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Abstract

To fully understand the complex interactions of various phenomena in the natural

world, scientific disciplines such as geology and seismology increasingly rely upon

analyzing large amounts of observations. However, data collection is growing at a

faster rate than what is currently possible to analyze through traditional approaches.

These datasets, supplied by the increasing use of sensors and remote sensing, require

specialized computer programs to effectively analyze complex and expansive volumes

of data.

Elaborating on existing geophysical data processing approaches for infrasound

data collected from an avalanche-prone area, this thesis proposes new techniques for

processing large geophysical datasets. These improved techniques take advantage

of Graphical Processing Units (GPU) to accelerate floating-point, computationally

expensive operations. Additionally, they allow for dividing the workload among nodes

in a High Performance Computing cluster, yielding a performance speedup of 3.5

times for every additional node added. Finally, a machine learning approach was

used to classify events found in the processed data, which demonstrates the potential

of automatic real-time avalanche detection.

Applications with characteristics similar to infrasound processing are common

throughout the earth-sciences, and this work exemplifies the potential of these tech-

niques to an array of science fields. New algorithms for efficient data processing like

those presented in this work are fundamental to analyzing large geophysical datasets,

as well as to improving the accuracy of computer models across many disciplines.
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Chapter 1

INTRODUCTION

1.1 Data in Geophysics

Scientific disciplines such as geology and seismology require large amounts of obser-

vations to understand the interaction between different phenomena. By collecting

additional data, the existing geophysical models can be fine-tuned to produce more

accurate predictions.

More complex models allow for precise predictions of the future and a better

understanding of the past, and with this information, researchers can continue to

explore the correlation between variables in geophysics.

The data used in geophysical research is extracted from measurements that usu-

ally have a low noise-to-signal ratio [55], meaning that the information is hard to

distinguish from the noise. Additionally, samples often require human interpretation

and processing before the scientific questions can be answered [38].

1.2 Modelling Natural Phenomena

Models are mathematical descriptions of natural phenomena that allow scientists to

systematically analyze and interpret physical observations. In order to create new

models, scientists start by identifying and understanding the primary physics that
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Figure 1.1: Sample signals created by different phenomena

influence the natural phenomena. The scientists will then analyze the interaction

between these the physical constants and variables and introduce new constants and

variables to produce a model called theoretical model that can be used to characterize

and predict future occurrences of the same phenomena. In modeling natural phenom-

ena, scientists will make assumptions (for reasons like reducing complexity) and omit

variables in the model to create a simpler or more understandable model.

An example of a situation where oversimplifications occur is in snow-pack mod-

eling, where a physical model is developed to predict the characteristics of snow for

diverse geographical areas. The accuracy of models that try to predict snow water

equivalent and snow depth vary depending on the input variable —the assumptions

and omissions can make the model produce inaccurate predictions in different geo-

graphical areas, and there are relatively few observations to constrain the model[45].

For example, one of the physics-based snow-pack models known as ”SNOWPACK”

takes into account variables like wind speed, humidity, and air temperature. Although

SNOWPACK is generally accurate in predicting snow-pack density, it does so by

assuming all snow crystals are spherical, which is a problem when the features in the
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snow-pack change the thermal conductivity in complex ways [45].

Optimization of model parameters
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Figure 1.2: (a) Optimization of a function with parameters (n,A). (b) Observations as
circles, a theoretical model y = f(x) for the phenomenon and a numerical, data-driven
prediction for y

In contrast with the process used to develop theoretical models, there is an alterna-

tive technique that is based on statistics and patterns found in past observations of the

phenomenon being studied. These kinds of models are called empirical models. Just as

with physics-based models, empirical models make the assumption that the natural

process can be successfully characterized with the available historical observations

and that in the future, the statistics will be similar. These empirical models are more

flexible because they are not constrained by physics, but are not useful in predicting

outcomes that have never been observed before.

One of the most common examples of empirical models is a regression model, in

which the relationship among variables is represented as a function with multiple
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parameters that are optimized to reduce the error with the observed data. See

Figure 1.2.

Finally, in the study of geophysical processes where dozens of variables interact,

theoretical models are in many cases hard to develop. Alternatively, empirical models

can be used to help to understand and identify some of the controlling factors behind

phenomena and their influence based on historical observations.
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Chapter 2

AVALANCHES

Avalanches are destructive events that pose a threat to infrastructure like roads and

towns and put lives at risk. Since the mid-20th century, efforts have been made

to predict when and where an avalanche may occur based on weather and snow

conditions, which is a very difficult task. The next best step is to be able to detect

when they occur using warning systems. Measures can then be taken to protect the

structures and people that are in the path of the avalanche [56], [10]. One of the ways

to reduce the risk of people being caught in an avalanche is by closing roads when

an avalanche is detected or by pre-emptively closing roadways during periods of time

when avalanches are likely to occur.

When studying avalanches, seismic, acoustic and electromagnetic sensors are used

to collect data on different processes that affect and trigger them. These measure-

ments are noisy due to pressure changes in the air and ground vibrations coming from

other sources outside of the avalanche and noise in the instruments used to record

the signals [40].

Because of the noise present in the measurements and the enormous number of

variables that are involved in the creation of avalanches (snow-pack layer strength,

temperature, wind, snow grain structure, load, etc.), developing a physics-based,

theoretical model is an intractable task due to a lack of necessary observations [46].
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The best alternative is to use an empirical model that can incorporate some of the

variables and be iteratively optimized to identify when avalanches are happening

based on historical observations.
A
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Figure 2.1: Cross section of a mixed avalanche, indicating the different parts (modified
after Kogelnig et al., 2013) [36]

2.1 Avalanche Detection

The first step in studying avalanches is to identify when one has taken place. When

visual confirmation is not possible (due to inaccessible roads, avalanches happening

at night or in remote areas, etc.), the signals captured by sensors in the vicinity of

the avalanche, after being processed, can either confirm or deny the occurrence of an

avalanche.

There are multiple sources of sound that can be present in areas where avalanches

occur. Airplanes and cars in the vicinity of an avalanche zone will produce sound

signals that can be similar to the signals created by avalanches. Vehicles emit sound
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at a specific range of frequencies and produce vibrations on the ground just as distant

explosions or earthquakes produce seismic signals [10].

In order to determine if an avalanche has occurred at any given time, the signals

from sensors need to be filtered to remove unwanted noise that may mask the presence

of a signal. The signal is reviewed by an expert who can determine the most likely

source for the signal. Based on the signal’s properties, it is possible to estimate if

any data recorded originated from an avalanche or from another type of source, like

low-flying aircraft or strong winds [51].

Retrieving signals simultaneously from multiple sensors and processing them is

called array processing and is a common technique used in geophysical applications

[44]. Scientists can learn more about the characteristics of the event by studying these

signals. It is possible to identify the direction of the source of the sound (pressure

changes in the air) or the frequency components of the signal by performing a Fast

Fourier Transform (FFT).

2.1.1 Seismic and Radar-based Methods

The three most commonly used sensors in avalanche detection are seismic-based,

radar-based, and sound-based.

Avalanche detection using seismic methods consists in placing devices that mea-

sure ground movement called geophones close to locations where avalanches are

known to take place [40]. Geophones can be placed directly in the slide path of

an avalanche [51] or at a distance [10]. The most effective technique based on the

results of Herwijnen and Sweizer (2011) is to instrument the avalanche slide paths.

However, these techniques will only provide results for a limited number of avalanche

paths and its prohibitively expensive to instrument a large geographical area.
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Seismic approaches rely on detecting changes in the signal and associating those

with avalanche events. The most common method to find these changes is by using

the signal’s amplitude. Processing data from an instrument that records F samples

per second (see Equation 2.1), the average amplitude is calculated by averaging the

absolute ground oscillation velocity v. If the value of A exceeds a previously defined

threshold, a warning is triggered [6].

A =

∑F
i=1 |vi|
F

(2.1)

Radars can be also used to detect avalanches by means of measuring the total

travel time of a signal emitted by the radar until it is reflected back from the

source [38]. The radar is aimed at a fixed point in the avalanche path —and if

an avalanche takes place, the radar-emitted signal is reflected off the front of the

avalanche. The moving avalanche reduces the travel time and provides an easily

identifiable change that indicates that an obstacle is in the path of the radar’s

beam [40]. The biggest limitations of using radars is their limited detection range

and limited angle coverage. A common radar installation can monitor an area of less

than 0.3 Km2 and only a single avalanche path [36].

2.1.2 Infrasound-based Methods

Sound is created by vibrations in the air and these vibrations can be recorded using

microphones [47]. The human ear can perceive sounds that have a frequency approx-

imately between 20 Hz to 20 kHz therefore the term infrasound refers to vibrations

in the air that have a frequency below 20 Hz and are inaudible to humans.

Based on experimental data and theoretical models, it has been determined that
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avalanches produce sound that has a characteristic frequency signature, with most of

the signal power being concentrated in frequencies below 20 Hz [50], [55], [35], [42].

Most infrasound approaches rely on arrays of microphones that can be deployed

in different configurations varying in relation to the avalanche path location, the

expected amount of snow that accumulates in the study area, and the amount of

noise and extraneous sources of sound in the area, among others [47], [50].

Recorded infrasound signals can be analyzed by experts with tools similar to

those used in seismic approaches to determine whether an avalanche has happened or

another event has taken place. The confidence in the correct classification of an event

varies based on the amount of noise in the signal, the meteorological conditions, the

skill of the analyst, and whether there is visual confirmation of an avalanche in the

hours or days following the detection [36].

2.2 Avalanches in Idaho

Highway 21 is a two-lane highway in Idaho connecting the cities of Boise and Stan-

ley [4], has a maximum elevation of 7057 ft above sea level and receives approximately

300 inches of snowfall during the winter. Approaching Banner Creek Summit on

Highway 21 and about 30 miles from the city of Stanley [3] is a 12 mile-long stretch

of road with high-slope mountain faces nicknamed ”avalanche alley” that sees more

than 100 avalanches occur annually, forcing the road to be closed to the public due

to the risk of large amounts of snow being deposited on the road by avalanches.

The Idaho Department of Transportation (ITD) maintains an avalanche forecast-

ing program that assesses the risk of keeping the road open to traffic based on weather

and the snow conditions. The number and size of avalanches that took place in
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the 2012-2013 cycle have been considered the largest in the 15 years the forecasting

program has been operating [28]. In the 2013-2014 cycle the IDT reported at least

120 avalanches, of which roughly 50% deposited snow on the road.

Understanding avalanche dynamics and having timely warning systems can prove

invaluable for the public traveling through this region of Idaho and by extension

inhabitants of other avalanche-prone locations throughout the globe.

2.3 Big Data Processing

Big data is a relatively new field in computer science that focuses on data processing

at a scale where traditional algorithms are inadequate. Large datasets are becoming

more common as companies see 30% to 50% year-to-year growth of stored data in

addition to the declining cost of digital storage [49]. These trends are enabling a new

kind of data analysis known as data mining, defined as trying to find patterns and

information in large amounts of data.

A computer, as defined by Von Neumann, is able to work on one task at a

time, sequentially executing instructions stored in memory until the program fin-

ishes [53]. The performance of programs on this computer architecture depends on

how fast a single instruction can be executed. For decades, processor clock speeds

had exponentially increased. This trend continued until the early 2000s, when heat

dissipation issues and current leakages—among others—limited the maximum clock

speeds that could be achieved [48]. In response to CPU’s clock speeds stalling, all

the major chipmakers made a transition from faster processors to incorporating more

processing cores on the same CPU. These cores or units share access to main memory,

where the data resides. They also have independent caches and registers, allowing
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each core to operate independently. These changes in hardware design are grouped

under a new type of computer architecture called ”shared memory parallel machines”

(SMP), where more than one program can run at the same time and access the same

memory [32].

Traditional algorithms—where one CPU core did all the processing—became ob-

solete with the surge in stored data. New algorithms and techniques had to be

developed. The changes in CPU architecture had opened the door to running mul-

tiple programs at the same time which revolutionized the high performance software

paradigm. The paradigm effectively changed from minimizing the number of instruc-

tions required to complete a task, to where the performance is driven by how much

concurrency can be achieved [48].

