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ABSTRACT

Understanding the way snow changes during environmental events has wide

spread benefits ranging from avalanche prediction to water conservation. Snow on a

micro-structural level constantly changes from the moment it forms. Snow metamor-

phosis is driven by the transport of water vapor. Thus far it has only been investigated

as a pure diffusion process in dry snow, despite observations that suggest that natural

convection may have a role in the heat and mass transport in snow packs. This thesis

research numerically explores the role of transport processes in the context of snow

metamorphism. An existing solidification model is reformulated to simulate the effects

of natural convection on the evolution of snow micro-structure. The finite-element

based Multi-physics Object Oriented Simulation Environment (MOOSE) is adopted

for numerical computations. The solidification model is based on the phase field

equation, which captures an evolving interface without a direct interface tracking

method. This equation is coupled with the Navier-Stokes equations to simulate fluid

flow over complex solid boundaries, formed from micro-tomographic images of snow

micro-structure. The numerical framework is then applied to investigate the role

of diffusion and convection on the snow micro-structure. The results demonstrate

diffusion-based metamorphism on real snow. And natural convection is shown to

develop in snow micro-structure under realistic conditions prior to coupling with

phase change effects.
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CHAPTER 1

INTRODUCTION

Avalanches are unique in the fact that they present a large problem for both

infrastructure and recreationists. They are deceiving natural disasters because snow

is rarely perceived as dangerous. Most interactions with snow for recreationists is

either in a flat environment or in a highly regulated mountain area like a ski resort.

Unfortunately, some of the most sought after terrain by winter sport enthusiasts is

in places where avalanches are common. In 30 years (1978-2007), 329 people were

directly killed by avalanches in Canada [9]. The problem is even worse in the U.S.,

which is demonstrated by the upward trend of avalanche caused fatalities seen in

Figure 1.1. While a majority of avalanche related fatalities in North America are

recreation related, in Asia they are typically unsuspecting villages that are found

in avalanche terrain. This is confirmed by the most recent avalanches that have

happened in Southern Asia. In Afghanistan, the Panjshir province experienced

avalanche that struck a village and killed approximately 150 people [1]. During

the same year, Nepal suffered a large earthquake, which triggered an avalanche and

buried more than 300 people [38]. In terms of infrastructure, governments everywhere

contend with minimizing the economic losses that can be caused by avalanches. The

2013 Alaska State Hazard Mitigation plan recalls the 1999-2000 winter season, which

had a large number of snow slides that caused a total of 11 million dollars in damage to
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Figure 1.1: Avalanche caused fatalities in the U.S. [5] Graphic Source: Colorado
Avalanche Information Center.

various communities around the state. Outside of North America, avalanches pose as

a costly threat to many roads and railways in Europe. The Swiss government spends

around 400,000 U.S. dollars per acre on preemptive structures to mitigate avalanche

risk [20]. While this works, it is clearly expensive. And many avalanche mitigation

programs world wide face the same issue of expense. This is why Switzerland and

others have whole research institutions devoted to understanding avalanches and

ultimately developing better mitigation and prediction tools.

Accurate avalanche prediction has the potential to save millions of dollars in

building costs and hundreds of lives annually. Unfortunately, how a snow flake

becomes part of an avalanche is a complex process. A large portion of the snow science

literature is focused on how avalanche conditions develop and is the basis for avalanche

forecasting. For an avalanche forecaster, one of the goals is to reduce the unknowns

associated with how the snow pack’s properties change with time and space [30]. The
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variability that exists in snow pack’s thermal and mechanical properties are heavily

dependent on the micro-structure. As a result, how these conditions develop for

avalanches are largely observed and studied at the micro-structure level [36].

In dry snow (where little to no liquid water is present in the snow pack), slab

avalanches are often triggered by humans and are responsible for most recreation re-

lated fatalities [37]. A slab avalanche is described best as a large section of multi-layer

snow that releases all at once. Currently, the accepted view on the mode of failure in

dry snow slabs is the collapse of a weak layer [35]. McClung and Schaerer points out

that for dry avalanche conditions to exist, a weak layer must be present [31]. These

weak layers can be briefly described as a layer of weakly bonded snow grains and

ultimately presents itself as shear plane for the release of a slab. As the layers above

a weak layer are continuously loaded, they are in constant state of deforming and

bonding themselves together. The net bonds that destroyed or generated between

snow grains determines the stability of the slope. At some point, a loaded weak layer

will collapse either through artificial triggering (e.g., skiers) or through a significant

weather event. In Figure 1.2 is an observation made in the field with a partially

collapsed weak layer. These weak layers can form in situ due to environmental

conditions, or can form on the surface and become buried. Investigating weak layer

formation and evolution is a large part of understanding dry avalanche conditions

and has been the focus of many snow scientists since the inception of the field.

Many elements have been studied as mechanisms for weak layer development and

most can be classified under snow metamorphism. Snow metamorphosis occurs either

through equi-temperature metamorphosis (EM) and temperature gradient driven

metamorphosis (TGDM). EM is the rounding and breaking up process of a snow

flake and is best described as the minimization of free energy. As the snow flake
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Figure 1.2: A partially collapsed weak layer, Graphic Source: [36]

breaks up, it forms bonds with other existing snow grains. This process is commonly

referred to as sintering. Ultimately, EM will form stronger snow and is not known

to cause avalanches. TGDM describes the change of the micro-structure as a result

of the water vapor being given up, transported, and deposited. It is also considered

the main developer of the types of snow crystals that comprise a weak layer [13].

Birkeland [8] described their formation as the deposition of water vapor as it travels

along temperature gradients that exist in the air. To better understand the transition

of fresh snow to the snow that exists in a weak layer, Akitaya [2] took a sequence

of photos, which are shown in Figure 1.3. The images show how these types of

crystals can be developed under certain temperature gradients, which were found by

Akitaya [2] to be necessary to form them in situ. While EM will form rounded snow

grains, TGDM forms highly angular snow grains as demonstrated in Figure 1.3. This

is why grains formed through this process make up weak layers. The high angularity

of the snow grains creates stress concentrations where the snow bonds to other grains.

How a weak layer forms is the result of several factors but, ultimately the under-
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(a) Initial Compact Snow (b) One Week (c) Six Weeks

Figure 1.3: Snow metamorphism over the course of six weeks with a temperature
gradient of 19◦C/m and a mean temperature of -12 ◦ C, Graphics Source: [2]

lying mechanism is the transportation of water vapor and how it interacts with the

surrounding snow. While it is generally accepted that vapor diffusion is the main

mode of mass transport, the role that natural convection has in the evolution of the

micro-structure of snow has been debated [3, 4, 12, 34, 41]. Colbeck [12] discussed

that the role of natural convection or temperature driven flow is not fully understood

and suggested more experiments are needed to investigate the claims made about its

effects on the micro-structure. Those who have pointed out the existence of thermal

convection in the snow pack have also called for further investigation. Thus, it is the

goal of this work to initiate a detailed numerical investigation of natural convection

in the snow pack.
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CHAPTER 2

TECHNICAL BACKGROUND

Investigating the dynamics of snow micro-structure numerically provides valuable

insight as to what impacts certain environmental conditions have on the metamorphic

processes of snow. As discussed in Chapter 1, the role that natural convection has

in the micro-structural evolution is not well understood. Powers [34] investigated

natural convection through a series of lab experiments and concluded that natural

convection was indeed possible in snow and greatly enhanced heat and mass transfer.

Sturm and Johnson [41] explored the role of natural convection in the snow pack and

found there to be non-homogeneities in the temperature distribution, which could

not be explained by classical diffusion models. They continued to discuss that even

though there are some numerical models that exist, they were unable to capture the

importance of convection due to simplifying assumptions.

2.1 Snow Metamorphism Models

Through the last 30 years, numerical models for snow metamorphism have been

developed for a wide range of purposes. There have been many attempts at modeling

how the snow micro-structure changes under various conditions. This section is fo-

cused on the models that have been developed for snow metamorphism with the intent
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of providing brief insight to their complexity, incorporated physics, and ultimately

their suitability for the present study.

The Swiss Federal Institute for Snow and Avalanche Research (SLF) developed

one of the more popular models for snow metamorphism. It is a one dimensional finite

element formulation encompassing conductive heat transfer and estimated source

terms describing latent, sensible heat, and radiation. The vapor is transported

using a binary gas diffusion equation, which is driven by the temperature and has

source terms for melt outflow, wind scour, and sublimation. The SLF’s [6] model

is able to capture all three phases of water by implementing two conservation of

mass equations for liquid water and vapor. Their model is comprehensive, even

accounting for stress-strain equations in the ice phase. Since the model is exclusively

one dimensional, it is of limited use in the discussion surrounding a problem like

natural convection, which is inherently multidimensional without making additional

generalizations.

Miller et al. [32] proposed that a generalized approach was needed for modeling the

many aspects of snow metamorphism. They provided a model using heat conduction

coupled with a vapor diffusion equation that used simple geometry to model snow

metamorphism in two dimensions. Using round elements, they were able to model

phase change under various temperature conditions. While their model provides

valuable insight to vapor diffusion effects, it assumes that natural convection is

negligible. The use of round elements is potentially a reasonable approximation to

snow micro-structure, however to continue a discussion on the effects that natural

convection will have on the metamorphosis process, the geometry modeled should

represent snow as best as possible.

The numerical models that incorporate better representations of snow do so through
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micro-computed tomographic (µ-ct) images of snow micro-structure. Flin et al. [19]

demonstrated the role that curvature has on the EM of snow using small three

dimensional µ-ct images. Calonne et al. [11] produced a numerical approach for

estimating the effective thermal conductivity using three dimensional scans of real

snow. Kaempfer and Plapp [23] presented a phase field model to better under-

stand how the micro-structure is changing under imposed temperature gradients.

Their model included a phase field equation coupled with heat and mass transport

equations. The mass equation included vapor diffusion and a simple source term

representing sublimation. These three studies are able to study temperature effects

on the micro-structure but ultimately, all of them assume natural convection to be a

negligible effect.

Though the aforementioned models cover a wide degree of complexity in geometry

and incorporated physics, all of them assume that natural convection is not a major

source of mass transfer. There is a limited number of works that have explored this

phenomena in snow. Klever [24] explored the role of natural convection numerically

using a stream function for the velocity field and convected heat and mass equations.

The model is simplified by using spatially average material properties including a

generalized porosity term that is representative of the types of snow. The study was

focused on parameter sensitivity through viable perturbations to the Rayleigh number

and porosity. It was found that while no convection can occur in small rounded snow,

it is always occurring in new snow. Klever [24] was able to demonstrate that weak

layers are capable of temperature driven vapor flow, albeit sensitive to environmental

changes. The experiment was exclusively a numerical exploration of the possible

variations of the conditions that would occur in a snow environment. A conclusion

from the study was that natural convection is more prevalent than previously thought.
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Another study interested in the role natural convection has in the snow pack was done

by Powers [34]. This study was focused on the role that phase change has on the heat

transfer and what Rayleigh numbers are relevant in sloped layers. He drew similar

conclusions as Klever [24]. Both studies examine natural convection in the snow

context, however since both models used spatially averaged values they are not able

to distinguish effects that this phenomena has on the evolution of the micro-structure.

In other fields such as material science, the role of natural convection in multi-

phase media has been studied in more detail. These studies are often solidification

problems observing the formation of metal alloys. Under the same definitions, snow

metamorphism falls into the same fundamental category of solidification physics.

Despite the differences in material properties, solidification models present similar

theory used for modeling snow. It is through the fundamental theory of solidification

that the importance of convection can be further demonstrated. Beckermann et al. [7]

developed a model for simulating binary alloy melt using the phase field equation and

incorporated heat and mass transport equations. Like the snow science community,

the role that natural convection has in the micro-structure of binary alloys was not

well understood and was the source of motivation for their work. The study showed

their model’s capacity to grow dendrites and presents several benchmark problems.

They successfully replicated Stokes flows despite the use of a diffuse interface to

separate phases and concluded additional studies were needed to fully investigate

the underlying physics. Tan and Zabaras [42] also showed the capacity for dendritic

growth of metal alloys in three dimensions using the level-set method and included

natural convection. The model solved the mass, momentum, heat, species, and level

set equations using the finite element method. Validation was performed in part by

comparing tip velocities of dendrites with previously developed phase field models.
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Several demonstrations of the model’s complexity were shown, including the ability

to capture flow between dendrites. They were able to conclude that by incorporating

natural convection the dendrites grew 22 percent faster.

The complexity of structures simulated in the solidification of metal alloys is

unrivaled by the snow science’s contributions to micro-structural metamorphism even

though dendrites are observed in snow frequently. Various elements of a complex,

generalized, snow metamorphism model exist in the literature. Existing models

incorporate a wide variety of physics, but have different goals as seen in the SLF’s [6]

model, which was to provide an efficient tool capable modeling many physics, but

only in one dimension. Other models incorporate less physics, but use more complex

geometry through the use of µ-ct scans similar to the models presented by Flin et

al. [19] or Calonne et al. [11]. Additionally, there are a limited number of studies

investigating natural convection through numerical modeling of snow metamorphism.

Most models are similar to the numerical investigation posed by Klever [24], which

are too simplified to evaluate the effects that natural convection has on snow meta-

morphism.

Kaempfer and Plapp’s [23] model appears to be the most advanced model available

in terms of incorporated physics and the use of complex geometry for modeling

micro-structural evolution. Their phase field approach is novel to the snow science

community and allows for material properties to be phase dependent through interpo-

lating equations, which eliminates the need to spatially averaged values. Many other

snow metamorphism models assume that vapor diffusion through the pore space is

the only mode of mass transport and neglect convected terms altogether [6, 23, 32].
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2.2 Thesis Statement

Currently, the snow science community lacks a metamorphosis model capable of

natural convection at a micro-structural level. Other models have been presented

in the past, but proved to be too simplistic and limited due to assumptions. In

other fields, modeling micro-structure evolution in material solidification and the

inclusion of natural convection have been explored with varying degrees of success

and complexity. Literature regarding snow science shows that there is limited focus

in modeling this effect in snow, despite the observations made in the field that indicate

its role in heat and mass transfer. It is clear that modeling the formation of avalanche

conditions requires a comprehensive snow micro-structure model in which certain

environmental conditions can be explored numerically. To this end, a new model is

needed that should be able to demonstrate this phenomena within µ-ct scans of snow

micro-structure.

There is a need for a snow metamorphism model that is capable of investigating the

role of natural convection at the micro-structure scale. The goal of this research is to

layout in detail the components necessary to investigate the role of natural convection

in snow micro-structural evolution. Thus, a numerical investigation of diffusion and

natural convection in snow is initiated in this work through a generalized set of

equations representing solidification of a pure substance. The specific objectives of

the present thesis research are as follows:

1. Investigate the limits for simulating fluid flow.

2. Determine the suitability of the phase field equation for modeling flow past solid

surfaces.
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3. Provide a phase change formulation for a dry snow context.

4. Demonstrate the role of natural convection in a passive snowpack

The first objective in this work is achieved by investigating the limits of the

implemented numerical scheme by replicating common benchmarks problems. There

are three cases simulated: the lid driven cavity, flow over a cylinder, and natural

convection in a vertically heated enclosure. The goal of these tests is to validate

the fluid flow physics before coupling them to a solidification model. And they are

also motivated by the fact that one of the end goals is to simulate flow through

snow micro-structure, which covers a whole host of complex geometry. The lid driven

cavity is a well known benchmark problem in the computational fluid dynamics (CFD)

community. Ghia et al. [22] presented a benchmark quality solution of the problem

shown. The problem, in brief, is a square enclosure in which the top is driving the

flow. The second simulation investigates the feasibility and accuracy of modeling

flow over the complex shapes that are seen in snow micro-structure. This is done

through another common CFD benchmark problem. The problem is uniform flow

over an infinitely long cylinder that is perpendicular to the flow. Several authors

have investigated this problem in depth, providing metrics for comparison such as

the re-circulation length behind the cylinder. The last test for validating the fluid

physics simulates natural convection in a vertically heated enclosure. This problem is

a square box that has a quiescent fluid. One of the vertical walls is instantly heated

and due to buoyancy effects the warmer fluid rises. Using these problems, the scope

and capacity of the fluid flow equations are assessed.

The second thesis statement is achieved by re-simulating the aforementioned

problems but coupling the fluid flow physics to the phase field equation. Since the
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end goal is to model changing micro-structure, a method is required to represent the

ice and vapor as a function of time and space. The phase field equation is used to

model dynamic and static interfaces. This means that the interface between ice and

vapor is resolved and not directly tracked. The domain of the fluid flow problems can

then be redefined by specifying ice for all the solid surfaces. By modeling fluid flow

using the phase field equation to represent a stationary surface, the fluid flow physics

can be validated again while coupled with the phase.

The third statement is achieved by expanding upon Kaempfer and Plapp’s [23]

model so that it is capable of capturing natural convection. An experiment is used to

validate the model’s capacity for simulating the evolution of the snow micro-structure

to ensure proper implementation. The problem in brief is a migrating air bubble

trapped in ice. As the bubble experiences a temperature gradient, it begins to

move. This happens because one side of the bubble is warmer than the other and

begins to give up water vapor, which is then deposited on the opposite, cooler side.

This experiment was also replicated by Kaempfer and Plapp [23] and the simulation

parameters are shown in Figure 2.1.

The final objective is achieved by simulating natural convection in a passive

snowpack under realistic conditions. Passive in this case is defined such that no

phase changes will occur. This is accomplished by simulating a snow micro-structure

undergoing a temperature gradient while on a slope.

