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ABSTRACT 

The use of molecular markers can provide insights into the demographic and 

evolutionary processes that have shaped the genetic diversity of native populations and 

can be used to identify an invasive species’ geographic origins.  Taeniatherum caput-

medusae subsp. asperum (medusahead) is a cleistogamous, diploid, annual grass native to 

Eurasia that is now invasive in the western United States (U.S.).  Enzyme electrophoresis 

methods (allozymes) have previously been used to analyze both native and invasive 

populations of medusahead.  Results from these studies suggest that the invasion of 

medusahead in the western U.S. stems from multiple introduction events.  In addition, 10 

of 34 populations from across the native range of the species possessed multilocus 

genotypes that match some of those detected in invasive populations, with six of these 

putative source populations located in Greece and Northwestern Turkey.  The overall 

objective of the current study is to better circumscribe the geographic origins for this 

invasion through allozyme analysis of 48 native populations of medusahead from 

Southeastern Europe (Albania, Bulgaria, Greece, Macedonia, Romania, Serbia, 

Northwestern Turkey, and Ukraine) and South-central Turkey.  Among the 48 native 

populations I analyzed, a total of 35 multilocus genotypes were detected, with four of 

these genotypes matching those previously reported among invasive populations.  Forty 

of the 48 (83.3%) native populations contained at least one individual with a multilocus 

genotype matching a genotype reported among invasive populations.  The 48 populations 

from Southeastern Europe and South-central Turkey exhibit less genetic structure and 
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display lower levels of genetic diversity compared with the 34 native populations 

previously analyzed.  Also, the genetic diversity of these 48 populations is not 

geographically structured; it does not conform to an isolation-by-distance pattern.  Taken 

together, results from this study suggest that the geographic origins of this invasion occur 

broadly across the study region.  In addition, the genetic diversity of these 48 native 

populations appears to be influenced by stochastic demographic processes in which an 

individual or individuals with various genotypes randomly colonizes disturbed sites and 

establishes a population.  This process has led to an intermixing of genotypes within and 

among populations across the study area.  Because allozymes typical underestimate the 

genetic diversity of populations, the findings of this study should be assessed using a 

molecular marker with greater resolving power (i.e., amplified fragment length analysis). 

 

Keywords:   allozymes, putative source populations, stochastic demographics, genetic 

diversity, genetic structure, multilocus genotype 
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INTRODUCTION 

Biological invasions occur when organisms are introduced into a new range or 

habitat where they establish, proliferation, and spread (Mack et al. 2000). Human 

activities such as international commerce, trade, and migration have led to the deliberate 

or accidental introduction of species into novel locations around the world (Crosby 1986; 

Sakai et al. 2001). Invasions are often associated with severe ecological consequences 

such as loss of native biological diversity and community structure (and in extreme cases, 

the extinction of native species) (Mack et al. 2000; Allendorf and Lundquist 2003), 

modification of ecosystem processes such as nutrient cycling and productivity patterns 

(Vitousek and Walker 1989), and alteration of disturbance regimes, especially the 

frequency of wildfires (D’Antonio and Vitousek 1992).  Invasive species also have 

enormous economic costs as a result of attempts to control these species, rehabilitate and 

restore damaged area, and reduced agricultural productivity (Chapin et al. 2000; Keller 

and Taylor 2010; Mack et al. 2000; Sakai et al. 2001). Pimentel et al. (2005) estimated 

that there are approximately 50,000 non-native species in the United States (U.S.), with 

the economic impacts of invasive species in the U.S. estimated to be $120 billion 

annually.  In addition, the human health costs associated with biological invasions vary in 

effect and intensity and include increases in infectious disease vectors, allergic reactions, 

and smoke-induced asthma (D’Antonio and Vitousek 1992; Fumanal et al. 2005; Scholte 

et al. 2014).  Thus, biological invasions, along with habitat destruction, are considered to 

be two of the main drivers of global change, and represent two of the greatest threats to 
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biodiversity around the globe (Wilcove et al. 1988).  Moreover, Sala et al. (2000) suggest 

that areas with Mediterranean-like climates and grassland biomes are likely to experience 

some of the greatest losses in biodiversity because many global change drivers are 

occurring in these two ecosystems (Sala et al. 2000).   

Due to their negative consequences, efforts have been undertaken to better 

understand biological invasions and to better predict which species will become invasive 

(Mack 1996; Rejmánek  2000; Richardson and Pysek 2006) and which communities are 

more likely to be invaded (Rejmánek et al. 2005; Shea and Chesson 2002).  As 

summarized by Hierros et al. (2005), many hypothesis have been proposed to explain the 

success of introduced species in their new ranges: the enemy release hypothesis (Colautti 

et al. 2004; Liu and Stiling 2006), evolution of increased competitive ability (EICA, 

Blossey and Notzold 1995), evolution of invasiveness (Lee 2002), the empty niche 

hypothesis (Elton 1958; MacArthur 1970), and novel weapons (Callaway and Aschehoug 

2000).  Recent research with invasive species has focused on gaining a better 

understanding of the invasion process; consequently propagule pressure (the number of 

propagules arriving in the new range) has now emerged as one of the best predictors of 

establishment success of non-native species and a factor contributing to invasion (Kolar 

and Lodge 2001; Lockwood et al. 2005; Colautti et al. 2006; Novak 2011; Ricciardi et al. 

2011; Simberloff 2009).  In addition, the analysis of both native and invasive populations 

within the same experimental design can be used to assess various ecological, genetic, 

and evolutionary aspects of biological invasions (Bossdorf et al. 2005; Hierros et al. 

2005; Novak 2007).  
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Most importantly, the combined analysis of native and invasive populations using 

genetic markers allow investigators to determine the geographic origins (source 

populations or regions) of an invasive species (Novak and Mack 1993, 2005; Facon et al. 

2003; Maron et al. 2004; Novak 2007, 2011; Lavergne and Molofsky 2007; Ficetola et al. 

2008; Wilson et al. 2009; Estoup and Guillemaud 2010; Gaskin et al. 2011, 2013; 

Lombaert et al. 2011).  The accurate identification of the geographic origins of an 

invasive species provides researchers with 1) a clarification of taxonomy and 

evolutionary relationships, 2) the ability to identify a cryptic invasion (detection of 

closely related species that cannot be distinguished morphologically), 3) an assessment of 

the introduction dynamics of an introduced species (single vs. multiple introductions), 4) 

the relevant comparison for assessing the genetic consequences of introduction (e.g., 

founder effects), 5) detection of hybridization events, 6) the ability to study the ecology 

of source populations in their native habitat, and 7) information for developing effective 

management or control strategies (e.g., the search for biological control agents).   

Taeniatherum caput-medusae (L.) Nevski (medusahead, Poaceae) is a primarily 

cleistogamous (self-pollinating), diploid (2n = 14), annual grass that is broadly 

distributed across Eurasia (Frederiksen 1986; Frederiksen and von Bothmer 1986).  

Taeniatherum caput-medusae is a member of the “wheat tribe” (Triticeae), and is 

therefore related to the common agricultural crops such as wheat, rye, and barley 

(Widmer and Sforza 2004). The native range of T. caput-medusae includes semi-arid 

habitats of southern Europe (Figure 1), the northern rim of Africa, the Middle East, and 

Central Asia (Frederiksen 1986; McKell et al. 1962).  In its native range, three subspecies 

have been recognized (Figure 2) (Frederiksen 1986; Frederiksen and von Bothmer 1986):  
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T. caput-medusae (L.) Nevski subsp. caput-medusae, T. caput-medusae subsp. crinitum 

(Schreb.) Melderis, and T. caput-medusae subsp. asperum (Simk.) Melderis.  The three 

subspecies do exhibit different geographic distributions, although some overlap does 

occur.  In general, subsp. caput-medusae is found in the western Mediterranean 

(Morocco, Portugal, Spain, and France), subsp. crinitum occurs from Southeastern 

Europe and the Eastern Mediterranean to Central Asia (Kyrgyzstan, Tajikistan, and 

Afghanistan) and subsp. asperum is found across almost the entire Eurasian native 

distribution of the species (Frederiksen 1986).   

Within its native range, T. caput-medusae appear to be a weedy, early-colonizing 

plants following disturbance and is an agronomic agricultural weed (Pineda et al. 1981; 

Kostivkovsky and Young 2000; Blank and Sforza 2007).  Compared to the other two 

subspecies however, subsp. asperum may be the best of the three at colonizing following 

disturbance (Signe Frederiksen, personal communication). In its native range, the grass 

has been observed in disturbed places such as roundabouts or roadsides (René F. H. 

Sforza, personal communication). Taeniatherum caput-medusae displaces other native 

grasses in the low-density woodlands of South-central Spain and occurs in greater 

frequency than many other native grasses after a disturbance event (Pineda et al. 1981).  

The species is listed as a weed in vineyards in southern France, but apparently does not 

cause much crop damage (Blank and Sforza 2007).  In Turkey, T. caput-medusae subsp. 

asperum was commonly found in non-disturbed soil, in wild areas or in abandoned 

agricultural fields (e.g., vineyards) (Sforza and Cristofaro 2002). 

Based on the examination of plants in the native and invasive ranges, Major et al. 

(1960) suggested that the taxon introduced into and invasive in the western U.S. was T. 
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caput-medusae subsp. asperum, hereafter referred to as (medusahead) (Young 1992; 

Kostivkovsky and Young 2000).  In the western U.S., medusahead occurs in disturbed 

sites in the 25-100 cm mean annual precipitation zones, and it can dominate sites with 

high clay content or well-developed soils (Dahl and Tisdale 1975; Hironaka 1994).  The 

grass has invaded millions of hectares of semi-arid woodlands and shrub-steppe habitats 

in California, Idaho, Nevada, Oregon, Utah, and Washington (McKell et al. 1962; Young 

and Evans 1970; Young 1992; Pellant and Hall 1994; Blank and Sforza 2007).  The grass 

has a well-known collection history (McKell et al. 1962; Young 1992); it was first 

collected in the western U.S. in Roseberg, OR in 1887.  Medusahead is now rapidly 

spreading into areas where it did not previously occur, and it has degraded these newly 

infested rangelands (Horton 1991; Hironaka 1994).  For example, the extent of medusahead 

in the 36 counties of Oregon increased from 18 to 31 between 1962 and 2004 (Davies and 

Johnson 2008) and the rangelands in Idaho infested by medusahead more than doubled 

between 1957 and 1992 (Hironaka 1994). 

The genetic diversity of 45 invasive populations of medusahead from the western 

U.S. has been described by Novak (2004), and Novak and Rausch (2009), Novak and 

Sforza (2008).  Over 1660 individuals were scored for their multilocus genotypes at 29 

allozyme loci.  A total of 7 homozygous multilocus genotypes (MLG) were detected, four 

of which were associated with early collection sites (1887, Roseburg, Oregon; 1901, 

Steptoe Butte, Washington; 1930, Rattlesnake Station, Idaho; 1944, Ladd Canyon, 

Oregon).   Genetic diversity within populations was low, but 17 of 45 populations 

(37.8%) were genetically polymorphic.  These results suggest that the invasion of this 

subspecies in the western U.S. stem from multiple introductions, and that some invasive 
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populations may be genetic admixtures. The allozyme analysis of 34 native populations 

of medusahead confirmed these findings (Peters 2014).  In addition, ten of the 34 native 

populations analyzed in this study may be classified as putative source populations, with 

six populations from Greece and Northwestern Turkey possessing five of the seven 

multilocus genotypes previously detected in the western U.S.  These data indicate that 

more comprehensive genetic analysis of medusahead populations from Southeastern 

Europe (Albania, Bulgaria, Greece, Macedonia, Romania, Serbia, Northwestern Turkey, 

and Ukraine) and South-central Turkey are required to better circumscribe the geographic 

origins of this invasion.  

