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ABSTRACT 

As climate changes, the final date of spring snowmelt is projected to occur earlier 

in the year within the western United States. This earlier snowmelt timing may impact 

crop yield in snow-dominated watersheds by changing the timing of water delivery to 

agricultural fields. There is considerable uncertainty about how agricultural impacts of 

snowmelt timing may vary by region, crop type, and practices like irrigation vs. dryland 

farming. We utilize parametric regression techniques to isolate the magnitude of impact 

snowmelt timing has had on historical crop yield independently of climate and 

physiographic variables that also impact yield. To do this, we examine the historical 

relationship between snowmelt timing and non-irrigated wheat and barley yield using a 

multiple linear regression model to predict yield in several Idaho counties as a function of 

snowmelt date, climate variables (precipitation and growing degree-days), and spatial 

differences between counties. We apply non-parametric techniques to identify controls on 

this relationship. To do this, we employ classification and regression trees to predict the 

relationship between snowmelt timing and yield as a function of both climate and 

physiographic variables (e.g., elevation). Snowmelt timing significantly predicts crop 

yield independently of climate variables, which also explain yield. Most trends suggest a 

decrease in non-irrigated wheat and barley yield with earlier spring snowmelt, but a 

significant opposite relationship is observed in some Idaho counties. Spring and summer 

precipitation appears to buffer the negative impact of early snowmelt timing on yield, 

along with several physiographic characteristics (including elevation/latitude of snowmelt 
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and elevation of planting). These controls may assist agricultural producers, land 

managers, and water managers in decision making as early snowmelt timing occurs in the 

future. 

 

Keywords: Climate change; snowmelt; water resources; crop yield; dryland farming; 

agriculture. 
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1 INTRODUCTION 

A warming climate impacts the timing of snowmelt, and as a result, the final 

snowmelt date—the last date in a year at which snow water equivalent equals zero—is 

occurring earlier in the year in many of the world’s snow-dominated basins (Morán-

Tejeda et al. 2014, Stewart et al. 2005, Yamanaka et al. 2012). Many of these are semi-

arid to arid regions and rely on snowpack to supply stored water during dry summer 

months when the need is most critical for a number of uses, including agriculture. A shift 

in snowmelt timing threatens this source of water by shifting peak streamflow earlier in 

the year, reducing the amount of water available late in the summer (Mote et al. 2005, 

Stewart et al. 2005). These changes in water supply particularly impact agricultural 

producers who rely on snowmelt to provide water for crop production. Changes in 

snowmelt timing alter both the soil moisture available to crops throughout the growing 

season as well as the quantity of water available for supplemental irrigation. Non-

irrigated crops may be especially susceptible to changes in snowmelt timing, as the 

timing between peak discharge and the peak of the growing season will impact soil 

moisture during critical growth periods without the flexibility to add supplemental 

irrigation water.  

Although many studies have investigated the impacts of changing climatic 

variables on crop yield (e.g. Lobell et al. 2011, Long et al. 2006, Rosenzweig and Parry 

1994, Schlenker and Roberts 2009), the crucial relationship between snowmelt timing 

and crop yield is unknown. Increased temperature projections, one of the main drivers of 



2 
 

 

 

crop yield, will decrease future yield of most major crops according to the 

Intergovernmental Panel on Climate Change’s Fifth Assessment Report (IPCC 2014). 

The negative impact of temperature on yield may be underestimated in many existing 

linear analyses, making temperature a reliable predictor of global decreased yield as 

climate change continues (Schlenker and Roberts 2009). In contrast, projected 

precipitation increases in the United States translate to higher average crop yield (IPCC 

2014). Regional climate precipitation forecasts are more uncertain than those for 

temperature, but most models in the western United States predict summer precipitation 

to decrease (Mote and Salathé 2010), which is arguably the most important water source 

for dryland crops. In addition to the projected decrease in summer precipitation in the 

western United States, the potential impact of changing soil moisture at the start of the 

growing season should not be underestimated. In snowmelt-dominated regions, especially 

those projecting less summer precipitation, the timing of snowmelt will intrinsically 

change the timing of water available to crops. We must therefore consider changing 

snowmelt timing in addition to precipitation/temperature changes as a potential driver of 

future yield changes. 

Speculations on how future changes in snowmelt timing will drive agricultural 

changes in arid, snow-dominated regions have focused largely on water supply to 

irrigation systems (Barnett et al. 2005). However, the way in which changes in snowmelt 

timing affect the yields of non-irrigated crops is a critical piece of information that is not 

well understood. Given that the trend toward earlier snowmelt timing is projected to 

continue in the western United States (Stewart et al. 2004), it is important to quantify the 

impact of these changes on crop yields. This information is necessary not only to 
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understand impacts of climate change on producers of non-irrigated agriculture, but it is 

also critically important in predicting how climate change will affect the demand for 

irrigation water by agricultural producers. An understanding of both changes in the 

demand for irrigation water and changes in the supply of water for irrigation will support 

a more accurate assessment of how agricultural producers will adapt to climate change 

and the associated economic welfare losses that may arise.  

In this thesis, we explore the historical relationship between final snowmelt date 

and non-irrigated agricultural yield. We choose to look at non-irrigated yield in order to 

quantify changes in the baseline yield of crops that do not receive supplemental irrigation 

water. About 83% of global farmland practices dryland farming—accounting for 60% of 

total food production (Fereres and Soriano 2007). Understanding all factors that impact 

non-irrigated crop yield is critical for assessment of global food security in a changing 

climate. Sensitivity of baseline crop yield to changing snowmelt timing will also inform 

how unmanaged ecosystem production might respond to this changing water source. 

Finally, a change in dryland yield will equate to a change in irrigated yield before water 

application and could also predict future water demand for irrigated crops with changing 

final spring snowmelt.  

Changes in crop production and irrigation demand in response to changing 

snowmelt timing are especially of concern in semi-arid production regions that do not 

receive adequate precipitation throughout the growing season. Idaho is a state of 

particular interest in this problem, as much of the state depends on snowmelt for water 

supply with 62% of annual precipitation falling as snow (Serreze et al. 1999). According 

to the 2012 Census of Agriculture, about 32% of farmland in Idaho is non-irrigated 
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(National Agricultural Statistics Service 2014). Most of Idaho’s water diversions are used 

in irrigation and non-irrigated farmers without the appropriate water rights are prohibited 

from applying supplemental irrigation water during the growing season. In Idaho, 

changing snowmelt date is well documented and has become both earlier and more 

variable within the last 20 years (Kunkel and Pierce 2010), a trend that will likely impact 

dryland production.  

In this paper, we aim to establish the magnitude and direction of snowmelt timing 

impacts on crop yield in Idaho. Idaho’s diverse climate and physiography make it a good 

place to study how climate and physiographic controls affect the relationship between 

snowmelt timing and crop yield. Notably, the arid production region of the Snake River 

Plain (running through Southwest and Southcentral Idaho) receives little precipitation 

throughout the growing season and primarily subsists on irrigated production. In contrast, 

Northern and Eastern Idaho receive much more precipitation, thereby supporting more 

dryland crops. We utilize Idaho’s diverse climate and physiographic landscape to test the 

impact of changing snowmelt timing on yield in different production regions that will 

likely experience different effects. 

We use empirical methods to identify the historical relationship between 

snowmelt timing in Idaho and county-level agricultural yield. An empirical approach is 

compelling as we can observe actual changes in a complicated system rather than 

simplifying simulations. Many empirical studies have successfully investigated climate 

change impacts on crop yield (Auffhammer and Schlenker 2014; Lobell et al. 2007, 

Lobell and Burke 2010, Sarker et al. 2012). In contrast, physical modeling is data-

intensive to calibrate and typically produces simplified solutions. The robust historical 
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dataset of reconstructed final snowmelt date produced by Kunkel and Pierce gives us a 

lengthy time series (spanning 1938-2007) with which to explore the historical impact of 

changing snowmelt timing on yield. We use two complementary statistical methods and 

retrospective data to answer the following questions:   

(1) Has snowmelt timing impacted crop yield and where are these effects strongest? 

(2) What is the direction of impact and what are the climatic and physiographic 

controls that affect the direction and strength of the relationship? 

Complementary parametric and non-parametric estimation techniques allow us to 

explore the impact of snowmelt timing at sixteen SNOTEL stations in Idaho on non-

irrigated wheat and barley yield. We hypothesize that these methods will identify a 

relationship between snowmelt timing and yield that varies in direction. For example, in 

Northern (humid) Idaho, an early snowmelt date may increase crop yield by extending 

the growing season. However, in Southern (arid) Idaho, an early snowmelt date may 

decrease crop yield by decreasing the total water available to crops over the growing 

season.  

To test the relationship between snowmelt timing and yield, we first estimate a 

parametric multiple linear regression model that controls for climatic variables (e.g., 

precipitation and growing degree-days) and spatial differences between counties (e.g., 

elevation) that also impact crop yield. This parametric regression allows us to extract the 

partial impact of snowmelt timing on historical yield, and establish the direction and 

magnitude of its influence. As this methodology imposes an assumption that the 

relationship between snowmelt timing and yield is linear, we additionally utilize non-

parametric techniques to identify non-linear controls on the direction of the relationship. 
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Together, these techniques reveal the underlying relationship between snowmelt timing 

and yield, as well as the factors that control the direction of impact. 

Using these two statistical techniques, we find that snowmelt timing has 

significantly impacted non-irrigated wheat and barley yield independently of climatic and 

physiographic characteristics. Early snowmelt generally reduces both wheat and barley 

yields; however, in some regions early snowmelt corresponds with increased crop yields. 

Despite most regions experiencing lower yield when snow melts early, several variables 

identify the regions that appear to benefit from early snowmelt. Notably, spring and 

summer precipitation may buffer the negative impact of early snowmelt timing on yield. 

In addition to precipitation, several biophysical characteristics of the county and 

SNOTEL stations (such as latitude, elevation, and topography) predict the varied 

direction of impact. Identification of climatic and physiographic controls on this 

relationship gives producers in snow-dominated regions a pertinent piece of information 

for navigating their expected yield changes in response to climate change. A decrease in 

baseline yield in arid production regions under future early snowmelt timing will almost 

certainly increase demand for irrigation water—a result with serious implications for 

water managers in the West. 

 



7 
 

 

 

2 STUDY REGION 

Idaho’s diverse climate and physiography provides a range of different regions to 

study the relationship between snowmelt timing and crop yield. Historical crop yield data 

exists at the county level proximal to SNOTEL stations for which historical snowmelt 

timing also exists (Figure 2.3), giving us a robust dataset with which to test controls on 

this relationship. Below, we discuss how agricultural production and 

climatic/physiographic characteristics vary spatially across Idaho 

2.1 Agricultural Landscape  

Barley and wheat are two of the most abundant dryland crops produced for 

harvest in Idaho, with non-irrigated acres making up about 55% of total wheat production 

and 36% of total barley production (National Agricultural Statistics Service 2014).  Four 

major crop districts in Idaho (Figure 2.1) represent broadly different crop choices, 

production practices, and climatic/soil conditions (Patterson and Painter 2013): 1) 

Northern Idaho (NI); 2) Southwestern Idaho (SWI); 3) Southcentral Idaho (SCI); and 4) 

Eastern Idaho (EI).  Table 2.1 summarizes how several production metrics vary by crop 

district including the total acres of production, percentage of non-irrigated land, average 

wheat yield, and average barley yield. Crop district summary statistics are calculated by 

averaging county-level summary statistics. Detailed summary statistics by county are 

presented in Appendix A, Tables A.4 (Wheat) and A.5 (Barley). 
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Figure 2.1. Map of the four Crop Districts that characterize the agricultural 
landscape of Idaho (Patterson and Painter 2013): 1) Northern Idaho (NI); 2) 
Southwestern Idaho (SWI); 3) Southcentral Idaho (SCI); and 4) Eastern Idaho (EI).  
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Table 2.1. Non-irrigated production statistics by crop district from the 2012 
Census of Agriculture (National Agricultural Statistics Service 2014). Crop yield is 
in units of bushels per acre [bpa]. Crop districts are labeled in Figure 2.1. 

Crop District Harvested 

Acres 

Non-Irrigated 

land 

Dryland Wheat 

Yield [bpa] 

Dryland Barley 

Yield [bpa] 

NI 828,000 95% 49 44 

SWI 621,000 19% 45 45 

SCI 1,171,000 13% 23 26 

EI 1,900,000 24% 24 28 

Idaho Total  4,505,000 34% 29 30 

 

2.2 Climate and Physiographic Landscape 

The climate variable of primary interest in this study, precipitation falling as 

snow, differs in distribution across the state with the most snow falling in the 

mountainous regions of central Idaho. Climate and elevation gradients diversify the 

state’s landscape (Figure 2.2) and Table 2.2 summarizes several climate variables by crop 

district. Köppen-Geiger climate zones classify Northern and Eastern Idaho as a “fully 

humid snow climate” whereas Southwest and South central Idaho is arid (Kottek et al. 