Just as businesses store more data because of declining costs, in the field of earth

sciences a new trend has emerged where researchers can stora —and are accustomed to

storing experiment results and observations in real time from virtually any location on

earth. The low cost of storage systems combined with the advent of cheaper sensors

that can record and transmit high-precision data at higher bitrates leads to ever

growing volumes of data being collected. These vast amounts of data are data-mined

to create simulations, new models, etc., something that is possible in large measure

to new techniques for data processing [33].

The first step to process large datasets on SMP machines is to divide the dataset

into smaller subsets and process them concurrently. This is known as parallel execu-

tion or parallelization [30].



12

2.4 Parallelization

Parallelization can be done at multiple scales, from a single computer to a group

of interconnected computers. We start with a simple program P that performs a

computation f on input data X = (x1 x2 ... xn) to produce X ′, where f is comprised

of multiple instructions. If the function f(i) doesn’t require any other data than i, it

is considered embarrassingly parallel.

On an SMP machine that consists of p processing units or processors, we can

divide the input X into p parts, and compute f on each part concurrently. These

parallel computations are called tasks [21].

There are a number of rules of varying complexity and applicability that define

whether a program can be parallelized or not [21]; however, generally a program

can be parallelized if the result of the computation is independent of the order in

which the steps take place and these steps do not have any dependencies on previous

computations.

f(xi) X ′X

X

(a)

(b)
s1 ⊆ X

s2 ⊆ X

f(s1)

f(s2)

X ′

Mapping Reduction

p0

p1

Figure 2.2: (a) A program that performs a computation f on data X. (b) The data is
split (mapped), processed in parallel on processors p, and then recombined (reduced).
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Figure 2.3: (a) Optimal steps to sum an array of 8 numbers on a single processor.
(b) Simplified diagram of summation on two processors.

We have discussed embarrassingly parallel problems where the data is divided

into pieces and an identical computation is performed on each of them, but in reality,

many programs are more complex. It is possible that one instruction in P requires the

result of a computation that has not yet taken place. In this situation, P is described

as having data dependencies [9].

To solve data dependencies, processors wait for the dependencies to be satisfied

and then continue the computation. It is evident that on an SMP machine, the higher

the degree of data dependency, the closer the performance will be to that of a machine

executing instructions sequentially [20].

The different types of parallel architectures were first proposed by Michael Flynn

in 1966 falling in one of four main categories known as: SISD (Single Instruction

Single Data), SIMD (Single Instruction Multiple Data), MISD (Multiple Instruction

Single Data), and MIMD (Multiple Instruction Multiple Data). These traditional

categories capture the two distinctive characteristics of a parallel system: how the
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instructions are fetched and how the data is accessed.

In single instruction machines, the instructions are fetched sequentially, one at

the time, and every processing unit in the parallel computer executes it. In SISD ma-

chines, cores operate on one data point from memory per every instruction; whereas

in SIMD machines, cores can operate on different data points.

If cores can execute different instructions on the same parallel machine, they

belong to the multiple instruction category. MISD machines can execute different

programs on every core, but operate on a single data point. MIMD machines can run

different programs on every processing unit while accessing different data points.

Modern parallel computers can keep track of which instructions of a program (a

collection of instructions) are being executed on its parallel processors [17]. For prac-

tical purposes, processors are more easily understood as being able to run programs

on their cores, therefore modern computers are ”Multiple Instruction” by default.

With these considerations in mind, Darema introduced two subcategories to the

MIMD parallel architecture: Single Program Multiple Data (SPMD) and Multiple

Program Multiple Data (MPMD). In the case of embarrassingly parallel programs,

an SMP machine using the SPMD architecture is able to execute on each processor

p the function f on different input data. GPUs are an example of this architecture

(see Section 2.4.1).

On an MPMD machine, each processor can have a different program that can

execute in parallel on different input data. This is particularly important when the

program is complex and there are computations that are dependent on each other or

when control structures like branches and loops make the program behave in different

ways depending on the input data. Multicore CPUs and SMP machines are examples

of the MIMD architecture.
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2.4.1 GPU Programming

Graphics Processing Units (GPUs) are specialized processors that are used in con-

junction with CPUs to generate images that are presented to the user in a computer

screen. They have been traditionally associated with video games.

To render images on the screen, video games have to perform millions of computa-

tions on three-dimensional geometries, distance calculations between points in space

and image post-processing steps to generate a two-dimensional output. In order to

create smooth animations, these steps are repeated multiple times per second—from

24 frames per second (fps) to more than 100fps.

GPU

1 2 3 4 5 6
GLOBAL

MEMORY

GPU GPU

CACHE CACHE CACHE

GPU

GPU GPU GPU

CACHE CACHE CACHE

DATA

INSTRUCTIONS

Figure 2.4: Simplified diagram of a GPU. It loads a program on each core and executes
it in parallel on data that is stored in the GPU main memory, also known as VRAM.

GPUs are designed to perform simple operations in parallel, on large amounts of

data, in contrast with multicore CPUs, which can execute a wide variety of programs

but have only a handful of cores. GPUs have hundreds of cores but can only execute

a limited set of instructions. This additionally limits the complexity of programs
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in GPUs. The same collection of instructions is executed by every core, making

GPUs not fit for general computing in personal computers, but provide performance

advantages for repetitive operations.

An example of repetitive operations is a common post-processing visual effect used

in video games called ”bloom.” It imitates the glow that can be naturally perceived

around extremely bright objects. In order to create the effect, sources of light in a

2D image are identified, blurred, and then stacked on top of each other. The final

step is to overlay them on the original 2D image [24].

For the bloom effect, every single point in the 2D input image (pixel) can be

blurred independently, only requiring information about some of it neighbors. In the

same fashion, to stack or overlay images, the value of every destination pixel can be

computed knowing only the values of pixels from the other images in the set.

The bloom effect is embarrassingly parallel: to compute the output, only a small

fraction of the input is needed and there is virtually zero dependency between the

steps except for the final ”stacking” step. This exemplifies how GPUs, due to their

architecture, are extremely efficient for operations that require high parallelism.

Using GPUs for purposes other than graphics processing is an area of research

that started more than 10 years ago [1], but for a long time there were no easy ways

to send data to the GPU for processing. The only way to interact with the GPU was

to represent the data as bitmaps, lists of vertices, and other graphics-related struc-

tures, and perform graphics operations on them: matrix addition becomes texture

addition, etc. This changed with the introduction of programming interfaces that

made the GPU cores accessible for general processing. NVIDIA, one of the major

GPU manufacturers, released CUDA, a parallel computing framework that simplified

the way software developers write code that is executed on the GPU [34].
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Embarrassingly parallel data processing tasks like convolutions of signals [27], real

time signal processing [41], image analysis [8], [31], and others, are routinely being

computed using GPUs.
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Figure 2.5: Simplified diagram of bandwidths between I/O devices and the paths that
data follows to get from the hard drive to the GPU

All the approaches described in relation to parallelization, either using CPU cores

or GPU cores to process information, are only viable if the amount of input data

is not greater than the physical available memory of the system. CPU and GPU

operations require any data to be processed to be moved to RAM or VRAM. If the

total amount of input data is many orders of magnitude greater than the memory

on which processing cores operate, the overall processing speed is going to be greatly

reduced [25] (see Figure 2.5).

Since CUDA’s launch in 2007, other CPU and GPU manufacturers have developed

specifications and frameworks for high performance applications. Apple began devel-

oping a framework called the Open Computing Language (OpenCL) with the aim

of standardizing the way programs are written to take advantage of the processing

power of GPUs that otherwise were available only for graphical applications. After
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defining the first implementation, Apple ceded control of the specification and the

framework to the Khronos Group, a non-profit industry group conformed by Intel,

AMD, and NVIDIA, among others.

OpenCL defines a C-like language that when compiled can be executed on pro-

cessing elements (or processing cores) in parallel. For running the programs, OpenCL

defines an API that is implemented by hardware manufacturers as a library that pro-

vides a compiler targetting a specific compute device. Programs written in OpenCL

are called kernels and they are compiled at run time (they are generally distributed

as source code), thus allowing different hardware to execute them.

2.4.2 Distributed Systems

Distributed systems are defined as a collection of computing resources that are linked

together by a communication network [26]. The objective of these systems is to make

multiple computers, also called clusters, behave as if they were a single computer.

When the data that needs to be processed doesn’t fit in the memory of one computer,

it can be split up into multiple parts, called tasks, that can be distributed to the

computers that conform the system.

In order for these tasks to execute in parallel, a coordinator decides which task

will go to each computer and keeps track of which tasks have been completed. It is

desirable to have a coordinator that balances the load of the system; a system where

all the computing resources are utilized at all times is much more efficient than one

where some resources are underutilized.

Load balancing is a fundamental factor in fulfilling the expectations placed on the

distributed system [26]. Requests for data to be processed are called jobs, and they

have constraints in the form of metadata that define their priority, ownership, etc.
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Systems—through coordinators—are expected to execute them in a way that satisfies

those constraints.

There are a multitude of paradigms and implementations for load balancing,

scheduling, communication protocols, etc. For real-world applications, software de-

velopers generally use frameworks that facilitate writing distributed parallel programs

by abstracting some of these complexities.

One of such frameworks is OpenMPI, an open-source library that implements the

MPI-2 specification [23]. MPI is based on the message passing model. Programs

running on different machines can send messages to each other and coordinate the

execution of a job. The framework abstracts all the complexities related to network

communication and synchronization across computers in the cluster, and does not

force the programmer to adopt a data model or protocol for data distribution. It

is up to the developer to decide how the data will be sent to the machines, along

with defining procedures for failure recovery, tracking of task completion, etc. In

synthesis, MPI, and therefore OpenMPI, provide the tools to write software that

runs on clusters, but does not provide the logic and software infrastructure required

to fully utilize clusters: it doesn’t provide a coordinator.

Another framework that reduces the complexity of writing distributed code is

Hadoop, originally developed by Doug Cutting and Mike Cafarella. It was subse-

quently adopted by Yahoo and eventually became a top-level open source project

at Apache [54]. It provides an easy-to-use parallel programming model based on

MapReduce.1 Hadoop facilitates communication between computers in a cluster and

also provides a redundant distributed filesystem that is tolerant to failures [12].

1MapReduce is a parallel programming model where computations are represented by two
functions: Map and Reduce [18]. See Figure 2.2.
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Both in OpenMPI and Hadoop, just as with general paralellization techniques,

the difference in performance between a sequential approach and a parallel approach

is driven by how much concurrency can be achieved.

2.4.3 Heterogeneous Systems

Clusters were traditionally built using expensive computers and high-reliability net-

work connections. With the introduction of failure-tolerant technologies and the

cost of key technologies (for example Gigabit ethernet and high-performance GPUs),

clusters conformed of consumer-grade, commodity computers are more and more

available. Moreover, companies that have large numbers of computers that are idle

overnight or have long periods of inactivity during business hours can convert them

to be part of a cluster, sending data processing jobs over the network in what is called

a ”desktop cluster” [22].

These emerging distributed systems are not uniform. The local resources at

every node are different, and implementing techniques used in traditional distributed

systems would require armies of information technology administrators making sure

that the distributed software runs efficiently. The alternative is to have software and

practices that can secure the data as it is moved to the nodes, and software running

on the computers that can decide how to utilize the local resources efficiently, without

human intervention [22].

This is the challenge with heterogeneous distributed systems: different computers

with different capabilities have to operate together as a single compute unit. Addi-

tionally, to fully utilize cluster resources, all available CPUs and GPUs need to be used

for processing. Generally, parallel programs that operate in cluster environments are

executed on the CPU, and there are no simple ways to automatically take advantage
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of GPU resources available in the system, leaving the task of writing efficient code

that utilizes all computational resources up to the software developer [25].
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Chapter 3

METHODS

3.1 Study Site and Infrastructure

Boise State University maintains an experimental remote sensing station equipped

with a low power infrasound array that can record data continuously for months at a

time. This station is located on ”Avalanche Alley,” roughly 120 meters south-east of

Highway 21, at the 100.5 mile marker. Its exact position is 4414’15.8”N 11512’44.2”W.

On the opposite side of the highway there are three frequent avalanche paths

(areas known to have regular avalanche activity), designated as 100.4, 100.48, and

100.62. There are in total more than five avalanche paths, but they don’t produce

avalanches as often.

