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ABSTRACT 

The parasitic protozoa Giardia intestinalis and Entamoeba histolytica are major 

health concerns and responsible for hundreds of millions of cases of intestinal disease per 

year.  Strains of both parasites have been discovered that show resistance to 

metronidazole, the most prevalent treatment for these pathogens.  Thus, there is a need to 

identify new drugs and drug targets to combat the growing threat of drug resistant 

parasites.  The parasite enzyme methylthioadenosine nucleosidase (MTN) is one such 

potential target. Traditional drug development processes take almost a decade and 

hundreds of millions of dollars to complete. In an effort to shorten that timeline and 

reduce development costs, the drugs tested in this study were found by in silico screening 

of a drug library containing thousands of small molecules to identify a subset of 

compounds that showed theoretical high binding affinities to the E. coli MTN enzyme. 

Enzymatic screening of the 33 tightest binding drugs yielded four potent inhibitors of E. 

coli MTN that also showed inhibitory activity against target parasite MTNs. The 

inhibition profiles of these drugs against parasite MTNs and the human enzyme 

methylthioadenosine phosphorylase (MTAP) were extensively characterized.  The drugs 

were also tested against live cell cultures of Giardia intestinalis and human cell lines for 

growth inhibitory activity. The drug 5A (N-(2-furyl methyl)-N'-(4-nitrophenyl)urea) 

showed an IC50 of 10.8 µM against Giardia intestinalis cultures, while exhibiting an IC50 

of over 100 µM against human cells.  These results suggest that the MTN inhibitors 
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identified in this work are potential lead compounds for further development, and that in 

silico drug screening is an effective strategy for identifying anti-parasitic agents.  
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CHAPTER ONE: INTRODUCTION 

Parasites 

The word parasite comes from the Greek, parasitos, which means “beside food” 

and was the name used for servers at feasts.  The word evolved to describe sycophants 

who hung around banquets for table scraps. In science, the definition has evolved to 

describe any organism that survives by taking nutrients from a host that suffers from the 

arrangement.  Certain bacteria and viruses could equally fit this definition but they are 

classified separately for historical reasons (Zimmer, 2000).  

Parasites that live inside a host (endoparasites) include protozoa (e.g., Giardia 

intestinalis, Entamoeba histolytica), digeneans (e.g.,  Schistosoma mansoni), cestodes 

(e.g., Taenia solium), nematodes (e.g., Trichinella spiralis), and acanthocephalans (e.g., 

Moniliformis clarkia).  Parasites that live outside the host (ectoparasites) include 

arthropods (e.g., Ixodes tick) and most monogeneans (e.g., Diplozoon paradoxum) (Bush, 

Fernandez, Esch, & Seed, 2001). It is thought that most parasites started out as free-living 

creatures that evolved in order to survive on or inside other living things.  This evolution 

is proposed to have proceeded in a stepwise manner, where the initial requirement was 

parasite-host interaction that included some form of pre-adaptation to the host 

environment to allow full time occupancy of host tissues. It was also an evolutionary 

imperative that the parasites have a better chance of survival while associated with the 

host than they would as free-living creatures (Poulin, 2007). 
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Anthropologists have proposed that approximately half the humans who have ever 

lived, likely died from some form of parasitic infection (Drisdelle, 2010). This assertion, 

though impossible to prove, may be true. Parasites are the largest category of infectious 

diseases.  They have evolved mechanisms that allow them to survive varying conditions 

inside and outside the host, and can be found infecting all known species of higher 

organisms (Roberts & Janovy, 2013).   

Parasitic illnesses are often considered “diseases of poverty.”  This is an over 

simplification of the real impact of parasitic infection.  According to the Oxford Poverty 

and Human Development Initiative’s Multidimensional Poverty Index, approximately 1.6 

billion of the 7 billion people inhabiting the planet are living in abject poverty (Alkire & 

Seth, 2013). The World Health Organization considers infectious disease a large 

contributing factor to poverty.  Lifting the burden of infectious disease would 

automatically improve the over-all economic future of humanity.  Proof of this principle 

can be seen in the economic advantages resulting from the near eradication of 

dracunculiasis or guinea worm disease.  Inexpensive water filters, community outreach, 

and education programs have allowed millions of people who were formerly at risk of 

losing months of income while afflicted with the worm to work, go to school, and 

otherwise improve their chances of economic stability (Cairncross, Müller, & Zagaria, 

2002).  
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The mortality and morbidity due to parasitic diseases are enormous (Table 1). 

Worse, parasites are incredibly difficult to kill without causing harm to their host, since 

they share so much in common with the host at the cellular and metabolic level. Thus, 

there are relatively few anti-parasitic drugs available, and most of them have some degree 

of toxicity to humans, particularly with repeated or prolonged use.  For example, malaria, 

which causes the most deaths annually of any of the parasites, has approximately eight 

different commonly used treatments. Most of these anti-malarials have toxicities that 

limit their use in young children or pregnant women.  Unfortunately, these are the same 

patient populations that are most likely to suffer severe forms of the disease and are at the 

highest risk of death from malaria (CDC, 2013). Despite issues of drug toxicity, a 

measure of pseudo-control over parasitic infections has been achieved with the help of 

Table 1. World Wide Prevalence of Parasitic Infections 

Parasite 
Scientific 
Name 

Parasite 
Common Name 

Estimated 
World 
Prevalence 

Estimated 
Mortality Rank 

Relative U.S. 
Prevalence 

Giardia 
intestinalis 

Giardiasis 
“beaver fever” 

2-3 billion Low 1-2 million per 
year 

Toxoplasma 
gondii 

Toxoplasmosis 1-2.5 billion Very low Low 

Trichomonas 
vaginalis 

Trichomoniasis 15% of women Very low Considered a 
common STD 

Entamoeba 
histolytica 

Amebiasis 200-400 
million 

No. 2 Low 

Plasmodium 
spp. 

Malaria 200-300 
million 

No. 1 Low 

Schistosoma 
mansoni 

Schistosomiasis 200-300 
million 

No. 3* Uncommon 

Trypanosoma 
spp. 

Chagas disease 
“African Sleeping 
sickness” 

15-20 million  No. 3* Increasing in 
U.S.  

Leishmania 
spp. 

Leishmaniasis 12 million No. 3* Large concern 
of U.S. military 

Adapted from Thom & When, 2012.  * tie ranking due to a lack of accurate data. 
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environmental management to reduce vector transmission, and the use of anti-parasitic 

agents.  Unfortunately, this has resulted in selective pressures that have pushed both 

arthropod vectors and parasites to adapt and evolve drug resistance.  Isolates of drug 

resistant parasites have been reported for virtually every anti-parasitic therapeutic in 

current use (Poulin, 2007).   Much like bacteria, parasites employ many mechanisms to 

develop drug resistance, including genetic mutations that result in insensitive or 

overexpressed target enzymes and proteins, altered metabolism, expression of drug efflux 

pumps, and epigenetic changes (Sharma et al., 2013).  

Whatever the mechanism, the result is the same. Drugs that were extremely time 

consuming and expensive to produce are now ineffective in treating certain strains of 

parasites.  Alexander Fleming, the discoverer of penicillin, argued in 1946 that 

chemotherapeutic drugs capable of sustained activity against microbes were unlikely due 

to their inherent ability to mutate rapidly and acquire resistance (Fleming, 1946; 

Alekshun & Levy, 2007). Thus, there is a continual need to rapidly and cheaply identify 

new antibiotics.  Recent research has begun to explore the development of antibiotics that 

modulate pathogen growth and virulence, without creating a strong selective pressure for 

drug resistance that typically accompanies cytotoxic drugs.  This, along with drug 

rotation, combination drug therapy, and appropriate antibiotic use should result in longer 

periods of drug effectiveness (Davies & Davies, 2010).  

Giardia intestinalis 

Giardia intestinalis (sometimes referred to as G. duodenalis or G. lamblia) is a 

parasite of the phylum Protozoa, order Diplomonadida.  As seen in Figure 1, Giardia 

intestinalis exists as a motile single-celled trophozoite inside the host intestinal tract.  The 
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trophozoite has a 12-15 µm long dorso-ventrally flattened body that is convex on the 

dorsal surface.  The dorsal surface also contains a bi-lobed adhesive disc used to attach to 

the surface of host cells lining the intestinal wall.  Giardia is unusual in that it contains 

two nuclei behind the lobes of the adhesive disks, thus conferring tetraploidy and giving 

the trophozoite its distinctive “bespectacled” look when viewed under the microscope. 

Giardia lacks other organelles such as Golgi bodies, lysozomes, and smooth endoplasmic 

reticulum, but does develop four pairs of flagella that allow rapid movement when 

unattached from the intestinal wall.  Giardia is also amitochondriate and lacks respiratory 

metabolism. Instead it relies on anaerobic fermentation and salvage of host nutrients to 

supply its metabolic needs (Roberts & Janovy, 2013).    

Giardia infections begin by ingestion of heavily walled parasite cysts. Once in a 

new host, stomach acid and digestive enzymes begin to degrade the parasite cyst wall. In 

the duodenum, the organism completes excystation and two new flagellated trophozoites 

emerge to establish an infection in the duodenum and jejunum.  The trophozoites attach 

to the intestinal mucosal lining through the ventral adhesive disks and absorb nutrients 

from intestinal cell exudates and luminal contents.  The infection proceeds as the 

trophozoites replicate by binary fission. Unattached trophozoites migrate to the drier stool 

of the colon where they encyst in a process that envelopes the trophozoite in protective 

fibers. The hardened cysts are then excreted by the host and transmitted to the next host 

through fecal contamination of food or water (Roberts & Janovy, 2013).   
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Because Giardia attaches to the lining of the small intestine in the host, the most 

common symptoms of infection are chronic diarrhea, greasy stool, foul smelling 

flatulence, intestinal cramping, rectal fissures, and weight loss (Ali & Hill, 2003).  In 

healthy adults with robust immune systems the infection may be asymptomatic.  This can 

lead to unknowing transmission of the disease to close contacts (Thompson, 2000).   

Giardia is rarely fatal but severe disease does occur.  In most cases of severe disease, the 

victims are commonly immune-compromised individuals, children under age 5, or 

pregnant women (Teunis, Medema, Schets, & Havelaar, 1998).  Since Giardia is the 

 
Figure 1. Giardia intestinalis Life Cycle (CDC, 2014 a).  
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leading cause of reported outbreaks of waterborne illness in the United States, it remains 

a significant widespread health hazard (Lengerich, Addiss, & Juranek, 1994).  

According to recent CDC estimates, the annual incidence of giardiasis was 

estimated at > 1.2 million cases in the United States alone (Scallan et al., 2011).  