These statements ultimately will provide two things. The first is how well suited

the numerical framework is for modeling natural convection in snow. The second is

that these problems will uncover any necessary requirements for moving forward and

simulating a fully coupled problem.
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Figure 2.1: Simulation conditions for bubble migration through a block of ice

2.3 Governing Equations for Snow Metamorphism

The model developed here will extend the work of Kaempfer and Plapp [23]. As

discussed in Section 2.1, they model solidification of snow by taking advantage of

the phase field equation. In brief, the phase field method is a common treatment

for multi-phase problems where physics and material properties are phase dependent.

The method introduces an extra variable that represents the phase of the media, which

is denoted φ. This technique is useful because material properties can be defined as

continuous functions of φ which ranges from -1 (water vapor) to 1 (ice). Additionally,

this approach is not a direct interface tracking method and resolves the interfaces

between the two phases continuously, making it ideal for modeling phase change.

The two phases are separated by a diffuse interface of some assumed thickness (W).

While this section aims to build upon the work done by Kaempfer and Plapp [23],
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the model presented here will solve the equations using the finite element method as

opposed to the finite difference method that was actually used in the original work.

2.3.1 Equations for Dry Snow Metamorphism by Diffusion Transport

Kaempfer and Plapp’s [23] model is summarized in this section. Their model

incorporates a single source of vapor through sublimation and thus only models dry

snow. The micro-structural evolution can be modeled by three equations governing

the phase evolution (2.1), heat diffusion (2.2), and vapor diffusion (2.3). The un-

known variables are the phase (φ), temperature (T ), and a dimensionless water vapor

concentration (X).

τ
∂φ

∂t
= W 2∇2φ+ (φ− φ3) + λ[X −Xeq](1− φ2)2, (2.1)

C(φ)
∂T

∂t
= ∇ · [K(φ)∇T ] +

Lsg
2

∂φ

∂t
, (2.2)

∂X

∂t
= ∇ · [D(φ)∇X]− 1

2

∂φ

∂t
, (2.3)

where X is defined as the difference between vapor density and the saturated vapor

density normalized by the density of ice as shown in Equation 2.4.

X =
ρvapor − ρv.s.(Tref )

ρice
. (2.4)

Equation 2.1 is a classic phase field equation that represents the bulk phase with

the first two terms on the right hand side. The third term drives the phase change

based on the availability of vapor or X. τ is a relaxation time coefficient and λ is a

coupling constant. Ultimately, together they control the rate of interface migration.
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Both coefficients are formulated in terms of the capillary length and the interface

kinetic coefficient, which are common phase field terms. The derivation of these

terms can be seen in Kaempfer and Plapp’s [23] work. The other two equations are

diffusion equations with phase dependent source terms. In accordance with phase field

techniques, the material properties in Equation 2.2, and 2.3 are linearly interpolated

in Equations 2.5. Notice that Equation 2.5c tends towards zero as φ → 1, thus the

water vapor does not diffuse through ice. This is known as a one-sided model in the

phase field community.

C(φ) = Cice
1 + φ

2
+ Cair

1− φ
2

(2.5a)

K(φ) = Kice
1 + φ

2
+Kair

1− φ
2

(2.5b)

D(φ) = Dv
1− φ

2
(2.5c)

In modeling ice evolution and water vapor, large disparities are present in time

scales. Kaempfer and Plapp [23] recommend treating the evolution as a quasi-steady

problem. Using this assumption, the ice density, diffusion terms, and latent heat were

scaled with little impact on the final solution to enable larger time steps. While this

technique worked, it is unclear how the proposed adaptations (presented in Section

5.1) of these equations should be scaled. An implicit time stepping scheme is used,

which allows for larger time steps than in the explicit time stepping performed in the

original work. However, for validation purposes, the results shown in Section 5.1 were

produced using the same equations implemented by Kaempfer and Plapp [23]. And

for clarity, the following is a brief description of the temporal scaling process.

The velocity of the phase interface is an important metric in the phase field

method, thus the scaling is applied such that the interface velocity is preserved. This
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is accomplished by applying the scaling only to the Equations 2.1, 2.2, and 2.3 and

not the property definitions. The scaling process can be seen in Equation 2.6 where

5× 10−5 < ξ < 1.

D(φ)→ D(φ)ξ, (2.6a)

K(φ)→ K(φ)ξ, (2.6b)

Lsg → Lsgξ, (2.6c)

X → X

ξ
, (2.6d)

Xeq →
Xeq

ξ
, (2.6e)

λ→ λξ. (2.6f)

Note that Equation 2.1 is unaffected by the scaling since it was applied to X, Xeq,

and λ in the source term, which cancels the effect. The vapor diffusion equation’s

scaling is manipulated to resemble the scaling on the heat diffusion equation. Initially

the scaling thats applied to Equation 2.3 is shown in Equation 2.7.

1

ξ

∂X

∂t
= ∇ · [ξD(φ)∇1

ξ
X]− 1

2

∂φ

∂t
(2.7)

Since ξ is a constant, the scaling on the diffusion term is canceled. By multiplying

Equation 2.7 by ξ, both of the transport equations are now scaled exactly the same

as seen in Equations 2.9 and 2.8.

C(φ)
∂T

∂t
= ξ∇ · [K(φ)∇T ] +

ξLsg
2

∂φ

∂t
(2.8)

∂X

∂t
= ξ∇ · [D(φ)∇X]− ξ

2

∂φ

∂t
(2.9)



19

The model makes several assumptions, but there are two important ones that should

be known. The first is that the gas in the snow is near saturation with water. The

second is that the metamorphosis process is isotropic, and thus all growth will happen

proportional to the available water vapor. For a more in depth derivation of these

equations and assumptions, please refer to Kaempfer and Plapp [23].

2.3.2 Equations for Incorporating Fluid Flow through Snow Micro-structure

To explore natural convection, a set of equations representing the fluid flow in

three dimensions is presented for the proposed application. Thus, Equation 2.10 is

the Navier-Stokes equation

ρ
(∂~V
∂t

+ ~V · ∇~V
)

= ∇ · σ + ρ~b, (2.10)

where µ is the dynamic viscosity, and ρ is the fluid’s density. By assuming the flow

is incompressible, the continuity equation for the Equation 2.10 becomes

∇ · ~V = 0. (2.11)

Though this equation will be used to model the conservation of mass of saturated air,

it is expected that the flow will be considerably slower than a Mach number of 0.3,

which is considered the limited of this assumption [33]. Additionally, if the fluid is

considered Newtonian, Stokes Law is defined such that,

σ = −pI + µ∇~V , (2.12)
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where I is the identity tensor. By using the Boussinesq approximation, the Navier-

Stokes equations are able to account for density variations without violating the classic

continuity equations for incompressible flows. This is accomplished by incorporating

an appropriate forcing term representing buoyancy. The Boussinesq assumption

implies that the change in density is unaffected by pressure and velocity. In the case

of snow, thermal variations are driving the velocity field and potentially transporting

vapor. The forcing term ~b in Equation 2.10 becomes a function of temperature and

is multiplied by the gravity vector as shown in 2.13

~b = [1− α(T − Tref )]~g, (2.13)

where α is the coefficient of thermal expansion and ~g is the gravitational vector. Since

the formulation is based on the phase field equation, the solid/vapor interface will

actually be resolved and will not have a boundary condition applied, leaving out the

no-slip condition. To mitigate this problem, another forcing term can be added to the

momentum equation to penalize the flow in the solid phase. Combining techniques

shown by Beckermann et al. [7] and Shyy [39], the forcing term is applied in a one

sided fashion in solid phase only, demonstrated in Equation 2.14

Md = µh
1 + φ

2W 2
~V . (2.14)

This is similar to a Darcy flow forcing term, which states that the resistance to the

flow varies linearly to the velocity. h is a dimensionless coefficient that was set to be

large enough to best align with one of the benchmark problems, which is demonstrated

in Chapter 4. Coupling this equation with Equations 2.8 and 2.9 results in an added
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term that represents the quantities being advected as in 2.15 and 2.16. Since vapor

diffusion is the main mode of vapor transport, it is expected that the advected terms

will be at most on the same time scale. Thus, the temporal scaling is applied to the

advected terms as well.

C(φ)
∂T

∂t
= ∇ · [K(φ)∇T ]− C(φ)~V · ∇T +

Lsg
2

∂φ

∂t
(2.15)

∂X

∂t
= ∇ · [D(φ)∇X]− ~V · ∇X − 1

2

∂φ

∂t
(2.16)

The final form of Equation 2.10 is

ρair

(∂~V
∂t

+ ~V · ∇~V
)

= ∇ · σ + ρair~b−Md. (2.17)

Equations 2.1, 2.11, 2.15, 2.16, and 2.17 are the equations proposed for a generalized

approach to model snow metamorphism capable of natural convection.

2.4 Numerical Methods

2.4.1 Finite Element Method

The Multi-physics Object Oriented Simulation Environment (MOOSE) is a finite

element method (FEM) framework developed for solving coupled non-linear equations

[26]. This is the numerical framework that is used to solve Equations 2.1, 2.11, 2.15,

2.16, and 2.17. Since the FEM is being utilized, the aforementioned partial differential

equations (PDE) must be formulated in their weak form prior to being implemented.

This process is demonstrated on Equation 2.17. The first step requires that all terms

are one sided such that the entire equation is equal to zero as is shown in Equation
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2.18, where

ρair

(∂~V
∂t

+ ~V · ∇~V
)
−∇ · σ − ρair~b+Md = 0. (2.18)

Equation 2.18 is then multiplied by weight function and integrated across the entire

domain

ψρair

(∂~V
∂t

+ ψ~V · ∇~V
)
− ψ∇ · σ − ψρair~b+ ψMd = 0, (2.19)

where ψ is the weight function. By integrating Equation 2.19 across the domain Ω,

the first version of the residual that would be acceptable for inputting into MOOSE

is ∫
Ω

[
ψρair

(∂~V
∂t

+ ψ~V · ∇~V
)
− ψ∇ · σ − ψρair~b+ ψMd

]
dΩ = 0. (2.20)

Fortunately the order of Equation 2.20 can be reduced by applying Green’s theorem,

which states ∫
Ω

ψ∇ · σdΩ =

∫
Γ

ψσ · ~ndΓ−
∫

Ω

∇ψ · σdΩ, (2.21)

where Γ is a boundary and ~n is the outward normal. This means that any diffusion

terms can be reduced by implementing a corresponding boundary condition. When

Green’s theorem and equation 2.12 are applied to Equation 2.22, the stress term

becomes ∫
Γ

ψ(−pI + µ∇~V ) · ~ndΓ−
∫

Ω

∇ψ(−pI + µ∇~V )dΩ. (2.22)

Inserting Equation 2.22 back into Equation 2.20 results in the final equation imple-

mented into the MOOSE framework. This process of developing the weak form with

reduced order was applied to Equations 2.1, 2.11, 2.15, 2.16, and 2.17, which are

shown in their final forms in Appendix A

The MOOSE framework is used to solve each equation using the Galerkin For-

mulation by default. This means that the same functions will be used for the weight
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and the trial functions. This has been found in the past to be problematic when

advection becomes stronger in advection-diffusion equations similar to the ones being

solved in the present work. It is demonstrated in Chapter 4 that this can be a

challenging issue but this is not an issue in the case in fulfilling the objectives of this

research. The last component of solving these equations is selecting what type of

shape function to solve. Fortunately MOOSE has a myriad of shape functions that

can be independently assigned to variables. Thus, for the variables representing the

temperature (T ), vapor concentration (X), pressure (p), and phase (φ) will be solved

using first order Lagrange trial functions. And only the velocity components (u, v,

w) will use second order Lagrange trial functions. At this point, MOOSE assembles

the matrices to be solved.

2.4.2 Solver

While MOOSE offers several solvers, for non-linear, coupled PDEs, the developers

recommend using the preconditioned Jacobian-Free Newton-Krylov solver (PJFNK).

In brief, this is two solving techniques nested within another. PJFNK relies on tradi-

tional Newton solver techniques to achieve super linear convergence. Unfortunately,

Newton’s method relies on the Jacobian to be calculated exactly, which can be exceed-

ingly difficult. To avoid having to store and write a large Jacobian, the derivatives are

estimated numerically based on some small perturbation. The use of an approximated

Jacobian results in a loss in convergence, thus Krylov subspace linear iterations are

implemented to make up for an imperfect Jacobian. In a nested loop, the Generalized

Minimization of the Residual (GMRES) is the Krylov method of choice and is used

to provide the initial guess for the Newton solver. The Jacobian Free Newton-Krylov

Method is summarized in detail by Knoll and Keyes [25]. An unfortunate side effect
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of using Krylov methods is the necessary use of preconditioning. MOOSE also offers

several selections for preconditioning, but Single Matrix Preconditioning (SMP) is

again recommended by the developers. By default, MOOSE will disregard the off

diagonal terms of the Jacobian unless a preconditioner is selected. SMP allows the

user to place off diagonal terms in the Jacobian if they are defined. A summary of

the features available in MOOSE is available on their website [26]. To improve the

convergence of the method, most of the terms of the Jacobian are formulated and

utilized.

2.4.3 Jacobian Formulation

The promise of improved convergence is enough to pursue the formulation of

a nearly full Jacobian matrix. Here the Jacobian terms implemented for a single

direction of the Navier-Stokes equations. The Jacobian in this context is defined as

Ji,j =
∂Ri

∂uj
, (2.23)

where Ri is the residual formed by each weak form implemented and uj are the

variables associated with the problem. However, in the FEM, the solution that is

determined is a function called the trial solution. This is defined as

u ≈ uh =

Nelem∑
e=1

N eue, (2.24)

where N e is the shape function, ue is the nodal values, and e and h denote element

and global approximations, respectively. Based on this definition, the derivative of

anything with respect to the variable has to have the chain rule applied. Thus, the
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Jacobian is redefined as

Ji,j ≈
∂Ri

∂uj

∂uj
∂uej

, (2.25)

Considering the definition in Equation 2.24, it can be observed that

∂u

∂ue
=

Nelem∑
e=1

N e, (2.26)

∂∇u
∂ue

=

Nelem∑
e=1

∇N e. (2.27)

Given the above information, forming the Jacobian entries is demonstrated here.

Consider that all integrals are evaluated numerically, the process is briefly demon-

strated on the convective acceleration term in Equation 2.20, the Jacobian of that

becomes

∂

∂u

[
ψρa(~V · ∇u)

]
= ψρa(~V · ∇N +N

∂u

∂x
). (2.28)

Note, that since ~V has the u component velocity, the product rule has to be applied

also to form this section of the Jacobian. The Jacobians for each equation that were

implemented are shown in Appendix B.
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CHAPTER 3

NUMERICAL SIMULATION OF INCOMPRESSIBLE

FLUIDS WITH A FINITE ELEMENT MODEL

A solidification model was defined in Chapter 2 incorporating natural convection

for an ice and water vapor matrix that was capable of changing its structure due to

the availability of water vapor. Before investigating the role of thermal convection in

snow micro-structural evolution, various portions of the physics are validated prior to

progressing forward. Specifically, this chapter presents a form of validation for each

portion of the physics associated with the problem. The physics presented in Chapter

2 are grouped in three groups that are fluid momentum, natural convection, and ice

metamorphosis based on vapor diffusion.

Non-dimensional numbers like the Reynolds number provide a basis to quantify the

limits of the current finite element formulation. Fortunately, Navier-Stokes equations

have already been solved with accuracy at lower Reynolds numbers using the MOOSE

framework. The FEM formulation of Navier-Stokes equation are tested in two ways.

The first is through lid driven cavity flow, which is a standard benchmark problem in

the CFD community and provides a basis for validation. The second is through

another benchmark problem that simulates flow over a cylinder, which provides

insight as to how effective the numerical methods are at resolving complex geometries.

These two tests are solely governed by the Reynolds number, and thus provides
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valuable insight to the limits of the numerical methods.

3.1 Lid Driven Cavity Flow

It is known that the finite element method can develop numerical instabilities when

advection effects dominate over viscous diffusion [18]. Specifically, this can occur when

solving the Navier-Stokes equations using the FEM without any additional stabiliza-

tion methods. Thus, it is necessary to know what are the limits of the unstabilized

form currently implemented in the MOOSE framework. Using the Reynolds number

(Re), which describes the ratio of inertial forces to viscous forces [33], equations 2.10

and 2.11 can be tested. The equation for the Reynolds number is shown in Equation

3.1

Re =
ρV L

µ
, (3.1)

where V is a characteristic velocity, L is a characteristic length, ρ and µ are the

fluid’s density and dynamic viscosity, respectively. In the case of lid driven cavity

flow, V is the lid velocity and L is the side length of the cavity. This case is a square

enclosure containing a fluid that has a moving surface that interacts with the fluid.

