BIOMIMETIC APPLICATION OF ION-CONDUCTING-BASED MEMRISTIVE

DEVICES IN SPIKE-TIMING-DEPENDENT-PLASTICITY

by

Kolton T. Drake

A thesis
submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Electrical Engineering

Boise State University

August 2015

© 2015

Kolton T. Drake

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS
of the thesis submitted by
Kolton T. Drake
Thesis Title: Biomimetic Application of lon-Conducting-Based Memristive Devices
in Spike-Timing-Dependent-Plasticity
Date of Final Oral Examination: 12 June 2015
The following individuals read and discussed the thesis submitted by student Kolton T.

Drake, and they evaluated his presentation and response to questions during the final oral
examination. They found that the student passed the final oral examination.

Kristy Campbell, Ph.D. Chair, Supervisory Committee
Elisa Barney Smith, Ph.D. Member, Supervisory Committee
Kurtis Cantley, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Kristy Campbell, Ph.D., Chair of
the Supervisory Committee. The thesis was approved for the Graduate College by John
R. Pelton, Ph.D., Dean of the Graduate College.

ACKNOWLEDGEMENTS

I would like to thank Dr. Campbell for her continual support, encouragement, and
inspiration throughout my time as a research student. The skills | have gained both
technically and academically can, in a large part, be credited to her tutelage and oversight
since my Sophomore year as an undergraduate. | cannot express how truly thankful for
the opportunities 1’ve been afforded while working with her.

I would also like to thank Dr. Barney Smith and Dr. Cantley for the knowledge
I’ve gained from their courses and their gracious participation on my graduate committee.
Special thanks go to Kyler Palmer and Cody Breckenridge for their first-steps in
developing the console application used to control the B1500. Without this interface, the
tests that were performed and analyzed in this thesis would not yet be finished.

I would also like to thank Meredith for her patience and support during my time
experimenting, researching, and writing. I would not have been able to do this without

her.

ABSTRACT

The design and synthesis of artificial learning systems has been aided by the study
of biological learning systems. Classic biological learning is driven by the strengthening
and weakening of the synapses that connect neurons within the brain through a
phenomenon known as Spike-Timing-Dependent-Plasticity. That is, synaptic
connectivity between neurons is modulated by the relative timing of their spiking outputs.
Similarly, neuromorphic computing architectures can implement a mesh of artificial
neurons interconnected by a network of artificial synapses to mimic the learning
behaviors found in nature.

Memristors, two-terminal devices whose resistance can be programmed as a
function of voltage and current, offer a promising biomimetic solution for a hardware-
based artificial synapse. This work focuses on characterizing the switching behavior of an
ion-conducting, chalcogenide-based resistive memory in a test environment emulating the
behavior of a two-neuron, single-synapse neuromorphic circuit to demonstrate learning at
speeds significantly faster than those found in biological synapses.

The results from this study show that the ion-conducting memristors used in this
work exhibit effective learning at time scales ranging over several orders of magnitude:
from the biologically-relevant millisecond region to the faster-than-nature nanosecond

region.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS. ... iv
ABSTRACT ettt b et e b e e e a bt e bt e e bt e be e nb e e be e nnneenneeanne s \
LIST OF TABLES ...ttt ettt be et e IX
LIST OF FIGURES ...ttt ettt ettt et e e e e X
LIST OF ABBREVIATIONSot Xiii
CHAPTER ONE: INTRODUCTIONooiiiiiiiieecee e 1
1.1 MEMIISTOr OVEIVIBW ...ttt 1

1.2 NeuromorphiC COMPULINGccuviiiieieiieieeie e enes 3

1.3 STDP: “Neurons that fire together, wire together.” ... 4

1.4 Motivation and OULIINEccooiiiiiii e 7
CHAPTER TWO: BACKGROUNDoooiiiiiiiicieee e 9
2.1 lon-Conducting ReSIStIVE MEIMOIYccvciuiiieiieriieie e 9

2.2 STDP in [deal MEMIISIOISccvcviiriiieisieese e 11
CHAPTER THREE: EXPERIMENTAL OVERVIEW ..o 16
3.1 Device Structure and FabriCatioN............ccoooeiiiiiiiinieccee e 17

3.2 Device Programming CharaCteristiCscoouuririrreriieiienieie e 19

3.3 Electrical CharaCterization............cocooerveirenieiii e 20

3.3.1 Calculating Weight Changecccccvereiieiierrce e 22

3.3.2 Minimum Timing Considerations...........cccovuerereereeniesieseese e 22

Vi

3.3.3 Resistance MeaSUIEMENTScoeeee e 22

3.3.4 Two-sided vs. One-sided Measurementscccocerererenineseeeeinennens 23

3.3.5 Device ConditionNiNgc.ccveivereeie e s et 24

B4 MOTIVALION ...t 26
CHAPTER FOUR: EXPERIMENTAL RESULTS AND DISCUSSIONcccociiviiieinnns 27
4.1 AC PUISING ...ttt bbb b nne e b e e b s 27
4.1.1 EXperimental SEUPooviieiieece e 27

B.1.2 RESUIS ..o 29

4. 1.3 DISCUSSION ...ttt er e 30

4.2 SUD-MICroSECONT STDPooiiiiiiiiiecese e 30
4.2.1 EXperimental SETUPcoviveiiee e 30

B.2.2 RESUIS ... 33

4.2.3 DISCUSSION ...ttt sttt 34

4.3 Trailing Edge CancCellationooooiiiiiiiriieese e e 35
4.3.1 EXperimental SETUPcoviviiiee e 35

4.3.2 RESUILS ...t 37

4.3.3 DISCUSSION ...ttt 38

4.4 EXtended AT STDP ...ttt rraeasae s 38
4.4.1 EXperimental SETUDcoov i 38

B.4.2 RESUILS. ...t 39

4.4.3 DISCUSSION ...ttt ettt ans 40

4.5 SUMMANY OF RESUITScvveieciie e 41

vii

CHAPTER FIVE: CONCLUSION.......ccoiiiiiiiiiii s 43

5.1 Conclusion and NEXE STEPScueeviiirieriesie ittt sneas 43
REFERENGCESot 44
APPENDIIX . 47

STDP TeStING PrOGramccuveiveiieieeie e seeteseesteesaesee e essesraesaeeaesseesseeneesseesseensesnens 47

viii

LIST OF TABLES

Table 1. Polarity of AT for applied STDP pulse and expected device response..... 31

Table 2. Extended AT Pulse Amplitudes and Timing Parameters.cceunee. 38

Figure 1.

Figure 2.
Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

LIST OF FIGURES

The four basic circuit elements and their relation to the four fundamental

CIrCUIt variables [3]. c.oove oo 2
An example of a pinched I-V hysteresis loop for a memristor.................... 3
A diagram of a synaptic connection between neurons [12]........cccccceevenenn. 5

An example of a MIM ion-conducting memristor structure with an

active Ag metal layer (top), a GeSe amorphous glass (center) and a W
metal layer (bottom). (a) Immediately after fabrication, the device is
very high resistance and there is no movement of the Ag into the GeSe
layer. (b) After applying a slight positive voltage bias to the top electrode
Ag"” ions move into the glass. (c) As the bias increases, more Ag” ions
move into the glass and some reduce to begin forming an Ag base. (d)
When enough Ag” ions reduce to form an Ag filament, the conductance
of the device is greatly decreased. (e) By applying a negative potential

to the top electrode, most of the Ag metal in the channel again ionizes
into Ag” and reduces at the top electrode, thus severing the conductive
filament and increasing device resistance. (f) Some of the reduced Ag

is left behind and makes subsequent filament formation easier. 10

Schematic diagram showing the analogous relationship between the
memristor and the synapse [23].ccovevvereeiriie e 11

Differences in resultant voltage due to pulse timing. Vpre is shown in
dashed red, Vpost in solid blue, and the resultant Vg is the thick
PUIPIE TrACE. ...ttt e nne e 12

Positive and negative weight adjustments due to pulse timing. Threshold
Voltage, Vth, is £ 1 V. Vpre (top electrode) is shown in dashed red,

Vpost (bottom electrode) in solid blue, and VR is the thick purple

trace. The resultant waveform is highlighted where it is above device
tNFESNONd.o 14

Two STDP pulse shapes and their corresponding learning functions.

Inset (b1) shows a sharp positive square pulse followed by a longer
negative ramp, which results in the sharp transitions shown in the learning
function in inset (b2). Inset (c2) shows rounded transitions as a result

X

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

of the pulse shape in (c1), which extends the positive pulse with a

The ion-conducting resistive memory device stack featuring tungsten
top and bottom electrodes, an active metal layer of Ag, and an active
Ge,Ses chalcogenide glass layer between the conductor layer and the
bottom electrode [24] [25]. ...cvevrieereiierie e 17

Top-down view of a fabricated 4 um device with a top electrode (a),
device via (b), and a bottom electrode (C)........ccoveererrerierieiieseeseeee e, 18

An example of a pinched I-V hysteresis loop for an ion-conducting
chalcogenide memristor used in this work. Starting with a sweep to

0.5 V (1) showing a very high initial resistance and a large increase

in conductivity at approximately 250 mV followed by (2), a reverse

sweep showing the lower resistance state. The low resistance state is
maintained during (3), a sweep to -1 V until (4) where the device
decreases in conductivity. The high resistance state is retained during

the reverse sweep ShOWN DY (5). ...ooveiieiiiiesiee e 19

(a) Block diagram showing the electrical connections for circuit test

set up. Each RSU (CH;, CH,) features a buffer that is connected to

an oscilloscope for monitoring the voltage at the top and bottom
electrodes. Each channel of the WGFMU can monitor the current

through or the voltage applied to the device. (b) Block diagram and

picture showing the RSU’s switch configuration between WGFMU
(B1530A) N0 SMU [26]. ..o 21

The AC conditioning pulse for the devices in this work and the typical
device response. Voltage is measured from Channel 1 (V1, solid red

line) and current is measured from Channel 2 (12, dashed blue line).
Shown at (a) is the first 200 mV 600 ns read, (b) is the -3.5 V 300 ns
FWHM erase pulse, (c) is the erase-verification read, (d) is the 2 V

150 ns FWHM write pulse, and (e) is the write-verification read. 25

AC Erase pulse and typical device response with Voltage as the solid

red line and Current as the dotted blue line. (a) An initial low-resistance
indicated by a large current. (b) The -1.8 V 300 ns FWHM erase
operation. (c) The device has been programmed to a higher resistance

as indicated by the decreased CUITENL...........cccoeveeieeieseece e, 28

AC Write pulse and typical device response with Voltage as the solid

red line and Current as the dotted blue line. (a) An initial high-resistance
indicated by a very low current. (b) The 1.8 V 150 ns FWHM write
operation. (c) The device has been programmed to a lower resistance

as indicated by the increased CUITeNt.ccooevieiirienieieee e 28

Xi

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Results from the AC Pulsing test. Marker indicates the average, error

bars are + 0.5 standard deviations for three 5 um devices. Results

from the AC erase pulses (- 1.8 V) are indicated by a blue dash and

the results from the AC write pulses (+ 1.8 V) are indicated by a

=10 E GRS 29

The STDP Pulse shape used for this experiment. The rise time from
0 to +1 V is 250 ns, the transition from +1 to -1 V is 50 ns (the
minimum AT), and the rise time from -1t0 0 V is 250 NS........cccevvvennne 31

The resultant Vg for various AT values. Ve (top electrode) is shown
in dashed red, Vpost (bottom electrode) in solid blue, and Vr is the
tNICK PUIPIE trACE.....c.veeie e 32

Results from the two-sided STDP experiment. Marker indicates the
average, error bars are £ 0.5 standard deviations over 3 devices. 33

Results from the one-sided STDP experiment. Marker indicates the
average, error bars are + 0.5 standard deviations over three devices. 34

The Trailing Edge Cancellation starting with the standard Vr for
AT = 250 ns (black, dotted). The magnitude of the trailing edge
cancellation is 25 (red), 50 (blue), 75 (green), and 100 % (orange). 36

Results from the Trailing Edge Cancellation experiment. Red dash
markers represent the AT =+ 250 ns, blue “X” markers represent

AT = - 250 ns. Markers indicate the average, error bars are = 0.5

standard deviations OVer tWo JeVICES.cccovvivrerieninenese e, 37

Results from the Extended AT STDP experiment for a AT, Of

(@) 50 ms, (b) 500 ps, (c) 5 s, and (d) 50 ns. Markers indicate the

average of 40 pulses (10 per device), error bars are + 0.5 standard
deviations OVer fOUr DEVICES.ccvveiveie e 40

Xii

STDP

ANN

MIM

ESD

DUT

SMU

WGFMU

RSU

AC

DC

FWHM

LIST OF ABBREVIATIONS
Spike Timing Dependent Plasticity
Artificial Neural Network
Metal-Insulator-Metal
Electro-Static Discharge

Device Under Test

Semiconductor Measurement Unit
Waveform Generator/Fast Measurement Unit
Remote-Sense and Switch Unit
Alternating Current

Direct Current

Full-Width-Half-Max

Xiii

CHAPTER ONE: INTRODUCTION

This work focuses on characterizing the switching behavior of an ion-conducting,
chalcogenide-based resistive memory in a test environment that emulates the biologically
equivalent neuron-synapse connection. This includes the demonstration of memristive
state adjustment, or “learning,” at speeds significantly faster than those found in
biological synapses, which establishes an exciting precedent in the synthesis and
operation of a hardware-based synapse for use in neuromorphic computing. An
introduction to a few key concepts is necessary before diving into the details of how this
is performed, and is provided in the first chapters of this work.

This chapter gives a brief introduction to memristor theory and neuromorphic
computing, specifically Spike-Timing-Dependent-Plasticity (STDP). The motivation for
and an outline of the body of this work is also included.

1.1 Memristor Overview

The term “memristor” is a portmanteau created from “memory” and “resistor,” as
the term describes a device whose resistance can be changed, by application of potential
or current to the device, to a value that is “remembered.” Additionally, the resistance of a
memristor is a function of its history [1][2].

In 1971, Leon Chua proposed that there was a fourth circuit element called the
memristor in addition to the three fundamental circuit elements: resistors, capacitors, and
inductors [2]. A summary of the four basic circuit variables and their associated circuit

elements is shown in Figure 1. The relationships between the four fundamental circuit

variables, voltage (v), current (i), charge (q), and flux linkage (¢), define the values of
each of these basic circuit elements, but not all of these variables were appropriately
related by an elementary circuit component. Thus, Chua proposed the necessary existence
of the memristor, to be defined as a two terminal circuit element relating flux linkage and

charge and characterized by the ¢-g curve [2].

—\\\—e ; O I I o
S
Resistor I Capacitor
dv = Rdi S dg = Cdv
dg = idt
Inductor Memristor
dp = Ldi dp = Mdq
Memristive systems
Figure 1. The four basic circuit elements and their relation to the four

fundamental circuit variables [3].

In a recent publication [4], Chua claims that if a device exhibits a pinched
hysteresis loop on the voltage-current plane, as shown in Figure 2, that device can be
classified as a memristor. For this reason, the devices characterized by this work will be
alternately referred to as “memristors” or “resistive memory.” This means that devices

ranging from those described by Hirose and Hirose in 1976 [5] to Kozicki and West in

1998 [6] should also be classified as memristors. While Strukov and Snider et al. in their
Nature publication, “The Missing Memristor Found” [3], claimed to have found the first
memristor, this is clearly not the case. Their TiO; based resistive memory and the models
they developed to describe the resistive switching phenomena show a pinched hysteresis

loop, but they are not unique in this respect.

_I|||||||||I|||1|||||I|||||||||I|||||||||I|||||1|||I

o]
=

N

[l

Current (uA)
n
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

0 — >
-5
-10 —
|IIII|IIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIII|IIII|
-0.2 -0.1 0.0 0.1 0.2
Voltage (V)
Figure 2. An example of a pinched 1-V hysteresis loop for a memristor.

1.2 Neuromorphic Computing
Neuromorphic computing is a field that seeks to increase the speed and efficiency
of solving complex computing problems by developing hardware and software solutions
that emulate or simulate biological learning systems. For certain problems, such as
natural scene recognition, humans regularly outperform computer vision models in terms
of accuracy [7]. Simulations on the scale of a mammalian brain are incredibly
computationally expensive. For example, a simulation of a cat brain performed by IBM

in 2009 ran 83 times slower than its biological counterpart despite using the IBM Blue

Gene/P supercomputer, which was equipped with 147,456 CPUs and 144 TB of main
memory [8].

Biological systems are also extremely efficient in terms of power, space, and time
requirements for processing sensory input [9]. These benefits are primarily attributed to
the use of elementary physical phenomena, such as the interaction of charged
neurotransmitter ions with biologically generated electrical signals, as the computational
operators and analog memory storage elements, which allow for massively parallel
processing of multiple sensory inputs [10]. In mimicking the synaptic connections
between neurons within brains, learning within artificial neural networks (ANN) is
accomplished by varying the strength of the connections between individual “neurons”
within the network. This is accomplished by introducing the network to stimuli that
should produce a known output, and incrementally adjusting the strength of the internal
connections of the network until the stimuli-response reproduces the expected output [9].
These incremental adjustments typically require computationally expensive software-
based algorithms or low-density, complex circuitry [10][11]. Memristors, which have the
ability to incrementally adjust their conductance and act as a form of analog memory,
offer a promising solution for a hardware-based synapse.

1.3 STDP: “Neurons that fire together, wire together.”

To understand how Spike-Timing-Dependent-Plasticity (STDP) can affect
communication between neurons, it’s necessary to understand some of how neurons
facilitate communication. Figure 3 shows a diagram of a neuron, its dendrites, and its

axon connecting it to another neuron [12].

ez
'

f Neurotransmitter

Figure 3. Adiagramofas

A neuron receives signals on its dendrites in the form of neurotransmitters sent
from other neurons’ axons. The neuron sends signals by “firing” electrical pulses down
its own axon membrane, which can release neurotransmitters onto another neuron’s
dendrite. These signals are formally known as action potentials, but are commonly
referred to as “spikes” due to their abrupt voltage-time signature [13].

The interfacial gap between an axon and a dendrite is called the synapse, where
the axonal neuron (the sender) is denoted as the “presynaptic” neuron and the receiving
dendrites are connected to the “postsynaptic” neuron [13]. When the presynaptic action
potential reaches the synapse, channels open in the presynaptic axon that allow
neurotransmitters to flow out of the axon and into the receptors on the dendrites of the
postsynaptic neuron [14]. The receptors on the dendrite respond to the presence of these

neurotransmitters and create a postsynaptic action potential. If this neurotransmitter-

induced action potential is large enough, it can cause the postsynaptic neuron to fire its
own action potential [14].

Simply stated, the strength of the synaptic connection between two neurons
determines how well they communicate. In 1949, Donald Hebb postulated that the
strength of a synapse between two neurons is increased when the presynaptic and
postsynaptic neurons are simultaneously active, allowing increased flow of
neurotransmitters across the synaptic gap [13]. Hebb’s work was overly simplified in that
the synaptic strength was modulated by the average firing rate of pre- and postsynaptic
neurons, which did not take into consideration the impact of individual synaptic events.
Subsequent studies by Gerstner et al. expanded Hebb’s work in 1993 to shift the
emphasis from ensembles of spikes (average firing rate) to the impact of individual
spiking events [15]. This provided the foundation for what is now known as Spike-
Timing-Dependent-Plasticity [16].

Spike-Timing-Dependent-Plasticity describes a learning mechanism by which the
strength of the synaptic connection between neurons can be modulated by the relative
timing of individual spikes from the neurons’ outputs; if there is an action potential
present on the dendrite of the postsynaptic neuron that is well timed with the firing of the
presynaptic neuron, the strength of the synaptic connection will either be potentiated
(strengthened) or depressed (weakened). Originally proposed in the context of machine
learning, experimental work in 1998 by Bi and Poo demonstrated that STDP is the
driving force for synaptic strength modulation in real neural tissue by electrically

stimulating cultures of rat hippocampal neurons [17].

Bi and Poo’s work showed that if the postsynaptic neuron fires at the same time
that the receptors on the dendrite have their own action potential, the action potential on
the postsynaptic dendrite created by the reception of neurotransmitters is effectively
amplified, resulting in strong communication between the neurons and potentiation of
their synaptic connection. Conversely, if the action potential sourced by the postsynaptic
neuron is not coincident with the passage of neurotransmittors, the reception of the
neurotransmitters is effectively rebuffed, resulting in poor communication and depression
of the synaptic connection.

As the proposed electrical analogue to a biological synapse, the memristor is
desired to be able to have its resistance modulated by STDP learning pulses [18]. Chapter
2 includes a more in-depth discussion about STDP theory and how it works with
memristors.

1.4 Motivation and Outline

This work is motivated by the possibility that the ion-conducting memristor used
for these experiments is a good biomimetic analog to the chemical synapse, and the
desire to quantify the response of the ion-conducting memristor used in this work under
STDP test conditions. While these devices demonstrate learning functionality similar to
natural synapses, we seek to investigate the range of speeds at which these devices can be
programmed, including speeds significantly faster than those found in nature.
Optimization of test conditions to fit this type of memristor’s specific programming
characteristics is necessary to improve the programming response of the device. This
includes investigating device behavior as a function of the shape, amplitude, and timing

of the programming pulse applied to the device.

Chapter 2 includes an overview of the structure and fabrication of the ion-
conducting memristors used in this work and a review of STDP implemented with ideal
models of memristors.

Chapter 3 provides an overview of the experiments performed and the
measurement tools used to gather the data. It also includes a brief overview of the device
design, structure, and fabrication, as well as the typical programming characteristics of
the ion-conducting memristors used in this work. This section aims to elucidate the
selection of experimental parameters.

The results and discussions of the experiments are presented in Chapter 4.

Chapter 5 summarizes this thesis.

CHAPTER TWO: BACKGROUND

This chapter includes background information about the structure of the ion-
conducting chalcogenide memristor used in this work and a brief overview of STDP
using ideal memristive models.

2.1 lon-Conducting Resistive Memory

lon-conducting devices that exhibit nonvolatile resistive switching have been
identified as potential candidates for scalable, fast switching, and low current memory
elements [19]. Typically, resistive memories are built with a Metal-Insulator-Metal
(MIM) structure that starts at a very high resistance as shown in Figure 4 (a).
Chalcogenide-based ion-conducting resistive memories modulate their resistances
through a mechanism that involves the generation of mobile metal ions when a potential
is applied across the device. An easily oxidized metal is typically used for the active
metal layer, such as Ag or Cu. For devices based on chalcogenide glasses, such as
GeySe1x, the mobile metal ions move into and through the amorphous chalcogenide (as
shown in Figure 4 (b)) when a potential above a certain threshold, commonly denoted as
Vin, 1S applied [20].

As the mobile ions are reduced at the more negative electrode, a conductive
channel, also referred to as a conductive filament, begins to form through the amorphous
material, which reduces the device’s resistance as shown in Figure 4 (c) and (d). By
reversing the applied potential, the reverse reaction occurs; the metal in the channel is

oxidized and forced to migrate towards the more negative electrode, which is now the

10

opposite electrode. This severs the conductive filament and increases the device’s
resistance as shown in Figure 4 (e) [21]. Not all of the metal in the channel is removed as
shown in Figure 4 (f), so subsequent programming operations often have a reduced

threshold requirement [20].

GeSe!

W _(a) -(b)

GeSe
W

(€)

Figure 4. An example of a MIM ion-conducting memristor structure with an
active Ag metal layer (top), a GeSe amorphous glass (center) and a W metal layer
(bottom). (a) Immediately after fabrication, the device is very high resistance and
there is no movement of the Ag into the GeSe layer. (b) After applying a slight
positive voltage bias to the top electrode Ag* ions move into the glass. (c) As the bias
increases, more Ag® ions move into the glass and some reduce to begin forming an
Ag base. (d) When enough Ag” ions reduce to form an Ag filament, the conductance
of the device is greatly decreased. (e) By applying a negative potential to the top
electrode, most of the Ag metal in the channel again ionizes into Ag* and reduces at
the top electrode, thus severing the conductive filament and increasing device
resistance. (f) Some of the reduced Ag is left behind and makes subsequent filament
formation easier.

11

2.2 STDP in Ideal Memristors
The characteristic ability of memristors to incrementally change their conductance
as a function of the potentials applied to the device is crucial for their use as a synapse in
STDP. Ideally, sub-threshold potentials will not affect the conductance of the memristor
[22], which allows non-destructive verification of device state. Similarly, the strength of
a synapse’s connection, also known as its weight, does not change with sub-threshold
action potentials [17]. Figure 5 shows the relationship between a biological synapse and a

memristor, where the neuron circuits are labeled as somas [23].