Worldwide infection rates are estimated at over a billion cases annually (Auerbach, 

2007).  Even in places where water quality is heavily regulated, outbreaks still occur due 

to the extreme toughness of the cysts, which resist killing by chlorination and UV 

irradiation (Isaac-Renton, Cordeiro, Sarafis, & Shahriari, 1993). True preventative 

measures require filtration mechanisms that can exclude particles larger than 10 µm. In 

some instances, even these precautions fail to fully decontaminate water supplies 

(LeChevallier, Norton, & Lee, 1991a, b).   

The primary treatment for giardiasis is the nitroimidazole drug metronidazole.  

The standard daily oral dose for treatment of giardiasis is 500 to 750 mg for five to ten 

days (National Toxicology Program, 2011).  Metronidazole is believed to be a human 

carcinogen because experiments in rats and mice have shown that oral treatment with 

metronidazole increases rates of tumor formation (National Toxicology Program, 2011). 

Other treatments such as albendazole and tinidazole are also used, but have been reported 

to be either mutagenic or teratogenic (Abboud et al., 2001; Karabay et al., 2004).  

Considering that the most common sufferers of giardiasis are young children and 

pregnant women, these side effects are unacceptable. For this reason, along with the 

emergence of metronidazole resistant isolates of Giardia intestinalis and the common 

recurrence of disease in previously treated patients, the need for a new drug treatment 

regimen is at an all-time high. 
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Entamoeba histolytica 

Entamoeba histolytica is a parasite of the phylum Protozoa, order Lobosea.  

Inside the host gastrointestinal tract, E. histolytica exists as a 10-60 µm long trophozoite 

with short, blunt pseudopodia for locomotion.  Like Giardia, E. histolytica cells are 

amitochondriate and lack respiratory metabolism. The cytoplasmic membranes are quite 

thin and clear, which allows for visualization of the nucleus and endosomes after 

staining.  Food vacuoles often contain host erythrocytes, which are darker than the 

surrounding endoplasm and make the cells look like chocolate chip cookies (Figure 2).   

 
Figure 2. Entamoeba histolytica Life Cycle (CDC, 2014 b).  
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Similar to Giardia, infection by Entamoeba begins with ingestion of cysts. The 

major source of infectious cysts is fecal contaminated food and drinking water.  Other 

sources include anal sex and overcrowded, unhygienic living conditions (Walsh, 1986). 

Inside the host, E. histolytica excyst to form trophozoites that colonize the large intestine. 

Trophozoites divide by rapid binary fission into four daughter trophozoite cells.  In 

asymptomatic patients, some trophozoites migrate to the drier stool of the colon where 

encystations occurs. Cysts are subsequently shed in the stool. 

If untreated, Entamoeba histolytica causes amoebiasis. The most common 

symptoms of infection are chronic bloody diarrhea, cramps, and vomiting (Roberts & 

Janovy, 2013).  Asymptomatic disease is common.  The parasite can invade the tissues of 

the cecum, leading to tissue ulceration and migration via the blood stream to other host 

organs (mainly liver, lung, and brain), where it can further invade to cause potentially 

fatal abscesses and tissue necrosis (Roberts & Janovy, 2013).  

Amoebiasis can also be fatal when the host suffers acute dysentery leading to 

extreme dehydration.  The victim is usually an otherwise healthy young man who delays 

seeking treatment until the symptoms become unbearable.  In other cases of death, the 

victims are usually the very young, the very old, or the immunocompromised. In total, 

approximately 50-100,000 people die every year from amoebiasis, which makes it second 

only to malaria as the leading cause of death due to parasites (Stanley, 2003).  

Like giardiasis, metronidazole is the most common treatment for amoebiasis.  The 

standard oral dose for treatment of amoebiasis is only slightly lower than the dose that 

has been shown to cause tumors in mice and rats (Roberts & Janovy, 2013).  Increasing 

reports of metronidazole treatment failure suggest drug resistance has begun to develop in 
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E. histolytica (Bansal, Malla, & Mahajan, 2006).  Albendazole has been used effectively 

to treat metronidazole resistant amoebiasis.  However, albendazole is a known teratogen 

and is contra-indicated in the treatment of amoebiasis in pregnant women (Venkatesan, 

1998; Abboud et al., 2001; Karabay et al., 2004).  A vaccine against amoebiasis has been 

tested in animals, but has yet to be approved for use in humans (Stanley, 2006). 

Unfortunately, the lack of sustained immunity following native infection suggests that the 

development of a successful vaccine will be difficult (Haque et al., 2006), and further 

supports the need to develop additional therapeutics to treat amoebiasis.  

Methionine, SAM Reactions, and the Methionine Salvage Pathway 

Methionine is an extremely important amino acid for all cells due to its role in a variety 

of biochemical reactions including protein synthesis, the synthesis of other amino acids 

through trans-sulfuration reactions, and the creation of S-adenosylmethionine (Nozaki, 

Ali, & Tokoro, 2005). Parasites (like humans) do not make sufficient methionine to meet 

their metabolic needs, thus it is termed an “essential” amino acid (Huxtable, 1986). In 

parasites, widespread methionine auxotrophy sponsors both methionine scavenging 

systems from the host, as well as salvage pathways to recycle the sulfur containing amino 

acid (Marr & Müller, 1995). 

The majority of methionine is used to create S-adenosylmethionine (SAM, 

AdoMet) from ATP using the enzyme methionine-adenosyl transferase (MAT, or SAM 

synthase) (Figure 3). SAM is an activated nucleoside that is a source of chemical groups 

used in hundreds of biochemical reactions, including methylation reactions, polyamine 

synthesis, and radical SAM reactions (Fontecave, Atta, & Mulliez, 2004). Byproducts of 

these reactions consist of adenine nucleosides from which salvage of both the methionyl 
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sulfur and purine base are important due to the underlying auxotrophy for these 

compounds in the protozoan parasites like G. intestinalis and E. histolytica.   

 

 

The primary role of SAM is to serve as a methyl group donor in a wide array of 

transmethylation reactions used to modify cellular DNA, proteins, and other small 

molecules (Figure 4). S-Adenosylhomocysteine (SAH, AdoHcy) is produced as a 

byproduct of the reaction (Chiang et al., 1996; Fontecave et al., 2004; Grillo & 

Colombatto, 2005). Transmethylation reactions play a critical role in a variety of cellular 

processes including the regulation of gene expression, proper assembly of membrane 

constituents, and protein-protein interactions. SAH is a product inhibitor of 

transmethylation reactions, and is catabolized efficiently to prevent intracellular 

accumulation (Kloor & Oswald, 2004; Hall & Ho, 2006).  Two enzymes are of major 

interest for interruption of methionine salvage and SAM recycling in target organisms: 

SAH hydrolase (SAHH) and MTA nucleosidase (MTN).   

 

 

 
Figure 3. SAM Synthesis. Methionine adenosyl transferase (MAT) 

catalyzes the addition of methionine to ATP to make SAM, pyrophosphate, 
and orthophosphate. 
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Figure 4. The Methionine Salvage Cycle.   Three main pathways exist to 

recycle methionine and adenine byproducts of SAM reactions. Variation 
exists in the pathways depending on the parasite. However, both Entamoeba 

and Giardia contain active MTN enzymes. 
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SAM reactions are crucial for parasite replication and thus inhibition of SAM 

production or recycling would result in stunted growth, making enzymes related to SAM 

pathways attractive targets for drug development (Parker et al., 2003).  SAHH catabolizes 

S-adenosylhomocysteine (SAH). SAHH inhibition would cause intracellular SAH 

accumulation, in turn leading to feedback inhibition of methylation reactions (Figure 5).  

Inhibition of methylation reactions would impair DNA replication and can trigger 

apoptosis (Parker et al., 2003; Gopisetty, Ramachandran, & Singal, 2005).   Thus, SAHH 

inhibition is a tempting target for new drug development. Indeed, some success has been 

found with carbocyclic 3-deazaadenosine, an SAHH inhibitor that has shown promise as 

an antiviral drug against Ebola infections in mice (Huggins, Zhang, & Bray, 1999). 

Unfortunately, the SAHH enzymes present in both humans and parasites bear a striking 

structural homology, which would make the selective targeting of parasite SAHH 

extremely difficult. Thus far, no inhibitors of parasite SAHH have been found that could 

act as broad spectrum anti-parasitic drugs while leaving the human SAHH unaffected 

(Parker et al., 2003; Minotto, Ko, Edwards, & Bagnara, 1998).  

 

 

 
Figure 5. Methyltransferase Reactions.  SAM is the most common methyl 
donor in methylation reactions. SAH is a product inhibitor of these reactions. 
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Methylthioadenosine Nucleosidase (MTN): A New Drug Target 

In plants and many microbes, the enzyme methylthioadenosine nucleosidase 

(MTN) catabolizes MTA to MTR and adenine (Figure 4).  MTA is the product of 

polyamine synthesis (spermidine, spermine) that utilizes decarboxylated SAM as a 

propylamine donor (Figure 6).  Polyamines are important for DNA replication and cell 

proliferation. MTA is a potent product inhibitor of polyamine synthesis, and is cytotoxic 

when it accumulates in the cell.  Since MTN is not found in mammalian cells, it is a 

possible target for chemotherapeutic agents (Riscoe, Ferro, & Fitchen, 1989; Walker & 

Barrett, 1997).  Instead, mammals have MTA phosphorylase (MTAP), which works on 

the same substrate but has different enzymatic binding properties that may be exploitable 

for development of selective MTN-specific antibiotics (Lee et al., 2004). 

 
 

One other pathway of note involves the use of SAM as an oxidizing agent in 

radical reactions.  The radical SAM enzymes reduce the sulfonium on SAM via a 

coordinated iron-sulfur cluster (Jarrett, 2003; Challand et al., 2009) to create methionine 

 
Figure 6. Polyamine Synthesis.  Spermidine synthase catalyzes the 

propylamine transfer from dcSAM to putrescine to form spermidine and MTA. 
MTA is a potent product inhibitor of polyamine synthases. G. intestinalis and 

E. histolytica lack both SAM decarboxylase (SAMdc) and spermidine synthase 
(Spds) in their genomes, and salvage polyamines and MTA from the host 

(Reguera, Redondo, Pérez-Pertejo, & Balaña-Fouce, 2007). 
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and 5’-deoxyadenosine (5’-dADO) radical, which then abstracts hydrogen from any 

nearby substrate with a C-H bond (Figure 7) (Igarashi & Kashiwagi, 2010).  The 

substrates vary and usually result in anaerobic oxidations, sulfur insertions, 

isomerizations, ring formations, and other unusual methylations (Jarrett, 2003; Parveen & 

Cornell, 2011).  Members of the radical SAM superfamily of enzymes, including biotin 

synthase, lipoyl synthase, and tyrosine synthase, were all product inhibited by 5’-dADO 

and methionine (Challand et al., 2009).  The activity of SAM superfamily enzymes was 

restored when MTN was added to the assays. Thus, inhibition of MTN that catabolizes 

5’dADO to adenine and 5-deoxyribose is likely to ultimately lead to product inhibition of 

these radical SAM enzymes.  This could lead to depletion of the biotin, lipoate, and 

thiamine cofactors required for numerous metabolic enzymes in the cell, and impairment 

of central carbon metabolism (Parveen & Cornell, 2011). There are about forty known 

radical SAM reactions that are necessary for the cell (Jarrett, 2005; Frey, Hegeman, & 

Ruzicka, 2008).  While it is not known if product inhibition is universal, the fact that it 

occurs in some radical SAM reactions makes MTN an even better drug target. 