The fluid velocity if specified to be zero on the all the non-moving walls, which is

known as the no-slip condition. The top or the lid has a boundary condition that

is set to a predetermined constant velocity. Using these boundary conditions, the

lid driven cavity case was simulated and compared with the data presented by Ghia

et al. [22]. While it is traditional in the fluids community to begin with Re=1000

case, it is expected that the actual Reynolds number is much lower in the thermally

driven convection in a snow pack [34]. Thus, the first case simulated was using the

lowest Reynolds number that Ghia et al. [22] presented, which was Re=400. As seen
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Figure 3.1: Velocity profiles compared between a FEM formulation of the incompress-
ible Navier-Stokes equations simulating a lid driven cavity and compared with data
from Ghia et al. [22] at Re=400

in Figure 3.1, the formulation produces values that are in good agreement with the

benchmark data. The Re=1000 case was simulated to see if the FEM would produce

the correct solution. However, the results proved too erroneous, which suggests the

numerical limit was surpassed. A mesh refinement study can be seen in Figures 3.2

and 3.3, which shows that the solution was producing poor results regardless of the

mesh size. This demonstrates the current formulation is accurately replicating flows

below Re=400. This Reynolds number serves as the upper limit for the rest of work.

In the context of snow, this likely means that all the snow simulated will have to be

considered deep in the snowpack and unaffected by external wind over the snow.
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Figure 3.2: X velocity component as a function of Y for the lid driven cavity case at
RE=1000

Figure 3.3: Y velocity component as a function of X for the lid driven cavity case at
RE=1000
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Figure 3.4: Commonly compared features of the flow over a cylinder case. Graphic
Source: [15]

3.2 Flow Over a Cylinder

Since one of the identified needs of the snow science community is to present

a model using complex geometry, the Navier-Stokes is further validated using an

infinite cylinder in cross flow. The outlet has a pressure specified to zero, and the

walls parallel to the flow have natural or Neumann boundary conditions equal to

zero for the x direction of the velocity component. The vertical velocity component

is specified to zero at the walls. On the cylinder surface, the entire velocity vector

is equal to zero. The inlet then has a velocity specified at a constant value. In

computational fluid dynamics literature, traditional starting points are at a Re=20

and Re=40 for steady flow over a cylinder, where the Reynolds is calculated with V

is the inlet velocity, and L is the diameter of the cylinder. Certain features from the

Figures 3.5 and 3.6 are compared with other published results to assess the accuracy

of the current simulation. Using the same nomenclature in Figure 3.4, Table 3.1 and

3.2 shows a summarized comparison of the features of interest. There is excellent
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Figure 3.5: Streamlines of the flow over a cylinder case at Re=20

Figure 3.6: Streamlines of the flow over a cylinder case at Re=40

Table 3.1: Summary of the features compared for the flow over a cylinder case at
Re=20

Works L a b θ

Fornberg [21] 0.91 45.7
Dennis and Cheng [17] 0.94 43.7

Coutanceau and Bouard [14] 0.93 0.33 0.46 45.0
Linnick and Fasel [27] 0.93 0.36 0.43 43.5
Brehm and Fasel [10] 0.94 0.36 0.43 43.5

Present Work 0.93 0.36 0.42 44.6
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Table 3.2: Summary of the features compared for the flow over a cylinder case at
Re=40

Works L a b θ

Fornberg [21] 2.24 55.6
Dennis and Cheng [17] 2.35 53.8

Coutanceau and Bouard [14] 2.13 0.76 0.59 55.8
Linnick and Fasel [27] 2.28 0.72 0.60 53.6
Brehm and Fasel [10] 2.29 0.72 0.60 52.4

Present Study 2.00 0.70 0.59 54.5

agreement for the Re=20 case. For the Re=40 case, there is similarity with the other

data with the exception of the re-circulation length or L of Figure 3.4, which deviates

noticeably from the other works shown. As seen in the lid driven cavity case, this is

potentially a sign of the upper capacity of the formulation is being used in MOOSE,

which potentially points to the under estimation in the re-circulation length. These

findings further restrict the scope of the proposed work such that the formulation

is exclusively adequate for low Reynolds number flow with limited re-circulation.

Fortunately, the Reynolds number in snow is expected to be much lower than 20 and

more on the order of Stokes flow Reynolds numbers [34]. Because the flow is slow in

the snowpack, re-circulation behind snow grains will not occur. Thus, the formulation

is still valid for the current problem.

3.3 Vertically Heated Square Enclosure

The heat transport equation and Navier-Stokes equations are applied to a natural

convection benchmark problem to demonstrate a capacity for buoyancy driven flows.

The problem is a two dimensional square cavity with the left wall heated, the right

wall is cooled and all walls have a no-slip condition applied. This scenario produces
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Table 3.3: Maximum u of the mid (x=0.5) cavity velocity profile at varying Rayleigh
numbers

Rayleigh Number 103 104 105 106

De Vahl Davis [16] 3.634 16.2 34.8 65.33
Manzari [28] 3.68 16.1 34.0 65.4

Mayne et al. [29] 3.6493 16.7198 34.7741 64.6912
Wan et al. (FEM) [43] 3.489 16.122 33.39 65.40

Present Study 3.65 16.12 33.41

Table 3.4: Maximum v of the mid (y=0.5) cavity velocity profile at varying Rayleigh
numbers

Rayleigh Number 103 104 105 106

Davis et al. [16] 3.679 19.51 68.22 216.75
Manzari [28] 3.73 19.9 70.0 228

Mayne et al. [29] 3.6962 19.6177 68.6920 220.8331
Wan et al. (FEM) [43] 3.686 19.79 70.63 227.11

Present Study 3.69 19.77 70.53

clockwise flow and specific flow structures form as a function the Rayleigh number

(Ra), which is calculated

Ra =
ρ2CpgαL

3∆T

µk
, (3.2)

where α is the coefficient of thermal expansion, ρ is the density of the fluid, ∆T is the

temperature difference, µ is the dynamic viscosity of the fluid, g is the gravitational

constant, Cp is the specific heat, and L is also the side length of the cavity. Figure 3.7

shows the iso-contours and more specifically the flow structure that has developed at

Ra=103. The structures shown align well with iso-contours presented in benchmark

data sets [43]. The data shown in Table 3.3 and 3.4 show that there is excellent

agreement with the data provided by several publications.
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(a) u velocity component
contours

(b) v velocity component
contours

(c) Temperature contours

Figure 3.7: Iso-contours for various quantities of a heated cavity at a Ra=103
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CHAPTER 4

PHASE FIELD MODELING OF FLOW AROUND SOLID

BOUNDARIES

In the previous chapter, it was shown that the MOOSE framework is capable of

capturing lower Reynolds and Rayleigh number flows. In simulating the test cases,

numerical limits were established and used to limit the scope of the formulation. It has

been demonstrated that the implemented form of the FEM is capable of simulating

classic fluid problems within the realistic parameters seen in snow. This chapter

focuses on results that represent the coupling of the momentum equations with the

phase field equation.

4.1 Continuous Application of the No-Slip Condition

The lid driven cavity case is replicated again here but instead of solving 2.10,

Equation 2.17 is used to simulate the same case. This provides some validation for

the coupling of the momentum equation with the phase field equation. As it was

discussed in Chapter 2, the use of the phase field equation results in a solid interface

that is resolved continuously, which requires the formulation to have the extra forcing

term seen in Equation 2.14. The selection of h from Equation 2.14 is pertinent to

penalizing the flow to zero in the solid phase with accuracy. To compare the effects

of h, the lid driven cavity case was simulated at a Reynolds number of 400 while



36

varying h. The case was exactly the same as it was in Figure 3.1 except the no-slip

boundary conditions are replaced by setting the phase equal to one (solid) and the

velocity now has a natural boundary condition of zero on the three non-moving walls.

Only one no-slip condition was specified on the lid for the vertical component of

the velocity. Additionally, an initial condition is used to demonstrate the no-slip

condition is applied with being effected by the velocities boundary conditions. Using

a solid phase that was 10W thick on the three non-moving walls, the continuous

application of the no-slip condition could be observed with little impact from the

boundary conditions of the velocity field. Since the top boundary now spans solid

and gas, the original Dirichlet boundary condition is modified to be a function of the

phase. Thus, the lid boundary condition is applied such that

(1− φ)

2
~V . (4.1)

This eliminates the possibility of specifying a velocity in the solid region that is

non-zero.

The goal of this case was to determine if accurate results could be produced

even though the boundary conditions were different. The selection of h was then

determined by qualitatively comparing the velocity profiles shown in Figure 4.1. The

value of h determines how accurately a solid boundary is represented. Ideally, the

value is chosen to be as high as possible. However, this selection of h can cause

numerical instability to occur if chosen to be too large. While not shown, a value of

h=1000 was simulated but the results do not improve. Thus, based on Figure 4.1,

h= 100 is suitable for the needs of lower Reynolds number flows that are observed in

snow.
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Figure 4.1: The effect h from Equation 2.14 has on the lid driven cavity case at Re =
400 where each wall is specified to be ice, demonstrating the capacity to accurately
model flow past resolved solid interfaces.

It is also important to point out the existence of the secondary eddies that form

in the bottom corners and the effect the current formulation can have on them.

Since the geometry bounding the fluid flow is defined via the phase field variable,

two simulations are run. The first is to relax the phase field initial condition by

exclusively solving with the phase field equation to some point in time. This ensures

that φ is stable for simulating fluid flow. The second simulation is performed with

the fluid flow physics coupled with the phase field equation, using the results from

the first simulation as the initial condition for φ. Unfortunately, a decision has to be

made for the first simulation that can affect the second, which is how far in time is

the phase relaxed enough. For a steady solve of the phase field equation, the corners

in the lid driven cavity case become significantly round and are no long representing

a square cavity. The effect that this has is demonstrated using the streamlines of
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the lid driven cavity case in the Figure 4.2. It is apparent in Figure 4.2a and 4.2b

(a) Partially relaxed phase (b) Fully relaxed phase

(c) No phase included

Figure 4.2: The effect the initial condition of φ has on the streamlines of lid driven
cavity at a Re=400, where φ = 1 is shown in red that borders the domain.

how the relaxation of the initial condition can affect the size of the corner eddies. In

general, the phase field coupling has a dampening effect on the flow structures despite

the excellent agreement in the lid driven cavity velocity profiles show in Figure 4.1.

While this is not ideal, the effect is noted and further restricts the applicability of

the current formulation to lower Reynolds numbers. The input file for the lid driven
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cavity simulation for h = 100 can be found in Appendix C.

4.2 Flow Over Complex Geometry

As was shown in the previous chapter, the flow over cylinder case presents a

excellent benchmark for a formulation’s ability to replicate flow around complex

shapes that make up snow grains. In describing the need for the present model, it

was pointed out that some of the previous works were limited to simplified geometry.

Thus, this section examines the flow over cylinder case in an attempt to further

validate the coupling of the Navier-Stokes equation with the phase field equation.

The flow over cylinder case is replicated again here at a Reynolds number of 20.

Instead of using a mesh fitted to the cylinder, an initial condition was provided to

the flow solver. This represented a cylinder of ice surrounded by the gas phase. The

cylinder has a diameter of 1 millimeter. The flow over a cylinder has similar results

when compared to the body-fitted solution provided in Chapter 3, but ultimately is

falling short of the benchmark. One hypothesis for this that choice of W is related

to how the flow is penalized and has great impact on this case. The width of the

interface that separates the two phases is determined by the sharp interface limit,

which determines the range at which the physics ares still valid. Kaempfer and

Plapp [23] demonstrated that the sharp interface limit is ideal but implement a so-

called thin interface limit with success. They recommended using interface thicknesses

between 1x10−6 and 1x10−4 meters. As a result, the thickness has been defaulted to

1x10−5meters. Thus, this case was re-simulated to see the impact that the choice of

the interface thickness would have on the the re-circulation metrics. Unfortunately,

the solution has notable drawbacks in replicating the previous body-fitted mesh, which
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Table 4.1: The flow over a cylinder case at Re=20 using various diffuse interface
thicknesses (W )

Mesh Type L a b θ

Body Fitted 0.93 0.36 0.42 44.6
Phase Field, W =1x10−4 1.06 0.40 0.46 43.4*
Phase Field, W =1x10−5 1.02 0.40 0.45 39.1*

is clearly demonstrated in Table 4.1. It should be noted that the separation angles are

especially difficult to determine due to the fact that some of the streamlines actually

entered into the solid region. These angles are the best approximation but it is subject

to significant uncertainty. This also might explain the extended re-circulation length.

Extra flow that is passing through the cylinder instead of being full diverted around

the cylinder would lead to greater flow in the x direction right behind the cylinder. It

is clear that the choice of the interface thickness is critical in replicating flows of high

re-circulation. This is shown in Figure 4.3, which shows a side-by-side comparison

of the flow over cylinder case at Re=20. Figure 4.3a shows the streamlines from the

original simulation of the case shown in Chapter 3. Figure 4.3b shows the streamlines

from the phase field representation of the same flow. Notice how the length of the

re-circulation bubble behind the cylinder is longer than the original solution. Based

(a) Body fit mesh (b) Phase field representation.

Figure 4.3: A comparison of a body fit mesh versus a phase field representation of
flow over cylinder at a Re=20, emphasizing re-circulation lengths
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on these results, the current formulation is struggling to replicate the Re=20 case

and further results produced should be exclusively used for even lower Reynolds

numbers. Fortunately, Powers [34] estimated that the Reynolds number in the snow

micro-structure would be on the order of 0.01. The input files for this case at Re=20

and W = 1x10−5M can be found in Appendix C.

One of the major weaknesses of the previous models was that they were complex

in some capacity but implemented simple geometry. It is demonstrated qualitatively

that a real µ-ct image of snow micro-structure can be meshed and used in fluid flow

simulations. Figure 4.4 shows how this is accomplished. First, an original µ-ct image

of the snow that is roughly 25 square millimeters is used to generate the geometry.

Second, the image is converted to a continuous variable, which in this study is φ or

the phase field variable. A rule of thumb for the mesh and the phase field equation

is that at least 3 cells should span the interface thickness in any given place to

ensure stability of the phase field around curved surfaces. As in the previous section,

two simulations are run and the result is passed as an initial condition to the flow

simulation. Third, Figure 4.4c shows the final result, qualitatively demonstrating

forced convection through the snow, where the vectors and coloring represent the

direction and magnitude of the flow respectively with red being the highest velocity.

These simulations also suffer from a similar issue as was shown in the lid driven cavity

case bound by the solid phase. This is the length at which the initial condition is

simulated. The difference here is that small features can be lost from the original

image if the initial condition is simulated to steady state. Here the solution is to only

simulate to 1000 seconds, which is relatively small on the interface migration time

scale. Even so, the smallest features are distorted and even lost; this is best seen

when comparing the right side of Figures 4.4a and 4.4b.
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(a) Original µ-ct image of
snow

(b) Image shown as a relaxed
phase field

(c) Qualitative flow through
snow

Figure 4.4: Qualitative demonstration of simulating fluid flow through a complex
geometry produced from real snow images

4.3 Natural Convection Bound by Ice

The vertically heated enclosure case is replicated here to demonstrate the ability

to simulate a natural convection flow scenario in geometry represented by the phase

field. The case shown with Ra=1000 is the only case examined. The temperature is

specified in a 5 mm square box that is encased in ice. Using 1000 seconds to initialize

the phase field initial condition, the square corners are preserved. The problem is

formulated to snow micro-structure conditions, which means that the properties used

here are the actual properties seen in snow. Thus, to provide a reasonable comparison

between velocities, the velocity is scaled according to Wan et al. [43], which says that

u→ C(φ = −1)uLch
K(φ = −1)

, (4.2)

where C(φ = −1) and K(φ = −1) are the vapor’s heat capacity and thermal

conductivity respectively, and Lch is the characteristic length. The results from the

simulation differ significantly from the original solution. Unfortunately, it would
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Table 4.2: Maximum velocity components of the mid cavity velocity profile at
Rayleigh number of 1000 with and without the phase field included

Work Max u Max v

W/o Phase Field 3.65 3.69
W/ Phase Field 1.91 1.91

seem that this formulation is ill-suited for flows driven by a Ra=1000. This is clearly

demonstrated by the maximum of velocity components taken along the mid cavity

profile (i.e., u|x=0.5 ) shown in Table 4.2. The lower velocities coincides with what was

observed in the lid driven cavity case, which was a general dampening effect. Since

the velocities are much smaller, this dampening effect is exaggerated. More research

in this area is definitely needed to circumvent this issue. The input files for this case

are provided for review in Appendix C.

(a) u velocity component
contours

(b) v velocity component
contours

(c) Temperature contours

Figure 4.5: Iso-contours for various quantities of a heated cavity formed by solid
boundaries generated from the phase field at a Ra=103.