(a) presynaptic postsynaptic

Memristor

soma —f i d— soma

neurotra nsm|tters

Synapse

rece pto I'S

Figure 5. Schematic diagram showing the analogous relationship between the
memristor and the synapse [23].

In the biological system, the relative timing of sub-threshold action potentials
present on the axon and dendrite membranes can create a pro-threshold action potential
capable of affecting the synapse’s strength [17]. These potentials, also known as spikes,
are sourced by the presynaptic (axon) and postsynaptic (dendrite) neurons, and the total
synaptic action potential is the difference between the membrane action potentials [17].

Similarly, in the memristive system, if each neuron circuit fires a sub-threshold voltage

12

pulse (spike) at slightly different times, the interaction of these potentials across the
memristor can create a resultant voltage that is above the threshold required to affect the
device’s conductance [18]. When a device increases its conductance, this is referred to as
a positive weight change, which is analogous to synaptic potentiation. A decrease in
device conductance is referred to as a negative weight change.

In this work, a pro-threshold resultant voltage is created when the presynaptic and
postsynaptic neurons send identical voltage pulses at slightly different times, denoted by
AT. The notation for AT is such that a positive AT indicates that the postsynaptic neuron
fired before the presynaptic neuron, and vice versa [18]. If AT is greater than the time that
the pulse is active, the presynaptic (Vpre) and postsynaptic (\VVpost) voltage pulses do not
interact, and the resultant voltage (Vwur) across the synapse (analogously, the memristor)
will not have a magnitude greater than the individual pulses. Figure 6 shows the
interaction of presynaptic and postsynaptic voltage pulses with positive and negative AT
values, and their subsequent creation of a resultant voltage larger than the individual

pulses.

dulunlu||||ulluuluuI|||l|uuluu|1|||qu " duluullu||||||Iuuluuluu[null|||||lulnul_
3 AT AT =-150ns| E 3 AT AT=150ns] E
f'—E 5— 0—5 5
s 3 I 8
> 3 E > 3 3
03 3 E 3
3 E | o 3
-1I|II[[|II|I|III1]IIII[IIII|IIII|II1I|II[I|IIII|IIII]-_ _-||||rr|||||||||||||||||11|||||||[rr||||||||||||||u||-_
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time (us) Time (us)
Figure 6. Differences in resultant voltage due to pulse timing. Vpre is shown in

dashed red, Vpost in solid blue, and the resultant Vg is the thick purple trace.

13

The function governing the change in conductance of the memristor is generically
denoted as f(Vmr), which is a function of the current (lp) and the polarity of the voltage

applied to the memristor [18], where

Iy X sign(Vyr) if |Vyrl >v
v — [lo MR MR th 1
fVr) { 0 otherwise (1)

The efficacy of these pulses is known as the “learning function,” which is given
by &. It is commonly represented as a function of the time differential between pulses,
and is equivalent to:

EAT) = [f(Vug) dt .)

Equations 1 and 2 state that for sub-threshold pulses, the change in conductance
of the memristor should be 0, therefore the learning function should be 0. This occurs
when the presynaptic and postsynaptic pulses don’t interact to form a pro-threshold
resultant voltage. For pro-threshold voltage pulses, the sign of the region in which the
resultant waveform is greater than the device threshold determines how the weight is
updated.

Figure 7 shows the resultant voltage and pro-threshold region caused by well-
timed, sub-threshold pulses. The area highlighted in red indicates the time during which
the weight of the device is adjusted by the resultant waveform; device weight is
decreased for a value less than the negative threshold and the weight is increased for a

value above the positive threshold.

14

2_||l||l||I1||||||||I|||||||||I|||||||||I|_ 2_||l||l||I1||||||||I|||||||||I|||||||||I|_

prsond |3 b0 |

Voltage (V)
Voltage (V)

22— iy Jn
= T T T A T[T [P I [T AT [T T [TorrTpT = T T T A T[T [P I [T AT [T T [TorrTpT

0 200 400 600 0 200 400 600
Time (ns) Time (ns)
Figure 7. Positive and negative weight adjustments due to pulse timing.

Threshold Voltage, Vth, is £ 1 V. Vpre (top electrode) is shown in dashed red, Vpost
(bottom electrode) in solid blue, and Vg is the thick purple trace. The resultant
waveform is highlighted where it is above device threshold.

The shape of the resultant waveform is entirely dependent on the shape of the
individual pulses, which in turn affects the shape of the learning function. Serrano-
Gotarredona et al. explored simulations of various pulse shapes (Vmem in their notation)
and their learning functions, two of which are shown in Figure 8 [22]. They propose that
the ability to tune the STDP pulse shape and the corresponding learning function is
essential for getting STDP to work with different material systems and circuit topologies
[22]. This is significant in that it shows that various pulse shapes can still fall under the
umbrella of STDP, including those that have been optimized for programming the ion-
conducting memristors in this work. The results and analyses of the STDP experiments
performed in Chapter 4 show the correlation between our pulse shape and the calculated

learning functions.

15

[(b1) 100 | (b2)

Vimem

&(%)
n
o

vmem

E(%)
)]
o

-80 40 0 40 80 80 -40 0 40 80
Time (ms) AT (ms)

Figure 8. Two STDP pulse shapes and their corresponding learning functions.

Inset (b1) shows a sharp positive square pulse followed by a longer negative ramp,

which results in the sharp transitions shown in the learning function in inset (b2).

Inset (c2) shows rounded transitions as a result of the pulse shape in (cl), which

extends the positive pulse with a ramp [22].

16

CHAPTER THREE: EXPERIMENTAL OVERVIEW

The goal of this work is the characterization of a type of chalcogenide-based ion-

conducting memristive device in a test environment that mimics the circuit outlined in

Fig. 5. The experiments have been performed over a range of pulse timing parameters

with a AT ranging from 50 nanoseconds to 950 milliseconds.

This chapter gives an overview of the structure and fabrication of the ion-

conducting memristors used in this work, the terminology and naming conventions used

in the experimental analyses, as well as the measurement tools used to perform the

experiments.

Four primary experiments were performed for this thesis. They are:

1.

2.

3.

The AC Pulsing experiment is a set of tests designed to show that the device
can be programmed with the minimum timing window present for the Sub-
Microsecond STDP experiment.

The Sub-Microsecond STDP experiment was the first STDP experiment
performed for this work, and seeks to investigate the functionality of these
memristors as circuit analogs to biological synapses.

The Trailing Edge Cancellation experiment is a refinement of the one-sided
STDP experiment, which uses a modified STDP resultant waveform to
improve device programming characteristics.

The Extended AT experiment is an extension of the sub-microsecond STDP
experiment, which features slower pulses that extend the AT range into the

hundreds of milliseconds. We hope to show that these memristors are able to

17

demonstrate learning over a broad range of timing windows including those

found in biological synapses.

3.1 Device Structure and Fabrication

The resistive memory used in this work was manufactured in the Idaho
Microfabrication Laboratory at Boise State University using technology available from
the U.S. patent and trademark office, referred to as a resistance variable memory device,
or programmable conductor [24] [25]. All processing steps were performed at Boise State
University in the Idaho Microfabrication Laboratory. The photomasks used in this work
were fabricated by HTA Photomask [1605 Remuda Lane, San Jose, CA 95112]. The
device structure is shown in Figure 9 and Figure 10 shows a top-down view of an actual
device. This structure contains an easily oxidized Ag metal layer, an amorphous

chalcogenide layer of Ge,Ses, and W top and bottom electrodes.

Figure 9. The ion-conducting resistive memory device stack featuring tungsten
top and bottom electrodes, an active metal layer of Ag, and an active Ge,Ses
chalcogenide glass layer between the conductor layer and the bottom electrode [24]
[25].

18

Figure 10. Top-down view of a fabricated 4 um device with a top electrode (a),
device via (b), and a bottom electrode (c).

lon-conducting devices were fabricated with a via structure and top and bottom
electrodes as shown in Figure 9, each of which extends to a metal pad for wirebonding or
electrical probing access as shown in Figure 10. The structure consists of, in thin film
layer order from bottom to top electrode, 600 A W/300 A Ge,Ses/800 A SnSe/150 A
Ge,Ses/500 A Ag/100 A Ge,Ses/380 A W. The active switching layer is the 300 A
Ge,Se;s layer adjacent to the bottom electrode.

The devices were fabricated on 100 mm p-type Si wafers. Isolated W bottom
electrodes were patterned on the wafers and a nitride layer was used for device isolation.
Vias were etched through the nitride layer to provide contact to the bottom electrode and
to define the device active region. This via defines the device size and ranges from 1 um
to 30 um. No difference in the electrical response was observed between the differing
device sizes, therefore the 4 and 5 um devices were used throughout the work presented
here. The wafers were sputtered with Ar* to clean the W electrode followed by in-situ
deposition of all devices stack layers using an AJA International ATC Orion 5 UHV
Magnetron. The Ge,Se; and SnSe targets were from Process Materials [5625 Brisa Street,
Livermore, CA 94550]. Etching was performed with a Veeco ME1001 ion-mill by
etching through the W and the memristor device materials and stopping on nitride. The

top and bottom electrode bond pad contacts were 80 pum x 80 pum.

19

3.2 Device Programming Characteristics

The devices in this work typically have an initial resistance of more than 1 GQ
immediately after fabrication and can be programmed to less than 100 Q. The ion-
conducting memristors in this work decrease resistance when programmed by applying a
positive voltage to the top electrode above their threshold voltage. Conversely, these
devices dramatically increase their resistance when a negative potential exceeding the
erase threshold voltage magnitude is applied to the top electrode. Figure 11 shows that
the positive threshold is approximately 250 mV for DC “Write” operations and
approximately -175 mV for DC “Erase” operations. Under AC pulsing conditions,
however, the voltage required to affect the device increases as the width of the applied

pulse decreases [4], but the polarity remains the same.

100 _|||||I|||||||||I|||||||||I|||||||||I|||||||||I|||||||||I||||||| duulil

. 5 N
50 -] (2) o

< . (5) [
= 0] = .
£] — [
=] (1) N
@) . n
-50 — [

i (4) (3) N

IIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIII|IIII|IIII|IIII|

-1.0 -08 -06 -04 -02 00 0.2 04
Voltage (V)

Figure 11. An example of a pinched I-V hysteresis loop for an ion-conducting
chalcogenide memristor used in this work. Starting with a sweep to 0.5 V (1)
showing a very high initial resistance and a large increase in conductivity at
approximately 250 mV followed by (2), a reverse sweep showing the lower resistance
state. The low resistance state is maintained during (3), a sweep to -1 V until (4)

20

where the device decreases in conductivity. The high resistance state is retained
during the reverse sweep shown by (5).

3.3 Electrical Characterization

All probing was performed with a MicroManipulator 6200 microprobe station
resting on a Technical Manufacturing Corporation MICRO-g air table for vibration
reduction. Electrical measurements were performed with an Agilent B1500
Semiconductor Parameter Analyzer equipped with two B1511A medium-power
Semiconductor Measurement Units (SMU) for DC measurements and a two channel
B1530A Waveform Generator/Fast Measurement Unit (WGFMU) with two B1531A
Remote-sense and Switch Units (RSU) for AC (alternating current) pulsing
measurements.

The two-channel WGFMU is a self-contained module with each channel able to
generate arbitrary linear waveforms with a 10 ns minimum time step. Each channel can
also simultaneously measure current or voltage with a variety of options for measurement
range and speed, and the channels share a common ground. The ability to simultaneously
apply a test voltage while measuring voltage and current makes it a good tool for rapidly
observing changes in device under test (DUT) resistance. Each channel of the WGFMU
iIs connected to an RSU located near the probes to improve timing and sourcing.
Additionally, each RSU features a switch that allows a direct connection from the SMUs
to the DUT to facilitate high precision DC measurements without the need to lift the
probes, which could disturb the device state. Figure 12 shows a block diagram of the

electrical connections for this test setup [26].

21

The measurement equipment was controlled over GPIB with a Visual C++

console program that was developed for these experiments to provide a platform for rapid

device testing and data acquisition. This code is provided in Appendix A.

(@)

Postsyn

SMU,

From S MU (Triax-female)

‘“‘H -~
il
|
|

(b)

Figure 12. (a) Block diagram showing the electrical connections for circuit test
set up. Each RSU (CH;, CH,) features a buffer that is connected to an oscilloscope
for monitoring the voltage at the top and bottom electrodes. Each channel of the
WGFMU can monitor the current through or the voltage applied to the device. (b)
Block diagram and picture showing the RSU’s switch configuration between

WGFMU (B1530A) and SMU [26].

22

3.3.1 Calculating Weight Change

To remain consistent with neuromorphic literature, device state is reported most
often as AG or &, where A represents “change in,” G represents conductance (Q™), and &
is the synaptic weight update function in %. A device is said to increase its weight if its
conductance increased, and decrease its weight if its conductance is decreased. The

learning function is empirically calculated as:

£(AT) = =1 5 100 05 . 3)

max

Gpre Is the conductance before an STDP pulse is sent, Gpost IS the conductance
after the STDP pulse is sent, and Gnax is the maximum conductance value of the device
during each AT test. Dividing by the maximum conductance normalizes the range of & to
be within +100 %.

3.3.2 Minimum Timing Considerations

When creating the pulse shapes for the AC pulsing and Sub-Microsecond AT
experiments, consideration had to be made for the recommended minimum pulse width
of a waveform sourced by the WGFMU, which is 145 ns [26]. The shape that was created
for the fast tests (Sub-Microsecond AT) has subsequently been stretched for the Extended
AT STDP experiment; its rise and fall times have been adjusted so that the overall pulse
shape remains the same for each AT sequence.

3.3.3 Resistance Measurements

While the WGFMU is a very good tool for programming and rapidly observing
changes in device state, its ability to accurately measure resistance is limited by the
resolution of the ammeter. Additionally, when the DUT rapidly changes its resistance, the

impedance matching provided by the WGFMU and RSU is invalid until the tool can

23

“catch up.” This can cause ringing when the device significantly changes its resistance
(see Figure 13(d)), which further reduces measurement accuracy [26].

The two SMUs are much more accurate for measuring resistance than the
WGFMU, but they are also much slower. Thus, every AC programming pulse is preceded
and succeeded by a DC “Read” sweep from 0 to 20 mV sub threshold sweep sourced by
the SMUs for accurate resistance measurements.

3.3.4 Two-sided vs. One-sided Measurements

A two-neuron, single-synapse neuromorphic circuit contains the memristor
between the two neurons. The programming voltages sourced by the neurons must be
bipolar, and each neuron is responsible for referencing its output voltage from a common
ground and the output of the other neuron. This implies a requirement for each neuron to
be a fully bipolar programming circuit, which significantly increases the footprint of the
overall neuromorphic circuit.

With this in mind, the AC characterization has been performed in two ways. The
two-sided measurement directly mimics the original neuromorphic circuit by using both
WGFMU channels as pulse sources. The one-sided measurement, however, involves a
pre-programming calculation of the resultant waveform, which is then sourced from
Channel 1 (top electrode) exclusively, while the bottom electrode of the device is
connected through Channel 2, which is set to force 0 V. The resultant waveform is the
simple subtraction of the separate waveforms, as shown by Vg in Chapter 2. This one-
sided pulsing is intended to show that these devices do not require two fully differential
neurons for neuromorphic applications, which should dramatically simplify the required

circuitry.

24

3.3.5 Device Conditioning

Given that the formation and destruction characteristics of conductive filaments
are dependent on the device’s initial conditioning [27], every device probed for this work
has been programmed with a set of AC conditioning pulses or gentle DC sweeps to
initialize its state. Under DC bias conditions, as shown in Figure 11, 300 mV can be large
enough to affect the state of the device. Under AC pulsing conditions, however, the
voltage required to affect the device increases as the width of the applied pulse decreases
[4].

For some of the experiments in this work, conditioning was performed using the
AC Conditioning waveform sourced by the WGFMU and repeated 10 times immediately
after breaking through the photo resist on each device. These tests ensure that if the
results of this work are carried forward into actual circuit design, extra circuitry, such as a
current-limiting SMU, will not be required to initialize the devices. One caveat with the
AC Conditioning is that it is quite harsh; it can send as much as 10 mA of current through
the device, which places the device into a very low resistance state. While this device
state works for the STDP experiments performed in this thesis, it is not the normal
operating region for these devices. For the Extended AT STDP experiment, however, the
device was programmed with a gentler DC conditioning sweep from 0 to 1 V with a
10 pA compliance current. No additional AC conditioning was used.

The AC conditioning waveform shown in Figure 13 features a low-amplitude,
200 mV 600 ns full-width-half-max (FWHM) read pulse before and after the two

programming pulses, which are a -3.5 V 300 ns FWHM Erase pulse and a +2 V, 150 ns

25

FWHM Write pulse. VVoltage data is measured on Channel 1 of the WGFMU, and current

data is measured on Channel 2 (hence the negative current for positive bias).

|||||||||||||||||||||||||_|_|'|__|_||||||||||||||||||||||||||||||| |||||||| IFTETARTETARRIRARNIRI ARARINRNTL]
3.0 Conditioning Pulse = 10
= : — Vi =
25 3 S [y 12 E 8
2.0 : 3
3 : E- 6
3 5 : E 4
1.0 3 : —=| |=—150 ns FWHM 3
~ d 600 ns FWHM : =2 O
z 0573 (b) = 3
:c;u 0.0 3——=/ = I....... \ / \ o 2
= 054 i } 2 2
1.0 3 -
= (a) -4
-1.5 3
3] —=| [=— 300 ns FWHM -6
-2.0
253 8
_3_0_5 -10
0 1 2 3 4 5 6 7 8 9 10
Time (us)

Figure 13. The AC conditioning pulse for the devices in this work and the typical
device response. Voltage is measured from Channel 1 (V1, solid red line) and
current is measured from Channel 2 (12, dashed blue line). Shown at (a) is the first
200 mV 600 ns read, (b) is the -3.5 V 300 ns FWHM erase pulse, (c) is the erase-
verification read, (d) is the 2 V 150 ns FWHM write pulse, and (e) is the write-
verification read.

The large current in Fig. 13(a) shows that the device is already programmed to a
relatively low resistance from a previous conditioning pulse because the current response
is in the milliamp range for an applied voltage of 0.2 V. Fig. 13(b) shows the clipped
current response of the much larger amplitude erase pulse. This pulse greatly increases
the resistance of the device, which results in a very low current response to the second
read at Fig. 13(c). Fig. 13(d) shows the ringing response of the ammeter when the device
switches from the high resistance shown in Fig. 13(c) to the low resistance shown by Fig.

13(e). The typical resistance of a device after this type of conditioning is less than 500 €.

26

Again, it should be reiterated that this harsh conditioning is not how the devices typically
operate, but is a way that we chose to use them for this study.
3.4 Motivation

The over-arching goal of this work is the characterization of these memristive
devices in a test environment that mimics the theoretical neuromorphic circuit outlined in
Chapter 2. Particular emphasis is placed on sub-microsecond pulse widths to demonstrate
rapid adjustments of device conductance. Optimization of these pulsing parameters
allows us to demonstrate that these devices are capable of state modification at speeds

much faster than their biological counterparts.

27

CHAPTER FOUR: EXPERIMENTAL RESULTS AND DISCUSSION
This chapter includes the details of how and why each of the four experiments
described in Chapter 3 were performed as well as a discussion of their results.
4.1 AC Pulsing
The AC pulsing experiment is a set of tests designed to verify that the pulsing
parameters and timing requirements for the Sub-Microsecond STDP experiment are
compatible with these memristors for both one- and two-sided tests.

4.1.1 Experimental Setup

A series of one- and two-sided pulses were applied using the same timing
parameters (50 ns rise/fall time) as the waveform shown in Figure 13, but with write and
erase pulse amplitudes of + 1.8 V as shown in Figures 14 and 15. In the two-sided pulses,
negative resultant voltages were created by applying a positive bias to the bottom
electrode of the device and positive resultant voltages were created by applying a positive
bias to the top electrode of the device. One-sided pulses used both positive and negative
biases applied to the top electrode with 0 V applied to the bottom electrode. The state
verification pulse (Fig. 14(a) and (c)) is used as an indicator of device state change, but is
not as accurate as the measurement provided by the SMU, thus the device has its
conductance measured using DC sweeps from 0 to 20 mV before and after each pulse,

and the change in conductance is used to calculate the weight update function &.

28

Voltage (V)
(=
(=
]

NN N N N N T
10
6
4
I '= [\ __E, ¢
(a) (c) 2 2z
-4
-6
-8
(b) -10
RN AR LR LARRE LR RARRN AL LR RARRY AL RARRS AL
05 10 15 20 25 30 35 40 45 50 55
Time (us)

Figure 14.

AC Erase pulse and typical device response with Voltage as the solid

red line and Current as the dotted blue line. (a2) An initial low-resistance indicated
by a large current. (b) The -1.8 VV 300 ns FWHM erase operation. (c) The device has
been programmed to a higher resistance as indicated by the decreased current.

|EEERAREERE RN REERIREERERREREREERERRERE NS REEREREENERE!
] 10
1.5 - (b)
] 8
1.0 6
. 4
0.5
3 . 2 g
S B L &, i
S : I £ 2 2
-0.5 (a) (c) =
] -4
1.0 - -6
] -8
1.5 -
. 10
| LI I| LI | LI | LILLIL I LI | LI II‘I‘.I LI | LI | LILLIL | UL I LILLIL | LI
0.0 1.0 2.0 3.0 4.0 5.0
Time (us)
Figure 15. AC Write pulse and typical device response with Voltage as the solid

red line and Current as the dotted blue line. (a) An initial high-resistance indicated
by a very low current. (b) The 1.8 V 150 ns FWHM write operation. (c) The device
has been programmed to a lower resistance as indicated by the increased current.

29

The full test sequence performed on each device for this experiment is as follows:

1. AC Conditioning Pulse Repeated 10 times

2. One-Sided AC Erase Pulse

3. One-Sided AC Write Pulse

4. AC Conditioning Pulse Repeated 10 times

5. Two-Sided AC Erase Pulse

6. Two-Sided AC Write Pulse
4.1.2 Results

The AC Pulsing Experiment was performed on a set of three 5 pm devices
immediately after conditioning. The results in Figure 16 show that the one- and two-sided
AC pulsing program in a similar fashion. The one-sided pulses appear to have a smaller
standard deviation, but the average weight update function for each operation is within a

single standard deviation for both one- and two-sided pulses.

100 — —
50 — {(. -
S =
nd i [
2100 — -
[[
2-sided |-sided
Test Type

Figure 16. Results from the AC Pulsing test. Marker indicates the average, error
bars are £ 0.5 standard deviations for three 5 um devices. Results from the AC erase

30

pulses (- 1.8 V) are indicated by a blue dash and the results from the AC write
pulses (+ 1.8 V) are indicated by a red “X”.

4.1.3 Discussion

These results show that a £1.8 V, 150 ns FWHM pulse is able to significantly
affect the conductance of these memristive devices in both directions (increasing and
decreasing). It also confirms that both one- and two-sided measurements affect the device
state in a similar manner.

4.2 Sub-Microsecond STDP

As discussed in Chapter 2, the potentiation provided by STDP is effective when
the amplitude of the resultant is greater than the programming threshold of the device.
This occurs when the normally sub-threshold pulses “fire together,” effectively
amplifying their individual magnitudes by combining to form a larger magnitude
waveform. As the first experiment performed demonstrating STDP programming
functionality, this experiment seeks to demonstrate rapid adjustments to device
conductance under STDP pulse conditions.

4.2.1 Experimental Setup

The STDP pulse shape was chosen to be a symmetric synaptic pulse witha £ 1 V
amplitude as shown in Figure 17. Table 1 shows the timing convention used for AT and
includes the expected response of a memristive device and is repeated below. AT is the
difference in time from when the postsynaptic neuron fires to when the presynaptic
neuron fires. For AT = 0, the resultant waveform is 0 V at all points and thus the device

should remain unaffected.

31

Table 1. Polarity of AT for applied STDP pulse and expected device response.
AT First Neuron | Weight Conductance (G) | Vur Equivalent
to Fire Update (&) AC
Operation

AT >0 Postsynaptic | Positive Increase Mostly Write
Positive

AT <0 Presynaptic Negative Decrease Mostly Erase
Negative

The maximum amplitude of the resultant is + 2 V with a AT of + 50 ns,

respectively. The STDP pulse shape is non-zero for 550 ns, so the Vir When AT is

greater than + 550 ns does not reflect interaction between Ve and Vpest. FOr this reason,

the maximum AT tested is = 600 ns. Figure 18 shows the resultant Vg for a few AT

values. Note that the Vg is equal in magnitude but opposite in polarity for each pair of

positive and negative AT values.

Figure 17.