The overall goal of this study is to use allozyme data to more precisely identify 

the geographic origins of the invasion of medusahead in the western U.S.  This goal will 

be accomplished by achieving the following specific objectives: 1) assess which of the 48 

populations of medusahead from Southeastern Europe analyzed here has at least one 

individual that matches one of the seven multilocus genotypes previously reported within 

invasive Western U.S. populations, 2) determine the level of genetic diversity within 

these 48 native populations, and 3) determine the genetic and geographic structure of 

these native populations.  Results of these analyses will provide insights into the 

demographic and evolutionary processes that have influenced the level and structure of 

genetic diversity within and among native populations of medusahead in Southeastern 

Europe and South-central Turkey.    
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METHODS 

Plant Collections 

Mature spikes with caryopses were collected from medusahead plants in 48 

populations from eight countries in Southeastern Europe (Albania, Bulgaria, Greece, 

Macedonia, Romania, Serbia, Northwestern Turkey, and the Crimean Peninsula of the 

Ukraine) and South-central Turkey (Table 1, Figure 3).  Samples from nine populations 

in Bulgaria were collected during October 2010, and samples for the remaining 39 

populations were collected during June and July in 2011 and 2013 (Table 1).  Spikes 

from each of 20-30 plants 1-3 m apart were sampled haphazardly.  Sufficient spacing 

between collected plants reduces the possibility of collecting full siblings.  In populations 

with fewer than 20 individuals, the spikes from all individuals were collected.  Population 

sample sizes in this study ranged from seven individuals in the population from Sudak, 

Ukraine, to 38 individuals in the population from Seydishir, Turkey (Table 1).  Spikes 

with caryopses from each plant were placed in individually numbered paper envelopes, 

and envelopes were stored at room temperature until laboratory analyses were conducted.  

Collections were generally made in disturbed areas (e.g., roadsides, dump sites, on the 

border of agricultural fields, within abandoned agricultural fields, and areas which have 

previously experienced wildfires), although the degree and frequency of disturbance 

appeared to vary among sites (S.J. Novak and R.F.H. Sforza, personal observations).  
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Enzyme Electrophoresis 

Caryopses of medusahead were stored in the laboratory for approximately three 

months to allow for after-ripening.  After this time period, one caryopsis from each 

individual in a population was germinated at room temperature in petri dishes lined with 

moistened filter paper.  Most caryopses germinated in 24 h, and seedlings were harvested 

approximately 7-10 d after germination, when seedlings were about 5 cm tall.  Entire 

seedlings (root and leaf tissues) were macerated in a Tris-HCl grinding buffer-PVP 

solution (pH 7.5).  Starch concentration in the gels was 12% (w/v).  Genetic analysis was 

performed using enzyme electrophoresis (allozymes), following the methods of Soltis et 

al. (1983), with modifications described by Novak et al. (1991) and Peters (2014).  All 

plants were assessed for their allozyme diversity for 15 enzymes, which were visualized 

using four buffer buffer systems: buffer system 1, isocitrate dehydrogenase (Idh), 

glucose-3-phosphate dehydrogenase (G6pdh), and shikimate dehydrogenase (Skdh); 

buffer system 6, alcohol dehydrogenase (Adh), glutamate dehydrogenase (Gdh), and 

phosphoglucoisomerase (Pgi); buffer system 8, aldolase (Ald), glutamate oxalacetate 

transaminase (Got), colorimetric esterase (Ce), malic enzyme (Me), superoxide dismutase 

(Sod), and triosephosphate isomerase (Tpi); and buffer system 9, malate dehydrogenase 

(Mdh), phosphoglucomutase (Pgm), and 6-phosphogluconate dehydrogenase (6Pgd).   

Because medusahead is a diploid with low genetic diversity, the genetic basis of all 

allozyme variation observed was easily inferred based on the known subunit structure and 

compartmentalization of these enzymes (Gottlieb 1982; Wendel amd Weeden 1989). All 

individuals were assessed for variability at 23 putative loci, following the nomenclature 
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of the previous allozyme analysis of 34 native populations of medusahead conducted by 

Peters (2014).   

Multilocus Genotype Assignment and Geographic Origins 

Identifying the geographic origins (source populations) of an invasive species can 

be done with molecular markers using two methods: a phylogenetic approach and a 

multilocus genotype (MLG) approach (Roderick and Navajas 2003; Keller and Taylor 

2008; Novak 2011).  In this study, I will use the MLG approach.  Based on the different 

alleles present at all polymorphic loci, each medusahead individual from Southeastern 

Europe analyzed in this study was assigned a MLG.  The MLGs of these 48 native 

populations will be compared to the seven homozygous MLGs previously identified 

within the 45 invasive populations of medusahead from the western U.S. (Novak 2004; 

Novak and Sforza 2008; Novak and Rausch 2009).  If any of the 48 native populations 

contains at least one individual with a MLG that matches one of the seven genotypes 

previously detected among western U.S. populations, they will be considered a putative 

source population.  
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DATA ANALYSIS 

Genetic Diversity within Populations 

Allozyme (genetic) diversity within the 48 medusahead populations from 

Southeastern Europe and South-central Turkey was analyzed with the program 

POPGENE 1.32 (Yeh and Boyle 1997). Allozyme data for each individual, in each 

population, were entered as multilocus genotypes. Genetic diversity was quantified using 

the following parameters: the mean number of alleles per locus (A), the number of 

polymorphic loci within each population (#P), the percent polymorphic loci per 

population (%P), the expected mean heterozygosity (Hexp), which was calculated using 

the unbiased estimate method of Nei (1978), the mean observed heterozygosity (Hobs), 

and the number of multilocus genotypes detected with each population (#MLG). The 

means of these genetic diversity parameters were used to describe the overall diversity 

within the 48 populations from the study area. Using the JMP Version (SAS Institute 

Inc.) statistical software package a non-parametric Spearman p-test was conducted to 

confirm that the sample size and mean number of alleles per locus were not correlated. 

Genetic Structure Among Populations 

FSTAT version 2.9.3.2 was used to calculate Nei's (1987) estimators of gene 

diversity and genetic differentiation (Goudet 2001).  Allelic diversity within and among 

populations was calculated using the arithmetic mean of Nei's gene diversity statistics at 

each of the polymorphic loci.  FSTAT calculated the total genic (allelic) diversity (HT) 

and the value of HT was partitioned into the within-population component (HS) and the 
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among-population component (DST); thus, HT = HS + DST.  HS is calculated as the mean 

of He values over all populations, where He is the expected proportion of heterozygosity 

per individual (Nei 1973). GST is calculated from the total genetic diversity in pooled 

populations, HT and the mean diversity within each population HS, such that GST = HT - 

HS/HT.   

Analysis of molecular variance (AMOVA) was employed to estimate the amount 

of genetic variation partitioned within populations and among regions using the F-

statistics method in ARLEQUIN v.3.1 (Excoffier et al. 2005).  Allozyme data were 

entered as pseudo-haplotype frequencies for each population and structured 

geographically into eight sub-regions by country (Albania, n = 2; Bulgaria , n = 15; 

Greece, n = 5; Macedonia, n = 3; Romania, n = 4; Serbia, n = 1; Turkey, n = 11; Ukraine, 

n = 7), and two geographic regions. All individuals with missing data were removed from 

the analysis.   

Neighbor-joining trees and unweighted pair-group method with arithmetic 

averaging algorithm (UPGMA) phenograms are two methods commonly used to 

graphically represent the genetic differentiation among populations. The UPGMA 

method assumes that all population or lineages evolve at the same rate, while the 

neighbor-joining tree does not assume equal evolutionary rates for each lineage, and thus 

does not force the branch lengths to be equal in length.  Because I cannot accurately infer 

evolutionary rates from allozyme data, genetic differentiation among the 48 populations 

of medusahead analyzed in this study was displayed using an UPGMA phenogram. The 

phenogram was created based on Nei’s (1978) unbiased genetic identity values calculated 

in POPGENE.  
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Allozyme data were employed to assess population genetic structure based on the 

Baysian clustering approach in STRUCTURE 2.3.X (Pritchard et al. 2000a) (Pritchard et 

al. 2000; Falush et al. 2003, 2007; Hubisz et al. 2009).  The initial analysis to find an 

estimate for the “true” value of K was ran based on 10 replicates of values of K ranging 

from 1-10, and these runs had a burn in of 10,000 iterations, followed by parameter 

estimation over an additional 100,000 Markov Chain Monte Carlo (MCMC) repetitions.  

This initial analysis resulted in an equivocal estimate of K, so another analysis in 

STRUCTURE was conducted.  This second analysis consisted of 10 replicates of values 

of K ranging from 1 to 6, with three replicates were run for values of K ranging from 7 to 

14.  This second run had a burn-in of 100,000 iterations, followed by parameter 

estimation over an additional 1,000,000 MCMC repetitions. A graphical representation of 

the STRUCTURE output was generated using the STRUCTURE HARVESTER software 

hosted on (http://taylor0.biology.ucla.edu/structureHarvester/#) (Earl and VonHoldt 

2012).  Two methods were employed in STRUCTURE HARVESTER to evaluate the 

most likely number of population clusters (K) based on allozyme data: calculating the 

delta K values (Evanno et al. 2005) for each value of K, and identifying the K value that 

maximizes the log probability of the data, lnP(D), for each value of K (Pritchard et al. 

2000).  

Results of the STRUCTURE analysis were visualized using DISTRUCT 

(Rosenberg 2004).  The DISTRUCT output provides a convenient way of displaying 

genetic structure results by depicting each individual as a line segment within the 

population. The individual line segment is partitioned into K-colored components that 

represent the individual’s estimated membership coefficient(s) for the number of clusters 
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detected. The estimated membership coefficients are extracted directly from the 

STRUCTURE population Q-matrix (Appendix A).     

Geographic Structuring of Genetic Diversity 

I tested for an isolation-by-distance (IBD) relationship among the 48 populations 

of medusahead analyzed in the study using a Mantel test of the correlation between 

genetic and geographic distances.  Genetic distance values were based on the population 

pairwise FST values computed in ARLEQUIN v. 3.1 (Excoffier et al. 2005). ARLEQUIN 

computes pairwise FST values for all pairs of populations and from these values the 

program computes an index of dissimilarities (genetic distance), which describes the 

“short term” genetic distance between population pairs (Reynolds et al. 1983; Slatkin 

1995).  The geographic distance (km) between populations was exported from ArcGIS 

10.2.2 software after using the point distance tool. Google Earth was used to confirm the 

location of population and distances between populations. The following parameters were 

used in ArcGIS: Projected coordinate system (Europe Lambert conformal conic), 

Projection (Universal Transverse Mercator (UTM)), false easting (500000.0), false 

northing (0.00), central meridian (27.00), and linear unit (meters). The projected 

coordinate system used was World Geodetic System 1984, Zone 35 North. The matrix of 

genetic distance (FST) and geographic distance (km) values for each population pair was 

uploaded into the Isolation by Distance Web Service (IBDWS, Version 3.23), and 30,000 

randomization of the genetic distance and geographic distance data were run to produce a 

graph of the correlation between the two variables (Jensen et al. 2005).  
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RESULTS 

Genetic diversity estimates for the 48 populations of medusahead from 

Southeastern Europe and South-central Turkey are based on the analysis of 1084 

individuals (22.6 individuals per population), at 23 putative allozyme loci (Table 2).  