The dampening effect is really noticed when comparing T iso-contours in Figures

3.7c and 4.5c. This does of course make sense when considering the velocity was

nearly half that of the original solution and thus the advection effect it would have

would also be reduced. This might be due to the simulation parameters. Since the
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box is surrounded in ice, the walls may be acting as a heat reservoir. Recall that the

thermal properties are defined as functions of the phase. The thermal properties of the

walls are considerably greater than that of the fluid flowing inside. The temperature

contours reflect this to a degree as they are slightly “hooked” in to the ice, which

only qualitatively validates this hypothesis. Additionally, the scaling process may be

contributing to this error. Wan et al. used a scaling process for single phase materials

and it may be an incorrect way of scaling this scenario. While this presents a new

problem, results here are left to be pursued in the future. The research moves forward

because no firm conclusions can be made due to the unknowns of the scaling process

and how comparable this problem is to the original.
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CHAPTER 5

THERMAL CONVECTION IN A SNOWPACK

5.1 Diffusion Based Snow Metamorphism

The Equations 2.1, 2.8, and 2.9 have been solved, which represents the original

diffusion-based model. Following Kaempfer and Plapp [23], an experiment presented

by Stehle [40] was used for validation. The experiment was an investigation of

temperature induced migration of air bubbles in ice. In brief, the experiment consisted

of a block of single crystal ice that was 2.5 cm by 2.0 cm by 2.0 cm block with a small

hole in the middle. A temperature gradient was applied through copper plates on

opposite sides. Stehle [40] provides interface velocities of the bubble, which were

used to validate this portion of the model. The problem parameters can be seen in

Figure 5.1. Note that both this work and Kaempfer and Plapp’s [23] work simulate

this problem in 5mm x 5mm domain, not the whole 2cm x 2cm block of ice used in

the experiment. Table 5.1 shows the resulting migration velocities with comparison

values. This simulation was able to produced migration velocities on the same order

of magnitude as Stehle’s [40] experiment. Kaempfer and Plapp [23] had similar results

and explained that better agreement is hardly expected considering that Stehle’s [40]

experiment developed frost in the hole and Equations 2.1, 2.8, and 2.9 only account

for vapor diffusion through sublimation, not frost growth. Stehle’s [40] result also

showed that the hole’s shape was distorted unevenly, losing an aspect ratio of unity.
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Figure 5.1: Stehle’s [40] experiment replicated numerically showing temperature
contours. The purple and black circles indicate the location of the bubble (defined
as φ = 0) before and after 4 hours of exposure to a 543 K/M temperature gradient,
respectively.

Table 5.1: Air bubble migration velocity through ice during a 543K/M temperature
gradient

Author Approximate Velocity (m/s) Method

Stehle [40] 5x10−9 Experiment
Kaempfer and Plapp [23] 4x10−9 Finite Difference
Present work 6x10−9 Finite Element
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This outcome is not documented well and is rather qualitatively pointed out as a

unexpected result. Thus, no quantitative comparisons can be made to the shape of the

hole. Additionally, the result shown in Figure 5.1 and in Kaempfer and Plapp’s [23]

work did not replicate this distortion. The results produced are not completely

uniform. It is not completely uniform because when observing Figure 5.1 closely,

there exists some slight anisotropic evolution which is introduced in the present

work. This isotropic metamorphism, in part, is assumed through the phase-field

time relaxation τ and interface kinetic coefficient constants λ. As stated before,

τ and λ are both functions of capillary length and the interface kinetic coefficient,

which are both functions of temperature. The higher velocity produced and the slight

anisotropic growth in this work in part due to a slight difference in the definition of the

aforementioned coefficients between the present work and that which was presented in

Kaempfer and Plapp [23]. They recommended using a constant reference temperature

to evaluate these terms due to the minimal impact a variable temperature would have

on the solution. In the present research, τ and λ were kept as functions of temperature.

The input files for the validation case can be seen in Appendix C.

The last demonstration of the diffusion processes is the capacity to model real

snow. A 400 K/M temperature gradient is imposed for 6.3 hours using a µ-ct scan as

the initial condition. The migration of the micro-structure is significant but is best

demonstrated by Figure 5.2. In this simulation, the horizontal walls have specified

temperatures to enforce the temperature gradients. The temperature on the walls is

specified using a natural boundary condition of zero. And finally, the phase field is

periodic in the vertical direction.
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Figure 5.2: Simulation of real snow undergoing metamorphosis by diffusion only. The
migration is induced by 6.3 hours of exposure to a 400 K/M temperature gradient.
Black represents the original structure and red is the final location of the boundaries.

5.2 Passive Natural Convection in Snow Micro-structure

In order to investigate the relevance of natural convection, the phenomena is

simulated with realistic conditions to examine the problem prior to coupling in phase

change effects. Simulated here is a small section of snow micro-structure in the

snowpack that surrounded by other snow. A temperature gradient of 500K/M is

applied in the vertical direction, with the hottest on the bottom. The boundary

conditions are periodic in the horizontal direction for the velocity and free slip on

the top and bottom. The phase is periodic in the vertical direction, and temperature

is periodic in the horizontal direction. The entire simulation is done on a slope

of 30 degrees. To produce the following results, the momentum equations coupled

with the phase field and temperature equations are solved. This represents buoyancy

driven flow in the snow pack but is only acting passively. Here passively is defined
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Figure 5.3: Simulation of natural convection developed by a 500K/M temperature
gradient in real snow micro-structure on a 30 degree slope. The vectors indicate
flow direction and are colored by velocity magnitude. The contours represent the
temperature in which red represents the warmer temperature.

as not affecting the interface and thus the equations solved are not inclusive of the

vapor concentration field. Figure 5.3 represents actual natural convection that would

develop in snow on a slope of 30 degrees and a temperature gradient of 500K/M .

Another important feature is that several of the temperature contours follow the

path of the flow, which means that the temperature field is noticeably being advected.

While the temperature field is not the vapor concentration field, they are coupled and

both transport equations are coupled to the velocity field. An analogy can then be

drawn between the two variables, which indicates that the vapor field would also be

affected and furthermore alter the rate and direction of the metamorphosis. This

demonstrates that convection can happen in snow on a micro-structural level, further

suggesting that it is inappropriately ignored in many models.
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5.3 Considerations for a Fully Coupled Problem

Attempts were made at solving the fully coupled problem, but these simulations

did not converge. This suggests that a numerical instability developed when all the

equations were coupled. Considering the fact that each equation was simulated to

some capacity, there is only one piece of the proposed model that is not represented

here by results. This is the advection term in the vapor transport equation. To

explore this, it was attempted to solve the equation in the natural convection in

square enclosure problem, where it was only coupled with the velocity field with

the intention to advect the scalar field X. As was mentioned earlier, the Galerkin

formulation for the FEM is known to suffer from numerical instabilities when simu-

lating convective dominant problems. This fact leads to a comparison between the

two scalar fields where one (temperature) was capable of being advected and the

other (vapor concentration field) has convergence issues. The difference here is in the

material properties. Recall the vapor concentration equation’s diffusion coefficient

is one sided, meaning that it only diffuses in the vapor phase. The advection term,

however, was not one sided. Even though the flow is theoretically supposed to be

zero in the solid phase, a residual of any size other than zero will result in some small

amount of flow. This would make the ratio of advection to diffusion problematic. This

too was explored by making the advection term also one sided as shown in Equation

5.2. (1− φ
2

)
~V · ∇X (5.1)

Unfortunately, the result was the same and convergence was never achieved. A final

and unexplored theory is that the use of the conservative form of the advection terms

might mitigate the convergence issue. Traditionally, fields that are conserved are
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advected using the conservative form, which in this case would be defined as

∇ ·
(
~V X

)
. (5.2)

While this is a hypothesis, a thorough investigation is needed to identify the source

of the convergence issue for the fully coupled problem.



52

CHAPTER 6

SUMMARY

Snow micro-structure constantly evolves under environmental conditions. Cur-

rently the snow science community lacks a metamorphism model capable of modeling

natural convection on the micro-structural scale despite some observations made that

suggest its presence. This thesis research initiates a work to address this need. A

model was presented by adapting the model presented by Kaempfer and Plapp [23],

which originally neglected natural convection. In an attempt to validate the fluid

flow physics that were added to the model, three test cases were investigated. It was

demonstrated that the current formulation of the FEM was capable of simulating lid

driven cavity, flow over cylinder, and Natural convection in a closed cavity cases, up

to certain limits of the advection effects. In all three cases, the numerical formulation

was shown to accurately replicate lower Reynolds and Rayleigh number flows. At

higher Reynolds flow, the Galerkin formulation of the FEM is well known to have

instabilities in convection dominated problems, which was observed by simulating

the lid driven cavity at Re=1000.

The three cases were then simulated again but the solid walls were modeled using a

phase-field approach. In each simulation, the phase field equation is used to represent

the geometry that defines the boundaries of the original computational domain. The

momentum equations are coupled with the phase field equation by adding a Darcy-like
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term that is a function of W ,φ, µ, aptly named the interfacial stress term. This term

is formulated to attain zero velocity in the solid phase. In doing so, complex geometry

was simulated with limited accuracy, demonstrating some capacity for the phase field

equation to be used as an immersed boundary technique in low Reynolds number

flows. Unfortunately, the formulation completely failed to replicate the vertically

heated cavity case. While this may be seen as a loss, it has raised some questions.

The first question is how should the velocity be normalized in a multi-phase domain

with disparities between thermal properties? The second question is what role does

having thermal properties that are greater at the walls affect the problem? At the

end of the problem, no conclusions could be made without knowing the answers to

these questions.

Kaempfer and Plapp’s [23] work was then replicated and validated using the

same experiment they used. Their diffusion based model with temporal scaling

was simulated using MOOSE and show reasonable accuracy for simulating migrating

vapor/ice interfaces. The model is then used to simulate the metamorphism of real

snow through the use of µ-ct images of snow micro-structure. While under a 400

K/M temperature gradient, the pores of the snow micro-structure migrate toward

the warmer side of the snow via sublimation.

The last demonstration showed passive natural convection simulation through

snow micro-structure on slope. The simulation parameters represented real conditions

that are observed in snow. This problem only includes solving the Navier-Stokes

equations coupled with the phase field and heat transport equations. The results

shown indicate advection is occurring, which in turn would affect the metamorphic

processes. Natural convection in the snowpack should be further studied to arrive at

firm conclusions.
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6.1 Future Work

While the research here represents a starting point for investigating the role of

natural convection in snow metamorphosis, future work is needed. First, the issues

demonstrated in the vertically heated cavity need to be resolved prior to moving

forward. This is necessary to validate the equations proposed here for the use of

modeling natural convection in the snow pack.

Second, a numerical stability limit is potentially being violated with the inclusion

of the advected term in the vapor transport equation. Convection dominated prob-

lems in the FEM community have been solved with a wide variety of stabilization

techniques. A recommended method would be some variant of the Streamlined

Upstream Petrov-Galerkin (SUPG) formulation. This stabilized technique essentially

weights the functions in the direction of flow and has been successful in simulating

fluid flow problems.

A third recommendation for future research surrounding this problem calls for

an experiment to be able to replicate numerically. As it is now, there is not an

experiment that physically matches the problem surrounding convection in the snow

context. The problem could be an ice cylinder in a humid cross flow of air. Under the

right conditions the ice would deform according to the available to water vapor. This

could be monitored and measurements of the aspect ratio would provide excellent

data with which to compare. The cylinder may be subject to frost like in Stehle’s [40]

bubble experiment and would render the results flawed. Thus, careful considerations

would have to be made to avoid this if the experiment is undertaken.

Finally, the current formulation should be used to draw conclusions about the

role of natural convection in the snowpack. This should be approached in three



55

ways. First, the research should address how snow metamorphosis is affected by the

inclusion of the fluid flow physics. The second is geometry based. It is well known

that layers of varying density are present in the snowpack at any time. Thus, natural

convection should be examined in multiple types of snow using µ-ct scans. And

thirdly, what effect does the slope have on the metamorphosis within the context

of natural convection? Specifically, the slopes should encompass those that are

associated with high avalanche frequency. The direction of metamorphosis should be

examined and may reveal if the natural convection is a component of the formation

of avalanche conditions.
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APPENDIX A

WEAK FORMULATIONS/ RESIDUALS

A.1 Weak Formulation/ Residual for the Navier-Stokes Equa-

tions and the Conservation of Mass Equation

Weak Formulation of the Momentum Equation in the X Direction

∫
Ω

ψρa
∂u

∂t
+

∫
Ω

ψρaξ~V · ∇udΩ−
∫

Γ

ψξ(−pI + µ∇u) · ~ndΓ...

−
∫

Ω

∂ψ

∂x
ξpdΩ +

∫
Ω

∇ψξ · µ∇u)dΩ +

∫
Ω

ψξµh
1 + φ

2W 2
udΩ

(A.1)

Weak Formulation of the Momentum Equation in the Y Direction

∫
Ω

ψρa
∂v

∂t
+

∫
Ω

ψρaξ~V · ∇vdΩ−
∫

Γ

ψξ(−pI + µ∇v) · ~ndΓ−
∫

Ω

∂ψ

∂y
ξpdΩ...

+

∫
Ω

∇ψξ · µ∇v)dΩ−
∫

Ω

ψ[1− α(T − Tref )]g +

∫
Ω

ψρaξµh
1 + φ

2W 2
vdΩ

(A.2)

Weak Formulation of the Momentum Equation in the Z Direction



61∫
Ω

ψρa
∂w

∂t
+

∫
Ω

ψρaξ~V · ∇wdΩ−
∫

Γ

ψξ(−pI + µ∇w) · ~ndΓ...

−
∫

Ω

∂ψ

∂z
ξpdΩ +

∫
Ω

∇ψξ · µ∇w)dΩ +

∫
Ω

ψξµh
1 + φ

2W 2
wdΩ

(A.3)

Weak Formulation of the Conservation of Mass Equation

∫
Ω

ψ
(∂u
∂x

+
∂v

∂y
+
∂w

∂z

)
dΩ (A.4)

A.2 Weak Formulation of the Heat Transport Equation

∫
Ω

ψC(φ)
∂T

∂t
dΩ +

∫
Ω

ψξC(φ)(~V · ∇T )dΩ−
∫

Γ

ψξK(φ)∇T · ~ndΓ...

+

∫
Ω

(∇ψξ ·K(φ)∇T )dΩ−
∫

Ω

ψ
ξLsg

2

∂φ

∂t
dΩ

(A.5)

A.3 Weak Formulation of the Vapor Potential Transport Equa-

tion

∫
Ω

ψ
∂X

∂t
dΩ +

∫
Ω

ψξ(~V · ∇X)dΩ−
∫

Γ

ψξD(φ)∇X · ~ndΓ...

+

∫
Ω

(∇ψξ ·D(φ)∇X)dΩ +

∫
Ω

ψ
ξ

2

∂φ

∂t
dΩ

(A.6)

A.4 Weak Formulation of the Phase Field Equation



62∫
Ω

ψτ
∂φ

∂t
dΩ−

∫
Γ

ψW 2∇φ · ~ndΓ +

∫
Ω

(∇ψ ·W 2∇φ)dΩ...

−
∫

Ω

ψ(φ− φ3)dΩ−
∫

Ω

ψλ [X −Xeq](1− φ2)2dΩ

(A.7)
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APPENDIX B

JACOBIAN FORMULATION

B.1 Jacobian Matrix

The Jacobian provided to the PJFNK solver is defined such that

Jij =



∂Ru
∂u

∂Ru
∂v

∂Ru
∂w

∂Ru
∂p

∂Ru
∂φ

∂Ru
∂X

∂Ru
∂T

∂Rv
∂u

∂Rv
∂v

∂Rv
∂w

∂Rv
∂p

∂Rv
∂φ

∂Rv
∂X

∂Rv
∂T

∂Rw
∂u

∂Rw
∂v

∂Rw
∂w

∂Rw
∂p

∂Rw
∂φ

∂Rw
∂X

∂Rw
∂T

∂Rp
∂u

∂Rp
∂v

∂Rp
∂w

∂Rp
∂p

∂Rp
∂φ

∂Rp
∂X

∂Rp
∂T

∂Rφ
∂u

∂Rφ
∂v

∂Rφ
∂w

∂Rφ
∂p

∂Rφ
∂φ

∂Rφ
∂X

∂Rφ
∂T

∂RX
∂u

∂RX
∂v

∂RX
∂w

∂RX
∂p

∂RX
∂φ

∂RX
∂X

∂RX
∂T

∂RT
∂u

∂RT
∂v

∂RT
∂w

∂RT
∂p

∂RT
∂φ

∂RT
∂X

∂RT
∂T


where it is assumed that
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Ru = f(φ, u, v, w, p), (B.1a)

Rv = f(φ, u, v, w, p, T ), (B.1b)

Rw = f(φ, u, v, w, p), (B.1c)

Rp = f(u, v, w), (B.1d)

Rφ = f(φ,X), (B.1e)

RT = f(φ, u, v, w, T ), (B.1f)

RX = f(φ, u, v, w,X), (B.1g)

which leads to the Jacobian being redefined as

Jij =



∂Ru
∂u

∂Ru
∂v

∂Ru
∂w

∂Ru
∂p

∂Ru
∂φ

0 0

∂Rv
∂u

∂Rv
∂v

∂Rv
∂w

∂Rv
∂p

∂Rv
∂φ

0 ∂Rv
∂T

∂Rw
∂u

∂Rw
∂v

∂Rw
∂w

∂Rw
∂p

∂Rw
∂φ

∂Rw
∂X

0

∂Rp
∂u

∂Rp
∂v

∂Rp
∂w

0 0 0 0

0 0 0 0
∂Rφ
∂φ

∂Rφ
∂X

0

∂RX
∂u

∂RX
∂v

∂RX
∂w

0 ∂RX
∂φ

∂RX
∂X

0

∂RT
∂u

∂RT
∂v

∂RT
∂w

0 ∂RT
∂φ

0 ∂RT
∂T


At this point the formulation of non-zero Jacobian values are presented by section

according to their respective equations.

B.1.1 Jacobians for the X Direction of the Momentum Equation

∂Ru

∂φ
=

∫
Ω

ψξµh
N

2W 2
udΩ (B.2)
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∂Ru

∂u
=

∫
Ω

ψρa
∂uk
∂t

N +

∫
Ω

ψρaξ
(
~V · ∇N +N

∂u

∂x

)
dΩ...