Voltage (V)
= =) =] =
wn = Ln <

!
=

]

600

100

200

300 400 500
Time (ns)

The STDP Pulse shape used for this experiment. The rise time from 0
to +1 V is 250 ns, the transition from +1 to -1 V is 50 ns (the minimum AT), and the
rise time from -1 to 0 V is 250 ns.

32

2_Illllllllll]]llJJlJJJlJ]IIJJlIJIIIIIIIlI_ 2_Illllllllll]]llJJlJJJlJ]IIJJlIJIIIIIIIlI_
] AT--50ns F] :
1 - 1 -
=] EIF] [2
. o n . 1:' ", C
] :] :
-1 - -1 o -
2-I[[II[[T[[['H[111[]11T'I'|II11|I1II|IIII|I-_ _2_-I[[II[[T[[['H[111[]11T'I'|II11|I1II|IIII|I-_
0 200 400 600 0 200 400 600
Time (ns) Time (ns)
2_||l||l||I1||||||||I|||||||||I|||||||||I|_ 2_||l||l||I1||||||||I|||||||||I|||||||||I|_
] [aT=-1500s] E] g
1 A - 1 -
3 i - 3 -
] \5 S 3
g 0 e (- I -
3 - - 3 (" F
-1 ' - -1 - -
2 = 2 F
- ||[I|[II|[IIIIlIII|IIII|IIII|IIIIIIIII|I = ||[I|[II|[IIIIlIII|IIII|IIII|IIIIIIIII|I
0 200 400 600 0 200 400 600
Time (ns) Time (ns)

Figure 18. The resultant Vg for various AT values. Ve (top electrode) is shown
in dashed red, Vot (bottom electrode) in solid blue, and Vg is the thick purple
trace.

The STDP test sequence begins with a AT = 0 ns (where Vg is zero), and
increases the AT by increments of + 50 ns, i.e. AT =0, -50 ns, 50 ns, -100 ns, 100 ns... up
to + 600 ns. This is referred to as the “AT sequence” or the “STDP test sequence”
interchangeably.

One-Sided STDP is performed with the same sequence of ATSs, but instead forces
the calculated resultant Vg for each AT at the top electrode of the device. The device has
its conductance measured using DC sweeps before and after each pulse, and the change

in conductance is used to calculate the weight update function &.

The full test sequence performed for this experiment is as follows:

33

1. AC Conditioning Pulse with an erase voltage of -4 V and a write voltage of 2

V, repeated 10 times.

2. Two-sided or one-sided AT sequence (three devices per sequence).

4.2.2 Results

Performed on two sets of three 5 um devices after AC conditioning, which placed

the device in a low resistance state (as verified by a pre-STDP pulse DC Read sweep), the

results in Figures 19 and 20 confirm the expected result: STDP can be performed in both

one- and two-sided circuit topologies. The results are fairly similar for both experiments,

with the two-sided STDP experiment showing slightly tighter standard deviations than

the one-sided experiment.

IIIII|IIll|]III|lIIIIIIIIIllIIIlllllllIIIIIIIIIIIIIIIIIIIII[I

80 3 i =
N E o3 :

] { ¥ §

3 3 X =
< 0—_:34)(:: » X o % X X
wr : z E
40E * % :

-40 — X —

3 _* :

-80 3 : =
:|||:

-600 -400 -200 0 200 400 600

AT (ns)
Figure 19. Results from the two-sided STDP experiment. Marker indicates the

average, error bars are + 0.5 standard deviations over 3 devices.

34

[FEERI RTINS RA AR ERI FRRRARERARRRIRRRTIRRRRAARARIRRARINREITL|

80‘3 I E‘

| ﬂ%

g 0—5:#::::: M %x!“*“é_
wp - -
E bl ¥ :

-40 3 3

-600 -400 -200 0 200 400 600
AT (ns)

Figure 20. Results from the one-sided STDP experiment. Marker indicates the

average, error bars are + 0.5 standard deviations over three devices.

4.2.3 Discussion

For AT = 0, the resultant Vg is O at all times because the pre- and post-synaptic
pulses perfectly overlap one another and cancel each other out. As expected, there is no
observed change in device conductance when the voltage across the device remains
unchanged.

The learning function peaks near AT = £ 150 ns for both tests, with an average
magnitude of + 80 %. As shown in Figure 18, when AT = 150 ns, the resultant Vg
contains a 1.6 V, 160 ns FWHM pulse. As the opposing polarities in the post- and pre-
synaptic pulses Vpost and Vpre align, the resultant Vur is effectively magnified.

For |AT| > + 150 ns, the learning function falls off until it finally terminates at
around = 400 ns. This is due to the lack of the “magnification” of the resultant STDP
pulse when the pulses are spread far enough apart so that they do not interact with one

another; for ATs > + 300 ns, the resultant [Vig| is smaller than 1 V. As the separation

35

between pulses grows, the resultant Vg begins to look like two individual pulses
because Vpre and Vo5t N0 longer overlap.

Given the results showing very little change in weight when the resultant Vg is
less than 1 V, it would seem that the estimated threshold of + 1 V shown in Figure 7 is
useful in estimating the effectiveness of an STDP pulse on these devices. Interestingly,
the device conductance is affected when the resultant Vg remains at £ 1 V for a greater
amount of time than a single pulse would allow.

This verifies the key STDP principle that says learning should occur when pre-
and post-synaptic pulses strongly interact, and device state should remain unchanged
when they do not interact.

4.3 Trailing Edge Cancellation

The Trailing Edge Cancellation experiment seeks to show an increase in weight
adjustment by modifying the shape of the resultant V. As is shown in Figure 18, Vir
is comprised of a large-magnitude spike in between two small-magnitude spikes of the
opposite polarity. This large spike is the workhorse of the STDP pulse; the device
conductance should decrease for a Viyr whose large spike is negative and vice versa.
Based upon the data from the STDP experiment, when the large and small magnitude
spikes are of a similar magnitude, the device’s conductance is not greatly affected.

4.3.1 Experimental Setup

By decreasing the amplitude of the final small spike (also called the trailing edge),
we aim to show that the adjustment of the device’s conductance will be greater as the
trailing edge’s amplitude approaches 0 V. Figure 21 shows the resultant Vg for a AT =

250 ns and the four modified shapes. As before, a AT = -250 ns has the same shape but

36

opposite polarity. AT = £250 ns was chosen because it had a small effect on device state
as shown in Figure 20, and we wish to show an increase in pulse efficacy with

modification to the resultant Vr.

2 [RERIREATIRERRIRRERISNRRUNERNIRRERANRENI ARRNURRRRI RRAT!

Voltage (V)
[=1

o bvaraa st bvvra e besaa braaald
TTT T[T T[T I T I [T I T[T I T[T ITT[rrITT]

'2 IIII|llll|llll|IIIIIIIIl|Illllllll|IIIIIIlII[llIlIIIII
0.0 0.2 0.4 0.6 0.8 1.0
Time (us)
Figure 21. The Trailing Edge Cancellation starting with the standard Vugr for
AT = 250 ns (black, dotted). The magnitude of the trailing edge cancellation is 25
(red), 50 (blue), 75 (green), and 100 % (orange).

After conditioning, the device is exposed to the one-sided resultant for
AT = -250 ns and AT = 250 ns with a full-sized trailing edge (no cancellation). This is
followed by the same AT = * 250 ns resultants with their trailing edge cancellation
factors of 25, 50, 75, and 100 %. This can be visualized as a gradual decrease of trailing
edge magnitude as shown in Figure 21. The device has its conductance measured using
DC sweeps before and after each pulse, and the change in conductance is used to

calculate the weight update function &.

37

4.3.2 Results

Performed on a set of two 5 pum devices for all tests immediately after AC
conditioning, the results of the Trailing Edge Cancellation experiment shown in Figure
22 indicate a very strong correlation between the magnitude of the trailing edge
cancellation and the impact of the resultant Vg on the weight function. This leads us to
the conclusion that for the case where the trailing edge is similar in magnitude to the
main pulse, which occurs when the pre- and post-synaptic pulses are not heavily
interacting, the last voltage applied to the device has the largest impact on its

conductance.

IR NEERE RRERERRREE EREREREERI RRRRERRERESRRENNNERY

- . }

O
S

& (%)
=]
||||||||||!||||

-100

0 20 40 60 80 100

Magnitude of Trailing Edge Cancellation (%)
Figure 22. Results from the Trailing Edge Cancellation experiment. Red dash
markers represent the AT = + 250 ns, blue “X” markers represent AT = - 250 ns.
Markers indicate the average, error bars are = 0.5 standard deviations over two
devices.

38

4.3.3 Discussion

The 0 % cancellation has almost no effect on the device’s state, similar to the
AT =% 250 ns tests in Figure 20, while 100 % cancellation brought the learning function
up to 80 % for AT = + 250 ns and -70 % for AT = - 250 ns. This indicates that the
magnitude of the trailing edge, which is opposite in polarity to the “intended” operation,
heavily impacts the effectiveness of STDP pulse when the main pulse and the trailing
edge are of similar magnitude.

4.4 Extended AT STDP

After the Sub-Microsecond STDP experiment was performed, a second STDP
experiment was performed that sought to show that these memristors are able to
demonstrate learning over a wide range of timing windows, including those found in
biological synapses. The results from this Extended AT STDP experiment are discussed
below.

4.4.1 Experimental Setup

In the Extended AT experiment, the STDP pulse features the same symmetric
shape shown in Figure 17, but its pulse width and amplitude parameters have been
adjusted for programming at four different timing windows covering six orders of

magnitude. Table 2 contains the pulse parameters for each AT, tested.

Table 2. Extended AT Pulse Amplitudes and Timing Parameters.
ATnmin |Vpeak| Max |VMR|
50 ms 0.2V 04V
500 ps 035V 0.7V
5 s 0.7V 1.4V
50 ns 09V 1.8V

39

The AT sequence starts at AT = 0 and increases in multiples of the minimum AT
up to = 19%(AT). For example, with a minimum AT = 50 ms, the range of ATs tested is
from -950 to +950 ms in increments of £ 50 ms. This provides discretization of test
points at each minimum AT for easy comparison of learning functions at 20 different
points. The device has its conductance measured using DC sweeps before and after each
pulse, and the change in conductance is used to calculate the weight update function &.

The full test sequence performed on each device for this experiment is as follows:

1. DC Conditioning Sweep 1 from 0 -1 V, 10 pA compliance

2. AT sequence 1: Minimum AT = 50 ms, Repeated 10 times

3. DC Conditioning Sweep 2 from 0 -1V, 10 pA compliance

4. AT sequence 2: Minimum AT = 500 ps, Repeated 10 times

5. DC Conditioning Sweep 3 from 0 -1V, 10 pA compliance

6. AT sequence 3: Minimum AT =5 ps, Repeated 10 times

7. DC Conditioning Sweep 4 from 0 -1V, 10 pA compliance

8. AT sequence 4: Minimum AT = 50 ns, Repeated 10 times

Each repetition of the AT sequence uses a maximum conductance from within that
sequence’s repetition for normalization of weight changes.

4.4.2 Results

Performed on a set of four 4 um devices with the DC conditioning sweeps in
between each AT sequence, the results in Figure 23 show very similar learning functions
between each AT range tested. This test was performed as a double-sided STDP

experiment only.

40

As expected, each learning function tends to peak at AT =+ 2 to 3 * AT, and

settle to a baseline by AT = + 7 * AT,in. This fall off is due to the lack of interaction

between the Vpre and Vpost pulses, which decreases the magnitude of the resultant STDP

pulse when the pulses are spread far enough apart.

paalevenaaa by levvnrnsbaununnalsns AR RN NERA RN AN N RN A EA R NN
E I E E 1 5
40 3 3 o 3 E
20 3 I = 203 g 3
;:'5: 0_;----------"-= - Femmmmmmm——— ;_ ;:‘5" U_EtxlIIIIIIIII‘: - IIIIIIx:Ix::zIE-
-20—E I 3 20 . 3
-40 - I — E E
- - = I =4
-60 Il 3 403 II 3
- I - 3 I =
III[IIIIIll'lIIIIIIIIIIIIIIIIIIIIIII[II[III[II[II[I]IIIIIIIIIIIlIIIII[Il[II[II[

-0.8 -0.4 0.0 04 0.8 8 6 4 -2 0 2 4 6 8
AT (s) AT (ms)

-lIIIIIl|IlIIIIIIIIlll-l—IIIIIIIIIIIIIIIII- -lIIIIIl|IlIIIIIIIIllllillllllllllllllll-
80 = - = 80 3 T E
i © 3 3 (@ : 3
40_2 = i- 40 3 E T E
~ FIFLITITITITY T E -~ gHIHIHIIII E
S 03 - = 1€ 0 p - ! 3
o E “x mprprrooozeeg | E - IIIIIIIHIHE
-40 3 = 3 -40 3 z 3
E E E x E
-80 3 -~ 3 -80 3 . =
IIIIIIITIIIIIIIITIIIIITIIIIIIIITIIIIII'I _IIIIIIITIIIIIIIITIIIIITIIIIIIIITIIIIII'I_

-80 -40 0 40 80 -800 -400 0 400 800

AT (us) AT (ns)
Figure 23. Results from the Extended AT STDP experiment for a AT, of (a) 50

ms, (b) 500 ps, (c) 5 ps, and (d) 50 ns. Markers indicate the average of 40 pulses (10
per device), error bars are + 0.5 standard deviations over four devices.

4.4.3 Discussion

In Fig. 23 (a), the AT, is 50 ms. The devices show a near-symmetrical STDP

learning function that is only active when the STDP pulses are within £ 300 ms of one

another; or = 6 * ATnin.

In Fig. 23 (b), however, we can see that the pulses applied slightly affect the

device beyond the first six AT steps. This effect is magnified in Fig. 23 (c) and (d). The

41

data shows a phenomena best described by an inversion of the learning function for AT
values greater than + 6 * ATnin. This inversion seems to plateau rather than increasing as
a function of AT. Given that the trailing edge of a resultant waveform remains unchanged
when the pre- and post-synaptic pulses no longer interact, and given the results from the
Trailing Edge Cancellation experiment, which indicate a strong relationship between the
magnitude of the trailing edge and the effectiveness of an STDP pulse, this leads us to the
conclusion that the offset is related to the trailing edge of the resultant STDP pulse.

The trailing edge is opposite in polarity to the expected operation, and the fact
that individual pulse amplitude is increased as the ATy, decreases indicates that the
trailing edges created by individual pulses applied to the device are more likely to affect
its state. This shows up in the increased deviation of weight updates for Fig. 23 (c¢) and
(d) when |AT| >=5 * ATnmin because of the increased effectiveness of this trailing edge.

4.5 Summary of Results

The results presented in this chapter show that STDP can be implemented in the
ion-conducting chalcogenide memristors fabricated by Dr. Campbell’s research group.
Distinctively, these experiments showed efficacy in both one- and two-sided pulsing
topologies at speeds much faster than those found in biology. The addition of one-sided
STDP presents a promising avenue for shrinking the circuit complexity and power
requirements of a neuromorphic circuit by halving the required programming circuitry.

The extreme rapidity of synaptic weight change presented in this work showed
that pulse conditions can be orders of magnitude faster than any publication to date.
Biological synaptic updates are typically of the 1 — 100 millisecond time scale, but this

work proves that incremental memristive synaptic weight updates can occur from the 50

42

nanosecond to the 50 millisecond time scales in the ion-conducting chalcogenide

memristors fabricated by Dr. Campbell’s research group at Boise State.

43

CHAPTER FIVE: CONCLUSION

This thesis is the culmination of research and experimentation to understand and
implement STDP learning algorithms in physical memristors. This conclusion
summarizes the accomplishments of this thesis and ends with some recommended next-
steps for further characterization.

5.1 Conclusion and Next Steps

The main goal of this thesis was to explore the switching behavior of Boise
State’s chalcogenide-based resistive memory fabricated by Dr. Campbell’s research
group in a test environment that mimics neuromorphic circuitry. The experiments
performed for this thesis show that memristive STDP is possible using real devices in a
lab environment.

The best next-step would be to deposit and package these devices directly into an
integrated circuit with CMOS neurons. This would pull these devices out of the lab and
allow exciting combinations of multiple neurons and synapses for use in neuromorphic
computing architectures.

More characterization work is required to fill in the gaps of our understanding, but
this work establishes an exciting precedent by demonstrating STDP in physical

memristors from nanosecond to millisecond time scales.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

44

REFERENCES

L.O. Chua and S. M. Kang, “Memristive Devices and Systems,” Proceedings of
the IEEE, 64(2):209 — 223, Feb. 1976.

L. O. Chua, “Memristor — The Missing Circuit Element,” IEEE Trans. Circuit
Theory 18, 507, 1971.

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing
memristor found,” Nature (London) vol. 453, p. 80-83, (2008). © Nature
Publishing Group 2009, license no. 3580771103241.

L. Chua, “If it’s pinched it’s a memristor,” Institute of Physics Semiconductor

Science and Technology vol. 29, September 18, 2014.

Y. Hirose, H. Hirose. “Polarity-dependent memory switching and behavior of Ag
dendrite in Ag-photodoped amorphous As,S; films,” J. Applied Physics, 47,
2767-2772, 1976.

M. N. Kozicki, W. C. West, “Programmable metallization cell structure and
method of making same,” U.S. Patent 5 761 115, Jun. 2, 1998.

A. Borji, L. Itti, “Human vs. Computer in Scene and Object Recognition,”
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on,
113 -120, June 2014.

R. Ananthanarayanan, S. K. Esser, H. D. Simon, D. S. Modha, “The Cat is Out of
the Bag: Cortical Simulations with 10° Neurons, 10" Synapses,” High
Performance Computing Networking, Storage and Analysis, Proceedings of the
Conference On, 1 — 12, Nov. 2009.

C. Mead, A, “Neuromorphic Electronic Systems,” Proceedings of the IEEE. Vol.
78, No. 10, October 1990.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

45

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazunder, and Wei Lu,
“Nanoscale Memristor Device as Synapse in Neuromorphic Systems,” Nano
Letters, 10(4):1297 — 1301, 2010.

S.P. Adhikari, C. Yang, H. Kim, and L.O. Chua, “Memristor Bridge Synapse-
Based Neural Network and Its Learning,” Neural Networks and Learning
Systems, IEEE Transactions on, 23(9):1426 — 1435, Sept. 2012.

National Institutes of Health. (2007, September 1). Findings from memory
research continue to fascinate [Online]. Available:
http://www.nia.nih.gov/alzheimers/features/findings-memory-research-continue-

fascinate.

D. Hebb, The Organization of Behavior: A Neuropsychological Theory, New
York: Wiley & Sons, 1949.

L. J. Elias, D. M. Saucier, Neuropsychology: Clinical and Experimental

Foundations, Boston: Pearson, 2005.

W. Gerstner, R. Ritz, J. Leo van Hemmen, “Why Spikes? Hebbian learning and
retrieval of time-resolved excitation patterns,” Biol. Cybern. 69, 503-515, 1993.

G. Howard, E. Gale, L. Bull, B. Costello, A. Adamatzky, “Evolution of Plastic
Learning in Spiking Networks via Memristive Connections,” IEEE Transactions

on Evolutionary Computation, vol. 16. no. 5. October 2012.

G. Bi and M. Poo, “Synaptic Modifications in Cultured Hippocampal Neurons:
Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type,”
The Journal of Neuroscience, 18(24):10464-10472, December 15, 1998.

T. Serrano-Gotarredona, T. Prodromakis, T. Masquelier, G. Indiveri, and B.
Linares-Barranco, “STDP and STDP variations with memristors for spiking

neuromorphic learning systems,” Frontiers in Neuroscience, vol. 7, no. 2, 2013.

R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive
Switching Memories — Nanoionic Mechanisms, Prospects, and Challenges,” Adv.
Mater. 21, p. 2632-2663, 2009.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

46

M. Mitkova and M. N. Kozicki, “Silver incorporation in Ge-Se glasses used in
programmable metallization cell devices,” J. Non-Cryst. Solids, Vol. 299-302, pt.
B, 1023-1027, 2002.

S. Rahaman, S. Maikap, H. Chiu, C. Lin, T. Wu, Y. Chen, P. Tzeng, M. Kao, and
M. Tsai, “Bipolar Resistive Switching Memory Using Cu Metallic Filament in
Ge(0.4)Se(0.6) Solid Electrolyte,” Electrochem. and Solid-State Lett. vol. 13,
issue 5, p. H159-H162, 2010.

T. Serrano-Gotarredona, T. Prodromakis, and B. Linares-Barranco, “A Proposal
for Hybrid Memristor-CMOS Spiking Neuromorphic Learning Systems,” IEEE
Circuits and Systems Magazine, Q2, 74 - 88, 2013. © IEEE 2012.

W. Cai and R. Tetzlaff, "Advanced memristive model of synapses with adaptive
thresholds," Cellular Nanoscale Networks and Their Applications (CNNA), 2012
13th International Workshop on, pp. 1,6, 29-31, August 2012. © IEEE 2012.

K. A. Campbell, J. Li, A. McTeer, and J. T. Moore, “Layered resistance variable
memory device and method of fabrication,” U.S. Patent 7 723 713, May 25, 2010.

K. A. Campbell, “SnSe-based limited reprogrammable cell,” U.S. Patent 8 101
936, Jan. 24, 2012.

Agilent B1530A Waveform Generator/Fast Measurement Unit User’s Guide, 5"
ed., Agilent Technologies, Santa Clara, CA, August 2012.