The system consists of five microphones positioned in a star pattern and connected

to a data logger via copper cables running inside plastic conduit to protect them from

the elements (see Figure 3.1). Systems with multiple distributed sensors are called

arrays.

Because of the remoteness of the study site and the large amounts of data that

are generated every day, there are no practical ways of transmitting this data out.

For the proof of concept study site, the data files where manually retrieved. These

visits are also used to verify that all the components are functioning appropriately

and to perform maintenance on those that are not.
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Figure 3.1: Avalanche paths along Highway 21 and study site location

The power for all the instruments and sensors is provided by two 12 volt batteries

that are charged during daytime by an 80 Watt solar panel (See Figure 3.2). The

batteries are housed inside a plastic box along with a solar battery charger. The

microphones are connected to an adjacent box that contains a computer, a data

acquisition instrument (also known as data acquisition card or DAQ), power adapters

for the computer, and satellite transmission equipment that allows sending small

amounts of data at very low speeds.

3.2 Data Acquisition and Formats

The raw electrical signal coming from the sensors has to be converted to a digital

signal that can be stored in a computer. Microphones can measure pressure changes

in the air and convert them to voltages, which in turn need to be converted to digital



24

Figure 3.2: (a) Layout of the components inside boxes. (b) Illustration of part of the
study site

values. Specialized devices called Analog to Digial Converters (ADCs) are used for

this purpose. ADCs convert a measured voltage sample to a digital number of certain

precision. DAQs are comprised of multiple ADCs called analog inputs.

During the winter of 2013 and through the end of the spring in 2014 this research

station recorded infrasound signals from 5 microphones (from now on referred to as

sensors) using a QUANTERRA Q330S+ DAQ.1 The measurements from the sensors

are continuously recorded on-board—in what is known as time-series data—and after

a set interval are transferred to the computer to be written to files. Each one of these

sensors has a name assigned to it, which is later used to distinguish them.

The physical analog inputs to the ADC and also the individual digital sensor

recordings by each analog input are known as channels. Each ADC channel can

convert sensor outputs to 24-bit precision integers many times in a second, and the

1The product details can be found at http://www.q330.com/Products/Q330SPlus-RevD.pdf
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number of samples recorded in one second is called the sample rate, measured in

Hertz. For this project, the 5 channels were sampled at 100Hz and the total amount

of data collected was 25GB.

The data is organized and stored using the MiniSEED standard, a subset of

the SEED standard (Standard for the Exchange of Earthquake Data). SEED and

by extension MiniSEED are maintained by the International Federation of Digital

Seismograph Networks, and documentation on the data format is available online.2

In order to process these signals, the first step is to extract them from the

MiniSEED files. Software libraries are available for most programming languages:

libmseed3 for C/C++ and Python via ctypes and SeisFile4.

The DAQ can store sensor readings for long periods of time in big files, but for

this project the data is copied to an external computer, in other words offloaded, at

configurable intervals. When offloading, the data is transferred to the computer and

stored as many relatively small files. The alternative is to offload big files from the

DAQ with the increased risk of data loss. Each offloaded file contains metadata that

indicates, among other things, the start time and end time of the data contained in

that file.

3.3 Event Detection

An event is defined as a moment in time when something of importance happened.

In our application, and because we are continuously recording, the definition of

2The full specification can be accessed at http://www.fdsn.org/seed manual/SEEDManual V2.4.pdf
3The source code of libmseed can be accessed at:

https://seiscode.iris.washington.edu/projects/libmseed/repository
4Distribution versions and the source code for SeisFile can be downloaded for Java from:

http://www.seis.sc.edu/seisFile.html
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something of importance is any moment in time when a signal caused by an external

coherent source arrives at the array. Coherent sources are those whose waves originate

at a spatially constrained point and whose signal is similar on all sensors in the arrays;

some examples are cars, explosions, and avalanches. In contrast, the arrival direction

of incoherent sources cannot be reliably estimated, or the waves they produce are

uncorrelated and the signals are not coherent on all sensors in the array. The most

common example is wind: although its speed and direction can be estimated and there

is some correlation in the signal, the pressure changes at the sensors are expected to

vary (i.e., due to turbulence) more than for coherent, slow-moving sources. [13].

One of the most difficult challenges in digital signal processing is removing the

noise that is always present in real-world measurements. The noise can hide events

in the signal or can make non-events look like events.

To summarize, in order to detect events, we are interested in coherent signals that

are always obscured to some degree by noise originating from inside the sensors and

external noise coming from mostly uncorrelated signals like wind. When an event

occurs and the amplitude of the signal is similar to the amplitude of the noise (low

signal-to-noise ratio or low SNR), additional techniques need to be employed to detect

these events.

The following sections discuss techniques to process signals recorded in an array

and theory behind noise reduction(Section 3.3.1), an additional strategy to determine

similarity between signals in sensor arrays (Section 3.3.2), approaches to detecting

when an event has taken place (Section 3.3), how to estimate the arrival direction of

an event (Section 3.3.4), and strategies to make these computations more efficient by

performing them in parallel in the GPU (Section 3.3.5).

As a final point, these techniques are only useful in determining that an event
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has taken place. The steps to identify what kind of event occurred are discussed in

Section 3.4.

3.3.1 Array Processing

In the context of array processing (the analysis of data being recorded simultaneously

by different sensors), correlation is an important concept. When two signals are

correlated, it means that they are similar and also that they are likely recordings of

the same event: the waves generated by an event will be captured by multiple sensors.

An extension of this concept is called cross-correlation, in which recorded signals are

compared with each other, as a function of the lag, or the delay, of one relative to the

other. See Figure 3.3.

We expect signals recorded by an array to be different depending on the relative

position of the source and each sensor. For sensors that are closer to the source, the

wave-front will arrive and be recorded earlier than in the further-away sensors. The

time difference in the arrival of signal to a pair of sensors is called a ”time lag.” The

amount of time that the signals need to be shifted in every sensor to eliminate the

lags are called ”time shifts.”

(f ⋆ g)[s] =
∑
i

f [i] g[i+ s] (3.1)

Cross-correlation is defined in Equation 3.1, where f and g are discrete functions

(in computer science, arrays), and the cross-correlation for time shift s is computed

by multiplying every distinct value at the time i of the first function by the value at

time i + s from the second function. Figure 3.5 shows three signals recorded by the

infrasound array before and after applying time shifts.
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Figure 3.3: The difference in distance between sensors and the source of the event
makes the recorded signals have a delay relative to each other. By computing the
cross-correlation, they can be aligned
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Figure 3.4: Processing windows over a signal

For practical and physical purposes, cross-correlation is not applied to the the

complete discrete function but to small sections called processing windows. Sources

of sound that are moving will create different time lags in the sensors, which can be

more precisely identified by using smaller processing windows and overlapping them

(see Figure 3.4).

Figure 3.5: By identifying the time lags and shifting, signals can be aligned.

Further, when a signal arrives at the array, all the sensors will record the signal

plus an uncertain amount of noise. The main assumption is that any noise present

will not be correlated, will be stationary5, and will follow a Gaussian distribution with

5This requirement excludes the sources of noise that change coherently over time, in which case
it cannot be noise—it must be a signal.
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a mean of 0 [52]. To put it another way, the sensors will be recording the sum of a

coherent signal and a random noise signal that fluctuates in value around 0 [11].

Another assumption is that the speed of the wave traveling through the medium—

in this case air, is constant. We assume the wave moves at a constant speed so there

are no sudden accelerations that would make the wave arrive at a sensor farther from

the source before it arrives at a sensor closer to the source. This is reasonable as the

speed of sound in air is relatively constant.

The relationship of noise and a coherent signal for an array of sensors located

equidistantly to a source is shown in Equation 3.2. The function xi(t) is the output

of sensor i at time t, s(t) is the coherent signal at time t, and Ni(t) is the noise

recorded by sensor i at time t; finally, n is the total number of sensors in the array.

With these assumptions in mind, and for a source that is equidistant to all sensors

in the array, we can expect that any coherent source will be recorded by all sensors

and that by summing the signals and normalizing, the uncorrelated noise can be

removed (see Equation 3.3).

xi(t) = s(t) +Ni(t)

s(t) = xi(t)−Ni(t)

(3.2)

=

∑n
i=0 x(i, t)−Ni(t)

n

=

∑n
i=0 x(i, t)

n
−

�������*0∑n
i=0 Ni(t)

n

(3.3)

At any rate, we must first calculate the time shifts, or in other words, align the

signals so that events occur at the same time in all signals. When the signals are
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aligned, we can analyze their correlation.

3.3.2 Fisher Statistic

Another correlation method is called the Fisher Statistic in the time domain. It is

defined as the power of the beam over the residual power [28]. The Fisher statistic is

computed using Equation 3.4, where M is the number of sensors in the array, N is

the size of the processing window, and lj represents a time shift to be applied to each

sensor j. xj(n) is a discrete function representing the output of sensor j at time n.

The important aspect of this statistic is how it performs when there is a correlated

signal in the data. The numerator will increase when the time shifts selected align

the signals, as exemplified in Figure 3.3. The denominator is similar, but every

value in xj is subtracted from the average power of all channels (see last term in

the denominator’s summation). When there is high correlation in the signals, the

denominator decreases because the average will be closer to the magnitude of the

signals, lowering the values and increasing the Fisher statistic. The first term in the

equation normalizes the statistic for the number of sensors in the array.

F =

(
M − 1

M

)
×

∑N
n=1

[∑M
j=1 xj(n+ lj)

]2
∑N

n=1

[∑M
j=1

[
xj(n+ lj)− 1

M

∑M
m=1 xm(n+ lm)

]2] (3.4)

In order to efficiently calculate the F statistic, we represent the observations of

every channel x as a column and individual observations over time as rows. This

creates a matrix of dimensions M×N , allowing us to represent the problem as a series

of operations that happen on each row of the matrix (notice the outer summations
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are done over columns).

To calculate the lj terms in Equation 3.4, we test source locations for events and

calculate the time lags that those locations would create. With these time lags, the

signal can be shifted. Additionally, we know that certain time lags are impossible

because of the assumption that the wave’s speed doesn’t change as it moves through

the array: it cannot reach a further sensor before a closer one or move slower than

the speed of sound.

Therefore, to test all the possible time shifts, we place virtual sources in a three-

dimensional grid around the array and simulate the arrival times of the wave at the

different sensors. Sound moves at approximately 320 meters per second, and the

arrival times can be calculated based on the distance between the source and each

sensor. Further, we know the sampling rate of the DAQ, or in other words, how

many samples are being recorded per second, which enables us to convert distances

and times of arrivals to numbers of samples, effectively converting time lags to sample

lags that are represented as indices. The full algorithm for this calculation is described

in Algorithm 1.

We can calculate all the potential positions where a sound source could be located

and calculate all the possible time shifts that would need to be applied to the signals

to align them. The steps outlined in Algorithm 1 are applied for every grid node in

Figure 3.6. The grid is spaced based on the speed of sound and the sample rate: sound

moves 320 m/s, which means that for a sampling rate of 100 samples per second, a

sound wave travels 3.2 meters in one sample. If the grid nodes are placed at 3.2 meters

in every direction x, y, and z, we arrive at a compact and relatively small search grid,

with bounds set to the minimum and maximum value of every component (x, y, z)

for each sensor position, plus two samples-distance in every direction. Additionally,
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Algorithm 1 Compute time shifts for arbitrary source. src is the position (x, y, z)
of an arbitrary source, in meters, relative to the position of the reference sensor ref,
total is the total number of sensors, pos is the location of every sensor represented
as an array of objects that contain the three position components (x, y, z), ref is the
position of the reference sensor with components (x, y, z), and rate is the sampling
rate of the DAQ.

1: function CalculateShift(src, total, pos, ref, rate)
2: for i = 0 to total do ▷ Make locations relative to reference
3: pos[i].x − = ref.x
4: pos[i].y − = ref.y
5: pos[i].z − = ref.z
6: end for
7:

8: shifts = []
9: deltas ← (0, 0, 0)
10: for i = 0 to total do ▷ Compute distance between the source and every node
11: deltas.x ← pos[i].x− src.x
12: deltas.y ← pos[i].y− src.y
13: deltas.z ← pos[i].z− src.z

14: distance ←
√

deltas.x2 + deltas.y2 + deltas.z2

15: shifts[i] ← distance/SPEED OF SOUND
rate

▷ Convert meters to time and finally to
samples

16: end for
17:

18: for i = 0 to total do ▷ Make the reference sensor have a shift of 0
19: shifts[i] − = shifts[ref]
20: end for
21:

22: return shifts
23: end function
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only unique time shifts are retained to avoid computing duplicate source locations.

