may help herbivores avoid predation, among other factors.  PSM 

intake is regulated because PSMs are potentially toxic to herbivores and processing 

ingested PSMs can be energetically expensive (Sorensen and Dearing 2006, Forbey et al. 



14 

 

2013).  Protein is important for growth, reproduction, and maintenance (Chastel et al. 

1995, DeGabriel et al. 2009) and PSMs can inhibit the digestion of protein (Guglielmo et 

al. 1996, DeGabriel et al. 2009, Au et al. 2013, Kohl et al. 2015).  Diet selection can 

influence habitat selection at larger spatial scales as herbivores select areas where they 

can acquire high quality food resources (Moore et al. 2010, Youngentob et al. 2011, Frye 

et al. 2013, Ulappa et al. 2014). 

Greater Sage-grouse (Centrocercus urophasianus, hereafter, sage-grouse) are 

avian herbivores that specialize almost exclusively on sagebrush (Artemisia sp.) during 

the winter months (Patterson 1952, Klebenow and Gray 1968, Frye et al. 2013).  

Sagebrush synthesizes a suite of PSMs (sesquiterpene lactones, monoterpenes, and 

phenolics) that deter browsing by vertebrate herbivores (Welch and McArthur 1981, 

Remington and Braun 1985, Frye et al. 2013, Ulappa et al. 2014).  Sage-grouse rely on 

intact sagebrush habitat for both cover and forage throughout the year, but sage-grouse 

habitat is declining rapidly in both quantity and quality.  Loss of habitat has been 

associated with population declines of sage-grouse around 70% prior to 1985, with 

continued 2% annual range wide declines (Connelly et al. 2000, Aldridge et al. 2008, 

Bruce et al. 2011, Garton et al. 2011).  Currently, sage-grouse occupy approximately 56% 

of their pre-settlement range (Schroeder et al. 2004), and their conservation has been a 

concern for almost a century (Hornaday 1916, Connelly et al. 2000, Connelly et al. 

2004).  It is therefore important to understand resource use thoroughly, from structure to 

chemistry, for future conservation of habitats that maximize the success of sage-grouse. 

Consumption of sagebrush taxa during winter by sage-grouse likely depends upon 

availability (Vasquez 1999), snow cover (Beck 1977, Remington and Braun 1985), and 
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chemistry (Remington and Braun 1985, Frye et al. 2013).  Sage-grouse select plants, 

patches, and sagebrush species with the highest nitrogen content (Remington and Braun 

1985, Barnett and Crawford 1994, Gregg et al. 2008, Frye et al. 2013) or lowest 

concentration of PSMs (Remington and Braun 1985, Frye et al. 2013).  Foraging patches 

for wintering sage-grouse are often located in areas dominated by dwarf species of 

sagebrush (Dalke et al. 1963, Bruce et al. 2011, Hagen et al. 2011, Arkle et al. 2014).  

These taxa generally have lower concentrations of PSMs and are more palatable than big 

sagebrush species (Rosenreter 2004, Frye et al. 2013, Arkle et al. 2014).  While dwarf 

sagebrush, including low (A. arbuscula) and black sagebrush (A. nova), might not 

provide adequate cover from predators, these species nonetheless appear important for 

foraging in winter.   

However, dwarf sagebrush species comprise a relatively small proportion of the 

land cover in sagebrush landscapes.  Low sagebrush covers approximately 11.3 million 

hectares, and black sagebrush dominates 11,200 hectares throughout the West (Steinberg 

2002, Fryer 2009), while big sagebrush (Artemisia tridentata spp.) covers approximately 

55.1 million hectares (Freeman et al. 1991, Schroeder et al. 2004).  A mix of big 

sagebrush dominates most habitats throughout the Great Basin (Beck et al. 2009).  

Additionally, restoration projects often focus on big sagebrush habitats, with 

approximately 2.2 million hectares of restoration efforts in the Great Basin between 1990 

and 2014 occurring primarily in big sagebrush (Arkle et al. 2014).  Although three-tip 

sagebrush (A. tripartita) has a relatively small range (Tirmenstein 1999) compared to big 

sagebrush (Freeman et al. 1991), populations of three-tip are expected to expand by 1.3% 

for every 1% increase in temperature (Dalgleish et al. 2011).  Additionally, three-tip 
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sagebrush recovers twice as fast as big sagebrush after fires (Beck et al. 2009) and plants 

can re-sprout instead of reestablishing from seed (Passey and Hugie 1962, Lesica et al. 

2007), which may contribute to range expansions as the fire return interval decreases 

throughout the West (Baker 2006).   

Use of three-tip sagebrush by wildlife has been understudied.  Although sage-

grouse will use three-tip for nesting cover, they used it less than expected based on 

availability in south-central Idaho (Lowe et al. 2009).  Moreover, hens that did nest under 

three-tip sagebrush had lower nesting success.  As a food resource, domestic sheep (Ovis 

aries) will eat three-tip sagebrush when offered supplemental alfalfa and hay (Fraker-

Marble et al. 2007).  Mule deer (Odocoileus hemionus) used areas with three-tip 

sagebrush and Wyoming big sagebrush (A. tridentata wyomingensis) in proportion to 

their availability, and selection of three-tip sagebrush for food varied year to year 

(Wambolt 2001).  However, diet quality and phytochemistry of three-tip sagebrush 

remains largely understudied, and selection of three-tip sagebrush for food has not been 

evaluated in other herbivores, including sage-grouse. 

I examined diet selection by sage-grouse inhabiting a landscape dominated by 

three-tip sagebrush and Wyoming big sagebrush, to evaluate how grouse select between 

and within these species in a post-fire environment.  I predicted that sage-grouse would 

select patches and plants of sagebrush with the highest crude protein and lowest 

concentrations of PSMs in habitats dominated by three-tip and Wyoming sagebrush.  In 

addition, selection can be influenced by structural components, such as cover and 

topography, which are considered important for sage-grouse winter habitat use (Beck 

1977, Connelly et al. 2000).  I tested three main hypotheses: 
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Hypothesis 1: Sage-grouse select sagebrush at several spatial scales (plant, 

patch, and habitat) based on concentrations of PSMs. 

Hypothesis 2: Sage-grouse select sagebrush at several spatial scales (plant, 

patch, and habitat) based on crude protein content. 

Hypothesis 3: Sage-grouse select sagebrush at several spatial scales (plant, 

patch, and habitat) based on structural habitat characteristics 

(height, density, and cover). 

These hypotheses are not mutually exclusive and all three factors (PSMs, crude 

protein content, and structural habitat characteristics) may contribute to selection at each 

scale.  Additionally, certain characteristics may drive selection at different spatial scales 

depending on dietary and structural requirements necessary to meet both long-term and 

immediate needs (including dietary, cover, and thermal needs) for an individual.  

Additionally, other studies (Frye et al. 2013, Arkle et al. 2014) have shown that sage-

grouse diet selection is driven by different plant characteristics (PSMs, protein, and plant 

species) at different scales.  

Methods 

Study Site 

All fieldwork was conducted at one site in south-central Idaho during winter 

2013-2014.  Craters (42.958690 N, -113.398059 W) is located in Power, Blaine, and 

Minidoka counties, with the majority of work concentrated in Minidoka County.  The site 

is dominated by Wyoming big sagebrush and three-tip sagebrush.  The site had relatively 

sparse sagebrush cover (average ± SEM: 7.8 ± 6.3%) following an extensive fire history 

(Figure 1.1).  Elevations range from 1,300 m to 1,650 m.  The local climate had average 
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summer temperatures at 30°C and average winter temperatures between -11°C to 4°C.  

Average annual precipitation was 24 cm, with most precipitation falling as snow.  

However, average snow depth when I visited the site did not exceed 6 cm.  There were 22 

VHF radio-transmitters on sage-grouse at this site from November 2013 - March 2014.   

Field Methods 

Idaho Department of Fish and Game (IDFG) captured and marked sage-grouse 

with radio-transmitters and leg bands using standard capture and marking techniques 

(Geisen et al. 1982, Wakkinen et al. 1992).  Grouse were trapped February through April 

2013 using spotlights and a long-handled net.  Birds were weighed, measured, and fitted 

with aluminum leg bands and 14-15 g necklace-style VHF radio-transmitter collars 

designed for sage-grouse.  Birds were released at the site they were captured.   

During winter 2013-2014, sage-grouse were flushed from occupied patches 

during daylight hours by locating a radio-marked bird.  Birds were flushed during mid-

winter (16 December to 15 February), after sage-grouse switch to their winter diet of 

sagebrush (Connelly et al. 1988).  Radio-marked birds were not flushed within three 

weeks of a prior flushing event.  After birds were flushed, I located the foraging patch 

using tracks (if snow was present) and fresh fecal pellets to identify the patch boundary, 

and then located plants within the patch boundaries that were fed on by the flock that was 

flushed.  Patch boundaries were determined based on the distribution of fresh pellets and 

browse, and a 10 by 10 m square grid was placed on the center of the patch, from which 

samples were collected.  Foraging patches are identifiable because sage-grouse bite 

leaves, leaving bright green meristem tissue visible (Figure 1.2).   

Leaves were collected from three browsed and three non-browsed plants, from 
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various size classes, within a patch and pooled to form one browsed sample and one non-

browsed sample for each size class.  Used patches were defined as a group of sagebrush 

plants with evidence of recent sage-grouse visitation.  Browsed plants had a minimum of 

ten fresh bite marks by sage-grouse.  Non-browsed plants were those with no more than 

one browse mark by sage-grouse, and evidence of sage-grouse presence (tracks, 

droppings, or other browsed plants) within 1 m of the plant (Frye et al. 2013).  These 

criteria were established to ensure that non-browsed plants were encountered by sage-

grouse but not selected.  Sagebrush species were identified in the field using 

morphological characteristics, and identification was verified using monoterpene profiles 

(Thacker et al. 2012).  Leaf samples were kept on ice in the field and transferred to a -20° 

C freezer in the laboratory to prevent volatilization of monoterpenes.  

Average snow depth was recorded at each patch at the time of collection of leaf 

samples, as snow cover can influence resource availability.  I measured snow depth at 5 

random points within the patch boundary.  Canopy cover, height and plant density were 

measured along two perpendicular 20 m transects at each patch (Canfield 1941, Wambolt 

et al. 2006).  Slope, aspect, and elevation were recorded using a clinometer, compass, and 

GPS unit, respectively. 

I also generated a set of random coordinates within the study area boundary using 

ArcGIS (Environmental Systems Research Inc., Redlands, California) to compare diet 

quality and structural characteristics between used patches and available patches.  

Coordinates were constrained by the boundary for known sage-grouse winter use in the 

study area, determined from flight locations collected by IDFG.  For every flush site 

(used patch) where samples were collected, samples were also collected at a random site 
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that same day.  At each random coordinate, the researcher searched for plants with fresh 

browse.  If browse was present (n = 1 patch), three samples were collected from browsed 

plants and pooled to form a composite, and three randomly selected non-browsed plants 

were collected and pooled to form a second composite.  If no browse was present, the 

researcher collected sagebrush clippings from three randomly selected sagebrush plants 

of each species and pooled collections into one composite sample per species.  

Additionally, the snow depth and transect data were collected at random patches.   

Laboratory Methods 

Because grouse pluck leaves instead of eating whole stems (Remington and Braun 

1985, Frye et al. 2013), I removed leaves from woody biomass for laboratory analysis.  

Leaves were removed by dipping samples into liquid nitrogen and brushing leaves off the 

stems into a separate container.  Forceps were used to remove additional debris and dead 

leaves from the leaf material (Frye 2012).  Samples were ground with a mortar and pestle 

in liquid nitrogen, homogenized to a sample size of approximately 2 mm, and weighed 

into separate vials for analysis.  All weighed samples were stored at -20° C until chemical 

analysis.   

I used headspace gas chromatography to detect monoterpenes in leaf samples, 

using a gas chromatograph (Agilent 6890N) with a headspace auto-sampler (Hewlett-

Packard HP7694).  A 100 mg subsample of ground leaf matter was measured 

immediately after grinding into a 20 ml gas chromatography headspace vial.  Compounds 

were identified using a cocktail of monoterpene standards to generate reference retention 

times.  However, not all compounds could be identified and unknown compounds were 

labeled based on retention times (min).  Retention times and peak areas (area under the 
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curve, AUC) were calculated using HP ChemStation version B.01.00 (Santa Clara, 

California, USA).  Headspace and gas chromatograph settings and operating conditions 

are detailed in Appendix B. 

Coumarin and total phenolic content were assessed using colorimetric assays 

using the same extract.  Samples (50 mg wet weight) were extracted for two 3-min 

periods in 1.0 ml GC-grade methanol in a sonicating water bath and filtered through glass 

wool.  For the coumarin assay, 50 μl subsamples of extracts were pipetted into a 96-well 

plate in triplicate.  Color intensity of the extract was measured using a BioTek Synergy 

MX multi-mode plate reader (BioTek, Winooski, Vermont, USA) at an absorbance of 

350 nm excitation and 460 nm emission at room temperature.  Scopoletin (# 5995-86-8, 

Acros Organics) diluted in methanol was used as a standard (0 to 80 μM).  To measure 

total phenolics, an adapted Folin-Ciocalteau assay (Ainsworth and Gillespie 2007) was 

used, where samples were diluted with methanol to fit within the standard curve. Gallic 

acid (# 92-6-15, Acros Organics) diluted in methanol was used as a standard (0 to 2900 

μM).  For each sample extract and standard, 20 μl of the dilution was pipetted in triplicate 

into 96 well plates. Next, 100 μl of 10% Folin-Ciocalteau reagent was added to each well, 

mixed gently, and 80 μl of 700 mM (7.5%) sodium carbonate was added and mixed.  

Plates were allowed to incubate at room temperature for 2 hours, and then were shaken 

on the plate reader for 60 seconds before reading.  Color intensity was measured using a 

BioTek Synergy MX multi-mode plate reader at an absorbance of 765 nm at room 

temperature.  

Protein analysis was completed using 1.5 g (wet weight) from each homogenized 

and ground sample.  Samples were dried in an oven at 60° C for 24 hours, and scanned 
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for reflectance across all wavelengths in the near infrared and visible range using an ASD 

FieldSpec Pro, using default settings.  The ASD scans will be used to develop predictive 

equations for protein using near infrared wavelengths, for future analysis of sagebrush 

samples (Boegh et al. 2002, Tamburini et al. 2015).  Crude protein (% of dry matter) was 

determined using combustion methods (Dairy One Forage Laboratory, in Ithaca, New 

York). 

Statistical Methods 

All statistical analysis used JMP Pro 11.0 (SAS Institute Inc. 2013) and R version 

3.2.0 (R Foundation for Statistical Computing 2015).  First, the dietary quality of each 

species was evaluated through non-parametric univariate comparisons. I compared total 

monoterpene concentration (AUC/ 100 μg dry weight, DW), individual monoterpene 

concentrations (see Table 1.1 for compound names, concentrations were in AUC/ 100 μg 

DW), the total number of monoterpenes detected at >1% of total AUC and present in > 

70% of samples for that species, percent crude protein (% of DW), coumarin 

concentration (μmol of scopoletin equivalents/ g DW), and total phenolic (μmol of gallic 

acid equivalents/ g DW) concentration among all size classes of A. tridentata 

wyomingensis and A. tripartita, averaged by patch.  Preliminary analyses showed no 

difference within a species based on plant size, so all further analyses averaged size 

classes for each patch.  Additionally, I compared plant height (cm) between species using 

ANOVA, and the number of bite marks on each plant for each species using a non-

parametric univariate comparison. 

I used contingency analyses to assess habitat selection at the landscape-scale by 

comparing the availability of each species of sagebrush at used and random patches.  
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Random patches were considered to be the expected (available) proportions, and used 

patches were considered the observed frequency of patch use. 

Diet selection at the plant scale and patch scale were evaluated separately for each 

species of sagebrush present at the site, because each species had unique monoterpene 

profiles.  To address issues with multicollinearity, I tested individual monoterpenes, 

phenolics, coumarins, protein, and plant height for correlations.  I removed correlated 

variables (|r| > 0.7) for each species (Table 1.1; Appendix C), and remaining variables 

were used to build models.  Variables were selected if they represented a unique chemical 

class (e.g. protein, phenolics, coumarins, monoterpenes), were present in both species of 

sagebrush (to allow comparison between species), were chemicals of known identity, or 

those that had higher concentrations than correlated variables. 

Diet selection at the patch scale was determined by averaging the diet quality 

values for all plants within each patch, for each species.  This provided a patch average of 

browsed and non-browsed plants together to compare the average patch value, or quality, 

between used and random patches.  When present, browsed plants at random patches 

were included, although this only occurred at one (6.25%) random patch.  By comparing 

patches with an average of both browsed and non-browsed plants, this provides a 

comparison of overall patch quality.  Additionally, I had high detection of browsed plants 

(Appendix D), giving me confidence that there was no bias in the patch quality at random 

patches by collecting only non-browsed plants, and also reduced bias by including 

browsed plants, when present, in the patch average at the random patch to best represent 

the overall patch quality.   
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Habitat selection at the patch scale was evaluated using a logistic regression 

where patch type (used or random) was the binary response and continuous predictors 

included nutrients (protein), PSMs (individual monoterpenes, total phenolics, and 

coumarins), and structure (height, percent cover, and density).  Models were compared to 

one another and to a null (intercept-only) model using information-theoretic methods 

(Burnham and Anderson 2002), for each species separately.  I used Akaike’s Information 

Criterion values with a sample size bias-adjustment (AICc) for each predictor variable.  

Models that ranked below the null (i.e. higher AICc value) were removed from further 

analysis, and models within 2 AICc units from the top model (i.e. Δ AICc < 2) were 

considered to be the top models.  For models within 2 AICc units from the top model 

odds, ratios were calculated to predict odds of patch use. 

Diet selection at the plant scale was evaluated with conditional logistic 

regressions (Hosmer and Lemeshow 1985), where plant type (browsed or non-browsed) 

was the binary response and the continuous predictors were nutrients, PSMs, and 

structural variables.  Models were stratified by patch, with paired used and random 

patches.  Temporal pairs for used patches allowed me to control for seasonal variation in 

monoterpene content (Kelsey et al. 1982).  Models were compared to one another and to 

a null (intercept-only) model using information-theoretic methods, for each species 

separately.  Model comparison and final analysis were the same for plant use as they 

were for patch use. 

To address selection of plants occurring at finer scales, I evaluated whether 

biomass gained or PSMs consumed per bite differed between species of sagebrush at our 

site.  For ten plants for each species of sagebrush, I clipped leaves off each plant to mimic 
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browsing by sage-grouse.  Clipped leaves were weighed with an analytical balance to 

assess the average amount of biomass consumed per bite.  This may indicate which plant 

provides the greatest benefit (or cost) per bite, based on the biomass available in each 

bite.  I estimated the concentration of PSMs and crude protein consumed per bite for each 

species as the product of biomass per bite and the average concentration of monoterpenes 

(AUC/100 μg dry weight) or protein concentration, respectively, for each species.   

Selection thresholds were explored using a generalized additive model (GAM) 

and smoothing parameters, using data from both sagebrush species together.  Top 

parameters from plant-scale analysis (Δ AICc < 2) that best predicted browse were 

modeled independently.  These predictors included plant height, crude protein, number of 

monoterpene compounds, and one individual monoterpene (Unknown 21.5).  Parameters 

(protein, number of compounds) with confidence intervals that overlap 1.0 (Table 1.9) do 

not produce regressions with reliable confidence intervals.  The average value for each 

parameter within the patch was calculated by averaging browsed and non-browsed plant 

values within the used patch.  Selection was determined by the difference between the 

average parameter values between browsed and non-browsed plants within the used 

patch.  Positive differences (higher values in browsed plants than non-browsed plants) 

were considered to theoretically indicate selection for a parameter, while negative 

differences (lower values in browsed plants than non-browsed plants) indicated 

theoretical selection against a parameter.  Values of zero indicated no selection.  This 

analysis allowed me to determine if there was a particular threshold across the range of 

average values for each parameter within the patch where selection occurred. Models 

were plotted with 95% Bayesian confidence intervals using the package {mgcv} in R. 
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Results 

Diet Quality and Structure Comparison by Species 

The phytochemistry of three-tip sagebrush differed from Wyoming big sagebrush 

(Table 1.2, Figure 1.3), and both species had uniquely identifiable monoterpene profiles 

(Appendix E).  Briefly, three-tip sagebrush had almost 1.5 times higher concentrations of 

total monoterpenes, and higher concentrations of camphene and monoterpene Unknown 

21.0 than Wyoming big sagebrush (Figure 1.4).  Wyoming big sagebrush had higher 

concentrations of β-pinene, 1,8-cineole, and monoterpene Unknown 21.5 than three-tip 

sagebrush.  Wyoming big sagebrush had 1.5 times as many individual monoterpenes as 

three-tip sagebrush.  Three-tip sagebrush had lower crude protein, lower total phenolic 

concentrations, and higher coumarin concentrations than Wyoming big sagebrush.  

Three-tip sagebrush (mean ± SE: 30.92  ± 2.50 cm) was shorter than Wyoming big 

sagebrush (mean ± SE: 52.72  ± 3.90 cm; ANOVA: F1,41 = 13.6518, P = 0.001).  Despite 

these chemical and structural differences, the number of bite marks by sage-grouse per 

plant did not differ between species (Z41 = -0.53765, P = 0.5908).   