2006). In addition to being arid, the Snake River Plain (area of low elevation crossing 

Southwest and South central Idaho) is classified as “summer dry with hot summers” 

(Kottek et al. 2006). The fully humid classification of Northern and Eastern Idaho 

indicates that they receive more summer precipitation relative to the Snake River Plain. 

Many of the climate and physiographic characteristics in Idaho (Figure 2.2) are correlated 

with snowfall, making it necessary to consider the climate and physiographic landscape 

when teasing apart the partial impact of snowmelt timing.   Also, the diversity of climate 
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and physiographic characteristics give us a range of conditions across the state for 

investigating controls on the relationship between snowmelt timing and crop yield. 

Over the period of record for crop yield data in Idaho (starting in 1938), the final 

snowmelt date is becoming earlier over time (Figure 2.3). The diverse crop districts of 

Idaho will almost certainly be impacted by this projected early snowmelt timing in 

different ways. Agricultural production in Idaho relies on snowmelt as a water source in 

all crop districts and we expect changes in the timing of snowmelt to influence all 

regions, even those where snow comprises a minor percentage of the total annual 

precipitation. 
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Figure 2.2. Climate and physiographic characteristics of Idaho. All presented 
climate data is the annual 30-year climate normal from 1981-2010 (PRISM Climate 
Data): (A) Elevation (800-m DEM), (B) Precipitation, (C) Maximum temperature, 
(D) Minimum temperature. 

 

 

A 

C D 

B 
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Table 2.2. Climate summary statistics by crop district—Northern Idaho (NI), 
Southwestern Idaho (SWI), Southcentral Idaho (SCI), Eastern Idaho (EI), and State 
Total—for minimum temperature [°C], maximum temperature [°C], precipitation 
[mm], and total snowfall [cm]. 

Region Variable Mean StDev Min Max 

NI Minimum Temperature 2.8 0.8 1.6 3.7 

 Maximum Temperature 15.5 1.5 14.0 17.4 

 Precipitation 54.6 10.9 35.0 71.8 

 Total Snow 9.3 2.2 6.9 12.3 

SCI Minimum Temperature 1.8 3.0 -3.8 5.1 

 Maximum Temperature 16.9 2.3 12.3 20.0 

 Precipitation 32.2 14.7 15.1 56.1 

 Total Snow 6.5 8.6 1.2 29.2 

SWI Minimum Temperature 0.3 2.0 -2.9 2.5 

 Maximum Temperature 15.3 1.4 13.4 17.3 

 Precipitation 23.2 3.1 19.8 28.2 

 Total Snow 6.5 3.8 3.0 14.8 

EI Minimum Temperature -0.9 1.4 -2.9 2.1 

 Maximum Temperature 13.9 1.2 11.6 15.6 

 Precipitation 27.5 6.4 20.2 40.8 

 Total Snow 9.1 3.9 5.3 18.8 

State Minimum Temperature 0.7 2.4 -3.8 5.1 

 Maximum Temperature 15.2 1.9 11.6 20.0 

 Precipitation 33.5 14.6 15.1 71.8 

 Total Snow 8.0 5.1 1.2 29.2 
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Figure 2.3. Historical reconstructions of snowmelt timing at Idaho SNOTEL 
stations (Kunkel and Pierce 2010). Each data point represents the mean of snowmelt 
timing at 16 SNOTEL stations within each year, ± the standard deviation between 
stations. 
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3 DATA 

This section describes the data used in estimation, including data sources and 

variable calculations. Detailed data sources are presented in Appendix A, Tables A.1 – 

A.3. Detailed summary statistics by county and SNOTEL station are reported in 

Appendix A, Tables A.4 – A.12. 

3.1 Agricultural Yield 

Non-irrigated wheat and barley yield is compiled in 43 Idaho counties from 

United States Department of Agriculture survey data 1938-2008 as a county-level, annual 

estimate in units of bushels per acre [bpa] (National Agricultural Statistics Service 2014). 

To account for yield increases over time due to technological advances, we detrend each 

yield series and use the negative residual yield in all statistical analyses. Zhu et al. (2011) 

debates the varying methodologies in detrending yield data; for the purposes of this 

study, we use a linear model to detrend yield by year. The following steps produce our 

annual, detrended yield data.  

 

(1) Estimate a best fit line (𝑌𝑓𝑖𝑡) through observed yield (𝑌𝑜𝑏𝑠) over time using 

the method of ordinary least squares (Equation 3.1). 

 𝑌𝑓𝑖𝑡 = β ∗ Year +  α    (Eq. 3.1) 

(2) Calculate detrended yield (𝑌𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) using the negative residual between the 

best fit yield (𝑌𝑓𝑖𝑡) and observed yield (𝑌𝑜𝑏𝑠)  (Equation 3.2). 

𝑌𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = −(𝑌𝑓𝑖𝑡 − 𝑌𝑜𝑏𝑠)   (Eq. 3.2) 
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For the remainder of analyses, the detrended yield data (𝑌𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) from Equation 

3.2 is used to represent county-level yield. Figure 3.1 shows yield changes over time 

graphically; including the observed yield data, the linear fit to the raw data, and the 

subsequent detrended data in four counties that represent each crop district of Idaho. 

Table 3.1 lists the slope (β) of each best fit line from Equation 3.1. 
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(a) NI – Bonner County

 

(b) SWI – Ada County

 
(c) SCI – Camas County

 

(d) EI – Teton County

 
Figure 3.1. Yield increases over time in four Idaho counties representing the four crop districts of Idaho: (a) Northern Idaho represented 
by Bonner County, (b) Southwestern Idaho represented by Ada County, (c) Southcentral Idaho represented by Camas County, and (d) 
Eastern Idaho represented by Teton County. “Raw” and “Detrended” estimates are those before and after detrending, respectively.  
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Table 3.1. Slopes (𝛃) used in de-trending analysis, calculated from Equation 3.1. 

County Number County Name Barley Slope Wheat Slope 

1 Ada 0.15 0.02 

2 Adams 0.25 0.29 

3 Bannock 0.04 0.14 

4 Bear Lake 0.05 0.05 

5 Benewah 0.63 0.67 

6 Bingham 0.06 0.10 

7 Blaine 0.27 0.09 

8 Boise 0.29 0.28 

9 Bonner 0.53 0.78 

10 Bonneville 0.16 0.20 

11 Boundary 0.77 0.78 

12 Butte 0.09 0.39 

13 Camas 0.04 -0.01 

14 Canyon 0.14 0.10 

15 Caribou 0.31 0.26 

16 Cassia 0.22 0.16 

17 Clark 0.28 0.25 

18 Clearwater 0.42 0.53 

19 Custer 0.02 0.50 

20 Elmore 0.29 0.06 

21 Franklin 0.05 0.13 
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22 Fremont 0.35 0.29 

23 Gem 0.20 0.23 

24 Gooding 0.25 0.08 

25 Idaho 0.49 0.70 

26 Jefferson 0.33 0.42 

27 Jerome 0.05 0.10 

28 Kootenai 0.56 0.74 

29 Latah 0.58 0.74 

30 Lemhi 0.23 -0.10 

31 Lewis 0.51 0.61 

32 Lincoln 0.31 0.22 

33 Madison 0.21 0.19 

34 Minidoka 0.32 0.34 

35 Nez Perce 0.61 0.66 

36 Oneida 0.06 0.10 

37 Owyhee 0.08 0.31 

38 Payette 0.23 0.40 

39 Power 0.04 0.18 

40 Teton 0.21 0.21 

41 Twin Falls 0.16 0.28 

42 Valley 0.31 0.40 

43 Washington 0.25 0.24 
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3.2 Climate Characteristics 

The date of final spring snowmelt is historically reconstructed from streamflow 

records as the last Julian day in a water year that snow water equivalent (SWE) becomes 

zero (Kunkel and Pierce 2010). In this study, we use final spring snowmelt date from 16 

SNOTEL stations throughout Idaho (Figure 3.1) with a period of record beginning as 

early as 1901 at some SNOTEL stations. The average length of record is 65 years, and we 

use data beginning in 1938 to span our length of crop yield data. We disregarded data 

from SNOTEL stations outside of Idaho. 

Daily precipitation [mm], maximum and minimum temperature [°C] are collected 

in 24 counties from Global Historical Climate Network (GHCN) sites (Peterson and Vose 

1997). Each GHCN site is used to estimate average county-level climate (see Table A.1 

for pairings). Cumulative precipitation is summed over three different periods—annual 

(𝑃𝑎𝑛𝑛), summer (𝑃𝑠𝑢𝑚), and spring (𝑃𝑠𝑝𝑟). Cumulative precipitation is calculated if the 

annual time-series has at least 360 days of complete data. 

(1) Cumulative annual precipitation (𝑃𝑎𝑛𝑛) occurs over a calendar year.  

(2) Cumulative summer precipitation (𝑃𝑠𝑢𝑚) occurs in May, June, and July.  

(3) Cumulative spring precipitation (𝑃𝑠𝑝𝑟) occurs in April and May. 

The three calculations of 𝑃 are used in different regression models as different predictor 

variables. 

Growing degree-days are summed over three growing season lengths—early 

(𝐺𝐷𝐷𝑒𝑎𝑟), average (𝐺𝐷𝐷𝑎𝑣𝑔), and maximum (𝐺𝐷𝐷𝑚𝑎𝑥). Growing degree-days (𝐺𝐷𝐷) 

are calculated for the growing season within each county (𝑖) and year (𝑡) using the 

rectangle method (Eq. 3.3): 
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𝐺𝐷𝐷𝑖,𝑡 = ∑ (𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛)
2

−𝑁
𝑗=1 𝑇𝑏𝑎𝑠𝑒   (Eq. 3.3) 

where 𝑗 represents each day in the consecutive growing season. For both crops, the daily 

average temperature is calculated without allowing the recorded maximum or minimum 

to exceed the ranges of temperatures for which plant growth occurs: assumed to be 

𝑇𝑚𝑎𝑥 = 30°C and 𝑇𝑚𝑖𝑛 = 0°C. The minimum temperature at which plant growth will 

occur (𝑇𝑏𝑎𝑠𝑒) is also set equal to 0°C for both crops. Because both barley and wheat have 

similar growing seasons, growing degree-days are summed over the same three 

theoretical growing season lengths, with the number of days listed: 

(1) 𝐺𝐷𝐷𝑎𝑣𝑔 = Average growing season (N = 153): April 1st – August 31st  

(2) 𝐺𝐷𝐷𝑒𝑎𝑟 = Early growing season (N = 213): February 1st – August 31st  

(3) 𝐺𝐷𝐷𝑚𝑎𝑥 = Maximum growing season (N = 274): February 1st – October 

31st  

We calculate cumulative growing degree-days for the first growing season if the daily 

temperature record is complete (no missing days). Because the second two growing 

seasons are longer, we calculate growing degree-days if the time series is missing up to 2 

days of data on temperature. The three calculations of 𝐺𝐷𝐷 are used in different 

regression models as different predictor variables.  

Monthly climate statistics of historical precipitation [mm], minimum temperature 

[°C], maximum temperature [°C], and snow depth [cm] are collected in 43 Idaho 

counties. These climate statistics were calculated by US Climate Data, USCD, 

(http://usclimatedata.com) or the Western Regional Climate Center, WRCC, 

(http://www.wrcc.dri.edu/). Appendix A (Table A.3) lists the city used to represent each 
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county-level climate normal along with the period of record used to compute a climate 

normal.   

3.3 Physiographic Characteristics 

Spatial variables are collected in 43 Idaho counties using ArcGIS Spatial Analyst 

toolbox from a digital elevation model (DEM), derived from a 3-arcsec (~80 m) National 

Elevation Dataset DEM into a 30-arcsec (~800 m) DEM (Daly et al. 2008). These 

include latitude at the SNOTEL station [°N], elevation at the SNOTEL station [m], 

county mean elevation [m], county standard deviation of elevation [m], elevation 

difference between the SNOTEL station and the county mean [m], and distance from the 

county to the SNOTEL station [m].   

