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ABSTRACT 

Long bones develop via endochondral ossification, a process in which cartilage 

precedes bone. During endochondral ossification prechondrogenic cells undergo 

proliferation and apoptose as cells of the periosteum differentiate into bone. The process 

of endochondral ossification is regulated by a group of endocrine as well as paracrine 

molecules that includes bone morphogenetic protein-2 (BMP-2) and parathyroid 

hormone-related peptide (PTHrP). Collagens are extracellular matrix molecules that are 

present in a spatiotemporal manner during endochondral ossification. Collagen XI alpha 

1 (Col11a1) is a minor fibrillar collagen that is alternatively spliced during development 

and can result in up to eight different spliceforms. During endochondral ossification, 

Col11a1 spliceforms have a distinct expression profile in the growing long bone. The 

significance of the different spliceforms has not been characterized. Here, I studied the 

effects of BMP-2 and PTHrP on the expression of Col11a1 in pre-chondrogenic mouse 

ATDC5 and pluripotent mouse C2C12 cells. I also investigated the role of different 

Col11a1 spliceforms in BMP-2-mediated C2C12 osteoblast differentiation. My results 

suggest a role for BMP-2 in regulating Col11a1 splicing and expression that includes the 

induction of exons 6A, 7, and 8. Further I show that while PTHrP alone did not affect 

Col11a1 expression, when combined with BMP-2, PTHrP was able to diminish BMP-2-

induced Col11a1 expression. In addition, Col11a1 NTD[p6b-7] reduced BMP-2 activity 

in C2C12 cells while Col11a1 NTD[p7] did not have any significant effects. Col11a1 

NTD[p6b-7] also reduced the expression of alkaline phosphatase and collagen 1 alpha 1 
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and increased the expression of Runx2 and osteocalcin while NTD[p7-8] induced the 

expression of osteocalcin, Runx2, and collagen alpha 1. When Col11a1 was knocked 

down, the expression of BMP-2-induced markers alkaline phosphatase, Runx2, 

osteocalcin, and collagen 1 alpha 1 were reduced at 24h post induction with BMP-2, 

suggesting a role for collagen XI alpha 1 during early osteoblast differentiation. In 

ATDC5 cells, I determined a role for PTHrP in the induction of collagen XI alpha 1 

exons 6A, 7, and 8 during early chondrocyte differentiation and exon 6B during late 

chondrocyte differentiation. Overall the results of this project show a novel role for 

collagen XI alpha 1 in BMP-2-mediated osteoblast differentiation and also suggest a role 

for PTHrP in regulating collagen XI alpha splicing and expression during ATDC5 

chondrocyte differentiation.  
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INTRODUCTION 

The skeleton starts forming during the second month of human development. 

Initially, mesenchymal cells condense and define the position and basic shape of the 

future skeletal element. Once the initial mesenchyme condensations are formed, 

depending on the growth factors present in the immediate environment, cells either 

differentiate into osteoblasts to form bone or into chondrocytes to form cartilage. Wnt 

signaling drives mesenchymal cells to differentiate into osteoblasts. In the absence of 

Wnt signaling, SRY (Sex Determining Region Y)-Box 9 (Sox9) levels increase and 

mesenchymal cells differentiate into prechondrogenic cells. Once committed, 

prechondrogenic cells start producing major cartilage extracellular matrix proteins, 

including collagens II and XI. Once prechondrocytes are formed, cartilage starts growing 

rapidly in an appositional and interstitial manner, a process known as endochondral 

ossification. Interstitial growth occurs as prechondrocytes differentiate into chondrocytes, 

which then enlarge and apoptose. As chondrocytes hypertrophy, the perichondrium is 

infiltrated with blood vessels and the periosteum is formed. The periosteum houses 

mesenchymal cells that upon getting a signal from hypertrophic cells differentiate into 

osteoblasts. Bone is formed as osteoblasts start producing a non-mineralizing fibrillar 

extracellular matrix, which is then organized into mineralized matrix. Proper bone growth 

is dependent upon a complex network of systemic and local growth factors. Sox9 is 

essential in the initial commitment into cartilage. Prechondrocytes and cells of the 

perichondrium both synthesize Parathyroid hormone related Peptide (PTHrP) to maintain 
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chondrocytes in a proliferative state. Prehypertrophic cells on the other hand produce 

Indian Hedgehog (IHH), which promotes hypertrophy. Simultaneously, cells of the 

periosteum respond to growth factors released by hypertrophic chondrocytes and promote 

differentiation of mesenchymal cells into osteoblasts. Bone morphogenetic protein-2 

(BMP-2) is crucial for promoting chondrocyte hypertrophy as well as osteoblast 

differentiation in the growth plate. Interstitial and appositional growth processes are 

linked and the accurate orchestration of different mediators achieves proper bone growth. 

Fibrillar collagens are abundant extracellular matrix proteins that provide structure and 

support for cells within the growth plate. During endochondral ossification, collagens are 

expressed in a tightly regulated spatiotemporal manner. The major fibrillar collagen 

present in cartilage is collagen type II, whereas collagen type I is predominantly found in 

bone. Collagen XI is a minor yet essential component of collagen fibrils in the 

extracellular matrix. Collagens are formed as three procollagen chains come together and 

form a heter- or homo-trimer in the extracellular matrix. Collagen XI alpha 1 undergoes 

alternative splicing during development and the different spliceforms show a distinct 

spatiotemporal expression pattern. My goal in this project was to characterize the 

expression of collagen XI alpha I alternative spliceforms in mouse chondrocytes and 

pluripotent stem cells. Further, I assessed the effects of two essential growth factors 

PTHrP and BMP-2 on collagen XI expression during endochondral ossification. I 

hypothesized that PTHrP and BMP-2 regulate collagen XI alpha 1 expression. 

To test my hypothesis, I used two different cell models of pluripotent mouse 

C2C12 cells and prechondrogenic mouse ATDC5 cells to assess PTHrP effects on the 

expression of collagens XI utilizing quantitative real-time PCR. My findings indicate that 
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PTHrP regulates collagen XI alpha 1 spliceform expression during chondrogenesis. I also 

show that PTHrP alone does not change the expression of collagen XI alpha 1 in 

pluripotent C2C12 cells. 

Further, I used the mouse pluripotent C2C12 cells and assessed the role of BMP-2 

in collagen XI alpha 1 expression during osteoblast differentiation.  The results of this 

study clearly show that BMP-2 regulates collagen XI alpha 1 expression and that 

collagen XI is essential for canonical BMP-2-induced signaling and thus osteoblast 

differentiation in C2C12 cells. 

In conclusion, my work here shows that 1) continuous treatment of pluripotent 

C2C12 cells with PTHrP does not affect collagen XI expression; 2) PTHrP changes the 

expression of collagen XI spliceforms during ATDC5 chondrogenesis in vitro; and 3) 

Collagen XI alpha 1 spliceforms regulate osteoblast differentiation in a BMP-2- 

dependent manner. 
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Abstract 

Collagen XI is an extracellular matrix protein required for embryonic 

development with a role in both nucleating the formation of fibrils and regulating the 

diameter of heterotypic fibrils during collagen fibrillar assembly. Although found in 

many different vertebrate tissues throughout the body, Col11a1 is best known for its role 

in cartilage during endochondral ossification. To further understand the function of 

Col11a1 in the process of bone formation, we compared skeletal mineralization in 

wildtype (WT) mice and Col11a1-deficient mice. Overgrowth of the periosteal bone 

collar of the developing long bones was observed in the case of Col11a1-deficient mice 

compared to WT littermates. The overgrowth was observed on the outside surface of the 

bone.  To investigate the role of Col11a1 in osteoblast differentiation, we analyzed the 

regulation of Col11a1 expression in multipotent C2C12 cells. We found that BMP-2 and 

PTHrP regulate both the level of expression as well as the pre-mRNA splicing of 

Col11a1. BMP-2 promoted the inclusion of alternatively spliced exons 6A and 8 of the 

variable region; however, PTHrP inhibited this effect. While Col11a1 knockdown in pre-

osteoblasts initially reduced the BMP-2-induced expression of osteoblast markers 

osteocalcin (OCN), runt-related transcription factor 2 (Runx2), alkaline phosphatase 

(ALP), and Collagen I alpha I (Col1a1), at later time points, the opposite effect was 

observed, and the knockdown of Col11a1 promoted the BMP-2-induced expression of 

osteoblast markers. Introduction of recombinant Col11a1 fragments during osteoblast 

differentiation also osteoblast-specific isoforms of recombinant Col11a1 promoted BMP 

signaling. In contrast, chondrocyte-specific recombinant isoform Col11a1 [p6b-7] 

inhibited BMP-2-stimulated expression of osteoblast markers and BMP activity. Lastly, 
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Col11a1 regulated C2C12 proliferation in a spliceform-specific manner. These results 

show for the first time that Col11a1 expression and alternative splicing is regulated by 

BMP-2 and suggests a novel role for Col11a1 spliceforms in osteoblast differentiation 

and bone collar formation during endochondral ossification.   

Keywords: Col11a1, BMP-2, C2C12, PTHrP, alternative splicing, gene expression. 

Graphical abstract: 

 

Highlights  

• Col11a1-deficient mice exhibit increased bone collar thickness compared to 
wildtype. 

• BMP-2 and PTHrP regulate the expression of Col11a1 during osteoblast 
differentiation.  

• Col11a1 isoforms regulate the BMP-2-induced differentiation of C2C12 cells into 
osteoblasts. 
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Introduction 

The skeleton develops via processes of endochondral and intramembranous 

ossification. Long bones elongate by means of interstitial growth and widen via 

appositional growth. Interstitial growth of long bones occurs via endochondral 

ossification in which cartilage is replaced by bone whereas appositional growth occurs as 

progenitor cells of the periosteum differentiate into osteoblasts and deposit bone. The 

process of bone development starts during fetal life and persists until puberty when 

growth ceases. In a typical long bone, endochondral ossification occurs at the growth 

plate, which consists of specific zones (Figure 1A) [1]. 

 
Figure 1. Endochondral ossification in the growth plate starts with 
prechondrocytes that undergo initial differentiation into chondrocytes. Proliferative 
chondrocytes apoptose and cartilage is replaced by bone as mesenchymal stem cells of 
the periosteum differentiate into osteoblasts. PTHrP and BMP-2 are key plays in the 
process of endochondral ossification. While PTHrP is widely known for its role in 
maintaining chondrocytes proliferation and inhibiting terminal differentiation, BMP-2 is 
an inducer of chondrocyte hypertrophy as well as osteoblast differentiation via the 
canonical SMAD signaling pathway. 
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The resting zone contains pre-chondrocytes that differentiate into mature 

chondrocytes forming the proliferative zone. Proliferating chondrocytes then align into 

columns, terminally differentiate into hypertrophic chondrocytes, and undergo apoptosis. 

As hypertrophic chondrocytes apoptose, pre-osteoblast progenitor cells of the periosteum 

differentiate into osteoblasts, the newly formed bone tissue is innervated, blood vessels 

infiltrate, and calcification occurs. The highly dynamic environment of the growth plate 

involves a complex network of hormones, paracrine molecules, and growth factors that 

work together to facilitate processes of cell proliferation and differentiation that lead to 

proper tissue development. 

Collagens are abundant extracellular matrix proteins that maintain tissue structure 

and control the environment in which cells find themselves [2]. Mutations in collagen XI 

have been linked with rare and detrimental human diseases including autosomal 

dominant Marshall’s and Stickler syndromes, the more severe autosomal-recessive 

fibrochondrogenesis, and otospondylomegaepiphyseal dysplasia (OSMED) [3–8]. In 

cartilage, mature collagen XI protein consists of three different alpha chains: Col11a1, 

Col11a2, and Col11a3 (an overglycosylated form of Col2a1). However, in bone, a 

collagen V/XI hybrid molecule constitutes the minor fibrillar collagen, consisting of 

Col5a1, Col5a2, and Col11a1. Targeted mutations of Col11a1 in mice closely reflect 

characteristics of the human diseases. Mice lacking Col11a1 die neonatally and exhibit a 

phenotype that includes facial dysmorphism and wider but shorter metaphyses in the long 

bones, suggesting a role for Col11a1 in proper growth plate development [9–11]. While a 

direct effect on growth plate cartilage has been defined, the consequences of absent or 
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reduced levels of Col11a1 expressed by osteoblasts has not been investigated.  Col11a2 

null mice exhibit a milder cartilage phenotype similar to OSMED patients [12, 13]. 

The Col11a1 alpha chain of collagen XI contains a non-collagenous amino 

terminal domain (NTD) composed of an amino propeptide (Npp) and a variable region 

(VR) [14, 15] (Figure 2 ).  

 
Figure 2. The variable region within the NTD domain of collagen XI alpha 1 
undergoes alternative splicing that can result in several different isoform. Each 
spliceform is expressed in a distinct spatiotemporal manner during development. The 
exact function of alternative splicing in collagen XI alpha 1 is yet to be determined 
(Adapted from [19]). 

The NTD is found on the surface of heterotypic collagen fibrils and sterically 

hinders further addition of collagen molecules, thus regulating fibril diameter [16, 17]. 