Winter Habitat Selection at the Landscape Scale 

Sage-grouse selection of foraging sites was not influenced by the presence of 

either Wyoming big sagebrush or three-tip sagebrush (Table 1.3; Chi-squared: χ2= 1.286, 

P = 0.526), as grouse used both species in proportion to their availability.  Availability 

varied for each patch type: Wyoming big sagebrush was available at 50% of patches, 

three-tip at 6% of patches, and the remaining patches (44%) had both species of 

sagebrush present (“mixed”; Table 1.3).  Mixed patches could have any ratio of three-tip 

sagebrush to Wyoming big sagebrush. 
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Sagebrush cover was nearly two times greater at random patches (mean ± SEM: 

10.0 ± 1.8%) than at used patches (5.6 ± 4.6%; ANOVA: F1,30 = 4.3282, P = 0.046), 

however sagebrush density did not differ between random (0.89 ± 0.22 plants/m2) and 

used patches (0.67 ± 0.16 plants/m2; ANOVA: F1,30 = 0.705, P = 0.408).  The percent 

cover for each species of sagebrush (as opposed to total shrub cover) did not differ 

between used and random patches.  Additionally, average sagebrush height for the patch 

was not significantly taller at random patches (53.1 ± 23.2 cm) than at used patches (38.9 

± 22.6 cm; ANOVA: F1,30 = 2.689, P = 0.111).  

Winter Habitat Selection at the Patch Scale 

Habitat selection at the patch scale was analyzed for each sagebrush species using 

logistic regression and AICc model selection.  For Wyoming big sagebrush, selection of 

patches was most influenced by average plant height (Table 1.4; Figure 1.5).  Odds of 

patch use declined by a factor of 0.92 for every 1 cm increase in plant height.  Percent 

cover for Wyoming sagebrush plants and the concentration (AUC/ 100 μg dry weight) of 

monoterpene Unknown 21.0 were the only other model parameters that performed better 

than the null model, although neither model fell within 2 Δ AICc units of the top model.  

The 85% confidence interval overlapped 1.0 for the odds ratio for percent cover, and is 

therefore not a reliable predictor of use.  Odds of patch use declined by a factor of 0.94 

for every 1 AUC/ 100 μg dry weight (DW) increase in monoterpene Unknown 21.0.  

The top model for three-tip sagebrush was the average concentration of phenolics 

(μmol/g dry weight) of plants within the patch, followed by average concentration of β-

pinene (AUC/ 100 μg DW; Table 1.5, Figure 1.5).  However, 85% confidence intervals 

for these parameters overlapped 1, indicating models were unreliable for predicting odds 
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of use.  Although it did not fall within 2 Δ AICc units of the top model, the average height 

of three-tip plants in the patch was the only other model parameter that performed better 

than the null model.  Odds of patch use decreased by a factor of 0.82 for every 1 cm 

increase in plant height.  Odds ratio confidence intervals at the 85% level are reported in 

Table 1.6 for both Wyoming and three-tip sagebrush.  Models with 85% confidence 

intervals that do not overlap 1 are the parameters for monoterpene Unknown 21.0 in 

Wyoming big sagebrush and height for both species of sagebrush. 

Winter Habitat Selection at the Plant Scale 

Monoterpene Unknown 21.5 and height were the strongest predictors of diet 

selection at the plant scale for Wyoming big sagebrush, and fit data better than the null 

model (Table 1.7).  The odds of plant use decreased by a factor of 0.16 for every 1 AUC/ 

100 μg dry weight (DW) increase in monoterpene Unknown 21.5.  The model for plant 

height did not fall within 2 Δ AICc units of the top model, but was greater than 10% of 

the top model weight.  The odds of plant use decreased by a factor of 0.96 for every 1 cm 

increase in plant height.  Browsed plants were shorter than non-browsed plants and had 

lower concentrations of monoterpene Unknown 21.5 in Wyoming big sagebrush (Figure 

1.6). 

For three-tip sagebrush, the best predictors of plant use were the total number of 

major monoterpene compounds (compounds with an AUC > 1% of the total AUC in > 

70% of samples, and retention time < 24 minutes), and percent crude protein (Table 1.8).  

However, 85% confidence intervals for these parameters overlapped 1, indicating models 

were unreliable for predicting odds of use.  Browsed plants had a higher number of 

monoterpene compounds than non-browsed plants and had higher concentrations of crude 
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protein in three-tip sagebrush (Figure 1.6).  Odds ratio confidence intervals at the 85% 

level are reported in Table 1.9 for both Wyoming and three-tip sagebrush.  Only 

parameters for Wyoming sagebrush (plant height, monoterpene Unknown 21.5) had 85% 

confidence intervals not overlapping 1.0, and were the models selected for GAM 

analysis. 

Diet Selection at the Bite Scale 

The approximate biomass per bite of three-tip sagebrush (mean ± SEM; 0.0201 ± 

0.0008 g/bite) was smaller than Wyoming sagebrush (mean 0.0290 ± 0.00016 g/bite; 

ANOVA: F1,35 = 27.167, P < 0.001).  Therefore, Wyoming big sagebrush provides 

greater biomass intake per bite than three-tip.  However, there was no difference in the 

average concentrations of PSM per bite between species (ANOVA: F1,35 = 0.0925, P = 

0.763), due to the relatively small bite size and high PSM concentration per gram for 

three-tip sagebrush, and a relatively large bite size and low PSM concentration per gram 

for Wyoming big sagebrush.  Average crude protein per bite was higher for Wyoming big 

sagebrush (mean ± SEM:  0.3851 ± 0.0212 % crude protein per bite) than for three-tip 

sagebrush (0.2065 ± 0.0085 % protein per bite; ANOVA: F1,35 = 68.772, P < 0.001).   

Thresholds of Selection 

Generalized additive models (GAMs) were used to explore the threshold of 

selection for the two best-performing parameters at the plant scale for each sagebrush 

species: plant height, monoterpene Unknown 21.5, crude protein, and number of 

monoterpene compounds.  For plant height, plant scale selection drastically declined 

around 55 cm (Figure 1.7).  For monoterpene Unknown 21.5, plant scale selection 

declined steadily at concentrations around 8 AUC/ 100 μg dry weight (Figure 1.8).   The 
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GAMs for crude protein and number of monoterpene compounds did not show any 

relationships between the patch average and the difference between browsed and non-

browsed plants, and had wide confidence intervals.  Thus, the GAMs did not help to 

identify any meaningful threshold of selection for top parameters from modeling top diet 

selection parameters from three-tip sagebrush model selection.  Modeling GAMs with 

both sagebrush species together and independently did not improve model confidence 

intervals for these two parameters. 

Discussion 

Phytochemistry differs between three-tip sagebrush and Wyoming big sagebrush, 

however sage-grouse did not appear to selectively forage on either species at a landscape 

scale.  I documented different chemical profiles for the two species of sagebrush 

examined.  The chemical profiles for three-tip sagebrush and Wyoming big sagebrush at 

Craters are unique and individual compound concentrations are significantly different 

between species.  To our knowledge, the chemistry (besides protein) of three-tip 

sagebrush has not previously been documented.  The concentration of protein for 

Wyoming big sagebrush fell within the range documented previously.  Because gas 

chromatograph detectors vary in their ability to detect compounds, and retention times 

may shift over years, I could not accurately compare monoterpene concentrations among 

existing studies without using the same standards for comparison.  Therefore, I focused 

on comparing protein content documented in other studies. 

Wyoming big sagebrush plants at Craters had similar crude protein content to 

plants at Brown’s Bench (mean ± SE: Craters 10.32 ± 0.31 %; Brown’s Bench 10.58 ± 

0.15%, from Frye et al. 2013).  The crude protein detected in three-tip sagebrush at 
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Craters (10.32 ± 0.31%) is within the range of protein found in other species of sagebrush 

(Table 1.10; range of 9.3 to 16.2% for A. tridentata spp., A. nova, and A. arbuscula), and 

slightly above crude protein of A. tripartita from Dubois, Idaho (8.4 ± 0.1%, from 

Fraker-Marble et al. 2007).   

Despite relatively higher concentrations of PSMs and relatively lower protein 

concentrations in three-tip compared to Wyoming, sage-grouse browsed on three-tip 

sagebrush at our site relative to availability across the landscape.  However, I did not 

evaluate the relationship between biomass availability (volume of foliage) and plant 

selection within a patch, which may address habitat or diet selection at smaller scales.  

There was also no difference the number of bite marks per plant for each species, and no 

difference in PSMs consumed per bite.  However, Wyoming big sagebrush had higher 

crude protein content per bite than three-tip sagebrush.  Because the concentration of 

PSMs was equal per bite for each species, neither species provides a low PSM per bite 

resource, assuming equal bites per plant for each species.  However, the higher crude 

protein per bite of Wyoming big sagebrush suggests that Wyoming big sagebrush is a 

foraging choice that may be more nutrient efficient.  However, I did not find evidence for 

grouse selecting Wyoming big sagebrush more than it is available (e.g. selectively 

foraging) at the species-level or in the number of bites taken per plant.  This apparent 

lack of species-level selection was unexpected, since previous literature has documented 

that herbivores select plants with relatively lower PSM concentrations and higher protein 

concentrations (Stolter et al. 2005, DeGabriel et al. 2009, Youngentob et al. 2011, Frye et 

al. 2013, Ulappa et al. 2014), which suggests that Wyoming big sagebrush should be a 

more valuable food resource.   
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This unexpected lack of selection for particular species may be due to trade-offs 

among phytochemicals, since effects of consuming PSMs are dose-dependent and only 

certain monoterpenes may have negative effects on physiology.  While Wyoming big 

sagebrush had higher crude protein, it also had higher total phenolics, a greater diversity 

of monoterpenes, and higher concentrations of 12 individual monoterpenes than three-tip.  

However, three-tip had a higher overall concentration of monoterpenes driven by five 

individual monoterpenes that were higher than in Wyoming sagebrush.  A specific 

chemical, concentration, or even particular mixture of chemicals may be a deterrent.  For 

example, 1,8-cineole and camphor, but not α-pinene, β-pinene, or camphene inhibited 

digestive enzymes in sage-grouse, which may influence selection behavior (Kohl et al. 

2015).  It is possible that consuming both species of sagebrush allows sage-grouse to 

diversify the PSMs consumed, which may minimize overloading any one detoxification 

pathway (Marsh et al. 2006).  For example, once the threshold for a particular PSM in 

Wyoming big sagebrush is reached (e.g. monoterpene Unknown 21.5), sage-grouse may 

benefit from consuming three-tip that has a lower concentrations of that chemical.  The 

benefit of higher protein content in Wyoming big sagebrush may be offset by some of the 

unique chemicals or higher concentrations of particular monoterpenes, which can be 

mitigated by consuming three-tip.  Captive feeding trials, like those recently conducted 

on another sagebrush specialist, the pygmy rabbit (Brachylagus idahoensis, Camp et al. 

2015) are required to test tradeoffs among phytochemicals and other plant characteristics 

(e.g. cover).  These choice trials can complement diet selection studies on free-ranging 

herbivores by providing necessary ranking of parameters that best predict diet selection. 
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The unexpected lack of selection for particular species may also be due to overall 

low shrub availability.  Arkle et al. (2014) found that 10-20% dwarf sagebrush cover and 

10-15% Wyoming big sagebrush cover for a combined 20-35% cover best predicted 

sage-grouse occupancy.  For comparison with other diet selection studies, Brown’s 

Bench, Idaho (Frye et al. 2013) had mean sagebrush canopy cover for live plants at 

17.6% ± 4.0% (n = 110), whereas mean live sagebrush cover at Craters was 7.8% ± 6.3% 

(n = 32), less than half the cover available at Brown’s Bench (Wilcoxon test: Z = -6.814, 

P < 0.001).  The canopy cover for Brown’s Bench falls within the recommended 

guidelines for sage-grouse winter habitat (10-30% canopy cover; Connelly et al. 2000), 

but Craters falls below the lower recommended limit.  Similarly, sagebrush cover was 

higher at foraging sites in North Park, Colorado than at Craters, but cover was highly 

variable (45 – 87% cover; Remington and Braun 1985).  This suggests that grouse habitat 

at Craters meets some of the fundamental niche requirements for grouse (e.g. food 

present, cover present), but may be sub-optimal habitat.  Given the low cover, forage is a 

limited resource and may therefore be selected based on availability of shrubs rather than 

on structural or dietary quality of those shrubs.  

Shrub height is important to herbivores because moderately sized plants allow 

herbivores to see approaching predators, while remaining relatively difficult to be seen.  

Therefore, grouse may not be using patches with cover that falls within recommended 

guidelines since sagebrush height exceeded the recommended winter guidelines (25-35 

cm; Connelly et al. 2000) substantially at random sites.  This pattern was also observed 

by Frye et al. (2013), in which plant height at used patches (33.3 ± 7.9 cm) was lower 

than random (42.7 ± 15.4 cm), which was driven by differences in species composition 
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between used and random sites.  Additionally, Arkle et al. (2014) found that sage-grouse 

occupancy was lower at sites with very short or very tall plants, and that plant height 

between 40-55 cm best predicted occupancy.  The recommended guidelines for winter 

habitat suggest sagebrush heights between 25 and 35 cm above snow are ideal for sage 

grouse (Connelly et al. 2000). Although three-tip sagebrush is less available (30% of 

shrubs at random patches, 35% of shrubs at used patches) than Wyoming big sagebrush 

(70% of shrubs at random patches, 65% of shrubs at used patches), it was within the 

recommended shrub height, whereas Wyoming big sagebrush was taller than 

recommended.  The GAM analysis showed plant selection declined drastically at heights 

greater than 55 cm, which is above the recommended winter heights. Thirty-three percent 

of Wyoming big sagebrush plants were above 55 cm tall and only four percent of three-

tip sagebrush plants were above 55 cm tall. 

Grouse did not select habitat based on the presence of either species of sagebrush, 

however grouse did select for particular phytochemical and structural characteristics at 

smaller scales.  At the patch-scale, used patches with Wyoming big sagebrush, plants had 

lower concentrations of monoterpene Unknown 21.0 and were shorter than at random 

patches.  For patches with three-tip sagebrush, selected patches had shorter plants and 

relatively higher concentrations of phenolics and β-pinene than random patches.  Total 

phenolics and β-pinene were not correlated with any other parameters that I measured, 

however they may be negatively correlated with other compounds (e.g. individual 

phenolics, sesquiterpene lactones) that were not measured, but may nonetheless influence 

foraging behavior more than parameters we did measure.  The relationships between 

three-tip chemistry and use by grouse (both phenolics and β-pinene) were weak (odds of 
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use ratios overlapped 1.0 at the 85% confidence interval), indicating that those factors 

may not be good predictors of selection at the patch scale.  If only strong relationships 

(85% confidence intervals for odds of use ratios not overlapping 1, and Δ AICc < 2) are 

considered, then the parameters influencing habitat use at the patch scale follow patterns 

previously documented in the literature.  I documented grouse selecting patches with 

lower concentrations of monoterpenes (Unknown 21.0) and shorter plant height that was 

within habitat guidelines.  Other studies have found that grouse selected patches with low 

PSM concentrations (Remington and Braun 1985) and selected shorter plants at used 

patches than random because the selected food at those sites was a dwarf sagebrush 

species (Frye et al. 2013).   

Consistent with the patch scale, the best predictors for use of Wyoming big 

sagebrush at the plant scale were lower concentrations of monoterpenes (Unknown 21.5) 

and shorter plants. For three-tip sagebrush, higher protein and higher numbers of 

monoterpene compounds were the best predictors for use at the plant scale.  Again, the 

relationship between plant selection and predictive parameters for three-tip sagebrush 

were weak.  For strong parameters (odds ratio 85% confidence intervals do not overlap 

1.0 for models, and Δ AICc < 2), selection matched previous literature on grouse diet 

selection, with grouse selecting plants with lower PSMs (monoterpene Unknown 21.5), 

higher nutrient concentration (protein), and moderate plant heights (Remington and 

Braun 1985, Frye et al. 2013).  In contrast, grouse selected for higher diversity of 

monoterpenes in three-tip sagebrush, although the relationship was weak, and total 

number of compounds in three-tip was significantly lower than the number in Wyoming 

big sagebrush.  It may be beneficial for animals to decrease exposure to any single 
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compound by selecting for a greater diversity of PSMs (Dearing and Cork 1999, Marsh et 

al. 2006).  Total monoterpene concentrations were weakly negatively correlated with 

PSM diversity for Wyoming big sagebrush (r = -0.5718) and three-tip (r = -0.1762).  This 

relationship supports studies in captive herbivores showing that detoxification pathways 

are less likely to be overloaded by consuming lower concentrations of a higher number of 

individual PSMs (Marsh et al. 2006). 

This is the first formal documentation of sage-grouse eating three-tip sagebrush.  

Although Lowe et al. (2009) found that sage-grouse hens do not select three-tip for nest 

cover, my study found that three-tip may be an acceptable food resource for sage-grouse 

during winter.  However, acceptable food does not always translate to optimal food or 

optimal habitats.  Future studies are necessary to determine if consumption of three-tip 

sagebrush impacts population parameters, such as reproductive success.  While 

reproductive parameters have not been evaluated at this site yet, winter flock sizes at 

Craters are smaller than flock sizes at other sites in Idaho with current (unpublished data) 

or previous studies (Frye et al. 2013) on diet selection (mean ± SEM: 4.3 ± 0.7 birds per 

flock at Craters compared to 19.9 ± 2.4 at Brown’s Bench, 32.4 ± 9.0 at Owyhee 

Mountains, 12.6 ± 2.1 at Raft River; ANOVA: F3,161 = 7.195, P < 0.001) where dwarf 

species of sagebrush were available.  This may indicate that large flock sizes are unable 

to persist in current conditions because grouse at Craters are occupying sub-optimal 

habitat.  The availability and use of three-tip as forage may become increasingly 

important because three-tip sagebrush can re-sprout after fire (Passey and Hugie 1962, 

Lesica et al. 2007), therefore allowing it to re-establish more quickly after fires than big 

sagebrush (Beck et al. 2009).  With a warming climate and projected increases in the fire 
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frequency across the Great Basin, three-tip sagebrush may expand its range (Baker 2006, 

Dalgleish et al. 2011).  Although sage-grouse do consume three-tip, my study did not test 

whether three-tip can replace other species of sagebrush for sage-grouse or other species 

reliant on sagebrush for food.  Additional studies are needed to understand how wildlife 

may use or select three-tip sagebrush for food and cover relative to other species across 

its range, and how dietary quality influences fitness for herbivores. 
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Tables 

Table 1.1 Monoterpenes present at greater than 1% total AUC present in > 70% of 
samples (retention times < 24 minutes) for each species of sagebrush browsed by Greater 
Sage-grouse (Centrocercus urophasianus) at Craters, Idaho, USA in winter 2013-2014.  
Species present included Wyoming big sagebrush (Artemisia tridentata wyomingensis; 
ATW) and three-tip (A. tripartita; AT).  Compounds were identified based on retention 
times (minutes) and co-chromatography with standards.  Asterisks (*) indicate major 
compounds used in diet selection modeling at the plant and patch scale, for each species 
of sagebrush (see Methods for selection criteria). 

Monoterpene Approximate Retention Time 
(minutes) 

Sagebrush Species 

Unknown 3.2 3.20 AT, ATW 

Unknown 3.6 3.65 ATW* 

Unknown 11.9 11.88 ATW 

Unknown 12.4 12.45 AT, ATW 

α-pinene 12.95 AT, ATW 

Camphene 13.50 AT*, ATW* 

β-pinene 14.57 AT*, ATW* 

α-phellendrine 15.61 ATW* 

ρ-cymene 16.39 AT, ATW* 

1,8-cineole 16.73 AT*, ATW 

Unknown 18.2 18.28 ATW 

Unknown 18.6 18.66 AT, ATW 

Unknown 20.5 20.57 ATW 

Camphor 20.74 ATW* 

Unknown 21.0 21.08 AT*, ATW 

Unknown 21.5 21.55 AT*, ATW* 

Unknown 23.5 23.55 ATW 
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Table 1.2 Mean (95% confidence interval) concentrations for plant secondary metabolite (total and individual 
monoterpenes, total phenolics, and coumarins), nutrient content (% crude protein), structure (height), and use (number of bite 
marks per plant) in Wyoming big sagebrush (Artemisia tridentata wyomingensis, ATW) and three-tip (Artemisia tripartita, 
AT) at Craters, Idaho, USA.  Use referred to browse by Greater Sage-grouse (Centrocercus urophasianus) during winter 2013-
2014.  Mean values, 95% confidence, and results from nonparametric univariate comparison (Kruskal-Wallis 2-sample test 
with normal approximation) tests are shown for each compound compared between species of sagebrush.   