Population sample sizes in this study ranged from seven individuals in the population 

from Sudak, Ukraine, to 38 individuals in the population from Seydishir, Turkey.  

Among all 48 populations, 35 alleles were detected (1.52 alleles/locus) and seven loci 

(30.4%) are polymorphic: Mdh-2, Mdh-3, Pgi-2, Got-1, Got-2, 6Pgd-2, and Idh (Table 

2).  Across all populations, allelic diversity at the seven polymorphic loci varies from two 

alleles at Mdh-3, Got-1, Got-2 and Idh, to three alleles at Pgi-2 and 6Pgd-2, and five 

alleles at Mdh-2.   

Multilocus Genotype Diversity  

Because seven of the 23 scored loci analyzed were polymorphic and no variability 

was detected for the remaining 16 loci (Table 2), only allelic variability at these seven 

loci contributed to the multilocus genotypes (MLGs) I detected.  In addition, I did not 

observe any heterozygous individuals, thus I only detected homozygous MLGs.  Among 

the 48 populations and 1084 individuals of medusahead from Southeastern Europe and 

South-central Turkey analyzed, a total of 35 MLGs were detected (Table 3).  The most 

common MLGs in this study were #1 and #3, which occurred in 27 and 26 populations, 

respectively (Table 3, Table 4).  Both MLGs #2 and #4 were detected in 14 different 

populations.  Sixteen MLGs were unique, occurring in only a single population: #6, #8, 
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#11, #12, #13, #18, #19, #20, #24, #25, #26, #28, #29, #31, #34, and #35 (Table 3).  

These 16 unique MLGs occurred in 11 populations: Izorsko and Razlog, Bulgaria; Sapes, 

Greece; Akseki, Ipsala, Kesan, and Yalihuyuk, Turkey; Alushta, Izobilne, Pryvitne and 

Trudolybivka, Ukraine (Table 4).  The remaining 15 MLGs occurred in two to nine 

populations.  

The 48 populations of medusahead I analyzed contained, on average, 3.19 

MLGs/population (Table 4).  The population from Pryvitne, Ukraine, contained the 

largest number of MLGs (11), with five of 11 genotypes being unique to this population 

(MLG #25, 26, 28, 34, & 35) (Table 4).  Eight different MLGs were detected in the 

Sozpol, Bulgaria, and the Ipsala, Turkey, populations; while 10 populations had just a 

single (but not the same) MLG: Korca and Struga, Albania; Kokinchoma, Greece; Sacele, 

Romania; Kladovo, Serbia; Corlu, Havsa, and Urunlu, Turkey; and Sudak and Yalta, 

Ukraine (Table 4).  The 15 populations from Bulgaria had the most MLGs: an average of 

4.2 MLGs/population.  The populations from Ukraine (3.6 MLGs/population) and Turkey 

(3.1 MLGs/population) having the next highest number of MLGs; whereas, the two 

populations from Albania, and the one population from Serbia average only one 

MLG/population.  

Geographic Origins: Identifying Source Populations 

Putative source populations among the 48 populations of medusahead from 

Southeastern Europe and South-central Turkey can be identified when at least one 

individual has a MLG that matches one of the seven genotypes previously detected 

among the 45 invasive populations of medusahead from the western U.S. (Novak 2004; 

Novak and Sforza 2008; Novak and Rausch 2009).  Four of the 35 MLGs detected among 
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these 48 native populations match an invasive MLG: MLG #1 corresponds to the 

Rattlesnake Station, Idaho genotype; MLG #2 corresponds to the Ladd Canyon, Oregon 

genotype; MLG #3 corresponds to the Steptoe Butte, Washington genotype; and MLG #4 

corresponds to the Roseburg, Oregon genotype (Table 3). These four MLGs have the 

highest level of occurrence among the 48 native populations in the study area; and as a 

consequence of this widespread distribution, 40 of the 48 (83.3%) populations in this 

region are considered putative source populations (Table 4, Figure 4).  Thus, the 

geographic origins for the invasion of medusahead in the western U.S. appear to have 

been drawn broadly from across the study region, and include one population from 

Albania, 13 populations from Bulgaria, four populations from Greece, three populations 

from Macedonia, four populations from Romania, 10 populations from Turkey, and five 

populations from the Crimean Peninsula of Ukraine.  Sixteen of the 40 putative source 

populations (40%) contained one MLG that matched a genotype from the western U.S., 

12 of 40 populations (30%) had two MLGs that matched genotypes from the invasive 

range, 8 of 40 populations (20%) had three MLG matches, and four of 40 populations 

(10%) contained four MLG matches (Table 4, Figure 4).  Four of the 7 homologous 

MLGs detected in the invasive populations were found in four populations from 

Southeastern Bulgaria (Dripchevo, Harmanli, and Tenevo) and northwestern Turkey 

(Ipsala) (Figure 4).   

The Rattlesnake Station and Steptoe Butte MLGs are generally found throughout 

the study area, with the exception that the Rattlesnake Station MLG, which was not 

detected in the three populations from South-central Turkey.  The 14 populations with the 

Ladd Canyon MLG were only detected in Southeastern Bulgaria and Northwestern 
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Turkey; whereas the 14 populations containing the Roseburg MLG were found in 

Southeastern Bulgaria, Northwestern Turkey, South-central Turkey, and the Crimean 

Peninsula of Ukraine (Figure 4).  

Genetic Diversity Within Populations 

Thirty-eight of the 48 populations (79.1%) from the study area are genetically 

polymorphic (exhibit at least two alleles at one or more loci), while the remaining 10 

populations are monomorphic at all 23 scored loci (Table 2, Table 5).  On average, these 

48 populations display 1.10 alleles per locus (A).  The number of polymorphic loci in 

these populations range from 0 to 4 (mean = 2.08) and the values of %P range from 0.0 to 

17.4, with an average of 9.05 per population (Table 5).  The population from Pryvitne, 

Ukraine contained the highest genetic diversity (A = 1.30 and %P = 17.4).  The genetic 

diversity of the populations from Sozopol, Bulgaria (A = 1.26 and %P = 17.4), and 

Razlog, Bulgaria, Ipsala, Turkey and Yorukler, Turkey are also quite high (A = 1.22 and 

%P = 17.4), compared with the other populations I analyzed.   

Across all 48 populations, the expected mean heterozygosity (Hexp), which is also 

described as the expected genetic diversity within populations, is 0.029 (Table 5).  The 

highest value of Hexp was detected in the Sozopol, Bulgaria population (Hexp = 0.077), 

with the populations from, Pryvitne, Ukraine, Yorkler, Turkey, Devnja, Bulgaria, and 

Galabets, Bulgaria also having relatively high values for expected mean heterozygosity 

(Hexp = 0.075, 0.065, 0.065, and 0.063, respectively).  The lowest value of Hexp for 

populations with polymorphic loci was detected in Schela, Romania, and Trudolybivka, 

Ukraine (Hexp = 0.005).  No heterozygotes were detected among the 1084 individuals that 
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were each scored at 23 loci; thus, the mean observed heterozygosity (Hobs) for the 48 

populations was 0.000 (Table 5).  

Genetic Structure Among Populations 

The mean value of Nei’s (1987) total gene (allelic) diversity (HT) averaged across 

all seven polymorphic loci is 0.248, the within-population component of gene diversity 

(HS) is 0.100, the among-population component of gene diversity (DST) is 0.147, and the 

proportion of total diversity partitioned among populations (GST) is 0.417.  These results 

indicate that 41.7% of the allelic diversity of the 48 populations analyzed in this study is 

distributed among populations (Table 6).  Mdh-2, Pgi-2, and Got-1 are the three most 

polymorphic loci among the 48 populations sampled in the study region (Table 2), and 

consequently these loci have the highest values for the total gene diversity (HT = 0.603, 

0.493, and 0.359, respectively) (Table 6).  In addition, most of the allelic diversity for 

these three loci is partitioned among populations (GST = 0.542, 0.667 and 0.621, 

respectively). For Got-2 and Idh total gene diversity is low (HT = 0.003 and 0.002), and 

most of the gene diversity at these two loci is partitioned within populations (GST < 

0.014).   

Analysis of molecular variance (AMOVA) in Arlequin 3.1 was used to partition 

genetic diversity within and among population and groups of populations from 

Southeastern Europe and South-central Turkey (Excoffier et al. 2005).  In the first 

AMOVA analysis, genetic diversity was partition at three hierarchical levels, and the 

percentage of variation partitioned at the three levels was 0.00% within individuals, 

40.5% within populations and 59.5% among populations (Table 7A).  In the second 

AMOVA analysis, 38.8% of the genetic diversity was partitioned within populations, 
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49.6% of the diversity was partitioned among populations within the eight sampled 

countries, and 11.7% of the diversity was partitioned among the eight countries (Table 

7B).  For the final AMOVA analysis (Table 7C), genetic diversity was partitioned using 

natural physical barriers that may limit gene flow among populations among the two 

geographic regions.  These natural barriers consist of three mountain ranges, the Balkan 

Gebirge (running east from the Black Sea, west to Sofia, Bulgaria), the Rhodope 

Mountains (which are located along the board of Greece and Bulgaria to the eastern-most 

portion of Greece) and the Rila Mountains (which run north to south and connect the 

Balkan Gebirge to the Rhodope Mountains), which separate populations into two 

geographic regions in the study area: populations from southeastern Bulgaria and 

northwestern Turkey and all other populations.  This AMOVA analysis indicates that 

39.3% of the genetic diversity is partitioned within populations, 59.6% of the diversity is 

among populations within the two regions, and 1.1% is partitioned among the two 

regions (Table 7C) 

The UPGMA cluster dendrogram based on Nei's (1978) unbiased genetic identity 

values provides a graphic representation of genetic relationships among native 

populations of medusahead (Figure 5).  The 48 populations in this analysis occurred in 

three distinct clusters; however, populations were not grouped based on their geographic 

locations.  Cluster 1 includes populations from six countries (Bulgaria, Greece, 

Macedonia, Romania, Turkey, and Ukraine), and Cluster 2 has populations from seven 

countries (Albania, Bulgaria, Greece, Romania, Turkey, Serbia, and Ukraine). Both 

Cluster 1 and 2 contain a higher proportion of putative source populations compared with 

Cluster 3. Nine of the 14 (64%) populations with the Roseburg, Oregon MLG (MLG #4) 
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are found in Cluster 2 (Figure 5).  In addition, Cluster 2 contains populations with unique 

MLG’s, populations with 12 of the 16 (75%) unique MLG’s detected in this analysis are 

found in Cluster 2 (see Table 4).  The four populations in Cluster 3 are genetically 

distinct from populations in the other two clusters.  For instance, the populations from 

Korca, Albania, and Kladovo, Serbia, are both fixed for MLG #15 (Table 4, Figure 5).      