 

 

 
Figure 7. Radical SAM Reactions. SAM is used in radical reactions that 
are important in pathways that produce vitamins such as biotin, lipoate, and 

thiamine.   
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The methionine salvage pathways of the parasitic protozoa studied here are more 

complicated than the general bacterial pathway.  Analysis of the publically available 

Giardia intestinalis genomes reveals the presence of two MTN genes, but not SAHH 

genes. This is contrary to a previous report that Giardia intestinalis contained a 

standalone SAHH (Riscoe et al., 1989). Thus the Giardia MTNs should act like bacterial 

MTNs and catabolize all three nucleosides: MTA, SAH, and 5’-dADO.  This suggests 

that MTN inhibition will target methionine and purine salvage from three substrates: 

SAH, MTA, and 5’-dADO.  In contrast to Giardia, the Entamoeba histolytica genome 

contains the genes for SAHH and MTN, and thus catabolizes SAH to adenosine and 

homocysteine, while only MTA and 5’dAdo are degraded by MTN.   

Genomic analysis also reveals that Giardia and Entamoeba lack SAM 

decarboxylase and spermidine synthase, but instead have a separate polyamine synthetic 

pathway that may be specific to anaerobic protozoan parasites.  In this alternate pathway, 

arginine is converted by arginine deiminase (ARGd) to citrulline that is then converted by 

ornithine carbomyl transferase (OCT) to ornithine, which is then converted by ornithine 

decarboxylase (Odc) to putrescine (Figure 8).  Indeed, in these parasites putrescene is the 

predominant polyamine, while spermidine and spermine are in low concentration and 

probably originate from the host (Marr & Müller, 1995; Reguera, Tekwani, & Balaña-

Fouce, 2005). This revelation raises the question as to the source of MTA within the 

parasites, since they appear to lack SAM decarboxylase and spermidine synthase.  It 

would appear that the answer may be found in the presence of a MTA P2 transporter in 

parasites that is capable of transporting MTA from the host (Goldberg, Rattendi, Lloyd, 

Sufrin, & Bacchi, 2001).  
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These deviations from the prototypical polyamine pathway are not unexpected.  

After all, protozoa are a very large and disparate group of organisms with at least 500 

million years of divergent evolution in metabolic pathways to accommodate differences 

in host, life cycle, and location of colonization.  As such, it is imperative that present 

studies focus on the constructed genomes of each organism to gain a full understanding 

of which enzymes are present in order to identify better drug targets within those 

pathways that will lead to the development of better drugs.   

Inspection of the parasite genomes in this study revealed that MTN is an essential 

enzyme for purine salvage.  Alignments of E. coli and parasite MTN primary sequence 

(Figure 9) show that the active site residues in the MTN enzymes are highly conserved.  

A greater than 68% homology was found between all the target MTN enzymes, while 

significant homology was not found with the human MTAP enzyme.  This suggests that 

it could be possible to develop drugs that would work as broad spectrum antibiotics by 

inhibiting MTNs in both parasites, but not cross react with human MTAP. 

 
Figure 8. Alternative Polyamine Synthesis Pathway for Putrescine. 

The pathway for production of putrescine in Giardia intestinalis and 
Entamoeba histolytica is based upon genomic data. 
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While MTNs have conserved active site residues, they also have differences in the 

active site that set them apart from human MTAP, and that may be exploitable for drug 

design.  For example, the substrate 2’ hydroxy binding pocket electrostatics in MTAP is 

EC     -----------MKIGIIGAMEEEVTLLRDKIEN 
GI MTN-1  MLVSKEARRTAPVFGVIIPMPTEFHAFKLQLGD 
GI MTN-2  -----MSSQKRRIIGAMCAIEREFGMIKKCFEK 
EH        -----------MIIGILAPMKEELQAICDKYPQ 
MTAP      --MASGTTTTAVKIGIIGGTGLDDPEILEGRTE 
 
EC        ---RQTISLGGCEIYTGQLNGTEVALL-KSGIG 
GI MTN-1  KESYKEEVIAGRKYFTKLFEKYTLVLC-ECGIG 
GI MTN-2  E--LQSEDHCGRTFYTGEISGQTVVIS-KSGIG 
EH        ---STMLEKCGIHYHYIKIKDNEIIIM-QCGVG 
MTAP      KYVDTPFGKPSDALILGKIKNVDCVLLARHGRQ 
 
EC        ------KVAAALGATLLLEHCKPDVIINTGSAG 
GI MTN-1  ------KVCSGTAAVVLLDHFNADVIVAAGVAG 
GI MTN-2  ------KVAAASTAAIMISVFGCSEVIFLGVAG 
EH        ------KVNAALAVSTIKHLFNVDIIINLGSAG 
MTAP      HTIMPSKVNY-QANIWALKEEGCTHVIVTTACG 
 
EC        GLAPTLKVGDIVVSDEARYHDAD-VTAFGYE-- 
GI MTN-1  GLKEGIAIGDVIVVDSVMQHDFN-CYPFVPRHT 
GI MTN-2  GIQGRAAIGDVVVSTAAIQHDFD-GRPWVERSV 
EH        GMKLGQKPLDIVIGTELVYTDVD-ITPLGFA-- 
MTAP      SLREEIQPGDIVIIDQFIDRTTMRPQSFYDGSH 
 
EC        ---YGQ--LPGCP----------AGFKADDKLI 
GI MTN-1  IVNIGVDVMHADKALTTTLQGIAEEFLKKNYST 
GI MTN-2  VFSVGKCEIPADGQLQTRAQAAVQAVLADDMAL 
EH        ---YGE--LLGEP----------KSWFSDKELV 
MTAP      SCARGVCHIPMAEPFCP-----------KTREV 
 
EC        ---------AAAEACIAELNLNAVRGLIVSGDA 
GI MTN-1  IVP----P-CV-RETHGLSWPRLHVGCSISGDK 
GI MTN-2  VLDDNSEPIGRRILAQLNRSPKLLTGSVLSGDQ 
EH        ---------SLATKCSSSDLPTIHYGTIGTSDA 
MTAP      LIE-TAKKLG--LRCHSKGTM-----VTIEGDR 
 
EC        FINGSVGLAKIRHNF-PQAIAVEMEATAIAHVC 
GI MTN-1  FLENVDEKMELIKRI-PAALVIEMEGGAVGQVC 
GI MTN-2  FVSSDEMNKELGSRF-ESALCVEMEGAAVAQIC 
EH        FVSAPMVQS-IQNKFDNRIVCAEMEGCAVAHSC 
MTAP      FSSRAESFM--FRTW--GADVINMTTVPEVVLA 
 
EC        HNFNVPFVVVRAISDVAD-QQ--SHLSFDEFLA 
GI MTN-1  YEASKPFVSLRIVSDLCD-GN--GLDNYDAYCT 
GI MTN-2  YEARVPYIIIRAISDSGS-GE--ATVQFDEFCN 
EH        TKLGIRFIVIRSLSDVPS-EDGKSHEKMMDYLS 
MTAP      KEAGICYASIAMATDYDCWKEHEEAVSVDRVLK 
 
EC        VA----AKQSSLMVESLVQKLAHG--------- 
GI MTN-1  HV----ASK--VLYAILSSFFAQVA-------- 
GI MTN-2  GI----SSP--LMLAVLKSYLASASKFDYCA-- 
EH        RA----SHNASILVSRIIEQLIVN--------- 
MTAP      TLKENANKAKSLLLTTIP----QIGSTEWSETL 
 
EC        --------------------------------- 
GI MTN-1  --------------------------------- 
GI MTN-2  MSALIMIQFSIRCRHLTQRSPME---------- 
EH        --------------------------------- 
MTAP      HNLKNMAQSFVLLPRH----------------- 

Figure 9. Clustal W Alignment of MTN Sequences. 
Sequence comparison of microbial MTNs to human 

methylthioadenosine phosphorylase (MTAP) is shown. 
Homologous residues are shaded. Catalytic amino acids 
are shaded in black. Amino acid homologies to EC MTA 

nucleosidase are as follows: 86% to EH; 77% to GI 
MTN-1; and 68% to GI MTN-2.
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positively charged, while it is negatively charged in MTNs (Figure 10, part A).  Likewise, 

the 5’-alkylthio binding cavity of the MTNs is more extended and open than that found in 

the MTAP active site (Figure 10, part B).  Thus, a drug that bears a positive charge at the 

2’ hydroxy position of the ribose and a larger 5’-alkylthio chain would likely discriminate 

between the MTNs and human MTAP (Lee, Cornell, Riscoe, & Howell, 2003).

 

 
MTN inhibitors have been created based on the transition states of the substrate 

MTA as it is cleaved to MTR and adenine.  A transition state is an unstable structure that 

occurs between the chemical structure of the substrate and the products of a reaction.  

Transition states exist for only about 10 -13 sec and thus there is no way to directly 

observe the structure of a transition state.  However, it is known that enzymes bind tighter 

to the transition state than they do to the substrate.  Thus, transition state analogues 

(TSAs) should make better inhibitors than mimics of the substrate (Schramm, 1998).  An 

 
Figure 10. MTN vs. MTAP Active Site Electrostatic Maps. A comparison 

of the (A) ribose, and (B) 5′-alkylthio binding cavities in MTAP and MTN 
complexed with 5’-methylthiotubercidin (MTT), which is an analogue of the 

substrate MTA. (Adapted from Lee et al., 2004.) 
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extensive body of work to create and test these TSAs has been reported by Dr. Vern 

Schramm’s lab (Albert Einstein College) (Schramm 1998; Schramm et al., 2008; Singh et 

al., 2004; Singh et al., 2005; Singh, Lee, Núñez, Howell, & Schramm, 2005; Guitterez et 

al., 2009).  These inhibitors, based upon the MTA transition state, are designed to bind 

with a higher affinity than that of the native substrates (Figure 11, part A).  The 

substitution of large groups at the 5’-alkylthio position improves specificity. The TSAs 

show extraordinary tight binding affinities for E. coli MTN, yielding Ki values ranging 

from picomolar to femtomolar concentrations.  Of note, even greater binding affinity was 

found when the drug was designed to mimic the late transition state by extending the 

bonds between the nitrogen on the ribose and the purine ring. This yielded Ki values into 

the femtomolar level (Figure 9, Part B) (Singh, Lee, et al., 2005).   
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Unfortunately, these TSAs have not proved to be particularly effective as 

antibiotics against E. coli, showing only modest IC50 values, which only went as low as 

the micro molar range (Gutierrez et al., 2009).  However, Gutierrez et al. (2009) did show 

the ability of TSAs to block quorum sensing and reduce biofilm production that are 

                 

  

Figure 11. MTA Transition and its Analogues.  (A)  Schematic of the 
substrate MTA as it goes through the transition from products to reactants.  (B)  
Early and late transition state analogues of the substrate MTA and their relative 

Ki values. 
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important virulence factors.  Transport of these drugs into the cell may be a limiting 

factor in their poor performance on E. coli (Longshaw et al., 2010).  Interestingly, 

pathogens like Borrelia burgdorferi, which are purine auxotrophs, showed a much 

greater sensitivity to MTN inhibitors (Cornell, Primus, Martinez, & Parveen, 2009).  The 

cause of this increased sensitivity could be due to the fact that these organisms are more 

reliant on the salvage of methionine and purines that could make them more susceptible 

to MTN inhibition (Cornell et al., 2009). 