Interestingly, alpha chains of collagen XI undergo alternative splicing. Col11a2 splice 

variants quickly converge to produce a single splice isoform during development [18]. 

Conversely, the variable region of Col11a1 undergoes alternative splicing in a 

spatiotemporal manner and the different spliceforms persist as mature proteins in the 

ECM, suggesting a role in maintaining or directing matrix events by not only mediating 
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fibrillogenesis but also by other mechanisms such as interaction with other extracellular 

matrix molecules [19–22].  

Materials and Methods 

Mice 

The embryos used in this study were provided by Dr. Robert Seegmiller (Brigham 

Young University). The mice were housed and euthanized as approved by the Institute of 

Animal Care and Use Committee of Brigham Young University. All embryos used in this 

study were at embryonic day 17.5. A total of six wildtype (WT) (+/+) and three 

homozygous (-/-) on a C57Bl6 background were analyzed. 

Micro-CT Analysis 

Embryos were scanned with a SkyScan 1172 high-resolution micro-CT scanner 

(MicroPhotonics, Aartselaar, Belgium) to generate data sets with a 1.7 μm3 isotropic 

voxel size using an acquisition protocol that consisted of X-ray tube settings of 60 kV 

and 250 μA, exposure time of 0.147 seconds, six-frame averaging, a rotation step of 

0.300 degrees, and associated scan times were approximately 7 hours. Following 

scanning, two-dimensional reconstructions were used to produce 6000 serial 4000 x 4000 

pixel cross-sectional images. Three-dimensional models were reconstructed using a fixed 

threshold to analyze the mineralized bone phase using ImageVis 3D software (University 

of Utah, Center for Integrative Biomedical Computing, Salt Lake City, UT). A Gaussian 

filter (σ=1.0, kernel=3) was used to remove high frequency noise followed by an adaptive 

threshold to segment the 3D images, which were visually checked to confirm inclusion of 

complete volume of interest. 
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Gross geometric measurements were performed using Skyscan CT Analyzer 

(CTAn) Software (MicroPhotonics, Aartselaar, Belgium). Comparisons of shape and 

cross-sectional area were conducted for long bones. CTAn was used to determine 

trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation 

(Tb.Sp). Bone volume (BV) and bone surface (BS) were calculated based on the 

hexahedral marching cubes volume model of the binarized objects within the volume of 

interest and the faceted surface of the marching cubes volume model, respectively. Total 

tissue volume (TV) was defined as the volume-of-interest. Trabecular bone volume 

fraction (BV/TV) was calculated from BV and TV values. Cross-sectional 

reconstructions were color-coded according to three density ranges: high-density range 

(white), intermediate-density range (blue), and low-density range (green). 

Cell Culture and Differentiation  

The mouse pluripotent cell line, C2C12 was purchased from ATCC and 

maintained in DMEM (Sigma Chem. Co., St. Louis, MO) supplemented with 10% fetal 

bovine serum (FBS) (GIBCO, Grand Island, NY) and antibiotics (100 units/mL of 

penicillin-G and 100 μg/mL streptomycin). Cells were kept at 37°C in a humidified 

atmosphere of 5% CO2 in air. To differentiate C2C12 cells into osteoblasts, cells were 

plated at 2 x 104 cells/cm2 in DMEM supplemented with 5% FBS, 100U/mL penicillin 

and 100 μg/mL streptomycin and recombinant human BMP-2 (300 ng/mL) (R&D 

Systems, Minneapolis, MN). Control cells were kept in DMEM supplemented with 5% 

FBS and antibiotics. Medium was changed every 72 hours and supplemented with fresh 

BMP-2. For BMP-2 and PTHrP experiments, cells were treated with BMP-2 for five days 

after which PTHrP (10-7 M) (Sigma Aldrich; St. Louis, MO) was added on day 5 for 24 



13 
 

 

hours, and RNA was harvested on day 6. For recombinant Col11a1 experiments, DNA 

encoding fragments including exons 2-5, 6B, 7, 8, and 9 were amplified, ligated into 

expression vectors and expressed as previously described [17]. Recombinant proteins 

were purified, refolded, and characterized as previously described [17, 61]. Col11a1 N-

terminal fragments were added to C2C12 cells in culture at a concentration of 10 – 60 

µg/mL. 

Transfection of Cells with Small Interfering RNA  

C2C12 cells were grown to 70-80% confluency. Media was then removed and 

cells were rinsed with Phosphate Buffer Saline (PBS) twice and 2 mL of serum-free 

DMEM was added into each well of a 6-well plate. Col11a1 or SMAD4 siRNA and 

scrambled control siRNA (10 μM) (Life Technologies, Carlsbad, CA) were diluted in 300 

μL serum free OPTIMEM (Life Technologies, Carlsbad, CA) and mixed with nine 

microliters of RNAiMAX Lipofectamine (Life Technologies, Carlsbad, CA) diluted in 

300 μL serum-free OPTIMEM. The mixture was incubated at room temperature for 15 

min and then 250 μL of mixture was added into each well of a 6-well plate that already 

contained 1.75 mL of serum-free DMEM. Cells were incubated with siRNA-containing 

medium for 24 hours at 37°C in a humidified chamber containing 5% CO2.  The final 

concentration of the siRNA was 15 nM. A fluorescent siRNA oligonucleotide (siGLO, 

Dharmacon, Lafayette, CO) was used to confirm efficient delivery of siRNA to 

71% ± 5.1 (SD) of the cells. After treatment, RNA was extracted as described below to 

confirm Col11a1 knockdown and to determine the expression levels of osteoblast 

markers. Scramble control siRNA experiments were carried out in an identical manner to 

account for any non-specific effects. Cells were treated with BMP-2 (300 ng/mL) for 24h 
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and 72h after the 24h transfection to analyze the effect of diminished Col11a1 levels on 

BMP-2 signaling activity.  For BMP-2 treatment, after the 24h Col11a1 siRNA 

transfection, media was replaced with DMEM containing 5% FBS and BMP-2 (300 

ng/mL) and incubated for 24h and 72h. RNA was extracted as described below.  

Semi-Quantitative Polymerase Chain Reaction 

Total RNA was extracted from cells using TriZol (Gibco-BRL; Grand Island, 

NY) and 2 μg of RNA was used to synthesize cDNA using High-Capacity cDNA 

Reverse Transcription Kit with RNase inhibitor (Life Technologies, Carlsbad, CA). 

Twenty-five microliter PCR reactions were prepared using 12.5 μL GoTaq Colorless 

Master Mix (Promega, Madison, WI), 1 μL of each forward and reverse primer (10 μM), 

3 uL undiluted cDNA, and 7.5 uL nuclease-free water. Samples were amplified for 32 

cycles, with denaturation at 95°C (3 min), annealing at 57°C (1 min), and extension at 

72°C (30 sec). Col11a1 forward primer was designed to anneal within exon 5 and the 

reverse to anneal within exon 9, flanking the variable region: 5’- CAG GAG CCG CAC 

ATA GAT GAG-3’ (forward), 5’- TTT CTC TCC ATA TGC GCC AT-3’ (reverse), 

generating a defined set of PCR products reflecting the alternative splicing patterns of the 

specific cell type. To account for any difference in the amount of RNA, glyceraldehyde 

3-phosphate dehydrogenase (GAPDH) was chosen as endogenous control. The 

amplification products were separated by electrophoresis through 4% Nusieve 3:1 

Agarose (Lonza, Basel, Switzerland) gels according to manufacturer’s instructions and 

visualized under UV light after staining with ethidium bromide.  
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Primer Design and Quantitative Real-Time PCR 

Primers were designed for each exon using Primer Blast (NCBI) (Table 1). Real-

time PCR was performed using SYBR Green PCR Master Mix (Applied Biosystems, 

Life Technologies; Carlsbad, CA). Each 20 μL PCR reaction consisted of 10 μL SYBR 

Green PCR Master Mix, 500 nM of each forward and reverse primer, and 1 μL of 

undiluted template cDNA plus nuclease-free water. Targets were amplified using an 

Eppendorf real-time PCR Mastercycler as following: 50°C (2 min), 95°C (10 min) 

followed by 40 cycles of 95°C (15 sec) and 60°C (1 min) followed by one cycle of 72°C 

(1 min). Expression levels were quantified relative to housekeeping gene levels of 

expression and presented as 2-ΔCt values to reflect the ratio of expression level of the gene 

of interest to that of the housekeeping gene.  PCR products were separated by 

electrophoresis through 4% Nusieve 3:1 Agarose (Lonza, Basel, Switzerland) to verify 

that the primer pair produced a single product of the expected size. A ‘no-template’ 

control was also included in the assay substituting water for template as well as a control 

omitting reverse transcriptase to control for the possibility of genomic DNA 

contamination. 
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Table 1: Real-time PCR primers were designed to amplify different Col11a1 
exons within the variable region of the NTD using NCBI Primer Blast. Primers were 
purchased from Integrated DNA Technologies and resuspended in nuclease-free 
water. All primers were used at Annealing temperature of 60 °C. For maximum 
efficiency, PCR amplicon sizes were kept below 200bp and products were ran 
through agarose electrophoresis to validate amplification. 

 

Western Blot Analysis 

To confirm SMAD phosphorylation upon BMP-2 treatment, C2C12 cells were 

plated at 2 x 104 cells/cm2 and grown overnight. The next day, medium was changed to 

DMEM containing 5% FBS and BMP-2, and incubated for 30 minutes. Cells were then 

rinsed twice with cold PBS and lysed using 250 μL of cold M-PER lysis buffer (Pierce, 

Rockford, IL) containing protease and phosphatase inhibitors (Halt Protease InhibitorTM, 

Pierce, Rockford, IL). A 25 μl aliquot was used to determine protein concentration using 

a BCA assay (Bio Rad; Hercules, CA). Twenty micrograms of protein samples were 

combined with NuPAGE LDS sample buffer and β-mercaptoethanol (Life Technologies; 

Carlsbad, CA) and incubated at 70°C for 10 minutes. Proteins were then separated by 4-

12% SDS-PAGE gradient gel and transferred to nitrocellulose membranes using iBlot® 

7-minute iblotting system (Life Technologies; Carlsbad, CA). Membranes were blocked 

for 1 hr at room temperature using SuperBlock solution (Life Technologies, Carlsbad, 

GENE SENSE PRIMER ANTISENSE PRIMER 
ALP GTGCCCTGACTGAGGCTGTC GGATCATCGTGTCCTGCTCAC 
COL1A1 GCATGGCCAAGAAGACATCC CCTCGGGTTTCCACGTCTC 
COL11A1 e6A AGGCTGAGAGTGTAACAGAGA TCTGTTTGTGCTACTGTTTCTTCA 
COL11A1 e6B GTTCACATCCCCCAAATCTGA CCCCTAGTTTGGCTTTGGCT 
COL11A1 e7 GGAACAATGGAACCTTACCAGAC ATTCGATCCTGATACCCGCC 
COL11A1 e8 AGGAGTAGACGGCAGGGATT GGAGGTCGTAGTCCTTTCTTCA 
OSTEOCALCIN CCGGGAGCAGTGTGAGCTTA TAGATGCGTTTGTAGGCGGTC 
PPIA CGCGTCTCCTTCGAGCTGTTTG TGTAAAGTCACCACCCTGGCACAT 
RUNX2 GTGCGGTGCAAACTTTCTCC AATGACTCGGTTGGTCTCGG 
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CA), washed 3 x 5 min with 10 mM Tris, pH 8 containing 150 mM NaCl, and 0.05% 

Tween-20 (TBST) while gently rocking and probed with antibodies as described (Table 

2) overnight at 4°C. After 3 x 5 min washes with TBST, horseradish peroxidase-

conjugated donkey anti-rabbit IgG (1:5000 dilution in blocking buffer, Cell Signaling, 

Danvers, MA) was added for 1 hr at room temperature. Blots were then washed 3 x 5 min 

with TBST and incubated in SuperSignal West Femto Maximum Sensitivity 

SubstrateTM (Pierce, Rockford, IL) for 1 min and exposed for 5 min on a Kodak Imager 

4000R imaging system. Constant substrate concentration was achieved by acquiring 

images while the nitrocellulose membrane was completely submerged in ECL solution. 

ECL images were taken in the native format using the system's standard software 

KODAK and exported to 16-bit TIFF format. Analysis of ECL images was performed 

using the public domain ImageJ program (developed at the National Institutes of Health 

and available at http://rsb.info.nih.gov.libproxy.boisestate.edu/ij/), using the “Gel 

Analysis” functions. Background correction was done using “background subtractor” 

tool. Integrated Density Value (IDV) of each band was used to quantify the signals.  

Table 2: Antibodies were purchased from Cell Signaling and used at the 
indicated dilutions in blocking buffer overnight at 4°C. 
 