Parameter Value in ATW Difference Value in AT p-value Z 

*Total monoterpenes1 67.69 (63.56 – 71.83) < 99.45 (91.67 – 107.42)  < 0.001 4.820 

*Unknown 3.21 27.02 (24.77 – 29.26) > 15.18 (10.36 – 20.00)  < 0.001 -5.548 

Unknown 3.61 7.30 (6.22 – 8.37) > ---7   

Unknown 11.91 8.00 (5.44 – 10.56) > ---7   

*Unknown 12.41 2.13 (1.45 – 2.80) < 10.45 (9.27 – 11.63)  < 0.001 6.960 

*α-pinene1 0.48 (0.21 – 0.77) < 6.64 (5.59 – 7.68) < 0.001 5.198 

*Camphene1 2.57 (2.01 – 3.41) < 16.87 (14.35 – 19.39) < 0.001 5.249 

*β-pinene1 4.89 (3.47 – 6.31) > 2.37 (0.72 – 4.00)  0.006 -2.760 

*ρ-cymene1 5.30(3.91 – 6.68) < 35.34 (31.68 – 39.00)  < 0.001 7.592 

α-phellendrine1 2.81 (2.33 – 3.27) > ---7 

*1,8-cineole1 3.71 (2.45 – 4.95) > 0.97 (0.49 – 1.45) < 0.001 -4.044 

Unknown 18.21 5.34 (4.47 – 6.02) > ---7 

*Unknown 18.61 12.17 (9.97 – 14.38) > 4.67 (0.23 – 9.10) < 0.001 -5.486 

Unknown 20.51 1.74 (1.13 – 2.36) > ---7 

Camphor1 7.88 (6.61 – 9.16) > ---7 

*Unknown 21.01 1.76 (1.48 – 2.04) < 54.28 (43.80 – 64.76) < 0.001 4.497 

*Unknown 21.51 9.62(6.71 – 12.52) > 1.58 (1.30 – 1.86) < 0.001 -4.368 

Unknown 23.51 6.63 (4.12 – 9.14)         >                     ---7 

*Number compounds2 13.03 (12.33 – 13.72) > 8.50 (7.62 – 9.37) < 0.001 -4.968 

*Total phenolics3 2975 (2595 – 3356) > 2128 (1703 – 2553)  0.002 -3.178 



 

 

46 

 
* Characteristic significantly different between species, α = 0.05. 
1 Monoterpenes, concentration in AUC/ 100 μg dry weight (DW), numbers following “Unknown” refer to retention time in the 
chromatogram for the unknown compound and are identifying characteristics for each compound 
2 Total number of monoterpenes with retention times < 24 minutes, > 1% total AUC, and present in > 70% of samples for each 
taxa (Appendix C) 
3 Phenolics and coumarins, concentrations in μmol of scopoletin (coumarins) or gallic acid (phenolics) equivalents/ g DW 
4 Crude protein, % DW 
5 Height (cm) 
6 Use (number of bite marks by Greater Sage-grouse per plant)  
7 --- indicates a monoterpene that was below the limit of detection for that species 

Total coumarins3 3.16 (1.75 – 4.56) = 4.48 (0.79 – 8.17)  0.294 1.500 

*Crude protein4 13.26 (12.83 – 13.71) > 10.31 (9.65 – 10.97) < 0.001 -4.796 

*Height5 52.22 (45.77 – 58.67) > 29.09 (24.06 – 34.11) < 0.001 -3.331 

Use6 11.52 (6.60 – 16.44) = 14.31 (3.97 – 26.65)  0.591 -0.538 
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Table 1.3 Dominant cover types at foraging sites (Used) used by Greater Sage-
grouse (Centrocercus urophasianus) and randomly-selected available sites (Random) 
during winter 2013-2014 at the Craters, Idaho, USA.  Sagebrush species present included 
Wyoming big sagebrush (Artemisia tridentata wyomingensis) and three-tip sagebrush (A. 
tripartita).  Mixed sagebrush habitats included both Wyoming big sagebrush and three-
tip sagebrush. 

Habitat Type Used Random 
Wyoming big sagebrush 6 8 
Three-tip sagebrush 3 1 
Mixed sagebrush 7 7 
Total 16 16 
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Table 1.4 Model components, log likelihood, number of parameters (K), Akaike’s Information Criterion with sample size 
bias-adjustment (AICc), change in AICc from the top model (∆ AICc), and model weight (wi) for the selection models for 
Wyoming big sagebrush (Artemisia tridentata wyomingensis) patches used by Greater Sage-grouse (Centrocercus 
urophasianus) flocks at Craters in southern Idaho, USA during winter 2013-2014.  Patch use (used/random) was the binary 
response for each model.  Top models, with < 2 Δ AICc from the top model for each predictor category and with an AICc value 
lower than the null model, are shown in bold. “Unknown” compounds are monoterpenes, identified by retention time. 

Predictor 
category Model 

Log 
Likelihood 

Number of 
Parameters (K) AICc ∆ AICc 

Akaike weight 
(wi) 

PSM Unknown 21.01 -18.74 2 41.94 0.00 0.16 
 NULL -20.08 1 42.32 0.38 0.13 
 α-phellendrine1 -19.01 2 42.49 0.55 0.12 
 Camphor1 -19.20 2 42.86 0.92 0.10 
 Camphene1 -19.29 2 43.04 1.10 0.09 
 Unknown 21.51 -19.72 2 43.93 1.96 0.06 
 Unknown 3.61 -19.79 2 44.05 2.11 0.06 
 Coumarins2 -19.92 2 44.30 2.36 0.05 
 Total phenolics2 -19.94 2 44.34 2.40 0.05 
  α-pinene1 -19.98 2 44.41 2.47 0.05 
 β-pinene 1 -20.08 2 44.62 2.68 0.04 
 Cineole1 -20.08 2 44.62 2.68 0.04 
 Number of monoterpenes3 -20.08 2 44.62 2.68 0.04 

Nutrient NULL -20.08 1 42.32 0.00 0.76 
 Protein4 -20.07 2 44.60 2.28 0.24 

Structure Height5 -13.64 2 31.74 0.00 0.97 

 Percent cover -18.48 2 41.42 9.68 0.01 

 NULL -20.08 1 42.32 10.58 0.00 
1 PSM: monoterpene compounds, AUC/ 100 μg dry weight (DW) 
2 PSM: total phenolics and coumarins (subclass of phenolics), μmol scopoletin equivalents or gallic acid equivalents/ g DW 
3 PSM: total number of monoterpenes with retention times < 24 min, > 1% total AUC, and present in > 70% of samples  
4 Nutrient: crude protein, % 
5 Structural variable: height, cm 
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Table 1.5 Model components, log likelihood, number of parameters (K), Akaike’s Information Criterion with sample size 
bias-adjustment (AICc), change in AICc from the top model (∆ AICc), and model weight (wi) for the selection models for three-
tip sagebrush (Artemisia tripartita) patches used by Greater Sage-grouse (Centrocercus urophasianus) flocks at Craters in 
southern Idaho, USA during winter 2013-2014.  Patch use (used/random) was the binary response for each model.  Top 
models, with < 2 Δ AICc from the top model for each predictor category, are shown in bold. 

Predictor 
category Model 

Log 
Likelihood 

Number of 
Parameters (K) AICc ∆ AICc 

Akaike 
weight (wi) 

PSM Total phenolics1 -4.12 2 13.32 0.00 0.59 
 β-pinene2 -4.49 2 14.18 0.85 0.38 

 NULL -9.56 1 21.45 7.38 0.01 
 Number of monoterpenes3 -8.40 2 21.90 7.83 0.01 
 Coumarins1 -9.28 2 23.66 9.59 0.00 
 Camphene2 -9.33 2 23.76 9.69 0.00 
 Cineole2 -9.56 2 24.20 10.13 0.00 

Nutrient NULL -9.56 1 21.45 0.00 0.69 
 Protein4 -9.00 2 23.10 1.64 0.31 

Structure Height5 -6.49 2 18.07 0.00 0.62 

 NULL -9.56 1 21.45 3.38 0.12 
1 PSM: total phenolics and coumarins (subclass of phenolics), μmol scopoletin equivalents or gallic acid equivalents/ g DW 
2 PSM: monoterpene compounds, AUC/ 100 μg dry weight (DW) 
3 PSM: total number of monoterpenes with retention times < 24 min, > 1% total AUC, and present in > 70% of samples  
4 Nutrient: crude protein, % 
5 Structural variable: height, cm 
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Table 1.6 The 95% (and 85%) confidence intervals for odds ratios predicting patch 
use by Greater Sage-grouse (Centrocercus urophasianus) foraging on Wyoming big 
sagebrush (Artemisia tridentata wyomingensis) and three-tip sagebrush (Artemisia 
tripartita).  Confidence intervals that overlap 1.0 are reported in italics, indicating 
parameters that do not predict odds of use reliably.  Parameters in bold are top models 
from AICc model selection (models with < 2 Δ AICc from the top model, with AICc 
values lower than the null model).  Predictor variables are listed in order of increasing 
AICc value.  “Unknown” compounds are monoterpenes, identified by retention time. 

Species Predictor Variable Odds Ratio 85% Confidence Interval 

Wyoming big 
sagebrush 

Height 0.92  -0.13 to -0.04 

Unknown 21.0 0.94  -0.19 to 0.06 

 Percent Cover 0.999  -25.24 to -1.67 

Three-tip sagebrush Total Phenolics 152.34 -0.47 to 9.58 

β-pinene 11.13  0.41 to 4.40 

 Height 0.82  -0.34 to -0.05 
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Table 1.7 Model components, log likelihood, number of parameters (K), Akaike’s Information Criterion with sample size 
bias-adjustment (AICc), change in AICc from the top model (∆ AICc), and model weight (wi) for the diet selection models for 
Wyoming big sagebrush (Artemisia tridentata wyomingensis) plants browsed by Greater Sage-grouse (Centrocercus 
urophasianus) at Craters in southern Idaho, USA during winter 2013-2014.  Plant use (browsed/non-browsed) was the binary 
response for each model.  Top models, with < 2 Δ AICc from the top model for each predictor category, are shown in bold.  
“Unknown” compounds are monoterpenes, identified by retention time. 

Model 
Log 

Likelihood 
Number of 

Parameters (K) AICc ∆ AICc 
Akaike weight 

(wi) 
Unknown 21.51 -10.02 1 22.10 0.00 0.31 
Height2 -11.16 1 24.39 2.29 0.10 
Unknown 3.61 -11.17 1 24.41 2.31 0.10 
Cineole1 -11.42 1 24.91 2.81 0.08 
Protein3 -11.46 1 25.00 2.89 0.07 
Number of monoterpenes4 -11.64 1 25.35 3.24 0.06 
α-Phellendrine1 -11.67 1 25.41 3.31 0.06 
Camphor1 -11.79 1 25.65 3.55 0.05 
β-pinene1 -11.88 1 25.82 3.72 0.05 
Total phenolics5 -11.94 1 25.95 3.85 0.04 
Camphene1 -11.98 1 26.03 3.92 0.04 
Coumarins5 -12.01 1 26.09 3.98 0.04 
Null -14.14 0 28.32 6.22 0.00 

1 PSM: monoterpene compounds, AUC/ 100 μg dry weight (DW) 
2 Structural variable: height, cm 
3 Nutrient: crude protein, % 
4 PSM: total number of monoterpenes with retention times < 24 min, > 1% total AUC, and present in > 70% of samples  
5 PSM: total phenolics and coumarins (subclass of phenolics), μmol scopoletin equivalents or gallic acid equivalents/ g DW 
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Table 1.8 Model components, log likelihood, number of parameters (K), Akaike’s Information Criterion with sample size 
bias-adjustment (AICc), change in AICc from the top model (∆ AICc), and model weight (wi) for the diet selection models for 
three-tip sagebrush (Artemisia tripartita) plants browsed by Greater Sage-grouse (Centrocercus urophasianus) at Craters in 
southern Idaho, USA during winter 2013-2014.  Plant use (browsed/non-browsed) was the binary response for each model.  
Top models, with < 2 Δ AICc from the top model for each predictor category, are shown in bold.  “Unknown” compounds are 
monoterpenes, identified by retention time. 

Model 
Log 

Likelihood 
Number of 

Parameters (K) AICc ∆ AICc 
Akaike weight 

(wi) 
Number of monoterpenes1  -5.55 1 13.27 0.00 0.29 
Crude Protein2 -5.67 1 13.51 0.23 0.26 
Unknown 21.53 -6.97 1 16.11 2.83 0.07 
Camphene3 -7.10 1 16.35 3.08 0.06 
Coumarins4 -7.15 1 16.46 3.19 0.06 
Unknown 21.03 -7.17 1 16.51 3.23 0.06 
β-pinene3 -7.29 1 16.75 3.47 0.05 
Cineole3 -7.35 1 16.85 3.58 0.05 
Height5 -7.44 1 17.05 3.77 0.04 
Total phenolics4 -7.44 1 17.05 3.77 0.04 
Null -24.38 0 48.81 35.54 0.00 

1 PSM: total number of monoterpenes with retention times < 24 min, > 1% total AUC, and present in > 0% of samples  
2 Nutrient: crude protein, % 
3 PSM: monoterpene compounds, AUC/ 100 μg dry weight (DW)  
4 PSM: total phenolics and coumarins (subclass of phenolics), μmol scopoletin equivalents or gallic acid equivalents/ g DW  
5 Structural variable: height, cm 
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Table 1.9 The 95% (and 85%) confidence intervals for odds ratios predicting plant 
use by Greater Sage-grouse (Centrocercus urophasianus) foraging on Wyoming big 
sagebrush (Artemisia tridentata wyomingensis) and three-tip sagebrush (Artemisia 
tripartita).  Confidence intervals that overlap 1.0 are reported in italics, indicating 
parameters that do not predict odds of use reliably.  Parameters in bold are top models 
from AICc model selection (models with < 2 Δ AICc from the top model).  Predictor 
variables are listed in order of increasing AICc value.  “Unknown” compounds are 
monoterpenes, identified by retention time. 

Species Predictor Variable Odds Ratio 85% Confidence Interval 

Wyoming big 
sagebrush 

Unknown 21.5 0.89  -0.22 to -0.02 

Height 0.96  -0.079 to 0.006 

Three-tip 
sagebrush 

Number of compounds 3.88  -0.13 to 2.84 

Protein 5.63  0.15 to 3.31 
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Table 1.10 Mean protein content (SEM) for sagebrush (Artemisia) species that have been previously evaluated for dietary 
quality.  For Ulappa et al. (2014) data, high browse and low browse ranges are shown for each study site, comparing browse 
for pygmy rabbits (Brachylagus idahoensis).  Values with * indicate that the range is a 95% confidence interval rather than 
SEM.  Values with ** indicate that the resource did not list data in text or in tables, but instead displayed data graphically.  
Therefore, mean and SEM were estimated from summary graphs within the paper for these sources.  

Sagebrush Taxa Location Percent Crude Protein (% 
dry weight) 

Source 

A. tripartita 

 

Craters, Idaho 10.32 (0.31) --- 

Dubois, Idaho 8.4 (0.1) Fraker-Marble et al. 2007 

A. tridentata 
wyomingensis 

Magic, Idaho 

 

Lemhi, Idaho 

High browse: 11.61 (0.18) 

Low browse: 11.23 (0.21) 

High browse: 13.47 (0.26) 

Low browse: 12.49 (0.22) 

Ulappa et al. 2014 

Southern Idaho (4 study sites) 10.86 (0.69)* Frye 2012 (thesis) 

North Park, Colorado 14.2 (4.5)* Remington and Braun 1985 ** 

Common garden, Ephraim, Utah 11.8 Welch and McArthur 1979 

Harney County, Oregon 15.9 (0.43) Barnett and Crawford 1994 

West-central Montana (Perma) 12.5 Kelsey et al. 1982 

A. tridentata 
wyomingensis (continued) 

Wyoming (Carmody, Cedar Rim) 12.9 (0.18) Unpublished data 

Lander, Wyoming Browsed: 17.4 (0.79) 

Non-browsed: 17.0 (0.51) 

Unpublished data 

A. tridentata tridentata West-central Montana (Ramsay) 13.1 Kelsey et al. 1982 

Common garden, Ephraim, Utah 14.5 Welch and McArthur 1979 

A. tridentata vaseyana Common garden, Ephraim, Utah 11.1 Welch and McArthur 1979 

North Park, Colorado 11.0 (2.0)* Remington and Braun 1985 ** 

Southern Idaho (4 study sites) 11.42 (0.69)* Frye 2012 (thesis) 

West-central Montana (Missoula) 14.0 Kelsey et al. 1982 
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Washington and Gem Counties, Idaho 9.3 (0.9) Rosentreter and Kelsey 1991 

 Southeastern Oregon (Lakeview) 10.44 (0.11) Unpublished data 

A.t. xericensis Washington and Gem Counties, Idaho 10.4 (0.7) Rosentreter and Kelsey 1991 

A. arbuscula Harney County, Oregon 14.2 (0.47) Barnett and Crawford 1994 

Southern Idaho (4 study sites) 10.02 (0.24)* Frye 2012 (thesis) 

Southeastern Oregon and northwestern 
Nevada 

2002: 16.2 (0.5) 

2003: 12.0 (0.1) 

Gregg et al. 2008 

 Southeastern Oregon (Lakeview) 9.97 (0.09) Unpublished data 

A. nova Southern Idaho (4 study sites) 10.39 (0.44)* Frye 2012 (thesis) 
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Figures 

 
Figure 1.1 The Craters study site (42.958690 N, -113.398059 W), in central Idaho, 
USA, has an extensive fire history.  Fire history data provided by Bureau of Land 
Management Burley Field Office (2015).  Point size indicates the number of birds flushed 
from each foraging patch. 
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Figure 1.2 Fresh sage-grouse bite marks.  The dark green leaf tissue indicates fresh 
browsing.  Old browse turns brown after several days.  Photo by Graham Frye (2012).  
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Figure 1.3 Representative monoterpene profiles for three-tip (bottom line; Artemisia 
tripartita) and Wyoming big sagebrush (top line; A. tridentata wyomingensis) from 
Craters, Idaho, USA.  Peaks show individual compounds, with the height of the peak 
indicating relative abundance of the compound.  Plus signs (+) indicate compounds found 
only in Wyoming big sagebrush. There were no compounds in three-tip sagebrush that 
were not present in Wyoming big sagebrush. 
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(a)      (b) 

 

(c)      (d) 

 

Figure 1.4 Mean ± SEM phytochemical characteristics for sagebrush samples 
collected at Greater Sage-grouse (Centrocercus urophasianus) foraging patches at 
Craters, Idaho.  Samples were collected in winter 2013-2014 for Wyoming big sagebrush 
(Artemisia tridentata wyomingensis, n = 63) and three-tip sagebrush (Artemisia tripartita, 
n = 27).  Chemical characteristics include: (a) total monoterpene concentrations (AUC/ 
100 μg dry weight [DW]), (b) number of monoterpene compounds with retention times < 
24 minutes and AUC > 1% of total AUC, (c) crude protein (%), and (d) total phenolic 
concentrations (μmol gallic acid equivalents/g DW).  
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(a)             (b) 

 
(c) 

       
Figure 1.5 Plant height (cm; a) and concentration (AUC/ 100 μg dry weight) of 
monoterpene Unknown 21.0 (b) had the strongest influence on patch-scale selection for 
Wyoming big sagebrush (Artemisia tridentata wyomingensis) by Greater Sage-grouse 
(Centrocercus urophasianus).  Plant height (c) had the strongest influence on plant-scale 
selection for three-tip sagebrush (Artemisia tripartita) by Greater Sage-grouse 
(Centrocercus urophasianus).  All graphs show mean ± SEM. 
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(a)             (b) 

 
(c)            (d) 

 
Figure 1.6 Plant height (cm; a) and concentration (AUC/ 100 μg dry weight) of 
monoterpene Unknown 21.5 (b) had the strongest influence on plant-scale selection for 
Wyoming big sagebrush (Artemisia tridentata wyomingensis) by Greater Sage-grouse 
(Centrocercus urophasianus).  The number of monoterpene compounds present (c), and 
percent crude protein (d) had the strongest influence on plant-scale selection for three-tip 
sagebrush (Artemisia tripartita) by Greater Sage-grouse (Centrocercus urophasianus).  
All graphs show mean ± SEM. 
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Figure 1.7 The difference in plant height (cm) between paired browsed and non-
browsed sagebrush samples (n = 90) from Craters, Idaho, as a function of mean plant 
height (cm) for that patch (n = 16 used patches).  Samples included both Wyoming big 
sagebrush (Artemisia tridentata wyomingensis) and three-tip sagebrush (A. tripartita) 
browsed by Greater Sage-grouse (Centrocercus urophasianus).  Values above zero are 
theoretically selected for, and indicate shorter browsed plants than non-browsed, while 
values below zero are selected against and indicate taller browsed plants. The gray line 
shows 0.0 on the y-axis, where no selection occurs.  The solid black line shows the 
smoothed fit for the generalized additive model, and dashed lines show 95% confidence 
bands derived from the model. 
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Figure 1.8 The difference in concentrations of monoterpene Unknown 21.5 (AUC/ 
100 μg DW) between paired browsed and non-browsed sagebrush samples (n = 90) from 
Craters, Idaho, as a function of mean concentration of Unknown 21.5 (AUC/ 100 μg DW) 
for that patch (n = 16 used patches). Samples included both Wyoming big sagebrush 
(Artemisia tridentata wyomingensis) and three-tip sagebrush (A. tripartita) browsed by 
Greater Sage-grouse (Centrocercus urophasianus).  Values above zero are theoretically 
selected for, and indicate higher phenolic concentrations in browsed plants than non-
browsed, while values below zero are selected against and have lower monoterpene 
(Unknown 21.5) concentrations in browsed plants.  The gray line shows 0.0 on the y-axis, 
where no selection occurs.  The solid black line shows the smoothed fit for the 
generalized additive model, and dashed lines show 95% confidence intervals derived 
from the model. 
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CHAPTER TWO: RELATIONSHIPS BETWEEN PLANT SECONDARY 

METABOLITES (PSMS) AND AN INTESTINAL PARASITE IN GREATER SAGE-

GROUSE 

Abstract 

Herbivores are challenged with finding high quality food from available plants.  

Herbivores generally attempt to consume sufficient nutrients and avoid plant secondary 

metabolites (PSMs) that are potentially toxic for consumers and energetically expensive 

to detoxify.  However, the effects of PSMs may be dose-dependent.  For example, PSMs 

in high doses may make herbivores more susceptible to parasites by increasing energy 

allocation towards detoxification and excretion rather than immune function, but the 

same compounds may have therapeutic effects against parasites at low doses.  Therefore, 

I predicted high intake and absorption of PSMs would be positively correlated with 

parasite loads in herbivores.  Alternatively, I predicted that ingested PSMs that are not 

absorbed (i.e. excreted unchanged) would be negatively correlated with intestinal parasite 

loads in herbivores.  To test these predictions, I analyzed PSMs in browsed sagebrush, 

fecal excretion of unchanged PSMs, and parasite loads in free-ranging Greater Sage-

grouse (Centrocercus urophasianus) consuming sagebrush during the winter.  I used gas 

chromatography to quantify monoterpenes (a major class of PSMs) in sagebrush and 

fecal samples.  I used the McMaster egg counting technique to quantify parasite loads of 

a tapeworm (Raillietina centrocerci) in fecal samples of sage-grouse.  Raillietina 

centrocerci is the only known endoparasite found in sage-grouse in Idaho.  I compared 

parasite loads among sites, seasons, and between sexes, and evaluated how parasites 
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related to PSMs in browsed sagebrush, PSMs in fecal pellets, and ecological 

characteristics from foraging sites.  There was significant geographic variation in parasite 

loads throughout southern Idaho and a trend for lower parasite loads in winter than in fall.  