F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, “Recent progress in resistive random
access memories: Materials, switching mechanisms, and performance,” Materials
Science and Engineering R 83, 1-59, 2014,

// KDPulser.cpp
// Developed iIn Visual Studio 2013
// Used to perform all testing included in Kolton Drake®"s Master Thesis
// @Author Kolton Drake
Libraries from Agilent

// WGFMU
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

"stdafx.h"
<stdio.h>
<stdlib.h>
"wgfmu.h"
<visa.h>
<cmath>
<sstream>
<string>
<iostream>
<iomanip> // std
<fstream>
<vector>
<Windows.h>
<algorithm>
<functional>
<random>
<chrono>
<iostream>
<fstream>
<string>
<vector>

using namespace std;

struct Waveform

{

vector<double>
vector<double>

double freq;
double amp;
double offset;
int length;

APPENDIX

STDP Testing Program

I :setprecision

waveData;
rawData;

// Functions in this module:
void csvline_populate(vector<string>
delimiter);

int csvparse(string operation, double amplitude,

&record,

const

int dt);

int csvparsel(string cmd, double wAmp, double eAmp);

string&

line,

47

char

48

int csvparse2(string cmd, double wAmp, double eAmp);

int csvparse3(string cmd, double wAmp, double eAmp);

int csvparseRead(string cmd, double wAmp, double eAmp);

double dcSweep(double amplitude, double compliance, int pts, string

testName);

double dcSweep2(double amplitude, double compliance, 1iInt pts, string

testName);

double dcSweep3(double amplitude, double compliance, iInt pts, string

testName);

double dcSweep4(double amplitude, double compliance, 1iInt pts, string

testName);

void wgfmu_arb();

void

pulse(string fname, string ampl, string endtime, string timeStepStr,
string currentRange, string repeatCount);

pulsel(string fname, string wAmp, string eAmp, string endtime, string
timeStepStr, string currentRange, string repeatCount);

pulse2(string fname, string wAmp, string eAmp, string endtime, string
timeStepStr, string currentRange, string repeatCount);

pulse3(string fname, string wAmp, string eAmp, string endtime, string
timeStepStr, string currentRange, string repeatCount);

pulsed4(string fname, string wAmp, string eAmp, string endtime, string
timeStepStr, string currentRange, string repeatCount);
pulseNoSave(string fname, string wAmp, string eAmp, string endtime,
string timeStepStr, string currentRange, string repeatCount);

resultant(string fname, string wAmp, string eAmp);
writeResults2ChannelP(int channelldl, 1int channelld2, const char*
fileName, string pulseParams);

dSee(string ampl, string comp, string points);

d res(string timeStepStr);

// Global variables and constants

const int CH1
const int CH2

string rootF = ""C:/Users/koltondrake/Documents/STDP/STDP_data/Jan2015/";

//vroot file location

string testliD;

string dieNum;

string devNum="Dev16"";
string temperature = "777";
string cwAmp;

string ceAmp;

ViSession defaultRM, vi;
Waveform testWave, testWave?,testWave3,testWave4;
vector<double> curWaveDT;
vector<double> curWaveV;
int k, m;

int fnum = O, dcnum = 03
double curAmp=0;

// Checks the error being returned from the WGFMU

void checkError(int ret) // 7

{

if (ret < WGFMU_NO_ERROR) {

49

throw ret;

}
}

// Checks the error being returned from the WGFMU

int checkError2(int ret) //14

{
if (ret < WGFMU_NO_ERROR) {
int size;
WGFMU_getErrorSize(&size);
char* msg = new char[size + 1];
WGFMU_getError(msg, &size);
fprintf(stderr, "%s", msg);
delete[] msg;
} return ret;
}

static const int VISA_ERROR_OFFSET = WGFMU_ERROR_CODE_MIN -

void checkError3(int ret) //29

{
if (ret < WGFMU_NO_ERROR && ret >= WGFMU_ERROR_CODE_MIN || ret <
VISA_ERROR_OFFSET)
{
throw ret;
s
3

// Saves the file from the WGFMU

void writeResults(int channelld, const char* fileName) //36

{
FILE* fp = fopen(fileName, "w'");

it (fp 1= 0)

{
int measuredSize, totalSize; WGFMU_getMeasureValueSize(channelld,
&measuredSize, &totalSize);
for (int i = 0; 1 < measuredSize; i++)

double time, value;
WGFMU_getMeasureValue(channelld, i1, &time, &value);
fprintf(fp, "%.9IFf, %.9IT\n", time, value);
} fclose(fp);
}
}

// Saves the file from the WGFMU with a row offset

void writeResults2(int channelld, int offset, int size, const char* fileName)
//51

{

FILE* fp = fopen(fileName, "w'');

it (fp 1= 0) {
int measuredSize, totalSize;
WGFMU_getMeasureValueSize(channelld, &measuredSize, &totalSize);
for (int i = offset; 1 < offset + size; i++) {

50

double time, value;
WGFMU_getMeasureValue(channelld, i, &time, &value);
fprintf(fp, "%.9IFf, %.9IT\n"", time, value);

}
fclose(fp);

}
}

// Saves the file from the WGFMU with a row offset for each channel

void writeResults3(int channelldl, int channelld2, int offset, iInt size,
const
char* fileName) //66

{
FILE* fp = fopen(fileName, "w'");
it (fp 1= 0) {
int measuredSize, totalSize;
WGFMU_getMeasureValueSize(channelld2, &measuredSize, &totalSize);
for (int 1 = offset; i1 < offset + size; i++) {
double time, value, voltage;
WGFMU_getMeasureValue(channelld2, i, &time, &value);
WGFMU_getiInterpolatedForceValue(channelldl, time, &voltage);
fprintf(fp, "%.91F, %.9IF\n", voltage, value);
}
fclose(fp);
}

// Saves the results from the WGFMU with a row offset for each channel // and
the measurement information is placed in the header.

void writeResults2Channel(int channelldl, int channelld2, const char*
fileName)
{

FILE* fp = fopen(fileName, "w'");
if (fp 1= 0)
{

fprintf(fp, ""Chan 1 Mode:,FastlV,Chan 2 Mode:,FastiV\n'™);
fprintf(fp, ""Chan 1 Meas Mode:,IMeas,Chan 2 Meas Mode:, IMeas\n');
fprintf(fp, ""Chan 1 IMeas Range:,1 mA,Chan 2 IMeas Range:,1 mA\n'");
fprintf(fp, "time, V1, 12\n"");
int measuredSize, totalSize;
WGFMU_getMeasureValueSize(channelldl, &measuredSize, &totalSize);
for (int i = 0; i1 < measuredSize; i++)
{
double timel, valuel, time2, value2;
WGFMU_getMeasureValue(channelldl, i, &timel, &valuel);
WGFMU_getMeasureValue(channelld2, i, &time2, &value2);
fprintf(fp, "%.91F, %.9IFf, %.9If\n", timel, valuel, value2);

} fclose(fp);

o1

// Saves the results from the WGFMU with a row offset for each channel // and

void

{

}

FIL
if

T
T
T
T
T
i
W
T

{

}
}

the measurement information is placed in the header, as well as // the
actual pulse conditions used (how to call the STDP test)

writeResults2ChannelP(int channelldl, 1int channelld2, const char*
fileName, string pulseParams)

E* fp = fopen(fileName, "w');
(fp 1= 0)

printf(fp, "Chan 1 Mode:,FastlV,Chan 2 Mode:,FastiV\n™);
printf(fp, "Chan 1 Meas Mode:,VMeas,Chan 2 Meas Mode:, IMeas\n');
printf(fp, pulseParams.c_str());

printf(fp, "\n");

printf(fp, "time, V1, 12\n"");

nt measuredSize, totalSize;

GFMU_getMeasureValueSize(channelldl, &measuredSize, &totalSize);
or (int i = 0; i < measuredSize; i++)

double timel, valuel, time2, value2;
WGFMU_getMeasureValue(channelldl, i, &timel, &valuel);

WGFMU_getMeasureValue(channelld2, i, &time2, &value2);
fprintf(fp, "%.91F, %.9IFf, %.9If\n", timel, valuel, value2);

fclose(fp);

// This is the main menu for the console application
// Saves a log file to the root file location.

void wgfmu_arb()

{

FIL

//set up log File
ostringstream os;
//0s << rootF << dieNum << " " << devNum << " " << "log.csv'; //for the

//0s << rootF << dieNum << '"/" << devNum << '"/"<< devNum<< " " <<

"log.csv'; //0riginal STDP Form.

0S << rootF << dieNum << "/" << devNum << " " << "log.csv'; //New Form
string T name = os.str();

E *fp = fopen(f_name.c_str(), "w");

fprintf(fp, "LOG\n"");
fprintf(fp, devNum.c_str());
fprintf(fp, "\n");

ostringstream rName;
ostringstream rNum;

string cmd="y";
cout << "w to send positive pulse\n”

cout << "e to send negative pulse\n”
cout << "'r to DC Read device\n';

cout << "c to DC condition device\n';
cout << "'n to exit\n";

52

cout << "p to pulse the device\n';

cout << "'s to pulse the device frome one side\n";
cout << "d to pulse the device frome both sides\n";
cout << "h to show this information again\n";
//int i = 0;

while (cmd = ""n"™)
{
cout << "KDPulser:>";
cin >> cmd;
fprintf(fp, cmd.c_str));
fprintf(fp, "\n"");
string fname, amplitude, endTime, timeStepStr, compStr, repeatCount,
wAmp, eAmp,points;

if (cmd == "n")break; //exit

if (cmd == "h")

{
cout << "w to send positive pulse\n';
cout << "e to send negative pulse\n';
cout << "r to DC Read device\n';
cout << "c to DC condition device\n';
cout << ''n to exit\n"';
cout << "p to pulse the device\n";
cout << "h to show this information again\n";

else if (cmd == "r"

{

cout << "Number of Points: ';
cin >> points;

fprintf(fp, points.c_str());
fprintf(fp, "\n");

res(points);

else if (cmd == "rPost™)
{
rNum << setfill("0") << setw(3)<< fnum-1;
rName << "rPost” << rNum.str(Q);
//dcSweep4(0.02, 10E-3, 51, rName.str()); //dc sweep to read
fnum -= 1;
dcSweep4(0.02, 10E-3, 51, "rPost™);

rName.clear();
rName.str("'"");
rNum.clear();
rNum.str("");

else if (cmd == "rPre')

{
rNum << setfill("0") << setw(3) << fnum;
rName << "rPre " << rNum.str();

//dcSweep4(0.02, 10E-3, 51, rName.str()); //dc sweep to read
dcSweep4(0.02, 10E-3, 51, "rPre');

fnum -= 1;

rName.clear();

rName.str("""");

rNum.clear();
rNum.str("'"");

else if (cmd == *"c') //condition
condition(Q);

else if (cmd == "p') //pulse
{
cout << "lInput File: ';
cin >> fname;

//fprintf(fp, "Input File: ');
fprintf(fp, fname.c_str());
fprintf(fp, "\n");

cout << "Amplitude: ";
cin >> amplitude;

//fprintf(fp, "Amplitude: "™);
fprintf(fp, amplitude.c _str());
fprintf(fp, "\n");

cout << "End time:
cin >> endTime;

//fprintf(fp, "End time: ™);
fprintf(fp, endTime.c_str());
fprintf(fp, "\n"");

cout << "Time step: ™;
cin >> timeStepStr;

//fprintf(fp, "Time step: ");
fprintf(fp, timeStepStr.c_str());
fprintf(fp, "\n");

cout << "Compliance: "
cin >> compStr;

//fprintf(fp, "Compliance: ™);
fprintf(fp, compStr.c_str());
fprintf(fp, "\n"");

cout << ""Repeats: ';
cin >> repeatCount;

//fprintf(fp, "Repeats: ™);
fprintf(fp, repeatCount.c_str());
fprintf(fp, "\n");

pulse(fname, amplitude, endTime, timeStepStr,compStr,repeatCount);
}
else if (cmd == "d"") //double side
{

cout << "lInput File: ';

54

cin >> fname;

//fprintf(fp, “Input File: ");
fprintf(fp, fname.c_str());
fprintf(fp, "\n"");

cout << "Write Amplitude: *;
cin >> wAmp;

//fprintf(fp, "Amplitude: "™);
fprintf(fp, wAmp.c_str());
fprintf(fp, "\n");

cout << "Erase Amplitude: "
cin >> eAmp;

//fprintf(fp, "Amplitude: ™);
fprintf(fp, eAmp.c_str());
fprintf(fp, "\n");

cout << "End time: '';
cin >> endTime;

//fprintf(fp, "End time: ');
fprintf(fp, endTime.c_str());
fprintf(fp, "\n");

cout << "Time step: "
cin >> timeStepStr;

//fprintf(fp, "Time step: ");
fprintf(fp, timeStepStr.c_str());
fprintf(fp, "\n"");

cout << "Compliance: '';
cin >> compStr;

//fprintf(fp, "Compliance: ');
fprintf(fp, compStr.c_str());
fprintf(fp, "\n");

cout << "Repeats: "
cin >> repeatCount;

//fprintf(fp, "Repeats: ");
fprintf(fp, repeatCount.c_str());
fprintf(fp, "\n"");

pulse2(fname, wAmp, eAmp, endTime, timeStepStr, compStr, repeatCount);
else if (cmd == "s") //single side

{

cout << "lInput File: ”
cin >> fname;

//fprintf(fp, "Input File: ™);

fprintf(fp, fname.c_str());
fprintf(fp, "\n");

cout << "Write Amplitude: "
cin >> wAmp;

//fprintf(fp, "Amplitude: ");
fprintf(fp, wAmp.c_str());
fprintf(fp, "\n");

cout << "Erase Amplitude: ™;
cin >> eAmp;

//fprintf(fp, "Amplitude: ™);
fprintf(fp, eAmp.c_str());
fprintf(fp, "\n");

cout << "End time:
cin >> endTime;

//fprintf(fp, "End time: ");
fprintf(fp, endTime.c_str());
fprintf(fp, "\n"");

cout << "Time step: ™;
cin >> timeStepStr;

//fprintf(fp, "Time step: ");
fprintf(fp, timeStepStr.c_str());
fprintf(fp, "\n");

cout << "Compliance: "
cin >> compStr;

//fprintf(fp, "Compliance: ");
fprintf(fp, compStr.c_str());
fprintf(fp, "\n"");

cout << ""Repeats: ';
cin >> repeatCount;

//fprintf(fp, "Repeats: ™);
fprintf(fp, repeatCount.c_str());
fprintf(fp, "\n");

pulsel(fname, wAmp, eAmp, endTime, timeStepStr, compStr,
}
else if (cmd == "stdp™) //double side STDP

cout << "lInput File: ';
cin >> fname;

//fprintf(fp, "Input File: ');
fprintf(fp, fname.c_str());
fprintf(fp, "\n");

55

repeatCount);

//pulse3(fname, wAmp, eAmp, endTime, timeStepStr,
repeatCount);
pulseNoSave(fname, wAmp, eAmp, endTime, timeStepStr,
repeatCount);
else if (cmd == "stdpl'™) //double side STDP with longer pos-neg
{
cout << "lInput File: ';
cin >> fname;
//fprintf(fp, "Input File: ');

cout << "Write Amplitude: ™

cin >> wAmp;

//fprintf(fp, "Amplitude:
fprintf(fp, wAmp.c_str());
fprintf(fp, "\n");

cout << "Erase Amplitude: "

cin >> eAmp;

//fprintf(fp, "Amplitude:
fprintf(fp, eAmp.c_str());
fprintf(fp, "\n"");

cout << "End time: '";
cin >> endTime;

//fprintf(fp, "End time: ™

")

");

fprintf(fp, endTime.c_str());

fprintf(fp, "\n");

cout << "Time step: ";
cin >> timeStepStr;

//fprintf(fp, "Time step:

");

fprintf(fp, timeStepStr.c_str());

fprintf(fp, "\n"");

cout << "Compliance: '';
cin >> compStr;

//fprintf(fp, "Compliance:
fprintf(fp, "\n");

cout << ""Repeats: ';
cin >> repeatCount;

//fprintf(fp, "Repeats: ");

ll) ;
fprintf(fp, compStr.c_str());

fprintf(fp, repeatCount.c_str());

fprintf(fp, "\n");

fprintf(fp, fname.c_str());

fprintf(fp, "\n");

56

compStr,

compStr,

}

else if (cmd == "resl™) //double side resultant with longer pos-neg

{

cout << "Write Amplitude: ™;
cin >> wAmp;

//fprintf(fp, "Amplitude: ™);
fprintf(fp, wAmp.c_str());
fprintf(fp, "\n");

cout << "Erase Amplitude: "
cin >> eAmp;

//fprintf(fp, "Amplitude: ');
fprintf(fp, eAmp.c_str());
fprintf(fp, "\n"");

cout << "End time: '";
cin >> endTime;

//fprintf(fp, "End time:);
fprintf(fp, endTime.c_str());
fprintf(fp, "\n");

cout << "Time step: ";
cin >> timeStepStr;

//fprintf(fp, "Time step: ");
fprintf(fp, timeStepStr.c_str());
fprintf(fp, "\n"");

cout << "Compliance: '';
cin >> compStr;

//fprintf(fp, "Compliance: ™);
fprintf(fp, compStr.c_str());
fprintf(fp, "\n");

cout << ""Repeats: ';
cin >> repeatCount;

//fprintf(fp, "Repeats: ");
fprintf(fp, repeatCount.c_str());
fprintf(fp, "\n");

57

pulsed4(fname, wAmp, eAmp, endTime, timeStepStr, compStr, repeatCount);

cout << "Input File: ”
cin >> fname;

//fprintf(fp, "Input File: ™);
fprintf(fp, fname.c_str());
fprintf(fp, "\n"");

cout << "Write Amplitude: *;
cin >> wAmp;

//fprintf(fp, "Amplitude: ");
fprintf(fp, wAmp.c_str(Q));
fprintf(fp, "\n");

cout << "Erase Amplitude: ";
cin >> eAmp;

resultant(fname, wAmp, eAmp);

}

else if (cmd == "dsee™)

{
fprintf(fp, fname.c_str());
fprintf(fp, "\n");

cout << "Amplitude: ";
cin >> wAmp;

fprintf(fp, wAmp.c_str());
fprintf(fp, "\n");

cout << ""Compliance: "
cin >> compStr;

fprintf(fp, compStr.c_str());
fprintf(fp, "\n");

cout << "Number of Points: "
cin >> points;

fprintf(fp, points.c_str());
fprintf(fp, "\n");

dSee(wAmp, compStr, points);

else if (cmd == "time™)
{
cout << chrono::system clock::now().time_since_epoch().count();
Sleep(R
cout << chrono::system clock::now().time_since_epoch().count();
}
}
fclose(fp);

WGFMU_closeSession();

viClose(vi);

viClose(defaultRM);

exit(0);
}
// The very first write/erase STDP pulse creator. Deprecated function
// left for archiving purposes.

void datPulse(string cmd, string ampl,string dt)
{

string amplitude=ampl;

csvparse(cmd, stod(amplitude), stoi(dt));

58

59

WGFMU_clear();

int dtint = stoi(dt);

testWave2 .waveData.push_back(0);
testWave .waveData.push_back(0);
double* vl = &testWave.waveData[0];
double* v2 = &testWave2.waveData[0];
vector<double> testDT, test2DT;
//vector<double> zeroV = { 0, 0 };

char* leader = "'chl'';
char* lagger = ''ch2";
int leaderch = 101;

int laggerch = 102;
double minTime 10E-9;

double datStep = .00100;
for (int 1 = 0; 1 < dtint; i++)

{

// if (cmd == "w")test2DT.push_back(datStep);
// if (cmd == "e")testDT.push_back(datStep);
}

for (int i = 0; 1 < testWave.length; i++)

{

//cout << i*datStep << "testing doub convert\n';
testDT.push_back(datStep);
test2DT.push_back(datStep);

}

for (int i = 0; 1 < dtint; i++)

{

// if (cmd == "e")test2DT.push_back(datStep);
// if (cmd == "w'")testDT.push_back(datStep);
}

double* dtl = &testDT[0];

double* dt2 = &test2DT[O];

double endTime = datStep*(testWave.length);
//vector<double> zeroDT = { datStep, endTime };
//double* zDT = &zeroDT[O0];

//double* zV = &zeroV[O0];
WGFMU_createPattern(leader, 0);
WGFMU_createPattern(lagger, 0);

//WGFMU_addVectors(leader, leaderdts, vl, 6);
WGFMU_addVectors(leader, dtl, vl, testWave.length);
WGFMU_addVectors(lagger, dt2, v2, testWave2.length);

int numPoints = 20000; //was 100000

//double timeStep = window / (numPoints -1);
double timeStep = 1E-4;

// Set the measurement events for both channels

//WGFMU_setMeasureEvent(leader, "evt", o, numPoints, timeStep, o,
WGFMU_MEASURE_EVENT_DATA_AVERAGED) ;
//WGFMU_setMeasureEvent(lagger, "evt2", o, numPoints, timeStep, o,

WGFMU_MEASURE_EVENT_DATA_AVERAGED); //no averaging
WGFMU_setMeasureEvent(leader, “evt'”, 0, numPoints, timeStep, timeStep-
minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED) ;

60

WGFMU_setMeasureEvent(lagger, “evt2", , humPoints, timeStep, timeStep-
minTime, WGFMU_MEASURE_EVENT_ DATA_AVERAGED);

WGFMU_addSequence (, leader, 1); // Add the waveform to WGFMU channel 1
WGFMU_addSequence(, lagger, 1);

//0NLINE
WGFMU_initialize();

// Set the operation mode for each channel
WGFMU_setOperationMode(, WGFMU_OPERATION_MODE_FASTIV);
WGFMU_setOperationMode(, WGFMU_OPERATION_MODE_FASTIV);

// B1500 Defaults to measuring voltage. Change it to current. Also set the
resolution

// for the ADC in the WGFMU

WGFMU_setMeasureMode(, WGFMU_MEASURE_MODE_CURRENT) ;

WGFMU_setMeasureMode(, WGFMU_MEASURE_MODE_CURRENT) ;

WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_1MA);

WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_1MA);

WGFMU_setTriggerOutMode(leaderch, WGFMU_TRIGGER_OUT_MODE_START_SEQUENCE,
WGFMU_TRIGGER_OUT_POLARITY_POSITIVE) ;
WGFMU_setTriggerOutEvent(leader, "trig”, 0, 0);

WGFMU_connect(101);
WGFMU_connect(102);
WGFMU_execute();
WGFMU_waitUntilCompleted();

// Write the data to appropriate file
ostringstream thefilename;

//thefilename << "L:/MEC 107 Data/STDP/" << testlD << '/1006301/Waferl10/""

<< dieNum << "/" << devNum << "/" << posAmplitude << " " <<
abs(negAmplitude) << " " << dT << units << "._csv';

thefilename << rootF << dieNum << "/" << devNum << "/Pulse " << curAmp <<
T < dt << " << fnum << T_csv';

//thefilename << ""C:/Users/koltondrake/Documents/STDP/STDP_data/"" <<
"resultant/" << devNum << "/" << curAmp << "_" << fnum << ".csv"';

string f _name = thefilename.str();

writeResults2Channel (, , F name.c_str());

//int ret = WGFMU_exportAscii(f_name.c_str());

thefilename.str("");
thefilename.clear();
Fnum++;

void pulse(string fname, string ampl, string endtime, string timeStepStr,

{

string currentRange, string repeatCount)

string amplitude = ampl;

csvparse(fname, stod(amplitude), 0);
WGFMU_clear();

double endCount=0;

int error = 1;
int curPeat=0;

int wasZero = 1;

//int dtint = stoi(dt);

//testWave? .waveData.push_back(0);
testWave .waveData.push_back(0);
double* vl = &testWave.waveData[0];
//double* v2 = &testWave2.waveData[O0];

int repeats = 1;
while (error == 1)
{
error = 0;
try
{
repeats = stoi(repeatCount);
}
catch (const std::invalid_argument& ia)
{
error = 1;
cout << "Invalid Repeat Count \n";
cout << ""Repeat Count: "';
cin >> repeatCount;
cout << "\n'';
}
}
error = 0;

vector<double> testDT;
vector<double> zeroV = { 0, };
char* leader ""'ch1';

char* lagger ""'ch2";

int leaderch
int laggerch

61

string pulseParams = fname+", " +ampl + "," + endtime + "," + timeStepStr +
", + currentRange + ', + repeatCount;

size_t size =

if (endtime.find_first_of('m", size) 1=
string: :npos)endtime.replace(endtime.find_first of(''m"”, size), , 'e-
33

else if (endtime.find_first of("'u”, size) 1=

string: :npos)endtime.replace(endtime.find_first of('u”, size),
6");

else if (endtime.find_first _of('n", size)
string: :npos)endtime.replace(endtime.find_first of(''n", size),
9!!);

if (timeStepStr.find_first_of('m", size)
string: :npos)timeStepStr.replace(timeStepStr.find_first of('m”,
’ 'le_3'l);

] Ve-
1=
. e-
1=
size),

62

else if (timeStepStr.find_first of("'u", size) 1=
string: :npos)timeStepStr.replace(timeStepStr.find_first of('u”, size),

, 'e=6");
else if (timeStepStr.find_first_of('n", size) 1=
string: :npos)timeStepStr.replace(timeStepStr.find_first of('n", size),

, lle_9ll);

double minTime = ;

//double datStep = 10E-9;

double datStep = stod(endtime) / testWave.length;
if (datStep <=) datStep = ;

double bigStep = 3 * datStep;

/*iT (datStep <= 14.49E-9) datStep = 10E-9;

else if (datStep <= 24.49E-9) datStep = 20E-9;
else if (datStep <= 34.49E-9) datStep = 30E-9;
else if (datStep <= 44.49E-9) datStep = 40E-9;
else if (datStep <= 54.49E-9) datStep = 50E-9;
else if (datStep <= 64.49E-9) datStep = 60E-9;
else if (datStep <= 74.49E-9) datStep = 70E-9;*/
for (int i = 0; 1 < testWave.length*repeats; i++)

{

//cout << i1*datStep << "testing doub convert\n";
//if(datStep<=100e-9) testDT.push_back(datStep+minTime);
if ((i>1 && i<testWave.length && vi[i] == 0 && vi[i-1]==0))

testDT.push_back(datStep * 3);
endCount += bigStep;

else if (i > testWave.length)

{
if (vi[i - testWave.length*curPeat] == 0 && vi[i-1]==0)
testDT.push_back(datStep * 3);
endCount += bigStep;
}
else
{
wasZero = 0O;
testDT.push_back(datStep);
endCount += datStep;
}
}
else
{
wasZero = 0O;

testDT.push_back(datStep);
endCount += datStep;

if (i%testWave.length == 0)curPeat++;

//test2DT.push_back(datStep);

//cout << endCount << "\n"';
double* dtl = &testDT[0];
//double* dt2 = &test2DT[O0];

//double endTime = datStep*testWave.length*repeats;

//double endTime = stod(endtime)*repeats;
//double endTime = testDT.size()*datStep;
double endTime = endCount;

vector<double> zeroDT = {datStep, endTime};
double* zDT = &zeroDT[O];

double* zV = &zeroV[O0];
WGFMU_createPattern(leader, 0);
WGFMU_createPattern(lagger, 0);

//WGFMU_addVectors(leader, leaderdts, vl, 6);

for(int i=0;i<repeats;i++) WGFMU_addVectors(leader, atl,
testWave. length); //Account for repeats.