To calculate the distance between a county and a SNOTEL station, we either used 

the county centroid or the agricultural field centroid (Figure 3.2). All fields in Figure 3.1 

are approximate locations of the non-irrigated agriculture occurring within a county. If it 

was difficult to visually distinguish non-irrigated agriculture from irrigated agriculture, 

the entire agricultural region was included. 
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Figure 3.2. Approximate non-irrigated field locations (green) are visually 
extracted in several Idaho counties. 
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4 METHODS 

Timing of snowmelt captures other climate characteristics (such as temperature) 

that also influence crop yield. We use the following methodology to control for these 

covariates and establish partial influence of snowmelt timing and yield. We additionally 

identify potential spatial controls on the varying direction of the relationship. We outline 

a comprehensive list of assumptions for our methodology in Appendix B. 

To quantify the relationship between snowmelt timing and yield, we estimate a 

Pearson’s linear correlation coefficient (𝑟ℎ𝑜) between final snowmelt date (𝑥) at 16 

SNOTEL stations and non-irrigated crop yield (𝑦𝑐)—wheat yield N = 688; barley yield N 

= 688—in 43 Idaho counties using Equation 4.1. 

𝑟ℎ𝑜𝑐 = ∑𝑥𝑦𝑐
�∑𝑥2 ∑𝑦𝑐2

    (Eq. 4.1) 

where the subscript c denotes the specific crop: wheat (𝑦𝑤) or barley (𝑦𝑏).  

The same 43 counties were used in the non-parametric analysis (Figure 4.1). A 

smaller subset of 24 counties was used in the parametric analysis due to their proximity 

to SNOTEL stations (Figure 4.1). Parametric and non-parametric methods are presented 

separately in detail below. 
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Figure 4.1. Sample of counties used in the parametric and non-parametric analyses. Dark-shaded counties were used in (A) 
parametric analysis (N = 24) and (B) non-parametric analysis (N = 43). SNOTEL station locations are shown as blue dots, with 
station names listed in Table 4.1. 

A B 
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Table 4.1. SNOTEL stations corresponding to site ID from Figure 4.1 map. 

 

4.1 Parametric Regression 

In the parametric methodology, we quantify the partial impact of snowmelt timing 

on historical crop yield. Twenty-four counties are included in this regression analysis due 

to their proximal location to SNOTEL stations and robust historical record of non-

irrigated crop yield (shaded counties, Figure 4.1). In this study, final snowmelt date at a 

SNOTEL station is assumed to correlate with an unmeasurable variable of county-level 

snowmelt date. To ensure the best representative station is chosen, the SNOTEL station is 

visually matched to the county based on distance and watershed boundaries. A detailed 

description of SNOTEL-County pairings is discussed in Appendix A. Table A.1 presents 

the specific pairing justification used for each county.  

We isolate the partial impact of snowmelt timing by controlling for other climate 

and physiographic characteristics. We estimate coefficients in each model to attribute 

Site Number Station Name Site Number Station Name 

1 Atlanta Summit 9 Mica Creek 

2 Brundage Reservoir 10 Mores Creek Summit 

3 Elk Butte 11 Mosquito Ridge 

4 Hidden Lake 12 Mountain Meadows 

5 Hyndman 13 Savage Pass 

6 Jackson Peak 14 Schwartz Lake 

7 Long Valley 15 Squaw Flat 

8 Meadow Lake 16 Trinity Mountain 
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variation in the non-irrigated wheat and barley yield (𝑌𝑖𝑡) to variation in snowmelt date 

(𝑆𝑀𝑖𝑡), precipitation (𝑃𝑖𝑡), and growing degree-days (𝐺𝐷𝐷𝑖𝑡). We include county-level 

fixed effects to control for within-year effects that differ across counties. Including 

county-level fixed effects minimizes omitted variable bias in the regression model. Fixed 

effects allow the regression equation intercept to be different in each county, capturing all 

predictor variables that we are not measuring within a county (such as elevation, soil 

moisture, farmer decisions, etc.). In each model (Equations 4.2 and 4.3), the term 𝜀𝑖,𝑡𝐹𝐸 is 

an idiosyncratic error term that explains random deviations from the predicted regression 

line and may include omitted variables, randomness, measurement error, and/or modeling 

choices. We assume that 𝜀𝑖,𝑡𝐹𝐸  ~ 𝑁𝐼𝐼𝐷(0,𝜎2) and test whether this assumption is 

appropriate using the diagnostics presented in Appendix B. All parameters are estimated 

using the method of ordinary least squares. 

The first “Total” regression model (Equation 4.2) estimates non-irrigated wheat 

and barley yield (𝑌𝑖,𝑡) separately as a function of snowmelt date (𝑆𝑀𝑖,𝑡), 

precipitation (𝑃𝑖,𝑡), and growing degree-days (𝐺𝐷𝐷𝑖,𝑡).  

 

𝑌(𝑤; 𝑏)𝑖,𝑡𝐹𝐸  =  𝛽𝑆𝑀𝑆𝑀𝑖,𝑡
𝐹𝐸  +  𝛽𝐺𝐷𝐷𝐺𝐷𝐷(𝑎𝑣𝑔; 𝑒𝑎𝑟;𝑚𝑎𝑥)𝑖,𝑡𝐹𝐸  

+  𝛽𝑃𝑃(𝑎𝑛𝑛; 𝑠𝑢𝑚; 𝑠𝑝𝑟)𝑖,𝑡𝐹𝐸  +  𝜀𝑖,𝑡𝐹𝐸 

         (Eq. 4.2) 

Wheat yield (𝑌𝑤𝑖𝑡) and barley yield (𝑌𝑏𝑖𝑡) are estimated separately according to 

nine combinations of explanatory variables (with the three above stated measures of 

growing degree-days and three measures of precipitation used in separate models). 
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Therefore, eighteen total regression models are estimated using the “Total” regression 

model (Equation 4.2)—9 for predicting wheat yield and 9 for predicting barley yield.  

We estimate a second “Interaction” regression model (Equation 4.3) that uses the 

same predictor variables as above with the addition of an interaction dummy variable to 

identify the interaction between correlation direction and predictor variables.  

 

𝑌(𝑤; 𝑏)𝑖,𝑡𝐹𝐸  =  𝛽𝑆𝑀𝑆𝑀𝑖,𝑡
𝐹𝐸  +  𝛽𝐺𝐷𝐷𝐺𝐷𝐷(𝑎𝑣𝑔; 𝑒𝑎𝑟;𝑚𝑎𝑥)𝑖,𝑡𝐹𝐸  +  𝛽𝑃𝑃(𝑎𝑛𝑛; 𝑠𝑢𝑚; 𝑠𝑝𝑟)𝑖,𝑡𝐹𝐸

+ 𝛽𝑆𝑀(𝐶𝑖 𝑆𝑀𝑖,𝑡
𝐹𝐸  ) + 𝛽𝐺𝐷𝐷(𝐶𝑖 𝐺𝐷𝐷(𝑎𝑣𝑔; 𝑒𝑎𝑟;𝑚𝑎𝑥)𝑖,𝑡𝐹𝐸)

+ 𝛽𝑃(𝐶𝑖 𝑃(𝑎𝑛𝑛; 𝑠𝑢𝑚; 𝑠𝑝𝑟)𝑖,𝑡𝐹𝐸+ ) + 𝜀𝑖,𝑡𝐹𝐸 

        (Eq. 4.3) 

We hypothesize that different processes govern the impact of snowmelt timing on 

yield in positively and negatively correlated counties. We test this hypothesis using an 

interaction term, 𝐶𝑖 , which allows the marginal effect of each predictor to differ between 

positively and negatively correlated counties. A negative correlation between snowmelt 

date and yield indicates that earlier snowmelt dates correspond with increased crop yield, 

on average. Conversely, a positive correlation between snowmelt date and yield indicates 

that earlier snowmelt date corresponds with decreased crop yield, on average. Some 

counties exhibit a different correlation direction for the two crops, wheat and barley. A 

summary of those correlation coefficients and significance between non-irrigated wheat 

or barley yield are included in Table A.2.  

A dummy variable, 𝐶𝑖, is constructed as follows according to the direction of the 

correlation coefficient between final snowmelt date and yield. 𝐶𝑖 is then multiplied by 
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predictor variables (precipitation, snowmelt date, and growing degree-days) and each 

resulting interaction term is included in the model as a predictor variable.  

 

𝐶𝑖 =  �
 1 𝑖𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

ℎ
  0  𝑖𝑓𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

   (Eq. 4.4) 

 

The positively (𝐶𝑖 = 1) and negatively (𝐶𝑖 = 0) correlated counties are presented 

below in Table 4.2 and Figure 4.2. These county-SNOTEL pairings were chosen 

according to the aforementioned methodology in Appendix A as to not bias the 

coefficient estimates by only including significant correlations. Table 4.3 contains a 

summary of all regression models—“Total” and “Interaction”—with the included 

variables and number of observations. 

Table 4.2. Pearson’s linear correlation coefficients—barley (𝒓𝒉𝒐𝒃) and wheat 
(𝒓𝒉𝒐𝒘)—between county-level crop yield and snowmelt timing at the indicated 
SNOTEL station. ‘*’ denotes significance at P ≤ 0.10, ‘**’ denotes significance at P ≤ 
0.05, and ‘***’ denotes significance at P ≤ 0.01.   

County SNOTEL station 𝑟ℎ𝑜𝑏 𝑟ℎ𝑜𝑤 

Ada Trinity 0.1387 0.1654 

Adams Brundage 0.1853 -0.1349 

Benewah Micah 0.0680 -0.1159 

Blaine Hyndman 0.0713 0.3005** 

Boise Jackson Peak 0.2624* 0.2061 

Bonner Hidden Lake -0.2386* -0.0014 

Boundary Hidden Lake -0.195 -0.1783 

Butte Hyndman 0.2594 0.1114 
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Camas Atlanta 0.3939** 0.4414*** 

Clearwater Mountain Meadows -0.0546 -0.0397 

Custer Schwartz 0.3628 -0.1086 

Elmore Trinity 0.4176*** 0.3884** 

Gem Jackson Peak 0.0780 0.3798** 

Gooding Trinity 0.0602 0.1983 

Idaho Mountain Meadows 0.0432 0.0461 

Kootenai Mosquito Ridge 0.0076 -0.2019 

Latah Elk Butte 0.1952 0.0521 

Lewis Mountain Meadows -0.0153 0.0457 

Lincoln Hyndman 0.0180 0.2157 

Minidoka Hyndman 0.3911** 0.2431* 

Nez Perce Mountain Meadows 0.0731 0.1733 

Payette Jackson Peak 0.1625 0.0971 

Valley Long Valley -0.1174 -0.2292 

Washington Squaw Flat 0.0746 0.1053 
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       𝐶𝑖 = 1; Correlation is positive           𝐶𝑖 = 0; Correlation is negative       SNOTEL stations 

Figure 4.2. Dummy variable, 𝑪𝒊, in each county characterizes the correlation 
direction between yield and snowmelt date. Orange designates a positive correlation 
(𝑪𝒊 = 1) and blue designates a negative correlation (𝑪𝒊 = 0) between non-irrigated 
yield—(A) Barley, (B) Wheat—and final snowmelt date.  

 

  

  

A B 
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Table 4.3. Summary table of all regression models. Equations 4.2 “Total” and 
4.3 “Interaction” were used to predict wheat yield and barley yield separately using 
every combination of precipitation and growing degree-day variable summation. 
Column one of this table abbreviates the model type for future reference in study 
results. The model type abbreviation in column one denotes the following 
information separated by a period: Type of regression model (“Total” uses 
Equation 4.2, “Interaction” uses Equation 4.3); specific crop; precipitation variable; 
growing degree-day variable. Each variable term is expanded in the subsequent 
columns. The same snowmelt timing variable is used as a predictor in every model 
type. Number of observations for each model type are denoted in the final column. 