Animals excreting higher concentrations of monoterpenes in feces exhibited higher 

parasite loads.  Fecal cineole, α-phellendrine, and camphor had the strongest positive 

correlations with parasite loads.  Results suggest that intestinal exposure to PSMs may 

make sage-grouse more susceptible to endoparasites, or that parasites are resistant to 

PSMs regularly consumed by specialist herbivores.  The interactions between PSMs and 

parasite loads may have profound ecological consequences because parasite loads and 

PSMs can both decrease body condition and fitness in wildlife. 

Introduction 

Plants are relatively abundant food resources, but they are often defended against 

herbivore attack with plant secondary metabolites (PSMs).  PSMs are commonly 

associated with negative side effects for the herbivore (Appendix F).  PSMs limit food 

intake, constrain available energy, and alter energy budgets because detoxification of 

PSMs is metabolically costly (Guglielmo et al. 1996, Wiggins et al. 2003, Mangione et 

al. 2004, Sorensen et al. 2005b, Au et al. 2013).  The costs associated with PSM 

detoxification generally result in selective foraging behavior by herbivores whereby they 

consume plants that maximize energy and nutrient intake while limiting PSM exposure 

(Youngentob et al. 2011, Frye et al. 2013, Ulappa et al. 2014).   

Energetic constraints related to PSM detoxification may limit the energy available 

for other activities, including reproduction (Jakubas et al. 1993, DeGabriel et al. 2009), 

locomotion (Sorensen et al. 2005b), and immune function (Smilanich et al. 2009).  
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Weakened immune function and reduced energy budgets may allow parasites and 

pathogens to proliferate.  The interaction between PSM intake and parasite resistance 

may stem from competing use of energy for both detoxification and immune function 

(Delahay et al. 1995, Martin et al. 2003, Stenkewitz et al. 2015).  

Despite the high costs often associated with consuming PSMs, negative side 

effects are dose dependent, and low doses of PSMs may be therapeutic. For example, 

some PSMs have anti-helminthic properties (Appendix F, Table F.2), and PSMs may also 

be effective for treating parasites and pathogens (Forbey et al. 2009). Some animals 

consume plants rich in PSMs when they are severely infected with intestinal parasites, 

employing a strategy called self-medication (Appendix F).  Self-medication has been 

studied in insects (Singer et al. 2009, Singer et al. 2014, Gowler et al. 2015), as well as a 

variety of mammals, including domestic animals (Villalba and Provenza 2007, Landau et 

al. 2010, Amit et al. 2013), civets (Su et al. 2013), and primates (Huffman and Seifu 

1989, Huffman 1993, McLennan and Huffman 2012).  For example, domestic sheep 

(Ovis aries) eat foods higher in tannins when their parasite burdens are high, but sheep 

discontinue their selection of tannin-rich plants after being treated with anti-parasitic 

drugs, thereby avoiding negative consequences of PSMs once the parasite loads no longer 

have a high cost to the host (Villalba et al. 2010).  There has been no previous 

quantitative documentation of self-medication in vertebrate species with specialized diets 

that regularly consume PSMs (hereafter, specialists).  

The ability to self-regulate parasite loads may have profound ecological benefits 

because parasite loads can decrease body condition, fitness, or survival in free-ranging 

wildlife (Boyce 1990, Holmstad et al. 2005, Singer et al. 2009, see also Gibson 1990, 
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Tsuji and DeIuliis 2003).  Increases in some individual parasites and in the overall 

parasite community can impact breeding, survival, body mass, and population growth of 

willow ptarmigan (Lagopus lagopus lagopus; Holmstad et al. 2005).  In Greater Sage-

grouse (Centrocercus urophasianus; hereafter, sage-grouse), malaria-infected males and 

males with hematomas produced by lice visit breeding grounds less often and have lower 

reproductive success than non-infected males (Boyce 1990).  Additionally, female sage-

grouse chose males treated with antibiotics more than males without antibiotics.  

Similarly, female guppies (Poecilia reticulata) select males with fewer parasites 

(McMinn 1990).   

Both being infested with parasites and the detoxification of PSMs constrain 

energy budgets of herbivores. This is an important trade-off for free-ranging herbivores, 

and the balance between parasites and PSMs depends on relative cost for each alternative 

(Forbey et al. 2009, Singer et al. 2009, Landau et al. 2010).  Parasites can directly alter 

energy budgets by limiting nutrient acquisition (e.g. Cestodes, Nelson 1955).  

Additionally, parasites may indirectly alter energy budgets by increasing energy devoted 

to the immune response (Martin et al. 2003).  Infected individuals can increase their food 

intake to offset both direct and indirect energetic costs associated with intestinal parasites 

(Ponton et al. 2011). However, compensatory feeding is not always possible for animals 

consuming diets containing PSMs (Wiggins et al. 2003).   

Dietary specialists and generalists may differ in how PSMs and parasites interact 

and influence foraging. Although herbivores that specialize can generally consume higher 

concentrations of PSMs than generalists, many specialists rely on a variety of behavioral 

and physiological mechanisms to limit their exposure to PSMs (Wiggins et al. 2003, 
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Sorensen et al. 2004, Wiggins et al. 2006, Kohl et al. 2015).  Specifically, some specialist 

herbivores (including sage-grouse) excrete PSMs unchanged (Sorensen et al. 2004, Frye 

2012), which limits their exposure to PSMs and reduces some negative effects, while 

maximizing exposure of intestinal parasites to PSMs.  Additionally, specialist herbivores 

consume higher concentrations of PSMs than most generalists, but due to their narrow 

diet, specialists are exposed to a lower diversity of PSMs.  As a consequence of this 

narrow diet, specialists are also less able to consume novel PSMs (Sorensen et al. 2005a, 

Torregrossa et al. 2012), which may be necessary for self-medication (Huffman and Seifu 

1989).  Furthermore, intestinal parasites in specialist herbivores are routinely exposed to 

the compounds found in the host diet, and therefore may have evolved resistance 

mechanisms to these compounds (von Samson-Himmelstjerna 2012).  Also, the 

physiological mechanisms employed by specialist herbivores, such as efflux transporters 

and detoxification enzymes, are energetically expensive mechanisms for detoxification 

(Sorensen and Dearing 2006), and may constrain energy budgets.  Therefore, specialists 

may be unable to increase their PSM load or eat novel PSMs for therapeutic benefits.  

Sage-grouse are specialists on sagebrush (Artemisia spp.), from which they ingest 

a variety of PSMs throughout the year.  The diet of sage-grouse during the winter months 

is entirely sagebrush (Patterson 1952).  During spring and summer, adult grouse shift 

their diet to eat about 60% sagebrush and include forbs (Nelson 1955, Gregg et al. 2008).  

As a result, grouse consume much lower concentrations of PSMs during summer, which 

potentially leaves them less defended from intestinal parasites.  The winter diet of 

sagebrush is typically resumed in October (Connelly et al. 1988, Connelly et al. 2000).  
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The high PSM diet of a specialist herbivore is ideal for evaluating the energetic trade-off 

between PSM detoxification and parasite regulation. 

Sagebrush PSMs (phenolics and monoterpenes) have anti-parasite properties in 

vitro and in vivo against coccidian parasites that can occur in grouse, including Eimeria 

(Allen et al. 1997, Allen et al. 1998).  A high proportion of monoterpenes pass directly 

through the digestive tract in grouse and are excreted unchanged in the feces (Frye 2012, 

Thacker et al. 2012).  Therefore, intestinal parasites of sage-grouse would be exposed to 

the same PSMs consumed by the host.  Although regulated absorption minimizes 

systemic exposure and therefore the toxic consequences of PSMs in hosts, the 

mechanisms of regulated absorption (efflux transporters) come at an energetic cost 

(Sorensen et al. 2005b, Sorensen and Dearing 2006).   

Sage-grouse have a diverse array of parasites including over thirty species of 

arthropods, helminthes, and microparasites (Patterson 1952, Boyce 1990, Christiansen 

and Tate 2011).  The Raillietina centrocerci tapeworm (Figure 2.1) is the most 

widespread and abundant intestinal macroparasite of sage-grouse (Simon 1940, Nelson 

1955, Christiansen and Tate 2011), but infection is not known to be fatal.  R. centrocerci 

is the only tapeworm previously documented in sage-grouse of Idaho (Simon 1937, 

Simon 1940, Christiansen and Tate 2011).  Tapeworm infestations occur in the small 

intestine, and heavy parasite loads potentially block the passage of food particles and 

prevent nutrient acquisition, therefore limiting host vitality and possibly fitness (Nelson 

1955).  Therefore, sage-grouse with high parasite loads may experience energy deficits 

that limit their ability to detoxify PSMs. Alternatively, winter diets with high PSM 

concentrations that have anti-helmenthic properties may reduce intestinal parasite loads 
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in sage-grouse.   

I evaluated how intake and fecal excretion of PSMs by sage-grouse is related to 

Raillietina centrocerci loads.  I predicted that excreted PSMs would decrease loads of 

this endoparasite in sage-grouse due to high intestinal exposure of parasites to PSMs.  

Alternatively, because the mechanisms used to regulate the absorption of PSMs can 

compromise energy budgets and immune function, it is possible that intake and excretion 

of PSMs would increase parasite loads (Figure 2.2). Also, intestinal parasites in sage-

grouse are regularly exposed to PSMs from sagebrush and may have evolved resistance 

against PSMs in the intestines.  

Methods 

Study Sites 

Sage-grouse pellet samples were collected from four study sites throughout 

southern Idaho during three different winters. All contained stands of Wyoming big 

sagebrush (A. tridentata wyomingensis) but differed in the other species of sagebrush 

occurring on the sites.  

The Owyhee site (42° 38’ N, 116° 03’ W) is located in the southwestern part of 

Idaho in Owyhee County (Figure 2.2).  The dominant vegetation includes Wyoming big 

sagebrush and low sagebrush (A. arbuscula) stands.  Elevations range from 1590 m to 

1820 m.  Average annual precipitation is approximately 23 cm, with a maximum snow 

depth of 8 cm during collections in winter 2011-2012. 

 The Brown’s Bench site (42° 11’ N, 114° 46’ W) is located along the southern 

border of Idaho in Twin Falls County (Figure 2.2).  The study site has a mosaic of black 

sagebrush (Artemisia nova) and Wyoming big sagebrush stands.  Elevations range from 
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1,550 m to 1,750 m.  Average annual precipitation is approximately 26 cm.  Snowpack 

was 8 cm when pellets were collected in winter 2011-2012 (Frye 2012).  

The Craters of the Moon site (hereafter, Craters; 42° 57’ N, 113° 23’ W) is in 

Power, Blaine and Minidoka Counties (Figure 2.2).  The site is dominated by sparse 

Wyoming big sagebrush and sparse three-tip sagebrush (A. tripartita), and has an 

extensive fire history.  Elevations range from 1,300 m to 1,650 m.  Average annual 

precipitation is 24 cm, with most precipitation falling as snow.  Snow depth during winter 

did not exceed 6 cm during sample collection in winter 2013-2014. 

The Raft River site (42° 9’ N, 113° 24’ W) is in Cassia County, south and east of 

Jim Sage Mountain (Figure 2.2).  Low sagebrush and Wyoming big sagebrush dominate 

the site.  Other sagebrush species present include black sagebrush, basin big sagebrush 

(A. t. tridentata), and mountain big sagebrush (A. t. vaseyana).  Elevations range from 

1,380 m to 2,140 m.  Average annual precipitation is 33 cm, with maximum snow depths 

of 5 cm in December and January when sage-grouse pellets were collected.  Pellets were 

collected during fall 2014, winter 2013-2014, spring 2014, and winter 2014-2015. 

Field Methods 

Idaho Department of Fish and Game captured sage-grouse using standard 

spotlighting techniques (Geisen et al. 1982, Wakkinen et al. 1992) at all four study sites 

during the spring preceding my sample collection. Grouse were weighed, fitted with 

aluminum leg bands, and 14-15 gram VHF transmitters designed for sage-grouse.  Birds 

were released at the site of capture.  

Sage-grouse were flushed from foraging patches by locating radio-marked birds 

using telemetry.  Trained observers identified bird sex and counted flock size as birds 
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flushed.  Birds were flushed during late fall (1 November to 15 December), mid-winter (1 

January to 15 February), and spring (1 March to 15 April).  Radio-marked birds were 

flushed no more than one time during each sampling period.  Tracks and pellets were 

used to identify the patch boundary, then researchers located plants within the patch that 

were fed on by the flock.  Grouse bite leaves, leaving clear evidence of foraging 

(Remington and Braun 1985, Frye 2012).  Leaf clippings were taken from three browsed 

plants at each patch and were pooled to form a single browsed sample (Frye et al. 2013).  

A composite of fresh fecal droppings were collected from each flush site, representing the 

whole flock at the foraging site. Both pellet and leaf samples were stored separately on 

ice while in the field.  Samples were transferred to a -20° C freezer as soon as possible to 

minimize volatilization of monoterpenes, because monoterpene emission rates increase 

with increasing ambient temperature (Tingey et al. 1980).  All work complied with 

Institutional Animal Care and Use Committee (IACUC) protocol 006-AC13-010. 

Laboratory Methods 

I used the McMaster egg counting technique (Gordon and Whitlock 1939, 

Cringoli et al. 2004, Ballweber et al. 2014) to quantify intestinal parasite loads within 

fecal pellets of sage-grouse.  McMaster egg counts are correlated with adult tapeworm 

abundance in Red Grouse (Lagopus lagopus scotius; Moss et al. 1990, Seivwright et al. 

2004).  The length of pellets was measured with calipers and mass of each pellet was 

weighed on an analytical balance.  Samples were homogenized, and partitioned into two 

samples: 2 g wet weight was used for the McMaster technique, and 0.5 g wet weight was 

ground in liquid nitrogen and a 100 mg subsample was transferred into 20 ml gas 
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chromatography headspace vial for monoterpene identification and quantification.  All 

weighed samples were stored at -20° C until chemical analysis.   

Monoterpenes were detected in pellets (i.e. fecal monoterpenes) and sagebrush 

(e.g. plant monoterpenes) using headspace gas chromatography. Grouse pluck leaves 

instead of eating whole stems (Remington and Braun 1985, Frye et al. 2013).  Therefore 

leaves were separated from woody biomass for chemical analysis.  Leaves were removed 

by dipping samples into liquid nitrogen and brushing leaf matter off into a separate 

container.  Dead leaves and debris were removed with forceps (Frye 2012).  Sagebrush 

samples were ground in a mortar and pestle with liquid nitrogen, and a 100 mg subsample 

was weighed into 20 ml headspace vials, and used to assess monoterpene concentrations 

with the gas chromatograph (e.g. plant monoterpenes).  Similarly, the fecal sample was 

ground using the same method and a 100 mg subsample was used for monoterpene 

quantification (e.g. fecal monoterpenes). 

Monoterpene standards were included to provide reference retention times for 

compound identification in both fecal and plant samples (Table 2.1).  Samples were 

analyzed using a gas chromatograph (Agilent 6890N) with a headspace auto-sampler 

(Hewlett-Packard HP7694).  Co-chromatography with a standard cocktail was used to 

identify compounds, although it was not possible to identify all compounds.  Retention 

times (minutes) and peak areas (Area Under the Curve, AUC) were calculated using HP 

ChemStation version B.01.00 (Santa Clara, California, USA).  Headspace and gas 

chromatograph settings are detailed in Appendix B.  Samples were dried for 24-48 hours 

at 60° C and re-weighed to obtain sample dry weights, which were used to standardize 

concentrations of compounds.  Chemical diversity was calculated using a Shannon index 
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for all compounds present at greater than 1% of the total AUC (area under the curve) for 

fecal samples.  I did not calculate chemical diversity of ingested PSMs because the 

amount of plant matter consumed for each chemical profile was unknown. 

Additionally, protein was assayed in sagebrush samples, because it can be 

limiting for specialist herbivores (Mattson 1980, Au et al. 2013).  Protein is essential for 

the formation and maintenance of enzymes, which may be used in detoxification or 

excretion of PSMs, immune function, or general physiology (Robbins 1983).  

Additionally, protein mediates the trade-off between growth and immunological defense 

in some systems (Scriber and Slansky 1981, Cotter et al. 2011).  Sagebrush samples were 

ground and sent to Dairy One Forage Laboratory (Ithaca, New York).  Their laboratory 

uses the combustion method to quantify percent crude protein. 

The McMaster egg counting technique (Appendix G) was used to obtain 

quantitative estimates of the number of oocytes (eggs) per gram biomass of feces using 

etched counting chambers (Gordon and Whitlock 1939).  Parasite species have not been 

identified by a parasitologist or using genetic methods, and therefore there may be 

different species present in the grouse feces we measured.  Pellets (2 g wet weight) were 

placed in 28 ml of a saturated salt and sugar solution (400 g sodium chloride and 500 g 

table sugar dissolved in 1000 ml of tap water).  Pellets were allowed to defrost at room 

temperature and stirred vigorously to suspend the fecal matter into the salt-sugar solution.  

The solution was filtered through folded, pre-weighed cheesecloth and funneled into test 

tubes.  From there, two 0.15 mL subsamples were pipetted into McMaster slide 

chambers.  Eggs were counted under a microscope at 100x magnification by trained 
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observers.  The cheesecloth and sample was dried in a 60° C oven for one week, and re-

weighed to obtain sample dry weights, which were used to standardize the egg counts.   

Sample Collection 

I compared Raillietina centrocerci parasite loads among different years, seasons, 

sites, flock sexes, flock sizes, and diet variables (including protein, plant monoterpenes, 

and fecal monoterpenes) for Greater Sage-grouse for a total of 79 samples from four sites 

in southern Idaho from 2011 to 2015 (Brown’s Bench n =10, Craters n = 13, Owyhee n = 

8, Raft River n = 48).  Samples were all collected during winter, with the exception of 13 

samples at Raft River collected in fall 2013.  An additional 5 samples from Raft River 

during spring 2014 were included for temporal analysis, but no monoterpene data were 

collected on that subset.  Analyses among seasons and between years used only samples 

from Raft River, giving a total of 48 samples for the temporal analysis. 

Statistical Methods 

All statistical analysis used JMP Pro 11.0 (SAS Institute Inc. 2013) and R version 

3.2.0 (R Foundation for Statistical Computing 2015).  All analyses used the logarithm of 

eggs per gram dry weight (DW) as the metric for parasite load as the response variable, 

because the logarithm of eggs per gram DW has a normal distribution (Moss et al. 1990, 

Arneberg et al. 1998, Arneberg 2001, Seivwright et al. 2004, Mougeot et al. 2006).  

Initially, I tested the effect of year on parasite load, because previous literature 

indicated storage decreases parasite detectability in samples that are stored in a 

refrigerator or freezer for one to three weeks (van Wyk and van Wyk 2002, Cringoli et al. 

2011, Rinaldi et al. 2011).  Because I collected samples at different sites and in different 

years, sample storage times varied.  To account for potential storage effects, I assessed if 
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parasite load varied by year, which would preclude any comparison among sites.  

Specifically, I compared winter samples within a single site, Raft River, from 2013-2014 

(stored 1.5 years at -20° C) and 2014-2015 (stored 0.5 years at -20° C) using ANOVA.  

Because samples were collected at multiple sites and from different years, I also tested 

for an interaction effect (2-way ANOVA) between site and year using all samples 

collected during winter.  Additionally, to test if parasite loads changed with season, I 

used ANOVA to compare samples from Raft River during fall, winter and spring.  For all 

ANOVA tests with significant differences between groups, a post-hoc Tukey-HSD test 

was used to evaluate which groups differed from one another. 

Pearson correlation analyses were used to eliminate correlated variables (|r| > 0.7) 

for ecological and chemical predictor variables, including fecal monoterpenes, plant 

monoterpenes, and protein.  Compounds that were present at all sites were selected over 

compounds only present at a subset of sites, compounds with known identity were 

selected over unknown compounds, and compounds with higher concentrations were 

selected over those found at low concentrations. When correlated with one another, fecal 

monoterpenes were selected over plant monoterpenes because intestinal parasites would 

be exposed to fecal PSMs (excreted PSMs), rather than the concentrations in the plant 

(ingested PSMs can be absorbed or excreted, therefore only exposing parasites to a subset 

of these concentrations).  Of all plant monoterpene parameters, only total plant 

monoterpenes qualified for analysis through this parameter selection process, and the 

remaining chemical variables assessed were fecal monoterpenes.  

Two-stage modeling using the information theoretic approach (Franklin et al. 

2000, Washburn et al. 2004, Bonnot et al. 2011) was used to evaluate the best predictors 
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of parasite loads from the remaining variables.  This approach was repeated, modeling 

parasite loads among all sites during winter (regional) and only at Raft River across 

seasons.  Season and site varied (Figures 2.3 and 2.4) and were included as covariates for 

models.  In the first stage of modeling, ecological variables (site or season, bird sex, flock 

size, and patch elevation) were compared to one another using Akaike’s Information 

Criterion adjusted for small sample size (hereafter, AICc; Burnham and Anderson 2002, 

and diet variables (patch protein, total monoterpenes, and individual compounds) in both 

pellets and plants were compared to one another.  In the second stage of modeling, 

ecological and chemical variables with AICc weights greater than 10% of the top model’s 

weight were combined to assess which variables were the strongest predictors of parasite 

loads.  For the top models (∆ AICc  < 2), linear regression graphs were used to illustrate 

trends for each predictor variable. 