NAME COMPANY CAT# ISOTYPE DILUTION MW SPECIFICITY 
Beta-Actin Cell Signaling 4967 Rabbit 1:5000 45kDa Polyclonal 

Smad1 
(D59D7) 

Cell Signaling 6944 Rabbit IgG 1:1000 60kDa Monoclonal 

Phospho-
Smad1/5 
(41D10) 

Cell Signaling 9516 Rabbit IgG 1:1000 60kDa Monoclonal 
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Immunofluorescence  

C2C12 cells were plated on sterile glass coverslips in the presence and absence of 

BMP-2 (300 ng/mL). Media was removed and cells were rinsed twice with PBS. Cells 

were then fixed with 1:1 ice-cold acetone:methanol for 15 min and rinsed twice with 

PBS. Coverslips were then washed 3 x 5 min with PBS while gently rocking and then 

blocked with 2% BSA for 1 hour at room temperature. Antibodies specific for SMAD1 

and Phospho-SMAD1/5/8 were used at the indicated dilutions (Table 2) in 0.5% BSA in 

PBS (PBB) and coverslips were incubated at 4°C overnight while gently rocking. Cells 

were subsequently washed 5 x 5 min in PBB. A Rhodamine (TRITC)-conjugated 

AffiniPure Donkey Anti-rabbit IgG (2.5 μg/mL) (Jackson ImmunoResearch Laboratories) 

in PBB was added to the cells and incubated at room temperature in the dark for 1 hour. 

Coverslips were then washed 5 x 5 min with PBB and mounted on slides using 

ProLong® with DAPI (Life Technologies; Carlsbad, CA).   

Confocal Microscopy 

Images were acquired using an LSM Meta 510 scanning confocal microscope 

(Zeiss, Germany) and ZEN 2009 imaging software (Carl Zeiss, Inc., Thornwood, NY). 

We used a pinhole of 1.5 Airy units and objective of 63x oil (NA 1.4). Excitation was 

provided by the 405 nm line of an Argon laser for DAPI and the 543 nm line of a HeNe 

laser for Rhodamine red-X. Images were acquired as confocal stacks (7-12 optical 

sections) with an optical section separation (z-interval) of 1.180 μm. Optical sections 

were acquired at a digital size of 512 x 512 pixels and averaged 4 times to reduce noise. 

Equivalent settings, including pinhole, filters and bandpass were used for all images. 
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Luciferase Reporter Assays 

To determine the effect of Col11a1 on BMP activity, cells were plated at 65,000 

cells/well of a 24-well plate and incubated overnight. The following day, cells were 

washed twice with PBS and transfected with LT1 liposomes (Mirus, Madison, WI) 

containing 10 ng/well of CMV β-galactosidase control plasmid and 300 ng/well of BMP 

reporter element luciferase plasmid (a kind gift from Dr. Allan Albig, Boise, ID) for 24 

hr. In designated experiments, cells were also transfected with 14 ng/well of Silencer 

Select Col11a1 siRNA (Life Technologies; Carlsbad, CA). The next day, cells were 

washed with PBS and medium was changed to DMEM supplemented with 5% FBS and 

treated with Col11a1 recombinant protein fragments and BMP-2 (300 ng/mL) for 24 hr. 

The following day, C2C12-BRE-luc cells were lysed in Reporter Lysis Buffer (Promega, 

Madison, WI) and frozen overnight. Lysates were then collected and enzyme activity was 

measured using the Luciferase Assay System and β-Galactosidase Enzyme Assay System 

(Promega, Madison, WI). Enzyme activities were measured in a microplate luminometer. 

The ratio of luciferase to β-galactosidase activity was calculated, and fold-induction was 

determined relative to control. Each data point represents the mean of results from three 

independent transfections. 

WST-1 Proliferation Assay 

C2C12 cells were plated at a density of 5 x 103 cells/100uL of growth medium in 

96-well plates and grown overnight at 37°C. The next day, cells were rinsed twice with 

PBS and then treated with fresh medium containing Col11a1 recombinant protein 

fragments for 24 hr, 48 hr, and 72 hr. At each time point, ten microliters of WST-1 

reagent (Clontech, Mountain View, CA) was added to each well and cells were incubated 
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for an additional 2 hr at 37°C in the dark. As a control, WST-1 was also added to empty 

and untreated wells to establish a blank baseline. The absorbance was measured using a 

BioTek microplate reader at a test wavelength of 450 nm and a reference wavelength of 

630 nm.  

Results 

Col11a1-Deficient Mice Exhibit Overgrowth of Bone Collar 

Measurements obtained from X-ray μCT images indicated that the mineralizing 

portion of Col11a1-deficient mice long bones were an average of 41% shorter than the 

WT humerus and femur, which was in agreement with previously reported results 

obtained from whole embryos stained with Alizarin red and Alcian blue (Table 3).  

Table 3: Structural indices for humeri are reported as mean +SD for WT and 
Col11a1-/- 
 
 

Genotype Length 
(µm) 

Proximal 
Metaphysis 

diameter (µm) 

Diaphysis 
diameter 

(µm) 

Distal Metaphysis 
diameter (µm) 

WT 2409 + 33.6 806 + 16.9 592 + 11.6 528 + 15.2  
Col11a1 -/- 1422 + 65.5 930 + 38.4 735 + 37.4 778 + 86.1 

% difference 41.0 15.4 24.2 47.4 
  p < 0.0001 p < 0.05 p < 0.05 p < 0.05 

 
 

The bones of the Col11a1-deficient mice were wider at all points along the length 

(Figures 3A and 3B) and on average were 24% wider at the diaphysis, 15% wider at the 

proximal metaphysis, and 47% wider at the distal metaphysis (Table 3). Interestingly, the 

Col11a1-deficient long bones displayed an overgrowth of mineralized tissue on the outer 

surface of the bone collar (Figures 3C and 3D). 
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Figure 3. Cross-section of humeri at diaphysis, distal, and proximal 
metaphyses. Mineralized tissue was assigned a color dependent upon three density 
ranges: low density range (green), intermediate density (blue), and high density (white). 
Col11a1-deficient humerus was wider and more cylindrical than WT. C-D) Trabecular 
bone was more dense in Col11a1-deficient mice compared to WT at proximal 
metaphysis. Trabecular bone is less dense in Col11a1-deficient mice compared to WT at 
distal metaphysis. Bone collar is less dense but thicker in Col11a1-deficient mice 
compared to WT littermate. Scale bars = 0.5 mm. C-D) Histological differences in the 
humeri of WT and Col11a1-deficient mice. Trichrome staining was used to identify 
mineralized tissue (green), compared to cartilage tissue (blue). Proliferative and 
hypertrophic zone of the growth plate in Col11a1-deficient mice showed altered cellular 
density, cell size, and organization within the cartilage. Scale bar A and B = 0.5 mm; 
scale bars C, D, E, and F = 0.1 mm. 
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Trabecular thickness, trabecular separation, and trabecular percent bone volume 

were increased in the forelimb bones of the Col11a1-deficient mice compared to 

wildtype. Analysis of microarchitectural indices at the proximal metaphysis of the 

humerus showed differences in trabecular thickness (92% increase in Tb.Th), trabecular 

separation (17% increase in Tb.Sp), and trabecular percent bone volume (73% increase in 

BV/TV) in the absence of Col11a1 expression. No significant difference was detected for 

isotropy values or structure model index, indicating similar relative prevalence of rods 

and plates in the three-dimensional structure of the trabecular bone for WT and Col11a1-

deficient mice (Table 4). 

Table 4: Densitometric indices for the humeri (mean±SD) WT and Col11a1-/-. 
Trabecular bone volume fraction (BV/TV) was calculated from Bone Volume (BV) and 
Trabecular Volume (TV) values. Skyscan CT Analyzer was used to determine trabecular 
thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp). 
Statistical differences are reported as p values unless determined to be not significant 
(ns). Control mice (n = 6), Col11a1-deficient mice (n = 3). 

 

Genotype BV/TV (%) DA  Tb.Th (µm) Tb.N 
(1/mm) 

Tb.Sp 
(µm) 

WT 25.3 + 2.9 0.90 + 
0.025 

18.32 + 
0.22 13.8 + 1.5 33.2 + 1.81 

Col11a1 -/- 43.7 + 4.1 0.84 + 
0.082 35.3 + 3.7 12.4 + 0.81 38.9 + 

1.19  
% difference 72.7 0.1 91.6 10.2 17.2 

  p < 0.05 ns p < 0.05 ns p < 0.05 
 

BMP-2 Induces the Expression of Col11a1 During Osteoblast Differentiation in a 

SMAD-Dependent Manner 

It has been shown that BMP-2 regulates periosteal bone formation during 

development and we have previously shown that Col11a1 plays a role in BMP-2-

mediated alkaline phosphatase (ALP) expression [30, 56]. To evaluate a potential role for 
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BMP-2 in the regulation of Col11a1 during osteoblast differentiation, we used the 

pluripotent mesenchymal C2C12 cell line. When treated with BMP-2, C2C12 cells 

changed their morphology from spindle to cuboidal-shaped cells (Figure 4A and 4B). To 

confirm that BMP-2 induced osteoblast differentiation under our culture conditions, we 

assessed the expression of well-established osteoblast markers alkaline phosphatase 

(ALP), osteocalcin (OCN), runt-related transcription factor 2 (Runx2), and collagen I 

alpha 1 (Col1a1). Our results showed an initial increase in early osteoblast differentiation 

marker ALP up to day 2 that was followed by a decrease (Figure 4C). Similarly, Runx2 

and Col1a1 expression increased up to day 3 followed by a decrease on day 6, while late 

osteoblast marker OCN levels persistently increased reaching maximum expression on 

day 6 (Figures 4D, 4E, and 4F). Further, BMP-2 induced the expression of Col5a1 in a 

time-dependent manner during osteoblast differentiation (Figure 4G).  

To determine if BMP-2 induces Col11a1 expression in C2C12 cells during 

osteoblast differentiation, we treated cells with BMP-2 over a time course of 6 days. We 

analyzed expression levels of Col11a1 as well as alternative exon expression on days 1, 

2, 3, and 6 by quantitative real-time PCR. Our results demonstrate an induction of 

Col11a1 expression by BMP-2 (Figure 3H) and an early and persistent increase in exon 

6A up to day 6 (Figure 5A). The expression of exons 7 and 8 increased up to 2-3 days 

and then decreased or plateaued (Figures 5C and 5D). Exon 6B expression was relatively 

low compared to other exons and only showed a slight increase on day 3 (Figure 5B).   
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Figure 4. BMP-2 induces osteoblast differentiation in pluripotent C2C12 cells. 
A) On day 6, C2C12 had changed morphology from mesenchymal spindle-shaped cells 
to osteoblastic cuboidal shaped cells. B-F) On day 2, the expression of ALP, Runx2, and 
Col1a1 was markedly increased in BMP-2-treated samples compared to control. ALP 
mRNA levels decreased after day 2 and Runx2 and Col1a1 levels dropped after day 3. 
However, OCN mRNA levels increased persistently up to day 6. G-H) The expression of 
minor collagens V and XI also increased during osteoblast differentiation.  
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Figure 5. BMP-2 regulates Col11a1 mRNA levels in a time-dependent manner. 
Total RNA was isolated from pluripotent mesenchymal C2C12 cells treated with BMP-2 
(300 ng/mL) for the indicated number of days. Relative expression is reported as 2-ΔCT. 
All samples were normalized to housekeeping gene peptidylprolyl isomerase A (PPIA). 
A-D) Upregulated expression of exons 6A peaked on day 3 and remained increased up to 
day 6; whereas, exons 7 and 8 mRNA levels peaked on day 2 and remained upregulated 
until day 6. In contrast, BMP-2 induced a spike in exon 6B expression on day 3 that was 
followed by a drop that was comparable to control cells. D) Expression of Col11a1 
spliceform containing exons 6A- 7-8 was reduced. Statistical significance was calculated 
using one-way ANOVA with Bonferroni’s Multiple Comparison post hoc test. Results 
represent mean±SEM n = 3 in each group. * indicates p < 0.05, ** indicates p < 0.01, *** 
indicates p < 0.001, and **** indicates p < 0.0001, and n.s. is not significant. 

To elucidate whether induction of Col11a1 gene expression by BMP-2 was 

dependent upon the canonical SMAD signaling pathway, we knocked down SMAD4 in 

C2C12 cells using SMAD4 siRNA and lipofectamine (Figure 6A). SMAD4 knockdown 

diminished BMP-2 induced Col11a1 gene expression (Figure 6B) demonstrating that 
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regulation of Col11a1 expression by BMP-2 is dependent on the canonical SMAD1/5/8 

signaling pathway.  

 
Figure 6. BMP-2 acts in a SMAD4-dependent mechanism to regulate collagen 
XI alpha 1 expression in C2C12 cells. A) SMAD4 was knocked down using siRNA and 
B) the expression of collagen XI alpha 1 was assessed using semi-quantitative PCR. 
C2C12 cells pre-incubated in SMAD4 siRNA showed a reduced BMP-2-mediated 
regulation of collagen XI alpha 1 expression.  

PTHrP Modulates BMP-2-Induced Changes in Col11a1 Expression 

Previous studies confirmed an inhibitory role for PTHrP (1-36) on BMP-2-

induced osteoblast marker expression [37] and thus we sought to investigate the effects of 

PTHrP on BMP-2-induced Col11a1 expression. Quantitative real-time PCR demonstrated 
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that PTHrP attenuated the BMP-2-induced splicing to include exon 6A and 8, and to a 

lesser extent for exon 7 (Figures 7A and 7B). Combinations of alternatively spliced 

exons included four predominant spliceforms; variable region exons 1) e6a-7-8, 2) e6b-7, 

3) e8, and 4) e7, expressed by differentiating osteoblasts (Figure 7). PTHrP alone did not 

have significant effects on Col11a1 expression at 24h continuous treatment.  