The reason for removing duplicate shifts is rooted in how signals arrive at the

array. Increasingly distant source locations with the same relative distance to the

array sensors will yield identical time shifts: it is unknown how far the source is, the

signal is only detected when it reaches the array, not at the moment it is generated.
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Figure 3.6: Grid used to compute all possible time shifts for signals with varying
source locations.

With this information, we can assert, for example, that a signal source located at

coordinates ∆x = 12.8,∆y = 16, and ∆z = 3.2 relative to the the central array sensor

would require the signals from every sensor in the array to be shifted (0,−1,−4, 6, 7)

samples to align them. Notice the first shift is zero, meaning the first sensor was used

as the reference or master sensor. Which sensor is selected to be the reference sensor

is irrelevant, since the shifts to be applied can be both positive or negative.

Having calculated all possible time shifts, we can compute the Fisher statistic for

arbitrary signals with arbitrary time shifts.
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3.3.3 Signal Filtering and Detection

We discussed how signals that are coherent are a tell-tale sign of events and how

calculating the Fisher statistic can provide a measure of how coherent these signals

are. We have also discussed that the Fisher statistic must be evaluated for varying

time shifts, and that these time shifts are calculated from all possible signal source

locations. The maximum Fisher statistic value will be the one for which the chosen

time shifts better align the signals, and its magnitude will be greater when the signals

are highly correlated.

A simple approach to detect events is to calculate the Fisher statistic for a sliding

window of samples and compare it with a threshold value. Any time this value is

exceeded, it is assumed that an event has taken place.

Algorithm 2 Naive event detection

1: max fisher = 0
2: for all possible time shifts do
3: fisher ← computeFisherStatistic(signal, time shift)
4: if fisher ¿ max fisher then
5: max fisher ← fisher
6: end if
7: end for
8: if max fisher ≥ threshold then
9: ... ▷ Event detected
10: end if

One of the difficulties and drawbacks of this approach is having to choose a thresh-

old. Changing weather conditions, noise, and other factors make it impossible to

choose a single threshold value that can accurately distinguish events from non-events.

We use an adaptive statistical approach after Arrowsmith et al. [7]. This technique

compares the latest Fisher statistic to the a number of stored Fisher statistics called

the ”back window.” This is repeatedly performed on processing windows.
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A non-parametric probability distribution (specifically a kernel smoothed density

function) is created by using the values from all the windows except the last. The

last Fisher statistic is compared against this distribution: if the probability is greater

than a threshold, an event has been detected (see Figure 3.7a).

The difference in this method is that the threshold represents the likelihood of a

value belonging to a distribution, and this distribution is constantly updated. If the

previous Fisher statistics are changing over time, the distribution will change and the

probability of a future point being above the threshold remains the same.

It was experimentally established that finding the probability of an F-value being

above a probability threshold was a robust strategy to detect events, but in many

cases, short-duration wind bursts could be spatially correlated and yield false positive

detections.

Since the power of frequencies present in wind signals are concentrated above 20

Hz, we filter the signals using a Butterworth band-pass filter6 (a type of filter that

removes unwanted frequencies from a signal [14]) by retaining frequencies in bands of

6Java implementation by Christian d’Heureuse, accessible at http://www.source-
code.biz/dsp/java/
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2 Hertz in width, from 2 Hz to 20 Hz. The first filtered signal only retains frequencies

between 2 Hz and 4 Hz, the second, frequencies between 4 Hz to 6 Hz and so on with

the last being 18-20 Hz. Finally, the original signal is filtered to exclude frequencies

below 2 Hz and above 20 Hz.

Figure 3.8: Result after filtering the signal with a band-pass Butterworth filter.
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Algorithm 3 Event detection for a single signal (one band) divided into processing
windows. Constant BACK WINDOW SIZE is the number of samples used to create the non-
parametric distribution.

1: for all window in processing windows do

2: for all possible time shifts do ▷ For every pre-calculated time shift

3: fisher values ← computeFisherStatistic(window, time shift)

4: end for

5: fisher for window[window] ← Max(fisher values)

6: shifts for window[window] ← FindBestShifts(fisher values)

7: end for

8: ▷ Distribution created using a number of previous processing windows

9: distribution←NonParametricDistribution(fisher for window[1:BACK WINDOW SIZE])

10:

11: for window in processing windows starting at BACK WINDOW SIZE do

12: probabilities[window]←CalculateDensity(distribution,fisher for window[window])

13: UpdateDistribution(distribution,fisher for window[window])

14: end for

Subsequently, and following the same steps as with a single signal, these 10 filtered

signals are divided into processing windows. The Fisher statistic is then calculated

for each one of the windows and a non-parametric probability density function is

created using some of these values. The values used to create the distribution are

called the back window). Finally, the density of the value of the windows not in the

back window are calculated.

This algorithm is further described in Algorithm 3.

The probabilities from the 10 bands are then multiplied together and this value is

used for detection: when the value is below a threshold, an event has been detected
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(see Figure 3.9).

Miniseed File

Channel HLZ

Channel HLN

Channel HLE

Figure 3.9: Data flow for the event detection algorithm

3.3.4 Backazimuth Estimation

Previously, we discussed how in the process of calculating the Fisher statistic, the

maximum Fisher statistic will be one for which the time shift values align the signal,

and how these can be used to determine the direction of the signal relative to the

array.

Because the possible time shifts were calculated for sources located at specific

spatial locations, it is trivial to calculate the incidence and backazimuth angles (see

Figure 4.8).

The objective of estimating the incidence angle (degrees above the horizontal

plane) and the backazimuth (degrees from north) is to aid in the classification of

events.
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incidence angle = ∡ABC = sin−1
(
AC/AB

)
backazimuth angle = ∡CBD = sin−1

(
CD/CB

) (3.5)

Figure 3.10: Diagram of angles involved in source location estimation.

3.3.5 GPU Implementation

In Section 3.3, we explained how the Fisher statistic and a non-parametric distribution

are used to detect events and how the time shifts selected in the process are used to

calculate the source of the event.

At this point, we can visualize the Fisher statistic equation as a matrix, where

columns are individual sensor outputs and every row is one observation in time. In

order to compute the statistic, we must a) divide the data into windows, b) shift

the channels by a certain number of samples as defined by time shifts, and finally

c) calculate the F-statistic on the shifted data for the current window by summing

every row, then calculating the average of said row and accumulating these values as

we progress down the matrix.
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Since these steps are not sensitive to the order of the operations, this is an

embarrassingly parallel problem.

Algorithm 4 Compute the F statistic for a matrix data where columns are channels
and rows observations.

1: for every window in windows do
2: for every time shift in time shifts do
3: matrix ← ShiftDataForWindow(data, window, time shift)
4: for every row in matrix do
5: row average ← average(row)
6: row[:] -= row average ▷ subtract average from all elements in row
7: row sum ← sum(row)
8: row square ← row sum2

9: normalized ← N−1
N
× row square

10: end for
11: fisher[time shift] ← normalized

row sum

12: end for
13: best time shift[window] ← FindMaxTimeShift(fisher) ▷ Find the

maximum Fisher value and get its associated time shift for the current window
14: end for

As mentioned in Section 2.4.1, OpenCL is an open standard that allows programs

written in a C-like language to run on compute devices. APARAPI7 is an open

source API and library developed by AMD and currently open source that allows

Java bytecode to be converted to compatible OpenCL for parallel execution.

It places constraints on what code that can be converted, currently supporting

only native Java data types and static memory access. These limitations do not affect

our application, where all the computations are done over two dimensional arrays and

the size of the output is known beforehand.

7Available from AMD at: http://developer.amd.com/tools-and-sdks/opencl-zone/aparapi/
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3.4 Event Classification

In the following sections, we discuss the techniques used to classify events after they

have been detected. Classification can be achieved by analyzing statistical indicators

of the data, like the length of the event or its most likely source (described in Section

3.3.1). Another statistic that can be analyzed is the set of frequencies that are present

in the signal.

3.4.1 Fast Fourier Transform

Fourier analysis is used to convert waves in the time domain to frequencies. The

discrete Fourier transform (DFT) can be used to estimate the signal amplitudes as a

function of frequency.

Xk
def
=

N−1∑
n=0

xn · e−i2πkn/N , k ∈ Z (3.6)

Equation 3.6 shows the real discrete Fourier transform. There are N real values in

x, and the function is usually computed for N/2 different k. Xk is a complex number

that represents the amplitude and phase of a sinusoidal component of the original

function x. Each Xk is related to a frequency present in the signal, for example, if

X5 has a smaller value than other Xk, we conclude that the frequency equivalent to

k cycles per N is a greater contributor to the content of the signal.

In reality, the DFT can be represented as a multiplication between a vector of

length N with an N×k matrix, with k being calculated up to N or N/2 depending on

the application. Furthermore, the matrix is symmetric, which allows for optimizations

that reduce the cost from O(N2) to O(NlogN). The Fast Fourier Transform (FFT)

is an example of one of these optimizations [16].
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For this application, we compute the FFT of the signal and summarize it by using

power bands. Bands are ranges of frequencies that are characteristic of a certain type

of event as shown in Table 3.1.

Frequency band Common sources

2-8 Hz Avalanches, Earthquakes, Atmospheric phenomena

8-16 Hz Avalanches, Explosions

16-20 Hz Avalanches, Vehicles, Wind

20-50 Hz Vehicles, Wind, Planes, etc.

Table 3.1: Frequency bands and common signal sources that contain high power in a
given band.

A power band is defined as the total power content of the frequencies that fall

between its lower limit and upper limit. We use five power bands, the first band being

the sum of all the frequencies from 1 Hz to 5 Hz, the second is a sum from 5 Hz to

10 Hz. Other bands are defined from 10-15 Hz, 15-20 Hz, and 20-50 Hz.

As was previously stated in Section 2.1.2, avalanche signals have a characteristic

frequency signature, therefore calculating the power along bands can serve as a good

indicator to differentiate and classify events.

Figure 3.11: A signal is converted to its frequency components
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3.5 Machine Learning Techniques

3.5.1 Artificial Neural Networks

Artificial neural networks (ANNs) are based on biological brains, and as such are

conformed by units (neurons) that are connected to each other. These connections

can have a varying strength, which is the basic factor that modifies the behavior and

output of the network [39]. In order to use artificial neural networks for classification,

these connections need to be modified to achieve a desired output. The process of

tweaking the strength of connections is called training [37].

The most common type of neural network is the feedforward network first de-

scribed by McCulloch and Pitts[39]. The neurons are organized in layers with the

connections between units in layers made strictly in a forward direction. The first

layer is denominated the input layer, where the variables or inputs are supplied to the

neurons, and the last layer is called the output layer, where the result of the neural

network for the given inputs is retrieved. The layers of neurons in between the input

layer and output layer are called ”hidden layers.” Every neuron computes its output

based on its inputs multiplied by the strength of the connection with a previous

neuron. These connection strengths are called weights, and are what determines how

much the output of the previous neuron affects the current neuron.

Recurrent neural networks (RNNs) are a type neural network similar to feedfor-

ward networks that can maintain an internal state by giving neurons the ability to

store its previous output and can allow for complex temporal decision-making and

classification in continuous data [19]. Results obtained using RNNs are discussed in

Section 4.



45

3.5.2 Training

Just as with biological neural networks, ANNs (and by extension RNNs) are trained

by providing an input and an “ideal output.” The input—also called sample—can

be an image, a sound snippet, or any other data that can be represented as numbers.