WGFMU_addVectors(lagger, zDT, zV, 2);

//double timeStep = window / (numPoints -1);
//double timeStep = 10E-9;

double timeStep = stod(timeStepStr);

if (timeStep <= 10e-9) timeStep = 10e-9;

//int numPoints = (endTime / timeStep); //was 100000
//int numPoints = (datStep*testDT.size())/timeStep;
int numPoints = endTime / timeStep;

// Set the measurement events for both channels

//WGFMU_setMeasureEvent(leader, "evt", o, numPoints, timeStep,

WGFMU_MEASURE_EVENT DATA_AVERAGED);

//WGFMU_setMeasureEvent(lagger, "evit2", o, numPoints, timeStep,

WGFMU_MEASURE_EVENT_DATA_AVERAGED); //no averaging

63

vl,

01

01

WGFMU_setMeasureEvent(leader, “evt'”, 0O, numPoints, timeStep, timeStep -

minTime, WGFMU_MEASURE_EVENT DATA_AVERAGED);

WGFMU_setMeasureEvent(lagger, "“evt2”, 0, numPoints, timeStep, timeStep -

minTime, WGFMU_MEASURE_EVENT DATA_AVERAGED);

WGFMU_addSequence(101, leader, 1); // Add the waveform to WGFMU channel

WGFMU_addSequence (102, lagger, 1);

//0NLINE
WGFMU_initialize();

// Set the operation mode for each channel
WGFMU_setOperationMode (101, WGFMU_OPERATION_MODE_FASTIV);
WGFMU_setOperationMode (102, WGFMU_OPERATION_MODE_FASTIV);

// B1500 Defaults to measuring voltage. Change it to current. Also
resolution
// for the ADC in the WGFMU

1

set the

64

WGFMU_setMeasureMode(, WGFMU_MEASURE_MODE_VOLTAGE) ;
WGFMU_setMeasureMode(, WGFMU_MEASURE_MODE_CURRENT) ;
WGFMU_setMeasureVoltageRange(, WGFMU_MEASURE_VOLTAGE_RANGE_10V);

if (currentRange == "1u" || currentRange == "1E-6" |] currentRange == "le-
6"]| currentRange == "1uA" || currentRange == ""lua” || currentRange ==
''0.000001')
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_1UA);
else if (currentRange == ""10u” |] currentRange == "10E-6""]| currentRange
== "10e-6" || currentRange == "10uA™]| currentRange == "10ua"™ ||
currentRange == ""0.00001")
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10UA);
else if (currentRange == "100u™ || currentRange == "100E-6" ||
currentRange == "100e-6"" || currentRange == "100uA™ || currentRange ==
"100ua™]| currentRange == "0.0001")
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_100UA) ;
else if (currentRange == "1m" || currentRange == "1E-3" || currentRange ==
"1e-3"]| currentRange == "1mA" || -currentRange == T1ma" ||
currentRange == ""0.001")
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_1MA);
else if (currentRange == ""10m" || currentRange == "10E-3" || currentRange
== "10e-3" || currentRange == "10mA"™ || currentRange == "10ma" ||
currentRange == "0.01")

WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10MA);
else
{

cout << "wat";

WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10MA);

}

WGFMU_setTriggerOutMode(leaderch, WGFMU_TRIGGER_OUT_MODE_START_SEQUENCE,
WGFMU_TRIGGER_OUT_POLARITY_POSITIVE);
WGFMU_setTriggerOutEvent(leader, "trig”, 0, 0);

WGFMU_connect(101);
WGFMU_connect(102);
WGFMU_execute();
WGFMU_waitUntilCompleted();

// Write the data to appropriate file
ostringstream thefilename;

ostringstream fileNumber;

FfileNumber << setfFill("0") << setw(3) << fnum;

//thefilename << "L:/MEC 107 Data/STDP/" << testlD << '"/1006301/Waferl10/""

<< dieNum << "/" << devNum << /" << posAmplitude << "_" <<
abs(negAmplitude) << " " << dT << units << ".csv";
thefilename << rootF << dieNum << /" << devNum << "/ << devNum << " ' <<

fname << " << curAmp << " " << fileNumber.str() << ".csv';
//thefilename << ""C:/Users/koltondrake/Documents/STDP/STDP_data/" <<
"resultant/" << devNum << "/" << curAmp << "_" << fnum << ".csv"';
string T name = thefilename.str();
writeResults2ChannelP(, , T _name.c_str(),pulseParams);

//int ret = WGFMU_exportAscii(f_name.c_str());

thefilename.str(""");
thefilename.clear();
fileNumber.str(""");

65

fileNumber.clear();
Fnum++;

}

/*

This pulse is for taking a csv file and placing all amplitudes on Channel 1.

Write amplitude and Erase amplitude should be entered as positive values.

*/

void pulsel(string fname, string wAmp, string eAmp, string endtime, string
timeStepStr, string currentRange, string repeatCount)

{

//string amplitude = ampl;
csvparsel(fname, stod(wAmp), stod(eAmp));
WGFMU_clear();

double endCount = 0;

int error = 1;

int curPeat
int wasZero ;
//int dtint = stoi(dt);
testWave2.waveData.push_back(0);
testWave.waveData.push_back(0);
double* vl = &testWave.waveData[0];
double* v2 = &testWave2.waveData[0O];

int repeats = 1;
while (error == 1)
{
error = 0;
try
{
repeats = stoi(repeatCount);
}
catch (const std::invalid_argument& ia)
{
error = 1;
cout << "Invalid Repeat Count \n';
cout << ""Repeat Count: "';
cin >> repeatCount;
cout << "\n'';
}
}
error = 0;

vector<double> testDT;
vector<double> zeroVv = { O, 3}

char* leader = "'chl";

char* lagger = ''ch2";

int leaderch = ;

int laggerch = ;

string pulseParams = fname + "," + wAmp + ", + eAmp + ", + endtime + ",)”
+ timeStepStr + ", + currentRange + "," + repeatCount;

size_t size =

if (endtime.find_first of("m", size)
string: :npos)endtime.replace(endtime.find_first_of('"m"”, size),
37);
else if (endtime.find_first_of('u", size)
string: :npos)endtime.replace(endtime.find_first_of('u”, size),
6);
else if (endtime.find_first _of('n", size)
string: :npos)endtime.replace(endtime.find_first _of(''n", size),
9");
if (timeStepStr.find_first _of('m", size)
string: :npos)timeStepStr.replace(timeStepStr.find_first of('m”,
, 'e=3");
else if (timeStepStr.find_first _of('u", size)
string: :npos)timeStepStr.replace(timeStepStr.find_first of('u”,
’ "e_6");
else if (timeStepStr.find_first of(''n", size)

string: :npos)timeStepStr.replace(timeStepStr.find_first_of('n",

, 'e=9");

double minTime = ;

//double datStep = 10E-9;

double datStep = stod(endtime) / testWave.length;
if (datStep <=) datStep = ;

double bigStep * datStep;

/*if (datStep <= 14_49E-9) datStep = 10E-9;

else if (datStep <= 24.49E-9) datStep = 20E-9;
else if (datStep <= 34.49E-9) datStep = 30E-9;
else if (datStep <= 44.49E-9) datStep = 40E-9;
else if (datStep <= 54.49E-9) datStep = 50E-9;
else if (datStep <= 64.49E-9) datStep = 60E-9;
else if (datStep <= 74.49E-9) datStep = 70E-9;*/
for (int i = 0; 1 < testWave.length*repeats; i++)

{

//cout << i1*datStep << "testing doub convert\n";

//i1T(datStep<=100e-9) testDT.push_back(datStep+minTime);

if ((i>1 && i<testWave.length && vi[i] == &&
== 0 && V2[i - == 0))
{

testDT.push_back(datStep * 3);

endCount += bigStep;

else if (i > testWave.length)

if (vifi - testWave. length*curPeat]
testWave. length*curPeat] == 0 && Vvi[i - 1] ==
{

testDT.push_back(datStep * 3);
endCount += bigStep;

}

else

{

vi[i - 1]

&& Vv2[i -

&&
]::

&& v2[i]

v2[i -
)

wasZero = 0O;
testDT.push_back(datStep);
endCount += datStep;
}
}
else
{
wasZero = 0O;
testDT.push_back(datStep);
endCount += datStep;

}
if (i%testWave.length == 0)curPeat++;

//test2DT . push_back(datStep);
}

//cout << endCount << "\n"';
double* dtl = &testDT[0];
double* dt2 = &testDT[0];

//double endTime

datStep*testWave. length*repeats;

//double endTime = stod(endtime)*repeats;
//double endTime = testDT.size()*datStep;
double endTime = endCount;

//vector<double> zeroDT = { datStep, endTime };
//double* zDT = &zeroDT[O0];

//double* zV = &zeroV[O0];
WGFMU_createPattern(leader, 0);
WGFMU_createPattern(lagger, 0);

//WGFMU_addVectors(leader, leaderdts, vl, 6);
for (int i = 0; 1 < repeats; i++)

{
WGFMU_addVectors(leader, dtl1, vi1, testWave.length);
repeats.
WGFMU_addVectors(lagger, dt2, v2, testWave.length);

}
//WGFMU_addVectors(lagger, zDT, zV, 2);

//double timeStep = window / (numPoints -1);
//double timeStep = 10E-9;

double timeStep = stod(timeStepStr);

if (timeStep <= 10e-9) timeStep = 10e-9;

//int numPoints = (endTime / timeStep); //was 100000
//int numPoints = (datStep*testDT.size())/timeStep;
int numPoints = endTime / timeStep;

// Set the measurement events for both channels

//WGFMU_setMeasureEvent(leader, "evt", o, numPoints,

WGFMU_MEASURE_EVENT DATA_AVERAGED);

//WGFMU_setMeasureEvent(lagger, "evt2", o, numPoints,

WGFMU_MEASURE_EVENT _DATA_AVERAGED); //no averaging

//Account

timeStep,

timeStep,

67

for

0,

01

68

WGFMU_setMeasureEvent(leader, "evt", , humPoints, timeStep, timeStep -
minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED);
WGFMU_setMeasureEvent(lagger, ‘“evt2", , humPoints, timeStep, timeStep -

minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED) ;

WGFMU_addSequence (, leader, 1); // Add the waveform to WGFMU channel 1
WGFMU_addSequence(, lagger, 1);

//0ONLINE
WGFMU_initialize();

// Set the operation mode for each channel
WGFMU_setOperationMode(, WGFMU_OPERATION_MODE_FASTIV);
WGFMU_setOperationMode(, WGFMU_OPERATION_MODE_FASTIV);

// B1500 Defaults to measuring voltage. Change it to current. Also set the
resolution

// for the ADC in the WGFMU

WGFMU_setMeasureMode(, WGFMU_MEASURE_MODE_VOLTAGE) ;

WGFMU_setMeasureMode(, WGFMU_MEASURE_MODE_CURRENT) ;

WGFMU_setMeasureVoltageRange(, WGFMU_MEASURE_VOLTAGE_RANGE_10V);

if (currentRange == "1u" || currentRange == "1E-6" |] currentRange == "le-
6"]| currentRange == "1uA™ || currentRange == ""lua" || currentRange ==
*'0.000001')
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_1UA);
else if (currentRange == ""10u” || currentRange == "10E-6"" || currentRange
== "10e-6" || currentRange == "10uA™ || currentRange == "10ua"™ ||
currentRange == ""0.00001")
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10UA);
else if (currentRange == "100u™ || currentRange == "100E-6" ||
currentRange == "100e-6"" || currentRange == "100uA™ || currentRange ==
"100ua™]| currentRange == "0.0001")
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_100UA) ;
else if (currentRange == "1m" || currentRange == "1E-3" || currentRange ==
"1e-3"]| currentRange == "1mA" || currentRange == “1ma" ||
currentRange == "0.001"™)
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_1MA);
else iIf (currentRange == ""10m" |] currentRange == "10E-3"]| currentRange
== "10e-3" || currentRange == "10mA"™ || currentRange == "10ma" ||
currentRange == "0.01")

WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10MA);
else
{

cout << "'wat';

WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10MA);

}

WGFMU_setTriggerOutMode(leaderch, WGFMU_TRIGGER_OUT_MODE_START_SEQUENCE,
WGFMU_TRIGGER_OUT_POLARITY_POSITIVE);
WGFMU_setTriggerOutEvent(leader, "trig”, 0, 0);

WGFMU_connect(101);
WGFMU_connect(102);
WGFMU_execute();
WGFMU_waitUntilCompleted();

69

// Write the data to appropriate file
ostringstream thefilename;

ostringstream fileNumber;

fileNumber << setfill("0") << setw(3) << fnum;

//thefilename << "L:/MEC 107 Data/STDP/" << testlD << '/1006301/Waferl0/"

<< dieNum << /" << devNum << "/" << posAmplitude << " " <<
abs(negAmplitude) << " " << dT << units << "_csv';

thefilename << rootF << dieNum << "/" << devNum << "/" << devNum << " ' <<
fname << " " << wWAmMp << " " << eAmp << " " << FileNumber.str() <<
".csv'';

//thefilename << ""C:/Users/koltondrake/Documents/STDP/STDP_data/"" <<
"resultant/" << devNum << "/" << curAmp << "_" << fnum << ".csv"';

string T _name = thefilename.str();

writeResults2ChannelP(101, 102, F name.c_str(), pulseParams);
//int ret = WGFMU_exportAscii(f_name.c_str());

thefilename.str(""");
thefilename.clear();
fileNumber.str(");
fileNumber.clear();
fnum++;

}

/*

This pulse is for taking a csv Tfile and placing negative amplitudes on
Channel 2 and positive amplitudes on Channel 1.

Write amplitude and Erase amplitude should be entered as positive values.s

*/

void pulse2(string fname, string wAmp, string eAmp, string endtime, string
timeStepStr, string currentRange, string repeatCount)

{

//string amplitude = ampl;
csvparse2(fname, stod(wAmp), stod(eAmp));
WGFMU_clear();

double endCount = 0;

int error = 1;

int curPeat = 0;

int wasZero = 1;

//int dtint = stoi(dt);
testWave2.waveData.push_back(0);
testWave .waveData.push_back(0);
double* vl = &testWave.waveData[0O];
double* v2 = &testWave2.waveData[0];
int repeats = 1;

while (error == 1)
{
error = O3
try
{ _
repeats = stoi(repeatCount);
}
catch (const std::invalid_argument& ia)
{

error = 1;
cout << "Invalid Repeat Count \n';

cout << ""Repeat Count: "';
cin >> repeatCount;
cout << "\n'';

}
}

error = 0;

vector<double> testDT;
vector<double> zeroVv = { O, 3}

70

char* leader = "'chl";
char* lagger = ''ch2";
int leaderch = ;
int laggerch = ;
string pulseParams = fname + "," + wAmp + ", + eAmp + ", + endtime + ",”
+ timeStepStr + ", + currentRange + "," + repeatCount;
size_t size =
if (endtime.find_first of("m", size) 1=
string: :npos)endtime.replace(endtime.find_first of(''m"”, size), , 'e-
33
else if (endtime.find_first_of('u", size) 1=
string: :npos)endtime.replace(endtime.find_first of('u”, size), , 'e-
6);
else if (endtime.find_first _of('n", size) 1=
string: :npos)endtime.replace(endtime.find_first _of(''n", size), , 'e-
9);
if (timeStepStr.find_first of('m", size) 1=
string: :npos)timeStepStr.replace(timeStepStr.find_first of('m”, size),
, 'e=3");
else if (timeStepStr.find_first _of('u", size) 1=
string: :npos)timeStepStr.replace(timeStepStr.find_first of('u”, size),
’ 'le_6'l);
else if (timeStepStr.find_first _of('n”, size) 1=
string: :npos)timeStepStr.replace(timeStepStr.find_first_of('n", size),
, 'e=9");

double minTime = ;

//double datStep = 10E-9;

double datStep = stod(endtime) / testWave.length;
if (datStep <=) datStep = ;

double bigStep = 3 * datStep;

/*if (datStep <= 14_49E-9) datStep = 10E-9;

else if (datStep <= 24.49E-9) datStep = 20E-9;
else if (datStep <= 34.49E-9) datStep = 30E-9;
else if (datStep <= 44.49E-9) datStep = 40E-9;
else if (datStep <= 54.49E-9) datStep = 50E-9;
else if (datStep <= 64.49E-9) datStep = 60E-9;
else if (datStep <= 74.49E-9) datStep = 70E-9;*/

71

for (int i = 0; 1 < testWave.length*repeats; i++)

{

}

//cout << i*datStep << "testing doub convert\n';

//if(datStep<=100e-9) testDT.push_back(datStep+minTime);

if ((i>1 && i<testWave.length && vi[i] == 0 && Vvi[i - 1] == 0 && v2[i]
== 0 && Vv2[i - 1] == 0))

{
testDT.push_back(datStep * 3);
endCount += bigStep;

else if (i > testWave.length)

if (vifi - testWave. length*curPeat] == 0 && v2[i -
testWave. length*curPeat] == 0 && Vv1[i - 1] == 0 && Vv2[i - 1] == 0)
{
testDT.push_back(datStep * 3);
endCount += bigStep;
}
else
{
wasZero = 0O;
testDT.push_back(datStep);
endCount += datStep;
}
}
else
{
wasZero = 0O;
testDT.push_back(datStep);
endCount += datStep;

if (i%testWave.length == 0)curPeat++;

//test2DT . push_back(datStep);

//cout << endCount << "\n"';

double* dtl
double* dt2

&testDT[0];
&testDT[0];

//double endTime = datStep*testWave.length*repeats;

//double endTime
//double endTime

stod(endtime)*repeats;
testDT.size()*datStep;

double endTime = endCount;

//vector<double> zeroDT = { datStep, endTime };
//double* zDT = &zeroDT[O0];

//double* zV = &zeroV[O0];
WGFMU_createPattern(leader, 0);
WGFMU_createPattern(lagger, 0);

//WGFMU_addVectors(leader, leaderdts, vl, 6);
for (int i = 0; 1 < repeats; i++)

{

72

WGFMU_addVectors(leader, dtl1, vl1, testWave.length); //Account for
repeats.
WGFMU_addVectors(lagger, dt2, v2, testWave.length);

}
//WGFMU_addVectors(lagger, zDT, zV, 2);

//double timeStep = window / (numPoints -1);
//double timeStep = 10E-9;

double timeStep = stod(timeStepStr);

if (timeStep <=) timeStep = ;

//int numPoints (endTime / timeStep); //was 100000
//int numPoints (datStep*testDT.size())/timeStep;
int numPoints = endTime / timeStep;

// Set the measurement events for both channels

//WGFMU_setMeasureEvent(leader, "evt", o, numPoints, timeStep, o,
WGFMU_MEASURE_EVENT_DATA_AVERAGED) ;

//WGFMU_setMeasureEvent(lagger, "evt2", o, numPoints, timeStep, o,
WGFMU_MEASURE_EVENT _DATA_AVERAGED); //no averaging

WGFMU_setMeasureEvent(leader, “evt", , humPoints, timeStep, timeStep -
minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED);

WGFMU_setMeasureEvent(lagger, “evt2", , humPoints, timeStep, timeStep -

minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED) ;

WGFMU_addSequence(, leader, 1); // Add the waveform to WGFMU channel 1
WGFMU_addSequence(, lagger, 1);

//0NLINE
WGFMU_initialize();

// Set the operation mode for each channel
WGFMU_setOperationMode(, WGFMU_OPERATION_MODE_FASTIV);
WGFMU_setOperationMode(, WGFMU_OPERATION_MODE_FASTIV);

// B1500 Defaults to measuring voltage. Change it to current. Also set the
resolution

// for the ADC in the WGFMU

WGFMU_setMeasureMode(, WGFMU_MEASURE_MODE_VOLTAGE) ;

WGFMU_setMeasureMode(, WGFMU_MEASURE_MODE_CURRENT) ;

WGFMU_setMeasureVoltageRange(, WGFMU_MEASURE_VOLTAGE_RANGE_10V);

if (currentRange == "1u" || currentRange == "1E-6" |] currentRange == "le-
6"]| currentRange == "1uA™ || currentRange == "lua" || currentRange ==
''0.000001')
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_1UA);
else if (currentRange == ""10u” || currentRange == "10E-6"" || currentRange
== "10e-6" || currentRange == "10uA™ || currentRange == "10ua”™ ||
currentRange == ""0.00001")
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10UA);
else if (currentRange == "100u™ || currentRange == "100E-6" ||
currentRange == "100e-6"" || currentRange == "100uA™ || currentRange ==
"100ua™]| currentRange == "0.0001")
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_100UA) ;
else if (currentRange == "1m" || currentRange == "1E-3" || currentRange ==
"1e-3"]| currentRange == "1mA" || -currentRange == T1ma" ||

currentRange == ""0.001")

73

WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_1MA);

else if (currentRange == ""10m" || currentRange == "10E-3" || currentRange
== "10e-3" || currentRange == "10mA™ || currentRange == "10ma" ||
currentRange == ""0.01")

WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10MA);
else
{

cout << "'wat';

WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10MA);

}

WGFMU_setTriggerOutMode(leaderch, WGFMU_TRIGGER_OUT_MODE_START_SEQUENCE,
WGFMU_TRIGGER_OUT_POLARITY_POSITIVE) ;
WGFMU_setTriggerOutEvent(leader, "trig”, 0, 0);

WGFMU_connect(101);
WGFMU_connect(102);
WGFMU_execute();
WGFMU_waituUntilCompleted();

// Write the data to appropriate file
ostringstream thefilename;

ostringstream fileNumber;

fileNumber << setfill("0") << setw(3) << fnum;

//thefilename << "L:/MEC 107 Data/STDP/" << testlD << '/1006301/Waferl0/""

<< dieNum << /" << devNum << "/" << posAmplitude << " " <<
abs(negAmplitude) << " " << dT << units << "._csv';

thefilename << rootF << dieNum << "/" << devNum << "/" << devNum << " ' <<
fname << " " << WAMp << " " << eAmp << " " << FileNumber.str() <<
" csv's

//thefilename << ""C:/Users/koltondrake/Documents/STDP/STDP_data/"" <<
"resultant/" << devNum << "/™ << curAmp << "_" << fnum << ".csv"';

string f _name = thefilename.str();

writeResults2ChannelP(, , T name.c_str(), pulseParams);

//int ret = WGFMU_exportAscii(f_name.c_str());

thefilename.str(""");
thefilename.clear();
fileNumber.str("");
fileNumber.clear();
fnum++;

This is for STDP. Requires two files _chl and _ch2
Includes bumpy read.

void pulse3(string fname, string wAmp, string eAmp, string endtime, string

timeStepStr, string currentRange, string repeatCount)

//string amplitude = ampl;
csvparse3(fname, stod(wAmp), stod(eAmp));

//Generates the testWave3 data.

74

csvparseRead(“"bumpy™, 1, 1);

WGFMU_clear();

double endCount = 0;

double endReadCount = 0;

double readldx[100];

double readTimeStep[100];

int error = 1;

int curPeat = 0;

int wasZero = 1;

int pointCount=0;

//Number of decades to read.

int decades = 2;

//Number of points per read waveform data; if bumpy chl.csv has 70 points,
readRes takes 20 measurement points for each point.