 
Figure 7. PTHrP alters BMP-2-induced expression of Col11a1 alternative 
exons. Pluripotent mesenchymal C2C12 cells were treated with BMP-2 (300 ng/mL) for 
five days and PTHrP (10-7 M) was added to select samples for 24 hr. As control, cells 
were incubated in the absence of growth factors or presence of PTHrP only. Col11a1 
exon expression was assessed by semiquantitative and quantitative real-time PCR using 
different sets of primers. Relative expression is reported as 2-ΔCT. All samples were 
normalized to housekeeping gene peptidylprolyl isomerase A (PPIA). A) and B) PTHrP 
alone did not induce any significant changes in Col11a1 exon expression. In contrast, 
combined with BMP-2, PTHrP reduced BMP-2-stimulated expression of exons 6A and 7. 
Further, PTHrP was able to synergistically increase exon 6B expression with BMP-2, 
although this effect was statistically not significant. Statistical significance was calculated 
using two-way ANOVA with Bonferroni’s Multiple Comparison post hoc test. Results 
represent mean±SEM n = 3 in each group. * indicates p < 0.05, ** indicates p < 0.01, *** 
indicates p < 0.001, and **** indicates p < 0.0001. 

Col11a1 Is Required for BMP-2 Induction of Osteoblast Markers During the First 24 

Hours 

To further elucidate the biological relevance of Col11a1 regulation by BMP-2 

during osteoblast differentiation, we assessed the effects of Col11a1 knockdown on 

BMP-2-induced expression of osteoblast markers ALP, OCN, Runx2, and Col1a1. Upon 
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transfecting C2C12 cells with either Col11a1 siRNA or control scramble siRNA, we 

confirmed our knockdown by RT-PCR (Figure 8A). We then determined the expression 

levels of osteoblast markers using quantitative real-time PCR. Our results demonstrated 

that Col11a1 knockdown caused a decrease in 24 hr BMP-2-stimulated osteoblast marker 

expression, most markedly for ALP (Figures 8C-F). In contrast, this effect was reversed 

later at 72 hr osteoblast differentiation (discussed below). 

 
Figure 8. Effects of Col11a1 KD on the expression of ALP, OCN, Runx2, and 
Col1a1 is time-dependent. Pluripotent C2C12 cells were transfected with either Col11a1 
or scramble siRNA for 24 hr. Next, cells were stimulated with BMP-2 (300 ng/mL) for 
24 hr and 72hr. Relative expression is reported as 2-ΔCT. All samples were normalized 
to housekeeping gene peptidylprolyl isomerase A (PPIA). A) At 24 hr BMP-2 
stimulation, ALP expression was significantly decreased in Col11a1 deficient cells as 
compared to control. In contrast, at 72 hr BMP-2 stimulation, Col11a1 deficient cells 
showed a marked increase in ALP expression as compared to control. B) OCN mRNA 
levels were not significantly different in Col11a1 deficient cells as compared to control at 
24 hr BMP-2 treatment. By 72 hr, however, Col11a1-deficient cells expressed lower 
levels of OCN as compared to control. C) and D) Both Runx2 and Col1a1 mRNA levels 
were not significantly affected by Col11a1 KD at 24 hr BMP-2 stimulation; however, at 
72 hr, both Runx2 and Col1a1 mRNA levels were significantly higher in Col11a1 
deficient cells as compared to control. Statistical significance was calculated using two-
way ANOVA with Bonferroni’s Multiple Comparison post hoc test. Results are reported 
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as the mean±SEM n = 3 in each group. * indicates p < 0.05, ** indicates p < 0.01, *** 
indicates p < 0.001, and **** indicates p < 0.0001, and n.s. is not significant. 

Col11a1 siRNA Reduced BMP Activity in C2C12 Cells During the First 24 Hours 

Because we found that Col11a1 was required for BMP-2 induction of osteoblast 

markers during the first 24 hours, we tested the effects of Col11a1 on BMP signaling, 

using a luciferase BMP-response element reporter construct. Treatment of C2C12 cells 

with BMP-2 induced an increase in luciferase activity, indicating activation of BMP 

signaling compared to untreated control cells (Figure 9).  Col11a1 siRNA reduced the 

BMP activity by 82% (p-value 0.0161) compared to controls in C2C12 cells during the 

first 24 hours. 

 
Figure 9. Col11a1 recombinant p6B but not p7 reduces BMP-dependent 
luciferase activation in C2C12 cells. C2C12 cells were transfected with a BMP-
responsive firefly luciferase reporter plasmid and a control pCMV-β-gal reporter plasmid 
for 24 hr. The next day, BMP-2 (300 ng/mL) and/or recombinant Col11a1 p6B (37.5 
ug/mL) and p7 (62.5 ug/mL) were added to cultures and incubated for another 24 hr. Cell 
lysates were analyzed for luciferase activity. Relative luciferase activity was calculated as 
the ratio of luciferase to β-galactosidase activity, to control for transfection efficiency, 
and is expressed as a multiple of the activity of unstimulated cells transfected with 
reporter alone (control). Col11a1 p6B significantly reduced BMP-2-induced relative 
luciferase activity. Similarly, Col11a1 KD diminished BMP-2-induced luciferase activity. 
In contrast, Col11a1 p7 did neither enhance nor reduce BMP-2-induced luciferase 
activity. Statistical significance was calculated using student’s paired t-test. Results 
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represent mean±SEM n = 3 in each group. * indicates p < 0.05, ** indicates p < 0.01, *** 
indicates p < 0.001, and **** indicates p < 0.0001, and n.s. is not significant. 

Col11a1 Is Required for BMP-2-Induced Smad1/5/8 Phosphorylation 

To elucidate the mechanism by which Col11a1 regulates BMP-2-induced 

expression of osteoblast markers, we investigated the role of Col11a1 in SMAD1/5/8 

phosphorylation and nuclear translocation in C2C12 cells by western blot and 

immunocytochemistry. Treatment with BMP-2 induced SMAD1/5/8 phosphorylation, 

which was not detected in control cells (Figures 10A-F). Further, phospho-SMAD1/5/8 

co-localized with DAPI, indicating its presence in the nucleus (Figure 10F). Pre-

treatment with Col11a1 siRNA for 24 hours resulted in a reduction of phospho-

SMAD1/5/8 by approximately 50% (p-value <0.001) (Figure 11A and 11B) and 

inhibited the SMAD1/5/8 complex translocation to the nucleus (Figure 11G-I). 

Interestingly, a 45% (p-value <0.01) increase in SMAD1 protein was observed in the 

Col11a1-deficient cells compared to cells treated with the control scramble siRNA 

(Figure 11B).  
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Figure 10. Col11a1 knockdown negatively affects canonical BMP-2 signaling. 
C2C12 cells were plated on glass coverslips at 2 x 104 cells/cm2 and incubated overnight. 
Next, cells were transfected with either Col11a1 or scramble siRNA for 24 hr and then 
stimulated with BMP-2 for 30 minutes. Antibodies against Smad1 and Phospho-
Smad1/5/8 were used to assess the effects of Col11a1 knockdown on BMP-2 mediated 
Smad1/5/8 phosphorylation. A-I) Immunofluorescence staining was performed to look at 
the effects of Col11a1 knockdown on Phospho-Smad 1/5/8 localization. No Phospho-
Smad1/5/8 was detected in the nuclei of Col11a1 deficient cells as compared to control. 
Instead, Col11a1 deficient cells showed a distinct punctuate pattern of staining 
characterized by discrete “spots” close but not inside the nuclei.  
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Figure 11. Col11a1 knockdown negatively affects SMAD1/5/8 phosphorylation. 
C2C12 cells were plated at 2 x 104 cells/cm2 and incubated overnight. Next, cells were 
transfected with either Col11a1 or scramble siRNA for 24 hr and then stimulated with 
BMP-2 for 30 minutes. Antibodies against Smad1 and Phospho-Smad1/5/8 were used to 
assess the effects of Col11a1 knockdown on BMP-2 mediated Smad1/5/8 
phosphorylation. Western blot analyses of C2C12 cells transfected with Col11a1 siRNA 
or scramble siRNA was performed to quantify Smad1 and Phospho-Smad1/5/8 levels. 
Col11a1 deficient cells showed a 40% decrease in Phospho-Smad1/5/8 levels as 
compared to control. In contrast, Smad1 levels were 27% higher in Col11a1 deficient 
cells as compared to control. 

Recombinant Col11a1p8 NTD Fragment Enhances BMP-2-Induction of Osteoblast 

Markers at 24 Hours 

An essential role for Col11a1 during the first 24 hr of BMP-2 treatment was 

further demonstrated by treating cells with recombinant Col11a1p8 NTD fragment, 
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representing one of the spliceforms synthesize by C2C12 cells as shown above. This 

treatment resulted in an increase in OCN (19.5 fold, p-value 0.0103), Runx2 (3.0 fold, p-

value 0.0099), and Col1a1 (3.1 fold, p-value 0.0284) (Figures 12B-D).  In contrast, 

treatment with recombinant Col11a1p8 resulted in a 6.3 fold decrease (p-value 0.0143) in 

ALP expression (Figure 12A). 

 
Figure 12. BMP-2-induced expression of ALP, OCN, Runx2, and Col1a1 is 
altered by variable Col11a1 fragments. A) BMP-2 upregulated ALP expression was 
significantly reduced upon incubation with Col11a1 p6B and p8. B) and C) OCN and 
Runx2 mRNA levels were markedly increased when Col11a1 p6B and p8 were added to 
BMP-2 treated cells as compared to control. D) Col1a1 expression was enhanced by 
addition of Col11a1 p8 but reduced by Col1a1 p6B. Statistical significance was 
calculated using student’s paired t-test. Results represent mean±SEM n = 3 in each group. 
* indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, and **** indicates p 
< 0.0001, and n.s. is not significant. 
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Col11a1 Inhibits BMP-2 Induction at Later Time Points During Osteoblast 

Differentiation 

In contrast to our observations after 24 hr BMP-2 treatment, the effect of Col11a1 

siRNA was reversed later in osteoblast differentiation. After 72 hours of BMP-2 

treatment, Col11a1 siRNA increased the expression of ALP, Runx2, and Col1a1 genes by 

1.8 fold (p-value <0.01), 2.2 fold (p-value <0.01), and 5.6 fold (p-value <0.001), 

respectively compared to scramble siRNA (Figures 8C, 8D, and 8F). Interestingly, OCN 

expression level remained suppressed in the presence of Col11a1 siRNA compared to 

scramble siRNA at 72 hr, similar to the effect seen at 24 hours (Figure 8E).  This may 

reflect the fact that osteocalcin is considered a late osteoblast differentiation marker. 

Chondrocyte-Specific Isoform Col11a1p6b Inhibits BMP Activity in C2C12 Cells 

To investigate the potential role of neighboring cartilage tissue on the formation 

of the bone collar, we introduced a fragment from the isoform of Col11a1 that is 

expressed by chondrocytes at the boundary between cartilage and the developing bone 

collar on BMP signaling in osteoblasts, using the luciferase BMP-response element 

reporter construct. Recombinant Col11a1p6b NTD fragment reduced the BMP activity by 

64% (p-value 0.0136) while treatment of C2C12 cells with BMP-2 induced an increase in 

luciferase activity compared to untreated control cells (Figure 9).  Conversely, this effect 

was not observed when cells were treated with a recombinant Col11a1p7 NTD fragment 

that differs only by the absence of 51 amino acids encoded by exon 6b, indicating a 

specific function for this 51 amino acid region in the regulation of growth plate 

maturation, specifically bone collar formation.   
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Chondrocyte-Specific Isoform Col11a1p6b Inhibits Expression of Osteoblast 

Differentiation Markers in C2C12 Cells 

To further test the role of Col11a1 as an osteoblast differentiation regulator, we 

first treated C2C12 cells with BMP-2 and then cultured them in medium containing 

recombinant Col11a16b NTD fragment to assess the expression of the markers of 

osteoblast differentiation. Recombinant Col11a16b decreased the BMP-2-induced ALP 

expression by 5.5 fold (p-value 0.0132) and Col1a1 expression by 1.8 fold (p-value 

0.032) consistent with an inhibitory role for early marker expression (Figures 12A and 

12D). Conversely, recombinant Col11a1p6B promoted the expression of OCN by 1.8 

fold (p-value 0.017) and Runx2 by 3.4 fold (p-value 0.022) in BMP-2-induced cells 

consistent with a positive regulatory role for later osteoblast differentiation (Figures 12B 

and 12C). 