Along with the sample, there is a label (ideal output) that describes what the network

should output. The output of the network is usually a number that is greater for a

positive input and smaller for a negative output. When all the available samples in

the training dataset have been supplied to the network for training, it is said that the

network has been trained for an epoch.
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The database of events used to train the neural network was compiled by Scott

Havens, a recent PhD in Geophysics now at USCA NWRC. The events were classified

by manually looking for patterns in the signals and analyzing characteristics like

length and origin of the signal (calculated using a similar method to the one used

in this project). These characteristics in the signal help to determine what kind of

event took place. The most likely type of event is labeled using a descriptive word

like ”Avalanche,” ”Vehicle,” etc., or—for signals which are not clearly identified—the

label ”unknown.” The events stored in the database are considered to be correctly

labeled, and in some cases they are correct beyond any reasonable doubt. In other

cases, it is possible that the label applied to the event is not correct.
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Training a network is a computationally expensive process [37]. As long as there

are enough samples (labeled inputs), the network will continue to get more accurate

in its classification through training. In the opposite scenario, where there are only a

few samples available for training, there is a high probability that the network will be

accurate in classifying all the samples in the training set but will be very inaccurate

when classifying samples that belong to the same class but are substantially different

(the network over-learns or has been over-trained).

The artificial neural network’s architecture determines—to a certain extent—its

capacity to recall (or remember) learned patterns. For this project, different types and

architectures of neural networks were used (see Section 4), and the training was done

using backpropagation as described by Hecht-Nielsen [29] and simulated annealing, a

technique that can reduce the training time by modifying the rate of learning [15].

For this project, Encog8, an open source neural network and machine learning

framework was used to define, train, and subsequently evaluate the neural networks.

3.6 Distributed Processing

In Section 2.4.2, we discussed the requirements and difficulties of developing software

that can operate in distributed systems, and the necessity of using frameworks to

accelerate the development of solutions that are easily scalable and resilient to errors.

Apache Hadoop was used in this project for its fault tolerance and its scalability.

Its most characteristic feature is that every operation is defined exclusively as having a

<key, value> pair as its input (values can be of different types), and a <key,value>

pair as its output.

8Developed by Jeff Heaton and available at http://www.heatonresearch.com/encog
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Hadoop uses the map-reduce design pattern, a pattern similar to divide-and-

conquer where the data is first split into multiple parts, and then these parts are

reduced or combined to produce the final output. An example of this design pattern

is counting words in text documents. The individual documents are analyzed line by

line in the map stage. The mapper receives the line number of the document as its

key and the content of the line as its value and produces key-value pair every word

in the line as the key, and the number one as the value. In the reduce step, all the

records that have the same key are combined and the total number of occurrences

can be calculated.

The first step to the detect and classify events in Hadoop is to load the data onto

a distributed filesystem so that every node has access to every file. After, files are

generated that contain information about the processing, the interval of data that is

going to be processed, etc. These files (called InputSplits) are read by Hadoop and a

new or various mappers depending on the size of the file are instantiated to process

them.

The mapper then streams each of the files from the distributed file system and

performs all the event detection steps (as outlined in Section3.3). If an event has

been detected at any point in the data file, it is classified using the machine learning

techniques described in Section 3.4. These events are then gathered and compiled in

a detailed report. The details of this process are explained in detail in Section 4.3.
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(a) Original signal recorded on 2014-03-06 at
19:09:33

(b) Normalized statistics derived from the sig-
nal
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Figure 3.14: Diagram of steps to prepare input files and execution on every mapper
instance.
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Chapter 4

RESULTS

The results of this thesis are presented in three parts. The first part is focused on the

results of performing event detection by applying the techniques described in Section

3.3.

The second part is focused on the training of neural networks and the evaluation

of event classification, and the third part describes the results of running the project

in a high performance distributed system.

Additionally, the operational parameters used throughout this work are listed in

Appendix A.

4.1 Event Detection

To estimate the probability of a new Fisher statistic belonging to a given distribution,

we calculate a kernel-smoothed probability function of the past Fisher statistic values,

but these probabilities are affected by the selected kernel and its characteristics.

For our application, we use a Gaussian kernel with standard deviation of 5 (see

KernelWidth Appendix A).

When the density of a new Fisher statistic value is calculated from the non-

parametric distribution, we expect the probability density function value and the

probability of observing that value or greater to be low for signals that are part an



51

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Back window

Detection on database

Processing window: 2014/03/06 19:00:00 − 19:20:00

Seconds from start time

 

 
F−value
Detections

Figure 4.1: Validation of the detection technique. This event had previously been
identified and stored in a database of known events

event. These densities are calculated for every signal filtered by a frequency band;

therefore, before the detection is performed, there are 10 individual densities.

To detect events, the densities from each band are multiplied together and the

result is compared with the threshold. For this reason, by multiplying very small

numbers, the compound density is an even smaller number. The threshold for event

detection (see Alpha in Appendix A) is set to a very small number that is dependent

on the number the factors in this multiplication: in essence, the number of filtered

bands on which the Fisher statistic is computed.

Changes to the value of the threshold control how rare a signal in time has to be

in order to be considered an event. To prevent an overly strict detection procedure,

the threshold is set to a value that will guarantee that there are more false positive

detections than the opposite. It is expected that a large portion of these false positive

events are accidental correlations of non-coherent sources and that they would be

discarded in the classification stage.
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Figure 4.2: Automatic event detection compared to manual event detection.

4.1.1 GPU Parallelization

As described in Section 3.3.5, APARAPI was used to convert a Java program to

OpenCL code that is then executed in the GPU. The program computes the Fisher

statistic for processing windows (see WindowSize and WindowOverlap in Appendix

A) that contain an input data matrix consisting of N rows and M columns, and a

pre-calculated time shift matrix of dimensions 834×M .

Figure 4.3 shows the results of GPU benchmarking by plotting the mean execution

time of five observations and the 95% confidence interval in a lighter color. It is evident

that as the input matrices grow in size, the execution time increases linearly for single

thread CPUs. On the contrary, the GPU executes in sub-linear time.

Although OpenCL is a standard framework, vendors provide their own imple-

mentation in the form of a userspace library (called ICD, installable client driver)

that communicates with the graphics driver. This, along with different vendors sup-

porting different versions of OpenCL, requires the developer to modify the OpenCL

program to work correctly on multiple devices, even in the case where this code is

auto-generated as with APARAPI.
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Figure 4.3: Evaluation of floating point processing performance on multiple devices.

Two versions of the Fisher Statistic calculation for GPU execution were devel-

oped: one targeting Intel devices and another targeting NVIDIA devices. The main

differences between them are related to strategies for array indexing and memory

management. There are known issues with local memory arrays and long-executing

tasks in the NVIDIA platform.1

APARAPI provides an ”explicit memory management” mode that allows for fine

grained control over which data structures are copied to GPU memory. This mode

can be used to guarantee that copy operations, which are very expensive, are made

only when necessary.

Finally, in order to prevent crashes in the Java Virtual Machine when attempting

to free resources, a patch had to be applied to an APARAPI JNI library file located

1See https://code.google.com/p/aparapi/issues/detail?id=145
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in the APARAPI distribution folder.2

4.2 Event Classification

4.2.1 Training Dataset

To generate datasets for neural networks training, large amounts of data had to be

loaded to memory. It was evident that there were inefficiencies in reading data for

time intervals that were bigger than the number of samples stored in one single data

file. When this happened, it was necessary to read additional files to acquire the

remaining samples. Identifying which files contain the data for a given time range

could, in the worst of the cases, lead to reading the metadata of all the data files.

As a consequence, an indexing system based on an Interval Tree was implemented.

Interval trees, as the name indicates, store intervals instead of single values. In order

to create the tree, a pivot interval is chosen and subsequently every interval whose

start is greater than the pivot’s midpoint, it is added to the right child list. If the

end of the interval is smaller than the pivot’s midpoint it is added to the left child

list. If the interval is fully contained by the pivot, it is added as a ”middle” child of

the pivot (see Figure 4.4).

Search operations are performed similar to binary search, which in a balanced tree

discards half the intervals. Similarly, like in all tree structures, it is important to pick

a good pivot that evenly divides the input and balances the tree. Finding the optimal

pivot takes O(n log n) time, and building the tree is also O(n log n).

Interval trees are used for search and to measure performance more accurately,

an additional variable m that represents the total number of results is introduced. In

2The full path to the file is aparapi/com.amd.aparapi.jni/src/cpp/runKernel/JNIContext.cpp
and the patch can be found in Apendix C
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Figure 4.4: Resulting Interval Tree of intervals [4,12], [10,12], [11,12], [12,15], [13,14],
[13,15], [14,22] and [16,20].

other words, if the search is expected to return all of the inputs, the algorithm would

take O(m); otherwise, the performance is Θ(log n+m).

The worst case scenario is when the pivot interval is erroneously chosen and it

contains all other intervals. In this scenario, the search is O(n). For our application,

we know that there are very few overlapping intervals of data, therefore this is not a

concern.

This indexing system can be used to efficiently retrieve filenames that contain

data for any given interval of time. This functionality is useful for extracting the

samples that belong to an event from the database of events by knowing its start and

end times.

Knowing which files to read, the input data for ANN training can be generated.

4.2.2 Artificial Neural Network Training

For this project, the inputs to the ANN were the statistics used in the event detec-

tion phase, along with frequency information. The details of the generation of the

frequency information is discussed in Section 3.4.1.
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The network is trained using the following variables:

Variable Name Description

F The Fisher Statistic

power1 Power in the frequency band between 1 Hz and 5 Hz

power2 Power in the frequency band between 5 Hz and 10 Hz

power3 Power in the frequency band between 10 Hz and 15 Hz

backazimuth Angle relative to north for the calculated source of the signal

Table 4.1: Variables used for Artificial Neural Network training and evaluation

These variables are normalized before they are input to the network. Outlier

values beyond the 90th percentile are discarded and the remainder are normalized to

the range [−1, 1]. See Equation 4.1.

normalize(data,point) =

(
point−Min(data)

Max(data)−Min(data)
× 2

)
− 1 (4.1)

The training data—that is, pairs of inputs and ideal outputs— were generated

using an extensive event database developed over three avalanche periods using dif-

ferent infrasound arrays placed along Highway 21. This dataset contains information

about different types events, such as vehicles, airplanes, and avalanches. Table 4.2

contains a summary of the events in the database.

Every event was divided into multiple samples, some of which were subsequently

used to train the neural network. To avoid over-training, 30% of these samples with

at least 50% of them belonging to avalanche events were retained from the training

set. In total, the training set contained 1308 individual samples generated from 113

labeled events.

Networks with the same architecture were trained with one of two ideal outputs:

a) a function outputs 1.0 for any sample that belonged to an event labeled as an
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Algorithm 5 Hybrid training strategy useful for training large artificial neural
networks.

function BackpropagationTrain(network,epochs)
... ▷ Train network using backpropagation

end function

function SimulatedAnnealingTrain(network,epochs)
... ▷ Train network using simulated annealing

end function
prev error ← ∞
while training do

error ← evaluate(network)
if prev error - error < 0.00001 then

SimulatedAnnealingTrain(network,5)
end if
prev error ← error
BackpropagationTrain(network,5)

end while

avalanche and 0 otherwise and b) the ideal function was set to 0 for all non-avalanche

events. For avalanches, the output was a normalized Gaussian function (with a

maximum of 1.0) centered at the middle of the length of the event. The standard

deviation was half of the length of the event.

The event start times in the manually classified database were not set to the

exact time when the event started, but rather a few seconds before the event began.

Penalizing the neural network for miss-classifying those samples increased the training

time, a problem solved by using the Gaussian approach.

Training the neural networks was performed using a hybrid strategy. The network

is trained using backpropagation (a gradient descent method optimization technique

for ANNs) until the percentage of improvement in the network output from one epoch

compared to the previous falls below 0.001%. Then, the network is further trained

using Simulated Annealing for 5 epochs. Afterward, the network is trained again using
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Statistics and Ideal Network Output
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Figure 4.5: Signal statistics and Artificial Neural Network ideal output. This is the
result of converting an event to multiple training samples.

Event classification Number of events

Vehicle 7

Unknown 21

Plane 25

Avalanche 24

Explosive 9

MHAFB 14

Rotary 6

Earthquake 2

Helicopter 5

Total 113

Table 4.2: Summary of events classifications in the event database
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(a) Neural Network training with a hybrid
strategy

(b) Neural Network training using only
backpropagation, stuck in a local minimum

Figure 4.6: Differences in training and error using different strategies

backpropagation for 5 epochs (see Algorithm 5). The results of using this technique

compared to a training strategy using only backpropagation are presented in Figure

4.6.