Results 

Temporal and Geographic Variation in Parasite Loads 

At Raft River there was no difference in parasite loads between years (winter 

2013-2014 n=15, winter 2014-2015 n=15; ANOVA F1,31 = 1.643, P= 0.209).  There was 

also no interaction between collection site and year (2-way ANOVA: F5,55 = 0.699, P = 

0.407), therefore any differences between samples from different sites were driven by 

either site or year.  Variation in parasite loads among all three seasons [fall (n = 13), 

winter (n = 30), and spring (n = 5)] at Raft River was not significant (ANOVA: F1,41 = 

2.875, P = 0.098), however parasite loads in fall were almost twice as high as winter 

(Figure 2.4). There was a significant effect of site on parasite loads (Figure 2.3; F3,55 = 

4.8768, P = 0.0042), but parasite loads did not differ between years (F1,55 = 0.941, P = 
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0.336).  The Tukey-HSD test showed that birds at Raft River had higher parasite loads 

than Brown’s Bench (P = 0.022) and Craters (P = 0.050), and that birds at Owyhee had 

slightly but not significantly higher parasite loads than Brown’s Bench (P = 0.054) and 

Craters (P = 0.111).   

Parasite Load Model Selection 

To analyze parasite loads, I used site and season as covariates.  When analyzing 

all sites together (regional scale), I excluded any data that did not fall within the early 

winter time frame (1 January to 15 February), and used site as a covariate. In the first 

stage of model selection, the top models (AICc wi > 10% top model) at all sites (regional 

scale) included site, sex, elevation, fecal α-phellendrine, and fecal camphor (Table 2.2).  

For modeling at Raft River only, season was included as a covariate.  At Raft River, the 

top models included season, fecal cineole, fecal camphor, total fecal monoterpenes and 

fecal compound diversity (Table 2.3).   

Patterns of Parasite Loads at a Regional Scale 

The final regional scale models with ∆ AICc < 2 included two ecological variables 

(sex and site) and two PSM predictors (fecal α-phellendrine and fecal camphor; Table 

2.4).  Male sage-grouse had higher parasite loads than females (Figure 2.6a; ANOVA: 

F1,68 = 4.426, P= 0.039), and there was substantial geographic variation (Figure 2.3).  

Overall, grouse with high fecal α-phellendrine had lower parasite loads (Figure 2.6b), 

however there is also significant geographic variation in the concentrations of α-

phellendrine in plants at each site (Wilcoxon: Z = 4.83463, P < 0.001) as some sites do 

not have plants producing α-phellendrine (Brown’s Bench, n=10; Owyhee, n=7) while 

other sites do (Craters, n=13; Raft River, n=25).  Sites with high parasite loads (e.g. Raft 
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River) also had low concentrations of α-phellendrine.  Grouse with high fecal camphor 

had higher parasite loads than birds with low fecal camphor (Figure 2.6c).  Models and 

AICc information are shown in Table 2.4. 

Patterns in Parasite Loads Within a Site (Raft River) 

The top models at Raft River with ∆ AICc < 2 included one ecological variable 

(season), and three PSM variables (fecal cineole, total fecal monoterpenes, and fecal 

compound diversity; Table 2.5).  Parasite loads were higher in birds with high 

concentrations of fecal cineole, total fecal monoterpenes, and high fecal compound 

diversity (Figures 2.7a, 2.7b, and 2.7c, respectively).  Outliers did not influence the order 

of top models.   

Discussion 

I compared Raillietina centrocerci parasite loads across different years, seasons, 

sites, flock sexes, flock sizes, quality of diet (protein, monoterpenes) and fecal excretion 

of PSMs for Greater Sage-grouse.  There was geographic and seasonal variation in 

parasite loads, but no annual variation.  Additionally, several dietary components 

explained variation in parasite loads.  Flock sex was also an important factor in parasite 

loads, likely because different levels of hormones can influence parasite abundance 

(Ezenwa et al. 2012). 

Although there was no significant difference in parasite loads among seasons, 

sage-grouse parasite loads were almost twice as high in fall than winter.  This pattern 

may be due to either annual variation in the parasite life cycle, or from changing to a 

winter diet.  There was higher variation in fall parasite loads than winter, possibly 

because young birds in fall can have higher parasite loads (Nelson 1955) compared to 
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older birds, which maintain lower parasite loads through winter.  As young birds age and 

they shift from consuming insects (an intermediate host) to sagebrush (Patterson 1952, 

Nelson 1955, Klebenow and Gray 1968, Peterson 1970), their parasite loads may 

stabilize at levels similar to other adult birds, decreasing the variation within the 

population.  Because our analysis occurred at the flock level rather than for individuals, 

we were unable to test differences in parasite loads between adult and juvenile birds.  

Finally, the higher variability in parasite loads in spring than winter may be due to the 

hormonal variation in males during that time.  The immunocompetence handicap 

hypothesis suggests that there is a physiological trade-off between testosterone and 

immunity (Folstad and Karter 1992).  For example, hormones increase abundance of 

some parasites in Grant’s gazelle, and suppress others (Ezenwa et al. 2012).   

Parasites did not differ across years.  Despite the steady parasite loads during the 

two consecutive years sampled at Raft River, further collection over longer time periods 

could be used to understand any cyclical variation in parasite loads, and all counts should 

be conducted as soon as possible after collection to minimize potential error associated 

with storage time.  Interannual variation in parasite loads could be used to evaluate how 

parasite cycles influence population regulation, as with other long-term population 

dynamics studies in grouse (Roberts and Dobson 1994, Hudson et al. 1998, Formenti et 

al. 2013, Dunham et al. 2014, Martinez-Padilla et al. 2014).  Dense populations can have 

higher disease transmission risk (Arneberg et al. 1998, Arneberg 2001, Holmstad et al. 

2005, Cross et al. 2010).  However, flock size, which ranged from single birds to flocks 

over 100, did not appear in any of the top ecological models in our first stage of 

modeling, suggesting that parasite loads in sage-grouse are not regulated by population 
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density at current host densities, or are regulated by population density during other times 

of year than during our sample collection period.   

Fecal α-phellendrine, fecal camphor, fecal cineole, fecal total monoterpenes, and 

compound diversity of fecal monoterpenes were the top chemical variables that explained 

parasite loads.  For α-phellendrine, higher PSM concentrations were associated with 

lower intestinal parasite loads (Figure 2.6), which would be predicted by the self-

medication hypothesis.  However, this relationship is likely site-driven due to substantial 

geographic variation in α-phellendrine that paralleled geographic variation in parasite 

loads.  For fecal cineole, camphor, and total monoterpenes, higher PSM concentrations 

were associated with higher intestinal parasite loads (Figures 2.6 and 2.7), even though 

both cineole and camphor have anti-helminthic properties (Zhu et al. 2013, Oliveira et al. 

2014).  This relationship suggests that parasite loads were not affected by PSM 

concentrations in the host’s diet in this system.  It is possible that hosts eating diets rich in 

PSMs are immunocompromised due to the energetic costs of PSMs, and are therefore 

unable to defend against parasites.  An alternative explanation is that parasites that have 

co-evolved with sagebrush specialist herbivores are resistant to PSMs in sagebrush that 

may have anti-helminthic action against generalist parasites.  In vitro tests of sagebrush 

compounds on parasites from both specialist and generalist herbivores are needed to 

evaluate parasite resistance to PSMs.  

Another important chemical variable was fecal monoterpene diversity, which was 

positively correlated with parasite loads.  Herbivores that consume diverse PSMs likely 

decrease the maximum dose of any single chemical, which may minimize negative 

physiological effects on the consumer (Freeland and Janzen 1974, Dearing and Cork 
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1999, Marsh et al. 2006, McLean and Duncan 2006, Wiggins et al. 2006).  This strategy 

benefits the host by preventing the saturation of any detoxification pathway, and it 

increases the number of potentially bioactive compounds that come in contact with 

parasites (Provenza et al. 2007, Villalba and Provenza 2007, Forbey et al. 2009).  The 

suite of PSMs an animal consumes from a mixed diet may be more useful to treat diverse 

parasite loads than any single PSM, because parasites would be more likely to develop 

resistance against a single PSM than a suite of compounds (Waller 2006, Forbey et al. 

2009).  However, I documented the opposite relationship, with high parasite loads 

associated with high monoterpene diversity, which may be related to the evolution of 

drug resistance by intestinal parasites that are routinely exposed to relatively low doses of 

PSMs (Waller 2006, Sengupta et al. 2013) rather than exposure to a high dose of a few 

chemicals. 

The PSMs in sagebrush are known to regulate parasite loads in other systems.  

Some endoparasite species have been controlled using extracts and individual compounds 

from Artemisia plants (Allen et al. 1997, Allen et al. 1998), and other PSMs in sagebrush 

have similar effects (Dasgupta and Roy 2010, Landau et al. 2010, Zhu et al. 2013, 

Oliveira et al. 2014).  Previous work has demonstrated that cineole and camphor are both 

capable of decreasing parasite survival (Zhu et al. 2013, Oliveira et al. 2014).  However, 

these studies used lab culture assays to test a parasite typically found in generalist hosts 

(Haemonchus contortus from domestic Ovis aries), while I evaluated responses of 

parasites in free-ranging specialist hosts.  The doses used in Zhu et al. and Oliveira et al. 

were similar to the concentrations found in the intestines of sage-grouse (Kohl et al. 

2015) that intestinal parasites would actually experience, and similar to the 
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concentrations in sagebrush at our study sites (unpublished data, Frye et al. 2013).  

Theoretically, heavily parasitized sage-grouse could self-medicate by consuming plants 

with high PSM concentrations to regulate their intestinal parasites.  However, I found 

sage-grouse that excreted higher concentrations of PSMs also had higher parasite loads.  

This suggests that (a) parasite loads of Raillietina centrocerci are not detrimental and 

therefore do no select for self-medication behavior, (b) specialist herbivores cannot self-

medicate due to already high consumption of PSMs and energy constraints, or (c) 

parasites are resistant to PSMs in sagebrush.   

Self-medication balances the costs of consuming PSMs with costs of parasite 

loads.  Therefore, the cost incurred by the parasite must exceed the cost of the PSM load 

for self-medication to be a beneficial strategy for a host to employ.  For low-cost immune 

challenges, costs and toxicity of PSMs may be more detrimental to the host than the 

impacts of the immune challenge or parasite (Forbey et al. 2009).  However, if the host 

has a high or costly parasite load, then there is a greater probability the host will exploit 

PSMs for therapeutic benefits (see Figure 1 in Forbey at al. 2009).  In these instances, a 

more toxic PSM with a narrow therapeutic index1 may be necessary to achieve the 

benefits of regulating parasite loads.  Sage-grouse with high loads of Raillietina 

centrocerci incur relatively low costs (Thorne 1969), and therefore the probability that 

sage-grouse will exploit PSMs for therapeutic benefit is relatively low.  

Alternatively, specialist herbivores may already be at the upper threshold of PSM 

consumption, and increased PSM consumption for self-medication may be limited by 

energetic constraints.  Herbivores may face a resource-mediated trade-off between 

                                                 
1 Therapeutic index: compares the amount of a therapeutic agent (drug) that causes a therapeutic effect to 

the amount that causes toxicity.  A wide therapeutic index means that a substance is relatively “safe” for 
use, having relatively low toxicity. 
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detoxification of PSMs and immune function (Schmid-Hempel 2003, Cotter et al. 2011), 

and even specialist herbivores experience detrimental effects of PSMs on immune 

function from PSMs in their host plant (Smilanich et al. 2009).  Specialists consume 

relatively high concentrations of PSMs, which require energy to detoxify or excrete 

(Sorensen and Dearing 2006).  This may limits the energy available for immune function.  

It is energetically costly to maintain and deploy immune defenses (Martin et al. 2003, 

Schmid-Hempel 2003), which may result in higher parasite loads if energy is allocated 

away from immune function. 

Another possibility is that parasites in specialist herbivores may become resistant 

to PSMs ingested by their host over evolutionary time.  Drug resistance can occur when 

parasites are exposed to the same treatment method (e.g. drug, compound, PSM) 

repeatedly (Waller 2006), alone, or in low doses (Sengupta et al. 2013).  Through 

extensive exposure, intestinal parasites in sage-grouse digestive systems may have 

adapted to resist the negative effects of PSMs found in sagebrush.  However, like co-

administration of multiple drugs (Debabov 2013), a mixed diet may be beneficial for host 

immunocompetence (Muller et al. 2015), possibly because the diet exposes parasites to 

novel compounds that may regulate parasite loads better. 

Sage-grouse infected with Raillietina centrocerci appear to be in good physical 

condition (Thorne 1969), but heavy tapeworm loads can cause intestinal blockages or low 

nutrient assimilation (Nelson 1955), in turn causing reduced body mass, reduced vigor, 

and increased susceptibility to other parasites (Cole and Friend 1999).  Also, the current 

host-parasite relationship might be altered by climate change.  Climate warming will 

likely influence aspects of host-parasite interactions, including pathogen life history, 
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pathogen survival, disease transmission, increased host susceptibility, and increased 

frequency and severity of disease outbreaks (Harvell et al. 2002, Molnar et al. 2013b).  

Parasites with intermediate hosts, like Raillietina centrocerci, are likely to persist in a 

warming climate and to show altered host-parasite relationships (Molnar et al. 2013a). 

Previous research has shown that self-medication occurs in multiple taxa as a 

method to regulate endoparasite loads.  However, the documented taxa (e.g. domestic 

livestock, primates) are not specialist herbivores and do not normally consume diets high 

in PSMs.  Sage-grouse are sagebrush obligate herbivores and consume high 

concentrations of PSMs, and diverse PSMs, in their diet.  In sage-grouse, high intestinal 

parasite loads were generally associated with higher PSM loads, which suggests that the 

host-parasite relationships in this specialist herbivore may not be regulated through diet 

selection or self-medication. Despite these results, sage-grouse provide a model organism 

to further test the relative trade-offs between costs of parasites and costs of PSMs as well 

as investigate mechanism of resistance to PSMs in hosts and parasites.  
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Tables 

Table 2.1 Retention times of monoterpene compounds in sagebrush generated using 
headspace gas chromatography.  Sagebrush (Artemisia sp.) samples were collected in 
southern Idaho, USA, at Greater Sage-grouse (Centrocercus urophasianus) foraging 
sites.  Fremgen 2013-2015 compound names and retention times are shown first, with 
names and retention times from Frye 2011-2012 samples shown second.  Compounds 
were identified using known standards and co-chromatography. 

Monoterpene Name 
Fremgen, Frye 

Retention Time (minutes) 
Fremgen, Frye 

Unknown 3.2 min, Unknown #1 3.28, 3.2 
Unknown 12.2 min, Unknown #2 11.85, 12.2 

α-pinene 12.87, 13.2 
Camphene 13.45, 13.9 
β-pinene 14.57, 15. 0 

α-phellendrine 15.60, NA 
Cymene 16.39, 16.9 

1,8-Cineole 16.73, 17.2 
Camphor 20.74, 21.1 

Unknown 21.5 min, Unknown #8 21.56, 21.8 
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Table 2.2 Model components, log likelihood, number of parameters (K), Akaike’s Information Criterion with sample size 
bias-adjustment (AICc), change in AICc from the top model (∆ AICc), and model weight (wi) for the first stage of Greater 
Sage-grouse (Centrocercus urophasianus) parasite load model selection at all sites (Brown’s Bench, Craters, Owyhee and Raft 
River) in southern Idaho, USA during winter. Models with greater than 10% of the top AICc weight (wi) were selected for the 
final models (in bold).  “Unknown” compounds are monoterpenes, identified by retention time. 

Scale 
Predictor 
Category Model 

Log 
Likelihood 

Number of 
Parameters (K) AICc 

∆ 
AICc 

Akaike 
weight (wi) 

All sites 
(winter 
only) 

Ecological Sex + Site 1.27 9 18.99 0.00 0.63 
 Elevation + Site -3.63 6 20.90 1.91 0.24 
 Site -5.75 5 22.58 3.59 0.10 
 Flock Size + Site -5.85 6 25.29 6.30 0.03 

  Null 
 

-12.75 2 29.71 10.72 0.00 

 Dietary Fecal α-phellendrine1 + Site -4.69 4 18.44 0.00 0.48 
  Fecal Camphor1 + Site -2.66 7 18.91 0.47 0.38 
  Fecal Compound Diversity2 + Site -4.84 6 23.23 4.79 0.04 
  Fecal Cineole1 + Site -5.43 6 24.45 6.01 0.02 
  Total Fecal Monoterpenes1 + Site -5.94 6 25.47 7.03 0.01 
  Fecal α-phellendrine1 + Site -6.09 6 25.77 7.33 0.01 
  Fecal Unknown 3.21 + Site -6.14 6 25.86 7.42 0.01 
  Protein3 + Season + Site -5.86 6 25.87 7.43 0.01 
  Fecal Compound Diversity2 + Total Fecal 

Monoterpenes1 + Site 
-5.06 7 26.28 7.84 0.01 

  Total Fecal Monoterpenes1 + Site -6.47 6 27.09 8.65 0.01 
  Null  -12.75 2 29.71 11.27 0.00 

1 PSM: monoterpenes (area under the curve/ 100 μg dry weight) 
2 Compound diversity (calculated as a Shannon diversity index from fecal monoterpenes > 1% of the total AUC for sample) 
3 Nutrient: crude protein (% dry weight) 
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Table 2.3 Model components, log likelihood, number of parameters (K), Akaike’s Information Criterion with sample size 
bias-adjustment (AICc), change in AICc from the top model (∆ AICc), and model weight (wi) for the first stage of Greater 
Sage-grouse (Centrocercus urophasianus) parasite load model selection at Raft River in southern Idaho, USA. Models with 
greater than 10% of the top AICc weight (wi) were selected for the final models (in bold).  Flock sex was male or female. 

1 PSM: monoterpenes (area under the curve/ 100 μg dry weight) 
2 Compound diversity (calculated as a Shannon diversity index from fecal monoterpenes > 1% of the total AUC for sample) 
3 Nutrient: crude protein (% dry weight) 

 

Scale 
Predictor 
Category Model 

Log 
Likelihood 

Number of 
Parameters (K) AICc 

∆ 
AICc 

Akaike 
weight (wi) 

Raft 
River 

Ecological Season -10.55 3 27.71 0.00 0.36 

  Null -12.00 2 28.31 0.60 0.26 

  Elevation + Season  -10.14 4 29.33 1.62 0.16 

  Flock Size + Season  -10.17 4 29.39 1.68 0.15 

  Flock Sex + Season  
 

-9.74 5 31.11 3.40 0.07 

 Dietary Fecal Cineole1 + Season  -5.11 4 19.28 0.00 0.32 

  Fecal Total Monoterpenes1 + Season  -5.35 4 19.78 0.50 0.25 

  Fecal Total Monoterpenes1 + Fecal Compound 
Diversity2 + Season 

-4.76 5 21.23 1.95 0.12 

  Fecal Cineole1 + Fecal Camphor1 + Season  -4.88 5 21.38 2.09 0.11 

  Fecal Cineole1 + Fecal Compound Diversity2 + Season  -5.30 5 22.26 2.98 0.07 

  Fecal Camphor1 + Season  -7.13 4 23.31 4.02 0.04 

  Fecal Cineole1 + Fecal Camphor1 + Total Fecal 
Monoterpenes1 + Fecal Compound Diversity2  

-4.55 6 23.57 4.29 0.04 

  Protein3 + Season  -7.30 4 24.42 5.14 0.02 

  Season  -10.55 3 27.71 8.43 0.00 

  Null  -12.00 2 28.31 9.03 0.00 
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Table 2.4 Model components, log-likelihood, number of parameters (K), Akaike’s 
Information Criterion with sample size bias adjustment (AICc), change in AICc from the 
top model (∆ AICc), and model weight (wi) for the final stage of parasite load modeling at 
all field sites during winter only.  Linear models with log-transformed parasite load 
response were assessed using data from Brown’s Bench, Craters, Owyhee and Raft River, 
Idaho, USA.  Flock sex was male or female. 

Model 
Log 

Likelihood 

Number of 
Parameters 

(K) AICc ∆ AICc 

Akaike 
weight 

(wi) 
Fecal Camphor1 + Sex + Site 2.94 8 12.94 0.00 0.43 
Fecal α-phellendrine1 + Sex + Site 0.12 6 14.09 1.16 0.24 
Sex + Site -0.03 7 16.17 3.24 0.09 
Elevation2 + Sex + Site 0.99 8 16.97 4.03 0.06 
Fecal α-phellendrine1 + Elevation2 + Site -2.70 5 17.02 4.08 0.06 
Fecal α-phellendrine1 + Fecal Camphor + Sex + 
Site 

-2.84 5 17.31 4.37 0.05 

Fecal α-phellendrine1 + Site -4.69 4 18.44 5.50 0.03 
Fecal Camphor1 + Site -2.66 6 18.91 5.97 0.02 
Fecal Camphor1 + Elevation2 + Site -1.40 7 19.08 6.25 0.02 
Elevation2 + Site -3.63 6 20.90 7.97 0.01 
Site -5.75 5 22.58 9.65 0.00 
Null -12.75 2 29.71 16.78 0.00 
1 PSM: monoterpenes (area under the curve/ 100 μg dry weight) 
2 Compound diversity (calculated as a Shannon diversity index from fecal monoterpenes 
> 1% of the total AUC for sample) 
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Table 2.5 Model components, log-likelihood, number of parameters (K), Akaike’s 
Information Criterion with sample size bias adjustment (AICc), change in AICc from the 
top model (∆ AICc), and model weight (wi) for the final stage of parasite load modeling at 
Raft River.  Linear models with log-transformed parasite load response were assessed 
using data from Raft River, Idaho, USA.   