Col11a1 Regulates C2C12 Proliferation in a Spliceform–Dependent Manner 

Cellular proliferation of cells giving rise to the bone collar is an essential aspect of 

bone development and is stimulated by BMP-2 in C2C12 cells.  Proliferation and 

differentiation events are highly coordinated in biological systems and thus we wanted to 

look at the effects of Col11a1 on cellular proliferation in our model system. We found 

that recombinant Col11a1p7 NTD fragment significantly increased the rate and extent of 

proliferation of C2C12 cells treated with BMP-2. Two other spliceforms tested had only 

minimal effects (Figure 13). Col11a1p7 was shown to be expressed at low levels in 

C2C12 cells (see Figure 4C above), and increasing the level by the addition of 

exogenous protein may have revealed a unique function for the smallest of the 

spliceforms of Col11a1, Col11a1p7.   
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Figure 13. Col11a1 regulates cell proliferation during osteoblast differentiation. 
C2C12 cells were cultured overnight in 96-well plates and recombinant Col11a1 protein 
fragments p6B (37.5 ug/mL), p7 (62.5 ug/mL), and p8 (30 ug/mL) were added the next 
day for 24 hr, 48 hr, and 72 hr. At each time point, 10 ul of wst-1 was added to each well 
and incubated for 2 hr at 37ºC. Absorbance is reported as test wavelength of 450 nm 
minus a reference wavelength of 630 nm. WST-1 was also added to empty and untreated 
wells to establish a blank baseline. A) Addition of Col11a1 p6B to BMP-2 treated cells 
did not significantly change cell proliferation at 24 hr and 72hr as compared to control 
cells. However, at 48 hr, Col11a1 p6B enhanced cell proliferation as compared to both 
untreated and BMP-2 only treated cells. B) Col11a1 p7 significantly enhanced cell 
proliferation in C2C12 cells during osteoblast differentiation at all three time points. C) 
Col11a1 p8 did not affect BMP-2 mediated cell proliferation at 24 hr and 72 hr but 
significantly decreased cell proliferation at 48 hr time point. Statistical significance was 
calculated using two-way ANOVA with Bonferroni’s Multiple Comparison post hoc test. 
Results are reported as the mean±SEM n = 3 in each group. * indicates p < 0.05, ** 
indicates p < 0.01, *** indicates p <0.001, and **** indicates p < 0.0001, and n.s. is not 
significant. 

Discussion 

Taken together, these findings suggest that Col11a1 spliceforms play specific 

roles in the regulation of C2C12 osteoblast differentiation and that the effects of 
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individual spliceforms may be in opposition with respect to the other spliceforms.  

Taking into consideration the results presented for the functional knockout mouse, these 

findings are likely to translate to in vivo osteoblast differentiation and bone development. 

Col11a1 is an extracellular matrix protein that is essential for proper skeletal 

development. Marshall and Stickler syndrome patients carry heterozygous mutations in 

Col11a1 and suffer from short stature and skeletal abnormalities. Previous groups have 

shown that Col11a1-deficient mice exhibit increased skeletal mineralization compared to 

their wildtype littermates [9, 11]. Based on recent microarray studies showing increased 

Col11a1 presence during differentiation, we hypothesized that Col11a1 would affect 

periosteal bone architecture and further alter osteoblast differentiation in a BMP-

dependent manner.  

Our findings support a role for Col11a1 in bone formation consistent with 

alterations to the bone collar during skeletal development. Further, we have presented 

information that suggests intersection between BMP-2 signaling and Col11a1-regulation 

of bone formation. Our results indicate that BMP-2 regulates Col11a1 transcription and 

alternative splicing of pre-mRNA characterized by the expression of exons 6A, 7, and 8 

in osteoblasts. BMP-2-stimulated expression of exon 6B on day 3 coincided with a 

significant decrease in the expression levels of osteoblast markers ALP, Runx2, and 

Col1a1, suggesting a negative regulatory role for exon 6B during osteoblast 

differentiation. We also showed that exogenous treatment of cells with Col11a1[p6b-7] 

recombinant protein fragment significantly reduced BMP activity . One possible 

explanation for less BMP activity upon exposure to Col11a1[p6B-7] is its direct binding 

to heparan sulfates on the surface of osteoblasts, which are responsible for trapping and 
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internalizing BMP-2 into the cell [15 ,28, 29]. Our laboratory has previously shown that 

Col11a1 binds specifically to heparan sulfate and heparan sulfate proteoglycans via the 

p6b region and Npp domain [30]. 

Treatment of C2C12 cells with Col11a1[p6B-7] resulted in a significant decrease 

in ALP and Col1a1 expression but not OCN and Runx2. Instead Col11a1[p6B-7] induced 

increased expression of OCN and Runx2. This finding is intriguing because although 

OCN is up-regulated by BMP-2 and is essential for osteoblast differentiation, OCN-

deficient mice exhibit increased bone formation, suggesting a limiting role for OCN in 

bone formation [31]. Furthermore, previous studies have shown that osteocalcin is under 

direct regulation of Runx2 in osteoblasts [32]. Thus, it is possible that Col11a1p6b acts 

upstream of Runx2 and induces the expression of Runx2 and OCN to limit bone 

formation. Alternatively, since Runx2 is a shared target of BMP and TGF-β signaling 

pathways [33], Col11a1[p6B-7]-mediated inhibition of BMP signaling at the receptor 

level may signal the cells to increase TGF-β-induced expression of Runx2 and 

subsequently OCN. Since BMP-2 increased the expression of exon 8, we postulated a 

positive regulatory role for regions of the protein encoded by exons 6A, 7, and 8 during 

osteoblast differentiation. Indeed, when we treated BMP-2-stimulated cells with 

Col11a1p8, mRNA levels of OCN, Runx2, and Col1a1 increased significantly. 

Surprisingly though, ALP expression was decreased by Col11a1p8.   

Upon knocking down Col11a1, we initially observed a decrease in the expression 

of osteoblast markers, suggesting that Col11a1 is required for BMP-2 mediated induction 

of osteoblast marker expression. However, by 72 hr, we noted the opposite trend and 

detected higher levels of osteoblast marker expression (except for OCN) in Col11a1-
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deficient cells as compared to control. This difference in the trend may be due to 1) 

compensatory mechanism used by cells to increase their expression of osteoblast markers 

and overcome the Col11a1 knockdown and/or 2) early induction of other genes that have 

yet to be identified, perhaps other BMPs or receptors.   

Continuous treatment with PTHrP has been shown to inhibit osteoblast 

differentiation [25]. Previous teams have shown a feedback mechanism between BMP-2 

and PTHrP during osteoblast differentiation, in which PTHrP attenuates BMP-2-induced 

increases in osteoblast markers Runx2 and osterix [24]. Our findings indicate a regulatory 

role for PTHrP in BMP-2-induced alternative splicing further supporting our postulation 

of exons 6A, 7, and 8 as positive regulators of BMP-2 mediated osteoblast differentiation. 

We also reported an increase in Col11a1 exon 6B expression when PTHrP was added to 

BMP-2 treated cells although this effect did not reach statistical significance.  

Canonical BMP signaling requires phosphorylation of SMAD1/5/8 and thus we 

wanted to test whether Col11a1 knockdown affects this process. Our results clearly show 

that Col11a1-deficient cells exhibit lower levels of phospho-SMAD1/5/8 as compared to 

control cells. Furthermore, phospho-SMAD1/5/8 proteins in Col11a1-deficient cells are 

primarily localized to the cytoplasm and not localized to the nucleus.   

Considering the opposing relationship between cellular proliferation and 

differentiation, we wanted to determine the effect of Col11a1 on BMP-2 mediated 

regulation of cellular proliferation during osteoblast differentiation. Cellular proliferation 

plays an important role in growth of long bone at the growth plate and bone collar. Our 

findings demonstrate a proliferative role for Col11a1p6b and p7 when combined with 

BMP-2 as compared to BMP-2 only treated cells. Conversely, Col11a1 p8 acts in an anti-
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proliferative manner, reducing BMP-2 mediated cellular proliferation. It is possible that 

while Col11a1p6B acts as an inhibitor of osteoblast differentiation, it promotes cellular 

proliferation instead. Conversely, Col11a1p8 might inhibit cell proliferation in favor of 

cellular differentiation. Future studies on cell cycle analyses may answer questions about 

the role of Col11a1 in cell proliferation.  

In conclusion, our study clearly demonstrates a novel function for Col11a1 as a 

regulator of BMP-2 induced osteoblast signaling and osteoblast differentiation. These 

findings are consistent with our earlier studies suggesting that Col11a1p6b acts to inhibit 

ALP expression during osteoblast differentiation [26]. Based on our observations, we 

propose a model in which BMP-2 regulates Col11a1 in a spliceform-specific manner and 

in return different spliceforms of Col11a1 act to either inhibit or enhance BMP-2 

signaling and downstream expression of osteoblast markers correlated with the spatial 

and temporal expression patterns within the developing long bone.  

Future studies will address the role of Col11a1 in cell proliferation, direct binding 

interactions between different collagen spliceforms and BMP-2, and the effects of 

Col11a1 on integrin-mediated BMP-2 induction of osteoblast differentiation [34]. These 

additional studies will offer more insight as to how Col11a1 plays a role in bone 

development.  
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Abstract 

Alternative splicing is essential for protein diversity in eukaryotes. Long bones 

develop as prechondrocytes differentiate and mature into hypertrophic chondrocytes, 

which are eventually replaced by osteoblasts. Cellular differentiation and maturation 

during chondrogenesis is tightly linked with pre-mRNA alternative splicing of important 

extracellular matrix molecules including collages II and XI. ColXI (α1) splicing results in 

up to eight different isoforms that are expressed in a spatiotemporal manner during 

chondrogenesis. Here, we studied ColXI (α1) splicing during chondrogenesis using 

mouse ATDC5 cells and pluripotent C2C12 cells. We also determined the effects of 
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PTHrP on alternative ColXI (α1) transcript levels during chondrogenesis. Our results 

showed that the expression of ColXI (α1) exons 6A and 8 did not change significantly 

during the initial stages of chondrogenesis but reached peak levels on day 16. Further, 

while exons 7 and 8 plateaued after day 16, exon 6A expression decreased. In contrast 

ColXI (α1) exon 6B expression levels remained unchanged until day 30 of 

differentiation. PTHrP had inductive effects on exon 6A and 8 expression levels during 

early chondrogenesis but did not change exon 6B expression until day 30. Overall, this 

study shows for the first time that PTHrP regulates ColXI (α1) alternative splicing during 

chondrogenesis.         

Keywords: ColXI (α1); alternative splicing; ATDC5; PTHrP; 
chondrogenesis; differentiation.  

 

1. Introduction 

The skeleton starts forming during the second month of human development. 

Initially, mesenchymal cells condense and define the position and basic shape of the 

future skeletal element. Once the initial mesenchyme condensations are formed, 

depending on the growth factors present in the immediate environment, cells either 

differentiate into osteoblasts to form bone or into chondrocytes to form cartilage [1]. Wnt 

signaling drives mesenchymal cells to differentiate into osteoblasts [2]. In the absence of 

Wnt signaling, SRY (Sex Determining Region Y)-Box 9 (Sox9) levels increase and 

mesenchymal cells differentiate into prechondrogenic cells. Once committed, 

prechondrogenic cells start producing cartilage extracellular matrix proteins including 

collagens II and XI. Sox9 binds directly to the promoter of Col2a1 gene and induces its 
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expression [3]. Although studies have shown Sox9 binding sites on collagen XI promoter, 

Sox9-induced expression of collagen XI has not been reported [4]. Once prechondrocytes 

are formed, cartilage starts growing rapidly in an appositional as well as interstitial 

manner, a process known as endochondral ossification (Figure 1). Interstitial growth 

occurs as prechondrocytes differentiate into chondrocytes, which then enlarge and 

apoptose [5]. As chondrocytes hypertrophy, the perichondrium is infiltrated with blood 

vessels induced by Vascular endothelial growth factor (VEGF) and the periosteum is 

formed [6]. The periosteum houses mesenchymal cells that upon getting a signal from 

hypertrophic cells differentiate into osteoblasts. Bone is formed as osteoblasts start 

producing a non-mineralizing fibrillar extracellular matrix, which is then organized into 

mineralized matrix. Proper bone growth is dependent upon a complex network of 

systemic and local growth factors.  
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Figure 1. Long bones elongate as resting chondrocytes undergo differentiation 
into proliferative chondrocytes. PTHrP produced by perichondrial and resting 
chondrocytes maintains cells in a proliferative state. Proliferative chondrocytes then 
hypertrophy and undergo apoptose as cells of the bony collar become osteoblasts. BMP-2 
is an inducer of chondrocyte hypertrophy, whereas IHH produced by pre-hypertrophic 
chondrocytes signals to synthesize more PTHrP and thus inhibit hypertrophy.  

Initially Sox9 is essential for commitment into cartilage. Prechondrocytes and 

cells of the perichondrium both synthesize Parathyroid hormone-related Peptide (PTHrP) 

to maintain chondrocytes in a proliferative state [7]. Prehypertrophic cells on the other 

hand produce Indian Hedgehog (IHH), which promotes hypertrophy [8]. Simultaneously, 

cells of the periosteum respond to growth factors released by hypertrophic chondrocytes 

and promote differentiation of mesenchymal cells into osteoblasts. Bone morphogenetic 

protein-2 (BMP-2) is crucial for promoting chondrocyte hypertrophy as well as osteoblast 

differentiation in the growth plate [9]. Interstitial and appositional growth processes are 
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linked and the accurate orchestration of different mediators is crucial in achieving proper 

bone growth.  