//Number of read points calculation = numBumpyPts * readRes * decades.

int readRes 5;

//int dtint = stoi(dt);

testWave.waveData.push_back(0); //Top Electrode
testWave2.waveData.push_back(0); //Bottom Electrode
testWave3.waveData.push_back(0); //Read Pulse (goes to top electrode).
testWave4 .waveData.push_back(0); //Read pulse bot.

int repeats = 1;

while (error == 1)
{

error = O3

try

{

repeats = stoi(repeatCount);

catch (const std::invalid_argument& ia)

{
error = 1;
cout << "Invalid Repeat Count \n';
cout << ""Repeat Count: "';
cin >> repeatCount;
cout << "\n"';

}

}

error = O3

vector<double> testDT;
vector<double> test2DT;
vector<double> test3DT;
vector<double> test4DT;

char* leader = ""chl';
char* lagger = ''ch2";
int leaderch = 101;
int laggerch = 102;

string pulseParams = fname + "," + wAmp + ", + eAmp + ", + endtime + ",)”
+ timeStepStr + ", + currentRange + "," + repeatCount;

size_t size

if (endtime.find_first_of('m", size)
string: :npos)endtime.replace(endtime.find_first of("'m"”, size),
33
else if (endtime.find_first of('u”, size)
string: :npos)endtime.replace(endtime.find_first of('u”, size),
6");
else if (endtime.find_first_of('n", size)
string: :npos)endtime.replace(endtime.find_first of(''n", size),
9");
if (timeStepStr.find_first_of('m", size)
string: :npos)timeStepStr.replace(timeStepStr.find_first _of('m”,
7 'le_3'l);
else if (timeStepStr._find_first_of('u", size)
string: :npos)timeStepStr.replace(timeStepStr.find_first_of('u”,
, 'e=6");
else if (timeStepStr.find_first _of('n", size)
string: :npos)timeStepStr.replace(timeStepStr.find_first of('n",
’ "e_9");

double endTimes = stod(endtime);

double minTime = ;

//double datStep = 10E-9;

double datStep = endTimes / testWave.length;

if (datStep <=) datStep = ;
it (endTimes >= 1)
{

decades = 2;

readRes = ;
else if (endTimes >)
{

decades = 3;

readRes = ;
else if (endTimes >)

decades = 5;

readRes = ;
}
else
{

decades = 7;

readRes = ;
}
/*iT (datStep <= 14.49E-9) datStep = 10E-9;
else if (datStep <= 24.49E-9) datStep = 20E-9;
else if (datStep <= 34.49E-9) datStep = 30E-9;
else if (datStep <= 44.49E-9) datStep = 40E-9;
else if (datStep <= 54.49E-9) datStep = 50E-9;
else if (datStep <= 64.49E-9) datStep = 60E-9;
else if (datStep <= 74.49E-9) datStep = 70E-9;*/

75

for (int i =

{

i < testWave.length; i++)

//cout << "idx:\t" << 1 << "\t dt:\t" << datStep << "\n"';
//cout << "idx:\t" << testDT[i] << "\t dt:\t" << datStep;
testDT.push_back(datStep);

test2DT. push_back(datStep);

//test2DT.push_back(datStep * 10);

endCount += datStep;

endReadCount
for (int j =

readldx[j]
for (int i

endCount;

; J < decades; j++)

)

endReadCount;

i < testWave3.length; i++)

pointCount += readRes;
test3DT. push_back(datStep);
test4DT . push_back(datStep);
endReadCount += datStep;

}

else it g >

{

)

test3DT.push_back(datStep*pow(> 3))s
test4DT.push_back(datStep*pow(» 3));
endReadCount += datStep*pow(. 1)

testWave3.waveData.push_back(testWave3.waveData[i]);
testWave4 .waveData.push_back(testWave4.waveDatal[i]);

}
}

readTimeStep[Jj] = (endReadCount-readldx[j])/pointCount;
if (readTimeStep[]j] <=)

readTimeStep[j] = ;
pointCount =

}

double*
double*
double*
double*
double*
double*
double*
double*

//double* dt23
//double* dt24

dtl
dt2
dt3
dt4
vl
v2
v3
v4

(endReadCount - readldx[j]) 7/ ;

&testDT[0];
&test2DT[0];
&test3DT[O];
&test4DT[O];
&testWave .waveData[0];
&testWave2.waveData[(0];
&testWave3.waveData[0];
&testWaved .waveData[(0];

&test2DT[O];
&test2DT[0];

76

7

//double endTime

datStep*testWave. length*repeats;

//double endTime stod(endtime)*repeats;
//double endTime testDT.size()*datStep;
double endTime = endCount;

//endTime *= repeats;

double endReadTime = endReadCount;

WGFMU_createPattern(leader, 0);
WGFMU_createPattern(lagger, 0);

for (int i = 0; 1 < repeats; i++)
{
WGFMU_addVectors(leader, dtl1, vl1, testWave.length); //Account for
repeats.

WGFMU_addVectors(lagger, dt2, v2, testWave2.length);

//readSection
WGFMU_addVectors(leader, dt3, v3, testWave3.waveData.size()-1);
WGFMU_addVectors(lagger, dt4, v4, testWaved4.waveData.size()-1);

}
double timeStep = stod(timeStepStr);
if (timeStep <=) timeStep = ;

int numPoints = endTime / timeStep;

// Set the measurement events for both channels

WGFMU_setMeasureEvent(leader, ‘evt", , humPoints, timeStep, timeStep -
minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED);
WGFMU_setMeasureEvent(lagger, "“evt2", , humPoints, timeStep, timeStep -

minTime, WGFMU_MEASURE_EVENT_DATA_ AVERAGED) ;
//read events
ostringstream eventName;
double averagingTime = ;

for (int 1 = 1; 1 < decades; i++)

while (readTimeStep[i]>1.3)

{
readTimeStep[i] /= ;
pointCount *= ;
}
averagingTime = readTimeStep[i] - minTime;
if (averagingTime >) averagingTime = ;

eventName.clear();

eventName << "evtR" << i;

WGFMU_setMeasureEvent(leader, eventName.str().c_str(), readldx[i],
pointCount, readTimeStep[i], averagingTime,
WGFMU_MEASURE_EVENT_DATA_AVERAGED) ;

eventName.clear();

78

eventName << "evtRR" << i;

WGFMU_setMeasureEvent(lagger, eventName.str().c_str(), readldx[i],
pointCount, readTimeStep[i], averagingTime,
WGFMU_MEASURE_EVENT_DATA_AVERAGED) ;

}
WGFMU_addSequence (, leader, 1); // Add the waveform to WGFMU channel 1

WGFMU_addSequence(, lagger, 1);

//0ONLINE
WGFMU_initialize();

// Set the operation mode for each channel
WGFMU_setOperationMode(, WGFMU_OPERATION_MODE_FASTIV);
WGFMU_setOperationMode(, WGFMU_OPERATION_MODE_FASTIV);

// B1500 Defaults to measuring voltage. Change it to current. Also set the
resolution

// for the ADC in the WGFMU

WGFMU_setMeasureMode(, WGFMU_MEASURE_MODE_VOLTAGE) ;

WGFMU_setMeasureMode(, WGFMU_MEASURE_MODE_CURRENT) ;

WGFMU_setMeasureVoltageRange(, WGFMU_MEASURE_VOLTAGE_RANGE_10V);

if (currentRange == "1u" || currentRange == "1E-6" |] currentRange == "le-
6"]| currentRange == "1uA™ || currentRange == ""lua" || currentRange ==
*'0.000001')
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_1UA);
else if (currentRange == ""10u” || currentRange == "10E-6"" || currentRange
== "10e-6" || currentRange == "10uA™ || currentRange == "10ua"™ ||
currentRange == ""0.00001")
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10UA);
else if (currentRange == "100u™ || currentRange == "100E-6" ||
currentRange == "100e-6"" || currentRange == "100uA™ || currentRange ==
"100ua™]| currentRange == "0.0001")
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_100UA) ;
else if (currentRange == "1m" || currentRange == "1E-3" || currentRange ==
"1e-3"]| currentRange == "1mA" || currentRange == “1ma" ||
currentRange == "0.001"™)
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_1MA);
else iIf (currentRange == ""10m" |] currentRange == "10E-3"]| currentRange
== "10e-3" || currentRange == "10mA"™ || currentRange == "10ma" ||
currentRange == "0.01")

WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10MA);
else
{

cout << "'wat';

WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10MA);

}

WGFMU_setTriggerOutMode(leaderch, WGFMU_TRIGGER_OUT_MODE_START_SEQUENCE,
WGFMU_TRIGGER_OUT_POLARITY_POSITIVE);
WGFMU_setTriggerOutEvent(leader, "trig”, 0, 0);

WGFMU_connect(101);
WGFMU_connect(102);

WGFMU_execute();
WGFMU_waitUntilCompleted();

// Write the data to appropriate file

}

/*

79

ostringstream thefilename;
ostringstream fileNumber;
fileNumber << setfill("0") << setw(3) << fnum;

//thefilename << "L:/MEC 107 Data/STDP/" << testlD << '/1006301/Waferl10/"

<< dieNum << /" << devNum << "/" << posAmplitude << " " <<
abs(negAmplitude) << " " << dT << units << "._.csv'";

thefilename << rootF << dieNum << "/" << devNum << "/" << devNum << " ' <<
fname << " " << wAmMp << " " << eAmp << " " << FileNumber.str() <<
" csv's

//thefilename << ""C:/Users/koltondrake/Documents/STDP/STDP_data/"" <<
"resultant/" << devNum << "/" << curAmp << "_" << fnum << ".csv"';

string T _name = thefilename.str();

/*

This is the section where it returns a value

*/

writeResults2ChannelP(, , F_name.c_str(), pulseParams);

thefilename.str(""");
thefilename.clear();
FfileNumber._str(*""");
FfileNumber.clear();
fnum++;

This is for STDP, does not perform a bumpy read, does not save data.
Requires chl and ch2

*/

void pulseNoSave(string fname, string wAmp, string eAmp, string endtime,

{

string timeStepStr, string currentRange, string repeatCount)

//string amplitude = ampl;
csvparse3(fname, stod(wAmp), stod(eAmp));

WGFMU_clear();

double endCount = 0O;
double endReadCount = 0;
double readldx[100];
double readTimeStep[100];
int error = 1;
int curPeat =
int wasZero =
int pointCount ;

testWave.waveData.push_back(0); //Top Electrode
testWave2.waveData.push_back(0); //Bottom Electrode

int repeats = 1;
while (error == 1)
{

error = 0;

try

{

repeats = stoi(repeatCount);

}
catch (const std::invalid_argument& ia)
{

error = 1;

cout << "Invalid Repeat Count \n";
cout << "Repeat Count: ';

cin >> repeatCount;

cout << '"\n"‘;

error = 0;

vector<double> testDT;
vector<double> test2DT;

80

char* leader = ''chl™;
char* lagger = '‘ch2";
int leaderch = ;
int laggerch = ;
string pulseParams = fname + "," + wAmp + ", + eAmp + ", + endtime + ",”
+ timeStepStr + ", + currentRange + "," + repeatCount;
size_t size = 0;
if (endtime.find_first of("m", size) 1=
string: :npos)endtime.replace(endtime.find_first of("'m"”, size), , 'e-
37);
else if (endtime.find_first of('u”, size) 1=
string: :npos)endtime.replace(endtime.find_first of('u”, size), , 'e-
6);
else if (endtime.find_first_of('n", size) 1=
string: :npos)endtime.replace(endtime.find_first _of(''n", size), , 'e-
9");
if (timeStepStr.find_first _of('m", size) 1=
string: :npos)timeStepStr.replace(timeStepStr.find_first _of('m”, size),
, 'e=3");
else if (timeStepStr.find_first of("'u", size) 1=
string: :npos)timeStepStr.replace(timeStepStr.find_first of('u”, size),
, 'e-6");
else if (timeStepStr.find_first_of('n", size) 1=
string: :npos)timeStepStr.replace(timeStepStr.find_first_of('n", size),
, 'e=97);

double endTimes = stod(endtime);
double minTime = ;

double datStep = endTimes / testWave.length;

if (datStep <=) datStep = ;
for (int i = 0; 1 < testWave.length; i++)
{

testDT.push_back(datStep);

81

test2DT.push_back(datStep);
endCount += datStep;

}

double* dtl
double* dt2

&testDT[0];
&test2DT[0];

double* v1
double* v2

&testWave.waveData[(0];
&testWave2.waveData[0];

double endTime = endCount;
endTime *= repeats;

WGFMU_createPattern(leader, 0);
WGFMU_createPattern(lagger, 0);

for (int i = 0; 1 < repeats; i++)

WGFMU_addVectors(leader, dtl1, vl1, testWave.length); //Account for

repeats.
WGFMU_addVectors(lagger, dt2, v2, testWave2.length);
}
double timeStep = stod(timeStepStr);
if (timeStep <=) timeStep = ;

int numPoints = endTime / timeStep;

// Set the measurement events for both channels

WGFMU_setMeasureEvent(leader, “evt", , humPoints, timeStep, timeStep -
minTime, WGFMU_MEASURE_EVENT_ DATA_AVERAGED);
WGFMU_setMeasureEvent(lagger, "“evt2", , humPoints, timeStep, timeStep -

minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED) ;

WGFMU_addSequence (, leader, 1); // Add the waveform to WGFMU channel 1
WGFMU_addSequence(, lagger, 1);

//0NLINE
WGFMU_initialize();

// Set the operation mode for each channel
WGFMU_setOperationMode(, WGFMU_OPERATION_MODE_FASTIV);
WGFMU_setOperationMode(, WGFMU_OPERATION_MODE_FASTIV);

// B1500 Defaults to measuring voltage. Change it to current. Also set the
resolution

// for the ADC in the WGFMU

WGFMU_setMeasureMode(, WGFMU_MEASURE_MODE_VOLTAGE) ;

WGFMU_setMeasureMode(, WGFMU_MEASURE_MODE_CURRENT) ;

WGFMU_setMeasureVoltageRange(, WGFMU_MEASURE_VOLTAGE_RANGE_10V);

82

if (currentRange == "1u" || currentRange == "1E-6" |] currentRange == "le-
6"]| currentRange == "1uA" || currentRange == ""lua” || currentRange ==
"'0.000001")
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_1UA);
else if (currentRange == ""10u” || currentRange == "10E-6"" || currentRange
== "10e-6" || currentRange == "10uA™ || currentRange == "10ua" ||
currentRange == ""0.00001")
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10UA);
else if (currentRange == "100u™ |]] currentRange == "100E-6" ||
currentRange == "100e-6"" || currentRange == "100uA™ || currentRange ==
"100ua™ || currentRange == "0.0001")
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_100UA) ;
else if (currentRange == "1m" || currentRange == "1E-3" || currentRange ==
"1le-3"]| currentRange == "1mA"™ |] currentRange == “1ma" ||
currentRange == "0.001"™)
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_1MA);
else if (currentRange == ""10m" || currentRange == "10E-3" || currentRange
== "10e-3" |] currentRange == "10mA™]| currentRange == "10ma"™ ||
currentRange == ""0.01")
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10MA);
else
{

cout << "wat';
WGFMU_setMeasureCurrentRange(

}
WGFMU_setTriggerOutMode(leaderch,

, WGFMU_MEASURE_CURRENT_RANGE_10MA);

WGFMU_TRIGGER_OUT_MODE_START_SEQUENCE,

WGFMU_TRIGGER_OUT_POLARITY_POSITIVE);

WGFMU_setTriggerOutEvent(leader,
WGFMU_connect(101);
WGFMU_connect(102);

WGFMU_execute();
WGFMU_waituUntilCompleted();

“trig”,);

string eAmp, string endtime, string

fnum++;

}

/*

This is for STDP. Requires two files _chl and _ch2

*/

void pulsed4(string fname, string wAmp,

timeStepStr, string currentRange, string repeatCount)

{

//string amplitude ampl ;

csvparse3(fname, stod(wAmp), stod(eAmp));

WGFMU_clear();
double endCount
int error
int curPeat
int wasZero ;
//int dtint = stoi(dt);
testWave2 .waveData.push_back(0);
testWave.waveData.push_back(0);
double* vl = &testWave.waveData[
double* v2

1:

&testWave2.waveData[0];

int repeats = 1;
while (error == 1)
{

error = 0;

try

{

}

catch (const std::invalid_argument& ia)
{
error = 1;
cout << "Invalid Repeat Count \n';
cout << ""Repeat Count: "';
cin >> repeatCount;
cout << "\n"';

repeats = stoi(repeatCount);

error = 0;

vector<double> testDT;
vector<double> test2DT;
vector<double> zeroV = { 0, };

83

char* leader = "'chl";
char* lagger = "'ch2";
int leaderch = ;
int laggerch = ;
string pulseParams = fname + "," + wAmp + ", + eAmp + ", + endtime + ","
+ timeStepStr + ", + currentRange + "," + repeatCount;
size_t size = 0;
if (endtime.find_first_of("m", size) 1=
string: :npos)endtime.replace(endtime.find_first of(''m"”, size), , 'e-
33
else if (endtime.find_first_of('u", size) 1=
string::npos)endtime.replace(endtime.find_first_of('u”, size), , e-
6");
else if (endtime.find_first _of('n", size) 1=
string: :npos)endtime.replace(endtime.find_first of(''n", size), , 'e-
0);
if (timeStepStr.find_first_of('m", size) 1=
string: :npos)timeStepStr.replace(timeStepStr.find_first of('m”, size),
, 'e=3");
else if (timeStepStr.find_first of("'u", size) 1=
string: :npos)timeStepStr.replace(timeStepStr.find_first_of('u™, size),
, 'e=6");
else if (timeStepStr.find_first of(''n", size) 1=
string: :npos)timeStepStr.replace(timeStepStr.find_first of('n", size),
, 'e=9");

double minTime = ;
//double datStep = 10E-9;
double datStep = stod(endtime) / testWave.length;

if (datStep <= 10e-9) datStep = 10e-9;
double bigStep = 3 * datStep;

/*if (datStep <= 14_49E-9) datStep = 10E-9;

else if (datStep <= 24.49E-9) datStep = 20E-9;
else if (datStep <= 34.49E-9) datStep = 30E-9;
else if (datStep <= 44.49E-9) datStep = 40E-9;
else if (datStep <= 54.49E-9) datStep = 50E-9;
else if (datStep <= 64.49E-9) datStep = 60E-9;
else if (datStep <= 74.49E-9) datStep = 70E-9;*/

for (int i = 0; 1 < testWave.length; i++)
{
if (testWave.rawData[i]==-1)
{
testDT.push_back(datStep*10);
endCount += datStep*10;
}

else

{
testDT.push_back(datStep);

endCount += datStep;

}

if (testWave2.rawData[i] == -1)
test2DT.push_back(datStep * 10);

}

else

test2DT. push_back(datStep);

}
}
double* dtl = &testDT[0];
double* dt2 = &test2DT[O];

//double endTime = datStep*testWave.length*repeats;

//double endTime = stod(endtime)*repeats;
//double endTime = testDT.size()*datStep;
double endTime = endCount;

//vector<double> zeroDT = { datStep, endTime };
//double* zDT = &zeroDT[O0];

//double* zV = &zeroV[O0];
WGFMU_createPattern(leader, 0);
WGFMU_createPattern(lagger, 0);

//WGFMU_addVectors(leader, leaderdts, vl, 6);
for (int i = 0; 1 < repeats; i++)

{

84

85

WGFMU_addVectors(leader, dtl1, vl1, testWave.length); //Account for
repeats.
WGFMU_addVectors(lagger, dt2, v2, testWave.length);

}
//WGFMU_addVectors(lagger, zDT, zV, 2);

//double timeStep = window / (numPoints -1);
//double timeStep = 10E-9;

double timeStep = stod(timeStepStr);

if (timeStep <=) timeStep = ;

//int numPoints (endTime / timeStep); //was 100000
//int numPoints (datStep*testDT.size())/timeStep;
int numPoints = endTime / timeStep;

// Set the measurement events for both channels

//WGFMU_setMeasureEvent(leader, "evt", o, numPoints, timeStep, o,
WGFMU_MEASURE_EVENT_DATA_AVERAGED) ;

//WGFMU_setMeasureEvent(lagger, "evt2", o, numPoints, timeStep, o,
WGFMU_MEASURE_EVENT _DATA_AVERAGED); //no averaging

WGFMU_setMeasureEvent(leader, “evt", , humPoints, timeStep, timeStep -
minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED);

WGFMU_setMeasureEvent(lagger, “evt2", , humPoints, timeStep, timeStep -

minTime, WGFMU_MEASURE_EVENT_DATA_AVERAGED) ;

WGFMU_addSequence(, leader, 1); // Add the waveform to WGFMU channel 1
WGFMU_addSequence(, lagger, 1);

//0NLINE
WGFMU_initialize();

// Set the operation mode for each channel
WGFMU_setOperationMode(, WGFMU_OPERATION_MODE_FASTIV);
WGFMU_setOperationMode(, WGFMU_OPERATION_MODE_FASTIV);

// B1500 Defaults to measuring voltage. Change it to current. Also set the
resolution

// for the ADC in the WGFMU

WGFMU_setMeasureMode(, WGFMU_MEASURE_MODE_VOLTAGE) ;

WGFMU_setMeasureMode(, WGFMU_MEASURE_MODE_CURRENT) ;

WGFMU_setMeasureVoltageRange(, WGFMU_MEASURE_VOLTAGE_RANGE_10V);

if (currentRange == "1u" || currentRange == "1E-6" |] currentRange == "le-
6"]| currentRange == "1uA™ || currentRange == "lua" || currentRange ==
''0.000001')
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_1UA);
else if (currentRange == ""10u” || currentRange == "10E-6"" || currentRange
== "10e-6" || currentRange == "10uA™ || currentRange == "10ua”™ ||
currentRange == ""0.00001")
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10UA);
else if (currentRange == "100u™ || currentRange == "100E-6" ||
currentRange == "100e-6"" || currentRange == "100uA™ || currentRange ==
"100ua™]| currentRange == "0.0001")
WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_100UA) ;
else if (currentRange == "1m" || currentRange == "1E-3" || currentRange ==
"1e-3"]| currentRange == "1mA" || -currentRange == T1ma" ||

currentRange == ""0.001")

}

/*

86

WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_1MA);

else if (currentRange == ""10m" || currentRange == "10E-3" || currentRange
== "10e-3" || currentRange == "10mA™ || currentRange == "10ma" ||
currentRange == ""0.01")

WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10MA);
else
{

cout << "'wat';

WGFMU_setMeasureCurrentRange(, WGFMU_MEASURE_CURRENT_RANGE_10MA);

}

WGFMU_setTriggerOutMode(leaderch, WGFMU_TRIGGER_OUT_MODE_START_SEQUENCE,
WGFMU_TRIGGER_OUT_POLARITY_POSITIVE) ;
WGFMU_setTriggerOutEvent(leader, "trig”, 0, 0);

WGFMU_connect(101);

WGFMU_connect(102);

WGFMU_execute();

WGFMU_waituUntilCompleted();

// Write the data to appropriate file
ostringstream thefilename;

ostringstream fileNumber;

fileNumber << setfill("0") << setw(3) << fnum;

//thefilename << "L:/MEC 107 Data/STDP/" << testlD << '/1006301/Waferl0/""

<< dieNum << "/" << devNum << "/" << posAmplitude << " " <<
abs(negAmplitude) << " " << dT << units << ".csv'";

thefilename << rootF << dieNum << "/" << devNum << "/" << devNum << " ' <<
fname << "L " << wAmp << " " << eAmp << " " << FileNumber.str() <<
".csv'';

//thefilename << ""C:/Users/koltondrake/Documents/STDP/STDP_data/"" <<
"resultant/" << devNum << "/" << curAmp << "_" << fnum << ".csv"';

string f _name = thefilename.str();

writeResults2ChannelP(, , T name.c_str(), pulseParams);
//int ret = WGFMU_exportAscii(f_name.c_str());

thefilename.str("""");
thefilename.clear();
fileNumber.str("");
fileNumber.clear();
fnum++;

This is for printing resultant waves. Requires two files chl and ch2

*/

void resultant(string fname, string wAmp, string eAmp)

{

//string amplitude = ampl;
csvparse3(fname, stod(wAmp), stod(eAmp));
int 1 = fname.length() - 1;
//WGFMU_clear();

string outputF = fname.replace(2,1,"RL");
cout << "\n" << outputF << "\n'';

double endCount = 0O;

testWave2.waveData.push_back(0);
testWave .waveData.push_back(0);

double* v1
double* v2

vector<double> actualT;

vector<double> actualVl;
vector<double> actualV2;

//actualT.push_back(0);

//actualVl1.push_back(0);
//actualV2_push_back(0);

vector<double> testDT;

vector<double> test2DT;

vector<double> zeroV = {

size_t size = 0;

double minTime =
//double datStep
double datStep =
//double datStep

10E-9;

10e-9;

o |

<

&testWave.waveData[(0];
&testWave2.waveData[0];

, 0 F;

i < testWave.length;

; J+)

double tempV = (((double)j +

actualVl._push_back(tempV);

testDT.push_back(datStep);

actualT.push_back(endCount);

for (int 1 = 0;
{
if (testWave.rawData[i]
{
for (int j =
{
endCount += datStep;
}
}
else

i++)

)/

>*-

actualVl._push_back(testWave.rawData[i]);
testDT.push_back(datStep);
actualT.push_back(endCount);

endCount += datStep;

}

if (testWave2.rawData[i]

{
for (int j =

double tempV = (((double)j +

o |

<

; J+)

actualV2_push_back(tempV);

test2DT.push_back(datStep);

}

)/

>*-

+

+

87

}

else

actualV2_push_back(testWave2.rawData[i]);
test2DT. push_back(datStep);
}

}

double* actT = &actualT[0];

double* actVl = &actualVi[O];

double* actV2 = &actualVv2[0];

double* dtl = &testDT[0];

double* dt2 = &test2DT[O];

double endTime = endCount;

double timeStep = ;

int numPoints = endTime / timeStep;

cout << "VAt" << "T\n"';
for (int 1 = 0; 1 < numPoints; i++)

{
}

ostringstream thefilename;

cout << actVl[i]-actV2[i] << "\t" << actT[i] << "\n"";

thefilename << rootF << dieNum << "/ << devNum <<
<<" ch2.csv";

string T _name = thefilename.str();

FILE* fp = fopen(f_name.c_str(), "w");

it (fp 1= 0)
{
fprintf(fp, V1, T\n"");
for (int 1 = 0; 1 < numPoints; i++)
{
it (i == 0)

fprintf(fp, "%.9IF,", 0);
fprintf(fp, "VOLATILE,1,0.1,0,%i\n",numPoints);

}
else fprintf(fp, "%.9IA\n"", 0);
} fclose(fp);