Genetic differences among the 48 populations were analyzed in STRUCTURE 

using a burn-in of 100,000 iterations, followed by parameter estimation over an 

additional 1,000,000 MCMC repetitions. The results of the log probability analysis 

suggest a K = 1 (Figure 6a), indicating that all 48 populations belong to the same genetic 

cluster; while the delta K analysis described by Evanno et al. (2005) supported K = 2 

(Figure 6b).  The K = 2 results from DISTRUCT display the proportion of each 

population that is assigned to the two genetic clusters (Figure 7).  The 48 populations 

from the study area could not be consistently assigned to either of these two genetic 

clusters; however, the populations from Greece showed a high proportion of the genetic 

cluster shown in white.  

Geographic Structuring of Genetic Diversity  

A Mantel test was conducted to evaluate the correlation between FST values and 

geographic distance. The Mantel test was calculated with IBDWS and tested the null 

hypothesis that the correlation coefficient (R) is less than or equal to zero (P<0.01). The 

coefficient of determination (R2) provided support that there was no correlation between 

the geographic distance and FST values for the 48 native populations (R2 = 0.0364). The 

Isolation by distance correlation coefficient provided a very weak correlation between the 

two variables assessed during the Mantel test (R= 0.1908). These results indicate that 
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populations that are geographically close can have vastly different genetic diversity (e.g., 

Pryvitne, Ukraine has 11 MLGs and its neighboring population Sudak, Ukraine has only 

one MLG). 

Comparison of Genetic Diversity Across and Within Native  

and Invasive Populations 

Across populations, the 48 populations from Southeastern Europe and South-

central Turkey exhibit fewer alleles and polymorphic loci compared to the 34 native 

populations previously analyzed by Peters (2014) (Table 8).  Conversely, the 48 

populations analyzed from the study area have a higher value for the “percentage of 

polymorphic populations” compared with the 34 native populations previously analyzed: 

79.2 and 67.6, respectively.  When compared with native populations, the 45 previously 

analyzed invasive populations consistently have lower values for all across-population 

genetic parameters.  In general, similar patterns occur for the comparison of within-

population genetic diversity parameters between the two groups of native populations and 

native and invasive populations (Table 9).  However, the 48 populations I analyzed 

exhibited less genetic structure (GST 0.417), compared with either the 34 native 

populations previously analyzed (GST 0.745) or the 45 invasive populations (GST 0.906) 

(Table 9).     
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DISCUSSION 

The combined analysis of native and invasive populations within the same 

experimental design provides insights into the invasion process (Bossdorf et al. 2005, 

Hierros et al. 2005; Novak 2011).  Applying this approach using genetic marker data has 

allowed me to 1) identify the geographic origins (source populations) for the invasion of 

medusahead into the western U.S., 2) determine whether there is support for the multiple 

introduction of the grass in its new range, 3) assess the influence of founder effects in  

shaping the genetic diversity of medusahead in the western U.S., 4) generate a model 

describing a stochastic demographic processes that may have influenced the genetic 

diversity within and among native populations of the species in Southeastern Europe and 

South-central Turkey, and 5) obtain information that can be used to search for effective 

and specific biological control agents.   

Geographic Origins: Identifying Source Populations 

As a consequence of the analysis of these 48 populations of medusahead in 

Southeastern Europe and South-central Turkey, I identified 40 putative source 

populations in this region (Table 4, Figure 4). Collectively, these 40 populations contain 

four of the seven homologous MLG’s previously reported among 45 invasive populations 

(Novak 2004; Novak and Sforza 2008; Novak and Rausch 2009). The Rattlesnake 

Station, Idaho MLG (MLG #1 in this study) and the Steptoe Butte, Washington MLG 

(MLG #3) were detected most often among putative source populations (Table 3, Table 

4, Figure 4).  Additionally, the Roseburg, Oregon MLG (MLG #4), which is the earliest 
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collection site of the grass in the U.S., has been detected in 14 populations within the 

study area. The Ladd Canyon, Oregon MLG (MLG #2) is associated with the invasive 

populations was also detected within 14 populations. While MLGs #1, #3, and #4 are 

distributed among populations across the study area (Figure 4), MLG #2 is primarily 

found within populations arrayed near the Bulgarian/Turkish border.  Thus, putative 

source populations appear to be arrayed across much of Southeastern Europe and South-

central Turkey.  Alternatively, the four MLGs detected in this region also occur within 

each of four populations (Dripchevo, Harmanli and Tenevo, Bulgaria and Ipsala, 

Turkey); thus, only a handful of native populations could conceivably have served as 

source populations.  While these results do not clearly indicate specific source 

populations for the invasion of medusahead in the western U.S., they do indicate that the 

geographic origins for this invasion may be broadly distributed across most of the study 

area. 

Three MLGs detected within invasive populations in the western U.S., Malloy 

Prairie, Washington, Pullman, Washing and Salt Creek, Utah, each of which were found 

in only a single population, were not detected within the 48 populations analyzed in this 

study.   While the Malloy Prairie MLG was not detected among the populations analyzed 

here, the allele that earmarks this MLG (6Pgd-2a) was detected within four populations 

from Bulgaria (Devnja, Harmanli, Izorsko, and Orizane) and one population from 

Macedonia (Umin Dol) (Table 2).  The Pullman MLG was previously detected within the 

Ipsala, Turkey population by Peters (2014), but I did not observe this genotype among the 

individuals I analyzed from the very same locality.  The individuals Peters (2014) 

analyzed were sampled during October 2010, and the individuals I analyzed were 
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sampled in July 2011 (Table 1).  This difference may result from not sampling 

individuals in exactly the same places within this locality.  Alternatively, these 

differences may indicate year-to-year genetic variability that can occur within small 

populations of an annual plant species (Ellstrand and Elam 1993).  

In the previous analysis of 34 native populations broadly distributed across much 

of the native range of medusahead (Spain to Iran) (Peters 2014), five MLGs matching 

those introduced into the western U.S. were reported.  Ten of these 34 (29.4%) 

populations were found to be putative source populations, with six putative source 

populations located in Greece and Northwestern Turkey. Results of my analysis are 

consistent with those reported by Peters (2014), and indicate that 40 of 48 (83.3%) of the 

populations from Southeastern European and South-central Turkey are putative source 

populations. The combined results of both studies suggest that populations from this 

region may be an area of high propagule pressure (Simberloff 2009) for the invasion of 

medusahead into the western U.S.   The likelihood of identifying the geographic origins 

of an invasive species is greater for species with relatively low genetic diversity and high 

genetic structure (Novak and Mack 1993; Novak and Mack 2001; Facon et al. 2003; 

Goolsby et al. 2006; Keller and Taylor 2008; Novak 2011). This appears to be true for the 

study species because it produces cleistogamous flowers, which leads to a primarily self-

pollinating mating system (S.J. Novak, in preparation).   

Two MLGs, not yet detected in the invasive range of medusahead, were detected 

at relatively high frequency among the population analyzed in this study: nine of 48 

(18.8%) populations within the study area had MLG #1 (0.22 of the individuals within 

these nine populations had this genotype), and eight of 48 (16.7%) populations within the 
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study area had MLG #5 (0.18 of the individuals within these eight populations had this 

genotype) (Table 3, Table 4). With continued sampling of individuals from the study area 

at high propagule pressure, I would predict that MLGs with relatively high frequency, 

such as these two genotypes, have the highest probably on being introduced into the 

western U.S. or other regions around the world. 

Testing the Multiple Introduction Hypothesis 

The allozyme diversity detected among the 45 invasive populations of 

medusahead (Novak 2004; Novak and Sforza 2008; Novak and Rauch 2009) is consistent 

with the pattern associated with multiple introduction events.  The multiple introduction 

hypothesis however can only be confirmed when the MLGs detected among invasive 

population are also observed in native populations (Roderick and Navajas 2003; Novak 

and Mack 2005; Novak 2007, 2011).  Taken together, results from the current study and 

the previous analysis of native populations (Peters 2014) provide support for the multiple 

introduction of medusahead into the western U.S.  These results for medusahead join a 

growing body of literature that suggests that multiple introductions of invasive species 

are more common than previously reported (see Novak and Mack 1993; Facon et al. 

2003; Maron et al. 2004; Lavergne and Molofsky 2007; Ficetola et al. 2008; Keller and 

Taylor 2008; Wilson et al. 2009; Estoup and Guillemaud 2010; Lombaert et al. 2011; 

Gaskin et al. 2013).   

Genetic Diversity of Native Populations: Evidence for Founder Effects  

Across populations, the 48 populations of medusahead analyzed in this study do 

not exhibit as much genetic diversity (total number of alleles and number of polymorphic 

loci) as the 34 native populations previously analyzed by Peters (2014) (Table 8).  These 
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differences occur despite the fact that fewer populations were analyzed in the latter study, 

and a genetic parameter such as allelic richness is positively correlated with sample size 

(Leberg 2002; Landguth et al. 2012).  Rather, these results likely reflect the geographic 

scale at which native populations were sampled in these two studies: in the current study 

populations were sampled across a distance of approximately 1,200 km; whereas, the 34 

population previously analyzed were sampled across a distance of approximately 5,000 

km (from Spain to Iran).  The total number of alleles and polymorphic loci of the 45 

invasive populations of medusahead from the western U.S. are lower than the values 

reported for either group of native populations (Table 8).  These results indicate a 

reduction in the genetic diversity of invasive populations at the across-population level, 

and indicate that invasive populations of medusahead have experienced founder effects.   

A similar pattern was observed for the number of MLGs detected among native 

and invasive populations.  A total of 66 MLGs were detected among the 34 populations 

of medusahead previously analyzed (Peters 2014), whereas 35 MLGs were detected 

among the 48 populations from Southeastern Europe and South-central Turkey analyzed 

in this study (Table 3 and Table 4).  A total of seven MLGs were detected among the 45 

invasive populations of medusahead from the western U.S.  These data indicate a 

reduction in the MLG diversity of invasive populations.  

The level of genetic diversity at the within-population level reported in the current 

study (A = 1.10, %P = 9.05, He = 0.030) and the 34 native populations previously 

analyzed (A= 1.10, %P= 9.08, He= 0.025) are remarkably similar (Table 9).  On average, 

the within-population genetic diversity of the 45 invasive populations from the western 

U.S. (A = 1.03, %P = 2.51, He = 0.006) is considerably lower than the within-population 
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genetic diversity of either group of native populations (Table 9).  These data indicate 

founder effects at the within-population level for invasive populations of medusahead, 

and suggests that invasive populations are likely to have reduced evolutionary potential 

(Lavergne and Molofsky 2007).   

Genetic diversity of medusahead has likely been influenced by multiple life-

history characteristics; chief among these is the species’ self-pollinating (selfing) mating 

system.  Medusahead may be an extreme example of how a highly selfing mating system 

can influence genetic diversity: the level of diversity across and within native and 

invasive populations of the species (Table 5, Table 8 and Table 9) is low even when 

compared to other plants with a primarily selfing mating system (see Hamrick et al. 1979; 

Hamrick and Godt 1990). 