Fibrillar collagens are abundant extracellular matrix proteins that provide 

structure and support for cells [10, 11]. During endochondral ossification, collagens are 

expressed in a spatiotemporal manner [12]. The major fibrillar collagen present in 

cartilage is collagen type II, whereas collagen type I is predominantly found in bone. 

Collagens V and XI are minor in abundance relative to collagens I and II; however, their 

presence is required for proper fibril formation [13]. Collagens are formed as procollagen 

chains and three alpha chains come together to form a heter- or homo-trimer protein in 

the extracellular matrix. Previous studies have shown that collagen V is often associated 

with collagen type I, whereas collagen XI is associated with collagen type II in cartilage.  

Collagen XI is an important component of the collagen network in cartilage and is 

essential for growth plate development [14, 15]. Interestingly, exons within the variable 

region of the amino terminal domain of all three collagen XI alpha chains are 

alternatively spliced [16]. This is intriguing because the globular amino-terminal domain 

of collagen XI containing the variable region is not completely embedded in the collagen 

fibrils but instead projects away from the fibril surface [17]. Alternative splicing of 

collagen XI alpha I chain involves exons 6A, 6B, 7, and 8 encoding the variable region 

[18, 19] (Figure 2). Previous work has shown that there is a strong link between 

chondrogenesis and ColXI (α1) alternative splicing in fetal rat limb buds [19]. Similarly, 

there is compelling evidence that the different ColXI (α1) spliceforms are regulated in a 

spatiotemporal manner during growth plate development [12].  
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Mutations in Parathyroid hormone- 1- receptor (PTH1R) result in skeletal 

dysplasias including Blomstrand’s chondrodysplasia and Jansen Metaphyseal 

Chondrodysplasia characterized by short-limbed dwarfism due to abnormal growth plate 

development [20–23]. Similarly, ColXI (α1) mutations exhibit short-limbed dwarfism 

and improper growth plate development [24–26]. Based on the overlap in phenotype and 

co-localization in the growth plate for ColXI (α1), PTHrP, and PTH1R, we hypothesized 

that PTHrP regulates ColXI (α1) alternative splicing and expression in a differentiation-

specific manner. We predicted that treatment with PTHrP would alter the pattern of 

ColXI (α1) spliceform expression in chondrocytes and pluripotent cells. We tested our 

hypothesis using commercially purchased PTHrP and prechondrogenic ATDC5 cells and 

pluripotent C2C12 cells in culture. We first characterized the expression ColXI (α1) 

alternative spliceforms during ATDC5 chondrogenesis and then assessed the effects of 

PTHrP on the expression of ColXI (α1) alternative spliceforms in both ATDC5 and 

pluripotent C2C12 cells. 
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Figure 2. The variable region within the NTD domain of collagen XI alpha 1 
undergoes alternative splicing that can result in several different isoform. Each 
spliceform is expressed in a distinct spatiotemporal manner during development. The 
exact function of alternative splicing in collagen XI alpha 1 is yet to be determined 
(Adapted from [19]). 

Our results clearly demonstrate that PTHrP modulates ColXI (α1) alternative 

splicing during ATDC5 chondrogenesis. In contrast, the expression of ColXI (α1) in 

pluripotent C2C12 cells does not change with PTHrP treatment. Taken together, our 

results suggest a regulatory role for PTHrP on ColXI (α1) expression during 

chondrogenesis promoting the expression of exons 6A and 8 during early chondrogenesis 

and exon 6B at later stages of chondrocyte differentiation. Our study provides insight into 

the role of PTHrP on ColXI (α1) alternative splicing and may be important for future 

studies on the interaction between the molecules.  
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2. Results and Discussion 

2.1. Characterization of Collagen XI Spliceform Expression During ATDC5 

Chondrogenic Differentiation 

To examine the expression pattern of different ColXI (α1) spliceforms during 

chondrogenesis, we differentiated mouse ATDC5 cells in culture to recapitulate the 

process of chondrogenesis in vitro. ATDC5 cells provide an outstanding model to study 

processes of chondrogenic differentiation in vitro [27]. Cells stimulated with insulin-

transferrin-selenium (ITS) showed positive Alcian blue staining for proteoglycans 

suggesting chondrogenesis (Figure 3a). We also confirmed chondrocyte differentiation 

of ATDC5 cells on a gene level by assessing the expression of well-known chondrogenic 

markers Col2a1 and PTH1R. Our results showed a 4-fold increase in Col2a1 expression 

on day 10 (p-value <0.05) and an 11-fold increase on day 16 (p-value <0.0001). 

Similarly, although at much higher levels, PTH1R expression increased reaching peak 

levels on day 16. Both Col2a1 and PTH1R expression levels decreased after day 16 in 

agreement with their roles as early differentiation markers [28] (Figure 3b).  

To determine the extent of ColXI (α1) alternative splicing during chondrogenesis, 

we designed primers specific to each alternatively spliced exon within the variable region 

of ColXI (α1) (Table 1). Real-time PCR analysis demonstrated that ColXI (α1) exons 

6A, 7, and 8 peaked at early to mid stages of chondrocyte differentiation (Figure 3c, 3e, 

3f), whereas ColXI (α1) exon 6B was more prevalent during later stages of chondrogenic 

differentiation (Figure 3d). These results are intriguing because previous work has 

shown that peptides p6A and p8 encoded by exons 6A and 8 are predominantly found 

during early stages of chondrocyte differentiation in rat long bones [12, 19] Similarly, our 
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laboratory has previously shown that the predominant spliceform during early stages of  

zebrafish development included exons 6A, 7, and 8 [29]. Conversely, ColXI (α1) peptide 

p6B encoded by exon 6B is almost exclusively found at the periphery of cartilage 

underlying the perichondrium preceding the bony collar. In addition, ColXI (α1) p6B 

overlaps with collagen type X in fetal rat long bones suggesting a role for p6B in terminal 

chondrocyte differentiation [12]. 

Table 1: List of real-time primers designed using NCBI’s Primer Blast 
Program. 

GENE SENSE PRIMER ANTISENSE PRIMER SIZE(bp) 

COL2A1 ACGAAGCGGCTGGCAACCTCA CCCTCGGCCCTCATCTCTACATCA 73 

COL11A1 e6A AGGCTGAGAGTGTAACAGAGA TCTGTTTGTGCTACTGTTTCTTCA 58 

COL11A1 e6B GTTCACATCCCCCAAATCTGA CCCCTAGTTTGGCTTTGGCT 80 

COL11A1 e7 GGAACAATGGAACCTTACCAGAC ATTCGATCCTGATACCCGCC 54 

COL11A1 e8 AGGAGTAGACGGCAGGGATT GGAGGTCGTAGTCCTTTCTTCA 100 

PPIA CGCGTCTCCTTCGAGCTGTTTG TGTAAAGTCACCACCCTGGCACAT 150 

PTH1R GGGCACAAGAAGTGGATCAT GGCCATGAAGACGGTGTAGT 210 
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Figure 3. (a) Prechondrogenic ATDC5 cells were treated with differentiation 
medium as described in experimental and incubated in culture for 30 days. 
Chondrogenesis was monitored using Alcian Blue Stain. (b) The expression of PTH1R 
and Col2a1 increased up to day 16 and then dropped up to day 30 in culture. (c) Collagen 
XI alpha is alternatively spliced during ATDC5 chondrogenic differentiation. Exon 6A 
and 8 expression levels peak on day 16 of chondrogenic differentiation, whereas exon 7 
peaks on day 16 and remains increased. In contrast exon 6B expression reaches highest 
level on day 30 of differentiation. 
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2.2. A Role for PTHrP (1-36) in Collagen XI Alpha 1 Splice Form Expression in ATDC5 

Chondrocytes 

In differentiated chondrocytes, PTHrP (1-36) downregulated PTH1R expression 

by 3.3-fold (p-value  <0.05) on day 16 (Figure 4).  PTHrP (1-36)- induced 

downregulation of PTH1R was also observed on days 22 and 30, albeit at lower levels, 

2.6-fold and 2.3-fold respectively. These results are interesting because other groups have 

shown an antagonistic role for PTHrP on PTH1R expression in human mesenchymal 

stem cells and mouse vascular smooth muscle cells [30, 31]. In addition, previous studies 

have shown a complementary expression pattern for PTHrP and PTH1R in osteoblasts 

[32]. In the growth plate, it is known that PTHrP secreted by perichondrial cells acts on 

proliferating chondrocytes to limit their terminal differentiation into hypertrophy. PTH1R 

on the other hand is widely expressed in pre-hypertrophic chondrocytes of the growth 

plate and promotes hypertrophy [33]. It is thus possible that PTHrP downregulation of 

PTH1R in our study reflects the effects of PTHrP on PTH1R expression in growth plate 

chondrocytes during endochondral ossification.  
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Figure 4. ATDC5 cells were differentiated into chondrocytes over 30 days cells 
were treated with PTHrP (10-7 M) for 24 hours on days 0, 3, 10, 16, 22, and 30. 2 ug 
of total RNA was used to run real-time PCR and assess the expression of PTH1R as 
a result of PTHrP treatment. Here, it is shown that PTHrP has no significant effects on 
PTH1R expression at the early stages of chondrogenic differentiation. After 16 days in 
incubation medium however, PTHrP reduces PTH1R expression levels by 3.3-fold 
compared to untreated cells. PTHrP-induced decrease in PTH1R expression is sustained 
throughout the chondrogenic differentiation stages reaching peak levels on day 16.  

To determine whether PTHrP (1-36) modulates ColXI (α1) alternative splicing 

and expression levels during chondrogenesis, we treated ATDC5 cells at different stages 

of chondrocyte differentiation with PTHrP (1-36) for 24 hours and analyzed gene 

expression using real-time PCR. PTHrP (1-36) increased the expression levels of ColXI 

(α1) exons 6A and 8 by 2-fold (p-value <0.05) and 2.2-fold (p-value <0.05), respectively, 

on day 3. At later stages, PTHrP (1-36) had the opposing effects on ColXI (α1) e6A 

expression and decreased its expression by two-fold (p-value <0.05) on day 30. In 

contrast, PTHrP (1-36) treatment did not significantly change ColXI (α1) e6B expression 

during early stages of chondrogenesis but increased e6B expression by 3-fold (p-value 

<0.05) and 2-fold (p-value <0.05) on days 22 and 30, respectively. These findings 

support the concept of ColXI (α1) exons 6A and 8 as early chondrogenic markers that are 

increased by PTHrP to maintain cells in a proliferative state. Similarly, it is possible that 

PTHrP up-regulates ColXI (α1) exon 6B expression only at later stages of differentiation 

at the bone collar to promote terminal differentiation.  

2.3. Effects of PTHrP (1-36) on Collagen XI alpha 1 Expression in Pluripotent C2C12 

Cells 

To determine whether PTHrP (1-36) regulates ColXI (α1) expression in a 

pluripotent stem cell model, we used mouse C2C12 cells, which can be used as a model 

for cells found at the bone collar. C2C12 cells can differentiate into myoblasts, 
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osteoblasts, adipocytes, and neurons. Here, we used C2C12 cells as a pluripotent stem 

cell model and assessed ColXI (α1) expression upon PTHrP (1-36) treatment. Our results 

showed no significant changes in ColXI (α1) alternative spliceform expression at any 

time point treatment (Figures 6 a-d). To confirm our findings, we co-treated PTHrP-

treated cells with a PKA inhibitor H89 and as expected did not observe any significant 

changes to the expression levels (data not shown). It is important to note that we used 

PTHrP in a continuous fashion to treat C2C12 cells. Previous studies have shown 

opposing roles for PTHrP (1-36) depending on whether it was used in a continuous 

PTHrP or intermittent manner. Continuous PTHrP (1-36) treatment results in bone loss, 

whereas intermittent exposure can increase bone formation [34].  
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Figure 5. (a) ATDC5 cells were differentiated into chondrocytes and 
chondrogenesis was assessed using Alcian Blue and Alizarin red. (b) PTHrP treatment of 
ATDC5 cells increased ColXI (α1) exon 6A expression during early stages of 
chondrogenesis but decreased its expression on day 30. (c) PTHrP increased ColXI (α1) 
exon 6B expression during late stages of chondrogenesis. (d) PTHrP did not affect exon 7 
expression during early chondrogenesis but increased its expression on days 16 and 22. 
On day 30, PTHrP did not change ColXI (α1) exon 7 expression. (e) ColXI (α1) exon 8 
expression is increased by PTHrP on day 3 similar to exon 6A but remains unchanged 
with treatment at later stages of chondrogenesis. 
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Figure 6. (a-d) PTHrP did not affect the expression and alternative splicing of 
ColXI (α1) in pluripotent C2C12 cells.  Cells were plated at 2x104 cells/cm2 and grown 
overnight in maintenance medium. The next day, cells were treated with PTHrP for 2 hr, 
4 hr, 12 hr, and 24 hr continuously. RNA was extracted and the expression of ColXI (α1) 
spliceforms was assessed using real-time PCR.  