Model 
Log 

Likelihood 

Number of 
Parameters 

(K) AICc ∆ AICc 
Akaike 

weight (wi) 
Fecal Cineole1 + Season -5.11 4 19.28 0.00 0.33 
Fecal Total1 + Season  -5.35 4 19.78 0.50 0.26 
Fecal Total1 + Compound Diversity2 + Season  -4.76 5 21.23 1.95 0.13 
Fecal Cineole1 + Fecal Camphor1 + Season -4.88 5 21.38 2.09 0.12 
Fecal Cineole1 + Compound Diversity2 + 
Season 

-5.30 5 22.26 2.98 0.07 

Fecal Camphor1 + Season -7.13 4 23.31 4.02 0.04 
Fecal Total1 + Fecal Cineole1 + Fecal 
Camphor1 + Compound Diversity2 

-4.55 6 23.57 4.29 0.04 

Season  -10.55 3 27.71 8.43 0.00 
Null -12.00 2 28.31 9.03 0.00 
1 PSM: monoterpenes (area under the curve/ 100 μg dry weight) 
2 Compound diversity (calculated as a Shannon diversity index from fecal monoterpenes 
> 1% of the total AUC for sample) 
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Figures 

 

(a)  

 
 

(b) 

 

Figure 2.1 Raillietina centrocerci tapeworm (a) and eggs (b) isolated from Greater 
sage-grouse (Centrocercus urophasianus) pellets collected in southern Idaho, USA.  
Photograph by Joel Velasco 200x magnification.  
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Figure 2.2 Conceptual diagram depicting how consumption and excretion of plant 
secondary metabolites (PSMs) by host animals may influence parasite loads.  When hosts 
consume high concentrations of PSMs and excrete, rather than absorb, high 
concentrations of PSMs, parasites in the intestines will be exposed to PSMs more than 
parasites with hosts that consume fewer PSMs or absorb more PSMs (excrete less).  
Typical PSM consumption and physiological capacity to excrete (rather than absorb) 
PSMs for specialist herbivores (A) and generalist herbivores (B) are shown. 
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Figure 2.3 Sagebrush and fecal pellets of Greater Sage-grouse (Centrocercus 
urophasianus) were collected at foraging sites from four sites across southern Idaho, 
including Brown’s Bench, Craters, Owyhee, and Raft River. Sagebrush and fecal pellets 
were collected at foraging sites in winter 2011 - 2012 (Owyhee and Brown’s Bench), 
winter 2013 - 2014 (Craters and Raft River) and winter 2015 (Raft River). 
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Figure 2.4 Mean ± SEM for parasite loads (eggs/gram dry weight) of Raillietina 
centrocerci tapeworms in Greater Sage-grouse (Centrocercus urophasianus) fecal pellets 
in southern Idaho, USA, by study site.  Fecal pellets were collected from sites in early 
winter (1 January to 15 February) in 2011 through 2015, and parasite loads were 
quantified using the McMaster egg counting technique.  Grouse at Brown’s Bench and 
Craters had significantly lower parasite loads than grouse at Owyhee and Raft River. 
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Figure 2.5 Mean ± SEM for parasite loads (eggs/gram dry weight) of Raillietina 
centrocerci tapeworms in fecal pellets of Greater Sage-grouse (Centrocercus 
urophasianus) at Raft River, Idaho, USA, by season.  Fecal pellets were collected from 
sites in late fall (1 November to 15 December, n = 13), mid-winter (1 January to 15 
February, n = 30) and spring (1 March to 1 April, n = 5) in 2013, 2014, and 2015, and 
parasite loads were quantified using the McMaster egg counting technique. 
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(a)      (b) 

 
(c) 

 

Figure 2.6 Relationships between (a) bird sex, (b) fecal α-phellendrine (AUC/ 100 μg 
dry weight), and (c) fecal camphor (AUC/ 100 μg dry weight) and Raillietina centrocerci 
parasite loads in Greater Sage-grouse (Centrocercus urophasianus) in southern Idaho, 
USA.  Study sites included: Brown’s Bench (), Craters (), Owyhee (), and Raft 
River (+).  Confidence intervals (95%) are depicted with gray shaded error bars.  For the 
linear regression of α-phellendrine compared to parasite loads, n = 61, P = 0.002, r2 = 
0.215.  For the linear regression of fecal camphor compared to parasite loads, n = 61, P = 
0.002, r2 = 0.3484.    
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(a)      (b) 

 

(c) 

 
Figure 2.7 Linear model of (a) fecal cineole (AUC/ 100 μg dry weight), (b) total fecal 
monoterpene content (AUC/ 100 μg dry weight), and (c) compound diversity of fecal 
monoterpenes (measured with a Shannon Index) as predictors of Raillietina centrocerci 
parasite loads in Greater Sage-grouse (Centrocercus urophasianus) at Raft River in 
southern Idaho, USA.  Samples were collected in fall () and winter ().  Confidence 
intervals (95%) are depicted with gray shaded error bars.  One outlier was excluded, with 
no effect on the final model ranks.  For the linear regression of fecal cineole compared to 
parasite loads, n = 48, P = 0.001, r2 = 0.274.  For the linear regression of fecal total 
monoterpenes compared to parasite loads, n = 48, P = 0.001, r2 = 0.278.  For the linear 
regression of compound diversity of fecal monoterpenes compared to parasite loads, n = 
48, P = 0.050, r2 = 0.092. 
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CHAPTER THREE: NECKLACE-STYLE RADIO TRANSMITTERS ARE 

ASSOCIATED WITH CHANGES IN DISPLAY VOCALIZATIONS OF MALE 

GREATER SAGE-GROUSE 

Abstract 

Radio-transmitters are used widely in wildlife research, which allows researchers 

to track individual animals and monitor activity.  To provide accurate information about a 

population, transmitters must be deployed on a representative sample of animals, and the 

transmitter must not alter the behavior or demographics of the individuals.  Greater Sage-

grouse (Centrocercus urophasianus), a species of concern, has been studied intensely 

using radio-transmitters for the last several decades.  Males fitted with radio-transmitters 

are less likely to attend leks than those without transmitters.  Necklace-style transmitters 

may also interfere with the vocalizations of sage-grouse during their strut displays on the 

lek.  Certain vocalization characteristics have been linked to mating success.  Therefore, I 

investigated whether radio-transmitters altered vocalization quality of male sage-grouse.  

I recorded vocalizations from paired (strutting on the same day on the same lek) collared 

(n=6) and non-collared (n=7) adult male sage-grouse on three leks in south-central Idaho.  

I evaluated 13 characteristics of vocalizations, and found that four characteristics differed 

between collared and non-collared males. Collared males had a narrower bandwidth for 

the primary whistle (lower maximum frequency and higher minimum frequency), a 

shorter primary whistle, and a shorter secondary coo than non-collared males.  These 
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vocalization characteristics have not previously been linked to reproductive success, but 

demonstrate that collars may alter the production of normal breeding vocalizations.  

Additionally, primary whistle frequencies produced by collared birds fell outside the 

normal range of variation for non-collared males throughout the range of sage-grouse.  It 

is important to consider the impacts of collars on all aspects of grouse behavior when 

designing and implementing studies. 

Introduction 

Radio transmitters are commonly used in wildlife studies, allowing researchers to 

track individual animals and remotely monitor certain activities.  The fundamental 

assumptions to telemetry are that radio-transmitters are attached to a representative 

proportion of the population and that the transmitters do not influence behavior or 

demographics of marked individuals.  It is important to test this assumption, since a 

number of studies on various taxa have documented effects of transmitters on survival 

(Theuerkauf et al. 2007, Venturato et al. 2009, Fabian et al. 2015).  However, 

comparatively few studies have evaluated whether transmitters cause behavioral changes.  

Previous research into impacts of transmitters has identified detrimental effects on 

energetics and activity budgets (Zenzal et al. 2014), reproduction (Ward and Flint 1995), 

and lek attendance (Gibson et al. 2013).  In some instances, the attachment method or 

antenna cause these differences in behavior or survival rather than the transmitter itself 

(Millspaugh et al. 2012).  Understanding the impacts of monitoring techniques is 

important when studying sensitive species, or species of management concern, as 
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negative impacts on behavior may contribute to population level declines in an already 

compromised species.   

Greater Sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse) are a 

species of concern throughout western North America due to long-term population 

declines (Aldridge et al. 2008, Garton et al. 2011) and range contractions (Schroeder et 

al. 2004).  The conservation concern for sage-grouse has spurred a large number of 

demographic and habitat use studies involving radio-collared birds across the western 

United States and Canada.  Despite widespread use of radio-transmitters, there are a 

limited number of studies evaluating impacts of transmitters on sage-grouse.  Initially, 

Pyrah (1970) expressed concern over the use of collar “poncho-markers” on males 

because their design interfered with the birds’ breeding displays (also see Amstrup 

1980).  While poncho-markers are not the same as modern transmitters, the attachment 

method (collar around the neck) is similar to current designs.  Later research suggested 

that modern necklace-style transmitters were not detrimental for hens to wear 

(Caizergues and Ellison 1998).  Recent work has shown that necklace-style radio-

transmitters did not impact the flush order of sage-grouse (Frye et al. 2014), suggesting 

that necklace-style transmitters do not significantly affect predator-escape behavior.  

However, necklaces were reported to decrease male lek attendance and sightability at 

leks at some sites (Gibson et al. 2013).  Males with necklaces do appear on leks at other 

sites (Baumgardt 2011, Fremgen et al. 2015).  However, although the latter studies 

documented lek attendance, they did not compare attendance rates or other measures of 

behavior between collared and non-collared birds. 
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I evaluated the effects of necklace-style radio transmitters on the strut 

vocalizations of male sage-grouse on leks.  During the spring breeding season, male and 

female sage-grouse gather on leks, where males perform strut displays and females assess 

male displays to choose a mate (Patterson 1952, Wiley 1973).  The rate and acoustic 

quality of the strut display is linked to male reproductive success (Gibson and Bradbury 

1985, Gibson et al. 1991, Gibson 1996, Patricelli and Krakauer 2010).  The potential 

mechanisms of interference by collars on male strutting are varied.  Male strutting 

includes rapid inflation and movement of an esophageal air sac (Dantzker et al. 1999, 

Krakauer et al. 2009), which may be constricted by radio-collars.  Male display 

movements are integrally linked to sound production (Koch et al. 2015), which may be 

altered by collars.  The male strut display is also very energetically costly (Vehrencamp 

et al. 1989) and the added weight or stress associated with a radio-transmitter may result 

in increased energy expenditure and altered activity budgets.  These impacts may in turn 

influence reproductive behavior and success.  Given the movement-intensive display 

performed by male sage-grouse during courtship, I tested the possibility that radio-collars 

placed near the esophageal air sac could interfere with the acoustic properties of the strut 

display of males.  I compared the vocalizations of six male sage-grouse fitted with 

necklace-style radio transmitters and seven paired control males from the same leks on 

the same days to determine whether collars affect male performance of strut vocalizations 

on the lek. 
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Methods 

Adult male sage-grouse were fitted with necklace-style radio-transmitters in 

south-central Idaho (42° 9’ N, 113° 24’ W) in spring 2013.  Vocalizations were recorded 

from six radio-collared males and seven non-collared males for six days on three 

different leks between 24 March and 14 April 2014, after males had been allowed to 

adjust to their transmitter for approximately one year.  During early lekking season, 

males are predominantly from two social classes, including dominant and subdominant 

birds, but juveniles are present in low numbers (Jenni and Hartzler 1978, Walsh et al. 

2004).  Therefore, recordings from non-collared birds that are displaying are likely to fall 

within the top two social classes.  It was important to select socially equivalent grouse, so 

I tested for differences in the average inter-strut interval (ISI) for each bird using 

ANOVA, because ISI is correlated with mating success and social ranking (Gibson and 

Bradbury 1985, Gibson 1996, Patricelli and Krakauer 2010).  All collared birds were 

adult males, as verified by examination of the plumage during capture the previous year, 

and males were allowed to adjust to their collars for one year.  Non-collared and collared 

male were recorded on the same day, within several minutes of one another, on the same 

lek.  I recorded vocalizations for several minutes for each focal bird, which provided an 

average of 9 ± 4.5 vocalizations to analyze per male.  Audio was recorded from a blind 

near the lek with a Marantz PMD670 portable audio recorder (16 bit, 48 KHz linear 

PCM), with Sennheiser microphone (K6 with omnidirectional ME62 capsule) and a 22-

inch Telinga Pro parabola.  Vocalizations were assigned to the focal male by comparing 

the timing of struts observed on videos of male lek behavior that were paired with audio 
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recordings of the same bird.  I recorded vocalizations from males that were within 15 m 

of one another on the lek, so that paired males were similar distances from the 

microphone.  Additionally, I verified that there were no obstructions (e.g. plants, rocks) 

between the recording equipment and the grouse with the video recordings, and removed 

any measurements recorded with obstructions that may have blocked sound transmission. 

Vocalizations were visualized as spectrograms (FFT size 512; Hann window) and 

measured in Raven Pro 1.4 (Cornell laboratory of Ornithology, Ithaca, NY U.S.A.) by a 

single experienced observer.  I measured characteristics of the six vocally produced notes 

from each call: three “coo” notes, two “pop” notes and the primary “whistle” (Figures 3.1 

and 3.2).  For the coos, I measured the duration and maximum frequency (i.e. highest 

pitch) of each note.  The second coo note is longer and was found most often in the 

recordings so only this note is considered for analysis.  For the pops, I measured the 

“inter-pop interval” (IPI), which is the time delay between the two pop notes.  For the 

whistle, which occurs during the IPI, I measured the duration and the maximum and 

minimum frequency of the primary whistle. The primary whistle rises, falls and rises 

again in frequency; the maximum frequency is the highest pitch of the first rise and the 

minimum is the lowest pitch of the trough (Figure 3.1). From these measures, I calculated 

the ratio of primary whistle duration to inter-pop interval, which indicates the fraction the 

inter-pop interval that is taken up by the whistle.  Measurements from individual notes 

were discarded when overlapped by other sounds, such as calls from songbirds.  Most 

male sage-grouse show a secondary whistle that is lower in amplitude and less frequency-

modulated than the primary whistle (Krakauer et al. 2009).  These secondary whistles 
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were too quiet on our recordings to measure reliably and so were excluded from this 

analysis.  I also tested for differences in vocalizations among collars fitted by different 

trapping personnel, to see if the individual (n=3 trappers) fitting the collar impacted the 

vocalization characteristics, using ANOVA.  For all analyses, a Student’s T-test was used 

to compare the average value of each vocalization characteristic for each collared and 

non-collared male.  Analyses were performed in JMP 11.0 Pro (SAS Institute Inc. 2013). 

Results 

Four characteristics were significantly different between males with and without 

necklace-style radio collars (Figure 3.3).  Whistles in non-collared males had a higher 

maximum frequency (t = 4.854, df = 12, p = 0.003), a lower minimum frequency (t = 

2.539, df = 12, p = 0.031), and a longer duration (t = 2.288, df = 12, p = 0.042) than 

whistles in collared males.  Non-collared males also had longer second coos than collared 

males (t = 3.004, df = 11, p = 0.019).  The inter-pop interval (t = -1.699, df = 11, p = 

0.134), ratio of primary whistle duration to inter-pop interval (t = 2.006, df = 11, p = 

0.073) and maximum frequency of second coo (t = 1.735, df = 11, p = 0.154) did not 

differ between males with and without collars.  There is no significant difference between 

the collared and non-collared birds in the estimated distance between the bird and the 

microphone during recording (t = 0.218 df = 12, p = 0.828), suggesting that differences in 

vocal features between the collar groups are not an artifact of differences in distance 

causing differences in transmission of the sounds.  I used strut frequency data to evaluate 

if males came from socially equivalent groups (e.g. dominant versus subdominant versus 

juvenile).  I found no difference in inter-strut intervals between all males recorded, using 
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video data for each of the 13 recorded birds, for multiple mornings when data was 

available (ANOVA: F12,21 = 0.4767, P = 0.9065).  Also, no birds mated on mornings that 

I recorded vocalizations, or on separate observation mornings, suggesting that none of the 

males I recorded was a dominant individual.  Finally, vocalization characteristics did not 

differ depending on the person that fitted the collar (ANOVA: primary whistle maximum 

frequency F2,3 = 0.572, P = 0.616; primary whistle minimum frequency F2,3 = 3.11, P = 

0.185; primary whistle duration F2,3 = 0.451, P = 0.674; secondary coo duration F2,2 = 

0.984, P = 0.504), but sample sizes for each trapper were low and may therefore prevent 

adequate testing of this effect. 

Discussion 

Previous studies have found that the rate and acoustic quality of the strut display 

is critical in determining which males are chosen as mates by females (Wiley 1973, 

Gibson and Bradbury 1985, Gibson et al. 1991, Gibson 1996, Patricelli and Krakauer 

2010).  The inter-pop interval (IPI, see Methods) is the most consistent acoustic correlate 

of male mating success in studies of sage-grouse from the California Mono Lake Basin 

population, with females preferring males that produce an IPI with a longer duration 

(Gibson and Bradbury 1985, Gibson et al. 1991, Gibson 1996).  These previous studies 

also suggested that the amplitude of the whistle may be positively correlated with the IPI 

and that the amplitude of the whistle may be more important than IPI per se (Bradbury 

1985, unpublished data, Gibson 1996, Dantzker et al. 1999).  I did not find a difference in 

IPI between collared and non-collared males in the Idaho population.  However, I found 

that collared males produced shorter whistles, which may be due to a lower whistle 
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amplitude (i.e. the end of the whistle drops below detectible amplitude sooner, thus 

appearing shorter).  Similarly, the shorter duration of the coo notes in collared males may 

be due to a lower amplitude of these notes.  Further studies of vocalizations calibrated for 

amplitude would be needed to test this possibility. 

Previous studies on sage-grouse also found positive correlations between male 

mating success and the maximum frequency of the whistle as well as the difference 

between the maximum and minimum frequency of the whistle (i.e. the whistle 

bandwidth) in some, but not all, years and leks (Gibson and Bradbury 1985, Gibson et al. 

1991, Gibson 1996).  In my study, collared males produced whistles with a lower 

maximum frequency and a narrower bandwidth than non-collared males.  If these display 

characteristics are important to females in this Idaho population, then collared males may 

be less attractive to females and therefore less likely to reproduce.  The average 

maximum whistle frequency among collared males in this study was 2,219 Hz compared 

to 2,611 Hz in non-collared males.  Among the six collared males, one male produced a 

whistle with a maximum whistle frequency within the range produced by non-collared 

males (2,545 Hz), but the other five males produced whistles with maximum frequencies 

more than 200 Hz below the range found in the non-collared males (the range of these 

five collared males was 1,967-2,279 Hz and the range of all non-collared males I 

measured in Idaho (n=7 birds) was 2,507-2,756 Hz).  The frequency of whistles of 

collared males were highly unusual not only for the Idaho population, but for populations 

throughout the range of the sage-grouse.  Four of the six collared males from my study 

produced maximum whistle frequencies below that of 350 calls from non-collared males 
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(n=350 birds) across seven populations of sage-grouse (range = 2,053-2837 Hz, mean = 

2,413 Hz; Krakauer et al. 2009).  Because the present study had a small sample size, the 

average maximum whistle frequency found here may not accurately represent the 

vocalizations of a larger sample of collared males.  However, this study suggests that 

collaring can have a large effect on some males, causing their fitness-relevant acoustic 

signals to be outside the normal range of variation in this species and outside of the range 

of non-collared males within the same population. 

Results suggest that some collared males may have difficulty producing normal 

breeding vocalizations. Displaying males inflate their esophageal air sac by exhaling air 

from their lungs and directing it into their esophagus (Clarke et al. 1942).  The strut 

display is produced by the rapid distension and inversion of the inflated esophagus 

behind a pair of pliable apterygia on the breast (i.e. the vocal sacs). This produces a 

visual display and increases the amplitude of the acoustic signal by resonating sound 

energy and coupling the sounds to the surrounding air (Dantzker et al. 1999, Krakauer et 

al. 2009).  I propose that necklace collars that encircle the esophagus may interfere with 

inflation or movement of the vocal sac during display.  This interference may increase the 

costs of an already costly behavior (Vehrencamp et al. 1989), and potentially decrease 

male reproductive success by decreasing the effectiveness of these vocalizations for 

attracting females and competing with other males for breeding territories.   

Male mating success is also strongly correlated with the rate of strut displays by 

males and male lek attendance (Wiley 1973, Gibson and Bradbury 1985, Gibson et al. 

1991, Gibson 1996, Patricelli and Krakauer 2010).  Analysis of the rate of strut displays 
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between collared and non-collared males is currently underway to address this possibility.  

While sage-grouse and sharp-tail grouse with radio-collars have been reported to attend 

leks in several studies, the lek attendance rates for collared birds were not compared to 

those of non-collared birds (Baumgardt 2011, Drummer et al. 2001).  This is an important 

distinction, but is costly and difficult to measure the difference in attendance between 

collared and non-collared birds effectively, requiring intensive monitoring efforts to 

compare birds marked with color bands only and birds with radio-transmitters.  However, 

previous study of radio-collar effects in a population of sage-grouse in Nevada did 

compare collared birds to non-collared birds, and found dramatic decreases in lek 

attendance by collared males when compared to non-collared males (Gibson et al. 2013).  