Model Type 𝑌               𝑃         𝐺𝐷𝐷 𝑁𝑜𝑏𝑠 

Total.𝑌𝑤.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑎𝑣𝑔 Wheat  Annual Average 467 

Total.𝑌𝑤.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑒𝑎𝑟 Wheat  Annual Early 631 

Total.𝑌𝑤.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑚𝑎𝑥 Wheat  Annual Maximum 575 

Total.𝑌𝑤.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑎𝑣𝑔 Wheat  Spring Average 467 

Total.𝑌𝑤.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑒𝑎𝑟 Wheat  Spring Early 631 

Total.𝑌𝑤.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑚𝑎𝑥 Wheat  Spring Maximum 575 

Total.𝑌𝑤.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑎𝑣𝑔 Wheat  Summer Average 467 

Total.𝑌𝑤.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑒𝑎𝑟 Wheat  Summer Early 631 

Total.𝑌𝑤.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑚𝑎𝑥 Wheat  Summer Maximum 575 

Total.𝑌𝑏.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑎𝑣𝑔 Barley  Annual Average 504 

Total.𝑌𝑏.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑒𝑎𝑟 Barley  Annual Early 676 

Total.𝑌𝑏.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑚𝑎𝑥 Barley  Annual Maximum 621 

Total.𝑌𝑏.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑎𝑣𝑔 Barley  Spring Average 504 

Total.𝑌𝑏.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑒𝑎𝑟 Barley  Spring Early 676 

Total.𝑌𝑏.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑚𝑎𝑥 Barley  Spring Maximum 621 

Total.𝑌𝑏.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑎𝑣𝑔 Barley  Summer Average 504 



32 
 

 

 

Total.𝑌𝑏.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑒𝑎𝑟 Barley  Summer Early 676 

Total.𝑌𝑏.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑚𝑎𝑥 Barley  Summer Maximum 621 

Interaction.𝑌𝑤.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑎𝑣𝑔 Wheat  Annual Average 467 

Interaction.𝑌𝑤.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑒𝑎𝑟 Wheat  Annual Early 631 

Interaction.𝑌𝑤.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑚𝑎𝑥 Wheat  Annual Maximum 575 

Interaction.𝑌𝑤.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑎𝑣𝑔 Wheat  Spring Average 467 

Interaction.𝑌𝑤.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑒𝑎𝑟 Wheat  Spring Early 631 

Interaction.𝑌𝑤.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑚𝑎𝑥 Wheat  Spring Maximum 575 

Interaction.𝑌𝑤.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑎𝑣𝑔 Wheat  Summer Average 467 

Interaction.𝑌𝑤.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑒𝑎𝑟 Wheat  Summer Early 631 

Interaction.𝑌𝑤.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑚𝑎𝑥 Wheat  Summer Maximum 575 

Interaction.𝑌𝑏.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑎𝑣𝑔 Barley  Annual Average 504 

Interaction.𝑌𝑏.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑒𝑎𝑟 Barley  Annual Early 676 

Interaction.𝑌𝑏.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑚𝑎𝑥 Barley  Annual Maximum 621 

Interaction.𝑌𝑏.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑎𝑣𝑔 Barley  Spring Average 504 

Interaction.𝑌𝑏.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑒𝑎𝑟 Barley  Spring Early 676 

Interaction.𝑌𝑏.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑚𝑎𝑥 Barley  Spring Maximum 621 

Interaction.𝑌𝑏.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑎𝑣𝑔 Barley  Summer Average 504 

Interaction.𝑌𝑏.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑒𝑎𝑟 Barley  Summer Early 676 

Interaction.𝑌𝑏.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑚𝑎𝑥 Barley  Summer Maximum 621 
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4.2 Non-parametric Regression 

In the non-parametric methodology, we identify potential mechanisms responsible 

for the varied correlation direction. We do this using classification/regression trees to 

classify the direction/magnitude of the previously introduced Pearson’s linear correlation 

coefficients  𝑟ℎ𝑜𝑐 (Equation 4.1). A classification tree predicts the correlation direction:  

𝑟ℎ𝑜𝑐 = 1 if positive (meaning yield is historically lower in years with earlier snowmelt 

timing) and  𝑟ℎ𝑜𝑐 = 0 if negative (meaning yield is historically higher in years with 

earlier snowmelt timing). A regression tree predicts the correlation magnitude of 𝑟ℎ𝑜𝑐 by 

classifying the coefficient value. 

The following criteria are considered when including a correlation coefficient in 

the analysis: 

1) 𝑁𝑦𝑟𝑠: The length of the time series used to calculate the correlation coefficient is 

predicted using a time series 𝑁𝑦𝑟𝑠 ≥ 30 and 𝑁𝑦𝑟𝑠 ≥ 20.  

2) 𝑃𝑟ℎ𝑜: Trees predict significant correlation coefficients (𝑃𝑟ℎ𝑜 ≤ 0.10) and to predict 

all calculated coefficients (𝑃𝑟ℎ𝑜 ≤ 1.0). 

Of the N = 688 total calculated coefficients, the sample size (𝑁𝑡𝑟𝑒𝑒) of correlation 

coefficient/direction used in each classification/regression tree is included in Table 4.4. 

More positive correlation coefficients—meaning yield is lower on average with an earlier 

snowmelt date—exist in all trees. The number of positive coefficients (𝑁𝑝𝑜𝑠) and 

percentage of total (% pos) are also summarized in Table 4.2. We use the entire dataset of 

calculated correlation coefficients (N = 𝑁𝑡𝑟𝑒𝑒) as the dependent variable to grow each 

tree.  
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Four categories describe the predictor variables in all classification and regression 

trees: Physiographic characteristics (x1), precipitation (x2), snowfall (x3), and 

temperature (x4). Table 4.5 lists the variable abbreviations and descriptions, with sixty-

five total variables used to grow each tree. Trees are terminated when all correlations are 

classified. In terminal trees, a single predictor variable occurs at each tree node, splitting 

the data until all data is classified. We then prune terminal trees to the best level, which 

has the least amount of nodes within one standard error of the minimum cost. 

Second, we utilize a random forest algorithm to generate classification and 

regression trees that randomly choose a subset of predictor variables from our total pool 

of 65 variables. The model produces 1000 trees with each tree using 10 random predictor 

variables from Table 4.5 to classify the correlation coefficients. Rather than outputting 

the best fit tree, the random forest approach outputs variable importance across all 

randomly generated trees. The random forest analysis accounts for the possibility that 

variables in the “best fit instance,” or pruned tree, may be highly correlated with other 

variables. In this scenario, the variable responsible for the mechanism that explains 

correlation direction will not be apparent in the “best fit tree.” Rather than considering 

the single best fit from the 65 variables in a single classification or regression tree, this 

method allows us to choose the most influential variables when other variables are 

omitted, outputting the relative variable importance.  

Predictor importance in the random forest analysis is calculated by dividing the 

summed changes in the mean squared error (MSE) after splits on every predictor by the 

number of branch nodes. Predictor importance ranges from -∞ to 1, with a value of zero 
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meaning that the variable has no importance in predicting the dependent variable. A 

predictor importance value greater than zero, therefore, indicates some importance. 

Table 4.4. Summary statistics for classification and regression trees.  

Tree # Crop 𝑁𝑦𝑟𝑠 𝑃𝑟ℎ𝑜 𝑁𝑡𝑟𝑒𝑒 𝑁𝑝𝑜𝑠 % pos 

w.1 Wheat ≥30 ≤0.10 106 93 87.7 

w.2 Wheat ≥20 ≤0.10 110 96 87.3 

w.3 Wheat ≥30 ≤1.0 (all) 576 376 65.3 

w.4 Wheat ≥20 ≤1.0 (all) 618 395 63.9 

b.1 Barley ≥30 ≤0.10 100 95 95.0 

b.2 Barley ≥20 ≤0.10 103 97 94.2 

b.3 Barley ≥30 ≤1.0 (all) 563 390 69.3 

b.4 Barley ≥20 ≤1.0 (all) 588 405 68.9 

 

Table 4.5. Predictor variables used in Classification/Regression trees to predict 
direction/magnitude of  𝒓𝒉𝒐𝒃 and 𝒓𝒉𝒐𝒘.  

Abbreviation Description of Predictor Variable 

x1.Distance Distance between field/county centroid and SNOTEL station [m] 

x1.Zcounty County mean elevation [m] 

x1.Topo County standard deviation of elevation [m] – proxy for topography 

x1.Zsnotel SNOTEL station elevation [m] 

x1.LatSnotel SNOTEL station latitude [°N] 

x1.Zdiff Elevation difference between SNOTEL station and county mean [m] 

x1.County County (numeric value 1-43) 

x1.District Crop District (numeric value 1-4) 

x1.Snotel SNOTEL station (numeric value 1-16) 

x2.Precip1 Average Precipitation in January [mm] 
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x2.Precip2 Average Precipitation in February [mm] 

x2.Precip3 Average Precipitation in March [mm] 

x2.Precip4 Average Precipitation in April [mm] 

x2.Precip5 Average Precipitation in May [mm] 

x2.Precip6 Average Precipitation in June [mm] 

x2.Precip7 Average Precipitation in July [mm] 

x2.Precip8 Average Precipitation in August [mm] 

x2.Precip9 Average Precipitation in September [mm] 

x2.Precip10 Average Precipitation in October [mm] 

x2.Precip11 Average Precipitation in November [mm] 

x2.Precip12 Average Precipitation in December [mm] 

x2.Psum Average cumulative summer precipitation (May – July) [mm] 

x2.Pspr Average cumulative spring precipitation (April – May) [mm] 

x2.Pann Average cumulative annual precipitation [mm] 

x3.Snow1 Cumulative snow depth in January [cm] 

x3.Snow2 Cumulative snow depth in February [cm] 

x3.Snow3 Cumulative snow depth in March [cm] 

x3.Snow4 Cumulative snow depth in April [cm] 

x3.Snow5 Cumulative snow depth in May [cm] 

x3.Snow6 Cumulative snow depth in June [cm] 

x3.Snow7 Cumulative snow depth in July [cm] 

x3.Snow8 Cumulative snow depth in August [cm] 

x3.Snow9 Cumulative snow depth in September [cm] 

x3.Snow10 Cumulative snow depth in October [cm] 

x3.Snow11 Cumulative snow depth in November [cm] 

x3.Snow12 Cumulative snow depth in December [cm]  

x3.SnowAvg Cumulative average snow depth January – April [cm] 

x4.Tmin1 Average Minimum Temperature in January [°C] 

x4.Tmin2 Average Minimum Temperature in February [°C] 

x4.Tmin3 Average Minimum Temperature in March [°C] 

x4.Tmin4 Average Minimum Temperature in April [°C] 
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x4.Tmin5 Average Minimum Temperature in May [°C] 

x4.Tmin6 Average Minimum Temperature in June [°C] 

x4.Tmin7 Average Minimum Temperature in July [°C] 

x4.Tmin8 Average Minimum Temperature in August [°C] 

x4.Tmin9 Average Minimum Temperature in September [°C] 

x4.Tmin10 Average Minimum Temperature in October [°C] 

x4.Tmin11 Average Minimum Temperature in November [°C] 

x4.Tmin12 Average Minimum Temperature in December [°C] 

x4.Tmax1 Average Maximum Temperature in January [°C] 

x4.Tmax2 Average Maximum Temperature in February [°C] 

x4.Tmax3 Average Maximum Temperature in March [°C] 

x4.Tmax4 Average Maximum Temperature in April [°C] 

x4.Tmax5 Average Maximum Temperature in May [°C] 

x4.Tmax6 Average Maximum Temperature in June [°C] 

x4.Tmax7 Average Maximum Temperature in July [°C] 

x4.Tmax8 Average Maximum Temperature in August [°C] 

x4.Tmax9 Average Maximum Temperature in September [°C] 

x4.Tmax10 Average Maximum Temperature in October [°C] 

x4.Tmax11 Average Maximum Temperature in November [°C] 

x4.Tmax12 Average Maximum Temperature in December [°C] 

x4.GDDmax Average growing degree-days for “maximum” growing season 

x4.GDDavg Average growing degree-days for “average” growing season 

x4.GDDear Average growing degree-days for “early” growing season 

x4.Tstress Number of months with Tmax > 30°C (heat stress proxy) 
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5 RESULTS 

In this section, we first present the correlation between snowmelt timing and 

yield. Next, we present parametric and non-parametric results in separate sections. 

Parametric results establish the magnitude and direction of snowmelt timing impacts on 

yield. Non-parametric results determine select climatic/physiographic controls on this 

relationship. Written significance is established at P ≤ 0.10. 

The distribution of correlation coefficients is positively skewed, indicating that 

more counties exhibit a positive historical correlation between yield and snowmelt date 

(Figure 5.1). This positive skew means that on average, early snowmelt timing 

corresponds with lower non-irrigated crop yield in Idaho counties. The correlation 

analysis considered all SNOTEL-county pairings, regardless of distance from a SNOTEL 

station and watershed boundaries. Figure 5.2 shows the variation in this correlation 

coefficient within a single county dependent on which SNOTEL station is chosen to 

calculate the correlation coefficient. 
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        Correlation Coefficient (𝑟ℎ𝑜) 

Figure 5.1. Distribution of correlation coefficients between county-level crop 
yield—(a) Barley (b) Wheat—and snowmelt date. All coefficients are represented by 
gray bars and significant coefficients (N ≥ 25 years; P ≤ 0.10) are shown in red. Both 
distributions skew positively, indicating early snowmelt date corresponds to lower 
yield, on average, in most SNOTEL-County pairings. Few significant pairings 
correlate negatively.  