+

∫
Ω

∇ψξ · µ∇N)dΩ +

∫
Ω

ψξµh
1 + φ

2W 2
NdΩ

(B.3)

∂Ru

∂v
=

∫
Ω

ψρaξ
(
N
∂u

∂y

)
dΩ (B.4)

∂Ru

∂w
=

∫
Ω

ψρaξ
(
N
∂u

∂z

)
dΩ (B.5)

∂Ru

∂p
= −

∫
Ω

∂ψ

∂x
ξNdΩ (B.6)

B.1.2 Jacobians for the Y Direction of the Momentum Equation

∂Rv

∂φ
=

∫
Ω

ψξµh
N

2W 2
vdΩ (B.7)

∂Rv

∂v
=

∫
Ω

ψρa
∂vk
∂t

N +

∫
Ω

ψρaξ
(
~V · ∇N +N

∂v

∂y

)
dΩ...

+

∫
Ω

∇ψξ · µ∇N)dΩ +

∫
Ω

ψξµh
1 + φ

2W 2
NdΩ

(B.8)

∂Rv

∂u
=

∫
Ω

ψρaξ
(
N
∂v

∂x

)
dΩ (B.9)

∂Rv

∂w
=

∫
Ω

ψρaξ
(
N
∂v

∂z

)
dΩ (B.10)
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∂Rv

∂p
= −

∫
Ω

∂ψ

∂y
ξNdΩ (B.11)

∂Rv

∂T
=

∫
Ω

ψαNg (B.12)

B.1.3 Jacobians for the Z Direction of the Momentum Equation

∂Rw

∂φ
=

∫
Ω

ψξµh
N

2W 2
wdΩ (B.13)

∂Rw

∂w
=

∫
Ω

ψρa
∂wk
∂t

N +

∫
Ω

ψρaξ
(
~V · ∇N +N

∂w

∂z

)
dΩ...

+

∫
Ω

∇ψξ · µ∇N)dΩ +

∫
Ω

ψξµh
1 + φ

2W 2
NdΩ

(B.14)

∂Rw

∂u
=

∫
Ω

ψρaξ
(
N
∂w

∂x

)
dΩ (B.15)

∂Rw

∂v
=

∫
Ω

ψρaξ
(
N
∂w

∂y

)
dΩ (B.16)

∂Rw

∂p
= −

∫
Ω

∂ψ

∂z
ξNdΩ (B.17)

B.1.4 Jacobians for the Conservation of Mass

∂Rp

∂u
=

∫
Ω

ψ
(∂N
∂x

)
dΩ (B.18)
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∂Rp

∂v
=

∫
Ω

ψ
(∂N
∂y

)
dΩ (B.19)

∂Rp

∂w
=

∫
Ω

ψ
(∂N
∂z

)
dΩ (B.20)

B.1.5 Jacobians for the Phase Field Equation

∂Rφ

∂φ
=

∫
Ω

ψτ
∂φk
∂t

NdΩ +

∫
Ω

(∇ψ ·W 2∇N)dΩ...

−
∫

Ω

ψ(1− 3φ2)NdΩ−
∫

Ω

ψλ [X −Xeq](4φ
3 − 4)NdΩ

(B.21)

∂Rφ

∂X
= −

∫
Ω

ψλ N(1− φ2)2dΩ (B.22)

B.1.6 Jacobians for the Vapor Potential Transport Equation

∂RX

∂φ
=

∫
Ω

ψ
ξ

2

∂φk
∂t

NdΩ (B.23)

∂RX

∂u
=

∫
Ω

ψξN
∂X

∂x
dΩ (B.24)

∂RX

∂v
=

∫
Ω

ψξN
∂X

∂y
dΩ (B.25)

∂RX

∂w
=

∫
Ω

ψξN
∂X

∂z
dΩ (B.26)
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∂RX

∂X
=

∫
Ω

ψ
∂Xk

∂t
NdΩ +

∫
Ω

ψξ(~V · ∇N)dΩ +

∫
Ω

(∇ψξ ·D(φ)∇N)dΩ (B.27)

Note that though the diffusion coefficient, (D(φ), for the vapor potential transport

equation is defined as a function of φ, the convenience of the PJFNK allows for a close

approximation of the full Jacobian, thus it is assumed that ∂
∂φ

(D(φ)∇X) ≈ 0.

B.1.7 Jacobians for the Heat Transport Equation

∂RT

∂φ
=

∫
Ω

ψLsg
ξ

2

∂φk
∂t

NdΩ (B.28)

∂RT

∂u
=

∫
Ω

ψξN
∂T

∂x
dΩ (B.29)

∂RT

∂v
=

∫
Ω

ψξN
∂T

∂y
dΩ (B.30)

∂RT

∂w
=

∫
Ω

ψξN
∂T

∂z
dΩ (B.31)

∂RT

∂T
=

∫
Ω

ψC(φ)
∂Tk
∂t

NdΩ +

∫
Ω

ψC(φ)ξ(~V · ∇N)dΩ +

∫
Ω

(∇ψξ ·K(φ)∇N)dΩ

(B.32)

Note that though the heat capacity, C(φ), and thermal conductivity, K(φ), coef-

ficient for the heat transport equation is defined as a function of φ, the convenience

of the PJFNK method allows for a close approximation of the full Jacobian, thus it

is assumed that ∂
∂φ

(C(φ)~V∇T ) and ∂
∂φ

(K(φ)∇T ) ≈ 0.
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APPENDIX C

INPUT FILES

C.1 Lid Driven Cavity with Solid Walls Initialization

1 [ Mesh ]
2 type = GeneratedMesh
3 dim = 2
4 nx = 10
5 ny = 10
6 xmin = −1e−4
7 ymin = −1e−4
8 xmax = .0051
9 ymax = .0050

10 e lem type = QUAD9
11 [ ]
12
13 [ Var i ab l e s ]
14 [ . / phi ]
15 [ . . / ]
16 [ ]
17
18 [ AuxVariables ]
19 [ . / u ]
20 [ . . / ]
21 [ . / phi aux ]
22 [ . . / ]
23 [ ]
24
25 [ Kerne ls ]
26 a c t i v e = ’ phase t ime p h a s e d i f f u s i o n phase doub le we l l ’
27 [ . / phase t ime ]
28 type = PikaTimeDerivative
29 v a r i a b l e = phi
30 property = r e l a x a t i o n t i m e
31 [ . . / ]
32 [ . / p h a s e d i f f u s i o n ]
33 type = PikaDi f fu s i on
34 v a r i a b l e = phi
35 property = i n t e r f a c e t h i c k n e s s s q u a r e d
36 [ . . / ]
37 [ . / phas e doub l e we l l ]
38 type = DoubleWel lPotent ia l
39 v a r i a b l e = phi
40 mob name = mobi l i ty
41 [ . . / ]
42 [ ]



70

43
44 [ AuxKernels ]
45 [ . / phi aux ]
46 type = PikaPhase In i t i a l i z eAux
47 v a r i a b l e = phi aux
48 phase = phi
49 [ . . / ]
50 [ ]
51
52 [ BCs ]
53 [ . / s o l i d ]
54 type = Dir ichletBC
55 v a r i a b l e = phi
56 boundary = ’ l e f t bottom r ight ’
57 value = 1
58 [ . . / ]
59 [ ]
60
61 [ Execut ioner ]
62 # Precond i t ioned JFNK ( d e f a u l t )
63 type = Trans ient
64 dt = 1
65 end time = 1000
66 n l ma x i t s = 20
67 s o l v e t y p e = PJFNK
68 pet s c opt i on s iname = ’− k s p g m r e s r e s t a r t −pc type −pc hypre type ’
69 p e t s c o p t i o n s v a l u e = ’50 hypre boomeramg ’
70 n l r e l t o l = 1e−07
71 n l a b s t o l = 1e−12
72 l t o l = 1e−4
73 l a b s s t e p t o l = 1e−13
74 [ . / TimeStepper ]
75 type = SolutionTimeAdaptiveDT
76 dt = 1
77 percent change = 10
78 [ . . / ]
79 [ ]
80 [ Adapt iv i ty ]
81 max h leve l = 8
82 i n i t i a l s t e p s = 8
83 marker = phi marker
84 i n i t i a l m a r k e r = phi marker
85 [ . / I n d i c a t o r s ]
86 [ . / p h i g r a d i n d i c a t o r ]
87 type = GradientJumpIndicator
88 v a r i a b l e = phi
89 [ . . / ]
90 [ . . / ]
91 [ . / Markers ]
92 [ . / phi marker ]
93 type = ErrorToleranceMarker
94 coarsen = 1e−7
95 i n d i c a t o r = p h i g r a d i n d i c a t o r
96 r e f i n e = 1e−5
97 [ . . / ]
98 [ . . / ]
99 [ ]

100
101 [ Outputs ]
102 p r i n t l i n e a r r e s i d u a l s = true
103 p r i n t p e r f l o g = true
104 [ . / out ]
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105 o u t p u t f i n a l = true
106 type = Exodus
107 f i l e b a s e = p h i i n i t i a l o u t
108 o u t p u t f i n a l = true
109 o u t p u t i n i t i a l = true
110 [ . . / ]
111 [ ]
112
113 [ ICs ]
114 [ . / phi box IC ]
115 y2 = 0.0051
116 y1 = 0
117 i n s i d e = −1
118 x2 = 0.005
119 out s id e = 1
120 v a r i a b l e = phi
121 x1 = 0
122 type = BoundingBoxIC
123 [ . . / ]
124 [ ]
125
126 [ P ikaMater ia l s ]
127 temperature = 263.15
128 i n t e r f a c e t h i c k n e s s = 1e−5
129 phase = phi
130 t e m p o r a l s c a l i n g = 1
131 [ ]
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C.2 Lid Driven Cavity with Solid Walls, Re=400

1 [ Mesh ]
2 type = GeneratedMesh
3 dim = 2
4 nx = 50
5 ny = 50
6 xmin = −1e−4
7 ymin = −1e−4
8 xmax = .0051
9 ymax = .0050

10 e lem type = QUAD9
11 [ ]
12 [ MeshModif iers ]
13 [ . / pin ]
14 type = AddExtraNodeset
15 new boundary = 99
16 coord = ’0 0 ’
17 t o l e r a n c e = 1e−04
18 [ . . / ]
19 [ ]
20 [ Var i ab l e s ]
21 [ . / v x ]
22 order = SECOND
23 [ . . / ]
24 [ . / v y ]
25 order = SECOND
26 [ . . / ]
27 [ . / p ]
28 [ . . / ]
29 [ . / phi ]
30 [ . . / ]
31 [ ]
32 [ Functions ]
33 [ . / ph i func ]
34 type = Solut ionFunct ion
35 f r om var i ab l e = phi
36 s o l u t i o n = u o i n i t i a l
37 [ . . / ]
38 [ ]
39 [ Kerne ls ]
40 [ . / x momentum ]
41 type = PikaMomentum
42 v a r i a b l e = v x
43 v e l y = v y
44 v e l x = v x
45 component = 0
46 p = p
47 [ . . / ]
48 [ . / x n o s l i p ]
49 type = PhaseNoSl ipForcing
50 v a r i a b l e = v x
51 phase = phi
52 h = 1000
53
54 [ . . / ]
55 [ . / y momentum ]
56 type = PikaMomentum
57 v a r i a b l e = v y
58 v e l y = v y
59 v e l x = v x
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60 component = 1
61 p = p
62 [ . . / ]
63 [ . / y n o s l i p ]
64 type = PhaseNoSl ipForcing
65 v a r i a b l e = v y
66 phase = phi
67 h = 1000
68
69 [ . . / ]
70 [ . / mass conservat ion ]
71 type = INSMass
72 v a r i a b l e = p
73 v = v y
74 u = v x
75 p = p
76 [ . . / ]
77 [ . / phase t ime ]
78 type = PikaTimeDerivative
79 v a r i a b l e = phi
80 property = r e l a x a t i o n t i m e
81 u s e t e m p o r a l s c a l i n g = f a l s e
82 [ . . / ]
83
84 [ . / p h a s e d i f f u s i o n ]
85 type = PikaDi f fu s i on
86 v a r i a b l e = phi
87 property = i n t e r f a c e t h i c k n e s s s q u a r e d
88 u s e t e m p o r a l s c a l i n g = f a l s e
89 [ . . / ]
90 [ . / phas e doub l e we l l ]
91 type = DoubleWel lPotent ia l
92 v a r i a b l e = phi
93 mob name = mobi l i ty
94 [ . . / ]
95 [ ]
96 [ BCs ]
97 #Based on a RE=400 where L=0.005m
98 [ . / l i d ]
99 type = Dir ichletBC

100 v a r i a b l e = v x
101 boundary = top
102 value = 0.9539149888
103 [ . . / ]
104 [ . / y n o s l i p t o p ]
105 type = Dir ichletBC
106 v a r i a b l e = v y
107 boundary = top
108 value = 0 .0
109 [ . . / ]
110 [ . / s o l i d p h a s e w a l l ]
111 type = Dir ichletBC
112 v a r i a b l e = phi
113 boundary = ’ l e f t r i g h t bottom ’
114 value = 1
115 [ . . / ]
116 [ ]
117
118 [ UserObjects ]
119 [ . / u o i n i t i a l ]
120 type = Solut ionUserObject
121 execute on = i n i t i a l
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122 mesh = p h i i n i t i a l o u t . e−s004
123 t imestep = 1
124 [ . . / ]
125 [ ]
126
127 [ Vecto rPos tproce s so r s ]
128 [ . / h o r i z o n t a l ]
129 type = LineValueSampler
130 v a r i a b l e = v y
131 num points = 100
132 end po int = ’0 .0051 0 .0025 0 ’
133 so r t by = x
134 execute on = t imestep end
135 s t a r t p o i n t = ’−1e−4 0 .0025 0 ’
136 [ . . / ]
137 [ . / v e r t i c a l ]
138 type = LineValueSampler
139 v a r i a b l e = v x
140 num points = 100
141 s t a r t p o i n t = ’0 .0025 −1e−4 0 ’
142 end po int = ’0 .0025 0 .005 0 ’
143 so r t by = y
144 [ . . / ]
145 [ ]
146
147 [ Precond i t i on ing ]
148 [ . /SMP PJFNK]
149 type = SMP
150 f u l l = true
151 [ . . / ]
152 [ ]
153
154 [ Execut ioner ]
155 type = Trans ient
156 dt = 0.01
157 end time = 0 .1
158 s o l v e t y p e = PJFNK
159 pe t s c opt i on s iname = ’− k s p g m r e s r e s t a r t ’
160 p e t s c o p t i o n s v a l u e = ’100 ’
161 l m a x i t s = 100
162 n l ma x i t s = 150
163 n l r e l t o l = 1e−08
164 l t o l = 1e−08
165 l i n e s e a r c h = none
166
167 [ ]
168 [ Adapt iv i ty ]
169 max h leve l = 5
170 i n i t i a l s t e p s = 5
171 s t ep s = 0
172 marker = phi marker
173 i n i t i a l m a r k e r = phi marker
174 [ . / I n d i c a t o r s ]
175 [ . / p h i g r a d i n d i c a t o r ]
176 type = GradientJumpIndicator
177 v a r i a b l e = phi
178 [ . . / ]
179 [ . . / ]
180 [ . / Markers ]
181 [ . / phi marker ]
182 type = ErrorToleranceMarker
183 coarsen = 1e−7
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184 i n d i c a t o r = p h i g r a d i n d i c a t o r
185 r e f i n e = 1e−5
186 [ . . / ]
187 [ . . / ]
188 [ ]
189 [ Outputs ]
190 [ . / conso l e ]
191 type = Console
192 o u t p u t l i n e a r = true
193 output non l inea r = true
194 [ . . / ]
195 [ . / exodus ]
196 f i l e b a s e = phase LDC h 100
197 type = Exodus
198 o u t p u t f i n a l = true
199 o u t p u t i n i t i a l = true
200 [ . . / ]
201 [ . / csv ]
202 f i l e b a s e = phase LDC h 100
203 type = CSV
204 [ . . / ]
205 [ ]
206
207
208 [ P ikaMater ia l s ]
209 phase = phi
210 temperature = 263.15
211 i n t e r f a c e t h i c k n e s s = 1e−05
212 t e m p o r a l s c a l i n g = 1
213 [ ]
214
215 [ ICs ]
216 [ . / p h a s e i c ]
217 v a r i a b l e = phi
218 type = FunctionIC
219 func t i on = ph i func
220 [ . . / ]
221 [ ]
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C.3 Flow over Cylinder Initialization

1 [ Mesh ]
2 type = GeneratedMesh
3 dim = 2
4 nx = 400
5 ny = 200
6 xmin = 0
7 xmax = 0.04
8 ymin = 0
9 ymax = 0.02