The architecture of the neural network consisted of five inputs (listed in Table 4.1),

three layers of 20 units each, and one output. The activation function for the hidden

units as well as the output neuron was a sigmoid function (a squashing function). The

sigmoid function is one of the most commonly used because its derivative is easily

computable, which facilitates training (see Figure 4.7).

A satisfactory classification accuracy was achieved after approximately 70,000

epochs of training.

Recurrent artificial neural network (RNNs) were trained alongside the feed-forward

ANNs but results of training were never satisfactory. While recurrent ANNs have

been demonstrated to be good at modeling repetitive events because of their stored

internal state, no two avalanches are exactly the same. Additionally, the length of

events is always different, meaning that any cyclical features would be obscured,
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(a) ANN architecture used for event classi-
fication (b) Sigmoid activation function

Figure 4.7: Artificial Neural Network used for classification and activation function

making training more difficult. The final reason why the training was not successful

is related to the way the samples are arranged: every training example represented

a sample from an event, which could be of any class. Therefore, one avalanche event

could be preceded by a vehicle event.

In conclusion, the recurrent neural network is not able to train for a repetitive

pattern that might not be always present and the events being given to the network

back to back obscures any pattern that might have been present.

4.2.3 Performance Metrics

The trained classification neural network outputs a value closer to 1.0 when the

input sample belongs to an event labeled as an avalanche. Since events are either

avalanches or not avalanches, a threshold of 0.5 (see NeuralNetworkAvalancheTreshold

in Appendix A) was used to produce a boolean output of true or false, true being all values

greater than 0.5 and false otherwise. The network is evaluated on the retained events and

figures are provided with the performance over the training set.
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Neural network performance is usually evaluated using a ”confusion matrix,” in which

the results of the classification are categorized as actual positives and actual negatives

meaning the true class for a given sample, and predicted negative and predicted positive

being the output of the network for a given example. The cells in the first row of the table

are labeled a and b, and the remaining two in the second row c and d.

Actual Positive Actual Negative

Predicted Positive 21 0

Predicted Negative 3 89

Table 4.3: Confusion Matrix

With this information, we can compute useful statistics about the performance. See

Table 4.4.

Metric Name Formula Value

Correct Classification Rate (a+d)
N

0.97

Positive Predictive Power a
(a+b)

1

Negative Predictive Power d
(c+d)

0.96

False Negative Rate c
(a+c)

0.14

False Positive Rate b
(b+d)

0

Table 4.4: Performance Metrics for Artificial Neural Network

In Figure 4.9, every training sample is plotted along with the the ideal function and the

network output.

The network was also used to classify every event in two 24-hour windows for which

some events had been manually classified. Unlike the training and evaluation, events were

extracted directly from the dataset using the algorithms described in Section 3.3. These

events were then classified using the feed-forward neural network. While the network was

trained to output values closer to 1 when the event was an avalanche, there were many false

positives in the form of spikes for only one of the samples that conform an event.
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Figure 4.9: Classification results for all training samples. Colored bars represent the
class of each sample



64

To filter out false positives, the network output was only considered positive if it

remained above the parameter NeuralNetworkAvalancheTreshold for at least 50% of the

event samples. In other words, if the ANN output remained above the threshold value

for more than half the number of samples for the event, it would be considered a positive

classification. On the other hand, if the network output was above the threshold less than

half the time, the event would not be classified as an avalanche.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour of day

Expert

Expert

ANN

February 15 2014
Total Events Found: 328

Avalanches detected by ANN
Other events classified by Expert
Avalanches classified by Expert

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour of day

Expert

Expert

ANN

March 06 2014
Road Closed

Total Events Found: 131

Avalanches detected by ANN
Other events classified by Expert
Avalanches classified by Expert

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour of day

Expert

Expert

ANN

May 20 2014
Total Events Found: 390

Avalanches detected by ANN
Other events classified by Expert
Avalanches classified by Expert

Comparison between manually classified avalanches and 
 automatically classified avalanches

Figure 4.10: Comparison of event classification

Figure 4.10 shows the results of performing event detection and classification on full

days, two of which had been manually analyzed and labeled by an expert. The neural

network classifies events as avalanches that coincide with manual picks, and some false

positives can also be observed.

The third day, May 20th, shows the ANN identifying avalanches where there were none.

One potential reason for this misclassification is related to vehicle flow: on both February

15th and May 20th, the road was open and vehicles were producing signals. On March 6th,

the highway was closed, and accordingly, there were a smaller number of events detected

that day.

One of the severely under-represented event classes in the ANN training database are

vehicles. There are thousands of cars that travel through Highway 21 every winter, and
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those signals are surely recorded in the infrasound dataset. Yet, in the training data, there

are only 7. It is not surprising then that the ANN produces false positives in days without

avalanches for times where vehicles are traveling. Having a more complete dataset of labeled

events would immediately lead to better classification accuracy.

An alternative to mitigate this problem is discussed in Section 4.7.2.

4.3 Distributed Processing

In the steps required to detect and classify events, some of the techniques can be controlled

by parameters. These parameters are configurable and are listed in Appendix A with a

name, description, scope (what part of the processing steps utilizes it), and default value

with unit (the value for the parameter used in this project).

Boise State University owns a high-performance cluster named Kestrel [5]. It is com-

posed of 32 nodes that can be utilized to compute tasks. These tasks are submitted to a

master node that allocates resources on the nodes and and then executes the task on each

of them. The process of allocating and distributing tasks is managed using the PBSPro3

software package.

CPU 2 Intel Xeon E5-2600 series processors 16 cores/32 threads

GPU 2 Tesla K20 (nodes 1-22)

RAM 2 TB

Local Storage 400GB

Storage 64 TB Panasas Parallel File Storage

Networking Mellanox ConnectX-3FDR Infiniband interconnect

Table 4.5: Kestrel node configuration

3Information about this software along with guides and manuals can be obtained by visiting
http://www.pbsworks.com/SupportGT.aspx?d=PBS-Professional,-Documentation
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In order to use Hadoop in a cluster setting like Kestrel, the distributed file system used

by Hadoop needs to be configured at runtime, along with the resource manager. In Hadoop

2.6, HDFS is used for data storage, and the default resource manager is Yarn [2].

When submitting a new task using PBSPro, one of the nodes will run the NameNode

(centerpiece of an HDFS file system) and YARN, while all the other allocated nodes will

start the DataNode (local HDFS replica) along with TaskTrackers and JobTrackers (the

components responsible of keeping track of progress).

Scripts were developed based on the work of Ravi Preesha Geetha [43] to automate

the starting and stopping of NameNodes and DataNodes and new scripts were developed

to manage YARN. These scripts and the accompanying configuration files are provided in

Appendix B.

Finally, in order to execute code in the GPU using Hadoop, the APARAPI libraries

have to be compiled targeting the same JVM where Hadoop jobs are being executed and

the native APARAPI libraries need to be within Java’s java.library.path.

4.3.1 Hadoop Algorithm

In this project, we are generating very small files, called input files, that contain in a single

line the information about a time interval and which files should be opened to retrieve data

for it. For example, to process a day-worth of data, 24 input files are created containing

information about the start and end of the interval (one hour per file) and a list of files

where the data for that interval is located.

The input files are loaded onto HDFS, where they are processed by a Hadoop. The

length of the interval for which a new input file will be generated can be configured at

runtime by modifying the property ChunkProcessingTime (See Appendix A).

The full algorithm that generates the input files is described in Algorithm 6.



67

Algorithm 6 Algorithm for generating input files for Hadoop.

function GenerateInputFiles(configuration)
start,chunk start,chunk end←configuration.get(”start date”)
end←configuration.get(”end date”)
chunk size←configuration.get(”chunk size”)
while chunk end ¡ end do

chunk end ← chunk start + chunk size
filenames←getFilenamesForInterval(chunk start,chunk end))
writeToHDFS(chunk start, chunk end, filenames)
chunk start ← chunk start + chunk size

end while
end function

4.3.2 Optimizing Task Size

Hadoop will spawn a new mapper or many mappers to handle every input file (InputSplit).

the input splits are small files that contain information about the interval of time that is

being processed, and the filenames that contain the data for said interval. We call each of

these intervals a ”chunk” of data that needs to be processed.

The amount of data per one mapper affects its running time, but running tests for

different chunk sizes didn’t show great differences between small chunks and big chunks, as

demonstrated by Figure 4.11.

The ultimate conclusion from this observation is that there is not a significant penalty

from moving data from the hard drive to memory and from memory back and forth from

the GPU. The most likely reason is due to the computationally-heavy operations that take

many orders of magnitude more time than moving data between storage forms.

4.3.3 Benchmark

The program was executed in a variety of ways to measure its performance. In Figure 4.12,

the running time (a measure of performance) is compared between a single node in Kestrel

running Java code sequentially on the CPU, one node using the GPU along the CPU and
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10 nodes using both GPU and CPU.

The results show a 3.72 speedup between the CPU-only implementation and the version

optimized for running on the GPU. This speedup is less dramatic that what could be

expected on the basis of GPU parallelism (see Figure 4.3), but can be explained by analyzing

the total amount of time a task runs in the GPU vs CPU.

In Figure 4.13, the different stages of the event detection and their running time

mechanism are examined. As expected, there is a similar speedup in the stage where

processing can be offloaded to the GPU, but the other stages remain the same. As the data

being processed grows, more time is spent on CPU-only tasks, decreasing the speedup.

In conclusion, we demonstrate a ∼4x speedup over single threaded event detection and

classification that can be linearly improved for every node added. The benchmark in Figure

4.12 shows a ∼37x speedup by using 10 nodes and taking advantage of the heterogeneous

compute capabilities in those nodes.

4.4 Conclusion

To conclude, we provide a summary of the findings of this project and potential areas of

future research in the field of massive-scale data processing.

4.5 Summary

We started by presenting a background on the challenges and limitations of modeling

naturally occurring phenomena. There are solutions to these problems, but at the cost

of making assumptions and oversimplifications.

In Section 2, we described what avalanches are, the risk they pose to infrastructure,

and why it is important for the state of Idaho to have effective systems to detect when

avalanches are occurring.
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Boise State University has a study site located in an avalanche-prone area, where data

has been collected for a number of years, yet, due to the large volume of this data, it has

not been studied thoroughly. Scenarios like this are increasingly more common, due to the

rise of ”big data.”

When trying to process large amounts of data, one of the most powerful and useful

techniques is parallelization. This is especially true if the problem can be simplified to a

series of smaller problems that can be solved in parallel. We covered two ways to parallelize:

one that is done in the same machine by utilizing existing resources like CPU cores or GPU

units, and distributed processing, where computers are connected to each other through a

network.

In Section 3, we described the algorithms that are used to process signals recorded by

an array of sensors. We discussed different approaches to reducing noise, finding correlation

in signals, and detecting when something of importance has happened. After detecting that

an event has occurred, we proceeded to describe techniques for classifying these events, in

other words, to label them.

Finally, in Section 4, the results of this work are presented, along with differences specific

to this work in the implementation of standard techniques.

4.6 Results and Implications

This work shows that processing massive-scale geophysical datasets is feasible and that

the results can be used to improve existing models, especially observation-based models

that would benefit from as much processed data as possible. Unless the vast amounts

of unexplored data in historical datasets is analyzed, these models cannot be thoroughly

validated or improved.

In this work, we propose a system for processing large amounts of data by taking

advantage of multiple sources of parallelism. Signal processing techniques for event detection
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were optimized for performance and a novel machine learning approach is applied to event

detection, something that has not been historically used for avalanche detection.

Although the speedup for event detection is very attractive in terms of the analysis that

can be performed on the data—whether it contains avalanches or not—event classification

is not robust enough yet for real-world applications without additional training on a larger

dataset of labeled events.

In conclusion, earth sciences can benefit greatly from high-performance data processing.

This work enables scientists to manipulate and understand large datasets many orders

of magnitude faster than what was possible before. Additionally, the algorithms and

techniques used are not limited to event detection and classification, but can be easily

modified to solve other geophysical problems that are computationally expensive.

4.7 Future Work

4.7.1 Fisher Statistic Computation

In the process of detecting events, a list of values of the Fisher statistics is stored in order

to compute the probability distribution of the back window. This list is relatively expensive

to create and is likely to contain events as well.