  

(a) Barley: 𝑟ℎ𝑜𝑏 
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           County 

 
Figure 5.2. Variation in the observed correlation between county-level yield—(a) 
Barley (b) Wheat—and snowmelt date at all stations. This figure demonstrates the 
standard deviation of 𝒓𝒉𝒐𝒄 when using different SNOTEL stations to calculate the 
coefficient. Data points represent a single correlation coefficient between snowmelt 
timing at a SNOTEL station (N = 16) and yield in a county (N = 43). See Table 3.1 
for county names (1:43). 
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(a) Barley: 𝑟ℎ𝑜𝑏 

(b) Wheat: 𝑟ℎ𝑜𝑤 
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𝐶𝑖 = 0; Correlation is negative          𝐶𝑖 = 1; Correlation is positive         SNOTEL stations 
Figure 5.3. Average of all correlation coefficients between non-irrigated yield—(A) Barley, (B) Wheat—in each county and 
snowmelt date at 16 SNOTEL stations. Orange designates a positive correlation and blue designates a negative correlation.  

  

A B 
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5.1 Estimation Results from the Parametric Model 

Regression model results are summarized in Tables 5.1 - 5.4. Each table presents 

the coefficient and significance of predictor variables and interaction terms for all 

estimated regression models.  

First, we present “Total” regression model results using Equation 4.2 without an 

interaction term for correlation direction. The partial impact of snowmelt timing did not 

significantly predict wheat or barley yield in any model. Spring and summer precipitation 

significantly predict barley yield, and more precipitation over these time periods 

corresponds with higher average historical yield (Table 5.1). All estimates for growing 

degree-days significantly predict barley yield, and a longer/warmer growing season 

corresponds with lower historical barley yield, on average. All estimates for precipitation 

(annual, spring, and summer) significantly predict wheat yield with historical yield being 

higher in years with more precipitation (Table 5.2). Growing degree-days did not 

significantly predict wheat yield in any model.  

Second, we present “Interaction” regression model results using Equation 4.3 with 

an interaction term for correlation direction. In all regression models, snowmelt timing 

significantly predicts barley yield (Table 5.3). This significance is true in both directions 

of impact according to the interaction term (shown in Figure 4.2). In most counties, 

barley yield is lower on average in years with earlier snowmelt timing. Snowmelt timing 

significantly predicts wheat yield in models using summer precipitation as a predictor 

variable (Table 5.4).  

In models where precipitation significantly predicts barley/wheat yield, more 

precipitation corresponds with higher historical yield on average. Precipitation 
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significantly predicts yield only when using spring and summer variables. Growing 

degree days significantly predict barley yield only, in models using “Average” and 

“Early” growing season months (Table 5.3). 

Table 5.1. Coefficient estimates for residual barley yield predicted using “Total” 
regression models that do not use an interaction term (Equation 4.2). We present 
the coefficients on each predictor variable in units of bushels per acre. ‘*’ denotes 
significance at P ≤ 0.10 ‘**’ denotes significance at P ≤ 0.05, and ‘***’ denotes 
significance at P ≤ 0.01.  

Model Type Snowmelt Precipitation Growing Degree-Days 

Total.𝑌𝑏.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑎𝑣𝑔 -0.0126 0.0055 -0.0074** 

Total.𝑌𝑏.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑒𝑎𝑟 -0.0012 0.0049 -0.0066*** 

Total.𝑌𝑏.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑚𝑎𝑥 0.0231 0.0027 -0.0045** 

Total.𝑌𝑏.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑎𝑣𝑔 -0.0089 0.0260** -0.0071** 

Total.𝑌𝑏.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑒𝑎𝑟 0.0055 0.0156* -0.0064*** 

Total.𝑌𝑏.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑚𝑎𝑥 0.0185 0.0170* -0.0047** 

Total.𝑌𝑏.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑎𝑣𝑔 -0.0198 0.0511*** -0.0055* 

Total.𝑌𝑏.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑒𝑎𝑟 -0.0127 0.0521*** -0.0055*** 

Total.𝑌𝑏.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑚𝑎𝑥 0.0043 0.0548*** -0.0033* 
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Table 5.2. Coefficient estimates for residual wheat yield predicted using “Total” 
regression models that do not use an interaction term (Equation 4.2). We present 
the coefficients on each predictor variable in units of bushels per acre. ‘*’ denotes 
significance at P ≤ 0.10, ‘**’ denotes significance at P ≤ 0.05, and ‘***’ denotes 
significance at P ≤ 0.01.  

Model Type Snowmelt Precipitation Growing Degree-Days 

Total.𝑌𝑏.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑎𝑣𝑔 -0.0083 0.01319** -0.0044 

Total.𝑌𝑏.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑒𝑎𝑟 0.0269 0.0086** -0.0014 

Total.𝑌𝑏.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑚𝑎𝑥 0.0304 0.0069* -0.0020 

Total.𝑌𝑏.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑎𝑣𝑔 0.0164 0.0218** -0.0044 

Total.𝑌𝑏.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑒𝑎𝑟 0.0353 0.0235** -0.0012 

Total.𝑌𝑏.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑚𝑎𝑥 0.0303 0.0243** -0.0025 

Total.𝑌𝑏.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑎𝑣𝑔 0.0044 0.0500*** -0.0028 

Total.𝑌𝑏.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑒𝑎𝑟 0.0233 0.0446*** -0.0008 

Total.𝑌𝑏.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑚𝑎𝑥 0.0187 0.0487*** -0.0016 
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Table 5.3. Coefficient estimates for residual barley yield predicted using “Interaction” regression models that use an 
interaction term (Equation 4.3). We present the coefficients on each predictor variable in units of bushels per acre. ‘*’ denotes 
significance at P ≤ 0.10, ‘**’ denotes significance at P ≤ 0.05, and ‘***’ denotes significance at P ≤ 0.01.  

Model Type Snowmelt Precipitation 
Growing 

Degree-Days 
𝑪𝒊 ∗ 𝑺𝑴 𝑪𝒊 ∗ 𝑷 𝑪𝒊 ∗ 𝑮𝑫𝑫 

Interaction.𝑌𝑏.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑎𝑣𝑔 -0.2315*** -0.0011 -0.0227*** 0.2726*** 0.0099 0.0180** 

Interaction.𝑌𝑏.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑒𝑎𝑟 -0.1614** -0.0030 -0.0129** 0.2068*** 0.0130* 0.0074 

Interaction.𝑌𝑏.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑚𝑎𝑥 -0.1113* -0.0066 -0.0074 0.1735** 0.0153* 0.0036 

Interaction.𝑌𝑏.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑎𝑣𝑔 -0.2559*** 0.0352** -0.0211*** 0.3141*** -0.0141 0.0167** 

Interaction.𝑌𝑏.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑒𝑎𝑟 -0.1859*** 0.0218 -0.0120** 0.2498*** -0.0071 0.0069 

Interaction.𝑌𝑏.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑚𝑎𝑥 -0.1447** 0.0252 -0.0059 0.2176*** -0.0104 0.0018 

Interaction.𝑌𝑏.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑎𝑣𝑔 -0.2205*** 0.0478*** -0.0131* 0.2576*** 0.0026 0.0090 

Interaction.𝑌𝑏.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑒𝑎𝑟 -0.1722*** 0.0435*** -0.0090* 0.2074*** 0.0149 0.0041 

Interaction.𝑌𝑏.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑚𝑎𝑥 -0.1234** 0.0493*** -0.0017 0.1696** 0.0111 -0.0020 
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Table 5.4. Coefficient estimates for residual wheat yield predicted using “Interaction” regression models that use an 
interaction term (Equation 4.3). We present the coefficients on each predictor variable in units of bushels per acre. ‘*’ denotes 
significance at P ≤ 0.10, ‘**’ denotes significance at P ≤ 0.05, and ‘***’ denotes significance at P ≤ 0.01.  

Model Type Snowmelt Precipitation 
Growing 

Degree-Days 
𝑪𝒊 ∗ 𝑺𝑴 𝑪𝒊 ∗ 𝑷 𝑪𝒊 ∗ 𝑮𝑫𝑫 

Interaction.𝑌𝑤.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑎𝑣𝑔 -0.0826 0.0115* -0.0027 0.1070 0.0028 -0.0029 

Interaction.𝑌𝑤.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑒𝑎𝑟 -0.0738 0.0077 -0.0003 0.1443** 0.0016 -0.0016 

Interaction.𝑌𝑤.𝑃𝑎𝑛𝑛.𝐺𝐷𝐷𝑚𝑎𝑥 -0.0774 0.0074 -0.0010 0.1586** -0.0007 -0.0013 

Interaction.𝑌𝑤.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑎𝑣𝑔 -0.0696 0.0373** -0.0018 0.1264* -0.0279 -0.0043 

Interaction.𝑌𝑤.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑒𝑎𝑟 -0.0749 0.0423*** 0.0006 0.1591*** -0.0323* -0.0029 

Interaction.𝑌𝑤.𝑃𝑠𝑝𝑟.𝐺𝐷𝐷𝑚𝑎𝑥 -0.0820 0.0405*** 0.0030 0.1666*** -0.275 -0.0023 

Interaction.𝑌𝑤.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑎𝑣𝑔  -0.0900* 0.0554*** -0.0019 0.1408** -0.0098 -0.0013 

Interaction.𝑌𝑤.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑒𝑎𝑟 -0.0874* 0.0519*** -0.0003 0.1601*** -0.0124 -0.0009 

Interaction.𝑌𝑤.𝑃𝑠𝑢𝑚.𝐺𝐷𝐷𝑚𝑎𝑥 -0.0938* 0.0548*** -0.0006 0.1659*** -0.0105 -0.0015 
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5.2 Estimation Results from the Non-parametric Model 

Most significant correlation coefficients (N ≥ 25 years; P ≤ 0.10) are in the 

positive direction, and earlier final spring snowmelt date corresponds with a decrease in 

yield for both crops on average. Of the N = 110 significant correlation coefficients 

between snowmelt timing and wheat yield (N ≥ 20, P < 0.10), only 14 observations are 

negative—meaning yield is historically higher in years with early spring snowmelt. 

Likewise, of the N = 103 significant correlation coefficients between snowmelt timing 

and barley yield (N ≥ 20, P < 0.10), only 5 observations are negative. Despite having few 

significant negative correlation coefficients, several specific controls predict the direction 

of correlation, presented below. 

Instead of presenting each pruned classification/regression tree from Table 4.4, 

we present the variable responsible for the first node of each classification/regression 

tree. This first node (or “split”) represents the most important predictor variable for 

initially classifying the correlation coefficient direction/magnitude (Table 5.5). In 

addition to the first tree node, we present the five most influential variables in the random 

forest analysis for predicting 𝑟ℎ𝑜𝑏 (Figure 5.4) and 𝑟ℎ𝑜𝑤 (Figure 5.5). 

In both the classification/regression trees, latitude significantly predicts 

correlation direction/magnitude between snowmelt date and wheat yield (Figure 5), and 

earlier snowmelt date occurring at higher latitudes (above 47) corresponds with increased 

wheat yield (negative correlation). In the random forest analysis, important variables for 

wheat were x1.LatSnotel, x1.Distance, x1.Zdiff, x1.Topo, x1.Zsnotel, x2.Precip3, 

x2.Precip4, and x3.Snow12. 



48 
 

 

 

In the classification/regression tree analysis, county mean and standard deviation 

of elevation significantly predict the correlation direction/magnitude between snowmelt 

timing and barley yield. County elevation significantly predicts correlation direction 

between snowmelt date and barley yield, and crops grown in counties with low mean 

elevations (less than 770 meters) see increased yield with earlier snowmelt timing 

(correlation is negative). Standard deviation of county elevation significantly predicts 

correlation magnitude between snowmelt date and barley yield, and crops grown in 

counties with less topography (standard deviation less than 52 meters) see increased yield 

with earlier snowmelt timing (correlation is negative). In the random forest analysis, 

important predictor variables for barley yield were x1.Zcounty, x1.Distance, x1.Zdiff, 

x1.Zsnotel, x2.Precip1, x2.Precip5, x2.Precip6, and x2.Precip11. 

Table 5.5. Most important predictor (first split) in each classification/regression 
tree.  