}

//int ret = WGFMU_exportAscii(f_name.c_str());

thefilename.str(""");
thefilename.clear();
actualT.clear();
actualVl.clear(Q);
actualVv2.clear(Q);
//actualT.push_back(0);
//actualVl_push_back(0);
//actualV2_push_back(0);

testDT.clear();

u/u

88

<< outputF

89

test2DT.clear();
fnum++;

}

double dcSweep2(double amplitude, double compliance, 1iInt pts, string
testName){

ViSession defaultRM, vi;
viOpenDefaul tRM(&defaul tRM) ;
viOpen(defaultRM, “GPIBO::17::INSTR", VI_NULL, VI_NULL, &vi);

ViPrintf(vi, "*RST\n"");
ViPrintf(vi, "CN 2,3\n"");

// Set ch2 to sweep measure mode (mode=2)
// Params: mode(sweep) ,chnum
VviPrintf(vi, "MM 2,2\n"");

// Set ch2 sweep parameters

char dcString[100];

sprintf(dcString, "WV 2,1,200,0,%F,%i,%e\n"", amplitude, pts, compliance);

//cout << dcString;

ostringstream os;

//0s << "WV 2,1,0,0," << amplitude << ",51," << compliance << "\n";

//string sweepParam = os.str();

string sweepParam = dcString;

// Params: chnum,mode(linear),range(auto),start,stop,step, icomp

ViPrintf(vi, (char*)sweepParam.c_str()); // A little magic necessary to
turn string into Char*

os.str("'"");
os.clear();

// Force 0OV at ch3 with auto-ranging and 100mA current limit.
ViPrintf(vi, "DV 3,0,0,0.1\n"");

// Set format to return 12 digits with a header, and return the sourcing
// data

// Params: format, mode

ViPrintf(vi, "FMT 2,1\n""); // Terminator = <CR/LFMEOI>/

ViPrintf(vi, "XE\n");
char buf[102800];

viScanf(vi, "%s", &buf);
// cout << deltaT << "\n";

// Write the data to output

string s = buf;

std: :stringstream ss(s);

std::string item;

vector<string> elems;

while (std::getline(ss, item, ",")) {

elems.push_back(item);

}

// Write the data to appropriate file

string tmp = testName;
int nameLength = tmp.length(Q);

// make sure that the files are in a nice order
if (nameLength < 2)
{
//0s << "L:/MEC 107 Data/STDP/" << testID << "/1006301/Waferl0/"
dieNum << "/" << devNum << "/Sweep_ " << "0" << testName << ".csv";
0S << rootF << dieNum << "/" << devNum << "/" << devNum << "0 "

testName<< " .csv';
3
else
{

//0s << "L:/MEC 107 Data/STDP/" << testlD << "/1006301/Waferi0O/"
dieNum << "'/" << devNum << "/Sweep_ " << testName << ".csv'";
0S << rootF << dieNum << /" << devNum << "/" << devNum << " "
testName << " _csv'';
by

90

<<

<<

<<

<<

//0s << "L:/MEC 107 Data/STDP/" << testlD << '"/1006301/Waferl0/" << dieNum

<< "/" << devNum << "'summary.csv'';
string f name = os.str();
os.str("'"");
os.clear();
double R_avg = O;
FILE *fp = fopen(f_name.c_str(), "w");

int cnt = 1;
fprintf(fp, "V,I,R,G\n"");

for (int 1 = 0; 1 < elems.size() - 1; 1 += 2)

{

double vol = stod(elems[i + 1]); // Source data is returned after the

force data
double cur = stod(elems[i]);
while (cur == 0)

if (elems.size() > (i + 2 * cnt)) cur = stod(elems[i + 2 * cnt]);
else if ((i - 2 * cnt) >= 0) cur = stod(elems[i - 2 * cnt]);
cnt++;

double res = abs(vol / cur);

// Check for indeterminite or infinite values.

if (isinf(res)) cout << "Infinite Value Supressed\n";

if (isnan(res)) cout << "indeterminate value supressed";
if (res == O)res = 1;

R_avg += isinf(res) || isnan(res) ? 1 : res;

//fp << vol << "," << cur << "," << abs(res) << '"\n";
fprintf(fp, "%F,%e,%f,%e\n", vol, cur, res, 1 / res);
//cout << vol << "\t" << cur << "\t" << res << "\n"";

91

//fp << elems[i + 1] << "," << elems[i] << "\n";
//cout << elems[i + 1] << "\t" << elems[i] << "\n";
}
R _avg /= elems.size() - 2;
R_avg *= 2;

cout << "\tLast\tl: \t" << elems[elems.size() - 2] << "\n"";
cout << "\tAverage\tR: \t" << R_avg << "\n"';

fprintf(fp, ",R_avg,%f\n", R_avg);

//fp.close();

fclose(fp);

//dcnum++;

//cout << buf;

viPrintf(vi, "CL 2,3\n");

viClose(vi);
viClose(defaultRM);
return abs(R_avg);

//ColdT dcsweep.
double dcSweep3(double amplitude, double compliance, 1int pts, string
testName){

ViSession defaultRM, vi;
viOpenDefaul tRM(&defaul tRM) ;
viOpen(defaultRM, ""GPIBO::17::INSTR"™, VI_NULL, VI_NULL, &vi);

ViPrintf(vi, "*RST\n"");

//Enable slots 2 and 3
ViPrintf(vi, "CN 2,3\n"");

//Set slot 2 to sweep measure mode (mode=2) (Vtop)
//Params: mode(sweep) ,chnum

//MM works off of slots;

ViPrintf(vi, "MM 2,2\n"");

// Set slot 3 (SMU 1) sweep parameters
char dcString[100];

if (abs(amplitude) <= 500e-3)

//Sets ADC Integration settings.

//Syntax: AIT type,mode[,N]

//Type = 1: High-Resolution A/D

//Mode = 1: Manual

//N = Number of averages.

VviPrintf(vi, "AIT 1,1,100\n""); //High-Res A/Ds average 20 times.
//Specifies ADC type for each channel.

//Syntax: AAD chnum[, type]

VviPrintf(vi, "AAD 2,1\n""); //Sets slot 2 to High Res
VviPrintf(vi, "AAD 3,1\n""); //Sets slot 3 to High Res

92

//0.5V Limited autoranging
sprintf(dcString, "WV 2,1,5,0,%F,%i,%e\n"", amplitude, pts, compliance);

}
else it (abs(amplitude) <= 5)
{
//Sets ADC Integration settings.
//Syntax: AIT type,mode[,N]
//Type = 1: High-Resolution A/D
//Mode = 1: Manual
//N = Number of averages.
viPrintf(vi, "AIT 1,1,50\n""); //High-Res A/Ds average 50 times.
//Specifies ADC type for each channel.
//Syntax: AAD chnum[, type]
ViPrintf(vi, "AAD 2,1\n""); //Sets slot 2 to High Res
VviPrintf(vi, "AAD 3,1\n""); //Sets slot 3 to High Res
//5V limited autoranging
sprintf(dcString, "W 2,1,50,0,%F,%i,%e\n"", amplitude, pts, compliance);
}
else
{
//Sets ADC Integration settings.
//Syntax: AIT type,mode[,N]
//Type = 1: High-Resolution A/D
//Mode = 1: Manual
//N = Number of averages.
viPrintf(vi, "AIT 1,1,50\n""); //High-Res A/Ds average 50 times.
//Specifies ADC type for each channel.
//Syntax: AAD chnum[, type]
ViPrintf(vi, "AAD 2,1\n""); //Sets slot 2 to High Res
VviPrintf(vi, "AAD 3,1\n""); //Sets slot 3 to High Res
sprintf(dcString, WV 2,1,200,0,%F,%i,%e\n"", amplitude, pts,
compliance);
}

//cout << dcString;

ostringstream os;

//0os << "WV 2,1,0,0," << amplitude << ",51," << compliance << "\n";

//string sweepParam = os.str();

string sweepParam = dcString;

// Params: chnum,mode(linear),range(auto),start,stop,step, icomp

ViPrintf(vi, (char*)sweepParam.c_str()); // A little magic necessary to
turn string into Char*

os.str("'"");
os.clear();

// Force 0V at slot3 (SMU 2) with auto-ranging and 100mA current limit.
ViPrintf(vi, "DV 3,0,0,0.1\n"");

// Set format to return 12 digits with a header, and return the sourcing
// data

// Params: format, mode

ViPrintf(vi, "FMT 2,1\n""); // Terminator = <CR/LFMEOI>/

ViPrintf(vi, "XE\n");

char buf[102800];

viScanf(vi, "%s", &buf);
// cout << deltaT << "\n"';

// Write the data to output

string s = buf;

std: :stringstream ss(s);

std::string item;

vector<string> elems;

while (std::getline(ss, item, ",")) {
elems.push_back(item);

}

// Write the data to appropriate file

string tmp = testName;
int nameLength = tmp.length(Q);

// make sure that the files are in a nice order

0S << rootF << dieNum << " " << devNum << " ”
temperature << "_csv'';

string f _name = os.str();

os.str("""");

os.clear();

double R_avg = O;

FILE *fp = fopen(f_name.c_str(), "w");

fprintf(fp, "V,I,R,G\n"");
int cnt = 1;

for (int 1 = 0; 1 < elems.size() - 1; 1 += 2)

{

double vol = stod(elems[i + 1]); // Source data

force data

double cur = stod(elems[i]);
while (cur == 0)

{

93

<< testName << " " <<

is returned after the

if(elems.size() > (i + 2*cnt)) cur = stod(elems[i + 2*cnt]);
else if ((i - 2 * cnt) >= 0) cur = stod(elems[i - 2 * cnt]);

cnt++;

double res = abs(vol / cur);
// Check for indeterminite or infinite values.

if (isinf(res)) cout << "Infinite Value Supressed\n";
if (isnan(res)) cout << "indeterminate value supressed";

if (res == 0) res = 1;

R _avg += isinf(res) || isnan(res) ? 1 : res;

//fp << vol << "," << cur << "," << abs(res) << '"\n";
fprintf(fp, “%F,%e,%f,%e\n", vol, cur, res, 1 / res);
//cout << vol << "\t" << cur << "\t" << res << "\n"';

//fp << elems[i + 1] << "," << elems[i] << "™\n";

//cout << elems[i + 1] << "\t" << elems[i] << "\n"

94

}
R _avg /= elems.size() - 2;
R_avg *= 2;

cout << "\tLast\tl: \t" << elems[elems.size() - 2] << "\n"";
cout << "\tAverage\tR: \t" << R_avg << "\n";

fprintf(fp, ",R avg,%f\n"", R_avg);

//fp.close();

fclose(fp);

dcnum++;

//cout << buf;

ViPrintf(vi, "CL 2,3\n");

viClose(vi);
viClose(defaultRM);
return abs(R_avg);

double dcSweep4(double amplitude, double compliance, 1iInt pts, string
testName){

ViSession defaultRM, vi;
viOpenDefaul tRM(&defaul tRM) ;
viOpen(defaultRM, ""GPIBO::17::INSTR™, VI_NULL, VI_NULL, &vi);

ViPrintf(vi, "*RST\n"");

//Enable slots 2 and 3
ViPrintf(vi, "CN 2,3\n");

//Set slot 2 to sweep measure mode (mode=2) (Vtop)
//Params: mode(sweep),chnum

//MM works off of slots;

VviPrintf(vi, "MM 2,2\n"");

ostringstream dcNum;

dcNum << setfill("0") << setw(3) << dcnum;

// Set slot 3 (SMU 1) sweep parameters
char dcString[100];

if (abs(amplitude) <= 500e-3)
{

//Sets ADC Integration settings.

//Syntax: AIT type,mode[,N]

//Type = 1: High-Resolution A/D

//Mode = 1: Manual

//N = Number of averages.

viPrintf(vi, "AIT 1,1,20\n""); //High-Res A/Ds average 20 times.
//Specifies ADC type for each channel.

//Syntax: AAD chnum[, type]

ViPrintf(vi, "AAD 2,1\n""); //Sets slot 2 to High Res
VviPrintf(vi, "AAD 3,1\n""); //Sets slot 3 to High Res

//0.5V Limited autoranging

sprintf(dcString, "WV 2,1,5,0,%F,%i,%e\n"", amplitude, pts, compliance);

95

}
else if (abs(amplitude) <= 5)
{
//Sets ADC Integration settings.
//Syntax: AIT type,mode[,N]
//Type = 1: High-Resolution A/D
//Mode = 1: Manual
//N = Number of averages.
viPrintf(vi, "AIT 1,1,50\n""); //High-Res A/Ds average 50 times.
//Specifies ADC type for each channel.
//Syntax: AAD chnum[, type]
VviPrintf(vi, "AAD 2,1\n""); //Sets slot 2 to High Res
ViPrintf(vi, "AAD 3,1\n""); //Sets slot 3 to High Res
//5V limited autoranging
sprintf(dcString, "WV 2,1,50,0,%F,%i,%e\n"", amplitude, pts, compliance);
}
else
{
//Sets ADC Integration settings.
//Syntax: AIT type,mode[,N]
//Type = 1: High-Resolution A/D
//Mode = 1: Manual
//N = Number of averages.
viPrintf(vi, "AIT 1,1,50\n""); //High-Res A/Ds average 50 times.
//Specifies ADC type for each channel.
//Syntax: AAD chnum[, type]
ViPrintf(vi, "AAD 2,1\n""); //Sets slot 2 to High Res
ViPrintf(vi, "AAD 3,1\n""); //Sets slot 3 to High Res
sprintf(dcString, WV 2,1,200,0,%F,%i ,%e\n", amplitude, pts,
compliance);
}

//cout << dcString;

ostringstream os;

//0os << "WV 2,1,0,0," << amplitude << ",51," << compliance << "\n";

//string sweepParam = os.str();

string sweepParam = dcString;

// Params: chnum,mode(linear),range(auto),start,stop,step, icomp

ViPrintf(vi, (char*)sweepParam.c_str()); // A little magic necessary to
turn string into Char*

os.str("""");
os.clear();

// Force 0OV at slot3 (SMU 2) with auto-ranging and 100mA current limit.
viPrintf(vi, "DV 3,0,0,0.1\n");

// Set format to return 12 digits with a header, and return the sourcing
// data

// Params: format, mode

ViPrintf(vi, "FMT 2,1\n""); // Terminator = <CR/LF"EOQOI>/

ViIPrintf(vi, "XE\n");

char buf[102800];

viScanf(vi, "%s", &buf);

96

// cout << deltaT << "\n"";

// Write the data to output

string s = buf;

std: :stringstream ss(s);

std::string item;

vector<string> elems;

while (std::getline(ss, item, ",")) {
elems_push_back(item);

}

// Write the data to appropriate file

string tmp = testName;
int nameLength = tmp.length(Q);

// make sure that the files are in a nice order
//0s << rootF << dieNum << " "™ << devNum << " " << testName << " " <<
dcNum.str() << ".csv'; //ColdT name

//01d Version 11AM 1-28
ostringstream fileNumber;
fileNumber << setfill("0") << setw(3) << fnum;

//0s << rootF << dieNum << "/" << devNum << "/" << devNum << " " <<

testName << "_" << fileNumber.str() << ".csv";

//New Version
0S << rootF << dieNum << "/" << devNum << " " << testName << <<
FfileNumber.str() << ".csv'';

string T name = os.str();

os.str("'"");
os.clear();
double R_avg = O;

FILE *fp = fopen(f_name.c_str(), "w");

fprintf(fp, "V,I,R,G\n"");
int cnt = 1;

//0ften, the first 5 points or so will have the SMU in a different range
than is required.

//For many-point sweeps, tossing out these points gives a more accurate
measurement.

int firstAvgToss = 10;

if (pts > 50) firstAvgToss = 10;
else firstAvgToss = 0;

for (int 1 = 0; 1 < elems.size() - 1; 1 += 2)

double vol = stod(elems[i + 1]); // Source data is returned after the
force data

double cur = stod(elems[i]);
while (cur == 0)

{

97

if (elems.size() >(i + 2 * cnt)) cur = stod(elems[i + 2 * cnt]);
else if ((i - 2 * cnt) >= 0) cur = stod(elems[i - 2 * cnt]);

cnt++;
}
double res = abs(vol / cur);
// Check for indeterminite or infinite values.
if (isinf(res)) cout << "Infinite Value Supressed\n";
if (isnan(res)) cout << "indeterminate value supressed";
if (res == 0) res = 1;

if(i>fFirstAvgToss+1l) R _avg += isinf(res) || isnan(res) ? 1 : res;

//fp << vol << "," << cur << "," << abs(res) << '"\n";
fprintf(fp, "%F,%e,%f,%e\n", vol, cur, res, 1 / res);
//cout << vol << "\t" << cur << "\t" << res << "\n"";

//fp << elems[i + 1] << "," << elems[i] << "\n"";
//cout << elems[i + 1] << "\t" << elems[i] << "\n"';

}

R _avg /= elems.size() - 2 + FirstAvgToss;
R_avg *= 2;

cout << "\tLast\tl: \t" << elems[elems.size() - 2] << "\n"";
cout << "\tAverage\tR: \t" << R_avg << "\n";
fprintf(fp, ",R avg,%f\n"", R_avg);
//fp.close();

fclose(fp);

denum++;

//cout << buf;

fileNumber.str("");

FfileNumber.clear();

fnum++;

ViPrintf(vi, "CL 2,3\n");

viClose(vi);
viClose(defaultRM);
return abs(R_avg);

}

double dcSweep(double amplitude, double compliance, int
testName){

ViSession defaultRM, vi;
viOpenDefaul tRM(&defaul tRM) ;
viOpen(defaultRM, “GPIBO::17::INSTR™, VI_NULL, VI_NULL, &vi);

ViPrintf(vi, "*RST\n"");

ViPrintf(vi, "CN 2,3\n"");

// Set ch2 to sweep measure mode (mode=2)
// Params: mode(sweep) ,chnum

//MM works off of slots;
ViPrintf(vi, "MM 2,2\n"");

pts, string

98

// Set slot 3 (SMU 1) sweep parameters

char dcString[100];

sprintf(dcString, "WV 2,1,200,0,%F,%i,%e\n"", amplitude, pts, compliance);

//cout << dcString;

ostringstream os;

//0s << "WV 2,1,0,0," << amplitude << ",51," << compliance << "\n";

//string sweepParam = os.str();

string sweepParam = dcString;

// Params: chnum,mode(linear),range(auto),start,stop,step, icomp

ViPrintf(vi, (char*)sweepParam.c_str()); // A little magic necessary to
turn string into Char*

os.str("'"");
os.clear();

// Force 0OV at slot3 (SMU 2) with auto-ranging and 100mA current limit.
VviPrintf(vi, "DV 3,0,0,0.1\n");

// Set format to return 12 digits with a header, and return the sourcing
// data

// Params: format, mode

VviPrintf(vi, "FMT 2,1\n""); // Terminator = <CR/LF"EOQOI>/

ViIPrintf(vi, "XE\n");
char buf[102800];

viScanf(vi, "%s", &buf);
// cout << deltaT << '"\n";

// Write the data to output

string s = buf;

std: :stringstream ss(s);

std::string item;

vector<string> elems;

while (std::getline(ss, item, ",")) {
elems.push_back(item);

}

// Write the data to appropriate file

string tmp = testName;
int nameLength = tmp.length();

// make sure that the files are in a nice order
if (nameLength < 2)
{
//0s << "L:/MEC 107 Data/STDP/" << testlD << '/1006301/Waferl0Q/" <<
dieNum << ""/" << devNum << "/Sweep_ " << "0" << testName << ".csv";
0S << rootF << dieNum << "/" << devNum << "/" << devNum << " sweep " <<
0" << testName << " "'<< dcnum << ""_csv'';
}

else
{
//os << "L:/MEC 107 Data/STDP/" << testlD << '/1006301/Waferl0/" <<
dieNum << "'/" << devNum << "/Sweep_" << testName << ".csv'";

0s << rootF << dieNum << /" << devNum << "/" << devNum <<
testName << " " << dcnum << ".csv'';

99

Sweep"" <<

//0s << "L:/MEC 107 Data/STDP/" << testlD << '"/1006301/Waferl0/" << dieNum

<< "/" << devNum << "'summary.csv'';
string T name = os.str();

os.str("'"");
os.clear();
double R_avg = O;

FILE *fp = fopen(f_name.c_str(), "w");

fprintf(fp, "V,I,R,G\n"");
int cnt = 1;
for (int i = 0; i < elems.size() - 1; i += 2)

{

double vol = stod(elems[i + 1]); // Source data is returned after the

force data
double cur = stod(elems[i]);
while (cur == 0)

{
if (elems.size() > (i + 2 * cnt)) cur = stod(elems[i + 2 * cnt]);
else if ((i - 2 * cnt) >= 0) cur = stod(elems[i - 2 * cnt]);
cnt++;

}

double res = abs(vol / cur);

// Check for indeterminite or infinite values.

if (isinf(res)) cout << "Infinite Value Supressed\n";

if (isnan(res)) cout << "indeterminate value supressed";

if (res == O)res = 1;

R_avg += isinf(res) || isnan(res) ? 1 : res;

//fp << vol << "," << cur << "," << abs(res) << "\n"';

fprintf(fp, "%F,%e,%f,%e\n", vol, cur, res, 1 / res);

//cout << vol << "\t" << cur << "\t" << res << "\n"";

//fp << elems[i + 1] << "," << elems[i] << "\n"";
//cout << elems[i + 1] << "\t" << elems[i] << "\n";
}
R _avg /= elems.size()-2;
R_avg *= 2;
cout << "\tLast\tl: \t" << elems[elems.size() - 2] << "\n"";
cout << "\tAverage\tR: \t" << R_avg << "\n"';
fprintf(fp, ",R avg,%f\n", R_avg);
//fp.close();
fclose(fp);
dcnum++;
//cout << buf;

ViPrintf(vi, "CL 2,3\n");
viClose(vi);

viClose(defaultRM);
return abs(R_avg);

100

void resetTests(int numTests, double riseTime, double TallTime, double

widthAtHalfMax, double tail, double posAmplitude, double negAmplitude,
double writeScale)

vector<int> testNums;

vector<double> deltaGs;

double deltaG;

double maxG;

double thisG = / dcSweep(, , , "Init"); // Get an
conductance reading

maxG = thisG;

double previousG;

s
Q

n

double deltaT;

cout << "Enter a spike timing interval to test: *;

cin >> deltaT;

int k = 1;

intm= 2;

for (int i = 1; 1 <= numTests; i++) {
testNums.push_back(i);

createSpikes(riseTime, TfTallTime, widthAtHalfMax, tail, posAmplitude,
negAmplitude, deltaT, writeScale, to_string(k));

previousG = thisG;

thisG = 1 / dcSweep(, , , to_string(k));

maxG = thisG > maxG ? thisG : maxG;

deltaG = (thisG - previousG);
deltaGs.push_back(deltaG); // change in conductance calculation

createSpikes(riseTime, TfTallTime, widthAtHalfMax, tail, posAmplitude,
negAmplitude, , writeScale, to_string(m));
previousG = thisG;
thisG / dcSweep(, , , to_string(m));
k +=
m +=
}

double scaleFactor = / maxG;

transform(deltaGs.begin(), deltaGs.end(), deltaGs.begin(),
std: :bindlst(multiplies<double>(), scaleFactor));

ostringstream summary_filename;

//summary_Filename << "L:/MEC 107 Data/STDP/™ << testlID <<
"'/1006301/Waferl0/" << dieNum << "/" << devNum << '/" << devNum <<
"' _summary.csv'';

//summary_filename << "C:/Users/koltondrake/Documents/STDP/STDP_data/" <<
testID << '/1006301/Waferl0/" << dieNum << "/" << devNum << "/" <<
devNum << "_summary.csv'';

summary_filename << rootF << dieNum << "/ << devNum << "/" << devNum <<
" _summary.csv'';

string fname = summary_filename.str();

ofstream fp;

fp.open(fname);

fp << "Test #,dG\n"";

}

101

for (int i = 0; i < testNums.size(); i++)
{

fp << testNums[i] << "," << deltaGs[i] << "\n"";
}
fp.close();
summary_Filename.str("""");
summary_Filename.clear();

// Make sure that if the window is closed or the process is stopped the VISA

resources

// are shut down
BOOL CtrlHandler (DWORD)

{

//MessageBox(NULL, "Program closed”, 'Message', MB_ICONEXCLAMATION |
MB_OK) ;

WGFMU_closeSession();

viClose(vi);

viClose(defaultRM);

FILE *f = fopen(''C:/Users/koltondrake/Desktop/dump.txt"”, "w'™);

fprintf(F, "Program Didn"t End Well™);

exit(-1);

int introQuery()

{

SetConsoleCtrilHandler ((PHANDLER_ROUTINE)&CtrIHandler, TRUE);

try{
ViSession defaultRM, vi;

viOpenDefaul tRM(&defaul tRM) ;