In-silico Computational Drug Discovery 

Historically, drugs were discovered either serendipitously (like Penicillin) or by 

looking closely at a folk remedy to find the active ingredient (like salicylic acid from 

willow bark) (Houbraken, Frisvad, & Samson, 2011; Sneader, 2000).   The drug 

discoverers did not know how these drugs worked at first.  They were limited by an 

inability to see the mechanisms of pathogenesis at work in a disease process or the drug 

reaction mechanisms.  However, they could make better drugs by implementing small 

chemical changes to known drugs and monitoring the results.  

In 1958, the first X-ray crystallographic structure for myoglobin was reported 

(Kendrew et al., 1958).  Since that time, X-ray crystallography has been used to examine 

thousands of structures of proteins in the presence or absence of bound substrate or other 

ligands.  This has allowed enzyme reaction mechanisms to be viewed for the first time, 

and expanded the ability of scientists to rationally design drugs.  

By the mid 1980s, computer renderings of bio-molecules from X-ray 

crystallography, NMR, or homology modeling were beginning to be widely available.  

These could be manipulated and the free energy measured for theoretically bound 
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ligands.  This further opened the window for the rational design of drugs (Anderson, 

2003).  This process has come to be called structure based drug design or in-silico based 

drug design (Anderson, 2003; Jorgensen, 2004).  Some success with this method was 

reported as early as 1990 with the discovery of human immunodeficiency virus (HIV) 

protease inhibitors (Roberts et al., 1990; Erickson et al., 1990).  In the early years, the 

method was limited by the difficulty of attaining drug-binding affinities through 

computational measurement that were in good agreement with the experimental data 

(Salemme, Spurlino, & Bone, 1970).  By 2009, however, in-silico drug screening 

approaches were responsible for finding anti-HIV fullerene derivatized amino acids that 

had computational binding scores with HIV-1 protease that were within 10% of 

experimental binding energies (Durdagi et al., 2009).    

As computer modeling of biomolecules has improved, the composition of 

computational drug lead libraries has also advanced.  In 2006, small molecule databases 

were used to custom build inhibitors to HIV-1 integrase (Jaganatharaja & Gowthaman, 

2006).  The use of chemical fragment libraries, which greatly increase the variety of 

chemical possibilities and therefore greatly increases the hit rate for new drug leads, has 

become a major contributor to the speed and ease of novel drug discovery (Hajduk & 

Greer, 2007).  By 2014, in-silico methods have become so reliable that they were used to 

identify allosteric inhibitors of HIV-1 protease (Kunze et al., 2014).   

In order to accomplish new drug discovery from x-ray crystallographic structures, 

a reliable assay to monitor the bio-molecular process is needed. With the best estimation 

of the binding site free energy, protein structure, and automated physical screenings 

utilizing pre-synthesized drug libraries, high throughput screening (HTS) processes have 
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been developed to identify new drugs.  HTS allows large numbers (~ 105) of chemical 

compounds to be examined for “lead discovery” (Terstappen & Reggiani, 2001).   

The use of in-silico methods and HTS has a proven track record in development 

of drugs against HIV (HIV protease inhibitors, etc.) and cancer (Gleevec) (Hajduk & 

Greer, 2007).  But use of this technology is not limited to these diseases.  In fact, any 

disease with a known macromolecular target would make a good candidate for this type 

of drug discovery method, and this is precisely why this approach was used in our study.  

Since there are homology models of Giardia and Entamoeba MTN’s (to E. coli MTN) 

available for computational manipulation, it is logical to employ in-silico methods to find 

new drug leads to inhibit their action.  This is the approach our collaborator, Dr. Danny 

Xu (Idaho State University, School of Pharmacy), took to identify a set of potential MTN 

inhibitors.  He used in-silico drug discovery methods to screen compounds in the NCI 

Diversity Set II small molecule library against known E. coli MTN crystallographic 

structures, and homology models of E. histolytica and G. intestinalis MTNs.  Free energy 

calculations of drugs were used to identify thirty-three compounds with favorable binding 

into MTN active sites.  Examples of three lead compounds bound to the active site of E. 

coli MTN are shown in Figure 12.  The structures show extensive interactions between 

the compounds and the active site residues known to be involved in catalysis (e.g., Glu12, 

Asp197, etc.). 
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Figure 12. E. coli MTN Active Site Electrostatic Maps with 

Bound Inhibitors. Box A and B show inhibitor 5A, C and D show 
drug 15A and E and F show drug 27A bound. 
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Summary 

MTN is a necessary enzyme for Giardia and Entamoeba metabolism and is thus 

an excellent target for novel anti-parasitic drugs.  Inhibition of MTN causes 

accumulations of SAH, MTA, and 5’dADO, which negatively impacts SAM metabolic 

pathways.  The inability to salvage methionine and purines, and the resulting impairment 

to SAM pathways, likely causes parasite cell death due to nutrient depletions and 

interruption of energy metabolism. While previously reported bactericidal activity of 

MTN inhibitors is modest, their ability to modulate virulence in these pathogens shows 

that it has potential as a broad spectrum treatment (Knippel, 2013).   

In the following chapters, thirty-three potential MTN inhibitors found through in-

silico methods were analyzed for in vitro activity in enzymes and cell proliferation 

assays.  The inhibitors were tested using a spectrophotometric enzyme assay against E. 

coli MTN, G. intestinalis MTN-1, G. intestinalis MTN-2, E. histolytica MTN, and human 

MTAP.  The inhibitors were also tested for in vitro anti-parasitic activity against G. 

intestinalis trophozoites in resazurin reduction and BacTiter-Glo™ assays, and for anti-

proliferative activity against human Hela and Jurkat cell lines using the resazurin 

reduction assay.  These tests identified four drug lead compounds that showed low 

micromolar to submicromolar affinities for parasite MTNs, and inhibited 50% of Giardia 

growth at concentrations of 10-90 micromolar. Furthermore, several of the compounds 

could effectively discriminate between the parasite MTNs and human MTAPs. The 

results of this work show that four inhibitors were identified that are potential lead 

compounds and support their further drug development. 
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CHAPTER TWO: MATERIALS AND METHODS 

Induction and Purification of Recombinant Enzymes 

The genes encoding Giardia MTN-1, Giardia MTN-2, and Entamoeba MTN 

were amplified and cloned into E. coli expression vectors in prior work (Bonander & 

Cornell, 2007; Ormond, Simkin, & Cornell, 2007).  Briefly, gene specific PCR primers 

were used to amplify the target genes and clone them into pTrcHis-TOPO® plasmid 

vectors (Invitrogen) to create chimeras encoding hexahistidine sequences fused to the C-

terminus of the MTN enzymes. The plasmids were transformed and expressed in E. coli 

BL21 (DE3) pLysS cells maintained on Luria Bertani (LB) agar supplemented with 

100µg/mL ampicillin.  The clone for E. coli MTN was maintained and expressed as 

previously reported (Cornell & Riscoe, 1998; Lee, Cornell, Riscoe, & Howell, 2001). A 

plasmid clone for hexahistidine tagged human MTAP (kind gift of Dr. V. Schramm, 

Albert Einstein) was similarly transformed into E. coli BL21 (DE3) pLysS cells.  

Recombinant enzymes were expressed as previously described (Cornell & Riscoe, 

1998).  Briefly, isolated bacterial colonies were used to inoculate a 10 mL culture of LB 

broth supplemented with 100µg/mL ampicillin (LBamp100) and grown overnight at 37˚ C 

with shaking. Induction cultures were initiated by diluting the overnight culture into 500 

mL of fresh LBamp100 broth and incubating at 37˚ C with shaking (225 RPM) until the 

optical density of the culture at 600 nm (OD600) reached 0.5.  Recombinant protein 

expression was induced by addition of isopropylthiogalactoside (IPTG) to 1.0 mM final 

concentration.  Cultures were induced overnight at 30˚ C.  Cells were harvested via 
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centrifugation at 4000 xg for 10 min.  The bacterial cell pellet was washed in sterile PBS 

and re-centrifuged at 4000 xg.  Cells were lysed using either sonication or B-PER™ 

reagent (Pierce, Rockford, IL) and centrifuged at 12,000 xg for 15 min to remove debris.   

Recombinant proteins were purified from the clarified lysate by cobalt affinity 

chromatography using His-Pur Cobalt™ resin according to the manufacturer’s 

specifications (Pierce, Rockford, IL). Briefly, the clarified lysate was mixed with an 

equal volume of His-Pur Cobalt™ resin and rocked overnight at 4˚ C to bind the 

recombinant enzymes. The resin was recovered by centrifugation at 700 xg for 2 min at 

4˚ C to remove unbound material. The resin was sequentially washed with two 6 ml 

volumes of 1 mM imidazole buffer (pH 7.2), and one 6 mL volume of 20 mM imidazole 

buffer (pH 8) to remove weakly bound protein.  Recombinant hexahistidine-tagged MTN 

and MTAP enzymes were specifically eluted with three 3 mL volumes of 500 mM 

imidazole (pH 8.0).  Residual protein was stripped from the resin using one 3 mL elution 

with 1 M imidazole (pH 8.0).  Protein concentrations in fractions were estimated using a 

Bio-Rad microassay (Bio-Rad, Hercule, CA) modification of the Bradford assay 

(Bradford, 1976). Glycerol was added to enzyme containing fractions to a final 

concentration of 20%, and the fractions stored -80 ˚C. 

Analysis of MTN and MTAP Proteins 

Affinity purified MTN and MTAP enzymes (5-10 µg) were analyzed for 

homogeneity on 12% acrylamide SDS-PAGE gels electrophoresed at 66 mA for 45 

minutes.  Proteins were visualized by Coomassie Brilliant Blue staining (0.1% 

Coomassie Brilliant Blue in 50% methanol/10% glacial acetic acid).  Molecular weight 

was confirmed by comparison to an EZ-Run Pre-stained Rec Protein standard (Thermo 
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Fisher Scientific, Rockford, IL).  Gel images were collected using a ProteinSimple 

FluorChem E imager. 