Tree # Crop 𝑁𝑦𝑟𝑠 𝑃𝑟ℎ𝑜 Classification Regression 

w.1 Wheat ≥30 ≤0.10 x1.LatSnotel x1.LatSnotel 

w.2 Wheat ≥20 ≤0.10 x1.LatSnotel x1.LatSnotel 

w.3 Wheat ≥30 ≤1.0 (all) x1.LatSnotel x1.Zsnotel 

w.4 Wheat ≥20 ≤1.0 (all) x1.LatSnotel x1.Zsnotel 

b.1 Barley ≥30 ≤0.10 -- x1.Zcounty 

b.2 Barley ≥20 ≤0.10 x1.Zcounty x1.Topo 

b.3 Barley ≥30 ≤1.0 (all) x2.Precip6 x1.Zsnotel 

b.4 Barley ≥20 ≤1.0 (all) x2.Precip6 x1.Zcounty 
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Figure 5.4. Wheat predictor importance for the different tree combinations using random forest (see Table 4.4 for tree 
descriptions). 
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Figure 5.5. Barley predictor importance for the different tree combinations using random forest (see Table 4.4 for tree 
descriptions).
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6 DISCUSSION 

Most results support an average decrease in non-irrigated wheat and barley yield 

in Idaho during years with early snowmelt timing—an impact that is significant 

independently of climatic and physiographic characteristics. Hence, when snow melts 

early historically while everything else necessary to grow a non-irrigated crop is held 

constant (i.e., precipitation, growing degree-days); wheat and barley yield is lower, on 

average. The established significant impact of snowmelt timing on historical crop yield 

varies in direction for different counties in Idaho. Despite the majority trend toward lower 

historical yield, there are counties in which crop yield is higher on average with earlier 

snowmelt. This study identifies important variables (notably spring and summer 

precipitation) that may buffer the largely negative impact of snowmelt timing on yield 

and begin to explain why some regions benefit. As crop yield continually responds to a 

changing climate, it is increasingly important that we consider the role of all climate 

interactions in yield fluctuations—and the timing of spring snowmelt appears an 

important player. 

Snowmelt timing only acted as a significant predictor of yield in parametric 

regression models that included an interaction term for direction of impact. This is not 

surprising, as the varied positive and negative directions would sum to zero in the “Total” 

regression models without an interaction term. This is an important distinction, because 

the influence of snowmelt timing on yield will likely be drowned out in regions with 

varying directions of impact if proper methodologies are not employed. 
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Spring and summer precipitation were notably important in both parametric and 

non-parametric results. These variables significantly predicted both wheat and barley 

yield in the majority of multiple linear regression models. For these two dryland crops, 

higher precipitation results in higher crop yield, on average. However, when including 

the interaction term, precipitation’s impact was only significant in models where early 

snowmelt timing predicted decreased yield. Although snowmelt timing significantly 

impacts barley yield in all interaction term models, it is only significant in predicting 

wheat yield when summer precipitation was used as the precipitation predictor variable. 

Likewise, in the non-parametric results, spring and summer precipitation both predict the 

varying direction of relationship between snowmelt timing and yield. We propose the 

mechanism that precipitation during this critical portion of the growing season may 

buffer the negative impact of early snowmelt timing’s reduced soil moisture at the 

beginning of the growing season. 

Other variables important to classifying the location of these positively versus 

negatively correlated counties were physiographic characteristics of the county or 

SNOTEL station. Wheat yield has historically benefitted from earlier snowmelt at higher 

latitudes, and Northern Idaho has higher historical non-irrigated wheat yield during years 

with early snowmelt timing. Higher latitudes generally correspond with higher summer 

precipitation in Idaho—and this may affirm our mechanism that non-irrigated producers 

located in counties with adequate moisture throughout the growing season may benefit 

from earlier snowmelt timing. The strong relationship between wheat yield and 

precipitation observed in our parametric results supports this interpretation that higher 

latitudes may supply adequate precipitation for non-irrigated wheat production. Higher 
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latitudes also experience less insolation, and the parametric regression results suggest that 

a shorter, cooler growing season benefits non-irrigated barley yield. Latitude may 

therefore be capturing the combined impact of changing temperature and precipitation.  

In predicting barley yield, the length of the growing season was a significant 

predictor, and more growing degree-days—meaning a warmer, longer growing season—

resulted in less barley yield. Barley grown in counties with low elevation and low 

topography (standard deviation of elevation) may also benefit from earlier spring 

snowmelt. This result suggests that earlier snowmelt located on or near the elevation of 

the agricultural fields may benefit barley yield. Earlier snowmelt at lower elevations 

allows growers to plant earlier in the season—and also suggests that snow higher in the 

watershed (i.e., at higher elevations) is still being stored as snowpack at the time of field-

melt out. Therefore, early planting would allow capture of this stored snowpack by barley 

in years with earlier snowmelt timing. Many counties with low topographic relief exist in 

Northern (humid) Idaho, and this result of higher yield with early snowmelt may again be 

capturing our proposed precipitation mechanism. 

In the non-parametric results, physiographic characteristics of the SNOTEL 

stations and counties were consistently chosen as the most important variables in 

predicting the correlation direction and magnitude between snowmelt timing and yield 

The same county-level yield may exhibit a positive or negative correlation with snowmelt 

timing depending on the SNOTEL station that is used to calculate the correlation 

coefficient. This suggests that SNOTEL station characteristics (i.e., Is melt occurring 

early at high vs. low elevations? Promixal or distal to fields?) may additionally drive 

some of the observed relationship in our data. However, in the random forest analysis 
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precipitation—specifically spring and summer—recurrently demonstrated itself as an 

important predictor variable.  

The snowmelt timing impacts on non-irrigated yield have important implications 

for water supply to irrigated crops. This non-irrigated yield serves as a proxy for baseline 

yield—natural yield that occurs without supplemental water application beyond what is 

provided by the local climate. Crops may consequently require additional water in years 

with early spring snowmelt timing when baseline yield is lower. This has the potential to 

place the following demands on water supply in the future during years with early 

snowmelt timing: 

(1) Demand for irrigation of currently non-irrigated crops. 

(2) Demand for more water to be applied to irrigated crops during years with early 

spring snowmelt timing. 

However, the application of irrigation water in the spring/summer may buffer the 

negative impact of early snowmelt timing on yield much like natural spring/summer 

precipitation appear to do. This result may give irrigated growers more certainty in their 

yield response to changing climate. 

Although we are not physically modeling the processes controlling the 

relationship between snowmelt timing and yield, we are still able to draw important 

conclusions regarding the potential nature of the relationship itself. In most of our 

observations, baseline yield has been lower in the past during years with early snowmelt 

timing. This trend may hold true in the future if the processes governing this relationship 

remain the same. Because we have determined that the partial impact of snowmelt timing 
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on yield is significant, future research may focus on the processes responsible for this 

relationship.  

This study did not consider how growers may be changing the agricultural 

landscape. We did not include grower decision-making variables in our parametric or 

non-parametric methodology. Because there were few negative coefficients to use in the 

non-parametric analysis (in which early snowmelt timing correlated with higher crop 

yield), classification and regression tree models were limited in their ability to classify 

observations. Additionally, the non-parametric analysis was not exhaustive, and there are 

many variables—including grower decisions—that are likely important to the different 

observed directions of impact.  

There is an additional need to refine the climate data used in the classification and 

regression trees in order to understand if these county and SNOTEL characteristics are 

arising from autocorrelation with climate variables. Expanding the non-parametric 

analysis will give us more insight into the processes governing the relationship between 

snowmelt timing and yield. Future work is necessary to determine if the spring/summer 

buffering hypothesis is upheld when a more rigorous set of predictor variables are 

considered. 
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7 CONCLUSIONS 

This study advances our understanding of the relationship between snowmelt 

timing and non-irrigated crop yield in two substantial ways. First, we ascertain that 

historical final snowmelt date significantly influences non-irrigated crop yield 

independently of climatic and physiographic characteristics previously presumed to drive 

yield changes. The relationship direction varies for different Idaho counties, but baseline 

yield has been lower than average in the past during years with earlier snowmelt timing 

in most regions of Idaho. Second, we identify that some counties have seen increased 

historical yield in years with early snowmelt timing—reminding us of the complexities 

inherent in climate interactions. Spring and summer precipitation may buffer the negative 

impact of early snowmelt on yield in these benefitting regions. Semi-arid production 

regions of Idaho that do not receive adequate precipitation during the growing season will 

therefore be most vulnerable to continuing climate change. 

Current considerations of the future impact of climate change on crop yield 

should be updated to consider early snowmelt timing when estimating future baseline 

yield in snowmelt-driven, semi-arid landscapes. Decreased summer precipitation is 

projected in the traditionally ‘summer dry’ Pacific Northwest climate zone (Mote and 

Salathé 2010), and early snowmelt timing will likely intensify the corresponding decrease 

in crop yield. Non-irrigated crops and unmanaged ecosystems will be most sensitive to 

the combined impacts of early snowmelt and decreased summer precipitation—especially 

in regions that already receive very little summer precipitation.  
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In addition to agricultural producers, these results pertain to water managers in 

arid, snowmelt-dominated regions—as a decrease in baseline yield will almost certainly 

increase demand for irrigation water. Land managers of unmanaged ecosystems may 

expect lower yield for grazing cattle in years with early snowmelt, and potentially less 

total biomass for ecosystem support. Land managers may also expect an earlier “die-off” 

of unmanaged vegetation with decreased summer precipitation, compounded in years 

with early snowmelt date. On landscapes prone to wildfires, such as the Western United 

States, early die-off will both increase the length of the fire season and predispose the 

landscape to easy ignition. 
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APPENDIX A 

Detailed Data Sources and Summary Statistics 
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Section A.1 presents detailed data sources for all variables. This section includes a 

description of SNOTEL–County pairings chosen for the parametric analysis, as well as 

weather stations chosen to represent county-level weather. Section A.2  presents county-

level and SNOTEL station-level summary statistics for the variables used in the 

parametric analysis. 

A.1 Data Sources 

SNOTEL-County pairings 

In choosing a SNOTEL-County pairing, we assume that final snowmelt date at 

the SNOTEL station level represents some broader variable of snowmelt in the county. 

We do not assume that the SNOTEL station snowmelt date exactly equals snowmelt date 

in the county. SNOTEL stations often experience a later final snowmelt date than the 

county due to the higher average elevation. Despite this, we assume that snowmelt date at 

the SNOTEL station correlates with an unmeasurable average snowmelt date occurring at 

the county scale.   

A SNOTEL station was chosen to represent the county snowmelt date in the 

parametric analysis based on distance first and watershed boundaries second. The specific 

SNOTEL-County pairing is documented in Table A.1. In 16 counties, the nearest 

SNOTEL station to the county centroid was used to represent final snowmelt date in the 

county (labeled “Nearest” in Table A.1). The next-closest SNOTEL station was chosen if 

the nearest station did not fall within the watershed boundaries corresponding the county 

area. Table A.1 provides justification for each SNOTEL-County pairing. 
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Table A.1. Data Source: SNOTEL station used to represent county-level 
snowmelt. The SNOTEL justification—Nearest or Watershed Boundaries—is 
included in the SNOTEL-County Justification column.  

County SNOTEL station SNOTEL-County Justification 

Ada Trinity Watershed Boundaries 

Adams Brundage Nearest 

Benewah Micah Nearest 

Blaine Hyndman Nearest 

Boise Jackson Peak Watershed Boundaries 

Bonner Hidden Lake Watershed Boundaries 

Boundary Hidden Lake Nearest 

Butte Hyndman Nearest 

Camas Atlanta Nearest 

Clearwater Mountain Meadows Watershed Boundaries 

Custer Schwartz Nearest 

Elmore Trinity Nearest 

Gem Jackson Peak Watershed Boundaries 

Gooding Trinity Nearest 

Idaho Mountain Meadows Nearest 

Kootenai Mosquito Ridge Watershed Boundaries 

Latah Elk Butte Nearest 

Lewis Mountain Meadows Watershed Boundaries 

Lincoln Hyndman Nearest 

Minidoka Hyndman Nearest 
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Nez Perce Mountain Meadows Nearest 

Payette Jackson Peak Watershed Boundaries 

Valley Long Valley Nearest 

Washington Squaw Flat Nearest 

 

Parametric Variables 

Table A.2. Data Source: Global Historical Climate Network (GHCN) data site 
used to calculate county-level precipitation and growing degree days. 