3. Experimental Section 

3.1. Cell Culture, Differentiation, and Treatment 

The mouse pluripotent cell line, C2C12 was purchased from ATCC and 

maintained in DMEM (Sigma Chem. Co., St. Louis, MO) supplemented with 10% fetal 

bovine serum (FBS) (GIBCO, Grand Island, NY) and antibiotics (100 units/mL of 

Penicillin-G and 100 μg/mL of Streptomycin). Cells were kept at 37°C in a humidified 

atmosphere of 5% CO2 in air. To assess PTHrP effects, cells were plated at 2 x 104 
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cells/cm2 in DMEM supplemented with 10% FBS, 100 U/mL Penicillin and 100 μg/mL 

Streptomycin and hPTHLH (10-7 M) (Sigma Aldrich; St. Louis, MO) for the indicated 

amount of time. At each time point, total RNA was extracted from the cells using TriZol 

(Gibco-BRL) and real-time PCR was performed as described below.  

For chondrogenesis experiments, prechondrogenic cells mouse ATDC5 cells were 

purchased from ATCC and maintained in DMEM: F12 (1:1) supplemented with 5% fetal 

bovine serum (FBS) (GIBCO, Grand Island, NY) and antibiotics (100 units/mL of 

Penicillin-G and 100 μg/mL of Streptomycin). For differentiation studies, ATDC5 cells 

were grown in micromass cultures as following: cells were suspended at 1.0 x 107 

cells/mL in maintenance medium supplement with ITS-G (Insulin-Transferrin-Selenium, 

Life Technologies, Carlsbad, CA). Three 10 μl drops were placed into a well of a 6-well 

plate and let adhere for 2 hr in the incubator. Two milliliters of media was added to each 

well. Media was changed every two days. PTHrP was added on days 0, 3, 10, 16, 22, and 

30. RNA was extracted using 1 mL TriZol per well of a 6-well plate.  

3.2. Alcian Blue and Alizarin Red Staining 

ATDC5 cells were plated in micromass cultures as described above in 12-well 

plates and cultured in differentiation medium for 30 days. At each time point, cells were 

rinsed with PBS and fixed with 95% methanol for 15 minutes. Then, cells were stained 

with 0.1% Alcian Blue 8GS (Fluka, Buchs, Switzerland) in 0.1M HCl overnight at room 

temperature. The next day, cells were rinsed with PBS and imaged using an Olympus 

America’s BX53 microscope.  

For mineralization, cells were cultured in differentiation medium on glass 

coverslips as described above and incubated for 30 days. On day 30, cells were rinsed 
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three times with PBS and fixed in 95% ethanol for 15 min. Cells were then stained with 

400 μl of 40 mM Alizarin Red (Millipore, Billerica, MA) for 20 minutes. After 

destaining with deionized water, samples were imaged using an AMG EVOS 

Fluorescence Microscope.  

3.3. Primer Design and Real-Time PCR  

Primers were designed for each exon using Primer Blast (NCBI) (Table 1). Real-

time PCR was performed using SYBR Green PCR Master Mix (Applied Biosystems, 

Life Technologies). Each 20 μL PCR reaction consisted of 10 μL of SYBR Green PCR 

Master Mix, 500 nM of each forward and reverse primer, and 1 μL of undiluted template 

cDNA and nuclease-free water. Targets were amplified using Eppendorf Mastercycler as 

following: 50°C (2 min), 95°C (10 min) followed by 40 cycles of 95°C (15 sec) and 60°C 

(1 min) followed by one cycle of 72°C (1 min). PCR products were separated by 

electrophoresis through 4% Nusieve 3:1 Agarose as per manufacturer’s instructions 

(Lonza, Basel, Switzerland) to verify that the used primer pair produced the expected 

product. A no-template control was also included in the assay substituting water for 

template.   

3.4. Statistics 

Results are reported as the mean±SEM n = 3 in each group. One-way ANOVA 

followed by post-hoc Bonferroni test was used to determine the statistical differences 

between the various experimental and control groups. * indicates p < 0.05, ** indicates p 

< 0.01, *** indicates p < 0.001, and **** indicates p < 0.0001, and n.s. is not significant.  
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4. Conclusions 

In summary, our findings indicate that collagen XI alpha 1 is alternatively spliced 

during ATDC5 chondrogenic differentiation in vitro. These results will enable further 

studies on the role of different collagen XI alpha 1 spliceforms during chondrogenesis. In 

addition, our work provided evidence for a role for PTHrP in collagen XI alpha 1 

alternative splicing and expression in ATDC5 cells. We also showed that continuous 

PTHrP (1-36) did not alter ColXI (α1) spliceform expression in pluripotent C2C12 cells.  
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ABSTRACT 
 
An essential aspect of craniofacial development is chondrogenesis, the process of 
chondrocyte differentiation from multipotent neural crest cells. These multipotent cells 
delaminate from the neural tube during neurulation, travel along specific routes and 
differentiate into various cell types forming different tissues. The formation of this wide 
range of neural crest cell derivatives is dependent on multiple factors, including 
transcription factors, extracellular matrix proteins, and growth factors. Sox proteins are 
transcription factors that play a role during development of various tissues. L-Sox5, 
Sox6, and Sox9 play a role in the differentiation of neural crest cells into chondrocytes by 
binding to regulatory elements, enhancing the expression of chondrocyte-specific 
collagens. Minor fibrillar collagens V and XI contribute to chondrogenesis of the 
craniofacial skeleton by mechanisms that include the regulation of collagen 
fibrillogenesis and a bridging function between major fibrillar collagens and other cell or 
matrix molecules. However, the mechanism of regulation is not fully understood. 
Disruption of craniofacial development during chondrogenesis can lead to Stickler 
Syndrome or Campomelic Dysplasia as a result of collagen XI and Sox9 mutations, 
respectively. 
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Here, we focus on potential additional mechanisms by which the extracellular matrix 
plays a role in Sox-mediated chondrogenesis during craniofacial development. PTHrP 
may be the link between the expression of extracellular matrix and Sox transcription 
factor family-mediated regulation of chondrogenesis, creating a regulatory cycle that 
supports growth and development of cartilage-derived structures. 
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ABBREVIATIONS 
 
Sox (Sry (Sex determining Region Y)- HMG box), ECM (Extracellular Matrix), EMT 
(Epithelial-Mesenchymal Transition), FGF (Fibroblast Growth Factor), Hox 
(Homeobox), NCC (Neural Crest Cell), CD (campomelic dysplasia), cyclic-AMP 
(cAMP) response element-binding (CREB), BMP (Bone Morphogenetic Protein), MAP 
(Mitogen-Activated Protein), PGC1-α (Proliferation activated receptor gamma co-
activator 1- alpha), TRAP (thyroid hormone receptor associated protein), PKA (Protein 
Kinase A), PNS (Peripheral Nervous System), PTHrP (Parathyroid hormone-related 
protein).  
 
 
 
INTRODUCTION 
 
Congenital craniofacial abnormalities span a spectrum of deformities including cleft 
palate, deformed jaw, severe defects of the eye, and mental retardation. Due to the nature 
of these disorders, treatment is limited and can lead to lifelong physiological and 
psychological suffering of the concerned individuals. 
 
The craniofacial skeleton is formed via intramembranous and endochondral ossification 
in which cartilage formation precedes that of bone. Multipotent mesenchymal cells 
condense and differentiate into chondroblasts, which then proliferate rapidly and 
differentiate into chondrocytes. Chondrocytes deposit the cartilage-specific extracellular 
matrix (ECM) proteins, proliferate, and become hypertrophic. Upon hypertrophy, the 
cells grow in size, alter their collagen expression, and eventually undergo apoptosis. 
Simultaneously, mesenchymal cells surrounding the hypertrophic cartilage differentiate 
into osteoblasts and secrete bone matrix, while osteoclasts degrade the hypertrophic 
cartilage as the cartilage model is replaced with newly formed bone tissue [1]. 
 
Collagen is the most prevalent protein found in the ECM, with 29 different types 
discovered to date [2, 3]. Based upon abundance, collagens are divided into major 
fibrillar collagens, including collagen types I and II, and minor fibrillar collagens, 
including types V and XI. Collagens V and XI can form hybrid molecules, therefore they 
are considered to belong to the same collagen type, which can be referred to as collagen 
type V/XI. In vivo studies of collagen V/XI morphants have demonstrated their role as 
regulatory proteins that contribute to fibrillogenesis [4, 5]. However, while major fibrillar 
collagens have been studied extensively, additional roles for minor fibrillar collagens in 
cellular differentiation and signaling require further study and are still being defined. 
 
The cartilaginous framework of the craniofacial skeleton is formed by differentiation of 
multipotent neural crest cells (NCCs) into mature chondrocytes. Disruption of 
chondrogenesis causes severe facial skeletal structure abnormalities and has detrimental 
effects on the embryo. Deformities of the craniofacial features can be induced by genetic 
factors. For instance, mutations in minor fibrillar collagens V/XI can cause Marshall, 
Stickler, or Ehlers-Danlos syndromes, which all present complex phenotypes of flattened 
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face, hearing loss, eye abnormalities, and joint problems. Likewise a mutation of the Sox9 
gene in humans can result in campomelic dysplasia (CD) [6], a genetic condition 
characterized by craniofacial defects, severe damage of the endochondral bone, and sex 
reversal [7]. Similar anomalies are observed in vivo when Sox9 ortholog genes are 
knocked out in other species including zebrafish (Danio rerio), mouse (Mus musculus), 
and frog (Xenopus laevis). Interestingly, Parathyroid Hormone-related Protein (PTHrP) 
homozygous mutant mice also exhibit a chondrodysplastic phenotype characterized by a 
deformed skull, short snout and mandible, protruding tongue, and disproportionately 
short limbs, which are all similar to characteristics in human osteochondrodysplasias [8]. 
In all the above-mentioned disorders, chondrogenesis and bone formation are interrupted 
in the development of the craniofacial structures. 
 
NCCs represent a population of multipotent stem cells that arise from the rhombomeres 
of the hindbrain in vertebrates. These cells undergo an epithelial-mesenchymal transition 
(EMT) during the first few weeks of embryogenesis and migrate to different sites in the 
body, where they differentiate into neuronal cells, cardiac crest cells, pigment cells, 
chondrocytes, and osteocytes [9, 10, 11]. Differentiation into this wide array of derivative 
cells is tightly regulated by transcription and growth factors. The different transcription 
and growth factors work together within a complex system and achieve proper formation 
of the craniofacial skeleton and other developmental structures during embryogenesis. 
Growth factors such as fibroblast growth factor (FGF), Wnt, bone morphogenetic protein 
(BMP), PTHrP, and transcription factors including Hox and Sox proteins influence 
chondrogenesis and thus the development of the craniofacial skeleton [12]. Within the 
Sox (SRY- HMG box) transcription family, L-Sox5, Sox6, and Sox9 regulate 
chondrogenesis [13] shown by L-Sox5sox6 double mutants, which lack endochondral 
bones and exhibit severe skeletal abnormalities [14]. Similarly, PTHrP plays a role in 
proper endochondral ossification as indicated by PTHrP-deficient mice exhibiting 
abnormalities of the craniofacial cartilages and skeletal deformities [15]. 
 
Due to similar anomalies observed in PTHrP, Sox9, and minor fibrillar collagen mutant 
model organisms, investigation into the potential link between the three factors may 
provide fundamental knowledge regarding the mechanisms at play during chondrogenesis 
of neural crest derivatives, a possibility that has not been characterized. 
 
Craniofacial development and neural crest cells 
 
Craniofacial cartilage structures can be divided into seven prominences including the 
frontonasal, and one pair each of the mandibular, maxillary and lateral nasal (Figure 1) 
[16]. The frontonasal features arise from NCCs to comprise the forehead, nose, upper lip, 
and primary palate. Structures of the mandibular and maxillary prominences include the 
lower jaw, sides of the face, and lips [16, 17]. 
 
Upon gastrulation, the ectoderm forms the non-neural ectoderm, the neural plate and the 
NCCs [18]. Cells of the non-neural ectoderm form the epidermis, while the neural plate 
folds to give rise to the central nervous system, including the brain and the spinal cord 
[19]. During the initial stages, the brain is divided into three primary vesicles: the  
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Figure A1. Neural crest cell migration from the posterior midbrain and 
rhombomeres of the hindbrain to various sites of differentiation. NCCs from the 
posterior midbrain migrate to the frontonasal region and contribute to nasal structures as 
well as to the first pharyngeal arch forming Meckel’s cartilage. NCCs migrate from 
rhombomeres 1, 2, and 3 form Meckel’s cartilage, whereas rhombomeres 4 and 5 make 
up ear structures and part of the hyoid bone. NCCs from rhombomeres 5 and 6 form the 
greater horn of the hyoid bone. Similarly, rhombomere 7 NCCs migrate to form thyroid 
and cricoids cartilages. NCCs from rhombomere 8 give rise to tracheal cartilages. 
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forebrain, midbrain and hindbrain. The hindbrain, or rhombencephalon, consists of 
rhombomeres where NCCs originate. These mesenchymal cells migrate to the frontonasal 
region and to one or more of the 6 pharyngeal arches (Figure 1). Each pharyngeal arch 
gives rise to specific structures of the craniofacial and neck skeleton. Pharyngeal arch 1 
forms the mandibular and maxillary structures including the maxilla, zygomatic bone, 
temporal bone, incus, malleus, and Meckel’s cartilage. Pharyngeal arch 2 shapes the 
stapes, styloid process, and hyoid bone. Pharyngeal arch 3 makes up the greater horn of 
the hyoid bone, and pharyngeal arches 4-6 form the arytenoid cartilage, thyroid cartilage, 
and other laryngeal cartilages [20]. 
 