10 e lem type = QUAD9
11 [ ]
12
13 [ MeshModif iers ]
14 [ . / pin ]
15 type = AddExtraNodeset
16 coord = ’0 .005 0 . 01 ’
17 t o l e r a n c e = 1e−4
18 new boundary = 99
19 [ . . / ]
20 [ ]
21
22 [ Var i ab l e s ]
23 [ . / phi ]
24 [ . . / ]
25 [ ]
26
27 [ Kerne ls ]
28 [ . / p h i t i m e d e r i v a t i v e ]
29 type = PikaTimeDerivative
30 v a r i a b l e = phi
31 property = r e l a x a t i o n t i m e
32 [ . . / ]
33 [ . / p h i d i f f u s i o n ]
34 type = PikaDi f fu s i on
35 v a r i a b l e = phi
36 property = i n t e r f a c e t h i c k n e s s s q u a r e d
37 t e m p o r a l s c a l i n g = f a l s e
38 [ . . / ]
39 [ . / p h i d o u b l e w e l l ]
40 type = DoubleWel lPotent ia l
41 v a r i a b l e = phi
42 mob name = mobi l i ty
43 [ . . / ]
44 [ ]
45 [ BCs ]
46 [ . / vapor wa l l s ]
47 type = Dir ichletBC
48 value = −1
49 v a r i a b l e = phi
50 boundary = ’ top l e f t r i g h t bottom ’
51 [ . . / ]
52
53 [ . / s o l i d p i n ]
54 type = Dir ichletBC
55 value = 1
56 v a r i a b l e = phi
57 boundary = 99
58 [ . . / ]
59
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60 [ Precond i t i on ing ]
61 [ . /SMP PJFNK]
62 type = SMP
63 f u l l = true
64 [ . . / ]
65 [ ]
66
67 [ Execut ioner ]
68 # Precond i t ioned JFNK ( d e f a u l t )
69 type = Trans ient
70 dt = 100
71 end time = 1000
72 n l ma x i t s = 20
73 s o l v e t y p e = PJFNK
74 pet s c opt i on s iname = ’− k s p g m r e s r e s t a r t −pc type −pc hypre type ’
75 p e t s c o p t i o n s v a l u e = ’50 hypre boomeramg ’
76 n l r e l t o l = 1e−07
77 n l a b s t o l = 1e−12
78 l t o l = 1e−4
79 l a b s s t e p t o l = 1e−13
80 [ ]
81 [ Adapt iv i ty ]
82 max h leve l = 5
83 i n i t i a l s t e p s = 5
84 s t ep s = 4
85 marker = phi marker
86 i n i t i a l m a r k e r = phi marker
87 [ . / I n d i c a t o r s ]
88 [ . / p h i g r a d i n d i c a t o r ]
89 type = GradientJumpIndicator
90 v a r i a b l e = phi
91 [ . . / ]
92 [ . . / ]
93 [ . / Markers ]
94 [ . / phi marker ]
95 type = ErrorToleranceMarker
96 coarsen = 1e−7
97 i n d i c a t o r = p h i g r a d i n d i c a t o r
98 r e f i n e = 1e−5
99 [ . . / ]

100 [ . . / ]
101 [ ]
102
103 [ Outputs ]
104 p r i n t l i n e a r r e s i d u a l s = true
105 p r i n t p e r f l o g = true
106 [ . / out ]
107 type = Exodus
108 f i l e b a s e = r e 2 0 i n i t i a l o u t
109 o u t p u t f i n a l = true
110 o u t p u t i n i t i a l = true
111 [ . . / ]
112 [ ]
113 [ P ikaMater ia l s ]
114 phase = phi
115 temperature = 263.15
116 i n t e r f a c e t h i c k n e s s = 1e−05
117 t e m p o r a l s c a l i n g = 1 # 1e−05
118 g rav i ty = ’0 −9.81 0 ’
119 [ ]
120
121 [ ICs ]
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122 a c t i v e = ’ phase i c ’
123 [ . / p h a s e i c ]
124 y1 = 0.01
125 v a r i a b l e = phi
126 x1 = 0.005
127 type = SmoothCircleIC
128 in t w idth = 1e−5
129 rad iu s = 0.0005
130 outva lue = −1
131 inva lue = 1
132 3 D spheres = f a l s e
133 [ . . / ]
134 [ ]
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C.4 Flow over Cylinder , Re= 20

1 [ Mesh ]
2 type = GeneratedMesh
3 dim = 2
4 nx = 400
5 ny = 200
6 xmin = 0
7 xmax = 0.04
8 ymin = 0
9 ymax = 0.02

10 e lem type = QUAD9
11 [ ]
12 [ MeshModif iers ]
13 [ . / pin ]
14 type = AddExtraNodeset
15 new boundary = 99
16 coord = ’0 .005 0 . 01 ’
17 t o l e r a n c e = 1e−04
18 [ . . / ]
19 [ ]
20 [ Var i ab l e s ]
21 [ . / v x ]
22 order = SECOND
23 [ . . / ]
24 [ . / v y ]
25 order = SECOND
26 [ . . / ]
27 [ . / p ]
28 [ . . / ]
29 [ . / phi ]
30 [ . . / ]
31 [ ]
32 [ Functions ]
33 # [ . / ph i func ]
34 # type = Solut ionFunct ion
35 # f rom var i ab l e = phi
36 # s o l u t i o n = u o i n i t i a l
37 # [ . . / ]
38 [ . / ph i func ]
39 type = Solut ionFunct ion
40 f r om var i ab l e = phi
41 s o l u t i o n = u o r e s t a r t
42 [ . . / ]
43 [ . / p func ]
44 type = Solut ionFunct ion
45 f r om var i ab l e = p
46 s o l u t i o n = u o r e s t a r t
47 [ . . / ]
48 [ . / v x func ]
49 type = Solut ionFunct ion
50 f r om var i ab l e = v x
51 s o l u t i o n = u o r e s t a r t
52 [ . . / ]
53 [ . / v y func ]
54 type = Solut ionFunct ion
55 f r om var i ab l e = v y
56 s o l u t i o n = u o r e s t a r t
57 [ . . / ]
58 [ ]
59 [ Kerne ls ]
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60 [ . / x momentum time ]
61 type = PikaTimeDerivative
62 v a r i a b l e = v x
63 c o e f f i c i e n t = 1.341
64 u s e t e m p o r a l s c a l i n g = f a l s e
65 [ . . / ]
66
67 [ . / x momentum ]
68 type = PikaMomentum
69 v a r i a b l e = v x
70 v e l y = v y
71 v e l x = v x
72 component = 0
73 p = p
74 [ . . / ]
75 [ . / x n o s l i p ]
76 type = PhaseNoSl ipForcing
77 v a r i a b l e = v x
78 phase = phi
79 h = 100
80 [ . . / ]
81
82 [ . / y momentum time ]
83 type = PikaTimeDerivative
84 v a r i a b l e = v y
85 c o e f f i c i e n t = 1.341
86 u s e t e m p o r a l s c a l i n g = f a l s e
87 [ . . / ]
88
89 [ . / y momentum ]
90 type = PikaMomentum
91 v a r i a b l e = v y
92 v e l y = v y
93 v e l x = v x
94 component = 1
95 p = p
96 [ . . / ]
97 [ . / y n o s l i p ]
98 type = PhaseNoSl ipForcing
99 v a r i a b l e = v y

100 phase = phi
101 h = 100
102 [ . . / ]
103 [ . / mass conservat ion ]
104 type = INSMass
105 v a r i a b l e = p
106 v = v y
107 u = v x
108 p = p
109 [ . . / ]
110 [ . / phase t ime ]
111 type = PikaTimeDerivative
112 v a r i a b l e = phi
113 property = r e l a x a t i o n t i m e
114 u s e t e m p o r a l s c a l i n g = f a l s e
115 [ . . / ]
116
117 [ . / p h a s e d i f f u s i o n ]
118 type = PikaDi f fu s i on
119 v a r i a b l e = phi
120 property = i n t e r f a c e t h i c k n e s s s q u a r e d
121 u s e t e m p o r a l s c a l i n g = f a l s e
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122 [ . . / ]
123 [ . / phas e doub l e we l l ]
124 type = DoubleWel lPotent ia l
125 v a r i a b l e = phi
126 mob name = mobi l i ty
127 [ . . / ]
128 [ ]
129 [ BCs ]
130 [ . / i n l e t ]
131 type = Dir ichletBC
132 v a r i a b l e = v x
133 boundary = l e f t
134 value = 0.2384787472
135 [ . . / ]
136
137 [ . / y n o s l i p t o p ]
138 type = Dir ichletBC
139 v a r i a b l e = v y
140 boundary = ’ top bottom ’
141 value = 0 .0
142 [ . . / ]
143 [ . / p r e s s u r e o u t ]
144 type = Dir ichletBC
145 v a r i a b l e = p
146 boundary = r i g h t
147 value = 0
148 [ . . / ]
149 [ ]
150
151 [ UserObjects ]
152 # [ . / u o i n i t i a l ]
153 # type = Solut ionUserObject
154 # execute on = i n i t i a l
155 # mesh = r e 2 0 i n i t i a l o u t . e−s010
156 # timestep = 1
157 # [ . . / ]
158 [ . / u o r e s t a r t ]
159 type = Solut ionUserObject
160 execute on = i n i t i a l
161 mesh = . . / 1 e6 001 / r e 2 0 o u t . e−s004
162 t imestep = 1
163 [ . . / ]
164 [ ]
165
166 [ Precond i t i on ing ]
167 [ . /SMP PJFNK]
168 type = SMP
169 f u l l = true
170 [ . . / ]
171 [ ]
172
173 [ Execut ioner ]
174 type = Trans ient
175 dt = 0.01
176 s t a r t t i m e = 0.045
177 end time = 0.12
178 s o l v e t y p e = PJFNK
179 pe t s c opt i on s iname = ’− k s p g m r e s r e s t a r t ’
180 p e t s c o p t i o n s v a l u e = ’100 ’
181 l m a x i t s = 100
182 n l ma x i t s = 150
183 n l r e l t o l = 1e−08
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184 l t o l = 1e−08
185 l i n e s e a r c h = none
186 scheme = ’ crank−n ico l son ’
187
188
189 [ ]
190 [ Adapt iv i ty ]
191 max h leve l = 7
192 i n i t i a l s t e p s =7
193 s t ep s = 0
194 marker = combo marker
195 i n i t i a l m a r k e r = phi marker
196 [ . / I n d i c a t o r s ]
197 [ . / p h i g r a d i n d i c a t o r ]
198 type = GradientJumpIndicator
199 v a r i a b l e = phi
200 [ . . / ]
201 [ . / v x g r a d i n d i c a t o r ]
202 type = GradientJumpIndicator
203 v a r i a b l e = v x
204 [ . . / ]
205 [ . / v y g r a d i n d i c a t o r ]
206 type = GradientJumpIndicator
207 v a r i a b l e = v y
208 [ . . / ]
209
210 [ . . / ]
211 [ . / Markers ]
212 [ . / phi marker ]
213 type = ErrorToleranceMarker
214 coarsen = 1e−7
215 i n d i c a t o r = p h i g r a d i n d i c a t o r
216 r e f i n e = 1e−5
217 [ . . / ]
218 [ . / v x marker ]
219 type = ErrorToleranceMarker
220 coarsen = 1e−7
221 i n d i c a t o r = v x g r a d i n d i c a t o r
222 r e f i n e = 1e−5
223 [ . . / ]
224 [ . / v y marker ]
225 type = ErrorToleranceMarker
226 coarsen = 1e−7
227 i n d i c a t o r = v y g r a d i n d i c a t o r
228 r e f i n e = 1e−5
229 [ . . / ]
230 [ . / combo marker ]
231 type = ComboMarker
232 markers = ’ phi marker v x marker v y marker ’
233 [ . . / ]
234 [ . . / ]
235 [ ]
236 [ Outputs ]
237 [ . / exodus ]
238 f i l e b a s e = r e 2 0 o u t
239 type = Exodus
240 o u t p u t f i n a l = true
241 o u t p u t i n i t i a l = true
242 i n t e r v a l = 1
243 [ . . / ]
244 [ ]
245
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246
247 [ P ikaMater ia l s ]
248 phase = phi
249 temperature = 263.15
250 i n t e r f a c e t h i c k n e s s = 1e−6
251 t e m p o r a l s c a l i n g = 1
252 [ ]
253
254 [ ICs ]
255 [ . / p h a s e i c ]
256 v a r i a b l e = phi
257 type = FunctionIC
258 func t i on = ph i func
259 [ . . / ]
260 [ . / p i c ]
261 v a r i a b l e = p
262 type = FunctionIC
263 func t i on = p func
264 [ . . / ]
265 [ . / v x i c ]
266 v a r i a b l e = v x
267 type = FunctionIC
268 func t i on = v x func
269 [ . . / ]
270 [ . / v y i c ]
271 v a r i a b l e = v y
272 type = FunctionIC
273 func t i on = v y func
274 [ . . / ]
275 [ ]
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C.5 Natural Convection in a Square Ice Enclosure Initializa-
tion

1 [ Mesh ]
2 type = GeneratedMesh
3 dim = 2
4 nx = 50
5 ny = 50
6 xmin = −1e−4
7 ymin = −1e−4
8 xmax = .0051
9 ymax = .0051

10 e lem type = QUAD9
11 [ ]
12
13 [ Var i ab l e s ]
14 [ . / phi ]
15 [ . . / ]
16 [ ]
17
18 [ AuxVariables ]
19 [ . / u ]
20 [ . . / ]
21 [ . / phi aux ]
22 [ . . / ]
23 [ ]
24
25 [ Kerne ls ]
26 [ . / phase t ime ]
27 type = PikaTimeDerivative
28 v a r i a b l e = phi
29 property = r e l a x a t i o n t i m e
30 [ . . / ]
31 [ . / p h a s e d i f f u s i o n ]
32 type = PikaDi f fu s i on
33 v a r i a b l e = phi
34 property = i n t e r f a c e t h i c k n e s s s q u a r e d
35 [ . . / ]
36 [ . / phas e doub l e we l l ]
37 type = DoubleWel lPotent ia l
38 v a r i a b l e = phi
39 mob name = mobi l i ty
40 [ . . / ]
41 [ ]
42
43 [ AuxKernels ]
44 [ . / phi aux ]
45 type = PikaPhase In i t i a l i z eAux
46 v a r i a b l e = phi aux
47 phase = phi
48 [ . . / ]
49 [ ]
50
51 [ BCs ]
52 [ . / s o l i d ]
53 type = Dir ichletBC
54 v a r i a b l e = phi
55 boundary = ’ top l e f t bottom r ight ’
56 value = 1
57 [ . . / ]
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58 [ ]
59 [ Execut ioner ]
60 type = Trans ient
61 dt = 100
62 end time = 1000
63 n l ma x i t s = 20
64 s o l v e t y p e = PJFNK
65 pet s c opt i on s iname = ’− k s p g m r e s r e s t a r t −pc type −pc hypre type ’
66 p e t s c o p t i o n s v a l u e = ’50 hypre boomeramg ’
67 n l r e l t o l = 1e−08
68 n l a b s t o l = 1e−12
69 l t o l = 1e−8
70 l a b s s t e p t o l = 1e−13
71 [ ]
72 [ Adapt iv i ty ]
73 max h leve l =5
74 i n i t i a l s t e p s = 5
75 s t ep s = 5
76 marker = phi marker
77 i n i t i a l m a r k e r = phi marker
78 [ . / I n d i c a t o r s ]
79 [ . / p h i g r a d i n d i c a t o r ]
80 type = GradientJumpIndicator
81 v a r i a b l e = phi
82 [ . . / ]
83 [ . . / ]
84 [ . / Markers ]
85 [ . / phi marker ]
86 type = ErrorToleranceMarker
87 coarsen = 1e−7
88 i n d i c a t o r = p h i g r a d i n d i c a t o r
89 r e f i n e = 1e−5
90 [ . . / ]
91 [ . . / ]
92 [ ]
93
94 [ Outputs ]
95 p r i n t l i n e a r r e s i d u a l s = true
96 p r i n t p e r f l o g = true
97 [ . / out ]
98 type = Exodus
99 f i l e b a s e = p h i i n i t i a l o u t

100 o u t p u t f i n a l = true
101 o u t p u t i n i t i a l = true
102 [ . . / ]
103 [ ]
104
105 [ ICs ]
106 a c t i v e = ’ p h i f u l l b o x I C ’
107 [ . / p h i f u l l b o x I C ]
108 y2 = 0.005
109 y1 = 0
110 i n s i d e = −1
111 x2 = 0.005
112 out s id e = 1
113 v a r i a b l e = phi
114 x1 = 0
115 type = BoundingBoxIC
116 [ . . / ]
117 [ . / ph i sma l l box IC ]
118 y2 = 0.005
119 y1 = 0
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120 i n s i d e = −1
121 x2 = 0.0001
122 out s id e = 1
123 v a r i a b l e = phi
124 x1 = 0
125 type = BoundingBoxIC
126 [ . . / ]
127
128 [ ]
129
130 [ P ikaMater ia l s ]
131 temperature = 263.15
132 i n t e r f a c e t h i c k n e s s = 1e−5
133 phase = phi
134 t e m p o r a l s c a l i n g = 1
135 [ ]
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C.6 Natural Convection in a Square Ice Enclosure, Ra=1000

1 [ Mesh ]
2 type = GeneratedMesh
3 dim = 2
4 nx = 50
5 ny = 50
6 xmin = −1e−4
7 ymin = −1e−4
8 xmax = .0051
9 ymax = .0051