Determination of Protein Concentration 

The concentration of purified proteins were determined by UV spectrophotometry 

at 280 nm using a Varian Cary 50 spectrophotometer and the application of Beer’s law, 

A=lc (Simonian, 2004).  The extinction coefficients at 280 nm (280 were determined 

using the Expasy ProtParam tool (www.expasy.org), and were as follows: EH MTN 

0.592 mg/ml-1cm-1, GI MTN-10.618 mg/ml-1cm-1, GI MTN-2 0.404 mg/ml-1cm-1, and 

human MTAP 0.959 mg/ml-1cm-1. 

MTN Activity:  Enzyme Assays 

The specific activity of purified MTN and MTAP enzymes was determined by 

monitoring the loss of absorbance at 275 nm (=1.6 mM-1 cm-1) that occurs when MTA 

is cleaved into MTR and adenine (Singh, Evans, et al., 2005). Enzyme reactions 

contained 0.1 M potassium phosphate buffer (pH 7) and 100 µM MTA with a total 

volume of 990 µl.  The assay was initiated by addition of enzyme (1-4 µg) in 10 µL and 

rapid mixing.  A Varian Cary 50 spectrophotometer was used to measure absorbance 

changes at 275 nm and the specific activities calculated in U/mg (1 U = 1 µmol/min 

MTA conversion).  Enzyme kinetics assays were similarly performed using varying 

substrate (MTA, SAH, 5’dADO) concentrations (1 – 100 µM). Results were plotted on 

[S] vs. V graphs, and kinetic constants (Km, kcat) determined by fitting the data to the 

Michaelis-Menten equation (Eq. 1) using GraphPad Prism (GraphPad Software, Inc., La 

Jolla, CA). 

 

(Equation 1)  Vo =  Vmax [S]   
                      Km + [S] 
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MTN Inhibition Assay 

Initial in-silico computational screening by Dr. Danny Xu (Idaho State University, 

Meridian, ID) identified 33 potential competitive inhibitors of MTN based on screening 

of the National Cancer Institute (NCI) diversity set II compound database (~4200 

compounds) against known crystal structures for the E. coli MTN.  The 33 potential 

inhibitors were obtained from the NCI and analyzed for in vitro anti-MTN activity using 

the UV spectrophotometric assay (275 nm) described above. In the assay, MTA substrate 

concentrations (20 – 200 µM) and inhibitor concentrations (0 – 100 µM) were used.   

Inhibitor constants were determined by two methods.  In the first method, velocity 

measurements were collected at a constant substrate concentration with varying inhibitor 

concentrations (Singh, Evans, et al., 2005). The ratio of inhibited to uninhibited velocity 

(Vo’/Vo) was plotted as a function of inhibitor concentration. Inhibitor constants (Ki’s) 

were obtained by fitting the results to the equation for competitive inhibition (Eqn. 2). 

(Equation 2)   Vo’/Vo = (Km + [S]) / {(Km + [S]) + (Km[I]/Ki)} 
  

In the second method, several inhibitor concentrations were tested for effects against 

increasing substrate concentrations. The resulting substrate-velocity data was fit to 

equations for competitive (Eq. 3), uncompetitive (Eq. 4), and mixed inhibition (Eq. 5) 

using GraphPad Prism. The “best fit” was assigned based on r2 values. 

(Equation 3)  Vo = (Vmax [S]) / {Km (1 + [I]/Ki) + [S]} 
 
(Equation 4)  Vo = (Vmax [S]) / {Km + [S](1 + [I]/Ki)} 
 
(Equation 5)  Vo = (Vmax [S]) / {Km (1 + [I]/Ki) + [S](1 + [I]/Ki)} 
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Cell Growth Assays 

Giardia intestinalis Resazurin Reduction Assay 

Giardia intestinalis (clone WB C6) cells were grown at 37 ˚C  in sealed T-25 

flasks containing in sterile TYDK media (Valdez et al., 2009) supplemented with adult 

bovine serum (Thermo Scientific), Ox bile (MP Biomedicals, Solon, OH), Fungizone 

(Omega Scientific Inc., Tarzana, CA), and Pen-Strep (Thermo Scientific).  To prepare 

cultures for antibiotic tests, cells were harvested from near-confluent culture by placing 

on ice up to one hour promote cell detachment.  The detached-cell sample was split 

between two 50 ml conical tubes and centrifuged at 500 xg for 5 minutes to pellet the 

cells.  The supernatant was then decanted and cells were re-suspended into 5 mL of fresh 

TYDK broth.  The cell concentration and viability was determined using a 

hemacytometer and Trypan blue staining (Sigma), and the cell suspension volume 

adjusted with TYDK broth to obtain a concentration of 1 x 106 trophozoites/ml.   

Antibiotic activity studies were conducted in 96 well plates containing drug (0 – 

100 µM), TYDK broth, and 1 x 104 Giardia trophozoites in a final volume of 300 µL. 

The standard anti-giardial agent metronidazole (MTZ) served as a control in drug 

sensitivity studies. Plates were sealed with thin film and incubated in anaerobic chambers 

at 37 ˚C for 64 hours.  The media in the wells was then replaced with 300 µl of 0.1% 

resazurin (MP Biomedicals) in PBS supplemented with 0.1% glucose. Fluorescence 

measurements were made using on a BioTek Synergy HT plate reader (Em. 530 nm/Ex. 

590 nm), and the plates returned to the anaerobic chamber. Additional fluorescence 

readings were conducted at 68 and 72 hr. 
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Giardia intestinalis BacTiter-Glo™ Assay 

Additional drug sensitivity studies were conducted as previously described 

(Debnath et al., 2012; Tejman-Yarden et al., 2013).  In brief, sterile opaque-walled 96 

well plates were assembled containing Giardia intestinalis cells (104 trophozoites/well) 

and drug (0-100 µM) in a final volume of 100 µL TYDK media.  Metronidazole 

treatment (0-100 µM) served as a control.  Plates were placed in an anaerobic chamber 

and incubated at 37˚ C for 72 hrs.  Cell proliferation was measured by assessing ATP 

content by the addition of 100 µL BacTiter-Glo™ reagent (Promega, Madison, WI) to 

each well.  Luminescence was recorded for five minutes using a BioTec Synergy HT 

plate reader. 

Mammalian Cell Line Resazurin Reduction Assays 

Hela cells were cultured at 37˚ C in a 5% CO2 humidified atmosphere using 

Dulbeccos Modified Eagles Medium (DMEM) supplemented with 10% FBS and Pen-

Strep. Cells were harvested by brief treatment with Trypsin-EDTA (MP Biomedicals), 

dilution of detached cells with 10 mL DMEM, and centrifugation at 250 xg for 5 minutes.  

The cell pellet was resuspended in 10 mL fresh DMEM and the viability and density 

determined by Trypan blue staining and hemacytometry.  Cells were diluted to a final 

concentration of 25,000 cells/mL, and 200 µl of cells and media were pipetted into each 

well of a sterile 96 well plate.  Plates were incubated at 37 ˚C for 24 hr in a 5% CO2 

humidified atmosphere.  After 24 hr, media was replaced with 200 µl of fresh media 

containing 0-100 µM drug. Plates were cultured for an added 48 hr, at which time 20 µl 

of 0.1% resazurin in 1X PBS was added to each well, and the plates re-incubated for 
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another 24 hrs.  At 72 hr, fluorescence (Ex. 485 nm/Em. 528 nm) was measured using a 

BioTek Synergy HT plate reader.  

Jurkat cells were cultured at 37˚ C in a 5% CO2 humidified atmosphere using 

RPMI 1640 media supplemented with 10% FBS and Pen-Strep.  Cells were harvested by 

centrifugation and the cell pellet resuspended in media to a final concentration of 5.5 x 

104 cells/mL.  Drug sensitivity plates contained 0-100 µM drug and 1 x 104 Jurkat 

cells/well in a final volume of 200 µL. At 48 hr, 20 µl of 0.1% resazurin in 1X PBS was 

added to each well.  At 72 hr, fluorescence measurements (Ex. 485 nm/Em. 528 nm) 

were made using a BioTek Synergy HT plate reader.  
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CHAPTER THREE: RESULTS AND DISCUSSION 

Purity and Activity of Proteins  

Milligram quantities of overexpressed recombinant enzymes were purified by 

cobalt affinity chromatography.  Protein purity was confirmed by SDS PAGE (Figure 

13).  All the enzymes showed > 95% purity.  The molecular weights for Entamoeba 

MTN (EH, 29,434 D), Giardia MTN-1 (33,034 D), and MTN-2 (35,773 D) calculated 

from the molecular weights of enzyme monomers fused to the affinity sequences derived 

from the pTrcHis-TOPO® vector using the Expasy Protparam tool (www.expasy.org) 

            STD   EH   MTN-1  MTN-2 

 

Figure 13. SDS-PAGE of Recombinant 
Proteins. Cobalt affinity purified enzymes were 
electrophoresed on a 12% polyacrylamide gel. 
All three enzymes showed greater than 95% 
purity. Estimated molecular weights for the 

enzymes were 29 kD (EH), 33 kD (GI MTN-1) 
and 36 kD (GI MTN-2). 
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were consistent with the apparent molecular weights estimated from the gel. 

Previous specific activity measurements performed at saturating concentrations of 

MTA, 5’dADO, and SAH substrates demonstrated that both MTA and 5’dADO were 

substrates for all three parasite enzymes (Bonander & Cornell, 2007; Ormond, et al., 

2007; Stone, Eidemiller, & Cornell, 2012).  SAH was not a substrate for EH MTN and GI 

MTN-1, but was a substrate for GI MTN-2 (Stone et al., 2012). EH, GI MTN-1, and GI 

MTN-2 showed specific activities for MTA of 11.0, 0.3, and 0.2 U/mg (1 U = 

1µmol/min), respectively, and 5.0, 0.3, and 0.2 U/mg for 5’dADO. These specific 

activities are lower than those reported for the bacterial E. coli MTN (4.4 U/mg) or B. 

burgdorferi MTN (4.1 U/mg) (Cornell, Swarts, Barry, & Riscoe, 1996; Cornell, et al., 

2009).  However, it is in good agreement with data collected previously on EH and GI 

MTN-1 proteins purified previously in the Cornell lab that showed specific activities for 

MTA of 11.5 and 0.37 U/mg, respectively, and 5.9 and 0.24 U/mg, respectively, against 

5’-dADO (Hall, Martinez, & Cornell, 2012).  It appears that the eukaryotic MTNs display 

less activity overall. Consistent with this observation, the MTN of the tomato fruit 

(Lycopersicon esculentum) appear to show a maximum activity of only 0.0012 U/mg 

protein, though this protein was purified from native sources and was not a pure 

recombinant source (Kushad, Richardson & Ferro, 1985).   