Collagens V/XI are expressed in pre-migratory NCCs as well as in developed craniofacial 
cartilages in zebrafish [21, 22]. Interestingly, the expression patterns of the minor fibrillar 
collagens are highly comparable to that of Sox9 in the craniofacial structures, although 
there is no direct evidence showing an interaction between Sox9 protein and minor 
fibrillar collagen genes. Similarly, accelerated endochondral bone formation and 
chondrocyte maturation in the craniofacial cartilaginous structures in PTHrP-deficient 
mice indicate expression of PTHrP in the craniofacial structures [23]. 
 
 
Minor fibrillar collagens and SOX proteins 
 
During endochondral ossification, chondrocytes deposit major collagen type II and minor 
fibrillar collagen type V/XI [24]. As cartilage is mineralized and converted to bone, 
chondrocytes change their overall expression pattern to collagen type I and more 
predominantly minor fibrillar collagen V. Collagens consist of three peptide alpha chains 
forming either heterotrimers or homotrimers [25, 26, 27]. Three different collagen XI 
alpha chains have been described: Col11a1, Col11a2 and Col11a3 [28, 29]; where 
Col11a3 is actually a modified form of Col2a1. Similarly, three collagen V alpha chains 
have been described in humans: Col5a1, Col5a2 and Col5a3 [21]. Minor fibrillar 
collagens V and XI play a role in the organization of major fibrillar collagens I and II, 
respectively, by forming heterotrimers with them. Collagens V/XI share strong homology 
among their respective protein domains and are interchangeable, forming collagen V/XI 
isoforms [30, 31, 32]. 
 
What can we learn from animal models? 
 
The role of collagen V/XI in chondrogenesis of craniofacial skeletal structures has been 
studied in mice and in zebrafish [4, 5]. Expression of Col5a1 in developing cranial 
cartilages, Col11a2 expression in cephalic mesoderm, and a unique Col11a1 expression 
in the hindbrain has been identified in zebrafish [21], suggesting a potential role in the 
induction and differentiation of NCCs into craniofacial cartilages. This potential is 
supported by vertebral and craniofacial abnormalities in zebrafish Col11a1 morphants. 
The abnormalities include a smaller lower jaw and abnormal otolith genesis (Figure 2A). 
Analogous defects have been observed in chondrodysplasia (cho/cho) mice lacking a 
functional Col11a1 protein (Figure 2B). The cho/cho mouse demonstrates a morphology 
characteristic of Marshall’s and Stickler syndromes and fibrochondrogenesis in humans 
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[33]. Likewise, mutations in Col11a2 have been linked to osteochondrodysplasias in 
humans [34]. 

 
Figure A2. Effects of Col11a1 knockdown in mouse and zebrafish. Col11a1 
morphant zebrafish show a smaller mandible (M) and smaller otoliths (arrowhead). 
Similarly, microcomputed tomography representation of wildtype (WT) and Col11a1 
mutant chondrodysplastic (cho) mice at embryonic day 17.5 show an overall smaller, 
deformed cranium (dashed lines), and decreased jaw length (bar), illustrating the role for 
Col11a1 in craniofacial development. 

Multiple families of transcription factors are responsible for the expression of genes 
necessary for chondrogenesis. One essential family of transcription factors is represented 
by the highly conserved Sox family. All Sox proteins share the same high mobility 
(HMG) domain that is extraordinarily conserved among vertebrates (Figure 3) and bind 
to a similar minor groove DNA motif of (A/T)(A/T)CAA(A/T)G resulting in bending of 
the DNA helix [7, 35, 36]. Bending of the DNA facilitates the unwinding of the DNA 
double helix, which in turn causes the gene promoters to be in a more open conformation 
and enhance transcriptional activity. Sox transcription factors are divided into 8 
subgroups of A-H [37]. Sox9 is a transcription factor that belongs to subgroup E and has 
a characteristic transcription domain at its C-terminus [38]. Sox9 is expressed in a variety 
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of cell types, including mesenchymal NCCs, Sertoli cells of the testes, cardiac neural 
crest cells, the kidney, and all chondroprogenitor cells [4]. Along with Sox9, other SoxE 
members such as Sox8 and Sox10 play a role in the development of the NCCs prior to 
their migration. Once the NCCs start migrating, Sox9 expression is downregulated and 
expression of Sox8 and Sox10 are lost. However, upon arrival at the site of 
chondrogenesis, the NCCs up-regulate Sox9 [16]. Sox9 does not play a role in NCC 
migration as evidenced by normal cell migration patterns in Sox9 mutant cells [1]. 
Nonetheless, at the site of chondrogenesis, Sox9 plays a crucial role in not only 
mesenchymal cell condensation, but also proliferation and differentiation into 
chondrocytes [39, 7]. 
 

 
Figure A3. Schematic of a potential mechanism by which extracellular matrix 
proteins can act upstream or downstream of PTHrP in the cell. Collagens V/XI may 
act upstream and interact with PTHrP or PTHrP receptor in the extracellular matrix 
activate the PKA pathway, and regulate chondrogenesis via Sox9. Alternatively, PTHrP 
may regulate the expression of minor fibrillar collagens V/XI by activating the PKA 
pathway and phosphorylating Sox9 in the cytoplasm, which can then move to the nucleus 
and regulate the expression of the minor fibrillar collagens in a similar manner that it 
regulates Col2a1. Both Col11a1 and Col11a2 have transcription sites for Sox9. 
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Additionally, L-Sox5 and Sox6 are required for the development of chondroblasts [40]. 
Both Sox factors L-Sox5 and Sox6 are co-expressed with Sox9 during chondrogenesis 
except for the period prior to mesenchymal condensation verified by experiments with 
Sox5sox6 double mutants demonstrating normal mesenchymal condensations but no 
chondrogenesis [10, 40]. All three Sox proteins are required for the differentiation of 
chondroblasts to chondrocytes [14]. L- Sox5 and Sox6 belong to subgroup D and share a 
similar sequence in their coiled-coil region forming homo- or hetero-dimers [4]. 
Dimerization of L- Sox5 and Sox6 facilitates their binding to the first intron of Col2a1. 
They share the common HMG domain with Sox9 [41]. As neither L-Sox5 nor Sox6 have 
a transcription activation domain, they act as architectural factors that do not influence 
the transcriptional activity but can indirectly modulate gene activity [42]. 
 
L-Sox5, Sox6, and Sox9 recognize HMG binding sites on Col2a1 and Aggrecan, the 
major structural proteoglycan found in the ECM of cartilage. Collagen type II, the major 
protein of the cartilage, contains a 48 bp sequence in its first intron, which contains 4 
binding sites for Sox proteins [12]. Sox proteins can bind to Col2a1 and Aggrecan, 
enhancing their expression [12]. Similarly, HMG binding sites have been identified on 
Col11a2 that can be recognized by Sox9 [39, 43, 44]. Computational analyses have also 
identified seven conserved pairs of HMG binding domains in the promoter region of 
Col11a1 in both humans and mice, which could further show a relationship between 
Sox9 activity and collagen type XI [45]. Recent EMSA studies have determined true 
Sox9 binding sites on Col11a1 [46]. However, to date, regulation of Col11a1 expression 
by Sox9 has not been demonstrated. One possibility is that the growth factors mediating 
expression of cartilage-specific extracellular matrix proteins may do so through the 
activity of Sox family transcription factors. 
 
 
Regulation of chondrogenesis 
 
Binding of L-Sox5, Sox6, and Sox9 to Col2a1 promotes the assembly of a multiprotein 
enhancer complex and activates the basal transcriptional machinery required for 
chondrogenesis (11). L-Sox5, Sox6, and Sox9 regulate transcription in chondrogenesis 
using a cyclic-AMP (cAMP) response element-binding (CREB) protein mediated by 
DNA acetylation [37]. Sox9 activity can be regulated by multiple factors. For instance, 
Smad3 increases the interaction between Sox9 and CREB-Binding Protein (CBP/p300), 
which in turn increases Sox9 transcriptional activity [47]. Similarly, proliferation 
activated receptor gamma co-activator 1-alpha (PGC1-α) co-activates Sox9 during 
chondrogenesis [48]. The interaction between Sox9 and thyroid hormone receptor-
associated protein 230/Med12 (TRAP) also significantly increases Sox9 transcriptional 
activity [49]. Since Col11a1 and Col11a2 both contain multiple Sox9 binding sites, it is 
possible that the same transcriptional machinery may be used to regulate their expression 
in cartilage (Figure 4). Further studies are required to verify the role for Sox9 in Col11a1 
and Col11a2 expression. Sox9 expression is regulated by many growth factor signaling 
pathways. For instance, FGFs use the Mitogen Activated Protein (MAP) pathway to 
increase Sox9 expression in chondrocytes and mesenchymal cells. Both chondrocytes and 
mesenchymal cells express FGF receptors [50]. Likewise, PTHrP increases cAMP levels 
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and phosphorylates Sox9 by activating the Protein Kinase A (PKA) pathway in vivo [51]. 
Phosphorylation of Sox9 enhances its activity and leads to increased Col2a1 expression 
in the prehypertrophic zone of the growth plate [51] (Figure 4).  

 
Figure A4. Sox9 protein has highly conserved high mobility group (HMG) 
domain and sites of phosphorylation. The HMG domain is a conserved domain (amino 
acids 101-184) within human (H. sapiens), mouse (M. musculus), rabbit (O. cuniculus) 
and zebrafish (D. rerio). Serine 181 (S181) and serine 184 (S211) are PTHrP dependent 
sites of phosphorylation on Sox9. Sequence logo was generated using WebLogo 3.0 [54, 
55]. 

Both Sox9 and PTHrP prevent proliferating chondrocytes from becoming hypertrophic 
[45]. As a result, cartilage is conserved and bone formation is inhibited. Inhibited 
differentiation of proliferating chondrocytes into hypertrophic chondrocytes could 
alternatively be due to the lack of ECM components as suggested by Akiyama. Indeed, 
mice lacking Col11a1 show premature ossification [5] (Figure 2B). Col11a1 binds to 
heparin sulfate proteoglycans and through this interaction may facilitate FGF signaling 
that is dependent on heparan sulfate [52, 53]. FGF can subsequently stimulate 
chondrogenesis via Sox9 activation. Similarly, Sox9, PTHrP, and Col11a1 all show 
similar or overlapping effects in preventing chondrocytes from becoming hypertrophic 
and thus mineralizing. It is notable to mention that pre-hypertrophic chondrocytes express 
Sox9 and the PTHrP receptor [46]. Extracellular matrix may modulate PTHrP-mediation 
of chondrogenesis and the transition from proliferative chondrocyte to hypertrophic 
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chondrocyte. Alternatively, PTHrP may induce changes in the expression of extracellular 
matrix molecules that are critical for the formation of cartilage. To date, the analysis of 
PTHrP-mediated changes during skeletal development has not included an analysis of the 
minor fibrillar collagens. It is possible that minor fibrillar collagens in the ECM bind to 
PTHrP or alternatively to its receptor and regulate the PTHrP pathway, acting upstream 
of the cellular signaling pathway during chondrogenesis. Studies on the regulation of 
PTHrP-Sox mediated chondrogenesis may provide us with a better understanding of the 
molecular mechanism of craniofacial development. 
 
 
CONCLUSION 
 
The role of minor fibrillar collagens V/XI in L-Sox5, Sox6, and Sox9-mediated 
chondrogenesis and the interaction with growth factors that provide external cues during 
craniofacial development is a relatively new area of investigation. Since the cartilage 
abnormalities in Col11a1 cho/cho mice, and Col11a1 zebrafish mutants are similar to 
those induced in Sox9 mutant mice and zebrafish, and PTHrP-deficient mice, an 
investigation of the interaction between these molecular constituents may provide 
fundamental information. Studies are needed to look at the role of PTHrP in Sox-
mediated chondrogenesis and the relationship to minor fibrillar collagens. The 
multipotency of NCCs is of great interest to basic science as well as to the development 
of regenerative medicine approaches for the treatment of skeletal injuries. Understanding 
the interplay between minor fibrillar collagens, Sox proteins, and PTHrP in NCC-derived 
structures could explain the multiple levels of regulation of chondrogenesis and thus 
proper cartilage formation during craniofacial development of the embryo. The results 
could help us understand the mechanism by which minor fibrillar collagens regulate 
chondrogenesis as well as how minor fibrillar collagens are regulated during this process. 
Having a better understanding of the mechanisms by which chondrogenesis and cartilage 
formation occur may provide us with new tools to diagnose and prevent disorders of the 
craniofacial skeleton including cleft palate and osteochondrodysplasias in utero. 
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