Currently, every Map operation in Hadoop recreates this list from the original data

every single time, even if some other Mapper has already calculated it. Unfortunately, to

achieve true parallelism, no task should require data generated by any other task, which

means that there is no easy solution to this problem.

In the future, an alternative approach could be to retain the back window data and

generate a database of Fisher statistics for all signals that can be re-analyzed using different

techniques.
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4.7.2 Artificial Neural Network Ensembles

Event classification on full days, as opposed to manually labeled intervals of time, was not as

accurate as expected. In training artificial neural networks, there are multiple factors that

affect the accuracy, but the most important is the training data. With a limited dataset

of events, the training is limited and the networks fail to generalize and produce correct

outputs for unseen events.

ANN Ensembles are groups of ANNs that are trained to classify different classes. For

example, one network is trained to detect avalanches while another network is trained to

detect vehicles. When an event needs to be classified, both networks produce an output,

which is then weighted, and a final classification is produced. ANN ensembles would provide

a more robust classification of events by specializing ANNs to detect one kind of event, which

would help to reduce the number of false positive avalanche detections.

4.7.3 Optimization to Detection Algorithm

The non-parametric approach described in this work was evaluated against manually iden-

tified events. Yet these events were selected from a very small subset of all the available

data. While the technique is statistically sound, the probability threshold selected could

very well be inadequate for other types of events or for events that occur over long periods

of time.

Ultimately, all approaches have to make a compromise between detecting too many false

events or missing important events that should have been detected. For this reason, having

a database of Fisher statistics would help develop even more robust detection algorithms in

the future.
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4.7.4 GPU Optimizations

Developing software for GPUs requires an understanding of how the memory architecture

is defined in OpenCL. There are multiple optimizations that can be applied to OpenCL

Kernels to take advantage of a specific compute device. For example, local memory can be

used as a scratch pad that is orders of magnitude faster than global GPU memory, yet it

requires careful management.

In future implementations of this software, GPU optimizations could lead to even better

performance for embarrassingly parallel floating point operations.
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Appendix A

OPERATIONAL PARAMETERS

Name Description Scope Default Value

SamplingRate The sampling rate of the sig-

nals retrieved from the DAQ

Event Detection 100 Hertz

MasterChannel Index of the channel used as a

reference of correlation

Event Detection 0

ChannelsToUse Names of the channels used

for all operations

Event Detection HHN, HLZ, HLN, HLE, HHZ

Channels The positions of each sensor Event Detection GPS coordinates, see Figure

3.6

FilterFreqLow Frequency for the first fre-

quency

Event Detection 2.0 Hertz

FilterFreqIncrement Whidth of each frequency

band

Event Detection 2.0 Hertz

FilterFreqHigh Upper frequency for the last

frequency band

Event Detection 20.0 Hertz

WindowSize The size of each processing

window

Event Detection, Event Clas-

sification

6 Seconds

WindowOverlap How much each processing

window will overlap

Event Detection, Event Clas-

sification

3 Seconds

WindowBack Number of processing win-

dows used to create the back

window

Event Detection, Event Clas-

sification

900 Seconds

KernelWidth Standard deviation used for

ksdensity

Event Detection, Event Clas-

sification

5.0

Alpha Threshold value for event de-

tection (compound probabil-

ity)

Event Detection, Event Clas-

sification

1−9

TimeThreshold Amount of time used that de-

termines when event is cre-

ated as opposed to merged

with a previous event

Event Detection 27 seconds

MaxEventLength The absolute maximum time

an event can last

Event Detection 60 seconds

PowerBands A list of power bands calcu-

lated for the data

Event Detection, Event Clas-

sification

1-5Hz, 5-10Hz, 10-15Hz, 15-

10Hz, 20-50Hz

NeuralNetworkAvalancheTreshold Threshold at which the net-

work output is considered

positive

Event Classification 0.5
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IdealChannelGaussian Whether or not generate

training samples with a

Gaussian function as the

ideal output versus the value

1.0

Event Classification True

ChunkProcessingTime How many seconds will be

loaded generated for every in-

put file. As a consequence,

this property also controls the

number of mappers that will

be utilized for processing.

Distributed Processing 1800

FileLookupTable Path to the filename lookup

table that resolves times to

filenames

Distributed Processing Enviroment-dependent

FilenameReplacements Any replacements that need

to be made to the file-

names returned by Filename-

DatabasePath

Distributed Processing Comma-separated find and re-

place

ClassificationNeuralNetPath Path to the neural network

used for classification

Distributed Processing Enviroment-dependent

OutputPath HDFS path where the events

are going to be stored

Distributed Processing ./EventDetectionClassification

ProcessingStartDate Start date for distributed pro-

cessing

Distributed Processing Date

ProcessingEndDate End date for distributed pro-

cessing

Distributed Processing Date
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Appendix B

SCRIPTS FOR HADOOP CONFIGURATION ON

KESTREL

B.1 Configuration Files

B.1.1 yarn-site.xml

<?xml version="1.0"?>

<!--

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License. See accompanying LICENSE file.

-->

<configuration>

<property>

<name>yarn.resourcemanager.hostname</name>

<value>node-04</value>

</property>

<property>

<name>yarn.resourcemanager.address</name>

<value>node-04:58010</value>

</property>

<property>

<name>yarn.resourcemanager.scheduler.address</name>

<value>node-04:58020</value>

</property>

<property>

<name>yarn.resourcemanager.resource-tracker.address</name>

<value>node-04:58030</value>

</property>

<property>

<name>yarn.resourcemanager.admin.address</name>

<value>node-04:58040</value>

</property>

<property>

<name>yarn.resourcemanager.webapp.address</name>

<value>node-04:58050</value>

</property>

<property>

<name>yarn.nodemanager.webapp.address</name>

<value>0.0.0.0:58060</value>

</property>

<property>

<name>yarn.nodemanager.localizer.address</name>

<value>0.0.0.0:58070</value>

</property>

<property>

<name>yarn.nodemanager.vmem-check-enabled</name>

<value>false</value>
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</property>

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle</value>

<description>shuffle service that needs to be set for Map Reduce to run </description>

</property>

</configuration>

B.1.2 mapred-site.xml

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!--

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License. See accompanying LICENSE file.

-->

<!-- Put site-specific property overrides in this file. -->

<configuration>

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

<property>

<name>mapreduce.map.memory.mb</name>

<value>2048</value>

</property>

<property>

<name>mapreduce.reduce.memory.mb</name>

<value>2048</value>

</property>

<property>

<name>mapreduce.jobhistory.address</name>

<value>0.0.0.0:58060</value>

</property>

<property>

<name>mapreduce.jobhistory.webapp.address</name>

<value>0.0.0.0:58070</value>

</property>

</configuration>

B.1.3 mapred-site.xml

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!--

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License. See accompanying LICENSE file.

-->

<!-- Put site-specific property overrides in this file. -->

<configuration>

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>
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<property>

<name>mapreduce.map.memory.mb</name>

<value>2048</value>

</property>

<property>

<name>mapreduce.reduce.memory.mb</name>

<value>2048</value>

</property>

<property>

<name>mapreduce.jobhistory.address</name>

<value>0.0.0.0:58060</value>

</property>

<property>

<name>mapreduce.jobhistory.webapp.address</name>

<value>0.0.0.0:58070</value>

</property>

</configuration>

B.1.4 core-site.xml

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!--

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License. See accompanying LICENSE file.

-->

<!-- Put site-specific property overrides in this file. -->

<configuration>

<property>

<name>fs.defaultFS</name>

<value>hdfs://0.0.0.0:9999</value>

</property>

</configuration>

B.2 Scripts
B.2.1 cluster-pickports.sh

#!/bin/sh

# This script modifies ports in config files to allow multiple instances of hadoop to

# run on the same cluster using common namenode but separate datanodes.

# author: Marissa Hollingsworth and Amit Jain

# modified for Hadoop >=2.6 by Gabriel Trisca

HADOOP_HOME=$HOME/hadoop-install

if test ! -d "${HADOOP_HOME}"

then

echo

echo "Error: missing hadoop install folder: ${HADOOP_HOME}"

echo "Install hadoop in install folder before running this script!"

echo

exit 1

fi

if [ $# -ne 1 ]

then

echo "Usage: $0 <base port>"

exit 1

fi

baseport=$1
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if [ $baseport -gt 62000 -o $baseport -lt 10000 ]

then

echo "$0: bad base port range: choose between 10000 and 60000"

exit 1

fi

if [ $baseport -eq 50000 ]

then

echo "$0: forbidden base port range: 50000 is standard port so avoid it!"

exit 1

fi

cd ${HADOOP_HOME}

MASTER=‘head -1 etc/hadoop/masters‘

/bin/cp etc/hadoop/core-site.xml etc/hadoop/core-site.xml.backup

/bin/cp etc/hadoop/hdfs-site.xml etc/hadoop/hdfs-site.xml.backup

/bin/cp etc/hadoop/yarn-site.xml etc/hadoop/yarn-site.xml.backup

/bin/cp etc/hadoop/mapred-site.xml etc/hadoop/mapred-site.xml.backup

#

# Configure paths for HDFS

#

param="dfs.namenode.name.dir"

newvalue="<value>file:$TMPDIR/hadoop-$(whoami)/hdfs/name</value>"

sed -i "/$param/ {

n

c\

$newvalue

}" etc/hadoop/hdfs-site.xml

param="dfs.datanode.data.dir"

newvalue="<value>file:$TMPDIR/hadoop-$(whoami)/hdfs/data</value>"

sed -i "/$param/ {

n

c\

$newvalue

}" etc/hadoop/hdfs-site.xml

#

# Configure uri to NameNode

#

# 58000

port=$baseport

param="fs.defaultFS"

newvalue="<value>hdfs://$MASTER:$port</value>"

sed -i "/$param/ {

n

c\

$newvalue

}" etc/hadoop/core-site.xml

#

# Configure Resource Manager (YARN)

#

# 58010

param="yarn.resourcemanager.hostname"

newvalue="<value>$MASTER</value>"

sed -i "/$param/ {

n

c\

$newvalue

}" etc/hadoop/yarn-site.xml

# 58010

port=$[baseport+10]

param="yarn.resourcemanager.address"

newvalue="<value>$MASTER:$port</value>"

sed -i "/$param/ {

n

c\

$newvalue

}" etc/hadoop/yarn-site.xml

# 58020

port=$[baseport+20]

param="yarn.resourcemanager.scheduler.address"

newvalue="<value>$MASTER:$port</value>"

sed -i "/$param/ {

n

c\
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$newvalue

}" etc/hadoop/yarn-site.xml

# 58030

port=$[baseport+30]

param="yarn.resourcemanager.resource-tracker.address"

newvalue="<value>$MASTER:$port</value>"

sed -i "/$param/ {

n

c\

$newvalue

}" etc/hadoop/yarn-site.xml

# 58040

port=$[baseport+40]

param="yarn.resourcemanager.admin.address"

newvalue="<value>$MASTER:$port</value>"

sed -i "/$param/ {

n

c\

$newvalue

}" etc/hadoop/yarn-site.xml

# 58050

port=$[baseport+50]

param="yarn.resourcemanager.webapp.address"

newvalue="<value>$MASTER:$port</value>"

sed -i "/$param/ {

n

c\

$newvalue

}" etc/hadoop/yarn-site.xml

# 58060

port=$[baseport+60]

param="yarn.nodemanager.webapp.address"

newvalue="<value>0.0.0.0:$port</value>"

sed -i "/$param/ {

n

c\

$newvalue

}" etc/hadoop/yarn-site.xml

# 58070

port=$[baseport+70]

param="yarn.nodemanager.localizer.address"

newvalue="<value>0.0.0.0:$port</value>"

sed -i "/$param/ {

n

c\

$newvalue

}" etc/hadoop/yarn-site.xml

#

# Configure MapRed settings (JVM’s on every node)

#

# 58060

port=$[baseport+60]

param="mapreduce.jobhistory.address"

newvalue="<value>0.0.0.0:$port</value>"

sed -i "/$param/ {

n

c\

$newvalue

}" etc/hadoop/mapred-site.xml

# 58070

port=$[baseport+70]

param="mapreduce.jobhistory.webapp.address"

newvalue="<value>0.0.0.0:$port</value>"

sed -i "/$param/ {

n

c\

$newvalue

}" etc/hadoop/mapred-site.xml

echo

echo "Updated files hdfs-site.xml, core-site.xml, yarn-site.xml, mapred-site.xml in hadoop conf folder"

echo
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B.2.2 create-hadoop-cluster.sh