Genetic Structure Among Native and Invasive Populations  

High levels of genetic differentiation (structure) among populations can be 

facilitated by geographic (physical) barriers that reduce gene flow between populations, 

or the availability of suitable habitats, which results in a patchy distribution of 

populations across the landscape (Donnelly and Townson 2000; Gerlach and Musolf 

2000; Palsson 2000; Tiedemann et al. 2000). The genetic structure of populations is also 

correlated with the geographic distribution of a species: species with restricted (smaller) 

geographic distributions typically exhibit less genetic structure and species with larger 

distributions posses more population genetic structure (Wright 1943; Hamrick et al. 1979; 

Loveless and Hamrick 1984; Hamrick and Godt 1990, 1996; Ward 2006).  More 

importantly, life-history traits such as dispersal ability and mating system have long been 

recognized as key factors influencing the genetic structure of populations (Wright 1940; 
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Baker 1959, Allard et al. 1968; Jain 1975; Hamrick et al. 1979; Loveless and Hamrick 

1984; Hamrick and Godt 1990, 1996). For instance, plant species with gravity dispersal 

of seeds generally have higher population genetic structure compared with species with 

seeds capable of attaching to fur, clothing, or machinery.  Also, self-pollinating (selfing) 

plant species typically exhibit higher genetic structure when compared with outcrossing 

species (Hamrick et al. 1979, Loveless and Hamrick 1984, Hamrick and Godt, 1989, 

1996).  

Results of Nei’s (1987) gene diversity statistics (GST = 0.417) (Table 6) and 

AMOVA, approximately 60% of the total genetic diversity was partitioned among 

populations or higher hierarchical levels (countries and regions) (Table 7), indicate that 

the 48 populations of medusahead from Southeastern Europe and South-central Turkey 

exhibit moderately high genetic structure.  The genetic structure of these 48 populations 

is consistent with the values reported for other plants that posse the following life-history 

traits: self-pollination, annual species, early successional species, and gravity-dispersed 

seeds (Loveless and Hamrick 1984; Hamrick and Godt 1990, 1996).  For instance, Welk 

et al. (2013) reported high genetic structure among native populations of two 

predominantly selfing grass species, Stipa pennata and S. pulcherrima.  Conversely, 

relatively weak genetic differentiation among populations was reported for Eurasian 

populations of the two outcrossing grass species Lolium rigidum and L. perenne 

(Balfourier et al. 1998). 

The genetic structure of the 48 populations analyzed in this study is much lower 

than that of the 34 populations of medusahead previously analyzed by Peters (2014): GST 

= 0.745 and AMOVA showed that approximately 70% of the total genetic diversity was 
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partitioned among populations and regions.  Differences in these estimates of genetic 

structure for the same study species probably do not reflect differences in the life-history 

traits of the populations analyzed in these two studies.  Rather, differences in these 

genetic structure parameters likely result from the different geographic scales at which 

populations were analyzed.  In the current study, populations were sampled across a 

smaller region (Southeastern Europe and South-central Turkey), whereas Peters (2014) 

analyzed populations from across most of the geographic distribution of medusahead 

(Spain to Iran).  As a consequence of this greater scale of sampling, the 34 populations 

analyzed by Peters (2014) possessed more overall genetic diversity compared with the 48 

populations analyzed in this study (see above), but these 34 populations also exhibit 

higher genetic structure.   

The genetic structure of the 45 invasive populations of medusahead from the 

western U.S. (GST = 0.906, S.J. Novak, unpublished data) is greater than that reported for 

either of the two groups of native populations of medusahead described above.  Increased 

genetic differentiation among invasive populations of this grass is likely the result of 

multiple introduction events, combined with local or regional range expansion.  

Theoretical models indicate that these processes are reinforced by high rates of selfing 

within invasive populations (Brown and Marshall 1981; Wade and McCauley 1988; 

Whitlock and McCauley 1990; McCauley 1991; Novak and Mack 2005).  

Geographic Structuring Among Population:  

The Role of Stochastic Demographic Processes 

While the 48 populations of medusahead analyzed in this study exhibit 

moderately high genetic structure, this genetic structure does not appear to be 
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geographically structured.  Evidence for this conclusion is provided by the map showing 

the distribution of native populations with MLGs matching those previously detected 

among populations of medusahead from the western U.S. (Figure 4), the UPGMA cluster 

diagram (Figure 5), output from the STRUCTURE analysis (Figure 7), and the results of 

the isolation-by-distance analysis (Figure 8).  These results indicate that there is no 

relationship between the genetic relatedness of the 48 populations analyzed in this study 

and their geographic distance: populations located close to each other are generally not 

genetically similar; and, in fact, such populations are likely to be genetically distinct.   

This lack of geographic structuring among populations of medusahead from 

Southeastern Europe and South-central Turkey may be the result of stochastic 

demographic processes.  Under this model, the genetic diversity of populations of the 

study species in this region is influenced by several demographic processes that proceed 

over time, and across the landscape: 1) habitats become available for colonization by 

medusahead following disturbances such as livestock grazing and agricultural 

abandonment, or at the margins or within agricultural fields, 2) because the grass has a 

predominantly selfing mating system, one seed may be sufficient for colonization and 

population establishment, 3) populations of the grass become established at different sites 

in a stochastic manner such that nearby populations may be colonized and established by 

seeds with different genotypes, 4) over time, succession occurs and the species is 

displaced by larger more competitive plant species, and some populations are extirpated, 

5) across the landscape, other disturbances occur and other sites become available for 

colonization by the grass, and 6) over time, this process repeats itself.  While this 

demographic model may most often be thought to influence the genetic diversity of 
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invasive populations, I believe that this model may also explain the pattern of genetic 

diversity among native populations of weedy, self-pollinating plant species such as 

medusahead.       

Management Implications for Biological Control 

Identification of the geographic origins of an invasive species can aid in the 

management of such species, especially in the development of a biological control 

program (Gaskin et al. 2011).  For instance, the search for the most effective and specific 

biological control agents is thought to be facilitated by the accurate identification of 

source populations, or regions (Evans and Gomez 2004; Goolsby et al. 2006; Novak and 

Sforza 2008). Previous studies have identified natural enemies that were assessed for 

their use as biological control agents for medusahead (Seigwart et al. 2003; Widmer and 

Sforza 2004).  The results of the current study and the previous analysis of native 

populations of medusahead (Peters 2014) point to Southeastern Europe and South-central 

Turkey as one of the geographic origins for the invasion of this grass in the western U.S., 

and therefore areas in which the search for biological control agents should be focused.   

The combined analysis of native and invasive population of medusahead using the 

same genetic marker reveals that invasive populations stem from multiple introductions, 

and 17 of 45 (37%) invasive populations consist of genetic admixtures (i.e., they contain 

genotypes from different native populations).  Thus, several biological control agents 

from different parts of the native range may be required for adequate control (Burdon and 

Marshall 1981).  In addition, the analysis of native and invasive populations indicates that 

the genetic diversity of invasive populations has been reduced through founder effects.  
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This suggests that if biological control agents are found, they are likely to be quite 

effective (Muller-Scharer et al. 2003; Novak and Sforza 2008).  

In conclusion, the analysis of native populations of medusahead described here 

provides information on the level and structure of genetic diversity within and among 

these populations.  My results suggest that the genetic diversity in these populations 

appears to be influenced by stochastic demographic processes that have created a 

patchwork of genotypes across the study area.  This analysis provides insights into the 

invasion of medusahead in the western U.S. through the accurate identification of source 

populations, and indicates that founder effects have played an important role in 

influencing the genetic diversity of the grass in its new range.  Findings of this study 

indicate that putative source populations for this invasion occur throughout most of 

Southeastern Europe and South-central Turkey, and while this may be true, these results 

must be verified using a molecular marker with higher resolving power (i.e., a more 

polymorphic genetic marker such as amplified fragment length polymorphism, AFLP, 

analysis).   
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Table 1 Location and collection data for 48 populations of Taeniatherum 
caput-medusae subsp. asperum sampled from Southeastern Europe and South-
central Turkey 

Country 
Population 
Number Locality 

Latitude/Longitude 
Coordinates 

Elevation 
(m) Collection date 

Albania 1 Korca 40 40' 05" N 

20 49' 20" E 

871 7/14/2011 

 2 Struga  41 04' 40" N 

20 36' 25" E 

1016 6/26/2011 

Bulgaria 3 Beronovo 42 49' 39" N 

26 42' 34" E 

358 10/4/2010 

 4 Devnja 43 13' 56" N 

27 32' 33" E 

128 10/4/2010 

 5 Dripchevo  41 59' 41" N 

26 11' 45" E 

461 7/3/2011 

 6 Galabets 41 49' 39" N 

25 27' 03" E 

322 7/4/2011 

 7 Harmanli  41 58' 03" N 

25 59' 42" E 

241 10/3/2010 

 8 Izgrev 42 08' 41" N 

27 48' 38" E 

137 10/5/2010 

 9 Izvorishte 42 39' 31" N 

27 26' 07" E 

278 7/3/2011 

 10 Izvorsko 43 16' 47" N 

27 46' 57" E 

323 7/2/2011 

 11 Orizare  42 42' 43" N 

27 37' 04" E 

77 10/4/2010 

 12 Razlog 41 53' 11" N 

23 30' 05" E 

834 10/2/2010 
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 13 Sozopol 42 22' 07" N 

27 41' 07" E 

50 10/5/2010 

 14 Sredec 42 12' 49" N 

27 02' 11" E 

332 10/5/2010 

 15 Staro 
Orjahovo 

42 59' 11" N 

27 47' 17" E 

65 10/4/2010 

 16 Tenevo 42 21' 38" N 

26 34' 19" E 

145 7/3/2011 

 17 Zvezdel 41 28' 16" N 

25 32' 24" E 

572 7/4/2011 

Greece 18 Askos 40 45' 27" N 

23 27' 11" E 

398 7/8/2011 

 19 Edessa 40 47' 06" N 

21 53' 20" E 

587 6/25/2011 

 20 Kokinochoma 40 55' 28" N 

24 17' 24" E 

73 7/7/2011 

 21 Komotini 41 05' 14" N 

25 44' 30" E 

113 7/7/2011 

 22 Sapes 40 59' 43" N 

25 39' 41" E 

84 7/7/2011 

Macedonia 23 Bitola  41 02' 16" N 

21 19' 10" E 

645 6/25/2011 

 24 Bitola North 41 03' 11" N 

21 16' 49" E 

748 6/26/2011 

 25 Umin Dol 42 05' 21" N 

21 36' 04" E 

535 6/27/2011 

Romania 26 Drobetia 44 48' 25" N 

28 38' 45" E 

100 6/28/2011 
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 27 Sacele 44 38' 30" N 