To prepare for later inhibition studies, the kinetic constants for MTA and 5’dADO 

were determined for the three parasite enzymes. A representative substrate-velocity graph 

for the activity of GI MTN-1 is presented in Figure 14.  Additional substrate-velocity 

graphs are presented in Appendix B.  The results of kinetic analyses for the three parasite 

enzymes and E. coli MTN are summarized in Table 2.  In general, the parasite enzymes 
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demonstrated Km values for MTA in the 2 – 5 µM range, approximately an order of 

magnitude larger than the Km for MTA found for the E. coli enzyme (0.5 µM).  In 

Arabidopsis MTNs, Km values reported for MTA were both above 20 µM, while in 

Lupines luteus seeds the Km value reported for MTA was only 0.41 µM (Park et al., 

2009; Guranowski, Ghiang, & Cantoni, 1981). However, other authors have reported Km 

values for MTA of 2.1 µM in Oryza (rice) and 3.4 -7.1 µM in Arabidopsis, which are 

similar to the Km values reported here for the parasite enzymes (Rzewuski et al., 2007; 

Siu et al., 2008). A Km value of 8.7 µM for MTA was also reported for the MTA/SAH 

nucleosidase of Klebsiella pneumonia that shares closer homology to the proteins studied 

here (Cornell, Winter, Tower, & Riscoe, 1996).   Overall, it is important to note that, just 

as was reported to be the case in Burkholderia thailandensis, these enzymes all share one 

common trait, they have a greater specificity for MTA than for the other possible 

substrates (Gao, Zheng, & Yuan, 2013). 
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As seen in Table 2, the E. coli MTN also showed greater catalytic efficiency for 

the substrates than the parasite enzymes. Generally, the catalytic efficiencies (kcat/Km) 

were best for the MTA substrate, indicating that it is the preferred substrate of the 

parasite enzymes.  

 
Figure 14. Substrate-velocity Graph of GI MTN-1 for MTA.  Kinetic 

constants were determined by fitting the data to the Michaelis-Menten equation 
using GraphPad Prism.  Km and kcat values represent the means ± SD for three 

replicates. Substrate-velocity plots for additional enzymes and substrates are 
found in Appendix B.  
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A kcat/Km ratio of EH MTN was calculated as 1.2 s-1µM-1 for MTA and 0.6 s-

1µM-1 for 5’dAdo, only half the value for MTA.  The efficiency of GI MTN-1 was 0.09 s-

1µM-1 for MTA and 0.02 s-1µM-1 for 5’dAdo, less than a third the value of MTA.  The 

efficiency of GI MTN-2 was 0.02 s-1µM-1 for MTA and 0.01 s-1µM-1 for 5’dAdo.  These 

numbers suggest a much higher efficiency of EH MTN compared to either of the Giardia 

MTNs although the efficiency for MTA as a substrate is always the highest for all three 

enzymes.  The comparatively more active E. coli MTN, with a 3.4 s-1µM-1 efficiency for 

MTA, can possibly be explained by a lack of an SAHH in its genome and also a lack of 

other MTN proteins capable of catabolizing all of the substrates that build up inside the 

cell.  E. histolytica has an SAHH in its genome that would reduce the necessity for a very 

active MTN enzyme.  Interestingly, the plant Arabidopsis thaliana genome encodes two 

MTNs and a SAHH, and the MTNs show efficiencies of 0.6-2.6 s-1µM-1 for MTA (Siu et 

al., 2008). This is similar to the values reported here for the Entamoeba enzyme. Similar 

to Arabidopsis, G. intestinalis encodes two MTNs. However, Giardia lacks an SAHH, 

Table 2 Summary of Recombinant Parasite MTN Substrate Kinetics 

Enzyme Substrate K
m
 (µM) k

cat
 (s

-1
) k

cat
/K

m
 (s

-1
µM

-1
) 

E. coli MTN MTA 0.5 ± 0.2 1.7 ± 0.1 3.4 ± 0.5 
 5'dAdo 0.8 ± 0.2 3.0 ± 0.1 3.6 ± 0.7 
 SAH 1.3 ± 0.2 2.6 ± 0.1 2.1 ± 0.3 

EH MTN MTA 4.5 ± 0.4 5.3 ± 0.1 1.2 ± 0.3 
 5'dAdo 3.8 ± 0.7 2.4 ± 0.1 0.6 ± 0.1 
 SAH NA NA NA 

GI MTN-1  MTA 2.3 ± 0.3 0.2 ± 0.01 0.09 ± 0.03 
 5'dAdo 9.8 ± 1.5 0.2 ± 0.01   0.02 ± 0.001 
 SAH NA NA NA 

GI MTN-2  MTA 5.3 ± 1.0 0.1 ± 0.01 0.02 ± 0.006 
 5'dAdo  10.7 ± 1.7 0.1 ± 0.01 0.01 ± 0.006 
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and the efficiencies for MTA and 5’dAdo are lower than the other reported enzymes.  

This suggests that the organism may use its MTNs to hydrolyze a variety of nucleosides 

to supply purines for the cell, and thus the MTNs have low efficiency for any one 

substrate. Or, the enzyme conditions for optimal activity have yet to be achieved. To date, 

ten complete Giardia genome sequences have been submitted to the Uniprot database, 

and all have contained two putative MTN genes. This may further support the idea that 

the activity of each enzyme is of less importance than the combined activity of both of 

the MTN enzymes.   

MTN Inhibition Assays 

The initial 33 compound hits from the in-silico screening (against E. coli MTN) 

were tested by UV spectrophotometric assay for inhibitory activity against the E. coli 

MTN. This resulted in the identification of four compounds with measurable inhibitory 

activity (listed in Table 3).  These four compounds were expected to be good inhibitors 

against both the Giardia and Entamoeba MTNs because of the overall high homologies 

in MTN active sites. Initial tests using equal concentrations of MTA substrate and drug 

showed definite inhibition of parasite MTN activity.  

 

Inhibitor constants were determined for the four compounds using the method of 

Singh, Evans, et al. (2005) that measures the ratio of the inhibited initial velocity to the 

Table 3 IUPAC Names of MTN Inhibitors 

Drug  IUPAC Name 

5A N-(2-furylmethyl)-N’-(4-nitrophenyl)urea 
8A 1-(4-nitrophenyl)-3-[4-[4[(4-nitrophenyl) carbamoylamimino] phenoxy]phenyl]-urea 
15A 2-[2-(5,6-dimethyl-1H-benzoimidazol-2-yl)vinyl]-5,6-dimethyl-1H-benzoimidazole 
27A 3-(1,3-benzothiazol-2-yl)-1-(5-{[(1,3-benzothiazol-2-yl)carbamoyl]amino}-2-

methylphenyl)urea 
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uninhibited velocity as a function of the inhibitor concentration (Figure 15, left panel). 

The results were fit to the Michaelis-Menten equation for competitive inhibition (Eqn. 2).  

This method works well with high affinity competitive inhibitors, but is not readily useful 

for inhibitors that bind by mixed or uncompetitive modes.  Since the drugs were initially 

identified by in-silico calculations of their capacity to bind the active site of the enzymes, 

it is reasonable to assume that the primary mode of inhibition would be competitive, and 

this generally is what was seen (Figure 16).   

 

To determine if other modes of inhibition were occurring, and to attempt to find 

Ki values for data that failed to readily fit the approach used by Singh, Evans, et al., 

inhibition constants were also determined by measuring the effect of varied 

 
Figure 15. Giardia MTN-1 Inhibition Kinetics for Drug 27A. Left panel: the 

ratio of inhibited/uninhibited velocity (Vo’/Vo) was plotted as a function of 
inhibitor concentration and fit to the equation for competitive inhibition using 
GraphPad Prism. The competitive inhibition constant was 1.7µM. Right panel 

is an example a substrate-velocity plot that measured the effect of 27A 
concentration (0-10µM). In this graph, the best fit of the data was found using 

the equation for mixed inhibition. The alpha value of 7.6 suggests that the 
inhibition was predominantly competitive since it lies closer to 10 than to 1. 
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concentrations of inhibitor (1-20 µM) across a range of substrate concentrations (1-50 

µM).  The results were presented as substrate (S) vs velocity (V) plots, and the data fit to 

the Michaelis-Menten equation for competitive, uncompetitive, and mixed inhibition 

(Eqs. 3-5) using GraphPad Prism. As can be seen in Figure 15 (right panel), the best fit 

for drug 27A inhibition was obtained using the model for a mixed inhibitor. The alpha 

value (7.6) indicates that competitive inhibition was the predominant contributor to the 

mixed inhibition profile produced by drug 27A.  

The software reported an alpha value that helped to determine the mode of 

inhibition of each drug against each enzyme.  If the alpha value, which can be seen in 

Equation 6, was less than 1 then the mode was uncompetitive, when it is 1 then it is 

noncompetitive, when it is greater than one but less than 10 then there is a mix of 

uncompetitive and competitive, and if it is larger than 10 then the mode matches the 

competitive model (GraphPad Prism User’s Manual).   

(Equation 6)                  

Compounds that inhibited the reaction the strongest showed the lowest Ki values. 

When tested against E. coli MTN, compounds 5A, 8A, 15A, and 27A yielded Ki values 

of 0.6, 0.05, 0.03, and 0.02 µM, respectively.  All were competitive inhibitors of the E. 

coli enzyme (Figure 16).  These values are three to six orders of magnitude higher than 

the Ki values of the nucleoside transition state analogs of MTA reported for E.coli MTN 

(Singh et al., 2004; Singh, Evans, et al., 2005; Gutierrez et al., 2007).  However, 

transition state analogues have nearly perfect structure and electrostatics, which allow for 

extremely tight binding (Lee et al., 2005).  However, the purpose of looking at 

compounds identified by in-silico screening (rather than transition state analogs), is that 
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they are novel drug leads that do not resemble the substrates. Thus, they may show more 

effective transport properties and more discrimination for pathogen MTNs.  These 

compounds will serve as lead scaffolds for further optimization studies.  

 

When tested against the parasite MTNs, the inhibitors mostly displayed high 

nanomolar to low micromolar inhibition constants.  Compound 5A failed to inhibit the 

Entamoeba MTN, but showed a 0.3 µM competitive inhibition constant for Giardia 

 

            

       5A                    Ki (µM)     α                       8A                 Ki (µM)          
   EC MTN             0.6 ± 0.03                        EC MTN          0.05 ± 0.01 
   EH MTN                   -                                 EH MTN            0.5 ± 0.1 
   GI MTN-1           8.0 ± 3.1*   6.9 (M)          GI MTN-1           0.8 ± 0.2 
   GI MTN-2           0.3 ± 0.1                          GI MTN-2           6.3 ± 1.9 
   Human MTAP  21.5 ± 3.5                        Human MTAP      4.3 ± 0.7 

                     

       15A                    Ki (µM)        α                    27A                Ki (µM)          α 
   EC MTN             0.03 ± 0.004                     EC MTN            0.02 ± 0.003 
   EH MTN               3.9 ± 1.4*      8.7(M)       EH MTN              6.2 ± 2.8*     8.7 (M) 
   GI MTN-1           40.6 ± 6.9*       1 (N)        GI MTN-1            1.7 ± 0.3 
   GI MTN-2             7.2 ± 2.1                         GI MTN-2                  - 
   Human MTAP      0.8 ± 0.3                         Human MTAP     3.6 ± 0.6 
 
Figure 16. Summary of Ki values.  Ki values were determined from Vo’/Vo vs. 