Taken together, these results suggest necklace collars may impact male fitness by 

reducing male attendance and their display quality when they do attend leks.  Additional 

studies on behavior, energetics, and activity budgets should be initiated to evaluate 

relative costs associated with different radio-transmitter styles of attachment.   
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Figures 

 

 
Figure 3.1 Example of a vocalization from a typical male Greater Sage-grouse 
(Centrocercus urophasianus) from a lek in Fremont County, Wyoming. This recording 
was captured using an on-lek microphone array (Krakauer et al. 2009) instead of the 
more distant single-microphone recording technique used in this study.  This microphone 
set-up illustrates the full suite of vocal characteristics, some of which are not visible in 
the more distant single microphone used in this study.  
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Figure 3.2 Strut vocalizations recorded from two non-collared (a and b) and two 
collared (c and d) male Greater Sage-grouse (Centrocercus urophasianus).  The 
vocalization characteristics found to be significantly different between these groups are 
labeled in (a): “max” = maximum frequency of the primary whistle (kHz), “min” = 
minimum frequency of the primary whistle (kHz), “whistle duration” = duration of the 
primary whistle (s), and “coo duration” = duration of the second coo (s).   
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(a)       (b)  

 

 
(c)       (d)  

 

Figure 3.3 Significant differences in vocal characteristics included (a) maximum 
frequency of primary whistle (Hz), (b) minimum frequency of primary whistle (Hz), (c) 
whistle duration (s), and (d) duration of second coo (s).  All graphs show mean ± SEM 
comparing the average value for each vocalization characteristic for six collared and 
seven non-collared birds (except (d), where there were five collared and seven non-
collared because the secondary coo was not visible for one collared male). 
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CHAPTER 4: NON-DESTRUCTIVE SAMPLING METHODS TO DETERMINE 

SAGEBRUSH AGE AND RELATIONSHIPS BETWEEN AGE AND PLANT 

PALATABILITY 

Abstract 

Palatability of plants is an important factor that influences habitat use by 

herbivores at multiple spatial scales.  Additionally, consumption of high quality food 

resources improves reproductive success for herbivores.  Proper management of 

herbivore habitat requires that managers identify and protect high quality forage 

resources that can help maximize herbivore fitness.  Therefore, managers should identify 

characteristics of plants that are related with palatability.  For Greater Sage-grouse 

(Centrocercus urophasianus) foraging in sagebrush (Artemisia sp.) habitats, it is 

important for managers to identify characteristics of plants that provide high-quality 

forage.  I hypothesized that plant age was related to palatability, and that age could be 

assessed using non-destructive methods.  Sagebrush treatments on federal and private 

lands throughout the range of sage-grouse have been designed to remove decadent 

sagebrush to improve forage quality.  However, our research showed that there was no 

difference in plant chemistry (e.g. palatability) between old (decadent) plants and 

younger seedlings, suggesting that habitat treatments that result in younger stands, such 

as brush mowing, may not improve forage quality of sagebrush.  In addition, I 

determined that the circumference measured at the base of plants could predict the age of 
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sagebrush.  This method has potential to help managers assess the age of stands and 

plants following restoration efforts.    

Introduction 

The defensive chemistry of plants can limit intake by herbivores (Guglielmo et al. 

1996, Wiggins et al. 2003).  In addition, the spatial and temporal variation of plant 

chemicals influences habitat use by herbivores (Youngentob et al. 2011, Frye et al. 2013, 

Ulappa et al. 2014).  Therefore, management of herbivores should include proper 

identification and conservation of the most palatable chemical profiles of plants, or 

chemotypes.  Conservation of palatable plants requires that researchers first identify 

parameters that influence chemotypes.  I hypothesized that the age of a plant is one 

parameter that influences chemotypes, since plants differentially invest in growth and 

defense at different developmental points (Karolewski et al. 2011, Liu et al. 2012, 

Quintero and Bowers 2013, Moreira et al. 2014).  Relationships between plant ontogeny 

and defensive chemistry are complicated and vary by species.  In some woody species, 

such as Scots Pine (Pinus sylvestris), the youngest twigs had the lowest concentrations of 

defensive chemicals (Liu et al. 2012).  In contrast, older plants had higher concentrations 

of defensive chemicals in a variety of perennial grassland species (Elger et al. 2009), as 

well as in hops (Humulus lupulus; Jelinek et al. 2012). 

Defensive compounds, or plant secondary metabolites, influence palatability and 

thereby diet selection and habitat selection by herbivores.  Greater Sage-grouse 

(Centrocercus urophasianus; hereafter, sage-grouse) are sagebrush obligate herbivores, 

and are a species of concern throughout western North America.  Sage-grouse diets are 
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comprised entirely of sagebrush throughout the winter months (Patterson 1952) and birds 

also rely on shrubs for cover.  Diet quality of sagebrush is influenced partly by 

concentration of coumarins and monoterpenes (Rosentreter 2004, Frye et al. 2013), and 

monoterpenes influence habitat use and diet selection by sage-grouse (Remington and 

Braun 1985, Frye et al. 2013), as well as other herbivores (Ulappa et al. 2014).  As the 

climate warms, plant secondary metabolites (PSMs) are expected to increase in 

sagebrush, making management of palatable profiles even more important (Revermann et 

al. 2012, Forbey et al. 2013).  Additionally, plant ontogeny influences production of 

secondary metabolites for some species (Karolewski et al. 2011, Liu et al. 2012), so plant 

age may be related to palatability.  For example, plant age influences induced defense in 

sagebrush plants, which impacts the amount of damage caused by insect and ungulate 

herbivores to the plant (Shiojiri et al. 2011).  Palatability of plants is therefore partly 

determined by age, and can therefore influence herbivore behavior. 

If age is a parameter that influences plant chemistry, then it could be managed to 

create grouse habitat with the highest dietary quality.  To properly manage for age of 

sagebrush, managers need a reliable field method to evaluate the age of plants within a 

sagebrush stand.  Because woody plants are often measured using circumference, and tree 

circumference is correlated with age (Worbes et al. 2003, Nascimbene et al. 2009), I 

tested whether the circumference at the base of sagebrush plants are correlated with 

annual ring growth.  Correlating age and circumference may yield a simple, nonintrusive 

method to estimate the age of sagebrush in the field without counting annual rings, which 

requires destructive sampling.  Understanding how age influences palatability of plants is 
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an important factor in assessing and managing grouse habitat.  I hypothesized that plant 

age would be either positively or negatively correlated with plant defensive chemistry. If 

younger plants are more palatable, seeding and planting in decadent stands could be 

effective methods to improve habitat for foraging grouse. Alternatively, if older plants are 

more palatable, the nutritional consequences of mowing and herbicide could outweigh 

other potential benefits of these treatments.  

Methods 

Study Site and Field Methods  

Samples were collected from Jim Sage Mountain near Almo, Idaho (42° 9’ N, 

113° 24’ W).  This is an arid sage-steppe ecosystem with mostly low sagebrush 

(Artemisia arbuscula) and Wyoming big sagebrush (A. tridentata wyomingensis).  I used 

low sagebrush because sage-grouse select dwarf sagebrush species (including low 

sagebrush) as a foraging resource more than expected based on availability (Frye et al. 

2013).  Additionally, low sagebrush is a palatable food source for wildlife (Rosentreter 

2004).  Importantly, the morphology of low sagebrush is appropriate to test these 

questions because low sagebrush often has a single stem to measure, while other species 

(e.g. Wyoming big sagebrush) often have split bases, making accurate measurement of 

annual rings difficult.  Low sagebrush plants were selected at randomly generated points, 

and I only sampled plants with intact stems at the base of the plant to increase accuracy 

for counting annual growth rings.  Plants with split bases cannot be accurately assessed 

for age.  I used destructive sampling methods to collect 53 low sagebrush plants that 

ranged in size from approximately 5 cm to 55 cm tall to represent a full range of potential 
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ages for this species.  All samples were kept on ice during transport and were transferred 

to a -20°C freezer as soon as possible.   

Sample Processing and Chemical Analysis 

Preparation of leaf material for chemical analysis followed procedures outlined in 

Chapter 1.  Chemical analysis for monoterpenes and coumarins also followed procedures 

outlined in Chapter 1.  I focused on monoterpenes and coumarins because monoterpenes 

are known to influence sage-grouse foraging behavior (Frye et al. 2013) and coumarins 

are related to plant palatability (Rosentreter 2004). Briefly, I de-wooded and ground leaf 

samples to a fine powder, then weighed out 0.100 g for monoterpene quantification and 

0.050 g for the coumarin assay.  Monoterpenes were identified and quantified using 

headspace gas chromatography, and coumarins were analyzed using a colorimetric assay 

with a scopoletin standard curve. 

Circumference and Age 

To determine if circumference can accurately estimate the age of a plant, I cut low 

sagebrush plants at the base of the plant, using duct tape to hold together the bark on 

either side of the cut.  The circumference of the plant’s stem was measured at the base 

and was recorded in millimeters, to mimic how samples would be measured in the field.  

Then each plant was brought back to the lab and dipped in baby oil to help intensify the 

appearance of annual growth rings.  The rings were counted, including the center of the 

stem (Figure 4.1). 

  



130 
 

 

 

Statistical Methods 

First, I tested if age was related to the total monoterpene concentration in each 

plant (AUC/μg dry weight), the number of monoterpene compounds in each plant 

(number of compounds > 1% total AUC, with retention times earlier than 24 minutes), 

and the coumarin concentration (μM scopoletin equivalents/g DW).  All three types of 

chemistry were compared to age using Spearman correlation tests.  I also tested if age and 

circumference were related using a Spearman correlation test. 

Results 

Total monoterpene concentrations were not correlated with age (i.e. annual 

growth rings), however there was a trend for higher monoterpene content in older plants 

(Spearman: rho = 0.189, df  = 52, P = 0.214).  There was no impact of age on the number 

of individual monoterpene compounds in the plant (Spearman: rho = 0.117, df  = 52, P = 

0.398).  Total coumarin concentrations were not correlated with age (Spearman: rho = -

0.018, df = 52, P < 0.900).  

I found a strong correlation between the circumference of the base of low 

sagebrush plants and the annual growth rings of the plant (Figure 4.2; Spearman: 

rho=0.995, df = 52, P < 0.001).  The circumference of low sagebrush plants can be used 

to estimate the age of the plant using the linear regression formula: age (growth rings) = 

(0.2087) circumference (mm) + 0.0722. 

Discussion 

Although total monoterpene and coumarin concentrations were not correlated 

with the age of low sagebrush plants, concentrations of individual chemicals were not 
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evaluated in this study and should be evaluated in future research.  Many herbivores also 

select for high protein content (Barnett and Crawford 1994, Gregg et al. 2008, Frye et al. 

2013, Ulappa et al. 2014), which was not taken into consideration for this study.  

Additionally, parameters like habitat quality, plant density, and water accessibility also 

affect foraging selection by avian herbivores (Jones 2011), possibly more than plant age 

or chemotypes.  Nonetheless, this study is beneficial for managers evaluating the role of 

the age of plants for wildlife dependent on sagebrush habitats. 

We found no evidence that sagebrush age was related to palatability, which 

suggests that plant age may not influence foraging by herbivores.  Sagebrush treatments 

are typically prescribed with the intent of improving forage for livestock, because 

decadent sagebrush stands are often considered unproductive.  Old plants are generally 

larger and provide more biomass both for food and cover.  These habitat treatment 

practices remove important cover components, but do not improve forage quality of 

sagebrush based on protein content (Davies et al. 2009). My results suggest that these 

treatments may not reduce defensive chemistry and improve palatability, either.  

Additionally, these practices can have negative ecological impacts (Davies et al. 2012).  

Therefore, habitat treatments, including brush mowing and defoliation, are unlikely to 

improve the quality of sagebrush as a foraging resource in sage-grouse habitat. 

Using circumference as a measure of annual growth rings is a non-destructive 

method that allows researchers to assess the age of plants in the field.  I validated the use 

of circumference for estimates of age for Artemisia arbuscula in southern Idaho.  Further 

studies will be needed to expand this method to other populations of low sagebrush, other 
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species of sagebrush, and sagebrush under varying ecological conditions.  This tool may 

also be useful for examining mowing impacts, planting and seeding success, and growth 

after disturbances.  
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Figures 

 

  
Figure 4.1 A cross-section cut of low sagebrush (Artemisia arbuscula) collected at 
Raft River, Idaho, USA in fall 2015 that was used to assess the relationship between stem 
circumference and age using annual growth rings. This sample has seven annual growth 
rings. 
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Figure 4.2 Relationship between annual growth rings (age in years) and 
circumference (mm) of low sagebrush (Artemisia arbuscula) plants at Raft River, Idaho 
(rho=0.995, df = 52, P< 0.001). The formula for the correlation can be used to estimate 
ages for plants with circumference measures: age (annual growth rings) = (0.2087) 
circumference (mm) + 0.0722. 
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Management Implications 

Chapter One 

For herbivores, it is important to consider not just the structural quality of habitat 

that provides cover, but also the dietary quality of available food resources.  When 

animals forage selectively, this behavior impacts their habitat use (Youngentob et al. 

2011, Frye et al. 2013, Ulappa et al. 2014) and movement patterns (Masse and Côte 

2013).  Additionally, diet quality influences the reproductive success of many animals 

including brushtail possums (DeGabriel et al. 2009), crickets (Hunt et al. 2004), and birds 

(Chastel et al. 1995, Gregg et al. 2008).  Therefore, it is important maintain high quality 

food resources to ensure population survival for herbivores.  

For Greater Sage-grouse (Centrocercus urophasianus) at Craters, I found that 

grouse may not be selecting specific sagebrush species to eat.  At the Craters study site, 

sage-grouse selected both three-tip (Artemisia tripartita) and Wyoming big sagebrush (A. 

tridentata wyomingensis) in proportion to their availability.  This site is a post-fire 

environment with sagebrush cover well below recommended guidelines for winter habitat 

(Connelly et al. 2000).  Therefore, the habitat at Craters may be sub-optimal and grouse 

may be using acceptable, rather than optimal, food sources.  While there was no 

landscape-scale selection occurring, selection did occur at finer scales for patches and 

plants with specific structural and phytochemical characteristics, including moderate 

sized plants, lower plant secondary metabolite (PSM) concentrations, and higher protein 

concentrations.  This suggests that scale is important for habitat selection, and that a 

diversity of available resources may provide more options for foragers.  Diversity may be 
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important to provide a variety of options for both food and cover.  High chemical 

diversity in foraging resources is important for herbivores because it allows consumers 

limit intake of any single potentially toxic PSM.  Our recommendation is that managers 

should preserve large, undisturbed tracts of habitat to maintain available diversity in 

forage resources and should consider the dietary quality of those available resources.  

Additionally, managers should strive to minimize fire in sagebrush habitats, due to slow 

recovery times and sparse sagebrush cover following fires (Baker 2006, Beck et al. 

2009), thus leading to low forage availability and diversity, and potentially sub-optimal 

habitat.  However, fire is difficult to manage, so post-fire restoration is critical.  Three-tip 

sagebrush provides a post-fire food source that is potentially palatable for wildlife, since 

it re-establishes more quickly than big sagebrush (Beck et al. 2009).  While grouse use 

three-tip in degraded habitats, how grouse use this species in optimal habitats, and the 

consequences of consuming a potentially sub-optimal forage plant, is unknown and 

deserves further attention before management recommendations can be made regarding 

three-tip sagebrush. 

This research highlights the value of conserving diverse sagebrush taxa available 

because certain species may provide a valuable forage resource during habitat changes 

(including fire), or at different times of the year.  It is important to conserve and restore 

diverse structural and phytochemical habitats.  This creates a landscape better suited for 

meeting needs of diverse wildlife throughout the year, and when landscapes are altered or 

disturbed.  Restoration efforts, where appropriate, should focus on reseeding with 

sagebrush plants of high dietary quality (high protein, low PSMs) that were present at the 
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site prior to disturbance.  This requires that managers map and collect seeds from 

sagebrush species across a wide range to prepare for potential restoration efforts. 

Chapter Two 

Diet quality was also related to parasite abundance for sage-grouse.  Although 

Raillietina centrocerci is not known to be fatal or cause serious negative effects, the 

parasite may limit nutrient acquisition (Nelson 1955) and energy available for other 

energetically expensive activities.  Additionally, host-parasite dynamics may be altered 

by climate change (Molnar et al. 2013a, Molnar et al. 2013b), so continued monitoring of 

this relationship is important.  Additionally, host-parasite relationships in other grouse 

species can drive host population dynamics (Formenti et al. 2013, Dunham et al. 2014, 

Martinez-Padilla et al. 2014).  Therefore, developing a better understanding of the 

interactions among environmental conditions across space and time, diet quality, 

parasites and demographics may be important to better predict factors regulating sage-

grouse populations. 

Chapter Three 

Necklace-style radio-transmitters were found to alter some vocalization 

characteristics of the breeding display performed by male sage-grouse.  Collared males 

had a narrower bandwidth on the primary whistle, and a shorter primary whistle and 

shorter coo.  These characteristics have been linked to breeding success in some years 

and some populations, although the impact on breeding success in Idaho is unknown 

(Gibson 1996, Patricelli and Krakauer 2010.  However, necklace-style transmitters may 

alter other aspects of behavior, such as display frequency.  Additionally, collared male 
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sage-grouse do not attend leks as often as males without collars in some locations 

(Gibson et al. 2013).  These studies suggest that alternative methods for transmitter 

attachment, such as rump-mounted transmitters, should be considered for tracking male 

Greater Sage-grouse. Moreover, the study underscores the need to consider a broad range 

of consequences on the immediate behavior (e.g. vocalizations, lek attendance) and long-

term fitness (e.g. survival and reproductive success) related to the techniques researchers 

use to study wildlife. 

Chapter Four 

I did not find any evidence that plant age is correlated with plant chemistry, 

however other types of chemistry (e.g. individual phenolics, individual monoterpenes) or 

crude protein may be correlated with plant age.  Therefore, destruction of decadent 

sagebrush is unlikely to improve forage quality of sagebrush.  Circumference was 

strongly correlated with plant age, providing a relatively easy and rapid technique for 

managers to assess age of sagebrush in the field.  This is useful for managers that wish to 

assess the success of a seeding project over time, how well a site recovers after a 

disturbance, or how much recruitment there is in a sagebrush stand. 
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Settings and Sequence Parameters for Monoterpene Quantification Using a Gas 

Chromatograph and Headspace Auto-sampler 

Monoterpene concentrations were quantified using an Agilent 7694 headspace 

sampler and an Agilent 6890N gas chromatograph.  Sagebrush and pellet samples (100 

mg) were weighed into 20 mL glass headspace vials.  For each sample, 1 ml of headspace 

gas was injected into a J&W DB-5 capillary column (30m x 250μm x 0.25μm).  

Settings for the headspace auto-sampler were:  

• Temperatures: 

o Oven temperature at 100°C 

o Loop temperature at 110°C 

o Transfer line temperature at 120°C 

• Time Settings: 

o Vial equilibrium time of 20 min  

o Pressurization time of 0.20 min  

o Loop fill time of 0.50 min  

o Loop equilibrium time of 0.20 min  

o Injection time of 0.50 min 

• Vial Parameters: no shaking 

Settings for the gas chromatograph were:  

• Splitless injector at 250°C 

• Flame ionization detector at 300°C 

• Oven temperature initially at 40°C for 2 min 
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o Increased by 3°C/min to 60°C 

o Then increased 5°C/min to 120°C 

o Then increased 20°C/min to 300°C 

o Held at 300°C for 7 min 

• Inlet pressure at 80 KPa, flow rate of 1.0 mL/min 

The gas chromatograph used nitrogen for the make-up gas, and helium for the 

carrier gas. The inlet pressure was 80 KPa with a flow rate of 1.0 mL/min.  
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APPENDIX C 

Justification for Selection of Plant Secondary Metabolites for Analysis 
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Justification for Selection of Plant Secondary Metabolites for Analysis 

Plants can produce an incredible number of plant secondary metabolites (PSMs) 

for defense.  Sagebrush taxa (Artemisia sp.) are estimated to produce over 100 

compounds that may deter herbivory, including monoterpenes, phenolics, and 

sesquiterpene lactones (Kelsey et al. 1982, Turi et al. 2014).  Total numbers of 

compounds, total concentrations of compounds, presence or concentration of individual 

compounds, and compound diversity may all drive foraging behavior in herbivores.  This 

leaves a large number of potential model parameters for researchers to evaluate.  I chose 

to evaluate plant secondary metabolites from two major classes, monoterpenes and 

phenolics.   

Monoterpenes are abundant in sagebrush (Kelsey et al. 1982), and individual 

monoterpenes are known to influence diet selection of wildlife including Greater Sage-

grouse (Centrocercus urophasianus; Frye et al. 2013).  Therefore, I selected 

monoterpenes for analysis.  Previous studies with sage-grouse have found that both total 

monoterpene content and concentrations of specific monoterpenes may drive foraging 

behavior of sage-grouse (Remington and Braun 1985, Welch et al. 1988, Frye et al. 2013) 

Therefore, monoterpenes (both individual compounds and total) were included in the 

analysis.  Additionally, monoterpenes are known to be bio-active (Zhu et al. 2013), and 

therefore individual and total monoterpenes were analyzed for their impacts on parasite 

loads.  To limit the number of monoterpene compounds analyzed, I selected compounds 

that were present in greater than 1% of the total AUC (area under the chromatogram 

curve, or concentration) for the plant, and had to be present at that concentration in 70% 
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or greater of plants in that taxa.  This ensured that compounds analyzed had high enough 

concentrations to be detected, and were common in the plants analyzed. 

Although total phenolic concentration in sagebrush has not yet been associated 

with diet selection for specialist vertebrate herbivores (Frye et al. 2013, Ulappa et al. 

2014), they are abundant in sagebrush (Kelsey et al. 1982).  Additionally, phenolics 

influence diet selection for other taxa of herbivores (Freeland and Janzen 1974), and were 

therefore included in analysis.  Coumarins, a sub-class of phenolics, are related to 

palatability of sagebrush (Rosentreter 2004) and were therefore included in analysis of 

diet selection.  Although individual phenolics can also have bioactive properties, I did not 

include phenolics in my analysis of how diet quality is related to parasites.  Zhu et al. 

found that sagebrush extracts (with total monoterpenes and total phenolics) impacted egg 

hatching of helminthes (2013), therefore suggesting that a class of compounds may 

inhibit parasites, in addition to individual compounds should be further considered for 

evaluating self-medication hypotheses.  Sesquiterpene lactones may also be effective 

inhibitors of pathogens (O’Neill et al. 2010), and therefore are an important component 

of extracts or plant material for evaluating self-medication.   