10 e lem type = QUAD9
11 [ ]
12 [ MeshModif iers ]
13 [ . / pin ]
14 type = AddExtraNodeset
15 new boundary = 99
16 coord = ’0 0 ’
17 t o l e r a n c e = 1e−04
18 [ . . / ]
19 [ ]
20 [ Var i ab l e s ]
21 [ . / v x ]
22 order = SECOND
23 [ . . / ]
24 [ . / v y ]
25 order = SECOND
26 [ . . / ]
27 [ . / p ]
28 [ . . / ]
29 [ . / phi ]
30 [ . . / ]
31 [ . /T]
32 [ . . / ]
33 [ ]
34 [ Functions ]
35 [ . / ph i func ]
36 type = Solut ionFunct ion
37 f r om var i ab l e = phi
38 s o l u t i o n = u o i n i t i a l
39 [ . . / ]
40 [ ]
41 [ Kerne ls ]
42 [ . / x momentum time ]
43 type = PikaTimeDerivative
44 v a r i a b l e = v x
45 c o e f f i c i e n t = 1.341
46 u s e t e m p o r a l s c a l i n g = f a l s e
47 [ . . / ]
48 [ . / x momentum ]
49 type = PikaMomentum
50 v a r i a b l e = v x
51 v e l y = v y
52 v e l x = v x
53 component = 0
54 p = p
55 [ . . / ]
56 [ . / x n o s l i p ]
57 type = PhaseNoSl ipForcing
58 v a r i a b l e = v x
59 phase = phi
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60 h = 100
61 [ . . / ]
62 [ . / x bous s ine sq ]
63 type = Bouss inesq
64 component = 0
65 v a r i a b l e = v x
66 T = T
67 [ . . / ]
68
69 [ . / y momentum time ]
70 type = PikaTimeDerivative
71 v a r i a b l e = v y
72 c o e f f i c i e n t = 1.341
73 u s e t e m p o r a l s c a l i n g = f a l s e
74 [ . . / ]
75 [ . / y momentum ]
76 type = PikaMomentum
77 v a r i a b l e = v y
78 v e l y = v y
79 v e l x = v x
80 component = 1
81 p = p
82 [ . . / ]
83 [ . / y n o s l i p ]
84 type = PhaseNoSl ipForcing
85 v a r i a b l e = v y
86 phase = phi
87 h = 100
88 [ . . / ]
89 [ . / y bous s ine sq ]
90 type = Bouss inesq
91 component = 1
92 v a r i a b l e = v y
93 T = T
94 [ . . / ]
95
96 [ . / mass conservat ion ]
97 type = INSMass
98 v a r i a b l e = p
99 v = v y

100 u = v x
101 p = p
102 [ . . / ]
103
104 [ . / phase t ime ]
105 type = PikaTimeDerivative
106 v a r i a b l e = phi
107 property = r e l a x a t i o n t i m e
108 u s e t e m p o r a l s c a l i n g = f a l s e
109 [ . . / ]
110
111 [ . / p h a s e d i f f u s i o n ]
112 type = PikaDi f fu s i on
113 v a r i a b l e = phi
114 property = i n t e r f a c e t h i c k n e s s s q u a r e d
115 u s e t e m p o r a l s c a l i n g = f a l s e
116 [ . . / ]
117 [ . / phas e doub l e we l l ]
118 type = DoubleWel lPotent ia l
119 v a r i a b l e = phi
120 mob name = mobi l i ty
121 [ . . / ]
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122
123 [ . / heat t ime ]
124 type = PikaTimeDerivative
125 v a r i a b l e = T
126 property = hea t capac i ty
127 u s e t e m p o r a l s c a l i n g = f a l s e
128 [ . . / ]
129 [ . / hea t convec t i on ]
130 type = PikaConvection
131 property = hea t capac i ty
132 u s e t e m p o r a l s c a l i n g = f a l s e
133 v a r i a b l e = T
134 v e l x = v x
135 v e l y = v y
136 [ . . / ]
137 [ . / h e a t d i f f u s i o n ]
138 type = PikaDi f fu s i on
139 property = conduc t i v i t y
140 u s e t e m p o r a l s c a l i n g = true
141 v a r i a b l e = T
142 [ . . / ]
143
144 [ ]
145 [ BCs ]
146 [ . / s o l i d p h a s e w a l l ]
147 type = Dir ichletBC
148 v a r i a b l e = phi
149 boundary = ’ l e f t r i g h t top bottom ’
150 value = 1
151 [ . . / ]
152 [ . / p r e s s u r e p i n ]
153 type = Dir ichletBC
154 v a r i a b l e = p
155 boundary = 99
156 value = 0
157 [ . . / ]
158 [ . / T hot ]
159 type = Dir ichletBC
160 v a r i a b l e = T
161 boundary = r i g h t
162 value = 301.7369208944
163 [ . . / ]
164 [ . / T cold ]
165 type = Dir ichletBC
166 v a r i a b l e = T
167 boundary = l e f t
168 value = 263.15
169 [ . . / ]
170 [ ]
171
172 [ UserObjects ]
173 [ . / u o i n i t i a l ]
174 type = Solut ionUserObject
175 execute on = i n i t i a l
176 mesh = p h i i n i t i a l o u t . e−s002
177 t imestep = 1
178 [ . . / ]
179 [ ]
180
181 [ Precond i t i on ing ]
182 [ . /SMP PJFNK]
183 type = SMP
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184 f u l l = true
185 [ . . / ]
186 [ ]
187
188 [ Execut ioner ]
189 type = Trans ient
190 dt = 0.01
191 s t a r t t i m e = 0
192 end time = 0.01
193 s o l v e t y p e = PJFNK
194 pe t s c opt i on s iname = ’− k s p g m r e s r e s t a r t ’
195 p e t s c o p t i o n s v a l u e = ’100 ’
196 l m a x i t s = 100
197 n l ma x i t s = 150
198 n l r e l t o l = 1e−08
199 l t o l = 1e−08
200 l i n e s e a r c h = none
201
202 [ ]
203 [ Adapt iv i ty ]
204 max h leve l = 5
205 i n i t i a l s t e p s = 5
206 s t ep s = 0
207 marker = phi marker
208 i n i t i a l m a r k e r = phi marker
209 [ . / I n d i c a t o r s ]
210 [ . / p h i g r a d i n d i c a t o r ]
211 type = GradientJumpIndicator
212 v a r i a b l e = phi
213 [ . . / ]
214 [ . . / ]
215 [ . / Markers ]
216 [ . / phi marker ]
217 type = ErrorToleranceMarker
218 coarsen = 1e−7
219 i n d i c a t o r = p h i g r a d i n d i c a t o r
220 r e f i n e = 1e−5
221 [ . . / ]
222 [ . . / ]
223 [ ]
224 [ Outputs ]
225 [ . / conso l e ]
226 type = Console
227 o u t p u t l i n e a r = f a l s e
228 output non l inea r = true
229 [ . . / ]
230 [ . / exodus ]
231 f i l e b a s e = phase convec t i on out
232 type = Exodus
233 o u t p u t f i n a l = true
234 o u t p u t i n i t i a l = true
235 [ . . / ]
236 [ . / csv ]
237 f i l e b a s e = phase conv
238 type = CSV
239 [ . . / ]
240 [ ]
241
242
243 [ P ikaMater ia l s ]
244 phase = phi
245 temperature = 263.15



91

246 i n t e r f a c e t h i c k n e s s = 1e−05
247 t e m p o r a l s c a l i n g = 1
248 g rav i ty = ’0 −9.81 0 ’
249 [ ]
250
251 [ ICs ]
252 [ . / p h a s e i c ]
253 v a r i a b l e = phi
254 type = FunctionIC
255 func t i on = ph i func
256 [ . . / ]
257 [ . / T ic ]
258 v a r i a b l e = T
259 type = FunctionIC
260 func t i on =7717.3841788774∗x+263.15
261 [ . . / ]
262 [ ]
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C.7 Stehle’s Migrating Bubble Initialization

1 [ Mesh ]
2 type = GeneratedMesh
3 dim = 2
4 nx = 50
5 ny = 50
6 # xmax = 0.0025
7 xmax = 0.005
8 ymax = 0.005
9 e lem type = QUAD9

10 [ ]
11
12 [ Var i ab l e s ]
13 [ . / phi ]
14 [ . . / ]
15 [ ]
16
17 [ AuxVariables ]
18 [ . / u ]
19 [ . . / ]
20 [ . / phi aux ]
21 [ . . / ]
22 [ ]
23
24 [ Kerne ls ]
25 [ . / phase t ime ]
26 type = PikaTimeDerivative
27 v a r i a b l e = phi
28 property = r e l a x a t i o n t i m e
29 [ . . / ]
30 [ . / p h a s e d i f f u s i o n ]
31 type = PikaDi f fu s i on
32 v a r i a b l e = phi
33 property = i n t e r f a c e t h i c k n e s s s q u a r e d
34 [ . . / ]
35 [ . / phas e doub l e we l l ]
36 type = DoubleWel lPotent ia l
37 v a r i a b l e = phi
38 mob name = mobi l i ty
39 [ . . / ]
40 [ ]
41
42 [ AuxKernels ]
43 [ . / phi aux ]
44 type = PikaPhase In i t i a l i z eAux
45 v a r i a b l e = phi aux
46 phase = phi
47 [ . . / ]
48 [ ]
49
50 [ Execut ioner ]
51 # Precond i t ioned JFNK ( d e f a u l t )
52 type = Trans ient
53 dt = 10
54 s o l v e t y p e = PJFNK
55 pet s c opt i on s iname = ’− k s p g m r e s r e s t a r t −pc type −pc hypre type ’
56 p e t s c o p t i o n s v a l u e = ’50 hypre boomeramg ’
57 n l r e l t o l = 1e−07
58 n l a b s t o l = 1e−12
59 l t o l = 1e−4
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60 [ . / TimeStepper ]
61 type = Iterat ionAdaptiveDT
62 dt = 1
63 growth fac to r = 3
64 [ . . / ]
65 num steps = 10
66 [ ]
67
68 [ Adapt iv i ty ]
69 max h leve l = 4
70 i n i t i a l s t e p s = 4
71 marker = phi marker
72 i n i t i a l m a r k e r = phi marker
73 [ . / I n d i c a t o r s ]
74 [ . / p h i g r a d i n d i c a t o r ]
75 type = GradientJumpIndicator
76 v a r i a b l e = phi
77 [ . . / ]
78 [ . . / ]
79 [ . / Markers ]
80 [ . / phi marker ]
81 type = ErrorToleranceMarker
82 coarsen = 1e−7
83 i n d i c a t o r = p h i g r a d i n d i c a t o r
84 r e f i n e = 1e−5
85 [ . . / ]
86 [ . . / ]
87 [ ]
88
89 [ Outputs ]
90 o u t p u t i n i t i a l = true
91 p r i n t l i n e a r r e s i d u a l s = true
92 p r i n t p e r f l o g = true
93 [ . / out ]
94 o u t p u t f i n a l = true
95 type = Exodus
96 i n t e r v a l = 1
97 [ . . / ]
98 [ ]
99

100 [ ICs ]
101 [ . / p h a s e i c ]
102 in t w idth = 1e−5
103 x1 = 0.0025
104 y1 = 0.0025
105 rad iu s = 0.0005
106 outva lue = 1
107 v a r i a b l e = phi
108 inva lue = −1
109 type = SmoothCircleIC
110 [ . . / ]
111 [ ]
112
113 [ P ikaMater ia l s ]
114 temperature = 258 .2
115 i n t e r f a c e t h i c k n e s s = 1e−5
116 phase = phi
117 t e m p o r a l s c a l i n g = 1e−04
118 [ ]
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C.8 Stehle’s Migrating Bubble

1 [ Mesh ]
2 type = GeneratedMesh
3 dim = 2
4 nx = 50
5 ny = 50
6 xmax = 0.0025
7 ymax = 0.005
8 e lem type = QUAD9
9 [ ]

10
11 [ MeshModif iers ]
12 [ . / pin ]
13 type = AddExtraNodeset
14 new boundary = 99
15 coord = ’ 0 . 0 0 .0 ’
16 [ . . / ]
17 [ ]
18 [ Var i ab l e s ]
19 [ . / v x ]
20 order = SECOND
21 [ . . / ]
22 [ . / v y ]
23 order = SECOND
24 [ . . / ]
25 [ . / p ]
26 [ . . / ]
27 [ . / phi ]
28 [ . . / ]
29 [ . /T]
30 [ . . / ]
31 [ . /X]
32 [ . . / ]
33 [ ]
34
35 [ AuxVariables ]
36 [ . / phi aux ]
37 [ . . / ]
38 [ ]
39
40 [ Functions ]
41 [ . / T func ]
42 type = ParsedFunction
43 value = −543∗y+267.515
44 [ . . / ]
45 [ . / ph i func ]
46 type = Solut ionFunct ion
47 f r om var i ab l e = phi
48 s o l u t i o n = p h i i n i t i a l
49 [ . . / ]
50 [ ]
51
52 [ Kerne ls ]
53 [ . / x momentum time ]
54 type = PikaTimeDerivative
55 v a r i a b l e = v x
56 c o e f f i c i e n t = 1.341
57 u s e t e m p o r a l s c a l i n g = f a l s e
58 [ . . / ]
59 [ . / x momentum ]
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60 type = PikaMomentum
61 v a r i a b l e = v x
62 v e l y = v y
63 v e l x = v x
64 component = 0
65 p = p
66 [ . . / ]
67 [ . / x n o s l i p ]
68 type = PhaseNoSl ipForcing
69 v a r i a b l e = v x
70 phase = phi
71 h = 100
72 [ . . / ]
73 [ . / x momentum boussinesq ]
74 type = Bouss inesq
75 v a r i a b l e = v x
76 component = 0
77 T = T
78 [ . . / ]
79
80 [ . / y momentum time ]
81 type = PikaTimeDerivative
82 v a r i a b l e = v y
83 c o e f f i c i e n t = 1.341
84 u s e t e m p o r a l s c a l i n g = f a l s e
85 [ . . / ]
86
87 [ . / y momentum ]
88 type = PikaMomentum
89 v a r i a b l e = v y
90 v e l y = v y
91 v e l x = v x
92 component = 1
93 p = p
94 [ . . / ]
95 [ . / y n o s l i p ]
96 type = PhaseNoSl ipForcing
97 v a r i a b l e = v y
98 phase = phi
99 h = 100