//viOpen(defaultRM, "GPIBO::17::INSTR"™, VI_NULL, VI_NULL, &vi);
viOpen(defaultRM, “GPIBO::17::INSTR"™, VI_NULL, VI_NULL, &vi);
ViPrintf(vi, "*RST\n"");

viClose(vi);

viClose(defaultRM);

int chl = 101;

int ch2 = 102;

string shouldCondition;

cout << "What is the test identifier for this test?\n";

cin >> testlD;

cout << "DIE NUMBER (in the form DieXX, where XX is the number)\n";

cin >> dieNum;

cout << "Device Number (in the form DevXX, where XX is the number)\n";
cin >> devNum;

cout << "Would you like to condition the device before running learning
spikes? Y/N\n"';

cin >> shouldCondition;

// //transform(shouldCondition.begin(),
shouldCondition.end(),shouldCondition.begin(),::tolower);

// Set the full width half max parameters (for the positive going spike)
double widthAtHalfMax = 10E-3;

double riseTime = 9E-3;

double fallTime = 9E-3;

double posAmplitude = 0.3;

}

102

double negAmplitude = -.2;
double tail = 22E-3;

// Set the maximum deltaT that you want to test.
double maxDT = 40E-3;

// Set the number of tests to run (this will be used to sample at even
intevals between the min

// and max deltaT values). Remember that these tests are double sided,
so both the positive and

// negative side will be run, resulting in twice as many tests as you
say. The endpoints of your

// test range will always be run, so take this into account if you-"d
like all of the intermediate

// test numbers to be "nice” numbers.

int numTests = 5; // You always probably mean to do one more than you
think (think ends)

//WGFMU_openSession(""GPIBO: :17::INSTR™);
WGFMU_openSession("'GPIB0O::17::INSTR™);
if (shouldCondition == "y')

{

double R1 dcSweep(20E-3, 10E-3, 51, "R1™);

double W1 = dcSweep(2, 1E-6, 51, "W1'™);
double R2 = dcSweep(20E-3, 10E-3, 51, "R2");
double E1 = dcSweep(-1, 20E-6, 51, "E1');
double R3 = dcSweep(20E-3, 10E-3, 51, "R3");
double W2 = dcSweep(2, 1E-6, 51, "W2");
double R4 = dcSweep(20E-3, 10E-3, 51, "R4™);
}
string tnum = ""test0";
// createSpikes(riseTime, fallTime, widthAtHalfMax, tail,

posAmplitude, negAmplitude,40E-3,1.0,tnum);

runStdpSuite(maxDT, numTests, riseTime, fallTime, widthAtHalfMax, tail,
posAmplitude, negAmplitude);

// resetTests(numTests, riseTime, TallTime, widthAtHalfMax, tail,
posAmplitude, negAmplitude,1.0);

dcSweep(2, 20E-6, 51, "conditioning™);

//dcSweep(20E-3, 10E-3, "read");

WGFMU_initialize(); //WGFMU_disconnect(101);

WGFMU_closeSession();

}
catch (...) {

}

WGFMU_closeSession();

viClose(vi);

viClose(defaultRM);

FILE *f = fopen(''C:/Users/koltondrake/Desktop/dump.txt"”, "w'™);
fprintf(F, “"Program Didn"t End Well™);

exit(-1);

int csvparse(string cmd,double amplitude, int dt)

{

string line, Ffilename = "C:/Users/koltondrake/Documents/STDP/stdp Al.csv';
if (ecmd '= "w'|]emdI="¢e")

{

Ffilename = ""C:/Users/koltondrake/Documents/STDP/"+cmd+".csv'";

}

vector<string> row;

double amplitudeL = amplitude;

//if (emd == "w" && amplitudelL<0) amplitudeL *= -1;

//if (ecmd == "e" && amplitudelL>0) amplitudeL *= -1;

curAmp = amplitudel;

ifstream in(Ffilename);

if (in.fail()) { cout << "File not found”™ << endl; return O; }
int rowCount = 0O;

string::size_type sz;

double d;

testWave.waveData.clear();
testWave2.waveData.clear();

while (getline(in, line) && in.good())

{
csvline_populate(row, line, ",%);
rowCount++;
if (rowCount == 2)
{
int leng = row.size();
for (int 1 = 0; 1 < leng; i++)
{
//cout << row[i] << "\t";
try
{
d = stod(row[i], &sz);
catch (...)
{

//cout << "oops'; //we can"t convert the value to a double.
//break;

(i = 2)

testWave.freq = d;
testWave2.freq = d;

(i = 3)

testWave.amp = d;
testWave2.amp = d;

(== 4)

testWave.offset = d;
testWave2.offset = d;

(i = 5)

testWave.length = (int)d;
testWave2.length = (int)d;

103

}

int leng = row.size();
if (rowCount >= 2)

104

{
for (int i = 0; 1 < leng; i++)
{
//cout << row[i] << "\t";
try
{
d = stod(row[i], &sz);
}
catch (...)
{
//cout << "oops'"; //we can"t convert the value to a double.
break;
}
//if (i == 0)testWave.waveData.push_back(d*testWave.amp);
it (i == 0)
testWave.waveData.push_back(d*amplitudel);
testWave2 .waveData.push_back(d*amplitudel);
}
>
//cout << endl;
}

in.close();
vector<double>: :iterator it;
if (ecmd == "w')

{
it = testWave.waveData.begin();
for (int 1 = 0; 1 < dt; i++)
{
it = testWave.waveData.insert(it, 0);
}
}
if (cmd == "e")
{
it = testWave2.waveData.begin();
for (int i = 0; 1 < dt; i++)
{
it = testWave2.waveData. insert(it, 0);
}
}
return 0O;

int csvparsel(string cmd, double wAmp, double eAmp)

{

string line;

string filename = ""C:/Users/koltondrake/Documents/STDP/" + cmd +

vector<string> row;

ifstream in(Ffilename);

" _csv'':

105

if (in.fail()) { cout << "File not found™ << endl; return O; }
int rowCount = 0;

string::size_type sz;

double d;

testWave.waveData.clear();

testWave2.waveData.clear();

while (getline(in, line) && in.good())

{
csvline_populate(row, line, ",7%);
rowCount++;
if (rowCount == 2)
{
int leng = row.size();
for (int i = 0; 1 < leng; i++)
{
//cout << row[i] << "\t";
try
{
d = stod(row[i], &sz);
catch (...)
{
//cout << "oops'"; //we can"t convert the value to a double.
//break;
}
it (i == 2)
{
testWave.freq = d;
testWave2.freq = d;
}
it (i == 3)
{
testWave.amp = d;
testWave2.amp = d;
}
it (i == 4)
{
testWave.offset = d;
testWave2.offset = d;
}
it (i == 5)
{
testWave. length = (int)d;
testWave2.length = (int)d;
¥
¥
}

int leng = row.size();
it (rowCount >= 2)

{

for (int i = 0; 1 < leng; i++)

106

{

//cout << row[i] << "\t";

try

{
d = stod(row[i], &sz);

}

catch (...)

{
//cout << "oops'; //we can"t convert the value to a double.
break;

}

//if (i == 0)testWave.waveData.push_back(d*testWave.amp);

it (i == 0)

{

if (d == 0.05) //We see a read

{
testWave.waveData.push_back(0.2);
testWave2 .waveData.push_back(0);

}
else if (d > 0)
{
testWave.waveData.push_back(d*wAmp); //Positive voltages go to
Channel 1
testWave2.waveData.push_back(0); //Negative voltages go to
Channel 2 (as positive voltages).

else if (d < 0)
{
testWave.waveData.push_back(d*eAmp); //Negative voltages go to
Channel 2 (as positive voltages).
testWave2.waveData.push_back(0);

}

else if (d == 0)

{
testWave.waveData.push_back(0);
testWave2.waveData.push_back(0);

}
}
}
//cout << endl;
s
s
in.close();
return O;
3
/**

This csvparse is fTor taking a csv file and placing negative amplitudes on

*/

Channel 2 and positive amplitudes on Channel 1.

int csvparse2(string cmd, double wAmp, double eAmp)

{

string line;
string filename = ""C:/Users/koltondrake/Documents/STDP/™ + cmd + ".csv';
vector<string> row;

107

ifstream in(Ffilename);

if (in.fail()) { cout << "File not found” << endl; return O; }
int rowCount = 0O;

string::size_type sz;

double d;

testWave.waveData.clear();

testWave2.waveData.clear();

while (getline(in, line) && in.good())

{
csvline_populate(row, line, ",%);
rowCount++;
if (rowCount == 2)
{
int leng = row.size();
for (int i = 0; 1 < leng; i++)
{
//cout << row[i] << "\t";
try
{
d = stod(row[i], &sz);
}
catch (...)
{
//cout << "oops'; //we can"t convert the value to a double.
//break;
}
it (== 2)
{
testWave.freq = d;
testWave2.freq = d;
}
it (i == 3)
{
testWave.amp = d;
testWave2.amp = d;
}
it (i == 4)
{
testWave.offset = d;
testWave2.offset = d;
}
it (i == 5)
{
testWave.length = (int)d;
testWave2.length = (int)d;
}
}
}

int leng = row.size();
if (rowCount >= 2)

{

108

for (int i = 0; 1 < leng; i++)

{
//cout << row[i] << "\t";
try
d = stod(row[i], &sz);
}
catch (...)
{

//cout << "oops'"; //we can"t convert the value to a double.
break;

s

//if (i == 0)testWave.waveData.push_back(d*testWave.amp);
if (i == 0)

{

if (d == 0.05) //We see a read

testWave.waveData.push_back(0.2);
testWave2.waveData.push_back(0);

}
else if (d > 0)
{
testWave.waveData.push_back(d*wAmp); //Positive voltages go to
Channel 1
testWave2.waveData.push_back(0); //Negative voltages go to
Channel 2 (as positive voltages).

¥
else if (d < 0)
{
testWave.waveData.push_back(0);
testWave2.waveData.push_back(d*eAmp*-1); //Negative voltages go
to Channel 2 (as positive voltages).

3

else if (d == 0)

{
testWave.waveData.push_back(0);
testWave2 .waveData.push_back(0);

3

¥
b

//cout << endl;

}

in.close();
return O;

This csvparse is fTor taking a csv file and placing negative amplitudes on

Channel 2 and positive amplitudes on Channel 1.

int csvparse3(string cmd, double wAmp, double eAmp)

string line,line2;
string Tfilename = "C:/Users/koltondrake/Documents/STDP/" + cmd +

_chl.csv'";

109

string filename2 = "C:/Users/koltondrake/Documents/STDP/" + cmd +
" ch2.csv';
vector<string> row,row2;

ifstream in(Filename);

ifstream in2(filename2);

if (in.failQllin2.fail()) { cout << "File not found”™ << endl; return
}

int rowCount = 0;

int rowCount2 = 0;

string::size_type sz;
double d;

testWave.waveData.clear();
testWave.rawData.clear();

testWave2.waveData.clear();
testWave2.rawData.clear();

while (getline(in, line) && in.good())
{

csvline_populate(row, line, ",%);
rowCount++;

if (rowCount == 2)
{

int leng = row.size();
for (int i = 0; 1 < leng; i++)
{
//cout << row[i] << "\t";
try
{

d = stod(row[i], &sz);
}
catch (...)

//cout << "oops'; //we can"t convert the value to a double.
//break;

s
if (i == 2)

testWave.freq = d;

//testWave2.freq = d;
}
if (i == 3)

testWave.amp = d;

//testWave2.amp = d;
}
if (i == 4)

testWave.offset = d
//testWave2.offset

f(i ==)

d;

110

{
testWave. length = (int)d;

//testWave2._length = (int)d;
}
}
}

int leng = row.size();
if (rowCount >= 2)

{
for (int i = 0; 1 < leng; i++)
{
//cout << row[i] << "\t";
try
{
d = stod(row[i], &sz);
catch (...)
{
//cout << "oops'"; //we can"t convert the value to a double.
break;
//if (i == 0)testWave.waveData.push_back(d*testWave.amp);
if (i == 0)
{
testWave.rawData.push_back(d);
if (d == 0.05) //We see a read
{
testWave.waveData.push_back(0.05);
//testWave?2 .waveData.push_back(0);
¥
else if (d > 0)
{
testWave.waveData.push_back(d*wAmp); //Positive voltages go to
Channel 1

//testWave2 _waveData.push_back(0); //Negative voltages go to
Channel 2 (as positive voltages).

}
else if (d < 0)
{
testWave.waveData.push_back(d*eAmp);
//testWave2 _waveData.push_back(d*eAmp*-1); //Negative voltages
go to Channel 2 (as positive voltages).

else if (d == 0)

testWave.waveData.push_back(0);
//testWave?2 .waveData.push_back(0);
}
}
}

//cout << endl;

}

n.close();

3
i

111

while (getline(in2, line2) && in2.good())

{
csvline_populate(row2, line2, ",%);
rowCount2++;
if (rowCount2 == 2)
{
int leng = row2._size();
for (int i = 0; 1 < leng; i++)
{
//cout << row[i] << "\t";
try
d = stod(row2[i], &sz);
catch (...)
{
//cout << "oops'; //we can"t convert the value to a double.
//break;
}
it (== 2)
{
//testWave.freq = d;
testWave2.freq = d;
}
it (i == 3)
{
//testWave.amp = d;
testWave2.amp = d;
}
it (i == 4)
{
//testWave.offset = d;
testWave2.offset = d;
}
it (i ==5)
{
//testWave.length = (int)d;
testWave2.length = (int)d;
}
}

int leng = row2.size();
if (rowCount2 >= 2)

{
for (int i = 0; 1 < leng; i++)
{
//cout << row[i] << "\t";
try
{

d = stod(row2[i], &sz);

catch (...)

112

{
//cout << "oops'"; //we can"t convert the value to a double.
break;
}
if (i == 0)
{
testWave2.rawData.push_back(d);
if (d == 0.05) //We see a read
{
testWave2.waveData.push_back(0.05);
//testWave?2 . .waveData.push_back(0);
¥
else if (d > 0)
{
testWave2.waveData.push_back(d*wAmp); //Positive voltages go to
Channel 1

//testWave? waveData.push_back(0); //Negative voltages

Channel 2 (as positive voltages).

}

else if (d < 0)

{
testWave2.waveData.push_back(d*eAmp);

//testWave?2 .waveData.push_back(d*eAmp*-1); //Negative

go to Channel 2 (as positive voltages).

}
else if (d == 0)
{

testWave2.waveData.push_back(0);

//testWave2 .waveData.push_back(0);
}
}
}
}

}
in2_close();
return O;

}

/**

This csvparse is for reading in the "Read" bumps.

*/

int csvparseRead(string cmd, double wAmp, double eAmp)
{

string line, line2;

string TFfilename = "C:/Users/koltondrake/Documents/STDP/™
" chl.csv™;

string Ffilename2 = "C:/Users/koltondrake/Documents/STDP/"
" ch2.csv";

vector<string> row, row2;

ifstream in(Ffilename);
ifstream in2(filename2);

+

+

go to
voltages
cmd +
cmd 4+

113

if (in.failQQ || in2.fail()) { cout << "Fille not fTound” << endl; return

int rowCount =
int rowCount2 =

string::size_type sz;

double d;

testWave3.waveData.clear();
testWave3.rawData.clear();

testWave4 .waveData.clear();
testWave4.rawData.clear();

while (getline(in,

{

csvline_populate(row, lin
rowCount++;

if (rowCount == 2)

{

int leng

row.size();

for (int 1 = 0; 1 < len

{

//cout << row[i] << "
try

{

line) && in.good())

e, ".");

g; i++)

\t";

d = stod(row[i], &sz);

catch (...)

//cout << "oops";
//break;

(i = 2)

testWave3.freq =
//testWave2 . freq

(i = 3)

testWave3.amp =
//testWave2._.amp

(== 4)

testWave3.offset =
//testWave?.offset

(i = 5)

testWave3.length =
//testWave? . length

d;

//we can"t convert the value to a double.

o

d;

1
o

(int)d;
= (int)d;

3
i

114

int leng = row.size();
it (rowCount >= 2)

{
for (int i = 0; 1 < leng; i++)
{
//cout << row[i] << "\t";
try
{
d = stod(row[i], &sz);
¥
catch (...)
//cout << "oops'"; //we can"t convert the value to a double.
break;
//if (i == 0)testWave.waveData.push_back(d*testWave.amp);
if (i == 0)
{
testWave.rawData.push_back(d);
if (d == 0.02) //We see a read
{
testWave3.waveData.push_back(0.02);
//testWave?2 .waveData.push_back(0);
}
else if (d > 0)
{
testWave3.waveData.push_back(d*wAmp); //Positive voltages go to
Channel 1

//testWave2 . waveData.push _back(0); //Negative voltages go to
Channel 2 (as positive voltages).

else if (d < 0)
{
testWave3.waveData.push_back(d*eAmp);
//testWave2 _waveData.push_back(d*eAmp*-1); //Negative voltages
go to Channel 2 (as positive voltages).

}

else if (d == 0)

{
testWave3.waveData.push_back(0);
//testWave2 .waveData.push_back(0);

}
}
}

//cout << endl;

}

n.close();

while (getline(in2, line2) && in2.good())

{

csvline populate(row2, line2, °,");
rowCount2++;

115

if (rowCount2 == 2)

{
int leng = row2.size();
for (int i = 0; 1 < leng; i++)
{
//cout << row[i] << "\t";
try

{

d = stod(row2[i], &sz);
}
catch (...)

//cout << "oops'; //we can"t convert the value to a double.
//break;

s
if (i == 2)

//testWave.freq = d;
testWaved.freq = d;

s
if (i == 2)

//testWave.amp = d;
testWaved4.amp = d;

}
if (i == 4)

//testWave.offset = d;
testWave4.offset = d;

s
if (i == 5)

nt)d;

//testWave.length = (i
int)d;

testWave4d.length = (

int leng = row2.size();
if (rowCount2 >= 2)
{

for (int i = 0; 1 < leng; i++)
{
//cout << row[i] << "\t";
try

d = stod(row2[i], &sz);
catch (...)

//cout << "oops'; //we can"t convert the value to a double.
break;

}

it (i == 0)

{

}

testWave4 . rawData.push_back(d);
if (d == 0.05) //We see a read

testWave4 .waveData.push_back(0.05);

//testWave?2 .waveData.push_back(0);

}
else if (d > 0)
{

116

testWave4 .waveData.push_back(d*wAmp); //Positive voltages go to

Channel 1

//testWave2 .waveData.push_back(0);
Channel 2 (as positive voltages).

else if (d < 0)
{

testWave4 .waveData.push_back(d*eAmp);

//testWave?2 . .waveData.push_back(d*eAmp*-1);

go to Channel 2 (as positive voltages).

else if (d == 0)

{
testWave4 .waveData.push_back(0);

//testWave?2 . .waveData.push_back(0);

}
}
}
}

in2_close();

return O;

// Reads in a single line from a waveform file.

void csvline_populate(vector<string> &record,

{

delimiter)

int linepos = 0;

int inquotes = false;

char c;

int i;

int linemax = line.length(Q);
string curstring;
record.clear();

while (line[linepos] "= 0 && linepos < linemax)

c = line[linepos];

i
{

f (Yinquotes && curstring.length() == 0 && c

const

//Negative voltages

go to

//Negative voltages

string&

== "")

line,

char

}

117

//beginquotechar
inquotes = true;

else if (inquotes && c == ""'")
{
//quotechar
if ((linepos + 1 <linemax) && (line[linepos + 1] == """7))

//encountered 2 double quotes in a row (resolves to 1 double quote)
curstring.push_back(c);
linepos++;

}

else

//endquotechar
inquotes = false;

}
else if (linquotes && c == delimiter)

//end of field
record.push_back(curstring);
curstring = "";

}
else if (linquotes && (¢ == "\r" || ¢ == "\n"))
{

record.push_back(curstring);

return;

}

else

{
curstring.push_back(c);
}
linepos++;
}
record.push_back(curstring);
return;

void dcsweepQuery()

{

string testNumberStr;

cout << "DIE NUMBER (in the form DiexXX, where XX is the number):> ';
cin >> dieNum;

cout << "Device Number (in the form DevXX, where XX is the number):> *;
cin >> devNum;

cout << "Test Number:> ';

cin >> testNumberStr;

fnum = stoi(testNumberStr);

cout << "Do you want to condition?>
string ans;

cin >> ans;

if (ans == "y")

condition();

}

}
void dSee(string ampl, string comp, string points)
{
size_t size = 0;
if (ampl . find_Ffirst_of('m",
string: :npos)ampl _replace(ampl . find_first_of("'m",
else if (ampl.find_Ffirst of('u",
string: :npos)ampl .replace(ampl.find_first of("'u”,
else if (ampl.find_Ffirst _of('n",
string: :npos)ampl _replace(ampl . find_first_of('n",
if (comp.find_Ffirst of("m",
string: :npos)comp.replace(comp.find_first of("m",
else if (comp.find_first of('u",
string: :npos)comp.replace(comp.find_first_of('u",
else if (comp.find_Ffirst_of('n",
string: :npos)comp.replace(comp.find_first of('n",
double amplitude = stod(ampl);
double compliance = stod(comp);
double numpts = stod(points);
dcSweep4(amplitude, compliance, numpts, ""DC™);
}

size)
size), 1, "e-3");
size)
size), 1, "e-6");
size)
size), 1, "e-9");
size)
size), 1, "e-3");
size)
size), 1, "e-6");
size)
size), 1, "e-9");

// Simple DC resistance read up to 20 mV with a 10 mA compliance

void res(string points)

double numpts

dcSweep4(
}

// Allows the user to call

stod(points);
, humpts,

R

“condition” from the menu.

// for specific experiments.

void condition()

{

dSee("'1", 10u', "200™);
//dcSweep(20E-3, 10E-3, 51, "Read");

//dcSweep(0.5, 100E-9, 201,

"Write'™);

//dcSweep(20E-3, 10E-3, 51, "Read™);

/*

dcSweep(20E-3, 10E-3, 51, "Read");
dcSweep(-1, 100E-3, 201, "Erase'™);
dcSweep(20E-3, 10E-3, 51, "Read");

*/

//dcSweep(0.75, 1E-7, "Write_100n");
//dcSweep(20E-3, 10E-3, ""Read");
//dcSweep(1.0, 1E-8, "Write_10n");
//dcSweep(20E-3, 10E-3, ""Read");

118

This function is edited

119

//dcSweep(20E-3, 10E-3, '.02'");
//dcSweep(0.6, 10E-6, '".60");

//dcSweep(20E-3, 10E-3, '.02'");
//dcSweep(-0.6, 10E-3, "-.60"");
//dcSweep(20E-3, 10E-3, ".02'");
//dcSweep(0.6, 10E-6, '".60");

//dcSweep(20E-3, 10E-3, '.02'");

}

// Starts the session with the WGFMU and begins the console application.

int main()

{
dcsweepQuery();
WGFMU_openSession("'GPIB0O::17::INSTR™);
wgfmu_arb();
//introQuery();

	BIOMIMETIC APPLICATION OF ION-CONDUCTING-BASED MEMRISTIVE DEVICES IN SPIKE-TIMING-DEPENDENT-PLASTICITY
	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER ONE: INTRODUCTION
	1.1 Memristor Overview
	1.2 Neuromorphic Computing
	1.3 STDP: “Neurons that fire together, wire together.”
	1.4 Motivation and Outline

	CHAPTER TWO: BACKGROUND
	2.1 Ion-Conducting Resistive Memory
	2.2 STDP in Ideal Memristors

	CHAPTER THREE: EXPERIMENTAL OVERVIEW
	3.1 Device Structure and Fabrication
	3.2 Device Programming Characteristics
	3.3 Electrical Characterization
	3.3.1 Calculating Weight Change
	3.3.2 Minimum Timing Considerations
	3.3.3 Resistance Measurements
	3.3.4 Two-sided vs. One-sided Measurements
	3.3.5 Device Conditioning

	3.4 Motivation

	CHAPTER FOUR: EXPERIMENTAL RESULTS AND DISCUSSION
	4.1 AC Pulsing
	4.1.1 Experimental Setup
	4.1.2 Results
	4.1.3 Discussion

	4.2 Sub-Microsecond STDP
	4.2.1 Experimental Setup
	4.2.2 Results
	4.2.3 Discussion

	4.3 Trailing Edge Cancellation
	4.3.1 Experimental Setup
	4.3.2 Results
	4.3.3 Discussion

	4.4 Extended ∆T STDP
	4.4.1 Experimental Setup
	4.4.2 Results
	4.4.3 Discussion

	4.5 Summary of Results

	CHAPTER FIVE: CONCLUSION
	5.1 Conclusion and Next Steps

	REFERENCES
	APPENDIX
	STDP Testing Program