Finally, concentrations of PSMs are often correlated with one another.  Therefore, 

all chemical variables (individual monoterpenes, phenolics, coumarins, and protein) and 

structural variables (height, cover, density) were assessed, for each species, in a 

correlation matrix.  For correlated variables, I first removed compounds that were found 

in only one species of sagebrush (this allowed me to compare between species), and those 

with the lowest concentrations.  When deciding between a known compound (e.g. 
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identified from retention times of known standards) and an unknown compound, the 

compound with a known identity was retained.  Additionally, for the parasite analysis, 

when a monoterpene in the plant (ingested) was correlated with a monoterpene in the 

feces, the fecal monoterpene was retained as it represented the concentration of the 

unchanged PSM that parasites would experience in the intestine.  
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Browse Detection Surveys 
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Browse Detection Surveys 

Habitat use studies involving a use-available strategy are designed to evaluate 

how habitat quality differs between resources that an animal uses versus those that are 

available.  Sampling schemes to assess available resources are designed to represent how 

an animal would use habitat if it followed a random pattern of resource use, rather than 

selecting resources.  Our study design involved comparing structural and dietary quality 

of a patch between used sites (with browsing) and random sites.  At random sites, I did 

not know if there was recent visitation by Greater Sage-grouse (Centrocercus 

urophasianus).  To accurately compare used and random sites, I wanted to limit bias 

created by omitting random sites that did have browse, since they are likely to be higher 

quality than sites without browse (Frye et al. 2013).  Additionally, I needed to confirm 

how well I actually detected browse at random sites. 

I sampled 16 used sites and 16 random sites at Craters in winter 2013-2014.  

During this sampling period, I was able to detect browse at all (100%) of the used sites, 

and found a single browsed plant at one random site (6.25%).  The browsed plant was 

collected separate from non-browsed and was used in patch-level analysis.  This 

minimizes bias by fully representing patch quality at both used and random patches, 

including both used plants and those that were not browsed.  The remaining non-browsed 

plants at random patches were collected randomly to reduce any additional biases.   

In spring 2015, I conducted surveys along transects to determine browse detection 

and accuracy.  The transect was 20 m long and had 15 plants where I used clippers to 

mimic browsing by sage-grouse.  I trained novice observers to identify browsed plants, 
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and then asked observers to count the number of browse marks on every plant within 1 m 

of the transect line.  The ability of naïve observers (n=3) to recognize browse 

(presence/absence) and ability to accurately count the number of bite marks was analyzed 

using basic descriptive statistics.  Observers did not know the number of browsed plants 

on the transect or the location of browsed plants along the transect, and were tested 

independently from other observers.  Plants had between 1 and 50 simulated bites, 

roughly representing the range of bites found on plants at this site the previous winter.  

By simulating bite marks of <10 and >10, I could assess our accuracy in classifying 

plants as either non-browsed (0-1 bites) and browsed (10+ bites). 

Overall, the three observers had 97.8% (44/45) success locating browsed plants, 

as only one observer missed any (one) plants that had simulated browsing.  This gives 

high confidence in our ability to detect browsed plants at random sites.  Among all three 

observers, the average detection of bite marks was 89.2% (181/203), ranging from 86.7 to 

93.5%.  Observers tended to have the most accurate bite counts when there were less than 

25 bites on a single plant, and all observers identified a plant with a single bite mark, 

demonstrating their ability to detect browse well.  Based on this design, no plant, counted 

by any observer, would have been inaccurately classified as browsed or non-browsed.   

Based on these results, I am confident that our use-available design was not 

biased by lack of detection of browsed plants at random sites.  Therefore, for our patch-

level analysis, I ran the statistics using the patch average of browsed and non-browsed 

plants together (for both used patches and random patches) to evaluate differences in 

overall patch quality.  If detection had been lower for browsed plants at random patches, 
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it would have been necessary to compare non-browsed plants only to account for biased 

detection.  However, this would not accurately represent the patch quality since the use of 

a patch may be driven by the presence of browsed plants. 
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APPENDIX E 

Representative Monoterpene Profiles for Sagebrush Species 
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Figure E.1 A representative chromatogram of the standard cocktail used for 
monoterpene identification.  Chromatograms were obtained using headspace gas 
chromatography (Appendix B) using 5 μL of a 10 mg/mL cocktail, dissolved in 
methylene chloride.  Chromatograms show retention time (compound identification) on 
the x-axis, and relative concentration (AUC/100 μg dry weight) on the y-axis.  
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Figure E.2 A representative chromatogram for monoterpenes found in Wyoming big 
sagebrush (Artemisia tridentata wyomingensis).  Chromatograms were obtained using 
headspace gas chromatography (Appendix B) from sagebrush samples collected at 
Craters, Idaho, USA.  Chromatograms show retention time (compound identification) on 
the x-axis, and relative concentration (AUC/100 μg dry weight) on the y-axis. 
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Figure E.3 A representative chromatogram for monoterpenes found in three-tip 
sagebrush (Artemisia tripartita).  Chromatograms were obtained using headspace gas 
chromatography (Appendix B) from sagebrush samples collected at Craters, Idaho, USA.  
Chromatograms show retention time (compound identification) on the x-axis, and relative 
concentration (AUC/100 μg dry weight) on the y-axis. 
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Figure E.4 Ten representative chromatograms for monoterpenes found in Wyoming 
big sagebrush (Artemisia tridentata wyomingensis), showing intraspecific variation.  
Chromatograms were obtained using headspace gas chromatography (Appendix B) from 
sagebrush samples collected at Craters, Idaho, USA.  Chromatograms show retention 
time (compound identification) on the x-axis, and relative concentration (AUC/100 μg 
dry weight) on the y-axis. 
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Figure E.5 Ten representative chromatograms for monoterpenes found in three-tip 
sagebrush (Artemisia tripartita), showing intraspecific variation.  Chromatograms were 
obtained using headspace gas chromatography (Appendix B) from sagebrush samples 
collected at Craters, Idaho, USA.  Chromatograms show retention time (compound 
identification) on the x-axis, and relative concentration (AUC/100 μg dry weight) on the 
y-axis. 
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Figure E.6 Representative monoterpene profiles for three-tip (bottom line; Artemisia 
tripartita) and Wyoming big sagebrush (top line; A. tridentata wyomingensis) from 
Craters, Idaho, USA.  Peaks show individual compounds, with the height of the peak 
indicating relative abundance of the compound.  Plus signs (+) indicate compounds found 
only in Wyoming big sagebrush. There were no compounds in three-tip sagebrush that 
were not present in Wyoming big sagebrush. 
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APPENDIX F 

Dose-Dependent Effects of Plant Secondary Metabolite Consumption on Herbivores 
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Table F.1 Negative physiological side effects are associated with consuming plant secondary metabolites (PSMs).  These 
side effects are dose-dependent, and there may also be dose-dependent therapeutic effects (Table G.2).  Behavioral adaptations 
to these side effects include meal size regulation (Wiggins et al. 2003), habitat selection (Frye et al. 2013), or energy allocation 
(Sorensen et al. 2005). 

Negative Effects 

PSM, or 
Class of 

Compounds Details Study System Reference 
Nausea Ricin Vomiting and diarrhea caused by toxin 

consumption 
Ricin1 ingested by 
humans 

Audi et al. 2005 

Altered body 
temperature 

Juniper PSMs Higher body temperature for animals on 
PSM-rich diet than on control diet 

Woodrats2 
consuming juniper3 
versus control chow 

Dearing et al. 
2008 

Constrain energy 
budget  

Juniper PSMs Reduced locomotor activity by 25 to 33% Woodrats2 
consuming juniper3 

Sorensen et al. 
2005 

Diuretic Juniper PSMs PSM consumption increased urine flow, more 
diluted urine, decreases blood volume, 
increased water intake to compensate for 
water loss through urine 

Woodrats2 
consuming juniper3 

Dearing et al. 
2001 

Upset pH 
homeostasis 

Coniferyl 
benzoate 

Increased ammonium excretion  Captive Ruffed 
Grouse4 consuming 
aspen buds5 

Guglielmo et al. 
1996 

 Eucalyptus 
PSMs 

α-Pinene 

Increased acidity in urine 

 
Increased acidity in urine 

Brushtail possums6 
consuming 
eucalyptus7 

Woodrats2 

Wiggins et al. 
2006 

Dearing et al. 
2000 

Lower energy 
assimilation  

Coniferyl 
benzoate 

Decreased overall energy assimilation by 
24% 

Captive Ruffed 
Grouse4 consuming 
aspen buds5 

Guglielmo et al. 
1996 

Negative nitrogen 
balance  

Coniferyl 
benzoate 

Ornithine excretion, ammonium excretion, 
and glucuronic acid conjugation increased 
nitrogen excretion 

Captive Ruffed 
Grouse4 consuming 
aspen buds5 

Jakubas et al. 
1993a 
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Protein turnover 1,8 – cineole, 
benzoic acid 

30% loss of protein from dietary intake, used 
in detoxification 

Captive brushtail 
possums6 consuming 
chow 

Au et al. 2013  

Energetically 
expensive to 
metabolize  

Coniferyl 
benzoate 

 
Juniper PSMs 

10% to 14% energetic cost to produce 
detoxification conjugates (ornithine and 
glucuronic acid) 

Higher detoxification conjugate excretion on 
PSM-rich diet than on control diet 

Captive Ruffed 
Grouse4 consuming 
aspen buds5 

Woodrats2 
consuming juniper3 

Guglielmo et al. 
1996 

 
Sorensen et al. 
2005 

Reduce digestibility 
of nutrients  

Sagebrush 
terpenoids 

Increased in vitro organic matter digestibility 
with lower crude terpenoids (monoterpenes) 

Rumen incocula8 and 
sagebrush9 

Striby et al. 
1987 

Reduce activity of 
digestive enzymes 

Sagebrush 
monoterpenes 

Some individual monoterpenes decreased 
enzyme activity in sage-grouse and chicken 
livers 

Greater Sage-
grouse10 and 
domestic chickens11 

Kohl et al. 2015 

Oxidative stress Abrin, ricin Increased reactive oxygen species (ROS) 
throughout consumer’s body 

Abrin from Abrus 
precatorius in lab 
mice12 

Bhasker et al. 
2014 

 

Weight loss 10 

 

Coniferyl 
benzoate 

 

Caused weight loss in feeding trials 

 

Captive Ruffed 
Grouse4 consuming 
aspen buds5 

 

Jakubas et al. 
1993a 
Jakubas et al. 
1993b 

 Juniper PSMs 9% body mass loss on PSM-rich diet 
compared to control diet 

Woodrats2 
consuming juniper3 

Sorensen et al. 
2005 

 
 α-Pinene Lost 4 to 8% body mass in three days on 

PSM-rich diet 
Woodrats2 
consuming juniper3 

Dearing et al. 
2001 
Dearing et al. 
2000 

Organ failure  Ricin Toxin ingestion led to liver failure, renal 
dysfunction, cardiovascular collapse 

Ricin1 ingested by 
humans 

Audi et al. 2005 
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Death  Various 
plants 

Ingesting certain plants causes fatality due to 
plant toxins 

Many (including 
ricin1) 

Froberg et al. 
2007 
Audi et al. 2005 

(Striby et al. 1987, Jakubas et al. 1993a, Jakubas et al. 1993b, Guglielmo et al. 1996, Dearing et al. 2000;2001, Audi et al. 2005, Froberg et al. 2007, Dearing et al. 2008, Au et al. 2013) 
1 Ricin (castor bean): Ricinus communis  
2 Woodrats: Neotoma stephensi and N. albigula 
3 Juniper: Juniperus monosperma 
4 Ruffed Grouse: Bonsa umbellus 
5 Aspen: Populus tremuloides 
6 Brushtail possum: Trichosurus vulpecula 
7 Eucalyptus: E. globulus, E. regnans 
8 Rumen inocula: Odocoileus hemionus, Ovis ammon aries, Bos Taurus 
9 Sagebrush: Artemisia spp. (A. tridentata wyomingensis, A.t. vaseyana, A.t. tridentata, A. tripartita) 
10 Greater Sage-grouse: Centrocercus urophasianus 
11 Domestic chicken: Gallus gallus domesticus 
12 Lab mice: Mus musculus 
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Table F.2 Medicinal effects of certain plant secondary metabolites (PSMs) documented for various taxa.  This is not an 
exhaustive list, but provides information on some bioactive compounds that exist in sagebrush. 

Medicinal 
Effect PSM Details Study System Reference 

Anthelmintic Sesquiterpene 
lactones, steroid 
glucosides 

Reduces nematode and gastrointestinal 
parasite loads, doses (concentration 
unknown) consumed by wild animals are 
bioactive 

Wild 
chimpanzees 
eating Vernonia 
amygdalina 

Huffman and Seifu 
1989, Huffman 
1993; 1997, 
Koshimizu et al. 
1994, Ohigashi et al. 
1994  

 Tannins Tannin consumption decreased 
gastrointestinal nematode loads by 90%, and 
resulted in lower parasite loads than 
ivermectin (commercial anthelmintic drug) 

Domestic sheep 
(Ovis aeries) 

Villalba et al. 2010 

 Sesquiterpenes, 
monoterpenes (α-
pinene, β-pinene, 
1,8-cineole) 

Piper aduncum essential oil inhibited 
nematode hatching.  Essential oil was 
approximately 80% monoterpenes and 14% 
sesquiterpenes.  1,8-cineole accounted for 
56% of the oil volume. 

Haemonchus 
contortus 
nematode in 
domestic sheep 

Oliveira et al. 2014 

 1-8-cineole, 
camphor 

1,8-cineole inhibited 77% of larval 
migration, camphor effects were additive to 
cineole.  Also Artimesia annua extracts were 
effective controlling parasite loads. 

Haemonchus 
contortus 
nematode, in vitro 

Zhu et al. 2013 

 Acacia extracts Treatment with plant extracts caused 
paralysis and eventual death in Raillietina 
tapeworms 

Acacia oxyphylla 
extracts on 
Raillietina, in 
vitro 

Dasgupta and Roy 
2010 

Anti-parasitic Tannins Anti-parasitic properties in Pistacia lentiscus Goats consuming 
Pistacia  

Landau et al. 2010 

Antimalarial Limonoids 
 
 

Antimalarial activity for consumers 
 
 

Wild 
chimpanzees 
eating Trichilia 

Krief et al. 2004 
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Artemisinin 
(sesquiterpene 
lactone) 

Antimalarial activity for consumers, as well 
as anti-cancer activity 

rubescens 
Human treatment 
of malaria 

O’Neill et al. 2010 

Antibiotic Methoxypsoralen Strong antibiotic  Wild 
chimpanzees 
eating Ficus 
exasperata 

Rodriguez and 
Wrangham 1993 

     
Anti-coccidial Monoterpenes: 

artemisinin, 1,8- 
cineole, camphor 

Chickens treated with single monoterpenes 
had decreased Eimeria loads (effects of each 
monoterpene were different for each Eimeria 
species) 

In vivo test of 
sagebrush 
(Artemisia annua) 
extracts on 
Eimeria sp. in 
chickens 

Allen et al. 1997, 
Allen et al. 1998 
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APPENDIX G 

The McMaster Egg Counting Technique: Quantifying Oocysts in Fecal Pellets 
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The McMaster Egg Counting Technique: Quantifying Oocysts in Fecal Pellets 

I used the McMaster egg counting technique (Gordon and Whitlock 1939) to quantify the 

number of tapeworm (Raillietina centrocerci) oocysts in frozen Greater Sage-grouse 

(Centrocercus urophasianus) fecal pellets.  Fresh pellets were collected in the field and 

stored in a -20° C freezer until analysis.  Although storage time in refrigerators can 

degrade eggs (van Wyk and van Wyk 2002), I found no difference in parasite loads for 

samples stored different lengths of time at this temperature, however a full analysis of the 

storage effect is pending.  The McMaster method is well established and widespread in 

veterinary medicine, and was optimized for quantifying parasite loads in this system 

using the following protocol. 

Personal Protective Equiment: lab coat, goggles, rubber gloves, closed toed shoes  

Supplies:  

• Beakers or plastic containers 

• Balance 

• Tea strainer, cheesecloth or 

dental napkin 

• Funnel 

• Measuring cylinder 

• Stirring device (fork, spatula, 

tongue depressor) 

• Pasteur pipettes  

• Flotation fluid 

• McMaster counting slide 

• Compound microscope 

• Calipers
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Procedure: 

1. Prepare fecal pellets by measuring each 

pellet with calipers and cutting into 0.5 

cm long sections.  Mix all pellets 

together in a weigh boat and weigh out 

following the “decision tree” for pellets. 

2. Weigh approximately 2 grams of feces 

and place into a beaker. 

3. Add 28 ml of floatation fluid. 

4. Stir the contents of the beaker 

thoroughly with a tongue depressor or 

spatula (Figure G.1).  

5. Filter the fecal suspension through a tea 

strainer and layers of cheesecloth into 

the second container (Figure G.2).    

6. Stir the filtrate in the container with a 

Pasteur pipette. 

7. Using the pipette, withdraw a sub-

sample as the filtrate is being stirred. 

8. Fill the first compartment of the 

McMaster counting chamber with the 

sub sample (Figure G.3).   

Figure G.1 Stirring fecal material 
into a saturated salt-sugar solution. 

Figure G.2 Filter fecal 
suspension through cheesecloth and 
funnel. 

Figure G.3 Fill each chamber of 
the McMaster slide using a pipette. 
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9. Stir fluid again and fill second chamber with another sub sample. 

10. Allow the counting chamber to stand for 5 minutes. 

11. Examine the subsamples of the filtrate under the compound microscope at 10 x 10 

magnification (Figure G.4), carefully distinguishing between oocysts and pollen 

grains (Figure G.5). 

12. Identify and count all eggs within the engraved area of both chambers. 

13. Dry fecal samples and cheesecloth in an oven at 60° F for 3 days, and re-weigh to 

measure the sample dry weight.  

 

 

 

 

Figure G.4 The 
McMaster slide 
chamber under the 
microscope at 100x.  
Etched lines are not 
visible because they 
are at the edge of the 
field of view, but 5 
oocysts are present in 
this photo. Photo by 
Joel Velasco. 

Figure G.5 Oocysts 
and pollen grains can 
be easily confused.  
Two pollen grains 
from Artemisia sp. are 
shown to assist with 
identification (photo 
from the USA Pollen 
Database, 2015). 
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Calculation of the Results: 

• Count the number of eggs within the grid of each chamber, ignoring those outside 

the etched squares. 

• Multiply the total by 50, which estimates the eggs per gram of feces (e.p.g.) 

Multiply by 50 because: 15 uL per chamber times 2 chambers is a total of 30 uL 

of solution counted.  This is 1/100th of the total sample volume (30 uL; so divide 

by 100), which contains 2 g (wet) of feces (so multiply by 2). 

For example: 

         Chamber 1       Chamber 2 

 

12 eggs seen in chamber 1 and 15 eggs seen in chamber 2 = (12 +15) x 50 

= 1,350  e.p.g.  

• Correct for dry weight of sample by dividing e.p.g by the dry weight of the fecal 

sample (obtained after drying in the oven). 

Floatation fluid: salt/sugar solution (specific gravity: 1.28) 

1.  Dissolve 400 g sodium chloride in 1000 mL tap water to make a saturated salt 

solution.  Beakers can sit on a hot plate to aid in dissolving crystals. 

2.  Add 500 g sugar to the saturated salt solution. 

3.  Stir until the sugar is dissolved. 
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Pellet Weighing “Decision Tree” 

First, remove any broken or smashed pellets and place them in a large weigh-boat.  

Prepare pellets by measuring the length of each pellet on the longest side and record in a 

lab notebook to evaluate if there is a relationship between size of the pellet and bird sex 

(Smith et al. 1995).  Next, cut each pellet into small pieces (approximately 0.5 cm long) 

and stir the sample to mix all the pieces together.  Weigh all samples into separate Ziploc 

bags (labeled with “Parasites”, “GA”, “Monoterpenes” or “Extra”.  Record the weight 

(every digit) on the bag and in your lab notebook.  Begin weighing samples for analysis: 

• 2 g for parasite analysis 

o Weigh into a Ziploc bag labeled “Parasites” with sample information and 

record weight on bag and in notebook 

• 1.5 g for glucuronic acid (GA) analysis 

o Weigh into a Ziploc bag labeled “GA” with sample information and 

record weight on bag and in notebook 

o Can be anywhere between 1.4 and 1.6 g 

• 0.5 g for monoterpene (Appendix B) analysis 

o Weigh into a Ziploc bag labeled “Monoterpenes” with sample information 

and record weight on bag and in notebook 

o This will eventually be ground with liquid nitrogen and 0.100 g will be 

weighed into a glass headspace vial.  The remainder of the ground sample 

will go into a glass scintillation vial. 

• Remainder as “extra” (place back in original Ziploc and label “extra”) 
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Glucuronic acid (GA) analysis is an important additional measurement because 

GA is a major metabolic pathway that is related to the amount of PSMs an individual 

consumes, absorbs, and metabolizes (Guglielmo et al. 1996).  Therefore, GA can be used 

as a biomarker to measure toxicity, or exposure to PSMs. A colorimetric assay 

(Blumenkrantz and Asboe-Hansen 1973) can be used to quantify the concentration of GA 

excreted in fecal droppings from avian herbivores, which can be used to estimate toxicity.  

Relationships between GA, PSMs that were ingested and excreted, and parasite loads can 

provide insight about the relative costs associated with parasite burdens and PSM 

detoxification, and can help evaluate potential energetic trade-offs between detoxification 

and immune function. 
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