County Precipitation GHCN Temperature GHCN 

Ada Caldwell, ID Caldwell, ID 

Adams New Meadows, ID New Meadows, ID 

Benewah Moscow, ID Saint Marie’s, ID 

Blaine 
Richfield, ID (t < 1958) 

Picabo, ID (t > 1958) 

Hailey, ID (t < 1958) 

Picabo, ID (t > 1958) 

Boise Garden Valley, ID Garden Valley, ID 

Bonner Sandpoint, ID Sandpoint, ID 

Boundary Bonner’s Ferry, ID Bonner’s Ferry, ID 

Butte Arco, ID Arco, ID 

Camas Fairfield, ID Hill City, ID 

Clearwater Grangeville, ID Grangeville, ID 

Custer Mackay, ID Mackay, ID 

Elmore Glenn’s Ferry, ID Glenn’s Ferry, ID 

Gem Emmett, ID Emmett, ID 

Gooding Hazleton, ID: Hazleton, ID 
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Idaho Grangeville, ID Grangeville, ID 

Kootenai Spokane, WA Spokane, WA 

Latah Moscow, ID Moscow, ID 

Lewis Grangeville, ID Grangeville, ID 

Lincoln Hazleton, ID Hazleton, ID 

Minidoka Hazleton, ID Hazleton, ID 

Nez Perce Lewiston, ID 
Orofino, ID (t < 1953) 

Lewiston, ID (t > 1953) 

Payette Payette, ID Payette, ID 

Valley McCall, ID McCall, ID 

Washington Weiser, ID Weiser, ID 
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Non-parametric Variables 

Table A.3. Data Source: City used to estimate monthly climate normals at the 
county level. Monthly climate statistics are weather normal sums of historical 
precipitation (P), minimum temperature (Tmin), maximum temperature (Tmax), 
and snow depth (Snow). These climate statistics were calculated by US Climate 
Data, USCD, (usclimatedata.com) or the Western Regional Climate Center, WRCC, 
(http://www.wrcc.dri.edu/). The table below lists the data source (USCD or WRCC), 
site (city name), variables (Tmax, Tmin, P, Snow), and length of record (N years) 
used to calculate the climate normal. All site cities are in Idaho unless otherwise 
noted. 

County Data Source Site Variable N years 

Ada USCD Boise P, Tmax, Tmin, Snow 29 

Adams 
USCD New Meadows P, Tmax, Tmin 29 

WRCC New Meadows Snow 110 

Bannock USCD Fort Hall P, Tmax, Tmin, Snow 29 

Bear Lake 
USCD Montpelier P, Tmax, Tmin 29 

WRCC Montpelier Snow 60 

Benewah USCD St. Maries P, Tmax, Tmin, Snow 29 

Bingham USCD Fort Hall P, Tmax, Tmin, Snow 29 

Blaine USCD Picabo P, Tmax, Tmin, Snow 29 

Boise USCD Garden Valley P, Tmax, Tmin, Snow 29 

Bonner USCD Sandpoint P, Tmax, Tmin, Snow 29 

Bonneville 
USCD Idaho Falls P, Tmax, Tmin 29 

WRCC Idaho Falls Snow 57 

Boundary USCD Bonner’s Ferry P, Tmax, Tmin, Snow 29 

Butte 
USCD Arco P, Tmax, Tmin 29 

WRCC Arco Snow 100 
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Camas 
USCD Fairfield P, Tmax, Tmin 29 

WRCC Fairfield Snow 57 

Canyon 
USCD Parma P, Tmax, Tmin 29 

WRCC Parma Snow 84 

Caribou 
USCD Grace P, Tmax, Tmin 29 

WRCC Grace Snow 98 

Cassia USCD Burley P, Tmax, Tmin, Snow 29 

Clark USCD Dubois P, Tmax, Tmin, Snow 29 

Clearwater 
USCD Orofino P, Tmax, Tmin 29 

WRCC Orofino Snow 78 

Custer 
USCD Mackay P, Tmax, Tmin 29 

WRCC Mackay Snow 107 

Elmore 
USCD Glenns Ferry P, Tmax, Tmin  

WRCC Glenns Ferry Snow 57 

Franklin USCD Preston P, Tmax, Tmin, Snow 29 

Fremont USCD Ashton P, Tmax, Tmin, Snow 29 

Gem 
USCD Emmett P, Tmax, Tmin 29 

WRCC Emmett Snow 109 

Gooding 
USCD Bliss P, Tmax, Tmin 29 

WRCC Bliss Snow 106 

Idaho USCD Grangeville P, Tmax, Tmin, Snow 29 

Jefferson USCD Hamer P, Tmax, Tmin, Snow 29 

Jerome USCD Hazleton P, Tmax, Tmin, Snow 29 
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Kootenai USCD Spokane, WA P, Tmax, Tmin, Snow 29 

Latah USCD Moscow P, Tmax, Tmin, Snow 29 

Lemhi USCD Salmon P, Tmax, Tmin, Snow 29 

Lewis 
USCD Orofino P, Tmax, Tmin 29 

WRCC Orofino Snow 78 

Lincoln 
USCD Richfield P, Tmax, Tmin 29 

WRCC Richfield Snow 58 

Madison USCD Rexburg P, Tmax, Tmin, Snow 29 

Minidoka 
USCD Rupert P, Tmax, Tmin 29 

WRCC Rupert Snow 29 

Nez Perce 
USCD Orofino P, Tmax, Tmin 29 

WRCC Orofino Snow 78 

Oneida USCD Malad City P, Tmax, Tmin, Snow 29 

Owyhee 
USCD Grandview P, Tmax, Tmin 29 

WRCC Grandview Snow 101 

Payette USCD Payette P, Tmax, Tmin, Snow 29 

Power 
USCD American Falls P, Tmax, Tmin 29 

WRCC American Falls Snow 57 

Teton 
USCD Driggs P, Tmax, Tmin 29 

WRCC Driggs Snow 111 

Twin Falls 
USCD Twin Falls P, Tmax, Tmin 29 

WRCC Twin Falls Snow 49 

Valley USCD McCall P, Tmax, Tmin, Snow 29 



69 
 

 

 

Washington 
USCD Weiser P, Tmax, Tmin 29 

WRCC Weiser Snow 57 

 

A.2 Summary Statistics 

Summary Statistics by County  

Table A.4. Summary Statistics: Wheat Yield (bpa)  

County N years Mean (µ) StDev (σ) Min Max 

Ada 50 19.8 5.2 10.0 31.7 

Adams 44 24.8 7.0 11.6 43.0 

Bannock 63 26.4 6.5 16.0 43.1 

Bear Lake 61 21.5 5.6 13.8 38.6 

Benewah 58 48.6 14.1 20.6 78.6 

Bingham 61 22.4 6.5 10.0 39.6 

Blaine 52 19.7 5.6 9.2 34.0 

Boise 39 23.9 6.8 11.0 40.0 

Bonner 45 32.6 12.6 15.0 60.0 

Bonneville 63 27.0 7.4 16.1 43.2 

Boundary 61 55.0 15.6 27.4 87.9 

Butte 45 18.4 8.1 4.0 49.0 

Camas 55 19.0 5.9 3.6 32.3 

Canyon 22 20.5 4.8 13.5 31.7 

Caribou 63 30.7 8.5 18.2 50.8 

Cassia 63 24.4 7.0 10.5 42.5 
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Clark 57 22.2 7.4 8.9 45.8 

Clearwater 63 46.9 13.2 20.6 77.4 

Custer 21 18.5 8.5 10.0 50.0 

Elmore 60 20.5 5.9 4.7 36.6 

Franklin 63 28.2 6.1 15.4 46.2 

Fremont 62 30.6 9.2 17.5 55.4 

Gem 43 24.3 7.7 9.7 50.0 

Gooding 23 19.3 3.2 13.5 27.0 

Idaho 63 51.7 15.7 19.8 85.1 

Jefferson 38 22.6 7.4 9.7 37.5 

Jerome 19 14.9 4.7 5.8 24.0 

Kootenai 58 42.8 14.6 16.4 76.8 

Latah 63 56.2 16.1 24.0 84.9 

Lemhi 6 17.7 2.3 15.0 20.0 

Lewis 61 54.0 14.1 22.6 85.1 

Lincoln 36 16.3 7.7 4.0 42.0 

Madison 63 27.6 6.7 16.6 44.3 

Minidoka 59 22.8 10.0 5.6 48.8 

Nez Perce 63 56.4 15.7 28.1 85.0 

Oneida 63 24.2 5.5 12.6 38.9 

Owyhee 6 24.3 8.6 16.0 38.1 

Payette 53 26.4 10.1 12.0 53.8 

Power 63 24.3 5.9 14.9 42.3 
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Teton 62 28.2 8.1 14.2 50.8 

Twin Falls 55 22.6 7.9 9.7 40.8 

Valley 40 21.3 8.1 9.0 53.1 

Washington 63 28.1 7.5 13.6 48.8 

All Counties (µ) 50 28.5 8.5 13.5 49.6 

 

Table A.5. Summary Statistics: Barley Yield (bpa)  

County N years Mean (µ) StDev (σ) Min Max 

Ada 60 23.0 7.5 7.0 50.0 

Adams 55 30.2 8.3 15.8 57.0 

Bannock 71 28.9 7.2 10.8 42.6 

Bear Lake 70 27.4 7.0 10.8 48.1 

Benewah 71 42.6 14.7 20.0 73.6 

Bingham 64 25.0 6.8 12.0 45.5 

Blaine 69 27.0 10.6 11.0 68.2 

Boise 47 25.5 7.6 10.0 43.0 

Bonner 62 36.0 12.4 13.0 65.0 

Bonneville 71 33.3 8.4 12.6 55.0 

Boundary 69 55.9 18.4 25.0 95.6 

Butte 38 22.4 5.6 13.0 40.0 

Camas 68 23.2 7.5 5.4 40.3 

Canyon 32 21.3 6.9 11.0 40.0 
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Caribou 71 37.9 10.4 17.3 69.9 

Cassia 68 24.5 7.5 10.0 39.2 

Clark 59 24.8 8.0 10.0 48.0 

Clearwater 70 40.2 11.6 20.0 66.0 

Custer 14 21.9 6.0 12.0 32.0 

Elmore 66 25.6 10.7 10.0 63.3 

Franklin 70 31.5 7.1 12.0 45.1 

Fremont 71 36.1 11.2 15.0 59.6 

Gem 65 25.8 6.2 15.0 40.0 

Gooding 20 21.8 8.8 12.0 45.0 

Idaho 71 42.4 12.8 20.5 75.0 

Jefferson 51 27.8 10.0 10.0 70.0 

Jerome 13 20.4 4.0 15.0 27.0 

Kootenai 68 39.2 13.2 15.0 65.0 

Latah 71 47.8 14.4 21.9 80.3 

Lemhi 9 20.2 5.6 12.0 30.0 

Lewis 71 44.3 13.4 21.2 79.2 

Lincoln 17 26.3 10.2 15.0 50.0 

Madison 71 30.8 9.0 11.3 50.5 

Minidoka 44 24.9 11.4 7.5 70.0 

Nez Perce 70 48.1 15.0 22.0 76.0 

Oneida 71 27.4 8.0 10.6 46.7 

Owyhee 10 23.1 6.4 14.0 38.0 
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Payette 38 22.2 5.0 15.0 35.0 

Power 66 23.7 6.6 10.2 42.1 

Teton 71 30.9 8.7 11.1 49.3 

Twin Falls 51 23.3 6.2 12.0 38.0 

Valley 50 25.8 9.0 10.0 56.0 

Washington 70 33.2 9.7 14.0 57.5 

All Counties (µ) 56 30.1 9.2 13.5 53.7 

 

Table A.6. Summary Statistics: Annual Precipitation – used in MLR [mm] 

County N years Mean (µ) StDev (σ) Min Max 

Ada 50 63 277.2 70.1 130.4 

Adams 44 41 592.5 113.0 333.4 

Benewah 63 58 741.4 136.9 395.2 

Blaine 61 71 306.4 86.5 155.2 

Boise 58 42 649.8 157.2 366.2 

Bonner 61 62 838.0 129.4 486.3 

Boundary 52 55 565.1 123.3 278.8 

Butte 39 33 236.6 66.3 150.9 

Camas 45 38 422.7 97.5 241.6 

Clearwater 63 60 593.5 104.3 383.5 

Custer 61 55 243.8 69.8 132.8 

Elmore 45 27 254.1 71.7 105.2 
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Gem 55 67 334.3 74.0 159.6 

Gooding 22 68 257.6 70.7 109.7 

Idaho 63 60 593.5 104.3 383.5 

Kootenai 63 81 416.4 84.7 267.8 

Latah 57 77 627.7 132.0 354.2 

Lewis 63 60 593.5 104.3 383.5 

Lincoln 21 68 257.6 70.7 109.7 

Minidoka 60 68 257.6 70.7 109.7 

Nez Perce 63 63 320.1 59.8 196.9 

Payette 62 53 279.2 73.4 132.0 

Valley 43 61 681.7 120.3 463.5 

Washington 23 50 294.2 79.7 125.9 

All Counties (µ) 50 58 443.1 94.6 248.1 

 

Table A.7. Summary Statistics: Spring Precipitation – used in MLR [mm] 

County N years Mean (µ) StDev (σ) Min Max 

Ada 63 51.6 27.1 4.6 128.3 

Adams 41 88.1 34.9 19.6 193.0 

Benewah 58 106.3 37.8 32.1 221.2 

Blaine 71 51.2 26.7 10.2 128.2 

Boise 42 87.7 44.8 19.2 196.6 

Bonner 62 119.2 49.1 30.9 244.8 
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Boundary 55 75.7 34.1 17.0 176.1 