22 37' 17" E 

73 7/1/2011 

 28 Schela  44 28' 45" N 

28 38' 51" E 

54 7/1/2011 

 29 Slava Rusa 45 31' 59" N 

27 49' 45" E 

43 7/1/2011 

Serbia 30 Kladovo 44 38' 01" N 

22 33' 38" E 

95 6/28/2011 

Turkey 31 Akseki 37 07' 17" N 

31 47' 49" E 

1271 6/26/2013 

 32 Corlu 41 03' 06" N 

27 43' 56" E 

19 7/6/2011 

 33 Havsa 41 24' 05" N 

26 28' 41" E 

73 7/5/2011 

 34 Ipsala  40 52' 47" N 

26 25' 10" E 

50 7/5/2011 

 35 Kesan 40 44' 06" N 

26 43' 21" E 

104 7/6/2011 

 36 Poyrali  41 37' 41" N 

27 36' 20" E 

329 7/6/2011 

 37 Seydishir 37 24' 17" N 

31 50' 06" E 

1239 6/26/2013 

 38 Urunlu 41 40' 27" N 

26 59' 53" E 

132 7/5/2011 

 39 Uzunkopru 41 18' 57" N 

26 34' 24" E 

118 7/5/2011 

 40 Yalihuyuk 37 18' 50" N 

32 06' 18" E 

1102 6/27/2013 
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 41 Yorukler 41 07' 07" N 

27 14' 25" E 

105 7/6/2011 

Ukraine 42 Alushta 44 42' 17" N 

34 25' 54" E 

190 7/8/2013 

 43 Bahate 45 01' 40" N 

34 45' 57" E 

303 7/8/2013 

 44 Izobilne 44 42' 05" N 

34 21' 02" E 

217 7/9/2013 

 45 Pryvitne 44 49' 19" N 

34 43' 47" E 

279 7/8/2013 

 46 Sudak 44 53' 10" N 

35 05' 40" E 

176 7/8/2013 

 47 Trudolybivka 44 46' 50" N 

33 59' 51" E 

190 7/10/2013 

 48 Yalta 44 28' 52" N 

34 07' 32" E 

281 7/9/2013 
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Table 2 Allele frequencies for all polymorphic loci across the 48 populations of 
Taeniatherum caput-medusae subsp. asperum. Numbers in parentheses are 
population sample sizes.   

  Albania    Bulgaria     

Locus Allele 
Korca 
(24) 

Struga 
(15) 

Bernovo 
(12) 

Devnja 
(11) 

Dripchevo 
(26) 

Mdh-2  a - 1.000 0.167 0.455 0.154 

 b - - - - - 

 c 1.000 - 0.833 - 0.846 

 d - - - 0.546 - 

  e - - - - - 

Mdh-3  a - 1.000 1.000 1.000 0.962 

  b 1.000 - - - 0.039 

Pgi-2  a - - - - - 

 b - 1.000 - 0.546 0.692 

 c 1.000 - 1.000 0.455 0.308 

Got-1  a 1.000 - 0.250 - - 

  b - 1.000 0.750 1.000 1.000 

Got-2  a - - - - - 

  b 1.000 1.000 1.000 1.000 1.000 

6pgd-2  a - - - 0.455 - 

 b 1.000 1.000 1.000 0.546 1.000 

  c - - - - - 

Idh  a 1.000 1.000 1.000 1.000 1.000 

 b - - - - - 
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Locus Allele 
Galabets 
(25) 

Harmanli 
(27) 

Izgrev 
(17) 

Izvorishte 
(27) 

Izorsko 
(22) 

Mdh-2  a 0.440 0.482 0.588 0.037 1.000 

 b - - - - - 

 c 0.560 0.519 - 0.704 - 

 d - - 0.412 0.259 - 

  e - - - - - 

Mdh-3  a 1.000 1.000 1.000 1.000 1.000 

  b - - - - - 

Pgi-2  a - - - - - 

 b 0.400 0.185 0.529 0.407 - 

 c 0.600 0.815 0.471 0.593 1.000 

Got-1  a 0.600 0.037 0.765 0.037 0.318 

  b 0.400 0.963 0.235 0.963 0.682 

Got-2  a - - - - - 

  b 1.000 1.000 1.000 1.000 1.000 

6pgd-2  a - 0.037 - - 0.727 

 b 1.000 0.963 1.000 1.000 0.273 

  c - - - - - 

Idh  a 1.000 1.000 1.000 1.000 1.000 

 b - - - - - 
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Locus Allele 
Orizane 
(10) 

Razlog 
(23) 

Sozopol 
(17) 

Sredec 
(17) 

Staro 
Jahovo 
(15) 

Mdh-2  a 0.500 0.739 0.471 0.059 0.600 

 b - - - - - 

 c 0.500 - 0.294 0.941 0.400 

 d - 0.217 0.118 - - 

  e - 0.044 0.118 - - 

Mdh-3  a 1.000 0.913 0.765 1.000 1.000 

  b - 0.087 0.235 - - 

Pgi-2  a - - - - - 

 b 0.100 0.304 0.177 0.059 0.733 

 c 0.900 0.696 0.824 0.941 0.267 

Got-1  a 0.900 0.217 0.353 - 0.400 

  b 0.100 0.783 0.647 1.000 0.600 

Got-2  a - - - - - 

  b 1.000 1.000 1.000 1.000 1.000 

6pgd-2  a 0.500 - - - - 

 b 0.500 1.000 1.000 1.000 1.000 

  c - - - - - 

Idh  a 1.000 1.000 1.000 1.000 1.000 

 b - - - - - 
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      Greece     

Locus Allele 
Tenevo 
(30) 

Zvezdel 
(25) 

Askos 
(26) 

Edessa 
(18) 

Kokinochoma 
(25) 

Mdh-2  a 0.567 0.960 0.769 0.889 1.000 

 b - - - - - 

 c 0.433 0.040 0.077 0.111 - 

 d - - 0.154 - - 

  e - - - - - 

Mdh-3  a 1.000 1.000 1.000 0.889 1.000 

  b - - - 0.111 - 

Pgi-2  a - - - - - 

 b 0.533 0.080 0.077 - 1.000 

 c 0.467 0.920 0.923 1.000 - 

Got-1  a - 0.200 0.231 - 1.000 

  b 1.000 0.800 0.769 1.000   

Got-2  a - - - - - 

  b 1.000 1.000 1.000 1.000 1.000 

6pgd-2  a - - - - - 

 b 1.000 1.000 1.000 1.000 1.000 

  c - - - - - 

Idh  a 1.000 1.000 1.000 1.000 1.000 

 b - - - - - 
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      Macedonia     

Locus Allele 
Komotini 
(27) 

Sapes 
(16) 

Bitola    
(25)  

Bitola 
North 
(26) 

Umin 
Dol 
(30) 

Mdh-2  a 1.000 1.000 0.920 0.346 0.600 

 b - - - - - 

 c - - 0.080 0.654 - 

 d - - -  0.400 

  e - - - - - 

Mdh-3  a 1.000 1.000 0.920 0.346 1.000 

  b - - 0.080 0.654 - 

Pgi-2  a - - - - - 

 b 0.926 0.938 - - - 

 c 0.074 0.063 1.000 1.000 1.000 

Got-1  a - - -   0.100 

  b 1.000 1.000 1.000 1.000 0.900 

Got-2  a - - - - - 

  b 1.000 1.000 1.000 1.000 1.000 

6pgd-2  a - - - - 0.067 

 b 1.000 0.688 1.000 1.000 0.933 

  c - 0.313 - - - 

Idh  a 1.000 0.938 1.000 1.000 1.000 

 b - 0.063 - - - 
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  Romania       Serbia  

Locus Allele 
Drobetia 
(34) 

Sacele 
(24) 

Schela 
(30) 

Slava 
Rusa 
(24) 

Kladovo 
(26) 

Mdh-2  a 0.706 1.000 1.000 1.000 - 

 b - - - - - 

 c 0.294 - - - 1.000 

 d - - - - - 

  e - - - - - 

Mdh-3  a 0.706 1.000 1.000 1.000 - 

  b 0.294 - - - 1.000 

Pgi-2  a - - - - - 

 b 0.088 1.000 0.067 - - 

 c 0.912 - 0.933 1.000 1.000 

Got-1  a - - - 0.125 1.000 

  b 1.000 1.000 1.000 0.875 - 

Got-2  a - - - - - 

  b 1.000 1.000 1.000 1.000 1.000 

6pgd-2  a - - - - - 

 b 1.000 1.000 1.000 1.000 1.000 

  c - - - - - 

Idh  a 1.000 1.000 1.000 1.000 1.000 

 b - - - - - 
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  Turkey         

Locus Allele 
Akeski 
(25) 

Corlu 
(25) 

Havsa 
(27) 

Ipsala 
(23) 

Kesan 
(16) 

Mdh-2  a 0.800 - 1.000 0.696 0.250 

 b - - - - 0.063 

 c 0.200 - - 0.261 - 

 d - 1.000 - 0.044 - 

  e - - - - 0.688 

Mdh-3  a 1.000 1.000 1.000 0.826 0.250 

  b - - - 0.174 0.750 

Pgi-2  a 0.080 - - - - 

 b 0.920 - - 0.087 1.000 

 c - 1.000 1.000 0.913 - 

Got-1  a - - - 0.304 - 

  b 1.000 1.000 1.000 0.696 1.000 

Got-2  a - - - - - 

  b 1.000 1.000 1.000 1.000 1.000 

6pgd-2  a - - - - - 

 b 1.000 1.000 1.000 1.000 1.000 

  c - - - - - 

Idh  a 1.000 1.000 1.000 1.000 1.000 

 b - - - - - 
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Locus Allele 
Poyrali 
(25) 

Seydishir 
(38) 

Urunlu 
(25) 

Uzunkopru 
(23) 

Yalihuyuk 
(24) 

Mdh-2  a 0.440 0.316 - 0.130 0.792 

 b - - - - - 

 c 0.560 0.684 1.000 0.870 0.208 

 d - - - - - 

  e - - - - - 

Mdh-3  a 0.960 1.000 1.000 1.000 1.000 

  b 0.040 - - - - 

Pgi-2  a - - - - 0.125 

 b 0.760 0.974 - - 0.875 

 c 0.240 0.026 1.000 1.000 - 

Got-1  a - - - 0.739 - 

  b 1.000 1.000 1.000 0.261 1.000 

Got-2  a - - - - - 

  b 1.000 1.000 1.000 1.000 1.000 

6pgd-2  a - - - - - 

 b 1.000 1.000 1.000 1.000 1.000 

  c - - - - - 

Idh  a 1.000 1.000 1.000 1.000 1.000 

 b - - - - - 
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    Ukraine       

Locus Allele 
Yorukler 
(25) 

Alushta 
(18) 

Bahate 
(19) 

Izobilne 
(24) 

Pryvitne 
(30) 

Mdh-2  a 0.120 - 0.316 - 0.467 

 b - - - - - 

 c 0.680 - 0.684 0.917 0.167 

 d - 0.722 - 0.083 0.300 

  e 0.200 0.278 - - 0.067 

Mdh-3  a 0.800 0.722 1.000 1.000 0.833 

  b 0.200 0.278 - - 0.167 

Pgi-2  a - - - 0.042 0.100 

 b 0.760 0.722 1.000 0.958 0.833 

 c 0.240 0.278 - - 0.067 

Got-1  a 0.200 0.056 - 0.917 0.500 

  b 0.800 0.944 1.000 0.083 0.500 

Got-2  a - - - - - 

  b 1.000 1.000 1.000 1.000 1.000 

6pgd-2  a - - - - - 

 b 1.000 1.000 1.000 1.000 1.000 

  c - - - - - 

Idh  a 1.000 1.000 1.000 1.000 1.000 

 b - - - - - 
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Locus Allele 
Sudak 
(7) 