#!/bin/sh

# author: Amit Jain

# modified for Hadoop >=2.6 by Gabriel Trisca

export JAVA_HOME="/cm/shared/apps/java/gcc/64/jdk1.8.0_31"

export HADOOP_HOME=$HOME/hadoop-install

export SLAVES_FILE=${HADOOP_HOME}/etc/hadoop/slaves

if test ! -d "${HADOOP_HOME}"

then

echo

echo "Error: missing hadoop install folder: ${HADOOP_HOME}"

echo "Install hadoop in install folder before running this script!"

echo

exit 1

fi

cd ${HADOOP_HOME}

/bin/rm -fr logs pids

mkdir {logs,pids}

pbsdsh -v "/bin/rm -fr $TMPDIR/hadoop-‘whoami‘"

pbsdsh -v "mkdir $TMPDIR/hadoop-‘whoami‘"

pbsdsh -v "chmod 700 $TMPDIR/hadoop-‘whoami‘"

cd etc/hadoop/

for node in $(cat $SLAVES_FILE)

do

mkdir $HADOOP_HOME/pids/$node

done

mkdir $HADOOP_HOME/pids/‘hostname‘

cd $HADOOP_HOME

java -version

MASTER=‘head -1 etc/hadoop/masters‘

HOST=‘hostname‘

echo "[MASTER][$HOST] Formatting the DFS filesystem"

# Formating has to be executed on NameNode

ssh $MASTER $HADOOP_HOME/bin/hdfs namenode -format

echo "[MASTER][$HOST] Starting the DFS on all nodes"

sbin/start-dfs.sh

sleep 30

echo "[MASTER][$HOST] Launching YARN on $MASTER"

# ResourceManager has to be stopped from the same host

ssh $MASTER $HADOOP_HOME/sbin/start-yarn.sh

B.2.3 create-hadoop-cluster.sh

#!/bin/sh

# author: Amit Jain

# modified for Hadoop >=2.6 by Gabriel Trisca

export JAVA_HOME="/etc/alternatives/jre_openjdk"

export HADOOP_HOME=$HOME/hadoop-install

export SLAVES_FILE=${HADOOP_HOME}/etc/hadoop/slaves

cd $HADOOP_HOME

MASTER=‘head -1 etc/hadoop/masters‘

sbin/stop-dfs.sh

# ResourceManager has to be stopped from the same host

ssh $MASTER $HADOOP_HOME/sbin/stop-yarn.sh

#/bin/rm -fr logs pids

echo

echo "Removing hadoop filesystem directories"

pbsdsh -v "/bin/rm -r $TMPDIR/hadoop-‘whoami‘"
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B.2.4 removeDuplicateHosts.py

#!/usr/bin/python

import sys

source=open(sys.argv[1],’r’)

destination=open(sys.argv[2],’w’)

unique = {}

for line in source:

unique[line.strip()] = 1

for key,vaue in unique.iteritems():

destination.write(key)

destination.write(’\n’)

source.close()

destination.close();

B.2.5 runHadoopOnKestrel.sh

#!/bin/bash

### Set the job name

#PBS -N EventDetection

### Run in the queue named "batch"

#PBS -q MRI

### Use the bourne shell

#PBS -S /bin/sh

#PBS -V

### To send email when the job is completed:

#PBS -m ae

#PBS -M gabrieltrisca@boisestate.edu

#PBS -j oe

#PBS -o localhost:/home/gabrieltrisca/logs/out.log

### Specify the number of cpus for your job.

#PBS -l select=10:ncpus=1:ngpus=1

#PBS -l place=scatter

###PBS -l mem=1gb

#PBS -l min_walltime=00:08:00

#PBS -l max_walltime=00:25:00

HADOOP_HOME="${HOME}/hadoop-install/"

module load pdsh/2.9

module load pbspro

module load java/gcc/64/1.8.0_31

cd $PBS_O_WORKDIR

echo Working directory is $PBS_O_WORKDIR

cp $PBS_NODEFILE $HOME/logs/

# Calculate the number of processors allocated to this run.

NPROCS=‘wc -l < $PBS_NODEFILE‘

# Calculate the number of nodes allocated.

NNODES=‘uniq $PBS_NODEFILE | wc -l‘

### Display the job echo Running on host ‘hostname‘

echo Time is ‘date‘

echo Directory is ‘pwd‘

echo Using ${NPROCS} processors across ${NNODES} nodes

echo "Temporary directory is $TMPDIR"

echo "========================================"

echo

for line in $(cat $PBS_NODEFILE) ;do

ssh-copy-id -i $HOME/.ssh/id_rsa.pub $line

ssh -x $line rm -rf $TMPDIR/hadoop-‘whoami‘

done
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mv ${HADOOP_HOME}/etc/hadoop/masters ${HADOOP_HOME}/etc/hadoop/masters.orig

mv ${HADOOP_HOME}/etc/hadoop/slaves ${HADOOP_HOME}/etc/hadoop/slaves.orig

rm ${HADOOP_HOME}/etc/hadoop/nodes

echo "*** Trying to load Java on all nodes"

pbsdsh -v "module load java/gcc/64/1.8.0_31"

cat $PBS_NODEFILE > ${HADOOP_HOME}/etc/hadoop/nodes

sed ’s/.cm.cluster//’ ${HADOOP_HOME}/etc/hadoop/nodes > ${HADOOP_HOME}/etc/hadoop/pbsnodes

$HOME/classifier/resources/kestrel/removeDuplicateHosts.py ${HADOOP_HOME}/etc/hadoop/pbsnodes ${HADOOP_HOME}/etc/hadoop/slaves

MASTER=‘head -1 ${HADOOP_HOME}/etc/hadoop/slaves‘

echo $MASTER > ${HADOOP_HOME}/etc/hadoop/masters

#echo $PBS_O_HOST ${HADOOP_HOME}/etc/hadoop/masters

${HADOOP_HOME}/local-scripts/cluster-pickports.sh 58000

echo "*** Creating hadoop cluster"

pbsdsh -n1 -v "${HADOOP_HOME}/local-scripts/create-hadoop-cluster.sh"

echo "*** Sleeping for 60s..."

sleep 30

echo "*** Executing hadoop job"

echo Starting time: ‘date‘

$@

echo Ending time: ‘date‘

echo "*** Copying output data to local filesystem"

${HADOOP_HOME}/bin/hdfs dfs -ls ./EventDetectionClassification/* > $HOME/logs/folder_contents.txt

${HADOOP_HOME}/bin/hdfs dfs -get ./EventDetectionClassification/* $HOME/logs/

${HADOOP_HOME}/bin/hdfs dfs -get /input_filenames/* $HOME/logs/

#echo "*** Deleting the cluster"

pbsdsh -n1 -v "${HADOOP_HOME}/local-scripts/cluster-remove.sh"

B.2.6 runOnKestrelHadoop.sh

#!/bin/bash

#export JAVA_HOME="/etc/alternatives/jre_openjdk"

export JAVA_HOME="/cm/shared/apps/java/gcc/64/jdk1.8.0_31"

export HADOOP_HOME="$HOME/hadoop-install/"

$HADOOP_HOME/bin/hadoop jar $HOME/classifier/target/classifier-0.0.1-SNAPSHOT-jar-with-dependencies.jar edu.boisestate.cgiss.distributed

.DistributedEventClassificationKestrel $@
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Appendix C

PATCH TO PREVENT ERRORS ON DISPOSING

KERNELS IN APARAPI

Index: com.amd.aparapi.jni/src/cpp/runKernel/JNIContext.cpp

===================================================================

--- com.amd.aparapi.jni/src/cpp/runKernel/JNIContext.cpp (revision 1700)

+++ com.amd.aparapi.jni/src/cpp/runKernel/JNIContext.cpp (working copy)

@@ -19,9 +19,8 @@

deviceId = OpenCLDevice::getDeviceId(jenv, openCLDeviceObject);

cl_device_type returnedDeviceType;

clGetDeviceInfo(deviceId, CL_DEVICE_TYPE, sizeof(returnedDeviceType), &returnedDeviceType, NULL);

- //fprintf(stderr, "device[%d] CL_DEVICE_TYPE = %x\n", deviceId, returnedDeviceType);

+ //fprintf(stderr, "device[%ld] CL_DEVICE_TYPE = %x\n", deviceId, returnedDeviceType);

-

cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM, (cl_context_properties)platformId, 0 };

cl_context_properties* cprops = (NULL == platformId) ? NULL : cps;

context = clCreateContextFromType( cprops, returnedDeviceType, NULL, NULL, &status);

@@ -32,7 +31,7 @@

}

void JNIContext::dispose(JNIEnv *jenv, Config* config) {

- //fprintf(stdout, "dispose()\n");

+ //fprintf(stderr, "dispose()\n");

cl_int status = CL_SUCCESS;

jenv->DeleteGlobalRef(kernelObject);

jenv->DeleteGlobalRef(kernelClass);

@@ -67,21 +66,41 @@

for (int i=0; i< argc; i++){

KernelArg *arg = args[i];

if (!arg->isPrimitive()){

- if (arg->arrayBuffer != NULL){

- if (arg->arrayBuffer->mem != 0){

- if (config->isTrackingOpenCLResources()){

- memList.remove((cl_mem)arg->arrayBuffer->mem, __LINE__, __FILE__);

+ if (arg->isArray()) {

+ if (arg->arrayBuffer != NULL){

+ if (arg->arrayBuffer->mem != 0){

+ if (config->isTrackingOpenCLResources()){

+ memList.remove((cl_mem)arg->arrayBuffer->mem, __LINE__, __FILE__);

+ }

+ status = clReleaseMemObject((cl_mem)arg->arrayBuffer->mem);

+ //fprintf(stdout, "dispose arg %d %0lx\n", i, arg->arrayBuffer->mem);

+ CLException::checkCLError(status, "clReleaseMemObject()");

+ arg->arrayBuffer->mem = (cl_mem)0;

}

- status = clReleaseMemObject((cl_mem)arg->arrayBuffer->mem);

- //fprintf(stdout, "dispose arg %d %0lx\n", i, arg->arrayBuffer->mem);

- CLException::checkCLError(status, "clReleaseMemObject()");

- arg->arrayBuffer->mem = (cl_mem)0;

+ if (arg->arrayBuffer->javaArray != NULL) {

+ jenv->DeleteWeakGlobalRef((jweak) arg->arrayBuffer->javaArray);

+ }

+ delete arg->arrayBuffer;

+ arg->arrayBuffer = NULL;

}

- if (arg->arrayBuffer->javaArray != NULL) {

- jenv->DeleteWeakGlobalRef((jweak) arg->arrayBuffer->javaArray);

+ } else if (arg->isAparapiBuffer()) {

+ if (arg->aparapiBuffer != NULL){

+ if (arg->aparapiBuffer->mem != 0){
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+ if (config->isTrackingOpenCLResources()){

+ memList.remove((cl_mem)arg->aparapiBuffer->mem, __LINE__, __FILE__);

+ }

+ status = clReleaseMemObject((cl_mem)arg->aparapiBuffer->mem);

+ //fprintf(stdout, "dispose arg %d %0lx\n", i, arg->aparapiBuffer->mem);

+ CLException::checkCLError(status, "clReleaseMemObject()");

+ arg->aparapiBuffer->mem = (cl_mem)0;

+ }

+ if (arg->aparapiBuffer->javaObject != NULL) {

+ jenv->DeleteWeakGlobalRef((jweak) arg->aparapiBuffer->javaObject);

+ }

+ delete arg->aparapiBuffer;

+ arg->aparapiBuffer = NULL;

}

- delete arg->arrayBuffer;

- arg->arrayBuffer = NULL;

+

}

}

if (arg->name != NULL){

@@ -91,7 +110,7 @@

jenv->DeleteGlobalRef((jobject) arg->javaArg);

}

delete arg; arg=args[i]=NULL;

- }

+ } // for

delete[] args; args=NULL;

// do we need to call clReleaseEvent on any of these that are still retained....