[I] plots, or from Vo vs. [S] plots fit uncompetitive, competitive and mixed 
inhibition profiles.  Values for Ki with the * symbol were found using velocity (V) 

vs substrate [S] and the equation for mixed inhibition and thus have an alpha 
value which is a multiplicative factor associated with the Ki which tells the type 
of inhibition which is occurring.  M stands for mixed type, N is non-competitive, 

U is uncompetitive and C is competitive type inhibition. 
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MTN-2 and mixed inhibition against MTN-1.  Overall, compound 8A showed some of 

the most potent inhibition profiles for the parasite enzymes. Compound 8A showed strict 

competitive inhibition with 0.5-0.8 µM inhibition constants against Entamoeba and 

Giardia enzymes. While compounds 15A and 27A showed the tightest binding to E. coli 

MTN, their binding profiles were the weakest to the parasite MTNs.  

An indication of drug specificity for target MTNs was gained by examining 

inhibition profiles against human MTAP, as has been previously reported for transition 

state analogs of MTA (Longshaw et al., 2010).  This difference suggests that use of these 

drugs against a target organism will not cause serious side effects in the host. It is also 

unlikely that drug inhibition of MTAP by a drug used only in the short term would cause 

any permanent harm to the human host.  In addition, transition state analogs that were 

found to be more potent against MTAP rather than target MTNs may make attractive 

anti-cancer agents, although that is beyond the scope of this thesis (Clinch et al., 2012; 

Singh et al., 2004).   The initial in vitro testing showed that most of the compound Ki 

values were higher for human MTAP than seen for the microbial MTNs. The exceptions 

were 15A and 27A, which showed tighter binding to the human MTAP than most of the 

parasite MTNs.  

Table 4 summarizes the Ki discrimination factors found for the four inhibitors.  

These discrimination factors were obtained by dividing the MTAP drug Ki by the MTN 

drug Ki values (Longshaw et al., 2010).  Larger discrimination factors are desirable, since 

they indicate more specificity for the target MTNs. All four compounds showed high Ki 

discrimination factors (35.8 to 157.0-fold) for the E. coli MTN compared to human 

MTAP.  However, for the parasite MTNs, only compound 5A showed a high 
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discrimination factor (65.1-fold) for GI MTN-2 compared to MTAP. The other 

discrimination factors were either modest, or showed a preference for human MTAP. The 

development of larger discrimination factors will be a primary goal of drug optimization. 

 

Giardia intestinalis Drug Sensitivity 

The ability of MTN inhibitors to exert antiproliferative effects against Giardia 

intestinalis trophozoites (WB clone G6) was examined using a resazurin reduction assay 

(Nillius, Müller, & Müller, 2011; Bénéré, de Luz, Vermeersch, Cos, & Maes, 2007) that 

follows the conversion of resazurin to fluorescent resorufin in viable cells (Figure 17).  In 

this assay, the fluorescence signal strength can be correlated to viable cell number and 

used to estimate drug IC50 values.  Unfortunately, this test is susceptible to media 

interferences. TYDK media used to grow Giardia causes nonspecific reduction of 

resazurin, resulting in elevated background signals that limit assay sensitivity.  To bypass 

this effect, the media in the assay is replaced with PBS-glucose containing the resazurin 

dye. However, this adds to the labor involved in the assay and potentially introduces error 

to the experiment.  

Table 4 Summary of Drug Discrimination Factors 

Drug Ki MTAP/ 
Ki E.coli MTN 

Ki MTAP/
Ki EH MTN 

Ki MTAP/
Ki GI MTN-1

Ki MTAP/
Ki GIMTN-2 

5A 35.8 NA 6.1* 65.1

8A 79.3 8.4 5.3 0.7

15A 25.3 0.2* 0.2* 0.1

27A 157.0 0.9* 2.1 NA

NA means a Ki value could not be determined. * indicates discrimination factors 
determined using mixed inhibition Ki values for the MTN. 
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Resazurin reduction assays were subsequently repeated using the BacTiter-Glo™ 

assay that has been reported to show fewer media interferences and greater sensitivity 

and accuracy (Valdez et al., 2009).  This assay directly measures ATP concentration, 

which is high in metabolically active cells and rapidly lost in dead cells (Figure 18). 

 

Drugs 5A and 8A seemed to be the most efficient at killing the Giardia 

trophozoites in the resazurin reduction assay (Figure 19, left panel), with approximate 

 
Figure 17. Resazurin reduction assay. Living cells reduce the blue resazurin 

dye to the strongly fluorescent magenta resorufin (Ex. 485 nm/Em. 528 nm). 

 
Figure 18. BacTiter-Glo™ reaction.  Luciferase decarboxylates luciferin in 
an ATP, molecular oxygen, magnesium cation dependent reaction to generate 

a photon of light that can be measured by luminescence. 
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IC50 values of 24.5 and 22.2 µM, respectively (Table 5). Since both of these compounds 

also exerted submicromolar Ki values for at least one of the Giardia MTNs, these two 

seem to be the most desirable of the four compounds to further develop. The compounds 

15A and 27A also killed Giardia, but with IC50 values of 80-90 µM.  These compounds 

could still be viable candidates for use as anti-parasitics after more optimization.  The 

results seem to roughly correlate with the in vitro Ki values, which suggested that 5A and 

8A are better inhibitors of Giardia MTN than are drugs 15A and 27A.   

 

The IC50 concentrations found using the BacTiter-Glo™ method (Figure 19, left 

panel; Table 5) were consistently lower than those found using the resazurin reduction 

assay. Drug 5A (IC50 = 10.8 µM) actually outperformed any of the other drugs in this 

assay, with the exception of the metronidazole (IC50 = 1.9 µM).  Drugs 8A and 27A were 

slightly less potent, with IC50s of 12.3 and 16.12µM, respectively. The weakest inhibitor 

 
Figure 19. Giardia intestinalis Drug Sensitivity Graphs. Left panel- Giardia 
sensitivity to MTN inhibitors using

 
the resazurin reduction assay. Right panel- 

Giardia to MTN inhibitors using the BacTiter-Glo assay. Metronidazole 
sensitivity was measured in each assay as a drug treatment control.  
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was 15A with an IC50 of 78.9 µM.  These results suggest that the enzyme Ki values were 

fairly good predictors of anti-giardial activity: tighter binding drugs (lower Ki’s) showed 

more potent activity in vitro against parasite cultures.  

None of the compounds were as potent as metronidazole (IC50 = 1.4-1.9 µM), or 

the recently reported Auranofin (IC50 = 4-6 µM) (Tejman-Yarden et al., 2013). However, 

the MTN inhibitors are intended as lead compounds that will be further optimized via 

derivatization of the compound to lower their IC50 values and improved their 

discrimination for parasite MTNs. In this regard, the testing of putative MTN inhibitors 

identified by in-silico screening has been a success.  Several compounds, 5A in 

particular, showed the ability to discriminate between the parasite and human enzymes, 

and showed in vitro activity against parasite cultures. 

Human Cell Line Drug Sensitivity 

The drug leads were reasonably non-toxic to HeLa cell cultures, with the 

exception of drug 8A, which showed an IC50 value of 6.2 µM (Figure 20, left panel; 

Table 5).  The other drugs (5A, 15A, 27A) showed IC50 values in excess of 400 µM, 

dramatically higher than their corresponding IC50s for parasite cultures (Table 5). These 

results suggest that 8A would not make a great anti-parasitic without optimization, but 

instead may make an attractive anti-cancer agent. It is interesting to note that drug 8A 

actually had one of the higher Ki values against human MTAP in the in vitro enzyme 

activity tests.  This may indicate that there is some other mechanism of action that is 

causing the drug to be lethal to the HeLa cells other than strict inhibition of MTAP. 
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The results from that analysis of anti-proliferative effects on Jurkat cells pose 

more of a problem for the drugs as possible anti-parasitic candidates.  While the general 

pattern found in the HeLa cells seems to be repeated, the one notable exception is that 

drug 27A appears to kill Jurkat cells almost as well as drug 8A.  The 8A IC50 for Jurkat 

cells is 3.3 µM, well below the 12-22 µM IC50 for Giardia.  Drug 27A follows close 

behind with an IC50 of 7.1 µM.  Again, drug 5A appears to be most promising, with an 

IC50 of 131.9 µM against Jurkat cells, well above the IC50 shown for Giardia.  15A seem 

to have about the same IC50 level for Jurkat cells as they did for Giardia, 71.4 µM and 

90.1 µM, respectively.  It is important to note that Jurkat cells are a highly proliferative 

cell line, which may mean that they are more reliant on MTAP for purine and methionine 

salvage than other cells, and are thus more sensitive to the MTN inhibitors studied here.   

 

 
Figure 20. Human Cell Line Sensitivity to MTN Inhibitors. Left panel: HeLa 

cell line sensitivity. Right panel: Jurkat cell line sensitivity. 
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Table 5  Summary of Drug IC50 Values (in µM)  

Inhibitor IC50 (µM ± SEM) 
  5A 8A 15A 27A MTZ 

Giardia  24.5 ± 1.71 
10.8 ± 1.42 

22.2 ± 1.51 
12.3 ± 1.22 

90.1 ± 1.41 
78.9 ± 1.22 

79.7 ± 1.51 
16.2 ± 1.22 

1.4 ± 1.61 
1.9 ± 1.32 

Hela 421.1 ± 1.1 6.2 ± 0.9 868.2 ± 1.0 438.7 ± 1.3 NA 
Jurkat  131.9 ± 1.3 3.3 ± 1.3 71.4 ± 1.3 7.1 ± 1.4 NA 

1Results from resazurin reduction assay (Nillius et al., 2011; Bénéré et al., 2007). 
2Results BacTiter-Glo™ assay (Valdez et al., 2009).  NA means not applicable.  Values 
represent the average of at least three experiments ± SEM. 
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CHAPTER FOUR: CONCLUSION 

The emergence of drug resistance in parasitic protozoa, and the likelihood of 

continued expansion of that resistance to other parasites, is a cause of major concern to 

health authorities.  This alarming situation creates a need to develop novel anti-parasitic 

agents.  Promising drug leads have been found through in-silico computational drug 

screening methods.  These drug leads appear to target the parasitic forms of the MTN 

enzyme with high binding affinities while binding the human correlate enzyme MTAP 

with a lesser affinity as was predicted by the computer simulations. A positive association 

was found between MTN inhibition and drug IC50 values against the target organism, 

Giardia intestinalis.  This suggests that the drug activity is due to the inhibition of the 

parasitic MTN and not due to other possible off-target effects of the drugs.  This study 

has proved that in-silico methods can be employed to discover novel drug leads that are 

effective against parasitic protozoan MTNs and serves to promote further in-silico studies 

against other organisms that require MTN activity to salvage methionine and purines 

from nucleoside by-products of SAM mediated reactions in the cell. 
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APPENDIX A 

Structures and Properties of the Best MTN Inhibitors 
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Table A.1 Structures and Properties of the Best MTN Inhibitors 

Short 
Name 

MW 
(g/mol) 

ε (µM-1 cm-1) 
@λ (nm) Structure 

5A 261.233 
0.028  

@ 333.4  

 

8A 528.473 
0.050 

@ 356.7  

15A 316.4 
0.038 

@ 371.0  

 

27A 474.558 
0.034 

@ 306.0 

 

 



62 
 

 

APPENDIX B 

Substrate Kinetics Graphs 
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I. Entamoeba MTN Substrate Kinetics Graphs 

 

 
Figure B1. EH MTN Substrate Kinetic Graphs- Left graph is the enzyme velocity 
with MTA as the substrate and at right is the velocity with 5’dAdo as the substrate. 