Trudolybivka 
(17) 

Yalta 
(19) 

Overall 
Frequency 
(1084) 

Mdh-2  a - - 1.000 0.530 

 b - - - 0.001 

 c - 1.000 - 0.353 

 d 1.000 - - 0.092 

  e - - - 0.024 

Mdh-3  a 1.000 1.000 1.000 0.889 

  b - - - 0.111 

Pgi-2  a - - - 0.008 

 b - 1.000 - 0.411 

 c 1.000 - 1.000 0.581 

Got-1  a 1.000 - - 0.214 

  b - 1.000 1.000 0.786 

Got-2  a - 0.059 - 0.001 

  b 1.000 0.941 1.000 0.999 

6pgd-2  a - - - 0.027 

 b 1.000 1.000 1.000 0.969 

  c - - - 0.005 

Idh  a 1.000 1.000 1.000 0.999 

 b - - - 0.001 
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Table 3 Multilocus genotypes detected in 48 populations of Taeniatherum 
caput-medusae subsp. asperum. Letters represent different alleles at each locus. The 
order of the loci are as follows: Mdh-1, Mdh-2, Mdh-3, Pgi-1, Pgi-2, Got-1, Got-2, 
6pgd-1, 6pgd-2, Pgm-2, Adh, Gdh, Ald, Tpi-1, Tpi-2, Sod-1, Sod-2, Ce-2, Ce-4, Me, Idh, 
Skdh, G3pdh. The first 4 multilocus genotypes listed in this table are found in the 
invasive range (RS-Rattlesnake Station, Idaho; LC-Ladd Canyon, Oregon; SB-
Steppetoe Butte, Washington; R-Roseburg, Oregon) 

ID 
Shared 
between 
population 

Multilocus Genotype  

1 (RS) 27 BAAADBBABBABAAAAABBAABB 

2 (LC) 14 BCAADBBABBABAAAAABBAABB 

3 (SB) 26 BAAACBBABBABAAAAABBAABB 

4 (R) 14 BCAACBBABBABAAAAABBAABB 

5 8 BCBADBBABBABAAAAABBAABB 

6 1 BABACBBABBABAAAAABBAABB 

7 2 BDAADBBABBABAAAAABBAABB 

8 1 BAAAABBABBABAAAAABBAABB 

9 2 BAAADBBAABABAAAAABBAABB 

10 9 BAAADABABBABAAAAABBAABB 

11 1 BDBADBBABBABAAAAABBAABB 

12 1 BEBADBBABBABAAAAABBAABB 

13 1 BCAAABBABBABAAAAABBAABB 

14 2 BCAADABABBABAAAAABBAABB 

15 3 BCBADABABBABAAAAABBAABB 

16 5 BDAACBBABBABAAAAABBAABB 

17 5 BAAACABABBABAAAAABBAABB 

18 1 BAAACBBACBABAAAAABBAABB 
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19 1 BAAACBBABBABAAAAABBABBB 

20 1 BBBACBBABBABAAAAABBAABB 

21 2 BEBACBBABBABAAAAABBAABB 

22 2 BABACABABBABAAAAABBAABB 

23 3 BCAACABABBABAAAAABBAABB 

24 1 BCAACBAABBABAAAAABBAABB 

25 1 BCBACABABBABAAAAABBAABB 

26 1 BDAAABBABBABAAAAABBAABB 

27 4 BDAADABABBABAAAAABBAABB 

28 1 BAAAAABABBABAAAAABBAABB 

29 1 BAAADABAABABAAAAABBAABB 

30 2 BEBADABABBABAAAAABBAABB 

31 1 BCAAAABABBABAAAAABBAABB 

32 2 BCAADABAABABAAAAABBAABB 

33 5 BDAACABABBABAAAAABBAABB 

34 1 BEBACABABBABAAAAABBAABB 

35 1 BEBAAABABBABAAAAABBAABB 
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Table 4 Frequency and type of Multilocus genotypes (MLG) detected within 
and among populations for Taeniatherum caput-medusae subsp. asperum. Red 
indicates that the MLG is found in only 2 populations, Green indicates that the 
MLG is unique to that population. MLG Identification number (ID) is the same as 
ID in Table 3. 

Country Location N MLG ID  MLG Count MLG Frequency 

Albania Korca 24 15 24 1.00 

 Struga 15 3 15 1.00 

Bulgaria Bernovo 12 1 2 0.17 

   2 7 0.58 

   14 3 0.25 

 Devnja 11 10 5 0.45 

   16 6 0.55 

 Dripchevo 26 1 2 0.08 

   2 5 0.19 

   5 1 0.04 

   3 2 0.08 

   4 16 0.62 

 Galabets 25 1 2 0.08 

   2 4 0.16 

   3 4 0.16 

   14 9 0.36 

   17 5 0.20 

   23 1 0.04 

 Harmanli 27 1 11 0.41 

   2 10 0.37 

   3 2 0.07 
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   4 3 0.11 

   32 1 0.04 

 Izgrev 17 1 3 0.18 

   3 1 0.06 

   10 3 0.18 

   17 3 0.18 

   27 2 0.12 

   33 5 0.29 

 Izorsko 27 9 15 0.56 

   10 6 0.22 

   29 1 0.04 

 Izvorishte 22 1 1 0.05 

   2 15 0.68 

   4 4 0.18 

   16 6 0.27 

   33 1 0.05 

 Orizane 10 3 1 0.10 

   10 4 0.40 

   32 5 0.50 

 Razlog 23 1 16 0.70 

   6 1 0.04 

   21 1 0.04 

   33 5 0.22 

 Sozopol 17 1 4 0.24 

   2 3 0.18 
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   5 2 0.12 

   3 2 0.12 

   10 1 0.06 

   17 1 0.06 

   27 2 0.12 

   30 2 0.12 

 Sredec 17 2 16 0.94 

   3 1 0.06 

 Staro Jahovo 15 1 4 0.27 

   3 5 0.33 

   23 6 0.40 

 Tenevo 30 1 11 0.37 

   2 3 0.10 

   3 6 0.20 

   4 10 0.33 

 Zvezdel 25 1 17 0.68 

   2 1 0.04 

   3 2 0.08 

   10 5 0.20 

Greece Askos 26 1 20 0.77 

   22 2 0.08 

   27 4 0.15 

 Edessa 18 1 16 0.89 

   5 2 0.11 

 Kokinchoma 25 17 25 1.00 
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 Komotini 27 1 2 0.07 

   3 25 0.93 

 Sapes 16 1 1 0.06 

   3 9 0.56 

   18 5 0.31 

   19 1 0.06 

Macedonia Bitola  25 1 23 0.92 

   5 2 0.08 

 Bitola North 26 1 9 0.35 

   5 17 0.65 

 Umin Dol 30 1 13 0.43 

   7 12 0.40 

   9 2 0.07 

   10 3 0.10 

Romania Drobetia 34 1 21 0.62 

   5 10 0.29 

   3 3 0.09 

 Sacele 24 3 24 1.00 

 Schela 30 1 28 0.93 

   3 2 0.07 

 Slava Rusa 24 1 21 0.88 

   10 3 0.13 

Serbia Kladovo 26 15 26 1.00 

Turkey Akseki 25 3 20 0.80 

   4 3 0.12 
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   13 2 0.08 

 Corlu 25 7 25 1.00 

 Havsa 27 1 27 1.00 

 Ipsala 23 1 9 0.39 

   2 2 0.09 

   5 2 0.09 

   3 1 0.04 

   4 1 0.04 

   10 6 0.26 

   11 1 0.04 

   15 1 0.04 

 Kesan 16 3 4 0.25 

   20 1 0.06 

   21 11 0.69 

 Poyrali 25 2 5 0.20 

   5 1 0.04 

   3 11 0.44 

   4 8 0.32 

 Seydishir 38 1 1 0.03 

   3 11 0.29 

   4 26 0.68 

 Urunlu 25 2 25 1.00 

 Uzunkopru 23 1 3 0.13 

   2 3 0.13 

   3 17 0.74 
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 Yalihuyuk 24 3 16 0.67 

   4 5 0.21 

   8 3 0.13 

 Yorukler 25 2 1 0.04 

   3 3 0.12 

   4 16 0.64 

   30 5 0.20 

Ukraine Alushta 18 12 5 0.28 

   16 12 0.67 

   33 1 0.06 

 Bahate 19 3 6 0.32 

   4 13 0.68 

 Izobilne 24 4 1 0.04 

   16 1 0.04 

   23 20 0.83 

   31 1 0.04 

   33 1 0.04 

 Pryvitne 30 1 2 0.07 

   3 1 0.03 

   4 3 0.10 

   16 8 0.27 

   17 9 0.30 

   22 1 0.03 

   25 2 0.07 

   26 1 0.03 
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   28 1 0.03 

   34 1 0.03 

   35 1 0.03 

 Sudak 7 27 7 1.00 

 Trudolybivka 17 4 16 0.94 

   24 1 0.06 

 Yalta 19 1 19 1.00 
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Table 5 Within-population genetic diversity parameters for the Taeniatherum 
caput-medusae subsp. asperum populations analyzed in this study. Parameters are 
mean number of alleles per locus (A), number of polymorphic loci per population 
(#P),  percent polymorphic loci per population (%P), mean observed heterozygosity 
(Hobs), the expected mean heterozygosity which was calculated using the unbiased 
estimate method of Nei (1978) (Hexp), and the number of multilocus genotypes 
detected in each population(#MLG)   

Country Population # Locality  N A # P %P Hobs Hexp  # MLG  

Albania 1 Korca 24 1.00 0 0.0 0 0.000 1  

 2 Struga 15 1.00 0 0.0 0 0.000 1  

Bulgaria 3 Bernovo 12 1.09 2 8.7 0 0.028 3  

 4 Devnja 11 1.13 3 13.0 0 0.065 2  

 5 Dripchevo 26 1.13 3 13.0 0 0.033 5  

 6 Galabets 25 1.13 3 13.0 0 0.063 6  

 7 Harmanli 27 1.17 4 17.4 0 0.041 5  

 8 Izgrev 17 1.13 3 13.0 0 0.058 6  

 9 Izorsko 22 1.09 2 8.7 0 0.036 3 

 10 Izvorishte 27 1.17 3 13.0 0 0.043 5  

 11 Orizane 10 1.17 4 17.4 0 0.059 3  

 12 Razlog 23 1.22 4 17.4 0 0.058 4  

 13 Sozopol 17 1.26 4 17.4 0 0.077 8  

 14 Sredec 17 1.09 2 8.7 0 0.010 2  

 15 Staro Jahovo 15 1.13 3 13.0 0 0.059 3  

 16 Tenevo 30 1.09 2 8.7 0 0.043 4  

 17 Zvezdel 25 1.13 3 13.0 0 0.024 4  

Greece 18 Askos 26 1.17 3 13.0 0 0.038 3  

 19 Edessa 18 1.09 2 8.7 0 0.017 2  

 20 Kokinchoma 25 1.00 0 0.0 0 0.000 1  
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 21 Komotini 27 1.04 1 4.3 0 0.006 2  