Butte 33 53.0 27.5 9.2 134.5 

Camas 38 62.7 34.3 3.5 150.1 

Clearwater 60 154.0 44.4 67.4 245.8 

Custer 54 44.6 22.6 2.3 104.7 

Elmore 27 39.1 19.9 8.8 80.2 

Gem 67 62.9 31.8 11.2 152.0 

Gooding 68 50.7 28.1 6.3 166.7 

Idaho 60 154.0 44.4 67.4 245.8 

Kootenai 81 65.7 34.0 15.0 223.4 

Latah 77 109.4 47.7 28.6 262.8 

Lewis 60 154.0 44.4 67.4 245.8 

Lincoln 68 50.7 28.1 6.3 166.7 

Minidoka 68 50.7 28.1 6.3 166.7 

Nez Perce 63 71.7 30.2 18.5 164.1 

Payette 53 47.7 28.0 4.9 163.9 

Valley 61 109.4 41.9 46.1 229.7 

Washington 50 45.7 29.4 6.4 163.2 

All Counties (µ) 58 79.4 34.1 21.2 181.4 
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Table A.8. Summary Statistics: Summer Precipitation – Used in MLR [mm] 

County N years Mean (µ) StDev (σ) Min Max 

Ada 63 50.8 26.8 6.2 119.8 

Adams 41 107.3 38.2 44.1 182.1 

Benewah 58 124.7 43.4 38.9 240.2 

Blaine 71 53.4 35.0 0.3 219.6 

Boise 42 94.3 49.8 10.0 239.6 

Bonner 62 149.6 57.5 57.0 308.5 

Boundary 55 108.1 47.1 37.9 242.6 

Butte 33 74.0 36.6 17.1 145.9 

Camas 38 76.2 37.7 10.3 154.2 

Clearwater 60 192.7 60.0 75.7 335.7 

Custer 55 83.8 40.2 8.9 194.7 

Elmore 27 44.5 31.4 5.6 142.2 

Gem 67 63.3 32.9 10.7 163.3 

Gooding 68 53.9 25.5 6.4 124.7 

Idaho 60 192.7 60.0 75.7 335.7 

Kootenai 81 82.2 36.2 27.9 232.8 

Latah 77 118.0 47.5 33.7 285.8 

Lewis 60 192.7 60.0 75.7 335.7 

Lincoln 68 53.9 25.5 6.4 124.7 

Minidoka 68 53.9 25.5 6.4 124.7 

Nez Perce 63 89.6 35.1 35.0 204.5 
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Payette 53 54.5 27.4 5.6 168.7 

Valley 61 132.9 50.6 44.0 329.6 

Washington 50 53.2 30.4 6.2 166.9 

All Counties (µ) 58 95.9 40.0 26.9 213.4 

 

Table A.9. Summary Statistics: Growing Degree-Days (average) – Used in MLR 

County N years Mean (µ) StDev (σ) Min Max 

Ada 31 2799.5 154.1 2460.6 3043.2 

Adams 36 2208.9 344.8 1752.5 2933.6 

Benewah 45 2302.0 140.9 2029.0 2585.4 

Blaine 50 2182.6 136.7 1898.4 2474.4 

Boise 13 2430.8 119.6 2190.4 2633.4 

Bonner 43 2195.4 94.8 2025.8 2444.2 

Boundary 19 2335.1 93.1 2219.6 2541.9 

Butte 22 2222.0 127.3 1984.3 2483.7 

Camas 40 2072.9 100.3 1833.5 2236.3 

Clearwater 39 2165.2 134.7 1957.6 2520.7 

Custer 23 2096.6 130.4 1869.1 2360.9 

Elmore 17 2843.7 151.1 2594.1 3191.7 

Gem 26 2755.0 134.2 2504.2 3064.0 

Gooding 31 2583.3 127.5 2299.1 2854.7 

Idaho 39 2165.2 134.7 1957.6 2520.7 
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Kootenai 78 2438.3 144.1 2186.8 2815.9 

Latah 45 2302.0 140.9 2029.0 2585.4 

Lewis 39 2165.2 134.7 1957.6 2520.7 

Lincoln 31 2583.3 127.5 2299.1 2854.7 

Minidoka 31 2583.3 127.5 2299.1 2854.7 

Nez Perce 66 2780.5 132.8 2516.4 3107.3 

Payette 24 2827.4 134.5 2548.7 3120.4 

Valley 33 1809.0 113.2 1600.4 2101.6 

Washington 26 2838.2 158.0 2547.4 3189.8 

All Counties (µ) 35 2403.6 139.0 2148.3 2710.0 

 

Table A.10. Summary Statistics: Growing Degree-Days (early) – Used in MLR 

County N years Mean (µ) StDev (σ) Min Max 

Ada 47 3153.9 199.6 2761.2 3568.8 

Adams 44 2401.5 388.3 1875.1 3234.8 

Benewah 66 2503.2 169.7 2193.8 2940.9 

Blaine 65 2341.7 175.1 1977.8 2843.8 

Boise 22 2678.8 114.8 2485.1 2896.6 

Bonner 56 2377.1 122.1 2161.9 2686.5 

Boundary 24 2544.4 119.8 2370.1 2864.7 

Butte 21 2351.6 146.4 2077.4 2632.8 

Camas 60 2166.1 144.4 1876.4 2520.4 
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Clearwater 55 2426.6 157.2 2102.7 2906.1 

Custer 29 2188.6 156.8 1920.3 2570.4 

Elmore 25 3202.2 175.3 2872.8 3586.3 

Gem 37 3082.2 155.8 2612.3 3404.4 

Gooding 51 2852.3 182.3 2516.0 3461.3 

Idaho 55 2426.6 157.2 2102.7 2906.1 

Kootenai 79 2662.4 175.4 2289.1 3215.3 

Latah 66 2503.2 169.7 2193.8 2940.9 

Lewis 55 2426.6 157.2 2102.7 2906.1 

Lincoln 51 2852.3 182.3 2516.0 3461.3 

Minidoka 51 2852.3 182.3 2516.0 3461.3 

Nez Perce 70 3130.9 169.6 2726.3 3662.6 

Payette 37 3147.9 180.9 2865.4 3624.6 

Valley 42 1940.4 135.2 1629.2 2197.2 

Washington 42 3151.9 167.1 2797.6 3697.4 

All Counties (µ) 48 2640.2 170.2 2314.2 3091.3 

 

Table A.11. Summary Statistics: Growing Degree-Days (maximum) – Used in 
MLR 

County N years Mean (µ) StDev (σ) Min Max 

Ada 43 4001.5 216.9 3556.6 4412.9 

Adams 35 3048.2 430.5 2535.3 3934.6 

Benewah 62 3260.2 183.9 2893.9 3700.6 
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Blaine 58 3031.7 195.9 2628.3 3557.5 

Boise 14 3469.2 102.3 3291.3 3612.7 

Bonner 51 3035.8 152.0 2735.0 3440.4 

Boundary 17 3260.5 127.4 3069.9 3580.7 

Butte 17 2990.1 158.9 2744.7 3333.9 

Camas 53 2830.9 168.4 2538.2 3183.7 

Clearwater 46 3123.3 183.8 2761.8 3610.7 

Custer 18 2852.6 195.6 2588.2 3225.1 

Elmore 19 4067.2 220.3 3713.8 4492.3 

Gem 30 3948.6 161.9 3470.9 4222.3 

Gooding 43 3632.0 170.7 3301.7 4011.3 

Idaho 46 3123.3 183.8 2761.8 3610.7 

Kootenai 79 3411.4 205.2 3009.8 3996.0 

Latah 62 3260.2 183.9 2893.9 3700.6 

Lewis 46 3123.3 183.8 2761.8 3610.7 

Lincoln 43 3632.0 170.7 3301.7 4011.3 

Minidoka 43 3632.0 170.7 3301.7 4011.3 

Nez Perce 68 4010.5 191.3 3566.1 4515.3 

Payette 34 4006.5 195.7 3720.6 4463.5 

Valley 39 2517.0 152.5 2179.3 2886.9 

Washington 36 4014.4 203.0 3644.2 4585.0 

All Counties (µ) 42 3386.8 187.9 3040.4 3821.3 
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Summary Statistics by SNOTEL station 

Table A.12. Summary Statistics: Final spring snowmelt date (Julian day) 

SNOTEL station N years Mean (µ) StDev (σ) Min Max 

Atlanta Summit 62 165 14 129 195 

Brundage Reservoir 55 152 10 129 175 

Elk Butte 42 161 14 135 181 

Hidden Lake 79 151 11 113 178 

Hyndman 64 135 11 110 154 

Jackson Peak 66 161 11 133 181 

Long Valley 63 110 18 72 147 

Meadow Lake 49 160 13 130 181 

Mica Creek 89 140 12 96 164 

Mores Creek Summit 57 155 11 130 181 

Mosquito Ridge 57 159 10 135 178 

Mountain Meadows 79 156 11 114 180 

Savage Pass 80 159 10 127 178 

Schwartz Lake 92 150 10 123 164 

Squaw Flat 63 142 12 112 165 

Trinity Mountain 97 179 15 134 212 

All Stations (µ) 68 152 12 120 176 

 



82 
 

 

 

APPENDIX B 

Model Assumptions and Diagnostics 
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B.1 Model Assumptions 

This study uses two statistical methods to explore the historical relationship 

between snowmelt timing and non-irrigated crop yield. Inherent to any empirical analysis 

are a list of benefits, limitations, and assumptions. We outline these separately for the 

parametric and non-parametric approaches. 

The parametric methodology is more statistically powerful than the non-

parametric methodology for establishing the relationship between snowmelt timing and 

yield as we can control for covariates. In doing so, we rely on assumptions about the 

shape of the distribution in the underlying population and about the parameters of the 

assumed distribution. In assuming a linear relationship, we impose the following 

assumptions of the classical linear regression model (CLRM). Estimating a fixed effects 

regression model further assumes that these assumptions hold under fixed effects.  

a) The model parameters are linear. 

b) There is random variation in our observations.  

c) We are randomly sampling from the population to ensure that every response 

has an equal chance of being observed. 

d) The random errors are normally distributed with a mean of zero and a constant 

standard deviation. Error in the explanatory variables can introduce a non-zero 

mean in three ways: A drift in the process, a drift in the measurement system, 

or a miscalibrated measuring system. 

e) There is no multicollinearity, meaning no independent variable can be 

expressed as a perfect linear function of any other independent variable. 
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f) There is no autocorrelation, meaning the error term does not exhibit a 

systematic relationship over time.  

g) There is no homoskedasticity, meaning the error variance is equal regardless 

of the value of the independent variable. 

The non-parametric methodology makes less assumptions about the distribution 

of measurements. Some limitations include: (1) It is less statistically powerful than the 

parametric methodology, meaning there is less of a chance that a non-parametric 

technique will indicate two variables are associated with each other, (2) A larger sample 

size is required to have the same power as a parametric test, and (3) The results are often 

less easy to interpret than the results of parametric tests. A benefit over the parametric 

methodology is that we will capture any non-linear interactions that the parametric 

approach misses. 

B.2 Model Diagnostics 

Diagnostics allow us to identify violations of the classical linear regression model. 

Of the aforementioned assumptions, we are able to test for (1) Heteroskedasticity, (2) 

Multicollinearity, (3) Autocorrelation, and (4) Fixed effects appropriateness. Diagnostics 

are performed on initial model configurations that did not use an interaction term. 

(1) To assess heteroskedasticity we estimate an auxiliary regression to predict the 

squared residual from each primary regression. There is no significant evidence for the 

presence of heteroskedasticity in any model. (2) To test for multicollinearity, we first 

identified the correlation magnitude between all predictor variables used in the primary 

regression model. Additionally, we estimated separate auxiliary regressions using annual 

precipitation, spring precipitation, growing degree-days, and snowmelt timing as the 
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dependent variables. No correlations between any two independent variables exceed 

0.784, indicating that no two independent variables exhibit near-perfect multi-

collinearity. Additionally, correlation directions are in the expected direction. All 

auxiliary regressions that exclude county dummy variables and interaction terms indicate 

varying evidence of multi-collinearity. When county dummy variables are included, all 

auxiliary regressions indicate high evidence of multi-collinearity. (3) To assess 

autocorrelation we visually inspect a plot of the residual against the lagged residual for 

each primary regression and found no evidence of autocorrelation. (4) We used the 

Hausmann test to decide appropriateness of a fixed effects regression model vs. random 

effects. The Hausmann test recommends use of fixed effects. 

The coefficient estimates are assumed to be BLUE (the best unbiased linear 

estimator) according to ordinary least squares. 
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