 
II. Giardia MTN-1 Substrate Kinetics Graphs 

 

Figure B2. GI MTN-1 Substrate Kinetic graphs – Left graph is the enzyme 
velocity with MTA as the substrate and at right is the velocity with 5’dAdo as the 

substrate. 
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III. Giardia MTN-2 Substrate Kinetics Graphs 

 

 

 

Figure B3. GI  MTN-2 Substrate Kinetic Graphs- Top left graph is the enzyme 
velocity with MTA as the substrate, at top right is the velocity with 5’dAdo as the 

substrate and at the bottom is the velocity with SAH as the substrate. 
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APPENDIX C 

Graphs of Inhibition Kinetics 
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I. Entamoeba MTN Inhibition Kinetics graphs 

 

 

Figure C1. EH MTN Inhibition Kinetics Graphs- Each graph is the substrate v. 
velocity of EH MTN against inhibitor 5A (top left), 8A (top right), 15A (bottom left), 

and 27A (bottom right.) 
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II. Giardia MTN-1 Inhibition Kinetics Graphs 

 

 

 

Figure C2. GI MTN-1 Inhibition Kinetics Graphs- Each graph is the substrate v. 
velocity of GI MTN-1 against inhibitor 5A (top left), 8A (top right), 15A (bottom 

left), and 27A (bottom right.) 
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III. Giardia MTN-2 Inhibition Kinetics Graphs 

 

 

Figure C3. GI MTN-2 Inhibition Kinetics Graphs- Each graph shows the enzyme 
GI MTN-2 being inhibited by drug 5A (left) and 8A (right).  These graphs were 

derived using the method of Singh, Evans et al., 2005. 
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IV. Human MTA Phosphorylase Inhibition Kinetics Graphs 

 

 

 

 

Figure C4. Human MTAP Inhibition Kinetics Graphs- Each graph is the 
substrate v. velocity of human MTAP against inhibitor 5A (top left), 8A (top right), 

15A (bottom left), and 27A (bottom right.) 
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APPENDIX D 

Compounds Identified from In Silico Screening 
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Table D.1 Compounds Identified from In-Silico Screening 

 
 
 
 
# 

Ligand ID 
NSC ID 
CAS # 
MW 
General class 

 
 
 
 
Name 

 
 
 
 
Structure  
 

 
1 

 
ZINC01163259 
4292 
5397-96-6 
thiazole 

 
1-(2-naphthyl)-2-[(6-
nitro-1,3-benzothiazol-
2-yl)thio]ethanone 
 
 
 
 

 

 

2 ZINC00035241 
35241 
6276-41-1 
330.39 
thiazole 
 

1-(6-nitrobenzothiazol-
2-ylthio)-2-
phenylethan-1-one  

 

3 ZINC01668706 
36317 
No CAS 
384.429 
piperzine 
 

N,N'-bis(4-
methoxyphenyl)piperaz
ine-1,4-dicarboxamide  

4 ZINC01676023 
43308 
NO CAS 
288.3 
styrylidine 

2-keto-4-phenylimino-
N-styrylidene-but-3-
enamide 

 
5 
 

ZINC04776634 
45086 
NO CAS 
261.233 
Alkylurea/furan 

 N-(2-furylmethyl)-N'-(4-
nitrophenyl)urea 

 

6 ZINC18154478 
45545 
NO CAS 
307.284 
Pyridine/quioline 

 4-[(N'E)-N'-(2,4-dioxo-
1H-quinolin-3-
ylidene)hydrazino]benz
amide 

 
7 ZINC13154298 

55691 
7713-86-2 
493.238 
thiazole 

 Thiazole, 2,2'-
iminobis[4-(4-
bromophenyl)- 
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8 ZINC04896601 
80735 
NO CAS 
528.473 
alkylurea 

 1-(4-nitrophenyl)-3-[4-
[4-[(4-
nitrophenyl)carbamoyla
mino]phenoxy]phenyl]-
urea 

9 ZINC04900874 
87838 
NO CAS 
346.422 
Pyridine/quinoline 

1,4-bis(3,4-dihydro-1H-
isoquinolin-2-yl)but-2-
ene-1,4-dione 

 
10 ZINC01569416 

88600 
NO CAS 
376.9 
piperzine 

 [4-(2-
chlorophenyl)piperazin
o]-(3,4-
dimethoxyphenyl)meth
anethione 

 
11 ZINC23118772 

91395 
NO CAS 
396.91 
piperzine 

1-[4-(3-
chlorophenyl)piperazin
yl]-3-
naphthyloxypropan-2-ol 

12 ZINC29589828 
91396 
NO CAS 
396.91 
piperzine 

 (2R)-1-[4-(2-
chlorophenyl)piperazin-
1-yl]-3-(1-
naphthyloxy)propan-2-
ol 

 

13 ZINC29589833 
91397(111210) 
NO CAS 
396.91 
piperzine 

(2S)-1-[4-(4-
chlorophenyl)piperazin-
1-yl]-3-(1-
naphthyloxy)propan-2-
ol 

 

14 ZINC29589837 
91402 
NO CAS 
376.491 
piperzine 

 (2S)-1-(1-
naphthyloxy)-3-[4-(p-
tolyl)piperazin-1-
yl]propan-2-ol 

15 ZINC04878491 
92833 
NO CAS  
316.4 
imidazole 

 2-[2-(5,6-dimethyl-1H-
benzoimidazol-2-
yl)vinyl]-5,6-dimethyl-
1H-benzoimidazole  

16 ZINC00111210 
111210 
NO CAS 
348.421 
indazole 

 2-(2-fluorophenyl)-6-
phenyl-3-propyl-2H-
5,6,7-trihydroindazol-4-
one 
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17 ZINC01722585 
136513 
22600-28-8 
410.374 
furan 

 DIBENZOYLFURAN 
DERIV 

18 ZINC05201470 
178873 
67194-28-9 
268.263 
furan 

 3-[3-[(2-
oxotetrahydrofuran-3-
ylidene)methoxy]propo
xymethylene]tetrahydro
furan-2-one 

 

19 ZINC01735469 
201631 
NO CAS 
436.441 
thiophene 

 4-[[4-amino-3-cyano-5-
(3-nitrobenzoyl)-2-
thienyl]amino]benzoic-
acid-ethyl-ester 

 
20 ZINC00031410 

203837 
NO CAS 
267.283 
Alkylurea/ oxazole 

 N-(5-methyl-3-
isoxazolyl)-N'-1-
naphthylurea 

 
21 ZINC05580600 

215718 
NO CAS 
401.277 
benzamidine 

3-bromo-N-[(5-hydroxy-
1-naphthyl)amino-
sulfanyl-methylene]-
benzamide 

 
22 ZINC01556940 

252359 
NO CAS 
343.834 
Piperazine/ 
triazole 

 2-(4-chlorophenyl)-5-
methyl-7-(4-methyl-1-
piperazinyl)[1,2,4]triazo
lo[1,5-a]pyrimidine 

 
23 ZINC01568966 

309892 
407.873 
thiophene 

4-amino-5-(5-
chlorobenzofuran-2-
carbonyl)-2-(m-
toluidino)thiophene-3-
carbonitrile 

 
24 ZINC05641037 

310347 
NO CAS 
348.849 
thiazole 

2-[4-(4-chlorophenyl)-
1,3-thiazol-2-yl]-5-
phenylpenta-2,4-
dienenitrile  

25 ZINC00138096 
310365 
NO CAS 
332.871 
thiazole 

2-({[2-(4-chlorophenyl)-
1,3-thiazol-4-
yl]methyl}thio)aniline 
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26 ZINC01045530 
31945 
NO CAS 
367.422 
thiazine 

 2-(4-hydroxy-3-
methoxyphenyl)-4-oxo-
6-(3-toluidino)-3,4-
dihydro-2H-1,3-
thiazine-5-carbonitrile 

 
27 ZINC01572309 

319990 
NO CAS 
474.558 
thiazole 
 

 3-(1,3-benzothiazol-2-
yl)-1-(5-{[(1,3-
benzothiazol-2-
yl)carbamoyl]amino}-2-
methylphenyl)urea 

28 ZINC00640726 
319994 
NO CAS 
362.385 
Alkylurea/ pyridine 

3-(2-methyl-5-{[(pyridin-
3-
yl)carbamoyl]amino}ph
enyl)-1-(pyridin-3-
yl)urea  

 
29 ZINC01574615 

329249 
NO CAS 
348.764 
Alkylurea/ thiazole 

3-(1,3-benzothiazol-2-
yl)-1-(4-chloro-3-
nitrophenyl)urea  

 
30 ZINC05665089 

329250 
NO CAS 
348.764 
Alkylurea/ thiazole 

1-benzothiazol-2-yl-3-
(2-chloro-4-nitro-
phenyl)-urea  

 

 
31 ZINC01574620 

329255 
NO CAS 
329.44 
Alkylurea/ thiazole 

1-(4-methyl-1,3-
benzothiazol-2-yl)-3-[3-
(methylthio)phenyl]urea
1-(4-methyl-1,3-
benzothiazol-2-yl)-3-[3-
(methylthio)phenyl]urea 

 
32 ZINC01586128 

366801 
NO CAS 
332.828 
Alkylurea/pyrazole 

N-(1-tert-butyl-3-
cyclopropyl-1H-pyrazol-
5-yl)-N'-(4-
chlorophenyl)urea; 
nsc366801 N-(1-tert-
butyl-3-cyclopropyl-
1H…  
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33 ZINC00395036 
375982 
20575-74-0 
344.451 
Alkylurea / 
piperdine 

N-[2-methyl-5-
(piperidin-1-
ylcarbonylamino)phenyl
]piperidine-1-
carboxamide  

 

 