 22 Sapes 16 1.13 3 13.0 0 0.029 4  

Macedonia 23 Bitola  25 1.09 2 8.7 0 0.013 2  

 24 Bitola North 26 1.09 2 8.7 0 0.039 2  

 25 Umin Dol 30 1.13 3 13.0 0 0.034 4  

Romania 26 Drobetia 34 1.13 3 13.0 0 0.043 3  

 27 Sacele 24 1.00 0 0.0 0 0.000 1  

 28 Schela 30 1.04 1 4.3 0 0.005 2  

 29 Slava Rusa 24 1.04 1 4.4 0 0.010 2  

Serbia 30 Kladovo 26 1.00 0 0.0 0 0.000 1  

Turkey 31 Akseki 25 1.09 2 8.7 0 0.020 3  

 32 Corlu 25 1.00 0 0.0 0 0.000 1  

 33 Havsa 27 1.00 0 0.0 0 0.000 1  

 34 Ipsala 23 1.22 4 17.4 0 0.057 8  

 35 Kesan 16 1.13 2 8.7 0 0.036 3  

 36 Poyrali 25 1.13 3 13.0 0 0.041 4  

 37 Seydishir 38 1.09 2 8.7 0 0.021 3  

 38 Urunlu 25 1.00 0 0.0 0 0.000 1  

 39 Uzunkopru 23 1.09 2 8.7 0 0.027 3  

 40 Yalihuyuk 24 1.09 2 8.7 0 0.024 3  

 41 Yorukler 25 1.22 4 17.4 0 0.065 4  

Ukraine 42 Alushta 18 1.17 4 17.4 0 0.057 3  

 43 Bahate 19 1.04 1 4.4 0 0.019 2  

 44 Izobilne 24 1.13 3 13.0 0 0.017 5  

 45 Pryvitne 30 1.30 4 17.4 0 0.075 11  
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 46 Sudak 7 1.00 0 0.0 0 0.000 1  

 47 Trudolybivka 17 1.04 1 4.3 0 0.005 2  

 48 Yalta 19 1.00 0 0.0 0 0.000 1  

  Overall Mean  1.10 2.08 9.05 0 0.03 3.19  

 
 Source Pop. 

Mean  
 

1.11 2.28 9.88 0 0.031 3.5 
 

 
 Non-Source 

Pop Mean 
 

1.05 1.13 4.89 0 0.02 1.63 
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Table 6 Nei’s (1987) gene diversity statitics for native populations for 
Taeniatherum caput-medusae subsp. asperum. Refer to the text for the definitions of 
HT, HS, DST and GST. 

Locus HT HS DST GST 

Mdh-2 0.603 0.276 0.327 0.542 

Mdh-3 0.190 0.078 0.113 0.592 

Pgi-2 0.493 0.164 0.329 0.667 

Got-1 0.359 0.136 0.223 0.621 

Got-2 0.002 0.002 0.000 0.010 

6pgd-2 0.084 0.044 0.040 0.474 

Idh 0.003 0.003 0.000 0.014 

     

Mean 0.248 0.100 0.147 0.417 
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Table 7 Analysis of Molecular Variance (AMOVA) using the F-statistics in 
ARLEQUIN v.3.1 (Excoffier et al. 2005) for the 48 native populations of 
Taeniatherum caput-medusae subsp. asperum. Letters (a,b,c) within the first column 
identify the three different hierarchical AMOVA analyses that  were conducted.  
Refer to the text for an explanation of the three analyses. 

 
  d.f 

Sum of 
Squares 

Variation 
Component 

Percentage 
Variation 

(a) Among populations  47 1105.507 0.50634 59.55 

 Within populations 1036 712.735 0.34398 40.45 

 Within individuals 1084 0.000 0.00000 0.00 

 Total 2167 1818.242 0.85032 -- 

(b) Among countries  7 327.949 0.10138 11.69 

 Among populations 
within countries 40 77.557 0.42988 49.56 

 Within populations 2120 712.735 0.33620 38.76 

 Total 2167 1818.242 0.86746 -- 

(c) Among regions 1 34.247 0.00929 1.09 

 Among populations 
within regions 46 1071.259 0.50964 59.60 

 Within populations 2120 712.735 0.33620 39.32 

 Total 2167 1818.242 0.85513 -- 
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Table 8 Across-population genetic diversity parameters for Taeniatherum 
caput-medusae subsp. asperum.  

  
Number of 
Populations Alleles 

Alleles/ 
Locus 

Number 
of Poly. 
Loci 

Percentage 
of Poly. 
Loci 

Percentage 
of Poly. 
Populations 

This Study 48 35 1.52 7 30.4 79.2 

Previously 
Analyzed 
Native 
Populations 

34 48 2.09 15 65.2 67.6 

Invasive 
Populations 45 28 1.22 5 21.7 37.8 
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Table 9 Within- and among-population genetic diversity parameters for 
Taeniatherum caput-medusae subsp. asperum.  See Table 5 and Table 6 for an 
explanation of these parameters. 

Country 
Number of 
Populations A %P Hobs Hexp  Ht Gst 

This Study 48 1.10 9.05 0.00000 0.030 0.248 0.417 

Previously 
Analyzed 
Native 
Populations 34 1.10 9.08 0.00003 0.025 0.262 0.745 

Invasive 
Populations 45 1.03 2.52 0.00010 0.006 0.224 0.906 
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Figure 1 Photographs of Taeniatherum caput-medusae subspecies asperum 

populations in the native (a) and invasive (b) ranges. The photograph of the native 
population was taken at Izvorishte, Bulgaria, and the photograph of the invasive 

population was taken at Boise, Idaho 
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Figure 2 Photographs of Taeniatherum caput-medusae subspecies of (a) 

asperum (b) crinitum (c) caput-medusae. 
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Figure 3 Map showing the distribution of populations of Taeniatherum caput-medusae 

subspecies asperum sampled in this study. Forty-eight (48) populations were analyzed in 
this study.   
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Figure 4 Map showing the distribution of multilocus genotypes (MLG) detected in 
native populations of Taeniatherum caput-medusae subspecies asperum. The identity of 

multilocus genotypes matching those detected among invasive populations are given in the 
legend, and non-matching genotypes are shown in grey.  
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Figure 5 UPGMA cluster diagram showing genetic relationships among the 48 
populations of Taeniatherum caput-medusae subsp. asperum analyzed in this study.  
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a) Final Parameter (100 thousand burn-in & 1 million iterations) 

 

b) Final Parameter (100 thousand burn-in & 1 million iterations) 

 
Figure 6 Results of the log probability (a) and delta K (b) analyses used to 

determine the number of genetic clusters (K) supported by the allozyme analysis of 
48 populations of Taeniatherum caput-medusae subsp. asperum. These analyses were 
performed using 100 thousand burn-in iterations and a run consisting of 1 million 

iterations) 
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Figure 7 Genetic structure for the 48 populations of Taeniatherum caput-

medusae subsp. asperum. This figure was prepared using the program DISTRUCT 
with a value of K=2  
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Figure 8 Isolation by Distance/Mantel test for the matrix correlation for pair-
wise population values of genetic distance (pairwise FST) and geographic distance 

(km) for the 48 populations of Taeniatherum caput-medusae subsp. asperum 
analyzed in this study (r = 0.19, R2 =0.03, P=0.0128)   



83 
 

 

APPENDIX 

Inferred Cluster Membership Coefficients from STRUCTURE Output 
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Table A.1 Inferred Cluster membership coefficients from STRUCTURE output. 

K=2     

Population 
# 

Population 
Name N 

Inferred Cluster membership 
coefficients 

   1 2 

1 Korca 24 0.023 0.977 

2 Struga 15 0.937 0.063 

3 Bernovo 12 0.216 0.784 

4 Devnja 11 0.592 0.408 

5 Dripchevo 26 0.208 0.792 

6 Galabets 25 0.428 0.572 

7 Harmanli 27 0.495 0.505 

8 Izgrev 17 0.583 0.417 

9 Izorsko 22 0.938 0.062 

10 Izvorishte 27 0.158 0.842 

11 Orizane 10 0.497 0.503 

12 Razlog 23 0.702 0.298 

13 Sozopol 17 0.471 0.529 

14 Sredec 17 0.131 0.869 

15 Staro Jahovo 15 0.581 0.419 

16 Tenevo 30 0.566 0.434 

17 Zvezdel 25 0.892 0.108 

18 Askos 26 0.749 0.251 

19 Edessa 18 0.84 0.16 

20 Kokinchoma 25 0.86 0.14 
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21 Komotini 27 0.937 0.063 

22 Sapes 16 0.944 0.056 

23 Bitola  25 0.869 0.131 

24 Bitola North 26 0.346 0.654 

25 Umin Dol 30 0.679 0.321 

26 Drobetia 34 0.674 0.326 

27 Sacele 24 0.937 0.063 

28 Schela 30 0.941 0.059 

29 Slava Rus 24 0.932 0.068 

30 Kladovo 26 0.023 0.977 

31 Akseki 25 0.764 0.236 

32 Corlu 25 0.3 0.7 

33 Havsa 27 0.942 0.058 

34 Ipsala 23 0.652 0.348 

35 Kesan 16 0.257 0.743 

36 Poyrali 25 0.454 0.546 

37 Seydishir 38 0.348 0.652 

38 Urunlu 25 0.081 0.919 

39 Uzunkopru 23 0.168 0.832 

40 Yalihuyuk 24 0.748 0.252 

41 Yorukler 25 0.168 0.832 

42 Alushta 18 0.203 0.797 

43 Bahate 19 0.347 0.653 

44 Izobilne 24 0.058 0.942 

45 Pryvitne 30 0.479 0.521 
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46 Sudak 7 0.145 0.855 

47 Trudolybivka 17 0.074 0.926 

48 Yalta 19 0.941 0.059 
 

 


	IDENTIFYING THE GEOGRAPHIC ORIGINS FOR THE INTRODUCTION  OF TAENIATHERUM CAPUT-MEDUSAE SUBSP. ASPERUM (MEDUSAHEAD)  IN THE WESTERN UNITED STATES
	DEDICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	METHODS
	Plant Collections
	Enzyme Electrophoresis
	Multilocus Genotype Assignment and Geographic Origins

	DATA ANALYSIS
	Genetic Diversity within Populations
	Genetic Structure Among Populations
	Geographic Structuring of Genetic Diversity

	RESULTS
	Multilocus Genotype Diversity
	Geographic Origins: Identifying Source Populations
	Genetic Diversity Within Populations
	Genetic Structure Among Populations
	Geographic Structuring of Genetic Diversity
	Comparison of Genetic Diversity Across and Within Native  and Invasive Populations

	DISCUSSION
	Geographic Origins: Identifying Source Populations
	Testing the Multiple Introduction Hypothesis
	Genetic Diversity of Native Populations: Evidence for Founder Effects
	Genetic Structure Among Native and Invasive Populations
	Geographic Structuring Among Population:  The Role of Stochastic Demographic Processes
	Management Implications for Biological Control

	LITERATURE CITED
	TABLES AND FIGURES
	APPENDIX
	Inferred Cluster Membership Coefficients from STRUCTURE Output