100 [ . . / ]
101 [ . / y momentum boussinesq ]
102 type = Bouss inesq
103 v a r i a b l e = v y
104 component = 1
105 T = T
106 [ . . / ]
107 [ . / mass conservat ion ]
108 type = INSMass
109 v a r i a b l e = p
110 u = v y
111 v = v x
112 p = p
113 [ . . / ]
114
115 [ . / ph i t ime ]
116 type = PikaTimeDerivative
117 v a r i a b l e = phi
118 property = r e l a x a t i o n t i m e
119 u s e t e m p o r a l s c a l i n g = f a l s e
120 [ . . / ]
121 [ . / p h i d i f f u s i o n ]
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122 type = PikaDi f fu s i on
123 v a r i a b l e = phi
124 property = i n t e r f a c e t h i c k n e s s s q u a r e d
125 u s e t e m p o r a l s c a l i n g = f a l s e
126 [ . . / ]
127 [ . / p h i d o u b l e w e l l ]
128 type = DoubleWel lPotent ia l
129 v a r i a b l e = phi
130 mob name = mobi l i ty
131 [ . . / ]
132 [ . / p h i t r a n s i t i o n ]
133 type = PhaseForcing
134 v a r i a b l e = phi
135 c h e m i c a l p o t e n t i a l = X
136 property = p h a s e f i e l d c o u p l i n g c o n s t a n t
137 u s e t e m p o r a l s c a l i n g = f a l s e
138 [ . . / ]
139
140 [ . / Heat time ]
141 type = PikaTimeDerivative
142 v a r i a b l e = T
143 property = hea t capac i ty
144 [ . . / ]
145 [ . / Heat convect ion ]
146 type = PikaConvection
147 v a r i a b l e = T
148 v e l x = v x
149 u s e t e m p o r a l s c a l i n g = f a l s e
150 property = hea t capac i ty
151 v e l y = v y
152 [ . . / ]
153 [ . / H e a t d i f f u s i o n ]
154 type = PikaDi f fu s i on
155 v a r i a b l e = T
156 u s e t e m p o r a l s c a l i n g = true
157 property = conduc t i v i t y
158 [ . . / ]
159 [ . / Heat phi t ime ]
160 type = PikaCoupledTimeDerivative
161 v a r i a b l e = T
162 u s e t e m p o r a l s c a l i n g = true
163 property = l a t e n t h e a t
164 c o u p l e d v a r i a b l e = phi
165 s c a l e = −0.5
166 [ . . / ]
167 [ . / Vapor time ]
168 type = PikaTimeDerivative
169 v a r i a b l e = X
170 c o e f f i c i e n t = 1 .0
171 u s e t e m p o r a l s c a l i n g = f a l s e
172 [ . . / ]
173 [ . / Vapor convect ion ]
174 type = PikaPhaseConvection
175 v a r i a b l e = X
176 v e l x = v x
177 u s e t e m p o r a l s c a l i n g = f a l s e
178 phase = phi
179 c o e f f i c i e n t = 1 .0
180 v e l y = v y
181 [ . . / ]
182 [ . / V apo r d i f f u s i on ]
183 type = PikaDi f fu s i on
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184 v a r i a b l e = X
185 u s e t e m p o r a l s c a l i n g = true
186 property = d i f f u s i o n c o e f f i c i e n t
187 [ . . / ]
188 [ . / Vapor phi t ime ]
189 type = PikaCoupledTimeDerivative
190 v a r i a b l e = X
191 u s e t e m p o r a l s c a l i n g = true
192 c o u p l e d v a r i a b l e = phi
193 c o e f f i c i e n t = 1
194 s c a l e = 0 .5
195 [ . . / ]
196 [ ]
197 [ AuxKernels ]
198 [ . / ph i aux ke rne l ]
199 type = PikaPhase In i t i a l i z eAux
200 v a r i a b l e = phi aux
201 phase = phi
202 [ . . / ]
203 [ ]
204 [ BCs ]
205 [ . / T hot ]
206 type = Dir ichletBC
207 v a r i a b l e = T
208 boundary = bottom
209 value = 267.515
210 [ . . / ]
211 [ . / T cold ]
212 type = Dir ichletBC
213 v a r i a b l e = T
214 boundary = top
215 value = 264 .8
216 [ . . / ]
217
218 [ ]
219
220 [ Pos tp roc e s so r s ]
221 [ ]
222
223 [ UserObjects ]
224 [ . / p h i i n i t i a l ]
225 type = Solut ionUserObject
226 mesh = p h i i n i t i a l 1 e 5 o u t . e−s009
227 s y s t e m v a r i a b l e s = phi
228 [ . . / ]
229 [ ]
230
231 [ Execut ioner ]
232 type = Trans ient
233 dt = 0.01
234 end time = 1000
235 s o l v e t y p e = PJFNK
236 pe t s c opt i on s iname = ’− k s p g m r e s r e s t a r t ’
237 p e t s c o p t i o n s v a l u e = ’100 ’
238 l m a x i t s = 100
239 n l ma x i t s = 150
240 n l r e l t o l = 1e−08
241 l t o l = 1e−08
242 l i n e s e a r c h = none
243 scheme = ’ crank−n ico l son ’
244 [ ]
245
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246 [ Adapt iv i ty ]
247 max h leve l = 5
248 marker = combo marker
249 i n i t i a l s t e p s = 5
250 i n i t i a l m a r k e r = combo marker
251 [ . / I n d i c a t o r s ]
252 [ . / p h i g r a d i n d i c a t o r ]
253 type = GradientJumpIndicator
254 v a r i a b l e = phi
255 [ . . / ]
256 [ . / X grad ind i ca to r ]
257 type = GradientJumpIndicator
258 v a r i a b l e = X
259 [ . . / ]
260 [ . . / ]
261 [ . / Markers ]
262 [ . / combo marker ]
263 type = ComboMarker
264 markers = ’ phi grad marker X grad marker ’
265 [ . . / ]
266 [ . / X grad marker ]
267 type = ErrorToleranceMarker
268 coarsen = 1e−10
269 i n d i c a t o r = X grad ind i ca to r
270 r e f i n e = 1e−8
271 [ . . / ]
272 [ . / phi grad marker ]
273 type = ErrorToleranceMarker
274 coarsen = 1e−7
275 i n d i c a t o r = p h i g r a d i n d i c a t o r
276 r e f i n e = 1e−5
277 [ . . / ]
278 [ . . / ]
279 [ ]
280
281 [ Outputs ]
282 o u t p u t i n i t i a l = true
283 exodus = true
284 csv = true
285 p r i n t l i n e a r r e s i d u a l s = true
286 p r i n t p e r f l o g = true
287 [ ]
288
289 [ ICs ]
290 [ . / p h a s e i c ]
291 v a r i a b l e = phi
292 type = FunctionIC
293 func t i on = ph i func
294 [ . . / ]
295 [ . / t empera ture i c ]
296 v a r i a b l e = T
297 type = FunctionIC
298 func t i on = T func
299 [ . . / ]
300 [ . / vapo r i c ]
301 v a r i a b l e = X
302 type = PikaChemicalPotent ia l IC
303 block = 0
304 p h a s e v a r i a b l e = phi
305 temperature = T
306 [ . . / ]
307 [ ]
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308
309 [ P ikaMater ia l s ]
310 temperature = T
311 i n t e r f a c e t h i c k n e s s = 1e−5
312 t e m p o r a l s c a l i n g = 1
313 c o n d e n s a t i o n c o e f f i c i e n t = .01
314 phase = phi
315 g rav i ty = ’0 −9.81 0 ’
316 [ ]
317
318 [ PikaCriter iaOutput ]
319 a i r c r i t e r i a = f a l s e
320 v e l o c i t y c r i t e r i a = f a l s e
321 t i m e c r i t e r i a = f a l s e
322 v a p o r c r i t e r i a = f a l s e
323 c h e m i c a l p o t e n t i a l = X
324 phase = phi
325 u s e t e m p o r a l s c a l i n g = true
326 i c e c r i t e r i a = f a l s e
327 s u p e r s a t u r a t i o n = f a l s e
328 i n t e r f a c e v e l o c i t y p o s t p r o c e s s o r s = max
329 temperature = T
330 [ ]
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C.9 Natural Convection in Sloped Snow Initialization

1 [ Mesh ]
2 # u n i f o r m r e f i n e = 6
3 type = GeneratedMesh
4 dim = 2
5 nx = 50
6 ny = 50
7 xmax = .005
8 ymax = .005
9 [ ]

10
11 [ MeshModif iers ]
12 [ ]
13
14 [ Var i ab l e s ]
15 [ . / phi ]
16 [ . . / ]
17 [ ]
18
19 [ AuxVariables ]
20 [ . / u ]
21 [ . . / ]
22 [ . / phi aux ]
23 [ . . / ]
24 [ ]
25
26 [ Functions ]
27 [ . / snow ct ]
28 type = ImageFunction
29 upper va lue = 1
30 lower va lue = −1
31 f i l e = snow smal l . png
32 th r e sho ld = 128
33 [ . . / ]
34 [ ]
35
36 [ Kerne ls ]
37 [ . / phase t ime ]
38 type = PikaTimeDerivative
39 v a r i a b l e = phi
40 property = r e l a x a t i o n t i m e
41 [ . . / ]
42 [ . / p h a s e d i f f u s i o n ]
43 type = PikaDi f fu s i on
44 v a r i a b l e = phi
45 property = i n t e r f a c e t h i c k n e s s s q u a r e d
46 [ . . / ]
47 [ . / phas e doub l e we l l ]
48 type = DoubleWel lPotent ia l
49 v a r i a b l e = phi
50 mob name = mobi l i ty
51 [ . . / ]
52 [ ]
53
54 [ AuxKernels ]
55 [ . / phi aux ]
56 type = PikaPhase In i t i a l i z eAux
57 v a r i a b l e = phi aux
58 phase = phi
59 [ . . / ]
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60 [ ]
61
62 [ BCs ]
63 [ . / Pe r i od i c ]
64 [ . / p h i p e r i o d i c ]
65 v a r i a b l e = phi
66 a u t o d i r e c t i o n = ’ x y ’
67 [ . . / ]
68 [ . . / ]
69 [ ]
70
71 [ Adapt iv i ty ]
72 max h leve l = 3
73 i n i t i a l s t e p s = 3
74 marker = phi marker
75 i n i t i a l m a r k e r = phi marker
76 [ . / I n d i c a t o r s ]
77 [ . / p h i g r a d i n d i c a t o r ]
78 type = GradientJumpIndicator
79 v a r i a b l e = phi
80 [ . . / ]
81 [ . . / ]
82 [ . / Markers ]
83 [ . / phi marker ]
84 type = ErrorToleranceMarker
85 coarsen = 1e−7
86 i n d i c a t o r = p h i g r a d i n d i c a t o r
87 r e f i n e = 1e−5
88 [ . . / ]
89 [ . . / ]
90 [ ]
91
92 [ Execut ioner ]
93 # Precond i t ioned JFNK ( d e f a u l t )
94 type = Trans ient
95 dt = 10
96 s o l v e t y p e = PJFNK
97 pet s c opt i on s iname = ’− k s p g m r e s r e s t a r t −pc type −pc hypre type ’
98 p e t s c o p t i o n s v a l u e = ’50 hypre boomeramg ’
99 n l r e l t o l = 1e−07

100 n l a b s t o l = 1e−12
101 l t o l = 1e−4
102 num steps = 10
103 [ . / TimeStepper ]
104 type = Iterat ionAdaptiveDT
105 dt = 1
106 growth fac to r = 3
107 [ . . / ]
108 [ ]
109
110 [ Outputs ]
111 o u t p u t i n i t i a l = true
112 conso l e = f a l s e
113 p r i n t l i n e a r r e s i d u a l s = true
114 p r i n t p e r f l o g = true
115 [ . / out ]
116 o u t p u t f i n a l = true
117 type = Exodus
118 [ . . / ]
119 [ ]
120
121 [ ICs ]
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122 [ . / p h a s e i c ]
123 v a r i a b l e = phi
124 type = FunctionIC
125 func t i on = snow ct
126 [ . . / ]
127 [ ]
128
129 [ P ikaMater ia l s ]
130 temperature = 263.15
131 i n t e r f a c e t h i c k n e s s = 1e−5
132 phase = phi
133 t e m p o r a l s c a l i n g = 1e−04
134 c o n d e n s a t i o n c o e f f i c i e n t = . 1
135 [ ]
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C.10 Natural Convection in Sloped Snow, 500K/M

1
2 [ Mesh ]
3 type = GeneratedMesh
4 dim = 2
5 nx = 50
6 ny = 50
7 xmax = 0.005
8 ymax = 0.005
9 e lem type = QUAD9

10 [ ]
11
12 [ MeshModif iers ]
13 [ . / pin ]
14 type = AddExtraNodeset
15 coord = ’0 0 ’
16 new boundary = 99
17 [ . . / ]
18 [ ]
19
20 [ Var i ab l e s ]
21 [ . / v x ]
22 order = SECOND
23 [ . . / ]
24 [ . / v y ]
25 order = SECOND
26 [ . . / ]
27 [ . / p ]
28 [ . . / ]
29 [ . / phi ]
30 [ . . / ]
31 [ . /T]
32 [ . . / ]
33 [ ]
34
35 [ Functions ]
36 [ . / ph i func ]
37 type = Solut ionFunct ion
38 f r om var i ab l e = phi
39 s o l u t i o n = u o i n i t i a l
40 [ . . / ]
41 [ . / T func ]
42 type = ParsedFunction
43 value = −500∗y+265.65
44 [ . . / ]
45 [ ]
46
47 [ Kerne ls ]
48 [ . / x momentum time ]
49 type = PikaTimeDerivative
50 v a r i a b l e = v x
51 c o e f f i c i e n t = 1.341
52 u s e t e m p o r a l s c a l i n g = f a l s e
53 [ . . / ]
54 [ . / x momentum ]
55 type = PikaMomentum
56 v a r i a b l e = v x
57 v e l y = v y
58 v e l x = v x
59 component = 0
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60 p = p
61 [ . . / ]
62 [ . / x bous s ine sq ]
63 type = Bouss inesq
64 v a r i a b l e = v x
65 T = T
66 component = 0
67 [ . . / ]
68 [ . / x n o s l i p ]
69 type = PhaseNoSl ipForcing
70 v a r i a b l e = v x
71 phase = phi
72 h = 100
73 [ . . / ]
74
75
76 [ . / y momentum time ]
77 type = PikaTimeDerivative
78 v a r i a b l e = v y
79 c o e f f i c i e n t = 1.341
80 u s e t e m p o r a l s c a l i n g = f a l s e
81 [ . . / ]
82 [ . / y momentum ]
83 type = PikaMomentum
84 v a r i a b l e = v y
85 v e l y = v y
86 v e l x = v x
87 component = 1
88 p = p
89 [ . . / ]
90 [ . / y bous s ine sq ]
91 type = Bouss inesq
92 v a r i a b l e = v y
93 T = T
94 component = 1
95 [ . . / ]
96 [ . / y n o s l i p ]
97 type = PhaseNoSl ipForcing
98 v a r i a b l e = v y
99 phase = phi

100 h = 100
101 [ . . / ]
102
103
104 [ . / mass conservat ion ]
105 type = INSMass
106 v a r i a b l e = p
107 v = v y
108 u = v x
109 p = p
110 [ . . / ]
111
112
113 [ . / phase t ime ]
114 type = PikaTimeDerivative
115 v a r i a b l e = phi
116 property = r e l a x a t i o n t i m e
117 u s e t e m p o r a l s c a l i n g = f a l s e
118 [ . . / ]
119 [ . / p h a s e d i f f u s i o n ]
120 type = PikaDi f fu s i on
121 v a r i a b l e = phi
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122 property = i n t e r f a c e t h i c k n e s s s q u a r e d
123 u s e t e m p o r a l s c a l i n g = f a l s e
124 [ . . / ]
125 [ . / phas e doub l e we l l ]
126 type = DoubleWel lPotent ia l
127 v a r i a b l e = phi
128 mob name = mobi l i ty
129 [ . . / ]
130
131
132 [ . / heat t ime ]
133 type = PikaTimeDerivative
134 v a r i a b l e = T
135 property = hea t capac i ty
136 s c a l e = 1 .0
137 [ . . / ]
138 [ . / hea t convec t i on ]
139 type = PikaConvection
140 v a r i a b l e = T
141 u s e t e m p o r a l s c a l i n g = true
142 property = hea t capac i ty
143 v e l x = v x
144 v e l y = v y
145 [ . . / ]
146 [ . / h e a t d i f f u s i o n ]
147 type = PikaDi f fu s i on
148 v a r i a b l e = T
149 u s e t e m p o r a l s c a l i n g = true
150 property = conduc t i v i t y
151 [ . . / ]
152 [ . / hea t ph i t ime ]
153 type = PikaCoupledTimeDerivative
154 v a r i a b l e = T
155 property = l a t e n t h e a t
156 s c a l e = −0.5
157 u s e t e m p o r a l s c a l i n g = true
158 c o u p l e d v a r i a b l e = phi
159 [ . . / ]
160
161 [ ]
162 [ BCs ]
163 [ . / Pe r i od i c ]
164 [ . / p e r i o d i c v x ]
165 v a r i a b l e = v x
166 a u t o d i r e c t i o n = ’ x y ’
167 [ . . / ]
168 [ . / p e r i o d i c v y ]
169 v a r i a b l e = v y
170 a u t o d i r e c t i o n = ’ x y ’
171 [ . . / ]
172 [ . / p e r i o d i c p h i ]
173 v a r i a b l e = phi
174 a u t o d i r e c t i o n = ’ x y ’
175 [ . . / ]
176 [ . / pe r i od i c T ]
177 v a r i a b l e = T
178 a u t o d i r e c t i o n = ’x ’
179 [ . . / ]
180 [ . . / ]
181 # [ . / p r e s su r e ]
182 # type = Dir ichletBC
183 # v a r i a b l e = p
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184 # boundary = 99
185 # value = 0
186 # [ . . / ]
187 [ . / T cold ]
188 type = Dir ichletBC
189 v a r i a b l e = T
190 boundary = top
191 value = 263.15
192 [ . . / ]
193 [ . / T hot ]
194 type = Dir ichletBC
195 v a r i a b l e = T
196 boundary = bottom
197 value = 265.65
198 [ . . / ]
199 # [ . / f r e e s l i p ]
200 # type = Dir ichletBC
201 # v a r i a b l e = v y
202 # boundary = ’ top bottom ’
203 # value = 0
204 # [ . . / ]
205 [ ]
206
207 [ UserObjects ]
208 [ . / u o i n i t i a l ]
209 type = Solut ionUserObject
210 execute on = i n i t i a l
211 mesh = p h i i n i t i a l s m a l l o u t . e−s009
212 t imestep = 1
213 [ . . / ]
214 [ ]
215
216 [ Precond i t i on ing ]
217 [ . /SMP PJFNK]
218 type = SMP
219 f u l l = true
220 [ . . / ]
221 [ ]
222
223 [ Execut ioner ]
224 type = Trans ient
225 dt = 0.01
226 end time = 0 .5
227 s o l v e t y p e = PJFNK
228 pe t s c opt i on s iname = ’− k s p g m r e s r e s t a r t ’
229 p e t s c o p t i o n s v a l u e = ’100 ’
230 l m a x i t s = 100
231 n l ma x i t s = 150
232 n l r e l t o l = 1e−08
233 l t o l = 1e−08
234 l i n e s e a r c h = none
235 [ ]
236
237 [ Adapt iv i ty ]
238 max h leve l = 4
239 marker = phi marker
240 i n i t i a l s t e p s = 4
241 i n i t i a l m a r k e r = phi marker
242 [ . / I n d i c a t o r s ]
243 [ . / p h i g r a d i n d i c a t o r ]
244 type = GradientJumpIndicator
245 v a r i a b l e = phi
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246 [ . . / ]
247 [ . . / ]
248 [ . / Markers ]
249 [ . / phi marker ]
250 type = ErrorToleranceMarker
251 coarsen = 1e−4
252 i n d i c a t o r = p h i g r a d i n d i c a t o r
253 r e f i n e = 1e−3
254 [ . . / ]
255 [ . . / ]
256 [ ]
257
258 [ Outputs ]
259 o u t p u t i n i t i a l = true
260 o u t p u t f i n a l = true
261 exodus = true
262 # conso l e = true
263 i n t e r v a l = 1
264 # p r i n t l i n e a r r e s i d u a l s = true
265 # p r i n t p e r f l o g = true
266 [ ]
267
268 [ P ikaMater ia l s ]
269 temperature = T
270 i n t e r f a c e t h i c k n e s s = 1e−05
271 t e m p o r a l s c a l i n g = 1
272 c o n d e n s a t i o n c o e f f i c i e n t = .01
273 phase = phi
274 #Slope o f 30 degree s
275 g rav i ty = ’4 .905 −8.49571 0 ’
276 [ ]
277
278 [ ICs ]
279 [ . / p h a s e i c ]
280 v a r i a b l e = phi
281 type = FunctionIC
282 func t i on = ph i func
283 [ . . / ]
284 [ . / t empera ture i c ]
285 v a r i a b l e = T
286 type = FunctionIC
287 func t i on = T func
288 [ . . / ]
289 [ ]


